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According to twenty-first century climate-model projections, greenhouse warming
willintensify rainfall variability and extremes across the globe'*. However, verifying
this prediction using observations has remained a substantial challenge owing to
large natural rainfall fluctuations at regional scales®*. Here we show that deep learning

successfully detects the emerging climate-change signals in daily precipitation fields
during the observed record. We trained a convolutional neural network (CNN)* with
daily precipitation fields and annual global mean surface air temperature data
obtained from an ensemble of present-day and future climate-model simulations®.
After applying the algorithm to the observational record, we found that the daily
precipitation data represented an excellent predictor for the observed planetary
warming, as they showed a clear deviation from natural variability since the mid-
2010s. Furthermore, we analysed the deep-learning model with an explainable
framework and observed that the precipitation variability of the weather timescale
(period less than 10 days) over the tropical eastern Pacific and mid-latitude
storm-track regions was most sensitive to anthropogenic warming. Our results
highlight that, although the long-term shifts in annual mean precipitation remain
indiscernible from the natural background variability, the impact of global warming
ondaily hydrological fluctuations has already emerged.

Changesin precipitation substantially affect societies and ecosystems’.
Therefore, itis of the utmostimportance to determine whether anthro-
pogenic changesin precipitationare detectable. At the planetary scale,
global-climate-model simulations show that globally averaged precipi-
tation will increase by approximately 1-3% per degree of warming”™°.
This change is not spatially homogenous. Wet regions are projected
to have the largest future increase, which is sometimes referred to as
the ‘wet-gets-wetter™® or ‘wettest-gets-wetter’ response. Moreover,
areas that will experience greater ocean warming are also projected
to show a mean intensification of rainfall (‘warmer-gets-wetter’)",
which may further influence large-scale atmospheric circulation. In
accord with the theory, the intensity of extreme daily precipitation
eventsis projected toincrease at the rate of about 7% K™ following the
Clausius—Clapeyron relation in many parts of the world>*2, whereas
higher rates of increase have been observed regionally®. However,
owing to the wide range of spatiotemporal scales of precipitation
variability, anunequivocal fingerprint of humaninfluence in precipita-
tion has not yet been established from observational records™*.
Previous detection and attribution (D&A) studies**'® have identified
anthropogenicinfluences on preprocessed precipitation statistics,

such as the annual maxima of daily precipitation over land areas and
the seasonal or zonal averages of global”*® and Arctic precipitation®.
Although using spatial/temporal averages is beneficial for detection
becauseitlowersthe uncertainty related to natural internal variability,
itisuncertain to what extent detectionresults based on these smoothed
fields canbeapplied to hydrometeorological weather events that affect
our daily lives>?°.

Determining whether and to what degree greenhouse-gas-induced
warming has altered daily precipitation in the observational record
remains elusive for two reasons. First, daily precipitation amounts
exhibitlarge internal variabilities associated with non-anthropogenic
weather noise, which hinders climate-change-signal detection®*%,
Second, conventional D&A methods assume a fixed spatial pattern
of the climate-change signal (that is, fingerprint pattern)*2¢, which
may not be sufficient to capture changes in higher-moment statis-
tics such as variance. Therefore, efforts to detect climate-change
signals imprinted in daily precipitation have thus far been
unsuccessful (Extended Data Fig. 1). In this study, we overcome these
two issues by combining large-ensemble climate-model simula-
tions with a deep-learning algorithm and show that deep learning
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Fig.1|Climate-change detection using deeplearning. a, Timeseries of the
observed AGMT anomaly from 1980 t0 2020 (black line) and the annual average
ofthe estimated AGMT obtained by using daily precipitation fields from the
MSWEP (blue line), IMERG (purpleline) and GPCP (orange line) observations
and ERAS reanalysis (red line) asinputsin the DD model, whose temporal
correlation withthe observed AGMT is 0.74,0.80, 0.76 and 0.85 during
2001-2020, respectively. The corresponding coloured dots denote the daily
estimated AGMT using the MSWEP and ERAS precipitation data. The dashed
black horizontal lines denote a 95% confidence range of internal variability
ofthe AGMT estimates, defined as the 2.5th-97.5th percentile of the daily

can detect statistically significant climate-change signals in daily
precipitation fields.

Detection results from a deep-learning model

Our deep-learning model for D&A is based on a CNN, whichis awidely
used deep-learning technique for pattern recognition®. The algorithm
takes global maps of daily precipitation anomalies (deviations from the
long-term daily climatology) as aninput variable and outputs an annual
global mean2 mairtemperature (AGMT), whichis akey climate-change
metric** (see Methods and Extended Data Fig. 2 for the detailed model
structure). Tobuild adeep network that candetect the climate-change
signal amidst large internal variability, we trained our deep-learning
model with pairs of daily precipitation maps and the AGMT simulated
by 80 members of the CESM2 Large Ensemble (LE)¢, which was forced
from 1850 to 2100 with estimates of historical forcings and the SSP3-
7.0 greenhouse-gas emission scenario (Methods). Being applied as a
detection algorithm, the deep-learning model will be referred to as the
deep detection (DD) model.

The convolutional process embedded in the CNN s able to capture
local features in the global domain®, making it suitable for detecting
regional pattern changes associated with global warming. Also, with
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estimated AGMT obtained from historical CESM2 LE simulations during
1850-1950. Observed and modelled anomalies arerelative to 1980-2010
climatology. b, Fractional number of EM days within a corresponding year from
1980102020 for which the estimated AGMT is greater than the upper bound
ofthe 95% confidence range. Dashed line denotes an upper bound of the 95%
confidence range of internal variability of fractional EM days, which is 10.9%.
c,Linear trend of the number of EM days during1980-2020 in ERA5S and MSWEP
and during2001-2020 in ERA5, MSWEP, IMERG and GPCP. The dashed lines
denote upper bounds of the 95% confidence level based on the bootstrap
method estimated using the historical CESM2 LE simulations (Methods).

its translation-invariant feature, the DD model can extract common
change patterns owing to the global warmingin both the model simu-
lations and the observations despite their systematic differences?.
This feature contrasts with the existing D&A techniques, including the
revised linear-regression-based approaches*?® and the feedforward
neural networks?, which detect climate-change signals based on a
global stationary fingerprint pattern.

After being trained using the CESM2 LE data, the DD model was
applied to satellite precipitation observations (Integrated Multi-
satellite Retrievals for GPM (IMERG)?® and Global Precipitation
Climatology Project (GPCP)*), the gauge-satellite-reanalysis merged
data (Multi-Source Weighted-Ensemble Precipitation (MSWEP)*?)
and precipitation data from a modern reanalysis product (ERAS5) that
assimilated ground-based radar and satellite data®* (Methods). We used
several datasetsin our detection analysis to account for the uncertain-
ties associated with indirect estimates of precipitation.

With the historical record of observed precipitation dataas input, our
predicted AGMT from the DD model reproduces the observations very
well, withlargerincreases during recent decades (Fig.1a), suggesting
the possible influence of global warming on recent daily precipita-
tion fields. The Pearson correlation between the annually averaged
observed and predicted AGMT from 1980 to 2020 was 0.88 for both



MSWEP and ERAS, with Pvalues of less than 0.001. Slightly lower cor-
relations (0.74-0.85) were found for the latest 20 years (2001-2020).
By contrast, the corresponding correlation coefficients obtained using
the ridge regression method®* were systematically lower (0.33 and
0.36 during1980-2020 for MSWEP and ERAS5, respectively) (Extended
DataFig. 3a). This demonstrates that the DD model recognizes the
global-warming signal in spatiotemporal featuresin daily precipitation,
which has—so far—not been possible with standard linear detection
methods.

Tomeasure the detectability of the observed AGMT variations asso-
ciated with daily precipitation fields using the DD model, we defined
theinternal variability range of the daily estimated AGMT as the 2.5th-
97.5th percentile values obtained from the CESM2 LE simulation dur-
ing the historical period from 1850 to 1950 (dashed range in Fig. 1a).
The detection results showed that, from the mid-2010s onward, the
annual average of the DD-predicted AGMT exceeded the upper bound
of internal variability, thereby indicating that greenhouse warming
already altered daily precipitation fields.

The dayswith the estimated AGMT greater than the upper bound of
internal variability, henceforth referred to as emergence (EM) days,
increased continuously after 1980 (Fig. 1b). The EM daysin recent years
lie clearly above the 97.5th percentile (10.9%) of internally generated
EM days estimated using the CESM2 LE (Methods). From the mid-2010s
onward, the climate-change signal can be detected from daily precipi-
tation mapsin more than half of all days each year (that is, >50% of the
fractional EM days), regardless of the input data type.

The strong positive linear trends of EM days were found for all precipi-
tation datasets:17.1% decadeand 16.3% decade™ during 1980-2020 for
MSWEP and ERAS, respectively,and 21.3% decade *and 16.5% decade™
for IMERG and GPCP during 2001-2020, respectively (Fig. 1c). These
trends also exceeded the internal variability ranges of the EM days
trends (dashed linein Fig.1c; Methods). The detection result remained
largely unaffected by the choice of the climate-model simulations®*
used in the training of the DD models (Extended Data Fig. 4), dem-
onstrating a generalization capability of the deep-learning model
for climate-change detection. Unlike our DD-based results, the ridge
regression exhibited almost no trend in the EM days during recent
decades (Extended Data Fig. 3b,c), indicating that the signal is barely
detectable with the linear approach.

Precipitation timescales and hotspotregions

Toidentify the source of the climate-change signal, we repeatedly ran
the DD model using the satellite and reanalysis precipitation products
with each time using anomalies capturing a different timescale. For this
task, the precipitation anomalies were decomposed into alinear trend
and high-frequency (<10-day), submonthly (10-30-day), subseasonal
(30-90-day), subyearly (90-day-1-year) and low-frequency (>1-year)
variabilities using Lanczos filtering®. The detection results for these
different timescales were then compared with those using precipita-
tion anomalies retaining all timescales.

When the linear trend component of precipitation anomalies was
giventothe DD model, the estimated AGMT decreased in time for both
the ERA5 and MSWEP datasets during 1980-2020 (Fig. 2a). During
2001-2020, theresults with the IMERG and GPCP datasets disagree on
the sign of temporal changes inthe estimated AGMT (Fig. 2b), possibly
because of the discrepancies in the trend between the precipitation
datasets®. Clearly, the mean state changes in precipitation represented
by the linear trend is not the primary source of the anthropogenic
climate-change signal found in Fig. 1. The negative contribution of
the linear trend component found in three of the four precipitation
datasets may have been partly caused by the recent negative phase
of the Interdecadal Pacific Oscillation (IPO) in the tropical Pacific
during the early twenty-first century and its associated precipitation
response®38, The observed interdecadal trends in tropical rainfall were

considerably different from the climate-projection results simulated by
global climate models® (Extended Data Fig. 5a,b). The weak contribu-
tionofthelinear trend component to climate-change detectionaligns
with the outcomes obtained through the ridge regression method
using daily precipitation, in which fingerprint pattern is coherent in
its signs with the spatial pattern of the climatological precipitation
change (Extended Data Fig. 5¢).

Among all the timescales considered, the high-frequency pre-
cipitation anomalies with periods shorter than 10 days were mostly
responsible for the positive trend in the AGMT (Fig. 2a,b), whereas
the other temporal scales were found to exert negligible contribu-
tions. This clearly demonstrates that the emerging climate-change
signal in the observed daily precipitation fields is mostly included in
the high-frequency weather componentsrather thanthe low-frequency
components or changes in the long-term mean states. The dominant
role of high-frequency precipitation anomalies in yielding a positive
AGMT trend was found regardless of the precipitation input dataset
used, whereas the predicted global-warming trends differ slightly
between precipitation products. This inter-dataset difference is pre-
sumably because of the uncertainties associated with the retrieval
algorithms*° or the forecast model used in the production of the
datasets*, especially over the ocean, for which direct observations of
precipitation is lacking*.

Next, to identify the spatial locations at which the high-frequency
precipitation anomalies showed notable changes in association with
the climate-change signal, we used a machine-learning-explainable
method called occlusion sensitivity*®. This method quantifies the rela-
tive importance of the input fields in deriving the machine-learning
prediction. The occlusion sensitivity of an input grid box was obtained
as the difference between the DD-model-predicted AGMT obtained
with the original input data and the corresponding value obtained
after substituting the input data over the 7 x 7 grid boxes surround-
ing the target grid box with zero (Methods). For each grid box, the
occlusion sensitivity was calculated for all days and its linear trend
during 1980-2020 was obtained to measure its contribution to the
global-warming-signal detection.

The linear trend of occlusion sensitivity (Fig. 2c) highlights sev-
eral hotspots in which a strong positive trend appears: the northern
tropical eastern Pacific, northern South America, north Pacific, north
Atlantic and Southern Ocean. Therefore, our results suggest that the
positive trend in the estimated AGMT from the DD model was mainly
caused by changes in high-frequency precipitation anomalies over
these hotspots. These hotspot regions appear distinctly when using
adifferent patch size for occlusion sensitivity (Extended Data Fig. 6a)
or using other explainable methods, such as Shapley additive expla-
nations (SHAP)* or the integrated gradients* method (Extended
DataFig. 6b,c).

The samelocations appear as hotspots even when unfiltered anoma-
liesare used (Extended Data Fig. 7a). Also, note that the positive linear
trend of the occlusion sensitivity over the hotspots is prominent for
satellite precipitation products for arelatively short period (that is,
2001-2020) (Extended DataFig. 7b,c), whereas those over the equato-
rial Atlantic and central Africa appear only with the ERA5 and MSWEP
datasets.

Physical interpretations

When the occlusion sensitivity is obtained separately for each high-
frequency precipitation percentile over the hotspot regions (boxed
areas in Fig. 2¢), it is highest for the top and bottom percentiles
and lowest at around the 55th-60th percentiles that correspond to
values around zero (green lines in Fig. 3a,b). This V-shaped pattern
indicates that the DD model generates higher AGMT values for strong
high-frequency precipitation anomalies with either a positive or aneg-
ative sign over the eastern Pacific Intertropical Convergence Zone
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Fig.2|Critical role of high-frequency precipitation variationsin climate-
changedetection. a,b, Linear trends of the estimated AGMT from the DD
model for1980-2020 using ERAS5 reanalysis (red) or MSWEP (blue) (a) and
2001-2020 using IMERG (purple) or GPCP (orange) (b). Each case shows results
fromusing unfiltered precipitation anomalies (denoted as ‘Total’), linear
trends of the precipitation anomalies (‘Trend’), 10-day high-pass-filtered

(‘10d HP’),10-30-day band-pass-filtered (‘10-30d BP’), 30-90-day band-pass-
filtered (‘(30-90d BP’), 90-day-1-year band-pass-filtered (‘90d-1y BP’) and
1-year low-pass-filtered (‘ly LP’) precipitation. The dashed black horizontal

(ITCZ), northern South America and mid-latitude storm-track regions.
Note that this nonlinear response of the AGMT to high-frequency pre-
cipitation anomalies cannot be accounted for in the ridge regression
method because of its linear nature (black lines in Fig. 3a,b). Also, the
probability density function (PDF) of the high-frequency precipita-
tion anomalies over the hotspots showed a systematic shift towards
the extreme percentiles in recent decades; for the top (>90th) and
bottom (<10th) percentiles, the ratio of the PDFs for each decade to
the reference PDFs for the whole period is smallest in the 1980s and
greatestin the 2010s (Fig. 3¢,d).

In synthesizing the results presented in Fig. 3, the DD model pro-
duces arobust increase in the estimated AGMT over recent decades,
with more frequent extreme swings of high-frequency precipitation
events over the hotspots. In other words, the DD model underscores the
observed amplification of the high-frequency precipitation variability
over the eastern Pacific ITCZ and mid-latitude storm-track regions as
the global-warming signal. Although past climate-projection results
have shown an increase in precipitation variability with warming>*4¢,
researchers have not assessed whether the projected changes can be
detected in observations.

The substantial precipitation variability increases over the eastern
Pacific ITCZ, northern South America and mid-latitude storm tracks
were confirmed by the linear trend of the standard deviation of the

304 | Nature | Vol 622 | 12 October 2023

linesin panelsaand b denote the upper bound of a95% confidence range of
internal variability of the estimated AGMT linear trend, obtained from
historical CESM2 LE simulations during 1850-1950. ¢, Linear trend of the
AGMT occlusion sensitivity for 10-day high-pass-filtered ERA5Sand MSWEP
precipitationanomalies from 1980 to 2020. Black boxes in panel cdenote
hotspotregionsinwhichastrong positive trend appears. The shaded area
indicates that thelinear trend value exceeds the 95% confidence level, as
determined by a t-test. The map was generated using the Basemap Toolkit
(version1.2.0; https://matplotlib.org/basemap/).

observed high-frequency precipitation anomalies during 1980-2010
or2001-2020 (Fig.4a).Inboth satellite observations and the reanalysis
products, theincreasesinthe high-frequency precipitation variability
intime were statistically significant, beyond the 95% range of internal
variability estimated from historical CESM2 LE simulations during
1850-1950.

The recent robust increase in high-frequency variability over the
eastern Pacific ITCZ and mid-latitude storm tracks, as represented by
the shift of the high-frequency precipitation events from the moderate
tothe extreme percentiles, is confirmed by means of the spatial distri-
bution of the differencein the high-frequency precipitation variability
(Fig. 4b). The increase in the high-frequency precipitation variability
during 2016-2020 relative to that during 2001-2005 is prominent over
the eastern Pacific ITCZ and mid-latitude storm tracks. More notably,
the spatial distribution of the increase in the high-frequency precipita-
tion variability resembles that of the linear trend of the occlusion sensi-
tivity (Fig. 2c). This clearly demonstrates that the global-warming signal
was successfully detected from the daily precipitation through the
increase in the extreme swings of the precipitation events on weather
timescales.

The robust high-frequency precipitation variability increases over
the eastern Pacific ITCZ and mid-latitude storm tracks can be physi-
cally understood using a simple moisture budget analysis* (Methods).
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The historical mean precipitation and high-frequency variability are
both prominent over the eastern Pacific ITCZ, northern South America
and mid-latitude storm tracks (Extended Data Fig. 8), which supports
the ‘wet-gets-more-variable’ and ‘variable-gets-more-variable’ para-
digms, respectively*. Even though the observed long-term trend can
be obscured by the recent negative IPO event?, the mean precipitation
didincrease slightly over the eastern Pacific ITCZ region (Extended Data
Fig.5a), at which the amplitude of the negative IPO-related tropical SST
anomalies exhibited alocal minimum®. Therefore, our conclusion does
not invalidate ‘warmer-gets-wetter’ and its similar paradigm for the
high-frequency variability (thatis, so-called warmer-gets-more-variable
model).

The degree of increase in high-frequency precipitation variability
in the eastern Pacific ITCZ and mid-latitude storm tracks is much
greater than the corresponding changes in climatological precipi-
tation (Fig. 4c). The high-frequency variability trend ratio (that is,
high-frequency precipitation variability trend divided by the variability
during areference period) is approximately three times greater than
the climatology trend ratio (that is, mean precipitation trend divided
by the climatological value during a reference period) over the east-
ern Pacific ITCZ and mid-latitude storm-track regions in MSWEP and
ERAS. Therefore, our detection method enables one to overcome the
limitations associated with linear methods, which have previously
underestimated the detectable influence of global warming on pre-
cipitation data by focusing on the changes in the mean states and not
the higher-order moments.

Our results are further evaluated using direct precipitation meas-
urements. Although the hotspot regions identified in our study are
mostly over the ocean, the one located in the Atlantic storm track
covers the eastern USA, in which a relatively large number of stations
provide daily rain-gauge data*. The results from the rain-gauge data
are largely consistent with those from the satellite and reanalysis
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the1980s,1990s,2000s or 2010s to that during1980-2020 in the eastern
PacificITCZ (c¢) and mid-latitude storm tracks (d) (see Methods for the detailed
procedure for calculating PDF values). The eastern Pacific ITCZ and mid-
latitude stormtracks are defined as the boxed areas within20° S-20° N and
poleward of 30° Sand 30° N, respectively (Fig. 2c).

precipitation datasets, indicating a robust increase in the magnitude
of high-frequency precipitation variability during recent decades in
the eastern USA (Fig. 4d,e and Extended Data Fig. 9a,b). On the con-
trary, over the western USA, which is outside the Atlantic storm-track
hotspot, the high-frequency precipitation variability does not show an
organized trend pattern. Also, the change of high-frequency variability
is greater than the mean precipitation change only over the eastern USA
(Extended DataFig. 9c,d). This rain-gauge-based analysis increases the
robustness of our main findings.

Globalwarminghas resulted inincreased high-frequency precipita-
tion variability over the tropical and mid-latitude regions, whereas
the subtropical Atlantic and southeastern Pacific show a predomi-
nance of climatological drying instead (right bars in Fig. 4c); this is
inaccordance with the occlusion sensitivity over the corresponding
regions, whichindicated positive valuesin the bottom percentiles and
negative values in the top percentiles (Extended Data Fig. 10). These
results demonstrate that the unique convolutional process with the
nonlinear response function in the deep-learning model allows for
the detection of the dominant regional characteristic changes among
various timescales. Note that the stronger positive AGMT response
in the bottom extreme percentiles than the negative response in
the top percentiles results in a net negative AGMT response to the
decreased high-frequency variability over the subtropical Atlantic and
southeastern Pacific (Fig. 4b). Consequently, this contributes to the
negative occlusion sensitivity trend with high-frequency precipita-
tion input (Fig. 2c).

Recent advances in deep learning have led to numerous innovative
applicationsin climate science?***°, Deep learningis a useful method
forrevealing and categorizing patterns responsible for a target climate
phenomenon at various spatiotemporal scalesin an automated manner
by compressing global informationinto anabstract level through non-
parametric mapping. Through extracting robust regional fingerprints
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(red) and MSWEP (blue) high-frequency precipitation anomalies during
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precipitations.d.between2016-2020 and 2001-2005 averaged across
datasets (MSWEP, ERAS5, GPCP and IMERG). ¢, Ratio of the linear trend of
high-frequency precipitation variability during1980-2020 to the linear trend

of global warming concealed in the complex probability distribution of
precipitation, the deep-learning model has revealed that the observed
increase in daily precipitation variability is anemergent anthropogenic
signal despite a short period of precipitation datasets; however, the
mean state changes remain virtually undetectable, as they are hin-
dered by the large internal day-to-day variability. This confirms that
the impact of global warming is ubiquitous and detectable, even in
variables associated with high natural variance.
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Methods

DD model for climate-change detection

The DD model, which refers to the CNN model for detecting climate-
change signals embedded in daily precipitation anomalies, comprises
an input layer, five convolution layers, two pooling layers, one fully
connected layer and an output layer (Extended Data Fig. 2). The size
of the convolution kernel, which extracts key features from the input
to produce feature maps, is 3 x 3. Spatial pooling was performed after
the first two convolution processes by using 2 x 2 max pooling with a
stride of 2. L2 regularization was applied to minimize overfitting?*,

The DD model accepts gridded data of normalized daily precipita-
tionanomaliesasaninputvariable. These anomalies were determined
by subtracting the daily climatology data for 1980-2010 and then
normalizing them by dividing the longitudinally averaged standard
deviation of the daily precipitation anomalies at the corresponding
latitude during the same time period. The input variable has dimen-
sions of 160 x 55(2.5° x 2.5°resolution over 0°~400° E, 62.5° S-76.5° N).
To properly consider the precipitation pattern around 360°(0°) E,
the data were longitudinally extended by concatenating 0°-360° E
and 360°-400° E. Through five convolutional and two max-pooling
processes, the horizontal dimension of the feature map is reduced
to 40 x 14. As the last convolutional layer uses 16 convolutional fil-
ters, the size of the dimension of the final feature map is 8,960 (that s,
40 x 14 x16). Then, each element of the final feature map is connected
tothefirst denselayer with 32 neurons and, finally, the first dense layer
is connected to the second dense layer with a single neuron to output
ascalar value representing the AGMT anomaly of the corresponding
year. The variability of the estimated annual mean AGMT anomaly was
matched to the observed data to avoid the influence of systematic
differences between the training and testing samples. Note that this
post-processing did not affect the detection results, as both the test
statistics (that is, internal variability of the estimated AGMT) and the
detection metric (thatis, AGMT on any specific day) were modified to
the same degree.

We generated five ensemble members with different random initial
weights and defined the ensemble-averaged AGMT as the final forecast.
The Xavier initialization technique was applied to initialize weights and
biases™. Tangent hyperbolic and sigmoid functions were used as the
activation functions for the convolutional and fully connected layers,
respectively. Adam optimization was applied asthe gradient-descent
method and the mean absolute error was applied as the loss function®.

Natural variability estimation
The natural variability ranges of the estimated AGMT and EM days are
measured using abootstrap method. First,the AGMT and the fractional
EM days (that is, the number of EM days/365) are calculated for each
year using the daily precipitation output of CESM2 historical ensemble
simulations for 1850-1950. Then, the 97.5th percentile values of the
8,080 total cases (that is, 101 year x 80 ensemble members) are esti-
mated, which corresponds to the upper bound of the 95% confidence
range of the natural variability. The resulting 97.5th percentile values
are 0.42 °Cand 10.9% for AGMT and fractional EM days, respectively.
The natural variability range of the linear trends in the EM days
(Fig.1c), the estimated AGMT (Fig. 2a,b) and the precipitation variability
(Fig. 4a,c) are also defined using a bootstrap method. We first sample
20-year segments from CESM2 LE simulations during 1850-1950 with a
10-yearintervalintheinitial year of the segments. With nine values per
ensemble member, atotal of 720 (9 x 80) values of the 20-year segments
are obtained. Similarly, atotal of 960 samples of 41-year segments are
constructed with a 5-year interval. Then, linear trends of the EM days,
the estimated AGMT and the precipitation variability are calculated
foreach20-year or 41-year segment. Finally, the upper and lower 2.5%
percentile values are defined as the 95% two-tailed confidence interval
of the natural variability.

Occlusion sensitivity

Occlusion sensitivity is used to quantify the relativeimportance of each
grid pointwhen deriving an output variable*’. The occlusion sensitivity
O(t, x,y) isathree-dimensional tensor incorporating time (¢), longitude
(x) and latitude (y) and is calculated using the following equation:

Oo(t,x,y)=y -DI[P(t,x,y) xZ(7,7)].

Here «is the horizontal convolution operator, Dand ydenote the DD
model and the estimated AGMT with the original input data P(¢, x, y),
respectively,and Z(7, 7) denotes 7 x 7 grid points occluding a mask with
zero filling. A different patch size of 5 x 5 grid points is used for a sen-
sitivity test. The occlusion sensitivity is plotted at the centred grid
point of the corresponding grid box. To maintain the original size of
the input map, the edge of the map is filled with zeros (that is, zero
padding).

Ridge regression method

The ridge regression method is used to estimate the coefficients of
multiple regression modelsinwhichlinearly independent variables are
highly correlated. Theloss function of ridge regression with i samples
andj regression coefficients is defined by the following equation?:

M

P 2 P
Loss=} [y,-— Y wjxi.j] N
j=0 j=0

i=1

inwhichx;;andy;denote theinputandlabel data respectively. w;indi-

cates the regression coefficientand A Z -0 w isthe regulanzatlon
term based on the sum of the squared regressmn coefficients (thatis,

the L2norm). Pand M denote the number of samples and the number
of regression coefficients, respectively. Theregularization suppresses
overfitting by preventing the regression coefficient from becoming
excessively large. 1is a hyperparameter that determines the penalty
intensity, whichis set to 0.1 after several experiments to minimize the
loss values for the validation dataset.

Moisture budget equation for precipitation variability change
For timescales longer than a day, the zeroth-order balance in the mois-
ture budget is found between precipitation (P) and vertical moisture
advection®:

Pr=—={w0,q), 1

inwhichwandgare the vertical pressure velocity and specific humid-
ity, respectively. () = z IP - dpdenotes the vertical integral through-
out the troposphere. The Subscript fdenotes variations at a specific
timescale derived from the time filtering. Zhang et al.* suggested that
the column-integrated vertical moisture advection can be reasonably
approximated as the advection of the low-tropospheric mean moisture
(g) by mid-tropospheric vertical velocity anomalies (wmf), hence:

Om,,

Prm-
g

, ¥)]

inwhich gis the gravitational acceleration.
Equation (2) can be modified to denote the variability of precipitation
and its change owing to the global warming as follows:

olPsl = %: 3)

AolP,] = é[Ao[(w,,,)f]q,f o [(@no),1AG], )



in which o denotes standard deviation and A denotes the difference
between the historical and future warming periods. The subscript O
indicates the values from the historical period.

Accordingto equation (4), well-known models for global precipita-
tion change are similarly applicable for the high-frequency precipita-
tionvariability changes. The historical moisture climatology term (that
is, ‘710) on the right-hand side refers to the ‘wet-gets-more-variable’
paradigm and the historical precipitation variability term (that is,
ol(w0 f]) referstothe ‘variable-gets-more-variable’ paradigm. Given
the strong coupling between the low-level moisture and the sea-surface
temperature, the climatological moisture change term (that s, Ag)
presumably implies the ‘warmer-gets-more-variable’ paradigm.

Satellite and reanalysis dataset

We analysed 21 years (2001-2020) of daily mean satellite-observed
precipitation data from the IMERG version 6 (ref. 30) and the GPCP
version 3.2 (ref. 31). Daily gauge-satellite-reanalysis merged precipi-
tation was obtained from the MSWEP version 2.8 for the period from
1980 to0 2020 (ref. 32). Daily reanalysis precipitation data obtained
from ERAS, which spans1980-2020, were also used™. Data were inter-
polated to a 2.5° x 2.5° horizontal grid. Domains over 0°-360° E and
61.25° S-76.25° N were used. Daily gauge-based precipitation at the
horizontal resolution is 0.25° x 0.25° from National Oceanic and Atmos-
pheric Administration (NOAA) CPC from 1960 t0 2020 (ref. 48) was used
foradomain over the continental USA (126.25°-67.25° W,20°-49.5° N).
The AGMT was obtained from HadCRUTS data®.

The PDF of the daily precipitationanomalies with respect toits per-
centile is calculated for each decade. After arranging daily precipita-
tion anomalies over certain regions during the whole period (that is,
1980-2020) by their magnitudes, the values of precipitation for every
tenth percentile are defined. The PDF of precipitation anomalies for
each decade were calculated inthe same way and then compared with
the reference PDF value estimated by using the whole period for each
percentile (Fig. 3).

CESM2LE simulations
Totrainthe DD model, we used a climate model dataset from the CESM2
LE, which has state-of-the-artskills in simulating characteristics of the
daily precipitation at various timescales®. All the ensemble members
that provide daily precipitation output were used (that is, 80 ensem-
ble members). With the aid of tens of realizations for historical and
global-warming-scenario simulations, the total number of samples
used in training our DD model is larger than what any other model
simulation framework can provide, which is advantageous for train-
ing the deep-learning model. The simulations cover the period from
1850t02100, of which data from 1850 to 2014 were obtained from the
historical simulations and the rest from the SSP3-7.0 scenario simula-
tions. Adomain over 0°-360° E and 61.25° S-76.25° N was used and the
horizontal resolution was coarsened to 2.5° x 2.5°. The input data were
prescribed in the form of anormalized anomaly; the modelled daily cli-
matology from1980 to 2010 was subtracted from the raw precipitation
fields and then divided by longitudinally averaged standard deviation
at the corresponding latitude during the same period.

Because the total number of samples was 7,329,200 days (80 mem-
bers x 251 years x 365 days), which exceeded the limit of our comput-
ing resources, we subsampled the training and validation datasets by

randomly selecting one year from each decade. Thus, the total number
of days of training data was reduced to 730,000. For the validation
dataset, we randomly selected a different year from each decade and
then randomly selected 73 days from each selected year. The total
number of days of validation data used was 146,000.

Data availability

Thedatarelated to this study canbe downloaded from: IMERG version
6, https://gpm.nasa.gov/data/imerg; ERAS, https://www.ecmwf.int/en/
forecasts/datasets/reanalysis-datasets/era5; MSWEP version 2.8, http://
www.gloh2o.org/mswep/; GPCP version 3.2, https://disc.gsfc.nasa.gov/
datasets/GPCPDAY_3.2/summary; CESM2 LE, https://www.cesm.ucar.
edu/projects/community-projects/LENS2/; CMIP6, https://esgf-node.
lInl.gov/projects/cmip6/; HadCRUTS, https://www.metoffice.gov.uk/
hadobs/hadcrut5/; CPC rain-gauge data, https://psl.noaa.gov/data/
gridded/data.unified.daily.conus.html.

Code availability

TensorFlow (https://www.tensorflow.org) libraries were used to for-
mulate a climate-change-detection model usinga CNN. The codes for
generating the detection model and plotting the figures were down-
loaded from https://doi.org/10.5281/zenodo0.8107114.
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Extended DataFig.1|Climate-change detectionusing theridge regression
methodinthe CESM2LE. a, Time series of the simulated AGMT from 1850 to
2100 inthe CESM2LE (black line) and the annual average of the estimated daily
AGMT by prescribing 2 mtemperature (T2m, greenline), 2 m specific humidity
(SH2m, orange line) and precipitation (PRCP, blueline) in the ridge regression
model**. Each dot denotes the estimated AGMT using daily input. The green,
orange and blue barsontheright denote one standard deviation of estimated
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daily AGMT using T2m, SH2m and PRCP during the historical period (that s,
1850-1950), respectively. The black error bars denote the 2.5th-97.5th
percentiles of the daily estimated AGMTin1850-1950. b, Time series of the
ratio ofthe annually averaged AGMT to the AGMT of the upper limit of test
statistics (thatis, 97.5th percentile of the daily estimated AGMT in1850-1950).
Thefirstyear thattheratio exceeds1for eachcaseisindicated.
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Extended DataFig.2|Thearchitecture of the deep-learning model for
climate-change detection. Thered, grey and blue boxes denote the
convolutional layer, max-pooling layer and dense layer, respectively. The
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Extended DataFig. 3 | Climate-change detectionusing theridgeregression = AGMT obtained from historical CESM2 LE simulations during 1850-1950.

method. a, Time series of the observed AGMT anomaly from1980t02020 b, Fractional number of EM days withina corresponding year from1980 to
(blackline) and the annual average of the estimated AGMT using daily 2020 forwhich the estimated AGMT is greater than the upper bound of the 95%
precipitation fields from the MSWEP (blue line), IMERG (purple line), GPCP confidence range. Dashed line denotes an upper bound of the 95% confidence
(orangeline) observations and ERAS reanalysis (red line) asinputsin theridge range of internal variability of fractional EM days, which is 10.9%. c, Linear
regression model. The blue and red dots denote the daily estimated AGMT trend of the number of EM days during1980-2020 in ERA5 and MSWEP and
using the MSWEP and ERAS precipitation data, respectively. The dashed black 2001-2020in ERAS5, MSWEP, IMERG and GPCP. The dashed lines denote the
horizontal lines denote a 95% confidence range of internal variability of the upper bounds of the 95% confidence level based on the bootstrap method

AGMT estimates, defined as the 2.5th-97.5th percentile of the daily estimated estimated using the historical CESM2 LE simulations (see Methods).
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Extended DataFig. 4 |Deep-learning-based detection results using CMIP6
training dataset. a, Time series of the observed AGMT anomaly from 1980 to
2020 (blackline) and the annual average of the estimated AGMT obtained by
using daily precipitation fields from the MSWEP (blue line), IMERG (purple line)
and GPCP (orange line) observations and ERAS reanalysis (red line) asinputsin
the DD model trained with the historical + SSP3-7.0 simulations participatedin
CMIP6 models. The corresponding coloured dots denote the daily estimated
AGMT using the MSWEP and ERAS precipitation data. The dashed black
horizontal lines denote a 95% confidence range of internal variability of the
AGMT estimates, defined as the 2.5th-97.5th percentile of the daily estimated
AGMT obtained from historical CMIP6 simulations during 1850-1950.

b, Fractional number of EM days withina corresponding year from1980 to
2020 for which the estimated AGMT is greater than the upper bound of the 95%

2001-2020

1980—-2020

confidence range. Dashed line denotes an upper bound of the 95% confidence
range of internal variability of fractional EM days, which is10.9%. ¢, Linear trend
ofthe number of EM days during1980-2020 in ERA5 and MSWEP and 2001~
2020in ERAS, MSWEP, IMERG and GPCP. The dashed lines denote the upper
bounds of the 95% confidence level based on the bootstrap method estimated
using the historical CMIP6 simulations. The first ensemble of 20 CMIP6
models, ACCESS-CM2, ACCESS-ESML1-5, CanESMS5, CESM2, CESM2-WACCM,
CMCC-CM2-SR5, EC-Earth3-AerChem, EC-Earth3, EC-Earth3-Veg, FGOALS-g3,
GFDL-ESM4, INM-CM4-8, INM-CMS5-0, IPSL-CM6A-LR, MIROC6, MPI-ESM1-
2-HR, MPIP-ESM1-2-LR, MRI-ESM2-0, NorESM2-LM and NorESM2-MM, are used.
The CMIP6 dataset for the DD model training includes historical simulations
from1850 to 2014 and future projections from 2015 to 2100 under the SSP3-7.0
scenario.
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Extended DataFig. 5| Changesin the climatological precipitation and the
fingerprint pattern oftheridge regression method. a,b, The observed
difference of the climatological precipitation during 2016-2020 from that
during1980-1984 in MSWEP (a) and CESM2 LE (b) (unit: mm day™).c, The
fingerprint pattern of the ridge regression model obtained by calculating the
regression coefficients of the daily precipitationanomalies with respect to
the AGMT during 1850-2100 in CESM2 LE (unit: °C mm™ day™). The map was
generated using the Basemap Toolkit (version1.2.0; https://matplotlib.org/
basemap/).
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Extended DataFig. 6 |Hotspotregionsrevealed by other explainable
methods. a-c, Linear trend of the AGMT sensitivity (unit: °C decade™) for
10-day high-pass-filtered ERA5 and MSWEP precipitation anomalies during
1980-2020 measured by occlusion sensitivity with a patch size of 5x 5grid
points (a) and SHAP (b) and Input x Integrated Gradients (c) methods. The
SHAP valueis estimated using a gradient explainer, in which the explainer is
approximated by 1,000 randomly selected samples from the training dataset.
Thelnput x Integrated Gradients is estimated by multiplying the original input
by each of the alphavalues (thatis, 0,0.2,0.4,0.6,0.8 and 1.0), computing the
gradient of the CNN model, integrating the obtained gradients (theintegralis
approximated by a Riemann sum) and multiplying by the original input. The
shaded areaindicates that thelinear trend value exceeds the 95% confidence
level, as determined by a t-test. The map was generated using the Basemap
Toolkit (version1.2.0; https://matplotlib.org/basemap/).
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Extended DataFig.7|Occlusionsensitivity using the observed
precipitationdataset.a-c, Linear trend of the AGMT occlusion sensitivity
(unit: °C decade™) using the unfiltered ERAS and MSWEP precipitation
anomalies from1980 to 2020 (a) and that using 10-day high-pass-filtered
precipitation from IMERG (b) and GPCP (c) satellite observations during
2001-2020.The shaded areaindicates that the linear trend value exceeds the
95% confidencelevel, as determined by a t-test. The map was generated using
the Basemap Toolkit (version1.2.0; https://matplotlib.org/basemap/).
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Extended DataFig. 8| Spatial distribution of the historical precipitation
and high-frequency precipitation variability climatology. a,b,
Climatological precipitation during1980-2020 in MSWEP (a) and CESM2LE (b).
c,d, The climatological high-frequency (10-day high-pass-filtered) precipitation
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variability during1980-2020 in MSWEP (c) observation and CESM2 LE (d). The
map was generated using the Basemap Toolkit (version1.2.0; https:/matplotlib.
org/basemap/).
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Extended DataFig. 9 |Evaluations using the rain-gauge data. a, Ratio of the
standard deviation (STD) of the high-frequency (that is, 10-day high-pass-
filtered) precipitation anomalies during 2016-2020 to that during1980-1984
inwestern USA (125°-110° W, 30°-50° N) and eastern USA (90°-55° W,
35°-50°N).b, Same as abut for theratio of variability during 2001-2020 to
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that during1960-1979. ¢, Percentage changein precipitation variability during
2016-2020 compared with1980-1984 (that is, STD change divided by STD
during1980-1984) divided by the percent change in precipitation climatology
inthewesternand easternUSA.d, Sameas cbut for theratiobetween2001-2020
t01960-1979.
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Extended DataFig.10|Subtropical drying capturedin the DD model. DD model (green) and theridge regression model (black) in the subtropical
The occlusion sensitivity (°C 107 with respect to the percentile of the high- Atlantic (40°-0° W, 25°-40° N) and southeastern Pacific (115°-75° W,
frequency (thatis, 10-day high-pass-filtered) precipitation anomalies in the 35°-20°S).
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