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Abstract

Sections

Naturally occurring tropical Pacific variations at timescales of
7-70years — tropical Pacific decadal variability (TPDV) — describe
basin-scale sea surface temperature (SST), sea-level pressure and heat
content anomalies. Several mechanisms are proposed to explain TPDV,
which can originate through oceanic processes, atmospheric processes
orasan EINifno/Southern Oscillation (ENSO) residual. In this Review,
we synthesize knowledge of these mechanisms, their characteristics
and contribution to TPDV. Oceanic processes include off-equatorial
Rossby waves, which mediate oceanic adjustment and contribute to
variationsin equatorial thermocline depth and SST; variationsin the
strength of the shallow upper-ocean overturning circulation, which
exhibitalarge anti-correlation with equatorial Pacific SST atinterannual
and decadal timescales; and the propagation of salinity-compensated
temperature (spiciness) anomalies from the subtropics to the
equatorial thermocline. Atmospheric processes include midlatitude
internal variability leading to tropical and subtropical wind anomalies,
whichresultin equatorial SST anomalies and feedbacks that enhance
persistence; and atmospheric teleconnections from Atlantic and
Indian Ocean SST variability, which induce winds conducive to decadal
anomalies of the opposite sign in the Pacific. Although uncertain, the
tropical adjustment through Rossby wave activity is likely adominant
mechanism. A deeper understanding of the origin and spectral
characteristics of TPDV-related winds is a key priority.
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Introduction

Thetropical Pacificatmosphere-ocean system (Box 1) exhibits variabil-
ity over a broad range of timescales: the El Nifio/Southern Oscillation
(ENSO) dominates atinterannual timescales (-2-7 years), and the trend
from anthropogenic forcing at centennial. In the intermediate range,
natural (internal) variations occur at quasidecadal and multidecadal
timescales (7-70 years)', encompassing the broadly termed tropical
Pacific decadal variability (TPDV). TPDV represents the tropical expres-
sion of the Pacific decadal oscillation? in the North Pacificand the inter-
decadal Pacific oscillation® over the entire Pacific basin. Its positive phase
ischaracterized by warm seasurface temperature anomalies (SSTAs) in
the tropical Pacific and along the western coasts of the Americas, and
by negative anomalies in the central and western midlatitudes of both
hemispheres; the negative phase exhibits anomalies of the opposite sign.

TPDV has important climatic relevance. For example, it modu-
lates ENSO characteristics*’ and some of its global impacts, including
climatic variations over Antarctica®, Australian monsoon variability’
and temperature and precipitation over the western USA®, making
prediction of TPDV phases societally critical. TPDV is further linked
to the rate of change of globally averaged surface temperature®™ as
demonstrated by the decrease in globally averaged surface tempera-
turetrend duringthe cold TPDV phasein the first decade of the 2000s.
Accordingly, understanding TPDV is integral to robustly separate the
forced climate response frominternally generated climate variability
and thereby produce reliable projections of tropical Pacific and global
climate’. Yet, some models appear to underestimate internally gener-
ated decadal variations" ™ and might incorrectly simulate externally
forced trends, introducing uncertainty inattribution analyses' . This
ambiguity highlights theimportance of adeepened understanding of
internal low-frequency variability and prediction of decadal epochsin
the tropical Pacific.

However, TPDV predictability currently remains elusive, largely
related to complicated, and often competing, underlying mechanisms.
For instance, TPDV could result as a residual of interannual ENSO
variability’®, or result from equatorial upwelling of subtropical tem-
perature anomalies from the pycnocline (the 0T’ hypothesis, in which
U indicates the time mean circulation and 7’ is the temperature
anomaly)”, or changes in equatorial upwelling itself (the v’T hypoth-
esis,inwhichv’indicates the circulationanomaly andT is the time mean
temperature)”. Moreover, these oceanic mechanisms could be driven
by atmospheric forcing resulting from processes in the extratropical
Pacific?, responding to equatorial SSTAs* or arising frominteractions
with the Atlantic and Indian Oceans®?". Yet, no consensus exists on the
effectiveness and relative importance of these processes.

Inthis Review, we critically elucidate the nature and relative impor-
tance of the mechanisms driving TPDV using evidence from observations,
oceanreanalyses, dynamical models and paleoclimate proxies. We begin
by describing salient features of TPDV in the context of the phase transi-
tion that occurred in the late 1990s. We follow with discussion of the
leading oceanic and atmospheric processesrelevant for TPDV, including
asan ENSOresidual; the 7T” hypothesis; thev’T hypothesis; and extrat-
ropical and tropical forcing and influences from other ocean basins. We
end withrecommendations for future research. Relative to other reviews
that have considered internal and anthropogenically forced
low-frequency variability'®, focus here is on internal decadal variations.

Observed tropical Pacific decadal changes
Before reviewing the mechanisms, it is important to identify the key
oceanic and atmospheric changes that accompany decadal phase

transitionsin the tropical Pacific. Acomparison 0f 1984-1999 (agener-
ally positive TPDV) with1999-2014 (agenerally negative TPDV) typifies
these transitions (Fig. 1); changes during negative-to-positive decadal
transitions largely mirror those shown and described®*.

The phase change reflects a marked shift in SSTs, characterized
by cold conditions in the equatorial Pacificand warm anomaliesin the
central and western midlatitudes (Fig. 1a, shading). This SST difference
pattern is similar to that obtained through a statistical definition of
TPDV (Fig. 1a, contours): the linear regression of SSTAs on the TPDV
index, the latter defined as the principal component of 7-70 years
band-pass-filtered SSTAs inthe tropical Pacific (25°S-25°N). The spatial
structure of the tropical decadal SST pattern is ‘ENSO-like’; the over-
arching characteristics are similar, but SST anomalies are broader in
the meridional extent and the largest equatorial variability is shifted
further west than the interannual ENSO variance'®?.

Such large-scale SST changes are accompanied by corresponding
changes in the atmosphere that, in turn, influence the ocean. Specifi-
cally, positive sea-level pressure (SLP) anomalies in the extratropics
(Fig.1b, shading) drive enhancement of the easterly trade winds (Fig. 1b,
vectors), inturn, causing heat content reorganization™***°, Positive sea
surface height (SSH) differences, indicative of a deeper thermocline,
are found in the western tropical Pacific (Fig. 1c), with increased heat
content (Fig. 1e,shading) at the depth of the mean thermocline (Fig. 1e,
contours), all largely associated with westward-propagating Rossby
waves®®. By contrast, negative SSH differences (shallower thermocline)
are found in the central and eastern Pacific (Fig. 1c), with decreased
heat contentin the upper ocean east of the dateline (Fig. 1f, shading).
Positive SSH anomalies are also presentin the Indonesian Seas and east-
ernIndian Ocean®*, suggesting a transfer of heat from the Pacific to
theIndian Ocean, likely associated with wind impacts onthe Indonesian
Throughflow (ITF)!*34,

The mechanisms proposed for such TPDV are multifaceted. The
presence of trends", particularly in SSH across the western Pacific,
Indonesian Seas and eastern Indian Ocean® (Fig.1c,d), adds further
challenge in separating natural and anthropogenic forcings and in
determining the relative importance of various TPDV processes. The
key mechanisms are now discussed, starting with the possibility that
TPDV arises as aresidual of interannual ENSO variations.

TPDV as an ENSO residual

Since the tropical Pacific climate is dominated by interannual ENSO vari-
ations, a plausible hypothesisis that TPDV arises as aresidual of ENSO.
Indeed, the ENSO-like TPDV spatial pattern® can be reconstructed
from decadal averages of evolving ENSO patterns, from their develop-
ing to decaying phases and from random event-to-event variations of
those patterns'*®, In addition, uneven numbers of warm (EI Nifio) or
cold (LaNifa) events randomly occur during different decadal epochs
(Fig.2a), resulting in EI Nifo-like or La Nifia-like decadal conditions. The
location of SSTA during these uneven events (whether anomalies are
centred inthe eastern or central Pacific)* (Fig. 2a) might also contribute
to low-frequency background changes*°.

Similar to the influence of stochastic subseasonal disturbances
on the development of El Nifio***, ENSO events could also act as trig-
gers for TPDV phase transitions. Specifically, some ENSO events could
induce off-equatorial wind stress curl anomalies responsible for the
excitation of oceanic Rossby waves and for the discharging-recharging
of the anomalous heat content in the western Pacific* (Fig. 1c), caus-
inga TPDV transition. These heat contentanomalies are animportant
necessary condition for ENSO-induced changes in TPDV phase***,
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Box 1

Mean ocean and atmospheric circulations in the tropical Pacific

The equatorial Pacific Ocean is often described as a system with a
warmer and dynamically active upper layer and a colder and more
quiescent bottom layer (see the figure, bottom). These two layers
are separated by a region of sharp vertical density and temperature
gradients, known as the pycnocline and thermocline, and are
overlaid by a near-surface frictional layer — the Ekman layer.

The pycnocline links subtropical regions to the equator:
subtropical waters can penetrate into the ocean interior at the
latitudes where surfaces of constant density (isopycnals) meet
the near-surface layer and then flow equatorward along those
isopycnals. At the equator, these waters are brought to the upper
layers by the upward vertical velocity (upwelling), and returned
to higher latitudes by the flow in the surface Ekman layer (see the
figure, bottom, black solid arrows), creating shallow overturning
circulations in both hemispheres termed subtropical cells**. Warm
tropical sea surface temperatures drive the atmospheric Hadley
cells (see the figure, top), with air rising near the equator, flowing

Hadley

circulation "\ ] -
. =

poleward in the troposphere at 10-15km above the surface, and
descending in the subtropics, with an equatorward return flow near
the surface that is deflected westward because of the rotation of the
Earth, creating the easterly trade winds.

The tropical Pacific Ocean circulation also exhibits a rich
system of zonal currents (see the figure, top), with both westward
and eastward flowing currents. The most noteworthy of these is
the equatorial undercurrent (EUC), a strong eastward flowing jet
centred on the equator with a core in the pycnocline (see the figure,
bottom). The zonal slope of the pycnocline — deeper in the west
and shallower in the east — is in balance with the easterly equatorial
trade winds and provides the pressure gradients that drive the EUC.
The trade winds are the surface branch of the zonal atmospheric
Walker circulation, consisting of an ascending branch over the
warm waters of the western equatorial Pacific ‘Warm Pool’ and a
descending branch in the colder and drier eastern equatorial Pacific
‘Cold Tongue’ (see the figure, top).
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(continued from previous page)

The interior wind-driven zonal circulation is connected in the
western Pacific to the equatorward flowing low-latitude western
boundary currents, which are an important conduit for the

redistribution of subtropical water to the western equatorial Pacific'®

and then into the tropical current system, including the EUC and the
Indonesian Throughflow.

EAC, East Australian current; ITF, Indonesian throughflow; KC, Kuroshio current; LC, Leeuwin current; NEC, North equatorial current; NECC, North equatorial
countercurrent; SEC, South equatorial current; SECC, South equatorial countercurrent; SST, sea surface temperature; STC, subtropical cell.

Additionally, oceanic nonlinearities associated with strong El Nifio
events during a positive TPDV phase could induce strong negative
feedbacks and cause a transition to negative TPDV*,
Theinterpretation of TPDV as an ENSO residual also involves sub-
surface anomalies. Western Pacific heat content exhibits a decadal
modulation, withreduced heat content during periods of positive TPDV
(suchas1976-1999) (Fig.2b,d) and enhanced heat content during nega-
tive TPDV (such as 1999-2014) (Fig. 2b,d). These low-frequency varia-
tions are punctuated by the heat content changes associated with the
recharge-discharge activity of individual ENSO events (Fig. 2b), which
are the dominant signal in the eastern Pacific (Fig. 2c). The decadal
modulation of tropical Pacific heat content could thus be interpreted
as the low-frequency envelope of interannual ENSO variations.
However, ENSO characteristics also depend on the mean state***.
Indeed, the warm phase of TPDV, characterized by weaker trade winds
and a deeper thermocline in the eastern equatorial Pacific, favours
more frequent and stronger eastern Pacific El Nifio events (Fig. 2a),
whereas negative TPDV phases are characterized by weaker central
Pacific EINifo events (Fig. 2a). The mean state influence on ENSO was
also highlighted by dynamic model prediction experiments in which
the ENSO evolution and predictive skill***’ were highly dependent
ontheinitial background conditions. The decadal modulation of ENSO,
ascaptured inclimate models by the second empirical orthogonal func-
tion of decadal SSTAs****!, is significantly lag-correlated with TPDV*!,
with a large intermodel dependence’®. ENSO decadal modulation
appearstolead the opposite phase of TPDV by about 2 years, suggest-
ing its possible role as precursor of TPDV phase transitions®. How-
ever, TPDV also leads the same phase of ENSO decadal modulation by
2 years with a higher correlation®’, indicating that ENSO modulation
by TPDV might be more prominent than the influence of ENSO activ-
ity on TPDV. Additionally, empirical models trained on observations
indicate that tropical-extratropical interactions are key to the exist-
ence of TPDV, implying that TPDV cannot simply arise from processes
occurring within the tropics as in the case of ENSO residuals®.

The vT’ hypothesis and wave processes

In addition to the possibility of being an ENSO residual, equatorward
advection of temperature anomalies within the pycnocline (the 0 T’
hypothesis) has been put forward as a driver of TPDV" (Fig. 3a). Two
mechanisms by which subtropical signals reach the equator have been
proposed: spiciness anomalies advected as passive tracer by the mean
circulationand non-compensated temperature anomalies propagating
as planetary (Rossby) waves, as discussed now.

Advection of spiciness anomalies

Spiciness anomalies describe temperature anomalies with a density
compensating salinity signal**; they do not affect density and propa-
gate alongisopycnals as a passive tracer** (Fig. 3a). These warm-salty

or cold-freshanomalies are predominantly generated in the eastern
subtropical Pacific®° through shifts in spiciness gradients induced
by wind-forced anomalous ocean currents*, or buoyancy-forced
penetrative mixing>®. Spiciness anomalies are subsequently advected
by the subsurface branches of the subtropical cells (STCs) towards the
equator. Despite some decay”’, observations support the generation
and propagation of spiciness anomalies from the eastern subtropics
tothe western tropical Pacific. However, whether these anomalies are
advected all the way to the equator is much less clear, and the feasi-
bility of a western boundary pathway is uncertain owing to the com-
plexity of low-latitude western boundary currents (LLWBCs) and
high mixing and water mass transformation®. A Lagrangian model-
ling approach indicates that spiciness anomalies reach the eastern
equatorial band®, with clear dominance of southern hemisphere
pathways. At large spatial scales, theoretical arguments suggest
that pycnocline advection might result in a frequency spectrum of
spiciness anomalies reaching the equator with enhanced powerinthe
decadal range®’.

Such decadal-scale spiciness anomalies might drive TPDV. Specifi-
cally, coupled model experiments suggest that equatorward-advected
spicinessanomalies are upwelled to the surface where they rearrange
equatorial SSTs, winds and the slope of the pycnocline®, inturn, induc-
ing atmospherically forced off-equatorial spiciness anomalies of oppo-
site sign, resulting in a 10-year cycle’*®*. A heat budget analysis of
the modelled equatorial Pacific mixed layer further confirms this influ-
ence of spiciness anomalies on TPDV®, although with a small magnitude
relative to other heat budget terms leaving the efficiency of this
mechanism unclear.

Wave propagation of non-compensated temperature
anomalies

Analternative mechanismwithinthev 7’ hypothesisis the propagation
of temperature anomalies via Rossby waves. Oceanic Rossby waves
cause isopycnal displacements that appear as temperature anomalies
over time-meanisopycnal surfaces. These anomalies reach the equato-
rial thermocline via the western boundary and propagate eastward
alongthe equator as equatorial Kelvin waves, altering equatorial SSTs.
As such, Rossby wave activity has been related to decadal subsurface
temperature anomalies in the tropical Pacific with maxima around
10°-15° N and 10°-14°S (refs. 26,64-68) (Fig. 1¢c).

However, the origin of the decadal timescale remains unclear
giventhat the Rossby wave transit time at key latitudes (10°-15° N and
10°-14°S)is only 2-3 years. Several hypotheses have been put forward
asanexplanation. First, the latitudes of Rossby wave maxima coincide
with areas of high zonal coherence of the wind forcing, which might
be efficient in exciting large amplitude waves at decadal timescales®.
Second, these latitudes coincide with the equatorward boundaries
of the subtropical gyres, where instability processes can energize
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Fig. 1| Observed Pacific decadal changes. a, The difference of linearly
detrended sea surface temperature (SST) anomalies™ (shading) and decadal SST
anomalies regressed onto the tropical Pacific decadal variability (TPDV) index
(contours). b, Differences of linearly detrended sea-level pressure (SLP; shading)
and vector wind anomalies'® (arrows). ¢, Differences of linearly detrended
seasurface height (SSH) anomalies' (shading) and decadal SSH anomalies
regressed on the TPDV index (contours). d, Differences of un-detrended SSH
anomalies'®, e, Differences of detrended temperature anomalies zonally
averaged between the western ocean boundary and the dateline; contours

indicate the time mean (1979-2017) 15,20 and 25 °C isotherms. f, Asin panel e,
but for temperature values averaged from the dateline to the eastern ocean
boundary. Inall panels, differences represent 19999-2014 minus 1984-1999, and
regressions are calculated over 1958-2020. In panelsa and ¢, solid contours
represent positive anomalies and dashed contours represent negative anomalies,
drawnat 0.1°Cintervals for SST and 1 cm for SSH. TPDV is associated with basin-
wide SST, SLP and wind anomalies and involves a reorganization of heat content
inthetropics.
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Fig.2 | Relationship between tropical Pacific decadal variability and El
Nifio/Southern Oscillation. a, Evolution of sea surface temperature (SST)
anomalies'* averaged over 5°S-5°N, displayed as a function of longitude and
time. b, Evolution of sea surface height (SSH) anomalies'**, a proxy for upper
ocean heat content, averaged west of the dateline, displayed as a function
of latitude and time. ¢, Asin panel b, but SSH anomalies averaged east of the
dateline. Anomalies of SST and SSH are obtained by removing the climatological

m

monthly mean and linearly detrending the data over 1958-2015.d, Time
evolution of the tropical Pacific decadal variability (TPDV) index, computed
astheleading principal component of decadal (7-70 years) SST anomalies™
over 25°S-25° N. More EI Nifio activity and prevailing negative heat content
anomalies in the western tropical Pacific are associated with positive TPDV
phases and vice versa.

planetary waves originating in the eastern midlatitudes of both hemi-
spheres with longer transit times in the decadal range®®. Finally, the
timescale of the ocean response to anomalous winds can be extended
to the decadal range by the slow eastward propagation of equatorial
signals owing to the coupling of oceanic waves with local winds®”. More
generally, decadal timescales cannot be expected to coincide with the
transit time of one single wave, but result from the collective effect
of multiple waves generated over relatively broad latitude bands at
different times, leading to alonger adjustment timescale.

Both mechanisms (advection and planetary wave activity) are
likely to contribute to the equatorward propagation of temperature
anomalies, with the impact of the South Pacific seemingly dominat-
ing spiciness propagation® * owing to its larger and more direct
equatorward transport’®”. In the North Pacific, the presence of the
Intertropical Convergence Zone alters the depth of the pycnocline
and creates a potential vorticity barrier” that limits the interior

equatorward flow®-” (Fig. 3a). Global Climate Model sensitivity
experiments, in which oceanic temperature and salinity anomalies
areblocked fromreaching the equatorinboth hemispheres, indicate
that the southern T’ process acts as a delayed negative feedback
for bi-decadal (12-25 years) variability, whereas oceanic wave adjust-
ment has a dominant influence in the decadal range (9-12 years)®’.
The role of decadal anomalies from the South Pacific is also illus-
trated by their influence on the evolution of El Nifio events during
the first decade of the 2000 (ref. 74); cold anomalies in the south-
western tropical Pacific related to the negative TPDV phase during
1999-2014 might have impacted the development of EI Nifio events™,
possibly leading to the unexpected termination of El Nifio in 2014
(ref. 75). Rossby wave activity is also prominent in the North Pacific
and provides animportant contribution to decadal variability of the
equatorial Pacific thermocline®**® through the western boundary
pathway.
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The v'T hypothesis

In addition to upwelling of anomalous temperatures from the pyc-
nocline, anomalous upwelling can also drive TPDV via changes in the
transport of the STCs (Fig. 3b). Specifically, an increase in the equa-
torward mass transport of the STCs enhances equatorial upwelling,
bringing colder pycnocline waters closer to the surface and cooling
SSTs; reduced STC transport has the opposite effect?’. At interannual
timescales, these changes encapsulate the recharge-discharge of the
equatorial upper-ocean heat content, underpinning ENSO evolution™.
Therelationship at decadal timescales suggests that similar underlying
dynamics might be important at lower frequencies”.

This hypothesis has been tested in simple models , obser-
vations®®', ocean general circulation models®>* and ocean reanaly-
ses’**®_For example, using binned observations of interior transport
(zonally averaged pycnocline flow east of the LLWBCs at 9°Nand 9°S)
as a proxy for STC strength® reveals a decline in equatorward sub-
surface mass convergence after the mid-1970s, concurrent with the
tropical Pacific warming associated with the 1976-1977 climate shift>*
(Fig. 4a,b). Ocean reanalyses and ocean models forced by observa-
tionally constrained surface fields confirm that increased interior
equatorward mass convergence is associated with colder equatorial
SSTs and vice versa, with high correlations at both interannual and
decadal timescales?**>% (Fig. 4c,d). Many climate models also show
correlations between transport convergence and SST anomalies that
are comparable with those obtained from ocean reanalyses, although
some exhibit much weaker relationships®*® (Fig. 4e). Inaddition, trans-
portvariability is generally weaker in the models thanin observations
for the same SST variability®*® (Fig. 4f), suggesting a higher sensitivity
of modelled SSTs to STC variability.

Besides the interior pycnocline transport, variability of the
LLWBCs and ITF can also affect the equatorial mass convergence and
equatorial upwelling. Anomaliesinthe LLWBC transport are of opposite
sign to theinterior transport anomalies®***~', potentially leading to a
partialcompensation of interior mass convergence. However, given the
complexity of the LLWBCs, and the sparsity of in situ observations in
theseregions, itisunclear what fraction of their anomalous transport
recirculates in the western Pacific, exits the Pacific through the ITF or
acts to alter the equatorial mass balance. The strength of the ITF has
beenshownto contribute to the mass and heat balance of the equatorial
Pacific?’ atinterannual timescales’*, and it could likely influence the
equatorial Pacific also at decadal timescales, suggesting a potential
oceanic pathway for the Indian Ocean influence on TPDV.

The location of winds that are most influential on STC decadal
variations is key to understanding their role in TPDV. Wind variations
insubtropical regions could control STC transport and remotely affect
equatorial SSTs?*°, However, meridional transport changes at each lati-
tude appear to be established by westward-propagating oceanic Rossby
waves, as part of the tropical adjustment to varying winds, and be largely
controlled by the local wind forcing®, although influences from the
12°-20°latitude band might also have a role at decadal timescales?>*>%>%°,
The possible origin and nature of these winds are discussed next.

20,78-80

Influences from Pacific extratropical atmospheric
forcing

Potential drivers of TPDV are not restricted to the equatorial region. The
North Pacific Meridional Mode and South Pacific Meridional Mode®*®
(NPMM and SPMM, respectively) (Fig. 5a,b) areimportantin thisregard,
reflecting SST patterns produced via off-equatorial turbulent heat
fluxes and maintained through the wind-evaporation-SST feedback”’.

These modes are important factors influencing equatorial dynamics
(forexample, through excitation of deep convection near the Intertropi-
cal Convergence Zone and corresponding equatorial wind anomalies'’,
and heat recharge-discharge in the equatorial pycnocline through
meridional flows induced by wind stress curl anomalies — tropical
wind charging'®'%) and thereby ENSO development®-100104-106,

However, the NPMM and SPMM are also involved in the develop-
ment of TPDV. For instance, ‘Atm-Slab’ models (atmospheric models
coupledtoslab ocean models)'*"'*® exhibit a frequency spectrum red-
dening of weather and climate variability at decadal timescales through
a sequence of extratropical-to-tropical influences (ENSO precursors
to ENSO development) and tropical-to-extratropical feedbacks (ENSO
teleconnections)'”, as supported by observations'”. Indeed, model
experiments"? indicate that ENSO teleconnections from the central
equatorial Pacific reinforce the NPMM and increase its persistence,
resulting in the decadal NPMM variations detected in century-long
coral time series from the northeastern subtropical Pacific'. Addition-
ally, tropical wind anomalies associated with the Meridional Modes
may induce meridional pycnocline flow (as with the Tropical Wind
Charging mechanism), providing the atmospheric forcing needed to
alter the strength of the STCs and produce equatorial SST anomalies.
Sensitivity experiments with simple dynamic models alsoindicate that
extratropical stochastic wind forcing produces low-frequency changes
in the equatorial thermocline and multiyear ENSO variations',

The impact of the SPMM and NPMM on TPDV is not equal. The
influence of the SPMM is thought to dominate'°*">™®_For instance,
idealized nudging of oceanic variability to climatological values over
30°S-10°S caused a ~30% reduction in decadal-scale SST variability
in the equatorial Pacific'*. However, new evidence is emerging for a
mode of variability that links the North Pacific with the Central Equato-
rial Pacific via the NPMM (and thus termed NP-CP mode) at decadal
timescales*>"”"°, This mode involves SST anomalies typical of the
NPMM and includes an SSH component with a pattern similar to that
typical of decadal differences™ (Fig. 1c), implying an important role
for ocean dynamical processes in TPDV. Thus, both hemispheres can
potentially provide the atmospheric forcing for TPDV, but the question
of which hemisphere dominates remains outstanding.

Winds of tropical origin

As for extratropical forcing, wind responses to tropical decadal SST
anomalies might also be important in driving TPDV. Specifically,
SST anomalies in the central equatorial Pacific, where decadal anom-
alies are more prominent, excite atmospheric Rossby waves, whose
subtropical component weakens the subtropical trade winds in both
hemispheres"®'° (Fig. 5a,b). These equatorially forced subtropical
wind anomalies then reinforce the equatorial anomaly through ther-
modynamic (for example, triggering deep convection)'*° or dynamic
(forexample, through changesinequatorward mass transportinduced
by the anomalous winds)?* processes. Accordingly, a feedback loop
between equatorial and off-equatorial regions is created, reddening
the power spectra and contributing to the meridionally broader SST
anomaly pattern found at decadal timescales'”.

Low-frequency equatorial SST anomalies also alter the Walker and
Hadley circulations, influencing TPDV. In particular, warming along the
Pacific equator, mimicking climate change conditions, intensifies
the ascending branch of the Hadley circulation, in turn, enhancing
off-equatorial trade winds'* %, The resulting ocean circulation adjust-
ment leads to strengthened STCs and cooling of the equatorial Pacific
atalatertime'” —adelayed negative feedback to the original equatorial
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Fig.3|Subtropical cells influence on tropical Pacific decadal variability.

a, The (compensated) 7T’ mechanism, schematicallyillustrated in the upper
panel as the advection of spiciness anomalies (pink shading) by the mean
circulation (black arrows) on the 25.0-kg m~ isopycnal surface. Shading indicates
isopycnal depth'®, and the dashed blue line indicates a density ridge in the
5°-10° N latitude band known as the ‘potential vorticity barrier’”. The lower
panel depicts zonally averaged isopycnal depths (from 23 kg m=t0 25.5 kgm™
with aspacing of 0.5 kg m™; solid lines: 23, 24 and 25 kg m™; dashed lines:

23.5,24.5and 25.5 kg m™), and the flow of equatorward spiciness anomalies along
isopycnal surfaces. b, Asin panel a, but for thev’T mechanism, schematically
illustrated with mean (black arrows) and anomalous (red arrows) flows, which
reveal how flow along isopycnal surfaces connects the subtropics to the tropics.
BothoT’ andv’T mechanisms are proposed as potential contributors to tropical
Pacific decadal variability. EUC, equatorial undercurrent; LLWBC, low-latitude
western boundary current.

SST anomalies?*'?*, Cold decadal conditions in the tropical Pacific have
the opposite effect: a weaker Hadley cell, weaker trade winds, weaker
STCs and a warmer equatorial Pacific. This feedback loop between
equatorial SST anomalies and off-equatorial wind variations supports
theview of TPDV as atropical-extratropical-coupled cyclic mode of vari-
ability. However, the ability to robustly detect these links in the relatively
short and noisy observational record challenges interpretation.

Influences from other ocean basins

Besides the aforementioned TPDV mechanisms internal to the Pacific,
decadal SST variability in the Indian and Atlantic Oceans also has the
potential to generate variability in the Pacific'** via atmospheric
teleconnections. These teleconnections occur through a series
of atmospheric and oceanic responses to the initial SST, reflecting
a Gill-type response'®, as supported by idealized numerical model
experiments®'?*"*° (Fig. 5¢,d); anomalous atmospheric convection and
diabatic heating overlying the initial SST; near-surface zonal wind con-
vergenceinto the convective region and zonal wind divergence aloft; an
eastward-propagating equatorial Kelvin wave emanating away from this
heat source and westward-propagating Rossby waves to the north and
south of the heat source; and descending motion throughout the rest of
the tropics. Alternate Atlantic to Pacific pathways have also been pro-
posedtooccur viathe midlatitudes along a curved pathway through the
North Pacific to the western equatorial Pacific’*"*** or through the trop-
ics owing to SLP difference and induced surface wind changes across
the Panama Isthmus™* ™', Similarly, the linkages between the Indian
and Pacific Ocean can occur via wind changes across the Maritime
Continent” or through stationary extratropical wave trains™.

Collectively, these changes influence TPDV. They alter the
global Walker circulation on intraseasonal through multidecadal
timescales?*126128137°140 gnreading the diabatically generated tropo-
spheric temperature anomaly through the entire tropics (the weak
temperature gradient approximation)'*'*?and increasing the vertical
stability of the troposphere (the tropospheric temperature mecha-
nism)'. All three of these processes can alter the Pacific trade winds
leading to changes in central-eastern Pacific SSTs that can be further
amplified owingto the tightly coupled nature of the atmosphere-ocean
system in the tropical Pacific'*%">"1**,

Through these mechanisms, observations suggest that TPDV has
responded to Atlanticand Indian Ocean SST forcing. Forinstance, Atlantic
warminghad aprominentroleinthetransitionfromapositive TPDVinthe
1990stoanegative TPDVintheearly2000s"™*"1*°* Thisimportancecan
belinked tothefact that the Atlantic-Rossby wave-induced wind anomalies
modulate winds inthe tropical Pacific, and this surface wind modulation
is strongest in the central Pacific where the Rossby and Kelvin waves col-
lide (Fig. 5¢,d). This strong effect of the Atlantic on the Pacific is likely to
have been relatively consistent from 1870 onwards, although its domi-
nance might have been differentin the past'**"'*>, By contrast, the influ-
ence of the Indian Ocean in isolation is thought to be minor during the

TPDV transition in the early 2000s>*'*° or more important in amplifying
thePacificresponse to Atlantic forcing'®, Yet, the magnitude of the Pacific
response to idealized Indian Ocean SST forcing is more prominent over
longer periods, as during 1980-2010 and 1958-2010 (refs. 24,136).
However, there are limitations in understanding the influence of
other ocean basins in driving TPDV. Uncertainties arise from discrep-
ancies between some model results. For example, although inter-
basin interactions are thought to amplify TPDV, model simulations
in which the Atlantic or Indian Ocean influence is removed instead
suggest that TPDV is intensified in the absence of Atlantic or Indian
Ocean coupling™®'*, Also, the connection between the Atlantic and
Pacific becomes less clear when partially coupled numerical experi-
ments become more realistic'*®. These uncertainties indicate possible

limitations of currently used partially coupled experiments'*.

Summary and future perspectives
TPDV of 7-70 yearsis linked to coherent basin-scale SST and SLP anom-
alies, with global impacts. Despite a limited historical record of sub-
surface data, surface manifestations of TPDV are also associated with
areorganization of tropical Pacific upper-ocean heat content, most
notably in the zonal direction, suggesting the involvement of ocean
dynamical processes. Indeed, several mechanisms have been proposed
to explain TPDV. Although it is plausible it might simply arise as a
residual of random ENSO variations'®*®, TPDV leads decadal ENSO
modulation by a few years™. This lead-lag relationship suggests that
ENSO decadal changes are likely a consequence of the slowly varying
background conditions, not their cause. A strong relationship between
decadal variations in the strength of the STCs and equatorial SSTAs
provides support for thev’T hypothesis. However, the largest correla-
tions occur at zero lag, making a causal relationship between STC
transport and equatorial SST changes unlikely. Instead, concurrent
STC and equatorial SST variations are part of the tropical pycnocline
adjustment to varying wind forcing, mediated by Rossby wave activity®.
Thus, these wave-mediated adjustment processes, encompassing
the non-compensated component of the 7 T” hypothesis, emerge as a
robust feature of TPDV. For instance, Rossby wave activity alters pyc-
nocline depth and manifests itself as temperature anomalies that
propagate on meanisopycnals, contributing to TPDV given their transit
times and interaction with the forcing, the latter including preferential
response to the larger spatial and temporal scales of the winds®. Propa-
gation of salinity-compensated temperature anomalies (spiciness
anomalies) is also supported in modelling contexts as a potential
mechanism®, Yet, limited observational evidence of anomalies reach-
ing the equatorial region, in addition to a small modelled influence®,
callinto question the magnitude of the compensated T’ component.
The atmospheric response to decadal SSTAs in the equatorial Pacific,
internal atmospheric variability in the extratropical Pacific and atmos-
phericinfluences from the Atlantic and Indian Oceans are all potentially
important drivers of the aforementioned oceanic processes.
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Fig.4|Assessmentofthev’T hypothesis.

a, Observed meanzonally integrated interior
meridional pycnocline transportsat 9°Nand 9°S,
computed over1956-1965,1970-1977,1980-1989
and 1990-1999.b, Observed mean meridional
transport convergence across 9°Nand 9°S
(purple), computed as the difference between
Southernand Northern Hemisphere transports,
and sea surface temperature (SST) anomalies
averaged over the central and eastern equatorial
Pacific (black line; 9°N-9°S,90° W-180° W). Error
bars represent one standard error. ¢, Reanalysis
interior meridional transport convergence
anomalies'® (seasonal cycle removed) across
9.5°N and 9.5°Sin the Pacific (black),and SST
anomalies averaged over 9.5°N-9.5°S, 90°
W-180°W (red). Meridional velocity anomalies
used to compute transports, and SST

anomalies are linearly detrended. The valuein the
top leftindicates correlation at zero lag between
the time series. d, Same as panel cbut for 7-year
low-pass-filtered anomalies. Values indicate mean
decadal transport convergence and SST
anomalies between vertical dashed lines.

e, Correlations between transport convergence
at9°Nand 9°Sand equatorial SST anomalies

in4 ocean reanalyses'®*'**'**' and 12 CMIP6
historical simulations. Error bars represent the
95% confidence interval. f, Standard deviation of
equatorial SST anomalies versus the standard
deviation of transport convergence at 9° N and

9° S for the same ocean reanalyses and historical
CMIP6 simulations in panel e. Zonally averaged
pycnocline transport convergence and equatorial
SST anomalies are highly correlated in
observations, ocean reanalyses and several
climate models. STC, subtropical cell. Panels a
andbreprinted fromref. 25, Springer Nature
Limited. Panels cand d reprinted with permission
fromref. 26, AMS. Panels e and freprinted from
ref. 88, Springer Nature Limited.

However, it is clear that many questions still remain about the
nature of TPDV. There are some similarities between TPDV and ENSO,
but while ENSO is an ocean-atmosphere coupled phenomenon,
whose growth and phase transitions rely on coupled feedbacks, it
is not clear whether the same is true for TPDV. Although there are
indications that low-frequency equatorial heating'* or individual

ENSO events* induce off-equatorial winds favourable for a TPDV
phasereversal, thereis still uncertainty about the origin and nature
of the winds involved. Internally generated wind anomalies in the
subtropical-tropical regions create equatorial SST anomalies?,
whichthenreinforce the subtropical wind anomalies through atmos-
pheric teleconnections, increasing their persistence to enhance

Nature Reviews Earth & Environment



Review article

lower-frequency variability°. Decadal timescale SST anomalies
in the Atlantic and Indian Oceans also induce wind anomalies in
the tropical Pacific conducive to the development of SST anoma-
lies of the opposite sign?'#?%53% However, the extent to which
wind forcing from the extratropics or from other ocean basins
might itself be the result of forcing from the tropical Pacific is not
clearly understood. Furthermore, the relative magnitude of these
various sources of wind variability in forcing TPDV is not known.
Afurther uncertainty is related to whether the wind variations arise
from deterministic processes operating on decadal timescales, or
whether the decadal timescale processes in the Pacific are simply
the result of stochastic white noise forcing that the ocean integrates
throughiits inertia to produce a red noise spectral response. A full
understanding of TPDV requires all these outstanding uncertainties
be resolved.

a Response to NPMM

Properly designed coupled model sensitivity experiments, inwhich
SSTsare prescribed in certain regions, could be used toisolate the con-
tribution of the different regional sources of wind anomalies. As these
experiments can be affected by model biases and might be difficult to
interpret'”’, they should be complemented by analyses of multivari-
ate empirical models™°, which are trained on observations and allow
a cleaner decoupling of feedbacks among different variables and
regions™ ", In addition, simple ocean models that capture Rossby
wave dynamics®"* can help to assess the role of different aspects of the
winds, including location and spectral characteristics, in reproducing
key features of TPDV.

Although spiciness anomalies do not seem to substantially
affect TPDV, current evidence is based on a limited number of analy-
ses using just over two decades of observations from Argo floats and
primarily conducted with ocean-only models. However, the expected

b Response to SPMM
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anomalies), surface winds (bottom, vectors), 10°S-10° N mean temperature
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Pacific equatorial winds and contribute to tropical Pacific decadal variability.
SSTA, seasurface temperature anomaly.
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Box 2

Paleoclimate insights

The brevity of the instrumental record limits analyses of tropical
Pacific decadal variability (TPDV) with instrumental observations.
Paleoclimate proxies, particularly tropical corals and sclerosponges,
provide opportunities to track the low-frequency variations of
the tropical oceans over centuries. Over the most recent phase
transitions of TPDV, corals have recorded associated changes in
dynamically relevant fields, including sea surface temperature'"'”?,
salinity*"°, westerly wind bursts"”® and upwelling"”""®. Proxy
records have provided evidence of interactions among different
ocean basins at both interannual”® and decadal™° timescales.
Proxy records from the Eastern Subtropical North Pacific, where
sea surface temperature anomalies might reflect NPMM activity,
illustrate high levels of decadal variability coherent with the Central
Equatorial Pacific records, supporting the potential involvement of
the NPMM in TPDV'"“.

Additionally, paleoclimate analyses provide a perspective into the
range of TPDV found over centuries-millennia, which can be used
to assess model simulations of TPDV. The figure compares TPDV
across five different instrumental products'®®""®*, two generations
of climate models (CMIP5, CMIP8, historical'®*'®® and Past1000
(refs. 187,188) experiments) and three different sources of paleo data
(coral 80 from the central and eastern equatorial Pacific™®™, field
reconstructions'®*'* and paleo data assimilation products'®*'®) using
violin plots'®. The number of data sets used for each violin is indicated
by N. TPDV is described in terms of the standard deviation of decadal
variations (7-70 years) of the Nino3.4 index (annually averaged sea
surface temperature anomalies in the 5° S-5° N, 170° W-120° W region).

concentration of variance at decadal timescales of spiciness anomalies
arrivingatthe equator, and theresulting rearrangement of the tropical
climate, suggests that spiciness anomalies could still be a potentially
importantdriver of TPDVin the coupled setting. Thus, the role of spici-
ness should be further investigated in the context of coupled models.
Availability of long time series from model simulations with realistic
mixing parameterizations, achieved through either higher spatial
resolution orimproved model design, would be critical to more reliably
assess theimpact of spiciness on TPDV.

Finally, a major limitation in our understanding of TPDV stems
fromtherelatively short observational record, which does not allow a
robust characterization of decadal variability, and aproper assessment
of climate models fidelity in simulating it. More extensive investiga-
tions of TPDV using multicentury paleoclimate records could pro-
vide critical insights on the key features of TPDV and better constrain
climate models evaluation at decadal timescales (Box 2).

This Review has not addressed the question of how TPDV might
change in response to external forcing. However, changes in the
characteristics of TPDV as a result of anthropogenic forcing can be
expected. Increasing surface temperatures will result in increased
ocean stratification'”, leading to faster Rossby wave propagation,
shorter adjustment timescales and reduced growth and predictability
of Pacific decadal variability™®, which might lead to weaker, shorter
timescale TPDV in the future™’. The expected reduced influence of
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Violin plots for each data set are based on decadal standard deviations
of 100-year sliding windows allowing for 50 years overlap between
segments. Individual dots represent the decadal standard deviation
of each unique 100-year segment. The median and interquartile
range of these values is indicated by the white dots and vertical
lines, respectively, whereas the width of the violin plot for each
standard deviation indicates the corresponding frequency of
occurrence. Notably, the instrumental record does not cover the
full range of decadal variability suggested by both paleoclimate
proxy reconstructions and climate models, although the median
standard deviation is very similar among products.

Atlantic variability on ENSO owing to increased tropospheric stabil-
ity"® can also reduce the influence of Atlantic decadal variability on
TPDV. Yet, the wind-evaporation-SST feedback is projected toincrease
owingtowarmer sea surface temperatures and increased evaporative
response, leading to an enhanced impact of the NPMM on ENSO and
possibly on TPDV**'%°_ These, and other possible processes and their
interactions, need to be assessed in climate models to determine how
TPDV might change ina warmer world.
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