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KEYWORDS: ABSTRACT: The modeling of weather and climate has been a success story. The skill of forecasts
Climate prediction; continues to improve and model biases continue to decrease. Combining the output of multiple
Superensembles; models has further improved forecast skill and reduced biases. But are we exploiting the full
Forecasting capacity of state-of-the-art models in making forecasts and projections? Supermodeling is a recent
techniques; step forward in the multimodel ensemble approach. Instead of combining model output after
Data assimilation; the simulations are completed, in a supermodel individual models exchange state information as
Model errors; they run, influencing each other’s behavior. By learning the optimal parameters that determine
Machine learning how models influence each other based on past observations, model errors are reduced at an

early stage before they propagate into larger scales and affect other regions and variables. The
models synchronize on a common solution that through learning remains closer to the observed
evolution. Effectively a new dynamical system has been created, a supermodel, that optimally
combines the strengths of the constituent models. The supermodel approach has the potential to
rapidly improve current state-of-the-art weather forecasts and climate predictions. In this paper
we introduce supermodeling, demonstrate its potential in examples of various complexity, and
discuss learning strategies. We conclude with a discussion of remaining challenges for a successful
application of supermodeling in the context of state-of-the-art models. The supermodeling
approach is not limited to the modeling of weather and climate, but can be applied to improve
the prediction capabilities of any complex system, for which a set of different models exists.
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he modeling of our climate is a challenging task given the complexity of the system.

A myriad of processes, not all perfectly understood, interact across scales over many

orders of magnitude. Computational constraints limit the accuracy of solving the
equations numerically on a grid with finite resolution. The effect of unresolved processes is
approximated by parameterized descriptions, often based on empirical relationships. Model
development is thus a continuously ongoing process that has resulted in a steady, yet relatively
slow, improvement of weather and climate models (Bauer et al. 2015). The climate models
participating in the Coupled Model Intercomparison Project (CMIP) improve from generation
to generation (Reichler and Kim 2008; Bock et al. 2020). Still, systematic biases persist. These
biases include the double intertropical convergence zone (ITCZ) in the Pacific (Tian and Dong
2020), a poor simulation of tropical and subtropical low-level clouds (Stouffer et al. 2017)
(“too few, too bright” low-level cloud problem; Nam et al. 2012), underestimation of
atmospheric blocking over Europe (Davini and D’Andrea 2016), and warm tropical biases in
sea surface temperature (SST) (Richter 2015).

An ensemble of simulations of different models—a multimodel ensemble (MME)—is a
useful approach to account for model uncertainty (Hagedorn et al. 2005; Lee et al. 2021).
Averaging over the MME tends to reduce systematic errors. In addition, predictions can be
improved by combining MME forecasts through weighting different models to form a con-
sensus forecast (Krishnamurti et al. 2016), a posteriori. The weights (as many as 10 million)
vary in space and time and are trained on retrospective predictions. These statistically
determined weights are then used in prediction mode under the assumption that the pro-
cesses are autonomous (i.e., they are not a function of time dependent forcing such as the
anthropogenic forcing). However, such postprocessing methods might not be optimal for
nonlinear processes or for predicting extrema of types or magnitudes that did not occur
during training. Correcting ex post facto averages for historical biases does therefore not
necessarily improve the skill of predictions and climate projections.

In this paper, we will show that predictions and projections can be further improved by
reducing initial error growth through combining the models of an MME dynamically into
a so-called supermodel. The models in a supermodel interact with each other during their
runs. The interaction is frequent enough such that the models can compensate for each
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other’s errors before they extend
to larger scales and affect other
variables in other regions. Essen-
tially, a new dynamical system
is formed. We will formalize the
supermodel definition, identify
the potential and promise of
supermodeling, and 1dept1fy tl%e Super connection:
challenges to developing this : , B

vision and provide potential A modeling

solutions. .

J Synchronisation
of model
50'0“0[]5 Training of

What is supermodeling?

A supermodel is an ensemble
of different models interacting
so as to induce synchronization
with each other as they run, with
the interaction terms trained
on the basis of data to achieve
a superior model. The frequent
interaction among models is
central to supermodeling; the models use each other’s states to continue their simulation.
The interaction can for instance take place by nudging the state of each model in the en-
semble to the state of every other model. Instead of nudging terms, we use the more general
phrase “connection terms” to describe the interaction between models. Depending on the
form and strength of such connections, the models synchronize (i.e., are in approximately
the same state at the same time). Synchronization within a supermodel is important to
maintain internal variability: combining states of models that are in different phases results
in smoothing and reduction of variability. Synchronization is therefore a key element of su-
permodeling. The optimal strength of the connection terms between the models is found by
training the connection terms on the basis of historical observations. Training is therefore
another key element of supermodeling. Whether the ensemble of models can synchronize
on a solution that is close to the observed evolution depends on whether the models can
compensate for each other’s shortcomings. Below we will explain these different elements
in detail. To summarize, supermodeling is based on an ensemble of different models that
have compensating errors, the synchronization of the trajectories of these models, and the
training of the free parameters introduced in the intermodel connections to achieve a model
superior to any of the individual models. (Fig. 1).

Fig. 1. Key elements of supermodeling.

An example of a supermodel based on Lorenz 63. A simple  *Onlytheabstract (Duaneetal. 2009) is published.
supermodel using an ensemble of three parameter-perturbed | For additional details, see, e.g., the review in
Duane (2015), section 5.
Lorenz 63 systems (Lorenz 1963) was advanced by van den
Berge et al. (2011), following a formulation originally introduced by Duane (et al. 2009,
EGU conference presentation).
In the Lorenz 63 model, Eq. (1), a chaotic attractor emerges for the standard values of the
parameters 0 = 10, p = 28, and 8 = 8/3 (Lorenz 1963). The state space is described by coordi-
nates x, y, and z. In van den Berge et al. (2011), the model with standard parameter values is
regarded as the “perfect model,” alias “truth,” and three imperfect models are generated by
perturbing these standard parameter values (see Table 1). We will elaborate in the section
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“An ensemble of different models” on the Table 1. Standard and perturbed parameter
choice of parameters to form an ensemble of ~ values for the Lorenz 63 system.

different models: Model c p B
Perfect model 10 28 8/3
x=o(y—x), (1a) | Model 1 13.25 19 35
Model 2 7 18 3.7
y=x(p—2z)-y, (1b) Model 3 6.5 38 1.7
z=xy— fz. (1c)

The perturbed parameters lead to very distinct behavior (Fig. 2). In the first two models, the
trajectories converge onto stable fixed points, while the third has a chaotic attractor with larger
variations and a shift to larger z values as compared to the perfect model.

We form a supermodel from the three imperfect models by adding linear connection terms
to the equations:

% =0,y =x)+ 3 Ci 06 = x), (2a)
j=i
v, =% (p,=2) =¥, +>_Cy (v, =), (2b)
j=i
z=xy,— Bz + ZC; (z;-z), (20)
j=i

X

where i indexes the three imperfect models, and Cl.]. = Cii,Cg,C;) denote the connec-
tion coefficients. These determine the strength of the nudging of model i toward model j.
In the examples in this paper the connection coefficients are time independent, but they

could be time dependent, for example, to better represent seasonal cycles.
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Fig. 2. Trajectories for (a)—(c) the three unconnected imperfect models (purple) and (d) the supermodel
(blue), and the standard Lorenz 63 system (green). The trajectory for the imperfect models includes the tran-
sient evolution from the initial condition toward the attractor. Replotted from van den Berge et al. (2011).
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The connection coefficients C, e
in this example are trained based 15 1 ‘ ,"i‘ -=- Model 2
on the minimization of a cost i [k 5 ‘;‘ """ Model 3
function calculating the error be- ';‘ ;’ 1
tween the supermodel trajectory o Wi ﬂ‘
and the perfect model trajectory. x g e % -
However, more efficient training &\1 £ £, f
methods have been developed, = “*., ,’f “, }‘t Q", i
as introduced in the section ~10 1 % f *3‘ f “‘1‘ ,"
“Training of intermodel con- ol W W “\f
nections.” After the connection .

coefficients C; have been estab- 0 50 100 timg’eps 200 250 300
lished by training, Eq. (2) defines

a new mOde.l’ the Sup?rmOdEI' imperfect models forming the supermodel of van den Berge et al.
The connection coefficients are  (3911). The synchronization between the models is not perfect,
sufficient to cause the three im-  but the models are in the same phase and close to each other.

perfect models in the supermodel
to synchronize on a chaotic attractor. Since the models are not perfectly synchronized, the
supermodel solution is defined as the ensemble average of the imperfect models (Fig. 3). The
supermodel is robust against the choice of the initial condition. Once we run the supermodel
from out-of-sample initial states, we see that the supermodel attractor is very close to that
of the perfect model, and hence very different from the original imperfect models (Fig. 2d).
The Lorenz 63 experiment was the first proof of concept of supermodeling. It suggested
that it is possible to synchronize different models on a common solution by introducing
intermodel connections. The model combination can be trained using observed trajectories re-
sulting in a supermodel with more realistic dynamical behavior and improved predictive skill.

Fig. 3. Time series for the x coordinates of the three connected

Supermodeling in comparison to the MME and machine learning

Supermodeling versus MME. In a standard MME the models do not interact. Their individual
model outputs are combined after the simulation period is completed. In a supermodel, on
the other hand, the models exchange states with each other during their simulations. If the
interaction between the models in a supermodel is strong and frequent enough, the models
synchronize their evolution. The models form a “consensus solution” that reflects the aver-
age behavior and internal variability of the climate system better than the ensemble mean
of the MME. Therefore, an advantage of the supermodel approach is that it not only provides
improved estimates of climate statistics as a standard MME can do, but due to the synchroniza-
tion, it also generates a unique, dynamically and physically consistent continuous simulation,
including the occurrences of extreme events such as for instance multiyear droughts. In anal-
ogy with “classical” probabilistic prediction as in an MME, the uncertainty associated with the
supermodel simulation can be represented by an ensemble of differently trained supermodels
(i.e., an MME of supermodels). The supermodel can also be used to create a single model en-
semble by perturbing initial conditions of the supermodel. Figure 4 schematically shows the
difference between the construction of an MME (Fig. 4a) and that of a supermodel (Fig. 4b).

Supermodeling as a form of machine learning. The study of machine learning (ML) has
resulted in various methods for generating models solely through algorithmic analysis of
data. The algorithms are based on learned weights and biases, serving as connections be-
tween nodes in a large network, enabling them to generalize and replicate any functional
relationship. Modern ML methods have been used to bias correct models both offline (e.g.,
Chapman et al. 2022) and online (Watt-Meyer et al. 2021). Unless explicitly informed by
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Fig. 4. Difference between (a) a multimodel ensemble (MME) of independently run coupled atmosphere-
ocean models, and (b) an atmosphere-ocean-connected supermodel with interactions during the run
(indicated by the circular bands) between the atmosphere components of the models and between the
ocean components of the models.

physics (Cheng et al. 2023; Jakhar et al. 2023), ML models learn their knowledge about the
climate, including basic physics, empirically from data alone. This learning task requires
large amounts of data, even if training is restricted to connections leading to output units
only, as in the “reservoir computing” approach (Schrauwen et al. 2007).

A supermodel can be compared to an ML model in which state-of-the-art climate models
are used as modular learning blocks (an analogous neural network example is a residual
block; He et al. 2016) within an ML network. However, in contrast to standard ML, the weights
are physics constrained, and expert-user built. They are thus physics aware: the individual
models, the ingredients of the training, bring their physical consistency to the supermodel. In
a supermodel, only the weights to steer the interaction between the individual models need
to be trained from data. This gives supermodels an advantage in the learning task compared
to standard ML approaches.

Synchronization of model solutions

Synchronization of model solutions to evolve simultaneously in a similar manner is one of
the key elements of supermodeling. The concept of synchronization also applies to data
assimilation (Yang et al. 2006; Duane et al. 2006). In data assimilation, a model synchronizes
with reality by assimilating a relatively sparse set of observations (Carrassi et al. 2018). In a
supermodel, the models assimilate data from other models and synchronize on a common
solution. Here we discuss some practical issues regarding the intermodel connections in
relation to the requirement of a synchronized solution.

In supermodeling, where nonidentical models (i.e., models not defined by exactly the same
equations) are connected, synchronization is always imperfect. In practice, however, syn-
chronization errors are small (e.g., Fig. 3). The supermodel solution is defined by averaging
the synchronized model solutions. Since synchronization errors are small, there is hardly any
loss of variance in doing so. Perhaps surprisingly, models can synchronize when connected
strongly and frequently enough, despite the well-known sensitive dependence of weather on
initial conditions (“butterfly effect”). It should be recognized that much of the inspiration for
supermodeling came from outside of meteorology, from nonlinear dynamics, where the syn-
chronization of general chaotic systems has been an active area of research (Pecora and Carroll
2015), including a generalization to chaotic systems that are very different (Rulkov et al. 1995).
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A crucial feature of synchronization is that not every prognostic variable needs to be con-
nected (Pecora et al. 1997); those that are connected do not need to communicate at every time
step, nor at every location. This reduces the data transfer needs between models to a practical
level. In synchronization experiments with a supermodel consisting of different parametric
versions of a global primitive equation model it was found that it was sufficient to connect the
temperature and momentum equations. A degree of synchronization was obtained such that
the variance of the supermodel was not reduced or smoothed compared to the perfect model
(Selten et al. 2017). Nudging the remaining prognostic variables, such as specific humidity
and surface pressure, disturbed the synchronized state, probably due to the introduction of
imbalances and fast spurious adjustments (Schevenhoven et al. 2019).

The minimum connection frequency necessary to synchronize models sufficiently has
been determined by experimentation (Selten et al. 2017; Schevenhoven and Carrassi 2022).
Connecting atmosphere models every 6 h results in very small synchronization errors (Selten
et al. 2017). Ocean models can be connected with a much lower frequency due to the longer
time scales of the ocean dynamics.

In the next example, we will show that even in early stages of supermodel development,
with a limited degree of synchronization between the models, the supermodel is already
able to reduce long-term standing climatological biases. Kirtman et al. (2003) were the first
to combine dynamically different models during integration. They connected two different
atmosphere models to a single ocean model by using the heat flux from one atmosphere model
and the momentum flux from the other, in a combination of the least erroneous fluxes. This
resulted in a new dynamical system. In the areas of strong air—sea interaction, such as the
tropical oceans, the atmosphere models exhibited synchronized behavior. Combining the
two atmosphere models in this way led to a reduced climatological error in SSTs and a better
representation of interannual variability in the tropics. This result inspired the development
of supermodels for climate.

Shen et al. (2016) improved on the Kirtman et al. (2003) approach by training the model
connections (Fig. 5a). In this case, the ocean general circulation model (OGCM) receives a
weighted mean of the surface fluxes of two atmospheric general circulation models (AGCMs).
One atmospheric model used the Tiedtke (1989) and the other the Nordeng (1994) convection
scheme. Both model versions suffered from the well-known double-ITCZ bias with too much
precipitation in the Southern Hemisphere tropical Pacific and a narrow cold tongue that
extends too far west along the
equator accompanied by an ITCZ
on its northern and southern
flank (Fig. 6). Despite this fact,
the trained supermodel, in which
the atmospheres again exhibit
synchronized behavior in the
tropical Pacific (Fig. 7), simulated
a much more realistic climatolog- OCEAN 1
ical cold tongue, the double-ITCZ
error was alleviated (Fig. 6),
and in general there was an im-
provement of equatorial Pacific b
dynamics (Shen et al. 2017). Fig. 5. (a) The supermodel setup of Shen et al. (2016), with two
atmospheric models with different convection schemes combined
by sharing their fluxes with one ocean model. (b) The supermodel
setup of Selten et al. (2017) and Schevenhoven et al. (2019), in

surface winds before ocean-  \yhich multiple atmospheric models are interconnected. Here
atmosphere interactions lead to  also, the atmospheric fluxes are shared with one ocean model.

AN S
\ lﬁ\)' Ly

OCEAN 1

This solution was achieved
by compensating for errors in

AMERICAN METEOROLOGICAL SOCIETY BAMS unauthent it BEEMBER 29434 BY676/24 08101 Py uTC



Observed

Z -
12°N -«-.,,,qgfﬂ' {\ 12°N
2 ]
6°N S G 6°N
00 7 00
6°S | 6°S & Y
A X
12° 12°S ‘ \ N
\ \ —3ms &‘Z\\M AR m&
120°F 120°E  150°E 180°W 150°W 120°W 90°W
Tiedtke
; c
12°N 12°N 30
6°N 6°N ‘
OU 00 ] 25
6°S 6°S
12°S [ cosmos-N 33 12°S f cosmos-T 20
120°E  150°E 180°W 150°W 120°W 90°W 120°E  150°E 180°W 150°W 120°W 90°W

Position of the cold tongue: © Position of the ITCZ: (

Fig. 6. SST (shading; °C), precipitation (contours; mm day-"), and 10-m wind climatology for (top left)
the observations, (bottom left) the model with the Nordeng convection scheme, (bottom right) the
model with the Tiedtke convection scheme, and (top right) the supermodel constructed from the
Nordeng and Tiedtke models. Schematically indicated are the Pacific cold tongue and ITCZ. The Nordeng
and Tiedtke models show the double-ITCZ model biases. Figure adapted from Shen et al. (2017).

the development of the large-scale biases (Shen et al. 2017). This level of error reduction is
not possible by any weighted mean of the unconnected Nordeng and Tiedtke model solutions
(Shen et al. 2016). The implication is that nonlinear effects of the interactions between the
models during the run of the supermodel impacted the final result. The combination of fluxes
impacts the ocean and in return the ocean impacts the atmosphere in a way that could not
have been achieved by a linear combination of models a posteriori.

The effects of these interactions were particularly evident in the tropical Pacific, where the
atmosphere and ocean are subject to stronger interplay. To have effective interactions between
the models outside the tropics, the models should exchange more information with each
other, beyond ocean—atmosphere fluxes. The models could use this information to improve
the synchronization of their states. A natural next step is to exchange variables between the
atmospheric models themselves, as in Fig. 5b.

Training of intermodel connections

Efficient training methods. An essential component of the supermodel approach is the
training of connections, the second key element of the supermodel concept (Fig. 1). Training
ensures that the supermodel performs at least as well as any of the individual models and
maximizes the expected improvement. A supermodel is a new dynamical system, and there-
fore can display unexpected behavior if not properly trained.

A standard training approach such as minimization of a cost function requires many
model simulations, which is computationally very expensive. It also requires a huge amount
of observational data, which are not always available. Therefore, two new methods were de-
veloped to efficiently train supermodels. The first method (Schevenhoven and Selten 2017)
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Point-wise Correlation of Zonal Wind Stress Anomaly

2 TSN
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Fig. 7. Pointwise correlation of zonal wind stress between two connected AGCMs. Areas with insignificant
correlation are blank. Approximate synchronization was found over the tropical Pacific. There is no signifi-
cant correlation between the unconnected AGCMs (not shown) (Shen et al. 2016, supporting information).

is based on an idea called cross pollination in time (CPT) (Smith 2001), where models ex-
change their states during the training. The second method (Duane 2015; Selten et al. 2017)
is a synchronization-based learning rule (synch rule), originally developed for parameter
estimation (Duane et al. 2007). Both methods worked very well in the context of supermod-
els built from climate models of intermediate complexity, such as the SPEEDO model (Selten
et al. 2017; Schevenhoven et al. 2019; Schevenhoven and Carrassi 2022). Both methods are
online learning methods, meaning that the connection terms between the models are adjusted
while the models are running. As in other fitting approaches, in supermodeling we train and
evaluate on distinct sets of observations.

The two new methods are very efficient, because they are designed to keep the models in
the vicinity of the observations by synchronizing them with the observations during train-
ing. This limits the search area for optimized connection terms compared to standard mini-
mization methods. Both methods only required a 1-yr training simulation in order to train the
SPEEDO climate supermodel. This short training period was sufficient to improve both the
short-term forecasts and long-term climate predictions as compared to the individual models
in a perfect model setting. This makes the methods promising for training state-of-the-art
models, since the cost of training is comparable to a few short model runs. Often short-term
training can reduce climatological errors as these tend to develop within the first 10 days of
a forecast (Rodwell and Palmer 2007). However, training for short-term improvement does
not always imply improved long-term behavior (Wiegerinck and Selten 2017).

Improvement in dynamics by training. A well-trained supermodel displays improved dynam-
ics compared to the individual models. Selten et al. (2017) presented an example of a super-
model constructed from two versions of the global coupled atmosphere—ocean-land model
SPEEDO (Severijns and Hazeleger 2010), to demonstrate supermodeling in the presence of
parametric error in the imperfect models. Two SPEEDY atmosphere models are connected to
each other and to the ocean model CLIO and the LBM land model, as in the setup of Fig. 5b.
The climatology of the supermodel is better than that of either individual model, for exam-
ple, in terms of temperature, precipitation, wind, and cloud cover (not shown). The super-
model also simulates the response to climate change (characterized by CO, doubling) more
realistically, i.e., closer to the model we define as “perfect,” given by certain set parameter

AMERICAN METEOROLOGICAL SOCIETY BAMS unauthent it BEEMBER 29434 BY67B 24 08101 Py uTC



values (Fig. 8). In this perfect model, there is a clear shift in the east-west component of the
wind at 850hPa (Fig. 8a). The Southern Hemispheric jet strengthens, while the wind on the
Maritime Continent decreases. The imperfect models are able to show the shift in the Southern
Hemisphere, but do not see the same change on the Maritime Continent as the perfect model
(Figs. 8c,d). The supermodel, however, is able to capture the changes in both regions (Fig. 8b).
Although the supermodel has been trained on the basis of past observations from the perfect
model, the dynamics of the supermodel have improved as compared to the individual models.
A multimodel mean of the imperfect models with positive global weights would lead to a larger
global mean error than the supermodel, since the errors of the individual imperfect models
have a similar spatial structure and have the same sign.

An ensemble of different models

To create a supermodel, the individual models need to be able to compensate for each other’s
dynamical imperfections: the third element of the supermodel concept (Fig. 1). Formally the
models should define a convex hull around the true dynamics. In case the models differ simply
in parameter values, the convex hull can be described as an envelope of imperfect parameter
values, containing the true parameter values. This is the case, for example, in the Lorenz 63
experiment of van den Berge et al. (2011) (Table 1). Plotting the parameter values shows that
they form an envelope around the perfect parameter values (Fig. 9).

We further illustrate the convex hull principle using SPEEDO, with four imperfect ver-
sions that overestimate global temperature compared to the “perfect” model with standard
parameter values (positive biases). Nevertheless, since the imperfect model parameters
formed a convex hull around the true parameters, we can obtain a supermodel with an

Perfect model change in zonal wind at 850 hPa Supermodel error

R
RMS value is 0.37 m/s
= - - T - . - T - T -

Imperfect model 2 error

RMS value is 0.68 m/s RMS value is 0.49 m/s

150W 120W 90W 60W 30W 0O 30E 60E 90E 120E 150E 150W 120W 90W 60W 30W 0O 30E 60E 90E 120E 150

-l -
-5 -4 -3 -2 -1 0 1 2 3 4 5

Fig. 8. (a) Change in the east-west component of the wind at 850hPa due to a CO, doubling in the
perfect model and the error in the simulated wind change for (b) the supermodel and for (c),(d) the
two imperfect models. The change is calculated by subtracting the average wind before CO, doubling
during model years 2016-40 from the average wind during 2056-70. The contours indicate regions
where the difference is statistically significant at the 95% confidence level. The root of the global mean
squared error is given in the lower-left corner of each panel (Selten et al. 2017).
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average temperature much closer
to the perfect model. This is be-
cause the imperfect model ten-
dencies are able to compensate
for each other’s errors (Fig. 10)
(Schevenhoven et al. 2019). Had
those same imperfect models
been included in an MME, the
solution would not have been
closer to the perfect model than
the closest individual model.

If models differ not only in
parameter values but also in
structure (i.e., they have dif-
ferent equations, state vectors,
and phase space), the paramet-
ric convex hull will not ensure

Convex hull of Lorenz 63 parameters

Model 2‘ |
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Fig. 9. Convex hull for the parameter values of the imperfect
models 1-3, as used in the Lorenz 63 supermodel of van den
Berge et al. (2011). The imperfect parameter values surround
the perfect parameter values, defining the “perfect model.”

having a better supermodel. In this case, the imperfect models themselves need to form
a “convex hull,” defined in a more general way. In other words, their dynamical behavior
should envelop the true dynamics so that the imperfect model tendencies are able to com-
pensate for each other. Interestingly, to form a convex hull, adding a “bad” model can create
a superior supermodel, as long as it has dynamical behavior that complements the other
models (Schevenhoven and Selten 2017).

Current developments and challenges

One of the key challenges in supermodeling is to combine models with different architec-
tures. Recently, Counillon et al. (2023) have introduced a supermodeling framework for
Earth system models (ESMs) based on data assimilation technology. It was used to connect the
Norwegian (NorESM), the Community (CESM), and the Max Planck Institute (MPI-ESM) ESMs

in their CMIP5 configurations
via ocean components (Fig. 11).
Differences in the grid type, reso-
lution, and coordinate systems
(Table 1 in Counillon et al. 2023)
are handled using a methodology
comparable to that of Du and
Smith (2017): 1) constructing
pseudo observations from the in-
dividual models (their weighted
mean) on a common grid and
2) assimilating them back into
the individual models to prop-
agate the information to the
unobserved state variables dy-
namically (Carrassi et al. 2018).
In consideration of the practical
limitations on the volume and
frequency of the data exchanged,
only the oceans of the ESMs are
connected, on a monthly basis,
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Fig. 10. Global mean time series for surface air temperature for
the perfect model, the imperfect models, and the two supermod-
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climatology of model years 2011-40 with respect to the climatol-
ogy of the perfect model is given. The normalization is such that
the expected value of the perfect model error is 1. Note that also
the perfect model exhibits error when started from a perturbed
initial condition. Figure adapted from Schevenhoven et al. (2019).
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by connecting their SSTs. Note
that the oceans are here distinct,
unlike the earlier examples of
Shen et al. (2016) and Selten
et al. (2017). The pseudo ob-
servations are assimilated into
the models using model specific
ensemble optimal interpola-
tion data assimilation methods
(Counillon and Bertino 2009)
that update the full ocean states
in their native coordinate sys-
tems. The computational cost of
the supermodel framework is in-
creased by 28% compared to that
of running the three models in-
dependently. Still, this increased
cost can be brought down to less
than 10% by parallelizing the
synchronization step.

Here, we present results from  Fig. 11. Schematic of an ocean-connected supermodel based

the trained supermodel [unlike on state-of-the art Earth system models (Counillon et al. 2023).
in Counillon et al. (2023), where  The oceans exchange state information during the simulations.

no training was done] based on

these three ESMs with ocean connections as described above. The supermodel is compared
to the noninteractive (NI) ensemble. The weight of each model used to construct the pseudo
observation should ideally adjust recursively as the minimization process that brings the
supermodel to its optimal regime is generally nonlinear. However, in these experiments,
weights are estimated on the basis of the monthly climatological SST bias of each of the mod-
els, calculated against NOAA Optimum Interpolation (OI) SST version 2 (OISSTV2; Reynolds
et al. 2002) for the period 1982-2005. The triplet of weights (one for each model) is estimated
at each pseudo-observation grid cell and for each calendar month; their sum is 1, and they
vary smoothly in space and time (not shown).

The variability of the supermodel (Fig. 12c) is damped because the three ESMs weakly syn-
chronize in the current configuration—only the oceans are connected every month (Counillon
et al. 2023). The SST variability of the supermodel is comparable to that of the NI ensemble
mean (Fig. 12b). In regions with strong ocean—atmosphere interactions, such as the equato-
rial Pacific, the supermodel achieves a fair degree of synchronization and an improved SST
variability (Fig. 12c). In the equatorial Pacific, the band of high variability in the NI ensemble
extends too far to the west and is too low (Fig. 12b). On the other hand, in the supermodel
(Fig. 12¢) it has an extent comparable to that of the observed band, although it is still too
weak. In the North Atlantic Subpolar Gyre (SPG) the supermodel variability is substantially
enhanced and more realistic than in the NI ensemble, as SST assimilation can effectively
constrain ocean dynamics (Counillon et al. 2016) and synchronization can be achieved.

The supermodel is able to reduce long-standing climate model biases in SST and pre-
cipitation. This is shown in Fig. 13 for the period 2006-21, a different time span than the
one used for training the weights (1980-2005). The SST bias of the supermodel is reduced
over most regions compared to the NI ensemble mean (Fig. 13). All individual models show
a pronounced double ITCZ (Tian and Dong 2020), also seen in the NI multimodel mean
(Fig. 14b). In agreement with Shen et al. (2017) (Fig. 6), supermodeling suppresses this
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Fig. 12. (a) Deseasoned time standard deviation of SST in the NOAA OISST2 observations, (b) the mul-
timodel average of NI SST and that of (c) the supermodel SST over the period 1982-2021. The values of
the spatial correlation with observations are given in white. The black dashed lines highlight regions
where synchronization is achieved, i.e., where the deseasoned time standard deviation of the multi-

model mean is twice the time average of the monthly deseasoned intermodel spread—see Counillon
et al. (2023) for details.

bias (Fig. 14c) and there is good agreement with the climatological observed pattern (cf.
Figs. 14a and 14c). There is still some disagreement with the observations—with a too intense
and wide northern precipitation band—but the aforementioned achievements are encour-
aging considering the rather premature stage of development of the system and pragmatic
choices made in the implementation. Compared to Counillon et al. (2023), we have shown
that training can reduce the rainfall biases.

Our current agenda for further development of the supermodel will allow us to substan-
tially enhance its performance globally. We foresee that increasing the frequency of the in-
formation exchange, connecting atmospheres as well as other components of the ESMs, and
improving the methodology of the training of the connections would improve the supermodel
performance and enable a better representation of diverse phenomena (Du and Smith 2017;
Schevenhoven and Carrassi 2022; Bach and Ghil 2022).
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Fig. 13. Climatological SST bias of the multimodel mean in (a) the NI ensemble multimodel mean and
(b) the supermodel against OISST2 observations over the period 2006-21. The quantity in white is the
global spatial RMSE normalized by grid cell area.

Outlook and conclusions
In summary, the past decade has seen the development of supermodeling—a new frame-
work for modeling Earth’s climate in which models are combined interactively to im-
prove forecasts and reduce systematic errors. Several examples have demonstrated the
advantages of supermodeling over the standard multimodel ensemble in mitigating model
biases. Supermodeling can be viewed as an advanced physics-informed machine learning
approach. It takes advantage of existing models based on physical laws and applies machine
learning techniques (such as CPT and the synch rule introduced in the section “Training of
intermodel connections”) to train the combination of models based on observational data.

Supermodeling is unique in the sense that an ensemble of different models is integrated in
time simultaneously and state information is exchanged during the simulation. The resulting
synchronized solution depends on the specifics of the interactions. By training these interac-
tions, using historical observations, it is possible to achieve a solution that better matches the
observed evolution. The trained supermodel has smaller errors compared to the individual
models in the ensemble and as compared to any average of their outputs. The technique
improves the dynamics of the resolved scales and better represents the interaction between
the resolved and unresolved
scales. Supermodeling is in prin-
ciple not much more expensive
than running a multimodel en-
semble. There is an added cost
in the training of the connections
between the models, but this
needs to be done only once, and
efficient training schemes have
been developed.

Other methods aimed at re-
ducing model error have been
developed such as parameter
optimization techniques (e.g.,
Ruckstuhl and Janji¢ 2018) or
stochastic parameterizations
(Berner et al. 2017). The main
difference with supermodeling

is that these methods mostly ) L .

. Fig. 14. Mean of precipitation in the tropical band over 2006-21
focus on reducing the error of a in the (a) GPCP observations, (b) Nl ensemble multimodel mean,
single model. Supermodeling,  and (o supermodel. The 2.5-mm isoline (dashed red line) delimits
on the other hand, rather than  the ITCZ.
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correcting the error in the individual models, tries to take maximum advantage of an ensemble
of imperfect models: each of them will have something useful to contribute to the skill of the
supermodel. Supermodeling can therefore be seen as an additional step to improve forecasts:
if an individual model is improved, the supermodel can also be improved.

There are also other methods to correct biases in single models, such as flux correction and
anomaly coupling (Sausen et al. 1988; Kirtman et al. 1997; Danforth et al. 2007; Kr6ger and
Kucharski 2011; Toniazzo and Koseki 2018). These approaches apply static corrections (e.g.,
to the surface energy budget) to maintain the modeled climate close to observations, rather
than correcting the source of these errors. These corrections can inhibit important climate
feedbacks, leading to unstable model behavior (e.g., Gent 2018). Supermodeling focuses on
reducing the development of errors, which occur within the first couple of weeks of the fore-
cast (Jung et al. 2005; Knutti et al. 2010), before they develop into large-scale climate model
biases. As such it not only maintains key climate feedbacks, but it aims at improving them.

There are multiple technical challenges with supermodeling. The models need to exchange
information while running, and this currently limits supermodeling to a single computer.
Further developments to connect models over the cloud would make the supermodel more
widespread, as one could directly capitalize on existing models and data assimilation rather
than porting them to a single high-performance computer. Another technical challenge is
that the state representation differs between models: for instance, the vertical and horizon-
tal discretization of the atmosphere in state-of-the-art climate models is typically different.
These issues can in principle be dealt with by interpolation, data assimilation, or projection
techniques, as in operational numerical weather prediction systems (e.g., Magnusson et al.
2022). Another venue for potential improvement is to use machine learning during the data
assimilation step to emulate the missing processes in the pseudo observations (Brajard et al.
2020; Sonnewald et al. 2021).

The results shown in this paper give us the confidence that supermodeling is suitable to
apply to state-of-the-art models and can truly mitigate long-standing biases and improve
weather and climate predictions. Furthermore, supermodeling is not restricted to weather and
climate modeling. It is also applicable to other areas of research that involve computational
modeling of complex systems, such as hydrology (Santos 2018), ecological economy (Sendera
2019), and medicine (Paszynski et al. 2022).
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