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ABSTRACT: “Supermodeling” climate by allowing different models to assimilate data from one another in run time has
been shown to give results superior to those of any one model and superior to any weighted average of model outputs. The
only free parameters, connection strengths between corresponding variables in each pair of models, are determined using
some form of machine learning. It is demonstrated that supermodeling succeeds because near critical states, interscale
interactions are important but unresolved processes cannot be effectively represented diagnostically in any single parame-
terization scheme. In two examples, a pair of toy quasigeostrophic (QG) channel models of the midlatitudes and a pair of
ECHAM5 models of the tropical Pacific atmosphere with a common ocean, supermodels dynamically combine parameteri-
zation schemes so as to capture criticality, associated critical structures, and the supporting scale interactions. The QG
supermodeling scheme extends a previous configuration in which two such models synchronize with intermodel connec-
tions only between medium-scale components of the flow; here the connections are trained against a third “real” model.
Intermittent blocking patterns characterize the critical behavior thus obtained, even where such patterns are missing in the
constituent models. In the ECHAM-based climate supermodel, the corresponding critical structure is the single ITCZ
pattern, a pattern that occurs in neither of the constituent models. For supermodels of both types, power spectra indicate
enhanced interscale interactions in frequency or energy ranges of physical interest, in agreement with observed data, and
supporting a generalized form of the self-organized criticality hypothesis.

SIGNIFICANCE STATEMENT: In a “supermodel” of Earth’s climate, alternative models (climate simulations),
which differ in the way they represent processes on the smallest scales, are trained to exchange information as they run,
adjusting to one another much as weather prediction models adjust to new observations. They form a consensus, cap-
turing atmospheric behaviors that have eluded all the separate models. We demonstrate that simplified supermodels
succeed, where no single approach can, by correctly representing critical phenomena involving sudden qualitative tran-
sitions, such as occur in El Niño events, that depend on interactions among atmospheric processes on many different
scales in space and time. The correct reproduction of critical phenomena is vital both for predicting weather and for
projecting the effects of climate change.
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1. Introduction

The dynamics of Earth’s climate system is to a large degree

a story of interactions between processes on very different

scales. It is commonly believed that there are fewer real

degrees of freedom in the climate system than there are in a

typical physical description because the smallest scales are

somehow slaved. Weather prediction on the basis of severely

limited observations is indeed possible because of such low di-

mensionality. If processes on the smallest physical scales in

time or space were entirely independent, the butterfly effect

would preclude prediction on any useful time scale.

Yet the dimensionality is also clearly greater than the num-

ber of independent observations used in weather prediction.

The dissipative dynamics are such that assimilating a rela-

tively small number of observations causes the remaining de-

grees of freedom, while dynamically independent, to partially

synchronize with their “real” counterparts. Data assimilation

is thus an instance of the dynamical systems paradigm of

chaos synchronization (Duane et al. 2006; Yang et al. 2006),

wherein two chaotic systems, though sensitively dependent on

initial conditions, can be made to synchronize through the ex-

change, unidirectionally or bidirectionally, of only one or of a few

dynamical variables (Fujisaka and Yamada 1983; Afraimovich

et al. 1986; Pecora and Carroll 1990; Pecora et al. 1997). Standard

data assimilation algorithms prescribe couplings between the sys-

tems, here “reality” and “model,” that can also be proven optimal

for synchronization and thus for prediction (Duane et al. 2006).

Models can similarly be made to synchronize with one an-

other when coupled only loosely, a phenomenon that can also

be put to advantage. Unobserved subgrid-scale processes,

some of them slaved and others that are dynamically impor-

tant, are parameterized in different ways in different climate

models. If such models are allowed to assimilate data from

one another in run time, the models will partially synchronize.

The “supermodeling” agenda that relies on the synchroniza-

tion of alternative models of the same objective process is one

of the ultimate applications of the chaos synchronization
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phenomenon to large real-world systems (Duane et al. 2017).

The program is to tune the strengths of the intermodel assimi-

lation for the different variables so that the synchronized vari-

ables simulate their counterparts in observations, in the belief

that results superior to those of any one model, or to any ex

post facto combination of model outputs, can thus be ob-

tained. That hypothesis has been confirmed for supermodels

formed from systems of low-order ODEs (van den Berge et al.

2011; Duane 2015; Mirchev et al. 2012; Du and Smith 20171),

quasigeostrophic models, as described herein, versions of the

intermediate-complexity SPEEDO model (Selten et al. 2017),

and full climate models connected in a rudimentary way, only

at the ocean–atmosphere interface (Shen et al. 2016, 2017).

Despite the proliferation of climate models and of subgrid-

scale parameterization schemes, the partially synchronized

large scales in the trained supermodel afford a superior de-

scription of the real climate. The improvement is related to

the better known advantage gained in ex post facto averaging

of outputs of different IPCC-class climate models, which

almost always gives an improved representation of the real

climate as compared to that of any single model (Reichler and

Kim 2008; T. Reichler 2013, personal communication). It is as

though the error in the separate models can be treated as

random model error, which is reduced upon averaging. Super-

modeling employs this assumption at every intermodel assimi-

lation cycle.

The success of the supermodeling agenda, and of the new

effective parameterization scheme on which it is based, should

tell us something about the small-scale behavior of the real

climate, and about relationships among processes on different

scales. Here we provide evidence that supermodeling suc-

ceeds because it captures the interscale interactions that are

essential to maintaining critical behavior that is missed in each

of the separate models. Further, because different models

commonly err in the same way in missing such behavior, no

ex post facto average of the outputs of those models can re-

produce it.

It is precisely when models are in critical states that they are

most sensitive to the poorly represented small scales. Accord-

ing to the self-organized criticality (SOC) hypothesis of Bak

et al. (1987), systems naturally tend toward such states. They

are in any case commonly encountered in the climate system,

and SOC has been applied to tropical sea surface temperatures

previously (Andrade et al. 1995). What the training of super-

models achieves, in this view, is criticality. This is possible

because prior modeling experience, essentially performing

optimization in various subspaces of the space of all possible

models, has been used to narrow the training task to the

dimensions in model space along which ambiguity remains.

That ambiguity arises because optimization of a model

within the confines of any given algorithmic scheme chosen

for subgrid-scale parameterization tends to miss the full

scope of interscale interactions that come into play near

criticality.

The plan of this paper is as follows. In the next section we

review the concept and history of supermodeling. Then in

section 3 we discuss supermodeling in the case of a toy model

with no unresolved processes, but with intermodel coupling in

a limited range of scales. It is seen that critical behavior can

be achieved where there is none in the constituent models,

with an emergent power spectrum that reflects the expected

interscale cascade. In section 4, we examine the Shen et al.

(2016, 2017) full climate supermodel, with intermodel connec-

tions only through a common ocean, from the same point of

view. We discuss the possibility of monolithic single-model

descriptions of small-scale processes in section 5, and con-

clude with a reassessment of the self-organized criticality

hypothesis in the final section.

2. Background: Synchronization of competing models

in a supermodel

a. Single-scale ODE supermodels

The supermodel concept is first illustrated with three Lorenz

(1963) systems, each with a different setting of the standard

parameters, that we combine to mimic the behavior of a

“true” system, defined by a fourth choice of parameters.

The resulting suite is ẋ 5 s(y2 z), ẏ 5 rx2 y2 xz,

ż 52bz1 xy,

ẋ i 5 si(yi 2 zi) 1 ∑
jÞi

Cx
ij(xj 2 xi) 1 Kx(x 2 xi),

ẏ
i
5 rx

i
2 y

i
2 x

i
z
i
1 m

i
1 ∑

jÞi
C

y
ij(yj 2 y

i
) 1 K

y
(y 2 y

i
),

ż i 52bizi 1 xiyi 1 ∑
jÞi

Cz
ij(zj 2 zi) 1 Kz(z 2 zi),

(1)

where (x, y, z) is the real Lorenz system and (xi, yi, zi) i 5 1, 2,

3 are the three models. An extra term m is present in the mod-

els but not in the real system. Because of the relatively small

number of variables available in this toy system, all possible

directional couplings among corresponding variables in the

three Lorenz systems were considered, giving 18 connection

coefficients CA
ij , A5 x, y, z, i, j5 1, 2, 3, and iÞ j. The con-

stants KA, A 5 x, y, z are chosen arbitrarily so as to effect

“data assimilation” from the “real” Lorenz system into the

three coupled “model” systems. The corresponding configura-

tion for a general set of models, in any given assimilation con-

text represented by a gain matrix K, is schematized in Fig. 1.

If we add an equation to adjust the connections, treated as

additional dynamical variables,

Ċ
x

i, j 5 a(xj 2 xi) x 2
1

3
∑
k
xk

( )
, (2)

with analogous equations for Ċ
y

i,j and Ċ
z

i,j, where the adapta-

tion rate a is an arbitrary constant, we find that the three sys-

tems synchronize with each other as well as with the “true”

system, as seen in Fig. 2a, and that the connection coefficients

rapidly asymptote to optimal values. The arrangement is analo-

gous to an idealized form of weather prediction with continuous

1 The cross-pollination in time II scheme of Du and Smith
(2017) is based on intermodel data assimilation and thus is re-
garded here as a form of supermodeling, though it was conceived
and developed independently.
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assimilation of data from “truth” into three alternative forecast

models, none of which track truth (Figs. 2b–d) as well as the

supermodel.

That Eq. (2) is the correct way to extend synchronization

of states to estimation of connection coefficients follows

from a result on extending synchronization of states to syn-

chronization of parameters generally (Duane et al. 2007),

as explained in detail by Selten et al. (2017). As a heuristic

justification, if one considers a time integral of (2), the pre-

scribed change in any intermodel nudging coefficient CA
ij ,

where A 5 x, y, or z, is seen to be proportional to the corre-

lation of the intermodel nudging term and the overall

signed error between supermodel and truth. With care to

the correct choice of sign in the latter factor, model j is then

given more weight, through nudging, if such nudging of

model i to model j tends to reduce truth–supermodel syn-

chronization error, and conversely, as desired. For models

of real processes, the learning rate a can be made to depend

on the amount of random observational error, as in ordi-

nary data assimilation, so that learning proceeds more

slowly when the data are noisy.

If we turn off the connection to truth and run the trained

supermodel freely, so as to represent long-range climate pro-

jection rather than weather prediction, we would expect to

lose synchronization, but to still have a supermodel attractor

that matches the true attractor. Results of such a comparison

are shown in Figs. 3a–e. A fair degree of attractor matching,

still far from perfect, has been achieved. Further, if we modify

an ancillary parameter of the models, such as r, to mimic the

change in radiative forcing of all models in a changed climate,

the modified supermodel attractor (Fig. 3e) captures the new

properties}a shift in Z and expansion in the Y dimension}of

the modified true attractor (Fig. 3d), even where the connec-

tions defining the new supermodel were obtained by training

with the original value of r in all models.

Better attractor matching is achieved with algorithms that

consider finite trajectory segments, instead of instantaneous

states, in setting values of the connection coefficients for mod-

els with very different attractors (van den Berge et al. 2011).

In the general case of highly imperfect models, algorithms

that minimize short-term prediction error are not adequate

for matching attractors (Wiegerinck and Selten 2017). The

task of optimizing connections in a supermodel such as (1)

thus defines a problem in machine learning that can be ad-

dressed with a variety of traditional and less traditional meth-

ods (Wiegerinck and Selten 2017; Schevenhoven and Carrassi

2022).

b. Multiscale supermodels: The quasigeostrophic example

Supermodeling with multiscale models, the main subject of this

paper, is first illustrated by extending an example that was previ-

ously used to study synchronization-based teleconnections}

weak ones of mainly theoretical interest}between the Atlantic

and Pacific sectors of the midlatitude circulation in a quasigeo-

strophic channel model (Duane and Tribbia 2001, 2004). It was

previously established that two suchmodels, one forced by a jet in

the Atlantic and the other by a jet in the Pacific, would synchro-

nize if connected through only a limited range of Fourier compo-

nents of the total flow. In the present context, we recast the

partially synchronized configuration of connectedmodels as a toy

supermodel, engaged in three-way synchronization with a “true”

system that has a jet in both sectors.

FIG. 1. In a supermodel, “model” systems are linked to each
other, generally in both directions, and to “reality” in one direc-
tion. Separate links between models i, j, with distinct values of the
connection coefficients Cij

‘
, are introduced for different variables ‘

and for each direction of possible influence.

FIG. 2. (a) Synchronization error in the z variable between a “true” Lorenz system, with parameters r 5 28, b 5 8/3, s 5 10.0, m 5 0,
and a supermodel with zmodel ; (1/3)∑kzk connected to truth as in (1) with nudging coefficientsKx 5 10, Ky 5 10, Kz 5 0, and intermodel
nudging coefficients Cx,y,z

i,j that adapt on the fly according to (2) until t 5 250, and are thenceforth frozen at values that continue to give
nearly perfect synchronization. (b)–(d) The corresponding synchronization error for the three models of which the supermodel is com-
prised, each nudged to truth as in (a), but with no connections among themselves. The three models are defined by parameter values
r1,2,3 5 r, b1 5 b, s1 5 15.0, m1 5 30.0, b2 5 1.0, s2 5 s, m2 5230.0, b3 5 4.0, s3 5 5.0, and m3 5 0.
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The two imperfect models are based on a channel model of

zonal/blocked flow vacillation due to Vautard et al. (Vautard

et al. 1988; Vautard and Legras 1988), who attempted to cap-

ture the index cycle, known as a prominent mode of variabil-

ity in the midlatitudes at least since the early work of Namias

(1951). Each model is given by a quasigeostrophic potential

vorticity equation for potential vorticity q in a two-layer reen-

trant channel on a b plane:

Dqi
Dt

;

­qi
­t

1 J(ci, qi) 5 Fi 1 Di, (3)

where the layer i 5 1, 2, c is streamfunction, and the Jacobian

J(c, ? )5 (­c/­x)(­ ? /­y)2 (­c/­y)(­ ? /­x) gives the advective

contribution to the Lagrangian derivativeD/Dt. The forcing F

is a relaxation term designed to induce a jet-like flow near the

beginning of the channel: Fi 5 m0(q*i 2 qi) for q*i corresponding

to the choice of c* shown in Fig. 4a. The dissipation terms D,

boundary conditions, and other parameter values are given in

Duane and Tribbia (2004).

We couple two models of the form (3), with Fi 5 m0(q*i 2 qi),
using a different q*i in each model. The coupling here is in

the advection terms of the two models. The configuration is

given by

DqA

Dt
1 cJ(cA, qB 2 qA) 5 FA 1 DA,

DqB

Dt
1 cJ(cB, qA 2 qB) 5 FB 1 DB,

(4)

(suppressing the layer index i) with forcing terms defined in

terms of their spectral components:

FA,B
k 5 (m0 2 mc

k)[qA*,B*
k 2 qA,B

k ], (5)

FIG. 3. Attractors of (a) the “true” Lorenz system with parameters as in Fig. 2; (b) the supermodel connected to truth as in Fig. 2a; and
(c) the same supermodel run freely, i.e., withKx,y,z 5 0. Also shown are the attractors for all models with a modified r 5 56: (d) the modi-
fied “true” system and (e) the supermodel formed from the modified models with the original connection coefficients. [Supermodel varia-
bles are defined as averages (x, y, z) ; (1/3)∑k(xk, yk, zk).]
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where qk is the wavenumber k spectral component of q in

three dimensions.2 The adjustments mc
k in (5) were chosen to

allow only the large scales to respond to external forcing,

yielding a form that defines a slightly smoothed step function

of wavenumber:

FA,B
k 5

m0[q
A*,B*
k 2 qA,B

k ] if |kx| # kx0 and |ky| # ky0

m0(k0/|k⊥|)
4[qA*,B*

k 2 qA,B
k ] otherwise

,

{

(6)

with k0 5 |k⊥0 |, k⊥0 5 (kx0, ky0), and k⊥ 5 (kx, ky). The dy-

namical variables on all scales are coupled to their counter-

parts in the opposite channel through the Jacobian terms

in (4).

FIG. 4. (a),(b) The forcing c* and (c)–(f) the evolving flow c, in the parallel channel model with advective coupling
as given by (4) with external forcing FA,B

k Þ 0 only in the large scales (6), with c 5 1/2, for the indicated numbers n of
time steps in a numerical integration. In a dimensionalized interpretation of the toy model, m0 5 8.8 3 1024 s21 and
one time step is’0.4 h. An average streamfunction for the two vertical layers i5 1, 2 is shown, for the bottom half of
the full domain of the model (see footnote 2). Other parameters are as defined in Duane and Tribbia (2004). In each
channel, a blocked-zonal index cycle is induced in the solid-boxed region by the jet in that channel, and in the dashed-
boxed region by the jet in the other channel. Near-identical synchronization occurs by the last time step shown
in (e) and (f). The synchronized flows closely approximate the flow in a model with forcing ĉ

*
[corresponding to

q̂*
; (qA* 1 qB*)/2] shown in (g), describing jets in both sectors. [Reprinted from Duane and Tribbia (2004).]

2 Following Duane and Tribbia (2001, 2004), periodic boundary
conditions are used in the y dimension as well as the x dimension.
Their use in y implies that there are two flows, in opposite direc-
tions, displaced from one another in latitude. Only half of the full
domain is shown in the figures in this paper, so as to focus on a sin-
gle flow. But here the wavenumber k refers to the number of
waves per domain width or domain length. So here ky is the num-
ber of waves across the width of the full domain, that is, twice the
number of waves across the width of the displayed channel.
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The flow fields in the coupled channels governed by (4)

are found to synchronize, regardless of differences in initial

conditions, as seen in Fig. 4. Synchronization was also found

when only the medium scales were coupled, by replacing

the advective coupling terms cJ(cA,B, qB,A 2 qA,B) in (4) with

cJ(cA,B, qB,Amedium 2 qA,B
medium), where qA,B

medium is constructed from

the medium-scale Fourier components of qA,B. For faster con-

vergence, intermodel nudging terms can be added, in various

configurations as described by Duane and Tribbia (2004).

The correspondence between the channels is not exactly

the identity, because of the difference in forcings, but is an in-

stance of generalized synchronization, as known to occur in

pairs of systems of ordinary differential equations (Rulkov

et al. 1995) when small differences in parameters are intro-

duced. Likewise here, at c 5 1/2 we have cA
’ cB, with the

difference between the flows in the two channels given mostly

by a difference in the high-spatial-frequency components, as

illustrated in Fig. 5. Control of the small scales by the assimila-

tion of large-scale data agrees with previous studies of such

behavior QG models, e.g., Tanguay et al. (1995). That the

smallest scales need not be coupled is thought to reflect the

existence of an inertial manifold (Temam 1988) on which they

are slaved. The existence of (approximate) inertial manifolds

for forced-dissipative systems is the theoretical underpinning

of the synchronization-based approach.

It is readily seen that the average q̂ 5 (qA 1 qB)/2 of the

solutions of (4a) and (4b), for strong coupling c 5 1/2, is the

solution of a model with the average forcing, that is, of a model

with q̂*
; (qA* 1 qB*)/2, describing two jets, as in Fig. 4g.

(If intermodel nudging terms are included in the forcing, they

cancel in the average.) The flow in either channel cA
’ cB ap-

proximates the flow ĉ in a channel with two jets. As the cou-

pling between the channels is increased from c 5 0 to 1/2, the

dynamics of each channel changes so as to incorporate a

“virtual” counterpart of the dynamics of the sector that is

forced in the other channel, including blocking behavior in that

sector.

The value c 5 1/2 that defines a useful supermodel can be

obtained by training against a “real” (two-jet) dataset qobs(x, t)

to which the model is nudged, according to the training rule:

dc

dt
5 a

�
dx[J(cA, qB 2 qA)(qA 2 qobs)

1 J(cB, qA 2 qB)(qB 2 qobs)], (7)

the connection adaptation rule for coupling in the advective

term that is analogous to the rule (2) that was used when the

coupling was in the nudging term. The rule (7), not discussed

in previous work, tends to minimize the RMS difference be-

tween the supermodel and observations (see appendix) and

suffices to give the correct coupling, as shown in Fig. 6.

c. Climate supermodels

At an intermediate level of complexity in the hierarchy of

models, two SPEEDO models (Severijns and Hazeleger 2010)

sharing a common ocean, but with distinct atmospheric com-

ponents, each with its own parameter settings, were connected

by nudging at all atmospheric grid points (Selten et al. 2017).

The resulting supermodel exhibited a climatology and a cli-

mate response to a CO2 increase that was closer to those of a

reference “true” model than were those of a standard multi-

model average. That result suggests that the toy supermodel

results described above will carry over to full climate models.

The manner in which supermodels surpass multimodel aver-

ages is, however, more clearly illustrated by the application to

full climate models connected to one another only through a

common ocean, without interatmosphere connections. We use

the COSMOS configuration (Giorgetta et al. 2013) composed of

an ECHAM5 atmosphere and an MPIOM ocean. Two versions

of the ECHAM5 atmosphere model, “Nordeng” and “Tiedtke,”

FIG. 5. (a),(b) At a typical instant of time in the evolution of two coupled quasigeostrophic channel models, the
streamfunction is projected onto the components describing the large and medium scales, displayed as in Fig. 4, and
here seen to be approximately synchronized. The intermodel coupling and parameters are as in Fig. 4, but with exter-
nal forcing strength given by m0 5 3.5 3 1022 s21, and with added intermodel nudging in the medium scales of
strength equal to 0.1 3 m0. Medium scales are those for which |k⊥| # knoise and either |kx| . kx0 or |ky| . ky0 [see
Eq. (13)], where knoise 5 15, kx0 5 3, and ky0 5 4. (c) The difference between the streamfunction fields in the two
channels, as shown, is mostly in the high-spatial-frequency components.
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each with a different parameterization of subgrid-scale convec-

tive processes, were coupled to a single MPIOM ocean model

(Shen et al. 2016, 2017): Both atmosphere models feel air–sea

fluxes based on the same SST field, while the ocean receives a

weighted average of the air–sea fluxes, as depicted schematically

in Fig. 7. We refer the interested reader to the original sources

(Tiedtke 1989; Nordeng 1994) for details of the differences be-

tween the two models, which are rather involved.

Different weights, labeled a, b, and g are used for each of the

air–sea fluxes felt by the common ocean}heat, momentum, and

freshwater, respectively. That is, the two COSMOS models are

given by

Ȧ 5 f
N
[A, Q

N
(A, O), t

N
(A, O), q

N
(A, O)], (8a)

Ȯ 5 g[O, QN(A, O), tN(A, O), qN(A, O)], (8b)

and

Ȧ 5 fT[A, QT(A, O), tT(A, O), qT(A, O)], (9a)

Ȯ 5 g[O, QT(A, O), tT(A, O), qT(A, O)], (9b)

where fN and fT are the dynamics describing the evolution

of the atmospheric state vector A in the Nordeng and

FIG. 6. (a) As two QGmodels synchronize with each other and also with the truth, to which each channel model is nudged, (b) the inter-
model coupling is estimated according to (7), finding c" 0.5, its “true” value. The intermodel coupling, external forcing strength m0, and
other parameters are as in Fig. 5, but with medium-scale intermodel nudging coefficients equal to 0.025 3 m0, a narrower range of
medium-scale nudging bounded above by knoise 5 10, and coefficients of nudging to truth equal to 0.53 m0.
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Tiedtke models, respectively, which include a dependence on the

atmosphere–ocean fluxes Q, t, and q, for heat, momentum

(wind stress), and water (precipitation minus evaporation),

respectively. Each flux depends on the states of atmosphere and

ocean in a different way for each model. The ocean state O

evolves according to the dynamics g which is the same in both

models. The supermodel state is the conjoined state vector (AN,

AT,O). The state evolves according to

ȦN 5 fN[AN , QN(AN, O), tN(AN , O), qN(AN , O)], (10a)

Ȧ
T
5 f

T
[A

T
, Q

T
(A

T
, O), t

T
(A

T
, O), q

T
(A

T
, O)], (10b)

Ȯ 5 g[O, aQN(AN , O) 1 (1 2 a)QT(AT , O),
btN(AN , O) 1 (1 2 b)tT(AT , O),
gqN(AN , O) 1 (1 2 g)qT(AT , O)] ?

(10c)

The weights a, b, and g are free parameters that are trained us-

ing a gradient descent scheme, so that the simulated monthly

climatology of SST over the tropical Pacific region is closest to

the observed monthly climatology, with respect to RMS error

in SST in the tropical Pacific (108S–108N, 1608E–908W) (Shen

et al. 2016)

The climatological SST and precipitation fields for the two

models, the supermodel, and reference observations are shown

in Fig. 8. It is seen that while the two models each exhibit the er-

ror of a double intertropical convergence zone (ITCZ), that is

also found in a large variety of other GCMs (Mechoso et al.

1995; Zhang et al. 2007), the trained supermodel exhibits the

single ITCZ that is found in observed tropical Pacific behavior

surrounding ENSO.3 Importantly, any ex post facto weighted

average of the outputs of the two models would also exhibit the

double ITCZ error.

To be consistent with our definition of supermodeling as inter-

model data assimilation, we note that the configuration described

above, given by Eqs. (8)–(10), approximates a configuration of

two coupled ocean–atmosphere models}one with a Nordeng at-

mosphere and anMPIOM ocean, the other with a Tiedtke atmo-

sphere and a separate MPIOM ocean}connected by intermodel

nudging between the ocean components.4 To see this, imagine

that the connections between the two oceans are strong enough

to cause them to synchronize, while the interocean connections

for different prognostic variables are chosen judiciously. For ex-

ample, if the atmosphere–ocean heat flux only enters the prog-

nostic equation for ocean temperature, and the momentum flux

FIG. 7. The general form of the COSMOS supermodel. Two or more atmospheric models impact a common ocean
model via heat, momentum, and mass (water) fluxes, which are weighted combinations of the fluxes from the separate
models. Each atmosphere is impacted only by its own fluxes.

3 It is important to distinguish the trained supermodel behavior
from that of the interactive ensemble of Kirtman and Shukla
(2002), who also obtained improvement in the representation of
ENSO by coupling several atmospheres, there with equal weights,
to the same ocean. In that work, the atmospheres were different
realizations of the same model, so the improvement was due to a
reduction in weather noise. Here, training is essential, since the
double ITCZ remains when equal weights are used (Fig. 8c), and
the improvement cannot be attributed to noise reduction. Further,
no improvement in SST pattern similar to that obtained here was
reported in that previous work. Themultimodel interactive ensemble
ofKirtman et al. (2003), on the other hand, involved swapping of varia-
bles between differentmodels andwas a forerunner of supermodeling.

4 As this article goes to press, it is noted that such an ocean-
connected supermodel has recently been constructed by Counillon
et al. (2023).
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FIG. 8. The (left) climatological sea surface temperature (SST) (units: 8C) and (right) precipitation (units: mm day21)
in the tropical Pacific from (a) observations, (b) the trained supermodel (SUMO), (c) the untrained, equal-weighted
supermodel [COSMOS(E)], and the two constituent models, (d) COSMOS(N) and (e) COSMOS(T). The three in-
dependent weights in the supermodel are trained by optimizing the match between model climatological monthly
means and observed climatology. Observed SST is from the HadISST dataset (Met Office Hadley Centre 2013) for
the period 1948–79, the period also used as a training set; observed precipitation is from the GPCP dataset (Physical
Sciences Laboratory 2013) for the period 1979–2012. There is a double ITCZ in both of the two separate models and
the equal-weighted supermodel, while there is a single ITCZ in observations and in the trained supermodel.
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only enters the prognostic equations for ocean velocity, then dif-

ferent coefficients for the nudging of temperature and velocity

between the two oceans would give different weights a and b for

the heat and momentum fluxes, resp., in the limit of infinite

nudging, C12
l " ‘ (l 5 T, u, y , …) while C12

T /C12
u and C12

T /C12
y

are held fixed. Thus, it is thought that the behavior of the config-

uration described above, with a single ocean, would be obtained

in a supermodel comprised of models with distinct oceans. Fur-

ther, it is asserted that such behavior, involving elusive structures

such as the single ITCZ, is typical of supermodels generally, de-

scribing the way in which they surpass their constituent models

and also surpass any weighted average of the outputs thereof.

3. Relationships between processes on different scales

in a quasigeostrophic supermodel

To further explore the hypothesis that supermodeling suc-

ceeds because of the importance of interscale interactions near

critical states, such as those associated with the ENSO cycle, we

consider the simpler case of another quasigeostrophic super-

model, formed from a different configuration of models than the

one described above. We connect two quasigeostrophic models,

one strongly forced by a jet, and the other weakly forced or un-

forced. The models are here connected both by simple nudging

and by advective coupling as in the two-sector example:

DqA

Dt
1 cAJ(cA, qB 2 qA) 5 FA 1 DA

DqB

Dt
1 cBJ(cB, qA 2 qB) 5 FB 1 DB

: (11)

The forcing terms of the two models include external and in-

termodel nudging terms, as in the first quasigeostrophic super-

model discussed in the last section, but with the same external

jet pattern q* used to force both models:

FA
k 5 mext A

k (q*k 2 qAk ) 1 c′Amcoup A
k (qBk 2 qAk )

FB
k 5 mext B

k (q*k 2 qBk ) 1 c′Bmcoup B
k (qAk 2 qBk )

, (12)

and with scale-dependent nudging coefficients chosen so as to

nudge only medium-wavenumber components of the flow to

the other model:

m
coup A,B
k 5

0 if |k
x
| # k

x0 and |k
y
| # k

y0

m
A,B
0 [(knoise/|k⊥|)

4] if |k⊥| . knoise

m
A,B
0 [1 2 (k0/|k⊥|)

4] otherwise

,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪«
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪¬

(13)

for horizontal wavenumbers defined as k⊥ ; (kx, ky), k0 ; |k⊥0 |,
and k⊥0 ; (kx0, ky0), and with

m
ext A,B
k 5

m
A,B
0 2 m

coup A,B
k if |k| # knoise

0 if |k| . knoise

⎧⎪⎪⎪«
⎪⎪⎪¬ (14)

so that the smallest-scale “noise” components are neither cou-

pled to the other channel nor constrained by the external forc-

ing. (We could dispense with the advective coupling if we are

only interested in the medium and large scales, since they can

be made to synchronize through nudging. We retain the ad-

vective coupling so that we can define the small-scale varia-

bles of the supermodel as the average of small-scale variables

in the two constituent models that are not synchronized.)

The supermodel behavior, for appropriately chosen connec-

tions, is exactly the same as that of a single quasigeostrophic

channel model with moderate forcing strength. To see this,

consider a weighted average q̂ of the potential vorticity fields

for the two channels separately, that is, q̂ ; wAqA 1 wBqB, for

some weightswA,wB
2 [0, 1], withwB5 12 wA. Define the coef-

ficients of the advective coupling terms in (11) differently for the

two channels, specifically let cA 5 wB and cB 5 wA. Then, com-

bining the two equations in (11) and expanding the advective de-

rivativesD/Dt, the averaged potential vorticity q̂ is seen to satisfy

­q̂

­t
1 wAJ(cA, wAqA 1 wBqB) 1 wBJ(cB, wAqA 1 wBqB)

1 wAwBJ(cA, qB 2 qA) 1 wBwAJ(cB, qA 2 qB)

5 wAFA 1 wBFB 1 wADA 1 wBDB
: (15)

It is then seen that the four Jacobian terms in (15), two from the

advective derivatives and two from the advective couplings, sum

to J(wAcA 1 wBcB, wAqA 1 wBqB)5 J(ĉ, q̂), which is the

usual Lagrangian contribution to the advective derivative of q̂, so

that (15) can be written:

Dq̂

Dt
5 (wAFA 1 wBFB) 1 (wADA 1 wBDB): (16)

For k in any range of scales for which the models are synchro-

nized, we naturally define the corresponding component of

the supermodel qsm as qsmk ; qAk 5 qBk 5 q̂
k
. This range in-

cludes all k for which the external forcing coefficients

m
ext A,B
k Þ 0. If the models or Fourier components thereof are

not synchronized, we can arbitrarily define the supermodel

potential vorticity as the weighted average of the values for

the two models qsm ; q̂. As in Duane and Tribbia (2004) we

assume the dissipation terms DA,B are of the same form and

combine linearly. So the supermodel field qsm also satisfies

(16), the usual potential vorticity equation with the forcing

terms FA,B averaged. The contribution of any intermodel nudging

terms to the averaged forcing can also be made to vanish for an

appropriate ratio of c′A to c′B in (12), leaving only an averaged

value of external forcing by the single jet, as was to be shown.

The weights can be obtained dynamically, in an initial

learning stage, from an adaptation rule of the same origin as

(2) and (7), that augments a given dynamical system with a

dynamical equation for a parameter whose value is to be ad-

justed based on observed data. The general rule is that, for

any parameter that appears linearly in one of the dynamical

equations, one adds an equation for the parameter, regarded

as a new dynamical variable, that sets the time derivative of

the parameter to be proportional to the product of the cofac-

tor of that parameter in the given equation and the partial de-

rivative of some error function of the state variables with

respect to the variable that is prognosed by the given equa-

tion. It can be shown that if the model is nudged to another
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version of itself with correct parameter values, and if the con-

figuration is such as to make the states converge when the pa-

rameters match, than the stated adaptation rule will correct

the parameter mismatch. For an appropriate choice of error

function, the RMS error in states and parameters is mini-

mized if we adapt the weights according to

dw
A

dt
5 a ∑

|kx | # kx0, |ky |#ky0

(q*k 2 q̂
k
)(qobsk 2 q̂

k
)

1 a ∑
‖k‖ , knoise,

(|k
x
| . k

x0 or |ky| . k
y0)

[(k0/|k⊥|)
4(q*k 2 q̂

k
)(qobsk 2 q̂

k
)

1 n[1 2 (k0/|k⊥|)
4](qobsk 2 q̂

k
)2], (17)

where a is a learning rate, with wB ; 1 2 wA, and y is the ratio,

held constant, between the strength of nudging to “observations”

during training and the strength of external forcing. This adapta-

tion rule is the analog of (2) and (7) for the single-jet two-forcing-

strength QG supermodel (see appendix).

Two models that are unforced and strongly forced, respec-

tively, exhibit no blocking, as seen in Fig. 9, while a model

with moderate forcing strength exhibits a blocked-zonal index

cycle, arguably similar to that found in the real atmosphere,

as does also the supermodel with the two extreme cases as

constituents, after training the connections (Fig. 9e) to simu-

late “realistic” forcing. With only medium scales connected,

the constituent models synchronize with each other and ex-

hibit the usual index cycle. Note that the models cannot

FIG. 9. Typical flows in the uncoupled QG channel model with (a) no forcing (m0 5 0), (b) strong forcing (m0 5 100
in nondimensional units), and (c) “realistic” forcing (m0 5 0.3); the last case as represented also by a supermodel. For
no forcing and large forcing, there is no blocking. [The values in (a), from20.008 to 0.008, indicate low-amplitude turbu-
lence, not blocking.] (d) For “realistic” forcing, the history of vacillation of the flow between zonal and blocked regimes, sam-
pled at low temporal resolution over the course of a simulation is plotted, using the blocking diagnostic defined in Duane
and Tribbia (2004). (e) Synchronization-based optimization of the connections in a supermodel composed of mA

0 5 100 and
mB
0 5 0 models, nudged to truth in the medium scales, produces a model with forcing msm

0 5 wAmA
0 1 (12 wA)mB

0 that
asymptotically approaches the correct value msm

0 5 0:3, starting from msm
0 5 100, regardless of the strength of nudging to

truth nmsm
0 , which can be the same as the strength of external forcing msm

0 (solid black line), decreased to 0:5msm
0 (dashed red

line), or increased to 1:5msm
0 (dotted blue line); all cases are also displayed with an expanded vertical axis.
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possibly synchronize exactly, because they would satisfy dif-

ferent equations if the nudging terms vanish. The differences

are taken up in the small-scale components that are not con-

nected between models, as shown for the two-jet supermodel

in Fig. 5. That some dynamical components of the constituent

models are not connected, so that the models remain semiau-

tonomous, is key to the supermodeling program.

With strong large-scale forcing, small-scale dynamics are in-

effective in disrupting the jet-like flow (Fig. 9a). With no forc-

ing, no interesting interaction between large and small scales

occurs, and only low-amplitude turbulence (Fig. 9b) ensues.

The interesting behavior occurs in the intermediate dynamical

regime (Fig. 9c). We take the blocked-zonal flow vacillation

to be one example of critical behavior, of which there are in-

deed many in the climate system, each characterized by chaot-

ically intermittent vacillation of a climate subsystem between

qualitatively different dynamical regimes.

In the SOC picture of Bak et al. (1987), as applied to the

model studied, blocked and zonal flows are “minimally stable”

states which break down in response to small fluctuations.

One can indeed cast blocked and zonal flows as two equilibria

that exist simultaneously in a simpler, barotropic system over

a narrow range of parameters (Ghil and Childress 1987). Vac-

illation among minimally stable states, in the Bak et al. view,

occurs in a wide variety of open systems that are far from ther-

modynamic equilibrium, such as the famous example of a sand-

pile onto which sand is continually poured, giving rise to a

fractal pattern of avalanching structures on the surface. The frac-

tal form arises, in the idealized SOC case, because information

cascades freely from small scales to large scales when a system is

at or a near a critical point, implying that there is no preferred

scale in the range of scales over which this cascade occurs. In the

nonideal case studied here, no fractal form is discerned, but

there is interscale interaction across a wide range of scales (e.g.,

Branstator 1995), so something of the SOC picture will apply.

Rather than further describe the specific interscale interac-

tions that give rise to criticality, we investigate the applicabil-

ity of the power-law form of the fluctuations that was

conjectured by Bak et al. (1987) to characterize critical states

generally. If P(s) represents the distribution of scales s in a

power spectrum, then the lack of a well-defined value for�
ds sP(s), which would define an average or typical value of s,

suggests that P(s) is of the form Nsa for some constants a and N,

so that logP(s) is linear in logs, with slope a. Logarithmic plots of

the energy spectrum of the flow in the QG channel model are

shown in Fig. 10. The energy falloff with wavenumber in the situ-

ation of blocked-zonal flow vacillation, as occurs in “reality” and

in the supermodel, has a form closer to that given by a single log-

linear range than does the spectrum of either of the two constitu-

ent models defined by extreme values of the forcing strength,

except for a range of energies and of length scales both too small

to be of interest, in the case of zero forcing. The behavior sup-

ports the notion that the cascade of information from the small

scales is important in the case of vacillation, and that it is achieved

by the supermodel. In the toy model there are no scales that are

unresolved by design, but there are relevant processes on many

scales that are collectively parameterized by the forcing strength

m0. We suggest that the demonstrated log-linear form is a vestige

of the form that would be found in a more complete model that

exhibits the same vacillation.

It is suggested that the representation of such spatiotempo-

ral structures as blocking patterns is at the root of a trained

supermodel’s ability to avoid errors present in its constituent

models, even when those errors are qualitatively similar in all

constituents. Such structures, like the fractal patterns on

avalanching sandpiles, appear only near criticality, and thus

are absent in the noncritical constituent models. They are also

absent in any ex post facto average of the constituent model

outputs. In the following sections, further evidence is pre-

sented that supermodels can generally surpass the common

method of output averaging for the same reason}the unique

character of the spatiotemporal patterns that emerge only

near a critical state and are missed by all constituent models.

4. Trained criticality in the full climate supermodel

We argue that the COSMOS supermodel that was de-

scribed in section 2, in reaching a critical state, qualitatively

different from that of either of its constituent models, exhibits

behavior comparable to that of the quasigeostrophic super-

model discussed above. Here the critical state, imagined to co-

incide with climatology, as characterized by a single ITCZ

and a reduced cold tongue, is supported by suppressed ocean

upwelling at the equator under conditions where the equato-

rial and off-equatorial ocean circulations combine in just the

FIG. 10. Energy E(k)5∑
k , |k| , k11[u2(k)1 y2(k)]/2 vs total wavenumber k, plotted logarithmically in arbitrary units, for the three

cases of the quasigeostrophic channel model defined by forcing strength (a) m0 5 0, (b) m0 5 0.3, and (c) m0 5 100, which are illustrated in
Fig. 9. Dashed lines are best linear fits, each with slopes a equal to the estimated critical exponent, in wavenumber ranges where the en-
ergy falloff is approximately exponential, E’ ka, a, 0.
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right way to suppress the excessive cold tongue found in ei-

ther model separately, in the manner previously described by

Shen et al. (2017).

Briefly, the Shen et al. mechanism relies on an interplay be-

tween Ekman pumping of subsurface cold water, upwelled at

the equator due to local wind stress on the one hand, and off-

equatorial downwelling driven by wind stress gradients at

58–108N and 58–108S on the other. The off-equatorial downwel-

ling induces equatorial upwelling via the meridional tropical cells

in the ocean, in either hemisphere. The equatorial wind stress

and consequent upwelling is stronger in the Nordeng model,

while the off-equatorial downwelling and consequent equatorial

upwelling is stronger in the Tiedtke model. The two effects are

combined in the supermodel, with relative strengths determined

by the value of the momentum-flux weight b in (10), which de-

termines wind stress. The effects do not themselves combine lin-

early, due to some of the same nonlinearities that are essential

to the ENSO cycle (e.g., Jin 1997, 1998; Zebiak and Cane 1987).

That is, the cooling due to upwelling at the equator is not itself a

weighted average of the cooling in Nordeng and Tiedtke. Nature

has in effect selected a special value of b that gives a singular

pattern in the tropical Pacific SST, different from what is ob-

served at both higher and lower values.

Following the self-organized criticality analysis of Bak et al.

(1987), we examine the power spectra for observations and

the different models, as in section 3 for the QG model, but

here using temporal rather than spatial frequency. The spec-

tra for both the Nordeng and Tiedtke models, in simulations

of the twentieth century, exhibit a falloff with frequency that

is too steep at low frequencies (Figs. 12a,b), as compared to

observations (Fig. 12d). This behavior agrees with the fact

that the ENSO cycle in both models is too rapid, with too

much energy concentrated around a period of 2 years, an error

commonly encountered in models of ENSO (e.g., Kirtman

1997). The single-ITCZ pattern is a promising indication that

the ocean–atmosphere dynamics in the supermodel is a more

faithful representation of the true dynamics.

The chaotic vacillation here that is analogous to the vacilla-

tion between blocked and zonal flow regimes in the midlati-

tudes, depicted in Fig. 9d, is that between the warm phases

and cold phases of the ENSO cycle, illustrated in Fig. 11.

While the climatological precipitation patterns in the two

phases are less distinct than the temperature patterns shown

in the figure, the single ITCZ in climatology is indeed an aver-

age of the two phases. Nordeng, Tiedtke, and other climate

models of similar resolution overrepresent the cold (La Niña)

phase in which the ITCZ is divided. That the single ITCZ be-

havior in the supermodel is the result of vacillation, and does

not represent a uniform climatological shift, was demon-

strated in Shen et al. (2016), where it was shown that the su-

permodel better reproduces the El Niño phase. The system is

in a critical state in regard to the two flow regimes. As with

blocking, El Niño events interrupt the background cold phase

pattern that is so easily reproduced in climate models.

Analogously to the blocking patterns in the quasigeo-

strophic model, here it is the spatial structure associated with

ENSO that is characteristic of the critical behavior. The ex-

tension of the Pacific warm pool, defining an El Niño event, is

an extreme form of the suppression of the cold tongue in the

supermodel in a climatological average. The vacillation be-

tween El Niño and La Niña regimes reduces the size of the

cold tongue on average.

The extended warm pool in El Niño events, in this view, is a

dissipative structure, as are the blocking patterns in the QG

model, of the sort that arises in nonequilibrium forced-dissipative

systems. And as with the fractal structure on the surface of Bak

et al.’s sandpiles that gives rise to avalanches, the El Niño struc-

ture has a unique form, though not fractal, that disappears as

one ventures away from the critical state.

Interscale interactions are thought to play a key role in the

ENSO cycle and in the form of El Niño events, as they do in

blocked/zonal vacillation and in blocking patterns. All models ex-

hibit cascades (Figs. 12a–c), down to the scale of the 4–12 yr21

Madden–Julian oscillation (MJO), which has indeed been hy-

pothesized to trigger El Niño events (Moore and Kleeman 1999).

The cascades actually continue to higher frequencies (not shown

in the figure) that would include westerly wind bursts with peri-

ods of 5–20 days, which have also been thought to play such a

triggering role (Harrison and Vecchi 1997). Neither of these phe-

nomena are reproduced well either by the separate models or by

the supermodel. The supermodel, however, while giving a falloff

rate that is still too steep, slightly steeper than in the separate

models at high frequencies, avoids the low-frequency error of the

separate models, in each of which the region of rapid falloff ex-

tends to below-annual frequencies. In this regard the supermodel

spectrum (Fig. 12c) is more like that of observations (Fig. 12d).

FIG. 11. A composite of observed SST patterns in the (a) cold phase and (b) warm phase of the ENSO cycle,
showing an extended cold tongue, a usual corollary of the double ITCZ, in the cold phase. The boundary of the cold
tongue is taken to be the 26.58C contour (bold black line). Observations are from the period 1982–2021 as given
by the NOAA High Resolution SST dataset (Physical Sciences Laboratory 2016; Reynolds et al. 2007; Huang
et al. 2021).
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Thus, it is the form of the criticality in this case that is better rep-

resented by the supermodel than it is by either of the constituent

models separately, although the latter qualitatively agree with

each other in this regard, as they do in their SST patterns. The

improvement in the spectrum is thought to accompany a more

realistic transfer of energy between scales that underlies the phe-

nomena producing the observed SST pattern.

5. Discussion

a. Generality of supermodeling

The use of a handful of models to create a useful super-

model rests on the assumption that the set of combinations of

the constituent model dynamics includes the true dynamics,

or comes closer to it, than does any one constituent model. It

is preferred to consider only combinations formed with non-

negative coefficients or weights, since the use of negative

coefficients can lead to instability. If we envision the models

as defined in a common, large parameter space, then the con-

stituent models should form a convex hull surrounding the

“true” model (e.g., Schevenhoven et al. 2019). A desirable set

of constituent models can be created by design, as with the

Lorenz system supermodel described in section 1, and with

both of the two quasigeostrophic supermodels described in

sections 2b and 3, respectively. Alternatively, a desirable

model set can be constructed using models that have each

been locally optimized in their respective parameter spaces,

as with the Nordeng and Tiedtke versions of the COSMOS

model, relying on the empirical result that model error in

such situations can be viewed as random error in the large

model space. That empirical result seems reasonable, as it

does for the set of IPCC-class models discussed in the intro-

duction, because the local optimization starts from choices

made by different groups of modelers that arguably are

FIG. 12. Power spectral density of Niño 3.4 daily SST anomaly vs frequency, plotted logarithmically, in (a) the
Nordeng model, (b) the Tiedtke model, (c) the supermodel formed from Nordeng and Tiedtke, and (d) observations
for the period 1982–2021 (as in Fig. 11). Solid and dashed lines are best linear fits, each with slopes a equal to the
estimated critical exponent, in wavenumber ranges where the falloff of power spectral density P with frequency f is
approximately exponential, P’ fa, a, 0.
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equally realistic or nearly so. Some combination of such mod-

els will likely come closer to the true dynamics.

For state-of-the-art climate models, the main differences are

in the subgrid-scale parameterization schemes. The improve-

ment obtained by supermodeling is therefore expected to be

in the representation of phenomena on these scales. Further,

realistic anthropogenic changes in radiative forcing are not

expected to have a large impact on the combination of subgrid-

scale parameterizations best suited to represent the true dynam-

ics. So, the effective parameterizations in supermodels trained

on twentieth century data are expected to be robust against cli-

mate change, requiring only the usual change in forcings and

not in intermodel connections, as with the Lorenz system exam-

ple in Fig. 3. Models are most sensitive to behavior on the small-

est scales when they are near criticality, irrespective of the

specific theory of criticality put forward by Bak et al. and their

predicted power spectra. Thus, the improvement due to super-

modeling is expected to be most pronounced when the system

is near criticality, presently or in the projected future.

It remains to argue that similar improvement could not be

obtained by averaging the outputs of the separate models, in

the general case. We assert, without proof, that the occur-

rence of such structures as blocking patterns and a single

ITCZ near and only near critical points is common. The struc-

tures are then absent in any ex post facto average of states in

models that do not represent the critical behavior well.

b. Effective parameterization of the subgrid scales in a

climate supermodel

It is natural to ask whether there is some parameterization

of the subgrid-scale dynamics, intermediate between the

Nordeng and Tiedtke parameterizations, that would yield the

same results as the supermodel but with a single atmosphere.

Indeed, it is expected that better results in the upper atmo-

sphere and in the extratropics will be obtained by introducing

connections between the atmospheres. If the atmospheres

themselves then nearly synchronize, it would thus be expected

that the desynchronized small scales could be used to define

such an intermediate parameterization.

We argue that the lesson of the supermodeling study is that

such parameterizations must be more complex, dynamical enti-

ties. By contrast, the quasigeostrophic supermodel formed from

unforced and strongly forced models (11)–(14), is equivalent to a

single model with a parameterization defined simply by averag-

ing the forcing strengths, as shown in section 3. This will general-

ize to any supermodel formed from models that differ only in

parameters that appear linearly in the prognostic equations, per-

haps as multipliers of entire tendencies, provided that the nonlin-

ear terms are only the familiar Jacobian terms for advection.

Averaging of tendencies (e.g., Wiegerinck and Selten 2017)

will generally not suffice in the case of climate models with

multiple nonlinearities, such as the ECHAM models with dif-

ferent convective parameterizations, coupled to one another

by nudging with finite coefficients. With climate models that

are fully connected in such standard ways, among which the

large scales synchronize, there would be additional degrees of

freedom at the smallest scales and, in general, no definition of

supermodel variables, known a priori, that would satisfy a

modified set of prognostic equations. We recall that not all

variables can synchronize in systems that satisfy different

equations given by different subgrid-scale parameterizations,

if coefficients remain finite. If the large- and medium-scale

variables synchronize, the smallest-scale variables cannot.

The only recourse might be a limit of infinite nudging coeffi-

cients in which all scales are nudged and synchronize, with

nudging terms Cij(xi 2 xj) that remain finite as Cij " ‘ and

xi 2 xj " 0, to compensate for the model differences. In the

limiting case, such finite terms can be taken as dynamical vari-

ables that satisfy their own prognostic equations. Thus, a com-

bined parameterization is only possible, in general, at the cost

of introducing extra degrees of freedom, whether we intro-

duce desynchronized variables or use Cij" ‘.

It is interesting to compare our method with that of sto-

chastic parameterization, in which random variables are

added (Palmer et al. 2009; Berner et al. 2017). Specifically,

one could consider random variables that are sums of multi-

plicative noise terms, each random term based on one of the

models’ instantaneous parameterization of unresolved pro-

cesses. Here the new variables are deterministically related to

the entire history of the models’ states.

Extra degrees of freedom are needed, of course, if we assume

a need to represent the physical processes occurring at subgrid

scales explicitly. The usual approach would be to increase the

spatial resolution of the grid. But we note that we have achieved

a single ITCZ by at most doubling the number of degrees of free-

dom through the use of a separate model. A similar increase in

dynamical dimension in the increased resolution approach would

require that resolution be increased by



2

√
, at most, in each hori-

zontal dimension. That such a small increase would suffice to

qualitatively change the tropical SST pattern seems doubtful.

Thus, supermodeling gives an economy of extra degrees of

freedom. If we assume, for finite nudging, that synchronized

and desynchronized variables segregate according to scale, as

is common, we can have unique variables to describe the large

and medium scales, corresponding to the putatively synchro-

nized variables in our supermodel. This subsystem is analo-

gous to the single ocean in the COSMOS supermodel. But

there would be two or more models of the smallest resolved

scales, which need not be connected to one another, but

would be connected to the larger scales with variable weights.

The proposed architecture, schematized in Fig. 13, emerges

as the form of effective parameterization that directly extends

the supermodel approach to combining models.

Near criticality, the two-way interaction between the small-

est scales and the larger scales is especially important. The

supermodel approach, in our construction, is useful for two re-

lated reasons: 1) it uses prior modeling experience to effectively

isolate the dimensions in a high-dimensional parameter space

along which there is ambiguity in how to parameterize the sub-

grid scales, so that optimization can be restricted to those

dimensions}by training intermodel connections, as in conven-

tional supermodeling; 2) it uses those dimensions to define extra

degrees of freedom, in a dynamical parameterization, that cap-

ture the part of the subgrid-scale dynamics that is relevant to

interscale interactions in a critical state.
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6. Concluding remarks—Beyond self-organized criticality

We have used the Bak et al. (1987) analysis as a reference

point for our investigation of criticality in the two systems

studied here. However, we are not wedded to the specific log-

linear form of the spectrum that is expected in the original

concept of self-organized criticality. That form has been criti-

cized (Jaeger et al. 1989) as not even descriptive of the behavior

of real sandpiles, a primary example in the original proposal,

and is too specific. A multifractal form applies in the more gen-

eral case discussed by Kadanoff et al. (1989), which may be

piecewise linear or even given by a continuously varying expo-

nent in the putative power law. Correspondingly, the spatial

structures that arise intermittently near a critical state have a

unique form, but one more general than that implied by the

fractal structure on the surface of Bak et al.’s sandpiles}a gen-

eralization that has not heretofore received attention. Blocking

patterns and extended warm pools can be viewed as examples of

the “dissipative structures” that appear in Prigogine’s (Nicolis

and Prigogine 1977; Prigogine and Stengers 1979) qualitative ap-

proach to the nonequilibrium thermodynamics of open forced-

dissipative systems, in which fluctuations play a large role near

critical points, as here. But general rules about the form of the

structures and their intermittency near a critical point have not

been elucidated. In the absence of a general theory, our point

about the scaling is simply that however the true power spectrum

deviates from the idealized SOC form, the supermodel spectrum

is closer to it than is the spectrum of any of the separate models

from which the supermodel is constructed.

Specifically, for the toy quasigeostrophic model, the spectrum

(Fig. 10) has a form suggestive of the expected log-linear behavior

over a significant range of frequencies and energies. For the con-

stituent models, the behavior appears piecewise multifractal (for

strong forcing) at best, or has the expected power-law form over

energies and length scales that are too small to be of interest

(for no forcing). The multifractal form is in fact common in

geophysical turbulence (Schertzer and Lovejoy 2011). For the

tropical Pacific SST and its detailed dynamical models, the spec-

trum (Fig. 12) of the real system exhibits log-linear behavior over

a range that is more restricted than in simple models. In reality,

and in the supermodel, specific dynamical processes appear to

limit the power-law form at the low end of that range}processes

that are indeed key to the ENSO phenomenon as known. Thus,

while any claim to universality of the power-law form is exagger-

ated, that form provides a benchmark for the comparison of ob-

served and modeled behavior.

What we seek to preserve of self-organized criticality is the

qualitative assertion that natural systems tend toward critical

states, and toward unique, temporally intermittent spatial struc-

tures associated with those states. For the two examples given,

that would mean that processes that are not represented in the

models or are not fully resolved effectively set the values of the

forcing strength or the flux weights, respectively, to give criticality

and associated structures. The power spectra confirm this ten-

dency, in view of the expected scale relationships near such states.

Beyond the scope of this paper is a possible connection with the

idea that such critical states arise so as to maximize heat transport

from the equator to the poles and the associated principle of max-

imum entropy production (Paltridge 1975), another qualitative

principle in climate science that has yet to yield verifiable predic-

tions. As the proponents of SOC commented in response to criti-

cism, their claim was that SOC could explain power-law behavior

when it was observed, not that it universally implied power-law

behavior (Bak et al. 1989).

In any case, phenomena of interest in weather and climate

tend to involve critical states, and that does explain the need for

the methods of this paper. It is to be remembered that subgrid-

scale processes to which critical states are sensitive are dynamical

processes that are only approximately, not completely slaved

to the larger scales. Especially near criticality, they cannot be

correctly represented by any diagnostic parameterization. Such

FIG. 13. The form of the effective parameterization of subgrid-scale processes suggested by supermodeling. N copies
of the smallest scales are connected to the larger scales in the usual way, except impacting them through weighted aver-
ages of their own state variables in the larger-scale prognostic equations. The small-scale models each use a different
parameterization of the subgrid-scale processes but are otherwise identical. Where the equations for the larger-scale
variables refer to the subgrid-scale processes directly, an averaged parameterization is used.
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situations are common if not universal. Criticality was achieved in

the present work not by design, but by crudely training a small

number of coefficients combining different models, each of them

arguably physical, against observed data. It appears that nature

has chosen criticality over simplicity in regard to approximate

parameterization schemes. Thus, where limited computational

resources necessitate a compact representation of subgrid-scale

processes, either supermodeling or other use of empirical methods

(i.e., learning) to combine alternative parameterizations is in order.
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APPENDIX

Synchronization-Based Optimization of Connections in a

PDE Supermodel

The method used in this work to optimize connections in a

supermodel is a variant of the approach, well known in data as-

similation, of adjoining parameters to state vectors so as to esti-

mate parameter values based on observed data. We consider

data assimilation to be an instance of the synchronization of

two dynamical systems. Here one dynamical system, the model,

is synchronized with another dynamical system, “truth,” which

influences the first system via nudging or other form of connec-

tion through a reduced set of corresponding dynamical varia-

bles. The evolution of the true system is given by

dxl
dt

5 f 0l (x) 1 pf
p
l (x), (A1)

where x 5 (x1, x2, … , xn) is the n-dimensional state vector.

The evolution of the model system, xM(t) is described similarly:

dxMl
dt

5 f 0l (xM) 1 pMf
p
l (xM) 1 cl(x, xM), (A2)

where the dynamics of the true system is assumed known,

except for the value of the parameter p, and an extra term

ci(x, xM) has been added to represent nudging or other

form of data assimilation.

Let the Lyapunov function L(x, xM; t) represent the error in

the model’s state at time t. Commonly, L5∑l[xl(t)2 xMl (t)]2.

If the model system (A2) synchronizes with the true system

(A1), i.e., L " 0, regardless of initial states, for a correct

choice of parameter pM 5 p, we add an equation for adapta-

tion of the parameter along with states:

dpM

dt
52a∑

l

­L

­e
l

f
p
l , (A3)

where el ; xMl 2 xl, the sum is over all l such that the prog-

nostic equation for the state variable xl contains the param-

eter p, and a is an arbitrary learning rate. The rule (A3)

can be rigorously shown to give asymptotic values of the

model parameter that allows the states to synchronize

(Duane et al. 2007; Selten et al. 2017).5

For a supermodel of the form depicted in Fig. 1, the pa-

rameters to be estimated are the connection coefficients Cl
i,j,

while the parameters of the constituent models remain fixed.

For this to be possible, according to the above scheme, it is

only necessary that for some choice of connection coeffi-

cients, the supermodel will synchronize with “reality” for

some choice of nudging coefficients contained in the matrix

K, the one we will use to train the supermodel. In general,

there is more than one way to define the state error L. For a

supermodel composed of m models, two broad categories

are to define the error for each constituent model and then

average, i.e., L ; (1/m)∑l∑
m

k51(xl 2 xkl )
2, or alternatively to

first define supermodel state variables, e.g., as the average of

corresponding state variables in the constituent models

(equal to the variables in any one model for variables that

synchronize), so that L ;∑l xl 2 (1/m)∑m

k51x
k
l

[ ]2
. Using the

latter definition, we find that to estimate p ; Cl
i,j, we set co-

factor f
p
l 5 x

j

l 2 xil and find ­L/­e
l
5 (1/m)∑m

k51x
k
l

[ ]
2 x

l
, so

that the general connection adaptation rule is

Ċ
l

i,j 52a
1

m
∑
m

k51
xkl 2 xl

( )
(xjl 2 xil), (A4)

the generalization of the training rule (2) used for the Lorenz

system supermodel.

For the quasigeostrophic supermodels, one needs to gen-

eralize (A3) to PDEs. This is done by regarding a PDE as

a collection of ODE’s, either one for each point in space or

one for each spectral component. For the supermodel

formed from models with forcing at different locations,

given by (4)–(6), the parameter to be estimated is c, the co-

efficient of the advective coupling term. The same parame-

ter appears in the two Eqs. (4) for every point in space. So

there are two terms in the sum in (A3) for each point in

space and an integral over space. The Lyapunov function

we choose is a sum of error relative to truth over the two

models separately, giving factors of qA 2 qobs and qB 2 qobs.

5 The rule that appears in both references is stated for dynami-
cal equations with any form of dependence on the parameters, but
a linear dependence, as in (A1) and (A2), was assumed in the deri-
vation, so we can express the rule as (A3) without loss of general-
ity. Selten et al. (2017) address the restricted case where the
Lyapunov functionL has the usual RMS form.
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The cofactors f p are J(cA, qB 2 qA) and J(cB, qA 2 qB). The

resulting parameter adaptation rule is

dc

dt
5 a

�
dx[J(cA, qB 2 qA)(qA 2 qobs)

1 J(cB, qA 2 qB)(qB 2 qobs)],

which is Eq. (7).

For the supermodel composed of QG models with differ-

ent forcing strengths, the different spectral components are

treated differently. One can simplify the problem of opti-

mizing the supermodel given by (11)–(14) by using the

demonstrated equivalence to a simple model with averaged

forcing, given by (16). We rewrite (16) as

Dq̂

Dt

∣∣∣∣
k

5 [wAmext A
k 1 (1 2 wA)mext B

k ](q*k 2 q̂
k
)

1 [wADA
k (qA) 1 (1 2 wA)DB

k (qB)]: (A5)

There is only one free parameter p 5 wA to be determined,

having taken wB ; 1 2 –wA. We assume, as in Duane and

Tribbia (2004), that the dissipative terms DA and DB are linear

and are of the same form, so we can simplify wADA(qA)1
(12 wA)DB(qB)5D(wAqA 1 wBqB)5D(q̂) and there is no

net dependence in these terms on the parameter wA. The co-

factor of wA in (A5), in each large-scale equation where wA

appears, is (mA
o 2 mB

o )(q*k 2 q̂
k
). However, in coupling the

model to a “true” system to optimize wA, we need to include

a nudging term in (A5). While such a term would usually

be independent of the parameter to be estimated, as in

previous examples, in the present case the nudging

strength (in the medium scales) must be kept proportional

to the external forcing (in the large scales) for dynamical

consistency. With nudging to “truth” included in the forc-

ing for the medium scales with a proportionality factor n ,

(A5) becomes

Dq̂

Dt

∣∣∣∣
k

�

[wAmA
o + (1 2 wA)mB

o ](q∗k 2 q̂
k
) +D

k
(q̂) if |kx| # kx0 and |ky| # ky0

n[wAmA
o + (1 2 wA)mB

o ][(knoise/|k⊥|)
4](qobsk 2 q̂

k
) +D

k
(q̂) if |k⊥| . knoise

n[wAmA
o + (1 2 wA)mB

o ][1 2 (k0/|k⊥|)
4](qobsk 2 q̂

k
)

+ [wAmA
o + (1 2 wA)mB

o ](k0/|k⊥|)
4(q∗k 2 q̂

k
) +D

k
(q̂)

otherwise

,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪«
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪¬

(A6)

so the cofactors of wA are modified as follows:

fw
A

k 5

(mA
o 2 mB

o )(q*k 2 q̂
k
) if |k

x
| # k

x0 and |k
x
| # k

x0

n(mA
o 2 mB

o )(qobsk 2 q̂
k
) if |k⊥| . knoise

n(mA
o 2 mB

o )[1 2 (k0/|k⊥ |)
4](qobsk 2 q̂

k
)

1 (mA
o 2 mB

o )(k0/|k⊥ |)
4(q*k 2 q̂

k
)

otherwise

,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪«
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪¬

(A7)

An adequate error metric is based on differences only in the

large and medium scales:

Lo; ∑
‖k‖ , knoise

(q̂
k
2 qobsk )2, (A8)

so only the large- and medium-scale cofactors contribute to

the product in (A3), yielding the adaptation rule for the

weights in the strong/weak forcing QG supermodel:

dw
A

dt
5 a ∑

|kx | # kx0, |ky | # ky0

(q*k 2 q̂
k
)(qobsk 2 q̂

k
) 1 a ∑

‖k‖ , knoise,
(|kx| . kx0 or |ky| . ky0)

{(k0/|k⊥|)
4(q*k 2 q̂

k
)(qobsk 2 q̂

k
) 1 n[1 2 (k0/|k⊥|)

4](qobsk 2 q̂
k
)2},

(A9)

which is Eq. (17), where we have absorbed other constant factors

into the general learning rate factor a.
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