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ABSTRACT: The modeling of weather and climate has been a success story. The skill of forecasts 
continues to improve and model biases continue to decrease. Combining the output of multiple 
models has further improved forecast skill and reduced biases. But are we exploiting the full  
capacity of state-of-the-art models in making forecasts and projections? Supermodeling is a recent 
step forward in the multimodel ensemble approach. Instead of combining model output after 
the simulations are completed, in a supermodel individual models exchange state information as 
they run, influencing each other’s behavior. By learning the optimal parameters that determine 
how models influence each other based on past observations, model errors are reduced at an 
early stage before they propagate into larger scales and affect other regions and variables. The 
models synchronize on a common solution that through learning remains closer to the observed 
evolution. Effectively a new dynamical system has been created, a supermodel, that optimally 
combines the strengths of the constituent models. The supermodel approach has the potential to 
rapidly improve current state-of-the-art weather forecasts and climate predictions. In this paper 
we introduce supermodeling, demonstrate its potential in examples of various complexity, and 
discuss learning strategies. We conclude with a discussion of remaining challenges for a successful  
application of supermodeling in the context of state-of-the-art models. The supermodeling  
approach is not limited to the modeling of weather and climate, but can be applied to improve 
the prediction capabilities of any complex system, for which a set of different models exists.
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T
he modeling of our climate is a challenging task given the complexity of the system. 

A myriad of processes, not all perfectly understood, interact across scales over many 

orders of magnitude. Computational constraints limit the accuracy of solving the 

equations numerically on a grid with �nite resolution. The e�ect of unresolved processes is 

approximated by parameterized descriptions, o�en based on empirical relationships. Model 

development is thus a continuously ongoing process that has resulted in a steady, yet relatively 

slow, improvement of weather and climate models (Bauer et al. 2015). The climate models 

participating in the Coupled Model Intercomparison Project (CMIP) improve from generation 

to generation (Reichler and Kim 2008; Bock et al. 2020). Still, systematic biases persist. These 

biases include the double intertropical convergence zone (ITCZ) in the Paci�c (Tian and Dong 

2020), a poor simulation of tropical and subtropical low-level clouds (Stou�er et al. 2017)  

(“too few, too bright” low-level cloud problem; Nam et al. 2012), underestimation of 

atmospheric blocking over Europe (Davini and D’Andrea 2016), and warm tropical biases in 

sea surface temperature (SST) (Richter 2015).

An ensemble of simulations of different models—a multimodel ensemble (MME)—is a 

 useful approach to account for model uncertainty (Hagedorn et al. 2005; Lee et al. 2021). 

Averaging over the MME tends to reduce systematic errors. In addition, predictions can be 

improved by combining MME forecasts through weighting different models to form a con-

sensus forecast (Krishnamurti et al. 2016), a posteriori. The weights (as many as 10  million) 

vary in space and time and are trained on retrospective predictions. These statistically 

determined weights are then used in prediction mode under the assumption that the pro-

cesses are autonomous (i.e., they are not a function of time dependent forcing such as the 

anthropogenic forcing). However, such postprocessing methods might not be optimal for 

nonlinear processes or for predicting extrema of types or magnitudes that did not occur 

during training. Correcting ex post facto averages for historical biases does therefore not 

necessarily improve the skill of predictions and climate projections.

In this paper, we will show that predictions and projections can be further improved by 

reducing initial error growth through combining the models of an MME dynamically into 

a so-called supermodel. The models in a supermodel interact with each other during their 

runs. The interaction is frequent enough such that the models can compensate for each 
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other’s errors before they extend 

to larger scales and affect other 

variables in other regions. Essen-

tially, a new dynamical system 

is formed. We will formalize the 

supermodel definition, identify 

the potential and promise of 

supermodeling, and identify the 

challenges to developing this 

vision and provide potential 

solutions.

What is supermodeling?

A supermodel is an ensemble 

of di�erent models interacting 

so as to induce synchronization 

with each other as they run, with 

the interaction terms trained 

on the basis of data to achieve 

a superior model. The frequent 

interaction among models is 

central to supermodeling; the models use each other’s states to continue their simulation. 

The interaction can for instance take place by nudging the state of each model in the en-

semble to the state of every other model. Instead of nudging terms, we use the more general 

phrase “connection terms” to describe the interaction between models. Depending on the 

form and strength of such connections, the models synchronize (i.e., are in approximately 

the same state at the same time). Synchronization within a supermodel is important to 

maintain internal variability: combining states of models that are in di�erent phases results 

in smoothing and reduction of variability. Synchronization is therefore a key element of su-

permodeling. The optimal strength of the connection terms between the models is found by 

training the connection terms on the basis of historical observations. Training is therefore 

another key element of supermodeling. Whether the ensemble of models can synchronize 

on a solution that is close to the observed evolution depends on whether the models can 

compensate for each other’s shortcomings. Below we will explain these di�erent elements 

in detail. To summarize, supermodeling is based on an ensemble of di�erent models that 

have compensating errors, the synchronization of the trajectories of these models, and the 

training of the free parameters introduced in the intermodel connections to achieve a model 

superior to any of the individual models. (Fig. 1).

An example of a supermodel based on Lorenz 63. A simple 

supermodel using an ensemble of three parameter-perturbed 

Lorenz 63 systems (Lorenz 1963) was advanced by van den 

Berge et  al. (2011), following a formulation originally introduced by Duane (et  al. 2009, 

EGU conference presentation).1

In the Lorenz 63 model, Eq. (1), a chaotic attractor emerges for the standard values of the 

parameters σ = 10, ρ = 28, and β = 8/3 (Lorenz 1963). The state space is described by coordi-

nates x, y, and z. In van den Berge et al. (2011), the model with standard parameter values is 

regarded as the “perfect model,” alias “truth,” and three imperfect models are generated by 

perturbing these standard parameter values (see Table 1). We will elaborate in the section 

Fig. 1. Key elements of supermodeling.

1 Only the abstract (Duane et al. 2009) is published. 

For additional details, see, e.g., the review in 

Duane (2015), section 5.
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“An ensemble of different models” on the 

choice of parameters to form an ensemble of 

different models:

  σ= −x y x( ), (1a)

  ρ= − −y x z y( ) , (1b)

  β= −z xy z. (1c)

The perturbed parameters lead to very distinct behavior (Fig. 2). In the �rst two models, the 

trajectories converge onto stable �xed points, while the third has a chaotic attractor with larger 

variations and a shi� to larger z values as compared to the perfect model.

We form a supermodel from the three imperfect models by adding linear connection terms 

to the equations:

  ∑σ= − + −

≠

x y x C x x
i i i i ij

x

j i
j i

( ) ( ), (2a)

  ∑ρ= − − + −

≠

y x z y C y y
i i i i i ij

y

j i
j i

( ) ( ), (2b)

  ∑β= − + −

≠

z x y z C z z
i i i i i ij

z

j i
j i

( ), (2c)

where i indexes the three imperfect models, and ( )=C C C C
ij ij

x

ij

y

ij

z
, ,  denote the connec-

tion  coe�cients. These determine the strength of the nudging of model i toward model j.  

In the examples in this paper the connection coe�cients are time independent, but they  

could be time dependent, for example, to better represent seasonal cycles.

Table 1. Standard and perturbed parameter 
values for the Lorenz 63 system.

Model σ ρ β

Perfect model 10 28 8/3

Model 1 13.25 19 3.5

Model 2 7 18 3.7

Model 3 6.5 38 1.7

Fig. 2. Trajectories for (a)–(c) the three unconnected imperfect models (purple) and (d) the supermodel 

(blue), and the standard Lorenz 63 system (green). The trajectory for the imperfect models includes the tran-

sient evolution from the initial condition toward the attractor. Replotted from van den Berge et al. (2011).
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The connection coefficients C
ij
 

in this example are trained based 

on the minimization of a cost 

function calculating the error be-

tween the supermodel trajectory 

and the perfect model trajectory. 

However, more efficient training 

methods have been developed, 

as introduced in the section 

“Training of intermodel con-

nections.” After the connection 

coefficients C
ij
 have been estab-

lished by training, Eq. (2) defines 

a new model, the supermodel. 

The connection coefficients are 

sufficient to cause the three im-

perfect models in the supermodel 

to synchronize on a chaotic attractor. Since the models are not perfectly synchronized, the 

supermodel solution is defined as the ensemble average of the imperfect models (Fig. 3). The 

supermodel is robust against the choice of the initial condition. Once we run the supermodel 

from out-of-sample initial states, we see that the supermodel attractor is very close to that 

of the perfect model, and hence very different from the original imperfect models (Fig. 2d).

The Lorenz 63 experiment was the first proof of concept of supermodeling. It suggested  

that it is possible to synchronize different models on a common solution by introducing  

intermodel connections. The model combination can be trained using observed trajectories re-

sulting in a supermodel with more realistic dynamical behavior and improved predictive skill.

Supermodeling in comparison to the MME and machine learning

Supermodeling versus MME. In a standard MME the models do not interact. Their individual 

model outputs are combined a�er the simulation period is completed. In a supermodel, on 

the other hand, the models exchange states with each other during their simulations. If the 

interaction between the models in a supermodel is strong and frequent enough, the models 

synchronize their evolution. The models form a “consensus solution” that re�ects the aver-

age behavior and internal variability of the climate system better than the ensemble mean 

of the MME. Therefore, an advantage of the supermodel approach is that it not only provides 

improved estimates of climate statistics as a standard MME can do, but due to the synchroniza-

tion, it also generates a unique, dynamically and physically consistent continuous simulation, 

including the occurrences of extreme events such as for instance multiyear droughts. In anal-

ogy with “classical” probabilistic prediction as in an MME, the uncertainty associated with the 

supermodel simulation can be represented by an ensemble of di�erently trained supermodels 

(i.e., an MME of supermodels). The supermodel can also be used to create a single model en-

semble by perturbing initial conditions of the supermodel. Figure 4 schematically shows the 

di�erence between the construction of an MME (Fig. 4a) and that of a supermodel (Fig. 4b).

Supermodeling as a form of machine learning. The study of machine learning (ML) has 

resulted in various methods for generating models solely through algorithmic analysis of 

data. The algorithms are based on learned weights and biases, serving as connections be-

tween nodes in a large network, enabling them to generalize and replicate any functional 

relationship. Modern ML methods have been used to bias correct models both o�ine (e.g., 

Chapman et al. 2022) and online (Watt-Meyer et al. 2021). Unless explicitly informed by 

Fig. 3. Time series for the x coordinates of the three connected 

imperfect models forming the supermodel of van den Berge et al. 

(2011). The synchronization between the models is not perfect, 

but the models are in the same phase and close to each other.
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physics (Cheng et al. 2023; Jakhar et al. 2023), ML models learn their knowledge about the 

climate, including basic physics, empirically from data alone. This learning task requires 

large amounts of data, even if training is restricted to connections leading to output units 

only, as in the “reservoir computing” approach (Schrauwen et al. 2007).

A supermodel can be compared to an ML model in which state-of-the-art climate models 

are used as modular learning blocks (an analogous neural network example is a residual 

block; He et al. 2016) within an ML network. However, in contrast to standard ML, the weights 

are physics constrained, and expert-user built. They are thus physics aware: the individual 

models, the ingredients of the training, bring their physical consistency to the supermodel. In 

a supermodel, only the weights to steer the interaction between the individual models need 

to be trained from data. This gives supermodels an advantage in the learning task compared 

to standard ML approaches.

Synchronization of model solutions

Synchronization of model solutions to evolve simultaneously in a similar manner is one of 

the key elements of supermodeling. The concept of synchronization also applies to data 

assimilation (Yang et al. 2006; Duane et al. 2006). In data assimilation, a model synchronizes 

with reality by assimilating a relatively sparse set of observations (Carrassi et al. 2018). In a 

supermodel, the models assimilate data from other models and synchronize on a common 

solution. Here we discuss some practical issues regarding the intermodel connections in 

relation to the requirement of a synchronized solution.

In supermodeling, where nonidentical models (i.e., models not defined by exactly the same 

equations) are connected, synchronization is always imperfect. In practice, however, syn-

chronization errors are small (e.g., Fig. 3). The supermodel solution is defined by averaging 

the synchronized model solutions. Since synchronization errors are small, there is hardly any 

loss of variance in doing so. Perhaps surprisingly, models can synchronize when connected 

strongly and frequently enough, despite the well-known sensitive dependence of weather on 

initial conditions (“butterfly effect”). It should be recognized that much of the inspiration for 

supermodeling came from outside of meteorology, from nonlinear dynamics, where the syn-

chronization of general chaotic systems has been an active area of research (Pecora and Carroll 

2015), including a generalization to chaotic systems that are very different (Rulkov et al. 1995).

Fig. 4. Difference between (a) a multimodel ensemble (MME) of independently run coupled atmosphere– 

ocean models, and (b) an atmosphere–ocean-connected supermodel with interactions during the run 

(indicated by the circular bands) between the atmosphere components of the models and between the 

ocean components of the models.
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A crucial feature of synchronization is that not every prognostic variable needs to be con-

nected (Pecora et al. 1997); those that are connected do not need to communicate at every time 

step, nor at every location. This reduces the data transfer needs between models to a practical 

level. In synchronization experiments with a supermodel consisting of different parametric 

versions of a global primitive equation model it was found that it was sufficient to connect the 

temperature and momentum equations. A degree of synchronization was obtained such that 

the variance of the supermodel was not reduced or smoothed compared to the perfect model 

(Selten et al. 2017). Nudging the remaining prognostic variables, such as specific humidity 

and surface pressure, disturbed the synchronized state, probably due to the introduction of 

imbalances and fast spurious adjustments (Schevenhoven et al. 2019).

The minimum connection frequency necessary to synchronize models sufficiently has 

been determined by experimentation (Selten et al. 2017; Schevenhoven and Carrassi 2022). 

Connecting atmosphere models every 6 h results in very small synchronization errors (Selten 

et al. 2017). Ocean models can be connected with a much lower frequency due to the longer 

time scales of the ocean dynamics.

In the next example, we will show that even in early stages of supermodel development, 

with a limited degree of synchronization between the models, the supermodel is already 

able to reduce long-term standing climatological biases. Kirtman et al. (2003) were the first 

to combine dynamically different models during integration. They connected two different 

atmosphere models to a single ocean model by using the heat flux from one atmosphere model 

and the momentum flux from the other, in a combination of the least erroneous fluxes. This 

resulted in a new dynamical system. In the areas of strong air–sea interaction, such as the 

tropical oceans, the atmosphere models exhibited synchronized behavior. Combining the 

two atmosphere models in this way led to a reduced climatological error in SSTs and a better 

representation of interannual variability in the tropics. This result inspired the development 

of supermodels for climate.

Shen et al. (2016) improved on the Kirtman et al. (2003) approach by training the model 

connections (Fig. 5a). In this case, the ocean general circulation model (OGCM) receives a 

weighted mean of the surface fluxes of two atmospheric general circulation models (AGCMs). 

One atmospheric model used the Tiedtke (1989) and the other the Nordeng (1994) convection 

scheme. Both model versions suffered from the well-known double-ITCZ bias with too much 

precipitation in the Southern Hemisphere tropical Pacific and a narrow cold tongue that 

extends too far west along the 

equator accompanied by an ITCZ  

on its northern and southern 

flank (Fig. 6). Despite this fact, 

the trained supermodel, in which 

the atmospheres again exhibit 

synchronized behavior in the 

tropical Pacific (Fig. 7), simulated 

a much more realistic climatolog-

ical cold tongue, the double-ITCZ 

error was alleviated (Fig. 6), 

and in general there was an im-

provement of equatorial Pacific  

dynamics (Shen et al. 2017).

This solution was achieved 

by compensating for errors in 

surface winds before ocean– 

atmosphere interactions lead to 

Fig. 5. (a) The supermodel setup of Shen et al. (2016), with two 

atmospheric models with different convection schemes combined 

by sharing their fluxes with one ocean model. (b) The supermodel 

setup of Selten et al. (2017) and Schevenhoven et al. (2019), in 

which multiple atmospheric models are interconnected. Here 

also, the atmospheric fluxes are shared with one ocean model.

Unauthenticated | Downloaded 03/27/24 08:01 PM UTC



A M E R I C A N  M E T E O R O L O G I C A L  S O C I E T Y S E P T E M B E R  2 0 2 3 E1677

the development of the large-scale biases (Shen et al. 2017). This level of error reduction is 

not possible by any weighted mean of the unconnected Nordeng and Tiedtke model solutions 

(Shen et al. 2016). The implication is that nonlinear effects of the interactions between the 

models during the run of the supermodel impacted the final result. The combination of fluxes 

impacts the ocean and in return the ocean impacts the atmosphere in a way that could not 

have been achieved by a linear combination of models a posteriori.

The effects of these interactions were particularly evident in the tropical Pacific, where the 

atmosphere and ocean are subject to stronger interplay. To have effective interactions between 

the models outside the tropics, the models should exchange more information with each 

other, beyond ocean–atmosphere fluxes. The models could use this information to improve 

the synchronization of their states. A natural next step is to exchange variables between the 

atmospheric models themselves, as in Fig. 5b.

Training of intermodel connections

Efficient training methods.  An essential component of the supermodel approach is the 

training of connections, the second key element of the supermodel concept (Fig. 1). Training 

ensures that the supermodel performs at least as well as any of the individual models and 

maximizes the expected improvement. A supermodel is a new dynamical system, and there-

fore can display unexpected behavior if not properly trained.

A standard training approach such as minimization of a cost function requires many 

model simulations, which is computationally very expensive. It also requires a huge amount 

of observational data, which are not always available. Therefore, two new methods were de-

veloped to efficiently train supermodels. The first method (Schevenhoven and Selten 2017)  

Fig. 6. SST (shading; °C), precipitation (contours; mm day−1), and 10-m wind climatology for (top left) 

the observations, (bottom left) the model with the Nordeng convection scheme, (bottom right) the 

model with the Tiedtke convection scheme, and (top right) the supermodel constructed from the  

Nordeng and Tiedtke models. Schematically indicated are the Pacific cold tongue and ITCZ. The Nordeng  

and Tiedtke models show the double-ITCZ model biases. Figure adapted from Shen et al. (2017).
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is based on an idea called cross pollination in time (CPT) (Smith 2001), where models ex-

change their states during the training. The second method (Duane 2015; Selten et al. 2017) 

is a synchronization-based learning rule (synch rule), originally developed for parameter 

estimation (Duane et al. 2007). Both methods worked very well in the context of supermod-

els built from climate models of intermediate complexity, such as the SPEEDO model (Selten 

et al. 2017; Schevenhoven et al. 2019; Schevenhoven and Carrassi 2022). Both methods are 

online learning methods, meaning that the connection terms between the models are adjusted 

while the models are running. As in other fitting approaches, in supermodeling we train and 

evaluate on distinct sets of observations.

The two new methods are very efficient, because they are designed to keep the models in 

the vicinity of the observations by synchronizing them with the observations during train-

ing. This limits the search area for optimized connection terms compared to standard mini-

mization methods. Both methods only required a 1-yr training simulation in order to train the 

SPEEDO climate supermodel. This short training period was sufficient to improve both the 

short-term forecasts and long-term climate predictions as compared to the individual models 

in a perfect model setting. This makes the methods promising for training state-of-the-art 

models, since the cost of training is comparable to a few short model runs. Often short-term 

training can reduce climatological errors as these tend to develop within the first 10 days of 

a forecast (Rodwell and Palmer 2007). However, training for short-term improvement does 

not always imply improved long-term behavior (Wiegerinck and Selten 2017).

Improvement in dynamics by training. A well-trained supermodel displays improved dynam-

ics compared to the individual models. Selten et al. (2017) presented an example of a super-

model constructed from two versions of the global coupled atmosphere–ocean–land model 

SPEEDO (Severijns and Hazeleger 2010), to demonstrate supermodeling in the presence of 

parametric error in the imperfect models. Two SPEEDY atmosphere models are connected to 

each other and to the ocean model CLIO and the LBM land model, as in the setup of Fig. 5b.  

The climatology of the supermodel is better than that of either individual model, for exam-

ple, in terms of temperature, precipitation, wind, and cloud cover (not shown). The super-

model also simulates the response to climate change (characterized by CO
2
 doubling) more 

realistically, i.e., closer to the model we de�ne as “perfect,” given by certain set parameter 

Fig. 7. Pointwise correlation of zonal wind stress between two connected AGCMs. Areas with insignificant 

correlation are blank. Approximate synchronization was found over the tropical Pacific. There is no signifi-

cant correlation between the unconnected AGCMs (not shown) (Shen et al. 2016, supporting information).
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values (Fig. 8). In this perfect model, there is a clear shi� in the east–west component of the 

wind at 850 hPa (Fig. 8a). The Southern Hemispheric jet strengthens, while the wind on the 

 Maritime Continent decreases. The imperfect models are able to show the shi� in the Southern 

 Hemisphere, but do not see the same change on the Maritime Continent as the perfect model 

(Figs. 8c,d). The supermodel, however, is able to capture the changes in both regions (Fig. 8b). 

Although the supermodel has been trained on the basis of past observations from the perfect 

model, the dynamics of the supermodel have improved as compared to the individual models. 

A multimodel mean of the imperfect models with positive global weights would lead to a larger 

global mean error than the supermodel, since the errors of the individual imperfect models 

have a similar spatial structure and have the same sign.

An ensemble of different models

To create a supermodel, the individual models need to be able to compensate for each other’s 

dynamical imperfections: the third element of the supermodel concept (Fig. 1). Formally the 

models should de�ne a convex hull around the true dynamics. In case the models di�er simply 

in parameter values, the convex hull can be described as an envelope of imperfect parameter 

values, containing the true parameter values. This is the case, for example, in the Lorenz 63 

experiment of van den Berge et al. (2011) (Table 1). Plotting the parameter values shows that 

they form an envelope around the perfect parameter values (Fig. 9).

We further illustrate the convex hull principle using SPEEDO, with four imperfect ver-

sions that overestimate global temperature compared to the “perfect” model with standard 

parameter values (positive biases). Nevertheless, since the imperfect model parameters 

formed a convex hull around the true parameters, we can obtain a supermodel with an 

Fig. 8. (a) Change in the east–west component of the wind at 850 hPa due to a CO
2
 doubling in the 

perfect model and the error in the simulated wind change for (b) the supermodel and for (c),(d) the 

two imperfect models. The change is calculated by subtracting the average wind before CO
2
 doubling 

during model years 2016–40 from the average wind during 2056–70. The contours indicate regions 

where the difference is statistically significant at the 95% confidence level. The root of the global mean 

squared error is given in the lower-left corner of each panel (Selten et al. 2017).
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average temperature much closer 

to the perfect model. This is be-

cause the imperfect model ten-

dencies are able to compensate 

for each other’s errors (Fig. 10)  

(Schevenhoven et al. 2019). Had 

those same imperfect models 

been included in an MME, the 

solution would not have been 

closer to the perfect model than 

the closest individual model.

If models differ not only in 

parameter values but also in 

structure (i.e., they have dif-

ferent equations, state vectors, 

and phase space), the paramet-

ric convex hull will not ensure 

having a better supermodel. In this case, the imperfect models themselves need to form 

a  “convex hull,” defined in a more general way. In other words, their dynamical behavior 

should  envelop the true dynamics so that the imperfect model tendencies are able to com-

pensate for each other. Interestingly, to form a convex hull, adding a “bad” model can create 

a superior supermodel, as long as it has dynamical behavior that complements the other 

models (Schevenhoven and Selten 2017).

Current developments and challenges

One of the key challenges in supermodeling is to combine models with di�erent architec-

tures.   Recently, Counillon et al. (2023) have introduced a supermodeling framework for 

Earth system models (ESMs) based on data assimilation technology. It was used to connect the 

Norwegian (NorESM), the Community (CESM), and the Max Planck Institute (MPI-ESM) ESMs 

in their CMIP5 configurations 

via ocean components (Fig. 11). 

Di�erences in the grid type, reso-

lution, and coordinate systems 

(Table 1 in Counillon et al. 2023) 

are handled using a methodology 

comparable to that of Du and 

Smith (2017): 1) constructing 

pseudo observations from the in-

dividual models (their weighted 

mean) on a common grid and  

2) assimilating them back into 

the individual models to prop-

agate the information to the 

unobserved state variables dy-

namically (Carrassi et al. 2018). 

In consideration of the practical 

limitations on the volume and 

frequency of the data exchanged, 

only the oceans of the ESMs are 

connected, on a monthly basis, 

Fig. 9. Convex hull for the parameter values of the imperfect 

models 1–3, as used in the Lorenz 63 supermodel of van den 

Berge et al. (2011). The imperfect parameter values surround 

the perfect parameter values, defining the “perfect model.”

Fig. 10. Global mean time series for surface air temperature for 

the perfect model, the imperfect models, and the two supermod-

els trained by CPT and the synch rule. The normalized RMSE in the 

climatology of model years 2011–40 with respect to the climatol-

ogy of the perfect model is given. The normalization is such that 

the expected value of the perfect model error is 1. Note that also 

the perfect model exhibits error when started from a perturbed 

initial condition. Figure adapted from Schevenhoven et al. (2019).
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by connecting their SSTs. Note 

that the oceans are here distinct, 

unlike the earlier examples of 

Shen et al. (2016) and Selten 

et al. (2017). The pseudo ob-

servations are assimilated into 

the models using model speci�c  

ensemble optimal interpola-

tion data assimilation methods  

(Counillon and Bertino 2009) 

that update the full ocean states 

in their native coordinate sys-

tems. The computational cost of 

the supermodel framework is in-

creased by 28% compared to that 

of running the three models in-

dependently. Still, this increased 

cost can be brought down to less 

than 10% by parallelizing the 

synchronization step.

Here, we present results from 

the trained supermodel [unlike 

in Counillon et al. (2023), where 

no training was done] based on 

these three ESMs with ocean connections as described above. The supermodel is compared 

to the noninteractive (NI) ensemble. The weight of each model used to construct the pseudo 

observation should ideally adjust recursively as the minimization process that brings the 

supermodel to its optimal regime is generally nonlinear. However, in these experiments, 

weights are estimated on the basis of the monthly climatological SST bias of each of the mod-

els, calculated against NOAA Optimum Interpolation (OI) SST version 2 (OISSTV2; Reynolds 

et al. 2002) for the period 1982–2005. The triplet of weights (one for each model) is estimated 

at each pseudo-observation grid cell and for each calendar month; their sum is 1, and they 

vary smoothly in space and time (not shown).

The variability of the supermodel (Fig. 12c) is damped because the three ESMs weakly syn-

chronize in the current configuration—only the oceans are connected every month (Counillon 

et al. 2023). The SST variability of the supermodel is comparable to that of the NI ensemble 

mean (Fig. 12b). In regions with strong ocean–atmosphere interactions, such as the equato-

rial Pacific, the supermodel achieves a fair degree of synchronization and an improved SST 

variability (Fig. 12c). In the equatorial Pacific, the band of high variability in the NI ensemble 

extends too far to the west and is too low (Fig. 12b). On the other hand, in the supermodel  

(Fig. 12c) it has an extent comparable to that of the observed band, although it is still too 

weak. In the North Atlantic Subpolar Gyre (SPG) the supermodel variability is substantially 

enhanced and more realistic than in the NI ensemble, as SST assimilation can effectively 

constrain ocean dynamics (Counillon et al. 2016) and synchronization can be achieved.

The supermodel is able to reduce long-standing climate model biases in SST and pre-

cipitation. This is shown in Fig. 13 for the period 2006–21, a different time span than the 

one used for training the weights (1980–2005). The SST bias of the supermodel is reduced 

over most regions compared to the NI ensemble mean (Fig. 13). All individual models show  

a pronounced double ITCZ (Tian and Dong 2020), also seen in the NI multimodel mean 

(Fig. 14b). In agreement with Shen et al. (2017) (Fig. 6), supermodeling suppresses this  

Fig. 11. Schematic of an ocean-connected supermodel based 

on state-of-the art Earth system models (Counillon et al. 2023). 

The oceans exchange state information during the simulations.
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bias (Fig. 14c) and there is good agreement with the climatological observed pattern (cf.  

Figs. 14a and 14c). There is still some disagreement with the observations—with a too intense 

and wide northern precipitation band—but the aforementioned achievements are encour-

aging considering the rather premature stage of development of the system and pragmatic  

choices made in the implementation. Compared to Counillon et al. (2023), we have shown 

that training can reduce the rainfall biases.

Our current agenda for further development of the supermodel will allow us to substan-

tially enhance its performance globally. We foresee that increasing the frequency of the in-

formation exchange, connecting atmospheres as well as other components of the ESMs, and 

improving the methodology of the training of the connections would improve the supermodel 

performance and enable a better representation of diverse phenomena (Du and Smith 2017; 

Schevenhoven and Carrassi 2022; Bach and Ghil 2022).

Fig. 12. (a) Deseasoned time standard deviation of SST in the NOAA OISST2 observations, (b) the mul-

timodel average of NI SST and that of (c) the supermodel SST over the period 1982–2021. The values of 

the spatial correlation with observations are given in white. The black dashed lines highlight regions 

where synchronization is achieved, i.e., where the deseasoned time standard deviation of the multi-

model mean is twice the time average of the monthly deseasoned intermodel spread—see Counillon 

et al. (2023) for details.
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Outlook and conclusions

In summary, the past decade has seen the development of supermodeling—a new frame-

work for modeling Earth’s climate in which models are combined interactively to im-

prove forecasts and reduce systematic errors. Several examples have demonstrated the 

 advantages of supermodeling over the standard multimodel ensemble in mitigating model 

biases.  Supermodeling can be viewed as an advanced physics-informed machine learning 

approach. It takes advantage of existing models based on physical laws and applies machine 

learning techniques (such as CPT and the synch rule introduced in the section “Training of 

intermodel connections”) to train the combination of models based on observational data.

Supermodeling is unique in the sense that an ensemble of different models is integrated in 

time simultaneously and state information is exchanged during the simulation. The resulting 

synchronized solution depends on the specifics of the interactions. By training these interac-

tions, using historical observations, it is possible to achieve a solution that better matches the 

observed evolution. The trained supermodel has smaller errors compared to the individual 

models in the ensemble and as compared to any average of their outputs. The technique 

 improves the dynamics of the resolved scales and better represents the interaction between 

the resolved and unresolved 

scales. Supermodeling is in prin-

ciple not much more expensive 

than running a multimodel en-

semble. There is an added cost 

in the training of the connections 

between the models, but this 

needs to be done only once, and 

efficient training schemes have 

been developed.

Other methods aimed at re-

ducing model error have been 

developed such as parameter 

optimization techniques (e.g., 

Ruckstuhl and Janjić 2018) or 

stochastic parameterizations 

(Berner et al. 2017). The main 

difference with supermodeling 

is that these methods mostly 

focus on reducing the error of a 

single model. Supermodeling, 

on the other hand, rather than 

Fig. 13. Climatological SST bias of the multimodel mean in (a) the NI ensemble multimodel mean and 

(b) the supermodel against OISST2 observations over the period 2006–21. The quantity in white is the 

global spatial RMSE normalized by grid cell area.

Fig. 14. Mean of precipitation in the tropical band over 2006–21 

in the (a) GPCP observations, (b) NI ensemble multimodel mean,  

and (c) supermodel. The 2.5-mm isoline (dashed red line) delimits  

the ITCZ.
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correcting the error in the individual models, tries to take maximum advantage of an ensemble 

of imperfect models: each of them will have something useful to contribute to the skill of the 

supermodel. Supermodeling can therefore be seen as an additional step to improve forecasts: 

if an individual model is improved, the supermodel can also be improved.

There are also other methods to correct biases in single models, such as flux correction and 

anomaly coupling (Sausen et al. 1988; Kirtman et al. 1997; Danforth et al. 2007; Kröger and 

Kucharski 2011; Toniazzo and Koseki 2018). These approaches apply static corrections (e.g., 

to the surface energy budget) to maintain the modeled climate close to observations, rather 

than correcting the source of these errors. These corrections can inhibit important climate 

feedbacks, leading to unstable model behavior (e.g., Gent 2018). Supermodeling focuses on 

reducing the development of errors, which occur within the first couple of weeks of the fore-

cast (Jung et al. 2005; Knutti et al. 2010), before they develop into large-scale climate model 

biases. As such it not only maintains key climate feedbacks, but it aims at improving them.

There are multiple technical challenges with supermodeling. The models need to exchange 

information while running, and this currently limits supermodeling to a single computer. 

Further developments to connect models over the cloud would make the supermodel more 

widespread, as one could directly capitalize on existing models and data assimilation rather 

than porting them to a single high-performance computer. Another technical challenge is 

that the state representation differs between models: for instance, the vertical and horizon-

tal discretization of the atmosphere in state-of-the-art climate models is typically different. 

These issues can in principle be dealt with by interpolation, data assimilation, or projection 

techniques, as in operational numerical weather prediction systems (e.g., Magnusson et al. 

2022). Another venue for potential improvement is to use machine learning during the data 

assimilation step to emulate the missing processes in the pseudo observations (Brajard et al. 

2020; Sonnewald et al. 2021).

The results shown in this paper give us the confidence that supermodeling is suitable to 

apply to state-of-the-art models and can truly mitigate long-standing biases and improve 

weather and climate predictions. Furthermore, supermodeling is not restricted to weather and 

climate modeling. It is also applicable to other areas of research that involve computational 

modeling of complex systems, such as hydrology (Santos 2018), ecological economy (Sendera 

2019), and medicine (Paszyński et al. 2022).
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