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Abstract—In photoacoustic computed tomography 

(PACT) with short-pulsed laser excitation, wideband 
acoustic signals are generated in biological tissues with 
frequencies related to the effective shapes and sizes of the 
optically absorbing targets. Low-frequency photoacoustic 
signal components correspond to slowly varying spatial 
features and are often omitted during imaging due to the 
limited detection bandwidth of the ultrasound transducer, 
or during image reconstruction as undesired background 
that degrades image contrast. Here we demonstrate that 
low-frequency photoacoustic signals, in fact, contain 
functional and molecular information, and can be used to 
enhance structural visibility, improve quantitative 
accuracy, and reduce spare-sampling artifacts. We provide 
an in-depth theoretical analysis of low-frequency signals in 
PACT, and experimentally evaluate their impact on several 
representative PACT applications, such as mapping 
temperature in photothermal treatment, measuring blood 
oxygenation in a hypoxia challenge, and detecting 
photoswitchable molecular probes in deep organs. Our 
results strongly suggest that low-frequency signals are 
important for functional and molecular PACT.    

 
Index Terms—Photoacoustic computed tomography, 

quantitative and functional imaging, low-frequency signal.  

I. INTRODUCTION 
HOTOACOUSTIC (PA) computed tomography (PACT) 
has developed rapidly with increasing preclinical and 

clinical applications over the past decades, largely due to its 
balanced high resolution, large penetration depth, and intrinsic 
sensitivity to functional and molecular contrast [1, 2]. In PACT, 
short-pulsed wide-field laser excitation is used for generating 
ultrasound waves by optically absorbing targets via the 
photoacoustic effect. The propagating waves can be detected by 
an ultrasonic transducer array to reconstruct the original optical 
energy deposition inside the targets. Optical-absorption 
contrast images are digitally reconstructed by applying inverse 
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algorithms [3, 4]. The unique sensitivity of PACT to optical 
absorption contrast enables quantitative imaging of a wide 
range of functional and molecular properties of biological 
tissues including blood oxygenation [5], tissue temperature [6], 
and molecular probe distribution [7], usually with multispectral 
excitation [8, 9].  

In PACT, short-pulsed (usually several nanoseconds) laser 
excitation of tissues results in broadband PA signals [10], with 
frequency components that depend on the effective target size 
and shape, as well as on the imaging depth [11]. Recent PACT 
studies have been focused on detecting high-frequency signal 
components to improve spatial resolution. For example, 
localization-based PACT methods detect high-frequency 
signals from microscopic PA absorbers (e.g., dyed droplets and 
microspheres) to achieve super-resolution imaging [12, 13]. 
Singular value decomposition analysis in PACT highlights 
high-frequency signals with small singular values to identify 
fluctuations such as hemorrhages and microbubbles [14-16]. 
Low-frequency PA signal components (<1 MHz), on the other 
hand, are often neglected because they correspond to slowly 
varying spatial features or large homogenous targets, and 
manifest as low spatial resolution and low image contrast. Low-
frequency PA signals are also suppressed due to hardware 
limitations and image processing. Typical PACT systems use 
piezoelectric ultrasonic transducers [17, 18]. These transducers 
usually have low detection efficiency at frequencies of <2 MHz 
[17-19]. Large PA targets such as the superior vena cava usually 
manifest as hollow structures with sharp edges without weak 
lumen, which is attributed to both limited detection bandwidth 
and optical fluence attenuation. In addition, filtered back-
projection, a commonly used image reconstruction method, 
often uses a ramp filter with a Hamming or Hanning window to 
suppress high-frequency noise and background signals [20-27]. 
These filters may remove low-frequency signals from large 
structures during image reconstruction [28].  

P 
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Recently PACT has started to take advantage of the 

wideband PA signals by combining multi-band detection [29, 
30]. In this work, we believe that low-frequency signals benefit 
quantitative measurements in functional and molecular PACT. 
First, due to the frequency-dependent acoustic attenuation, low-
frequency signals penetrate deeper inside tissue [4, 31]. Second, 
low-frequency signals are less sensitive to speed-of-sound 
inhomogeneities, especially for transcranial imaging [32-34]. 
Last, PACT systems that detect low-frequency signals can be 
more cost-effective, with reduced signal sampling frequency, 
decreased number of detection channels, and long-pulse laser 
diodes [35, 36]. We believe that to better assess low-frequency 
signals in PACT is crucial for improving instrument design and 
quantitative data analysis. 

Here we provided an in-depth analysis of low-frequency 
signals in PACT and developed a numerical method to 
determine the optimal cutoff frequency for frequency 
separation, based on the maximal contrast of the region of 
interest. We experimentally investigated the impact of low-
frequency signal components in several representative 
functional and molecular PACT applications: temperature 
mapping in photothermal treatment using nanoparticles, 
molecular imaging of photoswitchable phytochromes in deep 
organs, and deep tissue blood oxygenation measurements in 
hypoxia conditions. Our experimental results show that low-
frequency signal components are crucial for improving 
quantification accuracy in functional and molecular PACT. 
Ultimately, we expect this study will highlight the low-
frequency PA signals for optimizing system configurations and 
data analysis in functional and molecular PACT.   

II. METHODS 

A. Frequency characteristics of PA signals 
The frequency spectrum of time-resolved PA signals closely 

relates to the target’s characteristic spatial dimension (the 
dimension of the structure of interest or the decay constant of 
the optical energy deposition, whichever is smaller). The wave 
equation describing the PA pressure field  at location  
and time  upon short-pulsed laser excitation is given by [31, 
37] 

    (1) 
where  is the speed of sound,  is the Grueneisen 

parameter,  is the volumetric density of the locally 
absorbed optical energy, and  is the temporal profile of the 
wide-field laser intensity. The PA pressure field in the 
frequency domain is given by 

     (2) 
where  is the temporal frequency. Assuming that the laser 

pulse is a Dirac delta pulse , combining Eqs. (1) 
and (2) give [31] 

     (3) 

where  is the wavenumber. Solution of Eq. (3) for 
 in a region-of-interest  with three-dimensional 

coordinates  can be approximated as [31] 

   (4) 

where  is the distance between the target and the detector.  
From Eq. (4), the normalized power spectrum of the PA 

signal is given by [31] 
   (5) 

where  is the transducer’s frequency response, and 
 is the autocorrelation function of . 

From Eqs. (4) and (5), we can derive two important 
properties of the PA signal spectrum that are relevant to this 
study: (1) The frequency spectrum depends on the target’s 
characteristic dimension [38]. PA signals from a smaller target 
have a broader bandwidth and higher central frequency, and 
vice versa [11, 22, 38]. In other words, low-frequency signal 
components correspond to slowly-varying features of the target, 
such as the overall liver geometry or tumor volume. High-
frequency signal components, on the other hand, represent fast-
varying features inside the target, such as individual blood 
vessels or tumor-tissue boundaries. In many applications, 
functional parameters of biological tissues such as temperature 
vary slowly in space. Thus, low-frequency signal components 
are useful to quantify functional parameters at the macroscopic 
level. (2) With sufficient light illumination, the amplitude of the 
PA signal typically increases with the target size or the spatial 
resolution voxel size, whichever is smaller, due to the increased 
number of effective absorbers [22]. Assuming that the thermal 
noise in PA is broadband, low-frequency signal components 
also contain less noise than high-frequency components, 
providing a better signal-to-noise ratio (SNR). This is 
particularly important for deep-tissue applications, in which the 
SNR decays exponentially with the imaging depth due to the 
optical attenuation. 

B. Ring array-based PACT system 
The ring array-based PACT system is depicted schematically 

in Fig. 1a. The system uses a customized full-ring-shaped 
transducer array (Imasonics, Inc.) combing two half-ring 
transducers, with 512 elements in total, 8-cm diameter, 5-MHz 
center frequency, and >100% receiving bandwidth optimized 
for the receiving mode. The ring array is connected to four pre-
amplifiers (LEGION AMP, PhotoSound, Inc.) and is 
multiplexed with a 256-channel data acquisition system 
(Vantage 256, Verasonics, Inc.). The ring array is capable of 
acquiring a cross-sectional image with two laser pulses. For 
light illumination, laser pulses (1064-nm wavelength, 10-ns 
pulse width, and 10-Hz pulse repetition rate (PRR)) are 
delivered to the target through two four-branched fiber bundles 
(Dolan-Jenner Industries, Inc.) (Figs. 1a and 1e). The fiber 
outlets are positioned around the ring for uniform illumination. 
Laser firing and ultrasound detection are synchronized by a 
LabVIEW-based FPGA module (myRIO-1900, National 
Instrument, Inc.).  
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The laser light illumination was tailored in each experiment. 
For photothermal treatment, continuous-wave (CW) 1064-nm 
light (650 mW/cm2) was delivered to the heating area as 
illustrated in Figs. 1b and 1c. In the single-cycle treatment, the 
heating light was turned on for 10 minutes ( ) 
following 1-minute baseline ( ). In the three-cycle 
treatment, a one-minute heating phase was followed by a three-
minute cooling phase in each cycle. For photoswitching 
experiments, PA excitation and photoswitching light were 
instead delivered through one fiber bundle with two outlets to 
the kidney region of a mouse to maximize laser energy density 
delivered to this photoswitchable organ (Fig. 1d). A total of 11 
photoswitching cycles were used. In each switching cycle, a 
635-nm CW laser was turned on for the first  8 seconds 
to switch on the phytochromes. For generating PA signals and 
switching off the phytochromes, we turned on a 750-nm pulsed 
OPO laser (10-ns pulse width and 10-Hz pulse repetition rate) 
for another 8 seconds. Before photoswitching, an anatomic 

image of the mouse’s kidney region was acquired with ring 
illumination at 1064 nm. In the hypoxia challenge experiments, 
PA signals at 1064 nm and 750 nm were acquired around the 
liver region for multispectral measurement of blood 
oxygenation (Fig. 1e) [39]. The laser energy levels in all 
experiments are listed in Table I.  

C.  Characterization of the system's electrical impulse 
response 

To characterize the frequency response of the detection 
system, we used short-pulsed 1064-nm laser excitation on an 
optically-thin planar target, which generated wideband unipolar 
PA signals close to a delta pulse [40, 41]. The target was a thin 
sheet (~83-μm thickness) made of gold nanoparticles 
sandwiched between two layers of agarose (Figs. 2a, 2b). More 
information on the nanoparticle is provided in sec. II. E. The 
experimental setup for measuring the impulse response is 
depicted in Fig. 2c. The PA signal from the planar target 
received by the middle ring array element was used as the 
receiving electrical impulse response (EIR), while its frequency 
spectrum was the transfer function (TF) of the detection system. 
The receiving EIR was validated with an analytical solution and 
was used for Wiener deconvolution of the RF data before the 
image reconstruction [42]. 

 
Fig. 2. Measurement of the system’s receiving EIR using a planar target. 
(a-b) Side and top views of the phantom with an optically-thin sheet of 
nanoparticles as a planar target. (c) Setup of the EIR measurement. The 
nanoparticle sheet was positioned perpendicular to the imaging plane of 
the ring-array transducer. 

D.  Low-pass filter design with optimal cutoff frequency 
To retain the integrity of the passband signal, we used a 

second-order low-pass Butterworth filter (LPF) because of its 
flat response in the passband [43]. The second-order LPF 
provided a damping ratio of 0.707 and had adequate roll-off in 
gain after the cutoff frequency while retaining a flat response in 
the passband. To choose the optimal cutoff frequency, the LPF 
was applied with cutoff frequencies ranging from 10 kHz to 7 
MHz, and images were reconstructed with the delay-and-sum 
method [44]. The contrast (Eq. (6)) in the reconstructed region 
of interest (ROI) from each band is defined as  

,     (6) 

where  is the target mean signal and is the background 
mean signal [45]. A representative area of the image with 
functional or molecular information was chosen for each 
experiment. For example, in the photoswitching phantom 
experiment, the ROI included the cells. The cutoff frequency for 
the LPF was experimentally-dependent and corresponded to the 
peak contrast value for molecular and functional analysis. 
When no peak was found between 10 kHz and 7 MHz, an 

Fig. 1. Schematics of the PACT system and light delivery for each 
experiment. (a) Dual-wavelength whole-body illumination for hypoxia 
challenge experiments, showing the ring-array transducer. (b) 1064-nm 
light for PA illumination and heating in photothermal experiments. (c) 
Photograph of the photothermal experiment setup. (d) Photoswitching 
experiment with a 750-nm pulsed laser for PA excitation, and a 635-nm 
CW laser for turning on the phytochromes. (e) Photograph of the in vivo 
experiment setup with whole-body illumination. Amp, amplifier; BS, 
beamsplitter; DAQ, data-acquisition instrument; FB, fiber bundle; MUX, 
multiplexing; RM, reflection mirror; DM, dichroic mirror; CM, collimator; 
PL, pulsed laser. 
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empirical cutoff frequency of 0.5 MHz was used. The LPF 
cutoff frequencies for each experiment are listed in Table II. 
Low-pass signals were compared with all-pass and band-pass 
signals. Cutoff frequencies of 2.5 MHz and 7.5 MHz were 
chosen for the band-pass filter (BPF), because this range covers 
the nominal bandwidth of the ring-array transducer used in 
PACT with 5-MHz center frequency at 100% bandwidth [39, 
46]. Thus, it is worth noting that there could be a frequency gap 
between LPF and BPF, depending on the optimal cutoff 
frequency for the LPF.  

E.  Gold nanostar phantom   
The nanoparticles used in our experiments were highly-

absorbing gold nanostars (GNS). Increasing interest in 
nanoparticle-mediated thermal therapies [47, 48] has required 
the development of a biocompatible GNS. We succeeded in 
developing a novel surfactant-free synthesis method to make 
GNS biocompatible for in vivo applications [49, 50]. These 
GNS have a tunable plasmonic resonance within the therapeutic 
window of 750–1000 nm, making them promising 
photothermal agents for solid tumor ablation, 
photoimmunotherapy, and multimodal theranostic applications 
[51, 52]. GNS are also good absorbers for PA imaging 
experiments, with strong optical absorption in the NIR window 
(Fig. 3a).  

Surfactant-free GNS were prepared using the method 
developed by Yuan et al. [53]. Briefly, 1 mL of 10 nM 12-nm 
gold seed solution was added to a rapidly stirring mixture of 
100 mL of 0.25 mM HAuCl4 and 100 μL of hydrochloric acid. 
500 μL of 4 mM AgNO3 and 500 μL of 0.1 M ascorbic acid 
were then immediately added to the mixing solution. The GNS 
solution was stabilized by adding SH-PEG5000 (final 
concentration, 10 μM). The solution was centrifuged and 
resuspended at 10 nM before phantom fabrication. Extinction 
spectra were obtained using a dual-beam spectrophotometer 
(Shimadzu UV-3600; Shimadzu Corporation, Japan). The GNS 
solution exhibited peak absorption at 749 nm (Fig. 3a). To 

verify GNS formation, particle morphology was observed via 
transmission electron microscopy (TEM) (FEI Tecnai G² Twin) 
(Fig. 3b). 

For all PA phantoms, 100 mL of deionized water was brought 
to a boil and 3 g of agarose powder was added slowly to avoid 
clumping. The agarose solution was poured into the phantom 
molds and was cooled to room temperature before removal 
from the molds. The concentrated GNS solution was then added 
to aliquots of boiled agarose solution to achieve a concentration 
of 0.5 nM in the desired regions of each phantom. 

 
Fig. 3. GNS nanoparticles in gel phantoms for photothermal treatment 
and quantitative PA thermometry. (a) The normalized absorption 
spectrum of GNS. (b) TEM image of GNS; scale bar, 500 nm. Inset: the 
magnified image of a single GNS. (c) Spherical and (d) star-shaped GNS 
phantoms in clear agarose gel for PA imaging. 
 

Several different GNS-based phantoms were used to mimic 
tissue models. (1) An ultra-thin layer of GNS sandwiched 
between two pieces of clear agarose gel was used to measure 
the EIR of the PACT system. A thin slab can generate a 
monopolar PA signal close to the Dirac delta function, whereas 
a point target generates a bipolar sawtooth waveform which is 
the derivative of the Dirac delta function [36, 40]. (2) A set of 
spherical GNS phantoms with a respective radius of 1, 3.3, 5, 
and 7 mm were embedded 2 mm beneath the agarose surface. 
Frequency spectra of the PA signals before and after EIR 
deconvolution from these spherical phantoms were compared 
with the analytical solution. (3) For PA temperature mapping in 
the photothermal experiment, a spherical phantom with a radius 
of 3.3 mm was used to mimic a tumor in SYMPHONY 
treatments (Fig. 3c) [52, 54]. A thermocouple (TC-08, Omega 
Engineering, Inc.) with its tip inside the phantom was used to 
validate the PA temperature measurements. A single-cycle 
treatment for 10 mins was used according to the standard 
photothermal therapy protocol with GNS [55, 56]. (4) To study 
the effect of sparse sampling, we used a star-shaped GNS 
phantom that had sharp spatial features (Fig. 3d). 

F.  Photoswitching experiment with DrBphP-PCM-
expressing tumor cells and BphP1-expressing mice 

To examine the effect of low-frequency signals on 
photoswitching PA imaging in vitro, we used 4T1 mouse breast 
cancer cells that stably expressed DrBphP-PCM, a NIR 
photoswitchable phytochrome [57]. Plasmids co-encoding 
DrBphP-PCM and EGFP were used to transduce 4T1 cells via 
a lentivirus. The co-expressed EGFP signals were used to select 
stable DrBphP-PCM-expressing cells. Transduced 4T1 cells 

TABLE II 
LPF CUTOFF FREQUENCY IN EACH EXPERIMENT, DETERMINED BY THE 

CONTRAST. 

EXPERIMENT Cutoff Frequency 
(MHz) 

GNS photothermal phantom (in vitro) 
Single-cycle treatment 
Three-cycle treatment 

 
0.95 
1.95 

Photoswitching cell phantom (in vitro) 3 

Photoswitching in mice (in vivo) 0.25 
Hypoxia challenge (in vivo) 0.51 

TABLE I 
LASER ENERGY USED IN EACH EXPERIMENT (TOTAL ENERGY FROM ALL FIBER 

OUTLETS). 

EXPERIMENT Laser Energy (mJ) 

Photothermal phantom (in vitro) 36 (1064 nm) 
Photoswitching cell phantom (in vitro) 20 (750 nm) 

Photoswitching mouse (in vivo) 31.1 (750 nm) 
50.5 (1064 nm) 

Hypoxia challenge (in vivo) 8.8 (750 nm) 
20 (1064 nm) 
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were cultured in DMEM with 10% FBS and 1% penicillin at 
37°C in 5% CO2 atmosphere. Approximately 5×106 4T1 cells 
were washed three times with 50 mL PBS. The cells were 
concentrated at 1000 rpm for 5 minutes, then embedded inside 
an agarose phantom with a radius of 5 mm. 

For in vivo photoswitching experiments, BphP1-expressing 
mice were used following the procedure in Kasatkina et al [58]. 
Homozygous loxP-BphP1 mice (males, 6 months old) were 
anesthetized with 2% isoflurane through a face mask during the 
surgical procedure, and body temperature was maintained at 
37.0 ± 0.2 ºC [58]. Mice were kept in the prone position. The 
lower back area was shaved and cleaned with iodine and 
alcohol. A 1 cm longitudinal skin incision was made below the 
rib edge at the location of 1 cm lateral to the midline. The 
muscle of the abdominal wall was cut using a high-temperature 
cautery loop tip. Two small retractors were placed, and the 
kidney was exposed. A 25G needle with a 5-μL Hamilton 
syringe was inserted 5 mm into the left kidney, and 1 μl of Cre-
expressing AAV vector was injected slowly, while the right 
kidney was used as the control. The needle remained in position 
for 5 minutes and then was removed. The muscle and skin 
layers were sutured separately [58]. At 22 days after the AAV 
injection, the mice were imaged by PACT, using the 
photoswitching light illumination strategy described above. All 
animal procedures were approved by Institutional Animal Care 
and Use Committee (IACUC) at Duke University.  

G. Hypoxia challenge 
A hypoxia challenge was performed with mice under 

anesthesia using 1% isoflurane at a 1.5 L/min flow rate. The 
experiment consisted of normoxia and hypoxia conditions. For 
normoxia conditions, the breathing air was a mixture of 21% 
oxygen and 79% nitrogen; for hypoxia conditions, the breathing 
air was 2% oxygen and 98% nitrogen. Each experiment started 
with 1 minute of normoxia baseline, followed by 30 s of 
hypoxia challenge, and 6 minutes of recovery under normoxia 
conditions. The hypoxia/normoxia cycle was repeated three 
times. Two wavelengths at 750 nm and 1064 nm were chosen, 
because deoxy- and oxy-hemoglobin were respectively the 
dominating absorbers at these wavelengths [59, 60]. All animal 
procedures were approved by IACUC at Duke University.  

H.  PA image reconstruction and quantitative analysis 
RF signals were first deconvolved with the measured EIR 

using Wiener deconvolution to improve low-frequency 
components [42]. Images are then reconstructed from the 
deconvolved RF data using the delay-and-sum method [44]. 
The speed of sound (SOS) was determined by measuring the 
coupling medium temperature during imaging. For 
photothermal experiments, the change in the phantom SOS was 
calibrated by measuring the arrival time of the PA signals. 
Reconstructed bipolar images were converted into unipolar 
images by multi-view Hilbert transform (MVHT) for in vivo 
data, and by thresholding negative pixels for phantom data [61].  

For functional and molecular imaging experiments, 
additional quantitative analysis was applied. The relative 
temperature change during photothermal experiments was 

calculated from PA signals based on the relationship between 
the Grüneisen coefficient  and PA signal amplitude  as [62, 
63] 

         (7) 
where  is the thermal conversion percentage,  is the 
optical absorption coefficient, and  is the optical fluence. In 
agar phantoms, has a linear dependence on temperature T 
[64, 65] 

       (8) 
From Eqs. (7) and (8), the relationship between PA signal 

change  and relative temperature change  is [66] 
        (9) 

where  and  are the baseline temperature and PA signal 
amplitude, respectively. Rewriting Eq. (9), we can estimate  
as 

       (10) 

To estimate sO2 in the hypoxia challenge experiment, we 
applied linear spectral unmixing to post-MVHT images 
acquired at 750 nm ( ) and 1064 nm ( ) to 
estimate the molar concentration of HbR ( ) and HbO2 
( ), assuming uniform optical fluence [5, 67]: 

   (11) 

in which 

      (12) 

where  and  are the molar extinction 
coefficients of HbR and HbO2 at two wavelengths, respectively. 
The signal processing pipeline is summarized in Fig. 4. 

 
Fig. 4. Signal processing, imaging reconstruction, quantitative analysis 
pipeline.  

III. RESULTS 

A.  System electrical impulse response 
The receiving (one-way) EIR and transfer function of the 

system are shown in Fig. 5. The Fourier transform of the EIR 
signal shows a −6 dB receiving bandwidth of 0.15–7 MHz (Fig. 
5a), which reflects the system’s high sensitivity to low-
frequency signals. The wide bandwidth allowed for quantitative 
comparison between different frequency bands in this study. By 
comparison, the −6 dB transmitting-receiving (two-way) 
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bandwidth of the system is 3.5–6.5 MHz (Fig. 5a). The 
reconstructed image of the planar nanoparticle target is shown 
in Fig. 5b.  

 
Fig. 5. System characterization using a planar target. (a) EIR and TF of 
the ring-array system, extracted from the one-way RF signal of the 
planar target. (b) Corresponding PA image of the planar target. Scale 
bar, 2 mm. 

B.  PA signal frequency dependence on the target size 
To validate the measured EIR of the PACT system, the 

frequency spectra of the deconvolved RF data and 
reconstructed PA images of spherical GNS phantoms were 
compared with the analytical solutions of spherical targets (Fig. 
6a) [68]. The limited-band (LB) analytical solution is generated 
by convolving the full-band (FB) analytical solution with the 
measured EIR. As expected, the experimental images without 
deconvolution and the analytical images with LB solution had 
hollow inner structures (Fig. 6b, 6d). These hollow structures 
even appeared in LB analytical solution where optical fluence 
attenuation was not considered. Thus, these hollow structures 
were resultant from the limited bandwidth, but not from the 
optical fluence attenuation. The only exception was the 1-mm-
radius sphere, simply because this small sphere did not generate 
strong low-frequency signals. Reconstructed experimental 
images with deconvolved signals of homogenous sphere 
structures were similar to the FB analytical solutions (Figs. 6c, 
6e). The only exception was the 7-mm-radius sphere, on which 
the effect of optical fluence attenuation became significant. The 
improvement in internal structural visibility in Fig. 6c shows 
the importance of deconvolution as a necessary step before 
image reconstruction to boost the low-frequency components. 

We further computed the structural similarity index (SSIM) 
and peak signal-to-noise ratio (PSNR) between the 
reconstructed experimental images and FB analytical solution, 
showing 2–3 fold higher SSIM and PSNR for the experimental 
images with deconvolution than those without the 
deconvolution (Figs. 6f-g). The SSIM and PSNR had no 
difference for the 1-mm-radius sphere because the small 
sphere’s frequency spectrum could be fully covered by the 
system’s detection bandwidth even without deconvolution 
Interestingly, both SSIM and PSNR reached the maximum for 
the 3.3-mm-radius sphere with the deconvolved signals, 
suggesting that this may be the closet to the target size best 
matched with the system’s bandwidth, as long as the optical 
fluence attenuation was negligible. 

The image profiles in Figs 6b-e are shown in Fig. 7a. The 
frequency spectra shifted towards lower frequencies with the 
increasing target size in the deconvolved data and FB analytical 
solution, but not in the original data and LB analytical solution 
(Fig. 7b). The frequency shift shows that deconvolution using 

the measured EIR signal can broaden the bandwidth of the 
experimental data, particularly in the low-frequency range. The 

wide receiving bandwidth (0.15–7 MHz) of our customized 
transducer allows for comparing the effects of low-frequency 
components with the band-pass signals (2.5–7.5 MHz). The 
frequency shift in the deconvolved data also matched the 
analytical solution (Figs. 7b and 8a).  

The size-dependent frequency of the PA signals demonstrates 
the importance of low-frequency signals for detecting targets 
with large sizes. Figure 8a shows that frequency spectra of PA 
signals from 5-mm- and 7-mm-radius spheres decrease quickly 
down to 0.1 MHz. Thus, a detection system that cannot provide 
a frequency bandwidth below 1 MHz may only detect the 
boundaries of large organs with relatively homogeneous optical 
properties, such as the kidney, liver, and brain. Again, the 
frequency shift highlights the importance of deconvolution in 
recovering the inner structures of large targets (Fig. 8a).  

 
Fig. 6. Reconstructing sphere targets without deconvolution (original), 
with deconvolution, and analytical solution. (a) Photographs of the 
sphere phantoms. Reconstructed images of spheres with a radius of (i) 
1 mm, (ii) 3.3 mm, (iii) 5 mm, and (iv) 7 mm using (b) experimental data 
without deconvolution, (c) experimental data with deconvolution, (d) 
band-pass analytical solution, and (e) all-pass analytical solution. 
Reconstructed images in (b-d) are normalized to the maximum absolute 
PA signal amplitude, while those in (e) are normalized between -1 and 
1. (f) SSIM and (g) PSNR of the reconstructed experimental images with 
and without deconvolution compared to the full-band analytical solution. 
The red dashed rectangles indicate the ROIs for SSIM and PSNR 
calculation. The dashed line in (b) denotes the image profiles shown in 
Fig. 7. Scale bar, 2 mm.  
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Further investigation on the size-dependent PA signal using 
FB analytical solution shows the increased PA signal amplitude 
and the decreased peak frequency with the target size (Fig. 8b). 
When the sphere radius increases from 1 mm to 5 mm, the peak 
frequency drops from 0.4 MHz to 0.1 MHz, while the signal 
magnitude increases by 20 dB. This result suggests a better 
detection sensitivity at low frequency is beneficial for detecting 

large targets, which has contributed to the improved functional 
and molecular imaging described below.  
C.  In vitro temperature mapping at different frequency 
ranges 

Temperature mapping for photothermal treatment of GNS 
spheres using all-pass, low-pass, and band-pass (2.5-7.5 MHz) 
data are shown in Fig. 9. Qualitatively, reconstructed images 
from all-pass and low-pass data have comparable visibility of 
the sphere and similar temperature maps over time (Figs. 9a, 
9b). We can observe a thermal gradient from the hotter core 
towards the cooler boundary of the sphere (Fig. 9d). In contrast, 
the frequency band of 2.5–7.5 MHz only reconstructs the edge 
of the sphere, and the center of the sphere was not visible (Figs. 
9c, 9d). For all-pass and low-pass data, the PA-measured 
temperature around the thermocouple tip correlated well with 
readings from the thermocouple for both single and three 
heating cycles (Figs. 9e, 9f). Temperature quantification from 
the low-pass data has better accuracy for the single-cycle 
heating than the all-pass data. Temperature measurement with 
the band-pass data shows substantial underestimation, 
especially in single-cycle heating (Fig. 9e). Thus, using low-
frequency signals, quantitative temperature mapping can be 
more reliable.  

D.  In vitro photoswitching imaging of cells expressing 
DrBphP-PCM 

As an example of molecular imaging, PACT images of 
photoswitching cells expressing DrBphP-PCM using different 
frequency ranges are shown in Fig. 10. By subtracting the OFF-

Fig. 7. Comparison of reconstructed image profiles and frequency 
spectra without deconvolution, with deconvolution, with LB and FB 
analytical solution. (a) PA image profiles along the dashed line in Fig. 
6b-i with a sphere radius of (i) 1 mm, (ii) 3.3 mm, (iii) 5 mm, and (iv) 7 
mm in Fig. 6. (b) The corresponding signal frequency spectra with 
different sphere sizes. 

 
Fig. 8. Size-dependent peak frequency shift and signal magnitude from 
PA signals of the sphere phantoms and analytical solution. (a) Peak 
signal frequency versus the sphere radius. (b) PA signal magnitude and 
peak frequency versus the sphere radius, using the FB analytical 
solution.  

 
Fig. 9. Mapping relative temperature change during photothermal 
treatment.  (a-c) Temperature maps at incremental timepoints in single-
cycle photothermal treatment, with PA images of a sphere 
reconstructed from all-pass, low-pass, and high-band-pass (2.5–7.5 
MHz) data respectively. The green ellipse in (a) at 1.8-min timepoint 
denotes the thermocouple region for signal averaging. (d) Spatial profile 
of temperature change along the red dashed line in (a). (e-f) Time 
courses of relative temperature change with single-cycle and three-
cycle-treatment, respectively. Shaded regions indicate the time during 
which the CW laser was turned on. All temporal plots were smoothed 
with a moving average of 60 time points. Scale bar, 2 mm. 
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state image from the ON-state image of the cells, the resultant 
differential image has enhanced image contrast due to the 
reduced non-switching background signals [58]. Differential 
images of the DrBphP-PCM-expressing cells (Figs. 10a and 
10c) show clear photoswitching signal changes for both all-pass 
and low-pass signals. However, using the band-pass signals, we 
cannot observe clear photoswitching signals from the cells. Due 
to the relatively homogeneous distribution of cells as a bulk PA 
target, PA signal from the cell phantom has a low-frequency 
band peaking at 0.16 MHz with a narrow bandwidth (Fig. 10d). 
Thus, a band-pass filter of 2.5–7.5 MHz removed almost all the 
signals from the cells (Fig. 10e). Figure 10(f) shows four 
repeated photoswitching cycles using low-frequency signals 
with an average switching ratio of 25% (Fig. 10g). In contrast, 
the band-pass data failed to capture the photoswitching process, 
showing only transient PA signal increase due to laser heating.  

E.  In vivo photoswitching imaging of a mouse kidney 
expressing BphP1 

The whole-body image of a mouse kidney region is shown in 
Fig. 11a. The control (right) kidney exhibits no photoswitching 
compared to the left kidney (Fig. 11b). Here, in vivo 
quantification of photoswitching kidney tissue with low-
frequency signals shows clear improvement over the all-pass 
and band-pass signals (Fig. 11c). While the differential image 
with the all-pass data shows a photoswitching area of 19.6 mm2 
near the skin surface, the differential image with the low-pass 
data shows photoswitching signals at depths up to 8 mm from 
the skin surface, with a total photoswitching area of 61.6 mm2 
(Figs. 11d, 11e). The differential image with the band-pass 
signals shows little photoswitching signals. The BphP1-
expressing kidney had a relatively uniform expression level, 
resulting in the differential signals concentrated largely in the 
low-frequency range. In addition, it is clear that low-frequency 
signals have greater photoswitching amplitude, enabling deeper 
and more sensitive PA detection of the molecular probes. One-
way ANOVA test for multiple comparisons presents a 
significant increase in the photoswitching amplitude when 
using the low-pass data (  < 0.0001) (Fig. 11f).  

In addition, it is evident that the band-pass signals were more 
sensitive to the breathing motions, which decreased the cross-
correlation over the consecutive frames (Fig. 11g). An unpaired 
t-test on cross-correlation of breathing frames shows a 
significant difference between the all-pass and low-pass data (  
< 0.0001) (Fig. 11h), mostly because the all-pass data contains 
the motion-sensitive band-pass data. Since the photoswitching 
quantification depends on averaging multiple switching cycles 
over an extended period of time (176 seconds for 11 switching 
cycles), the improvement of low-pass data over all-pass data is 
due to suppression of the band-pass signal fluctuations induced 
by breathing motion. By contrast, under the motionless 
circumstances in the phantom experiment in Section III D, all-
pass and low-pass data had similar quantification performance.   

F.  In vivo mapping of blood oxygenation level in hypoxia 
challenge 

Blood oxygenation (sO2) measurement is a common 
application of PA imaging. Here, we studied the impact of low-
frequency signals on whole-body temporal and spatial sO2 
estimation in the hypoxia challenge. Figures 12a and 12b are 
PA images of the mouse liver region under normoxia and 
hypoxia at 1064 nm and 750 nm. Temporally, low-pass signals 
yielded less sO2 fluctuations with a standard deviation (SD) of 
8.8% over the baseline measurement, compared to 12% and 
25% from all-pass and band-pass signals, respectively (Fig. 
12f). The low-pass signals also yielded more homogeneous sO2 
mapping in space over three cycles of the hypoxia challenge 
(Figs. 12d, 12f). Spatial profiles reveal improvement in the 
stability of sO2 measurements from low-pass signals, with the 
spatial SD below 6% throughout the mouse cross-section both 
under normoxia and hypoxia (Figs. 12g, 12h). In contrast, 
because high-frequency signals were more attenuated with 
increasing depth, both all-pass and band-pass signals led to 
noisier sO2 measurements, especially at deeper regions. sO2 
quantification was less accurate in hypoxia, due to the reduced 
PA signal amplitudes, especially at 1064 nm where the 

 
Fig. 10. Detection of photoswitching phytochromes on a cell phantom. 
(a-c) ON-state, OFF-state, and differential PA images of the cell 
phantom from (a) all-pass, (b) low-pass and (c) band-pass data. (d) 
Frequency spectra and (e) RF signals of the cell phantom with different 
frequency ranges. (f) Time-course of the averaged PA signal amplitude 
of the cell phantom over four photoswitching cycles. (g) The averaged 
PA signal changes over four cycles. Scale bar, 1 mm. 
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absorption of oxy-hemoglobin is dominant. For all-pass signals, 
the spatial SDs increased from ~7.9% in normoxia to ~10% in 
hypoxia (Figs. 12g, 12h). For band-pass signals, sO2 
measurements were substantially less accurate than the low-
pass and all-pass signals, especially under hypoxia (Fig. 12h). 
At all depths, band-pass results showed strong fluctuations with 
spatial SDs of ~20% under normoxia and ~28% under hypoxia 
(Figs. 12g, 12h). The improvement in sO2 measurements using 
low-pass signals is useful for tracking hemodynamic changes in 
deep tissues.  

G. Imaging complex targets with sparse-sampling 
Sparse sampling is a common source of artifacts in PACT and 

is often caused by the lack of sufficient transducer elements. 
Here we examined the impact of low-frequency signals on 
sparse-sampling artifacts by imaging star-shaped phantoms that 
have sharp features and complex spatial-frequency patterns. We 
artificially induced sparse sampling by reducing the number of 

equally-spaced transducer elements instead of using the full 
aperture of 512 elements. A LPF cutoff frequency of 0.5 MHz 
was empirically selected. We observed increasing streaking 
artifacts with decreasing number of transducer elements, using 
all-pass and band-pass signals (Figs. 13a, 13c). In contrast, low-
pass signals yielded reduced streaking artifacts with fewer 
transducer elements compared to all-pass and band-pass signals 
(Fig. 13b). In addition, we calculated SSIM and PSNR with 
sparse sampling compared with the full detection aperture (i.e., 
512 transducer elements). Relatively consistent imaging quality 
was maintained by using only 32 or 64 elements with low-
frequency signals, which outperformed both all-pass and band-
pass signals (Figs. 13d, 13e). Thus, reconstructing PACT 
images with low-frequency signals can reduce the number of 
elements required for spatial anti-aliasing, particularly for large 
targets.  

 
Fig. 11. In vivo photoswitching imaging of mouse kidney. (a) The whole-body cross-sectional PA image at 1064 nm around the kidney region. (b-c) 
Close-up PA images of the right (control) and left (photoswitching) kidney, overlaid with the differential image at 750 nm reconstructed with (i) all-
pass, (ii) low-pass, and (iii) band-pass signals. (d) Photoswitching area quantified from differential images in (c). (e) Spatial profiles of the 
reconstructed differential images along the dashed line in (c)-ii. (f) Averaged differential PA signal amplitudes. (g) Cross-correlation of the PA signals 
over two photoswitching cycles, showing the band-pass signals are more sensitive to the breathing motions. The shaded regions indicate turning 
on the phytochromes. (h) Cross-correlation amplitude of breathing frames with the all-pass and low-pass data. **** p < 0.0001. Scale bar, 2 mm. 

This article has been accepted for publication in IEEE Transactions on Medical Imaging. This is the author's version which has not been fully edited and 
content may change prior to final publication. Citation information: DOI 10.1109/TMI.2023.3320668

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.  See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Duke University. Downloaded on October 04,2023 at 13:00:11 UTC from IEEE Xplore.  Restrictions apply. 



10 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. xx, NO. x, 2020 
 

IV. DISCUSSION 
In this study, we investigated the importance of low-

frequency signal components in functional and molecular 
PACT. We showed that low-frequency signals can improve the 
quantitative accuracy of functional and molecular applications, 
especially for relatively large and homogeneous targets. Guided 
by the PA signal spectrum from analytical solutions, we 
experimentally verified the dependence of the PA signal 
frequency on the characteristic size of the target. This 
dependence strongly suggests that large PA targets with 
relatively homogenous optical and acoustic properties, such as 
the liver and kidney, can generate strong low-frequency signals. 
We demonstrated the importance of low-frequency signals in 
various functional and molecular applications by using in vitro 
phantoms made of GNS nanoparticles, photoswitching cells, 
and in vivo animal models expressing photoswitching 
phytochromes or under hypoxia challenge. The experimental 
results confirmed that low-frequency signals are beneficial for 

imaging large structures and quantifying temperature, blood 
oxygenation, and photoswitching molecular probes.  

In traditional PACT, low-frequency signals are usually 
omitted either due to the detection system or signal filtering. 
This lack of low-frequency signals is at least partially 
responsible for the low visibility of inner structures of large 
targets, while the optical fluence attenuation also contributes to 
the weaker inner structures. Such deterioration of structural 
integrity hinders accurate quantitation of functional and 
molecular information. For example, in temperature mapping, 
band-pass signals resulted in hollow GNS spheres in 
reconstructed images, and temperature changes inside the 
phantom during photothermal treatment could not be measured. 
In contrast, low-pass signals correctly tracked temperature 
increases that agreed with thermocouple readings. In molecular 
imaging, band-pass signals were unable to capture clear 
photoswitching signals of the BphP1-expressing kidney, which 
were captured by low-frequency signals. Similar to the in vivo 
photoswitching experiment, in the hypoxia challenge 
experiment, we observed more consistent sO2 quantification 

 
Fig. 12. Whole-body cross-sectional blood oxygenation measurement in hypoxia challenge. (a-b) Representative bipolar PA images of the mouse 
liver region under (a) normoxia and (b) hypoxia, acquired at 1064 nm and 750 nm. White dashed lines denote the mask to separate the mouse 
body from background for sO2 quantification. (c-e) sO2 mapping under normoxia and hypoxia conditions using (c) all-pass, (d) low-pass, and (e) 
band-pass data. (f) Temporal profile of averaged sO2 in the whole cross-section, smoothed with a moving average of 60 timepoints. Shaded regions 
are the standard deviations of sO2 of the whole cross-section at each timepoint. The green boxes denote hypoxia challenge. (g-h) Spatial profiles 
along the dashed line in (c) with the animal under (g) normoxia and (h) hypoxia, respectively. Scale bar, 2 mm. 
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temporally and spatially when using low-pass signals for image 
reconstruction. This was especially evident in deeper regions. 
Such improvement in blood oxygenation measurements 
without optical fluence compensation is encouraging for deep-
tissue applications such as functional brain imaging.  

Thus, in PACT, for large PA targets with relatively 
homogenous optical and acoustic properties, it is useful to 
utilize low-frequency signals to accurately quantify functional 
and molecular information. In practice, biodistributions of 
drugs and contrast agents inside tissues may be more 
homogenous than internal structures such as blood vessels, 
which favors the low-frequency signal components [69, 70]. 
Thus, for large organs with uniformly distributed molecular 
probes, low-frequency signals should be carefully preserved for 
functional and molecular data analysis. 

Separating low-frequency signals from the all-pass signals is 
beneficial for in vivo applications, in which imaging quality is 
prone to adverse conditions, especially motion artifacts. For 
example, when imaging a BphP1-expressing mouse kidney in 
vivo, we showed that low-frequency signals improved the 
detection sensitivity when compared with all-pass and band-
pass signals. Several factors contribute to this improvement: (1) 
the increased low-frequency signal magnitude of large PA 
targets, and (2) the suppression of high-frequency signal 
fluctuations due to motion artifacts. However, it is important to 
mention that these improvements in quantification do not apply 
to phantom experiments. In phantom experiments, motion 
artifacts are absent, and the low-frequency signals of 
homogenous targets already dominate. It is also crucial to 
acknowledge that while low-pass data can initially have a 
higher SNR than the band-pass data for large targets, the two 

bands may have comparable contributions for quantitative 
analysis when signal changes or ratiometric measurements are 
utilized.  

We also observed that using low-frequency signals can 
reduce the impact of sparse-sampling artifacts. Compared to 
reconstructed images from all-pass and band-pass data, 
reconstructions from low-pass PA signals can be performed 
using 8–16 times fewer transducer elements while maintaining 
the image quality of complex targets. Collectively, our 
experimental results indicate that when PACT is used for 
functional and molecular applications and high spatial 
resolution is less critical, it is more robust to use low-frequency 
signals to achieve high quantitative accuracy and high detection 
sensitivity. 

It should also be noted that using low-frequency signals in 
PACT has a key drawback of degraded spatial resolution, which 
may not be acceptable for biomedical applications that need 
high resolutions, such as visualizing small vessels, 
microbubbles, and nanodroplets [14, 15]. However, if the 
targets of interest have relatively large sizes and uniform optical 
and acoustic properties, trading resolution for quantitation 
accuracy may favor low-frequency signals. Another drawback 
of low-frequency signals is the artifact from transducer-light 
interaction when the initial SNR is low [71], which could be a 
source of error for quantitative analysis. Coating the transducer 
surface with optically reflective material may minimize the 
transducer-light interaction artifacts [71]. 

The low-frequency PACT can be improved in several aspects. 
First, better methods are needed for identifying the optimal 
cutoff frequency. Current contrast-based techniques are target-
oriented and require prior knowledge of the ROI, such as the 

 
Fig. 13. Effects of sparse-sampling artifacts. (a-c) Reconstructed images with decreasing number of elements using all-pass, low-pass, and band-
pass signals, respectively. (d-e) SSIM and PSNR of the sparse-sampling results compared with the full aperture detection. Scale bar, 2 mm. 
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size of photoswitching organs. For applications in which target 
sizes are unknown, it is challenging to choose the optimal cutoff 
frequency. Second, further investigation is needed on different 
image reconstruction methods, improved deconvolution 
approaches, and varied detection geometries. For example, 
iterative Richardson-Lucy or regularized Tikhonov 
deconvolution can potentially improve low-frequency 
components over the Wiener deconvolution. Low-frequency 
components might also have different effects on PACT systems 
using a linear-array transducer with a severely limited view. 
Third, incorporating optical fluence compensation with low-
frequency PACT can potentially improve quantification at 
deeper locations. Fourth, it is also interesting to study the low-
frequency signals on the boundary build-up effect in PACT, 
particularly with a linear-array transducer. Improving the low-
frequency signal detection may help mitigate the boundary 
build-up effect since the inner structures of large targets are 
dominated by low-frequency signals [72]. Last, another future 
direction is studying the effects of low-frequency signals on 
human imaging with larger and deeper organs. The advantages 
of low-frequency signals in functional imaging in humans such 
as early tumor detection and drug uptake in the brain will likely 
accelerate the clinical translation of PACT technologies.  

V.  CONCLUSION 
In summary, this study highlights the use of low-frequency 

signals in PACT to improve quantitative accuracy in functional 
and molecular imaging applications such as temperature 
mapping, blood oxygenation measurement, and molecular 
probe detection. We expect that our results will contribute to a 
better understanding of low-frequency signals in functional and 
molecular imaging and in optimizing PACT systems. 
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