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Abstract—In photoacoustic computed tomography
(PACT) with short-pulsed laser excitation, wideband
acoustic signals are generated in biological tissues with
frequencies related to the effective shapes and sizes of the
optically absorbing targets. Low-frequency photoacoustic
signal components correspond to slowly varying spatial
features and are often omitted during imaging due to the
limited detection bandwidth of the ultrasound transducer,
or during image reconstruction as undesired background
that degrades image contrast. Here we demonstrate that
low-frequency photoacoustic signals, in fact, contain
functional and molecular information, and can be used to
enhance structural visibility, improve quantitative
accuracy, and reduce spare-sampling artifacts. We provide
an in-depth theoretical analysis of low-frequency signals in
PACT, and experimentally evaluate their impact on several
representative PACT applications, such as mapping
temperature in photothermal treatment, measuring blood
oxygenation in a hypoxia challenge, and detecting
photoswitchable molecular probes in deep organs. Our
results strongly suggest that low-frequency signals are
important for functional and molecular PACT.

Index Terms—Photoacoustic computed tomography,
quantitative and functional imaging, low-frequency signal.

[. INTRODUCTION

HOTOACOUSTIC (PA) computed tomography (PACT)

has developed rapidly with increasing preclinical and
clinical applications over the past decades, largely due to its
balanced high resolution, large penetration depth, and intrinsic
sensitivity to functional and molecular contrast [1, 2]. In PACT,
short-pulsed wide-field laser excitation is used for generating
ultrasound waves by optically absorbing targets via the
photoacoustic effect. The propagating waves can be detected by
an ultrasonic transducer array to reconstruct the original optical
energy deposition inside the targets. Optical-absorption
contrast images are digitally reconstructed by applying inverse

algorithms [3, 4]. The unique sensitivity of PACT to optical
absorption contrast enables quantitative imaging of a wide
range of functional and molecular properties of biological
tissues including blood oxygenation [5], tissue temperature [6],
and molecular probe distribution [7], usually with multispectral
excitation [8, 9].

In PACT, short-pulsed (usually several nanoseconds) laser
excitation of tissues results in broadband PA signals [10], with
frequency components that depend on the effective target size
and shape, as well as on the imaging depth [11]. Recent PACT
studies have been focused on detecting high-frequency signal
components to improve spatial resolution. For example,
localization-based PACT methods detect high-frequency
signals from microscopic PA absorbers (e.g., dyed droplets and
microspheres) to achieve super-resolution imaging [12, 13].
Singular value decomposition analysis in PACT highlights
high-frequency signals with small singular values to identify
fluctuations such as hemorrhages and microbubbles [14-16].
Low-frequency PA signal components (<1 MHz), on the other
hand, are often neglected because they correspond to slowly
varying spatial features or large homogenous targets, and
manifest as low spatial resolution and low image contrast. Low-
frequency PA signals are also suppressed due to hardware
limitations and image processing. Typical PACT systems use
piezoelectric ultrasonic transducers [17, 18]. These transducers
usually have low detection efficiency at frequencies of <2 MHz
[17-19]. Large PA targets such as the superior vena cava usually
manifest as hollow structures with sharp edges without weak
lumen, which is attributed to both limited detection bandwidth
and optical fluence attenuation. In addition, filtered back-
projection, a commonly used image reconstruction method,
often uses a ramp filter with a Hamming or Hanning window to
suppress high-frequency noise and background signals [20-27].
These filters may remove low-frequency signals from large
structures during image reconstruction [28].
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Recently PACT has started to take advantage of the
wideband PA signals by combining multi-band detection [29,
30]. In this work, we believe that low-frequency signals benefit
quantitative measurements in functional and molecular PACT.
First, due to the frequency-dependent acoustic attenuation, low-
frequency signals penetrate deeper inside tissue [4, 31]. Second,
low-frequency signals are less sensitive to speed-of-sound
inhomogeneities, especially for transcranial imaging [32-34].
Last, PACT systems that detect low-frequency signals can be
more cost-effective, with reduced signal sampling frequency,
decreased number of detection channels, and long-pulse laser
diodes [35, 36]. We believe that to better assess low-frequency
signals in PACT is crucial for improving instrument design and
quantitative data analysis.

Here we provided an in-depth analysis of low-frequency
signals in PACT and developed a numerical method to
determine the optimal cutoff frequency for frequency
separation, based on the maximal contrast of the region of
interest. We experimentally investigated the impact of low-
frequency signal components in several representative
functional and molecular PACT applications: temperature
mapping in photothermal treatment using nanoparticles,
molecular imaging of photoswitchable phytochromes in deep
organs, and deep tissue blood oxygenation measurements in
hypoxia conditions. Our experimental results show that low-
frequency signal components are crucial for improving
quantification accuracy in functional and molecular PACT.
Ultimately, we expect this study will highlight the low-
frequency PA signals for optimizing system configurations and
data analysis in functional and molecular PACT.

[I. METHODS

A.Frequency characteristics of PA signals

The frequency spectrum of time-resolved PA signals closely
relates to the target’s characteristic spatial dimension (the
dimension of the structure of interest or the decay constant of
the optical energy deposition, whichever is smaller). The wave
equation describing the PA pressure field p(r, t) at location r
and time t upon short-pulsed laser excitation is given by [31,
37]
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where ¢ is the speed of sound, I' is the Grueneisen
parameter, A(r) is the volumetric density of the locally
absorbed optical energy, and 1,(t) is the temporal profile of the
wide-field laser intensity. The PA pressure field in the
frequency domain is given by
P(r,f) = [p(r, e/ dt ©)
where f is the temporal frequency. Assuming that the laser
pulse is a Dirac delta pulse I,(t) = §(t), combining Egs. (1)
and (2) give [31]
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where k = ? is the wavenumber. Solution of Eq. (3) for

P(r,f) in a region-of-interest V with three-dimensional
coordinates x, y, z can be approximated as [31]
P(r f) ~ 2T (1] Ar)e TKED dxdydz (4
4TtrgC 14
where 1 is the distance between the target and the detector.
From Eq. (4), the normalized power spectrum of the PA
signal is given by [31]

S() = go; I RAAPS 9 dnxaynz - (5)

where @,(f) is the transducer’s frequency response, and
R(Ar) is the autocorrelation function of A(r).

From Eqgs. (4) and (5), we can derive two important
properties of the PA signal spectrum that are relevant to this
study: (1) The frequency spectrum depends on the target’s
characteristic dimension [38]. PA signals from a smaller target
have a broader bandwidth and higher central frequency, and
vice versa [11, 22, 38]. In other words, low-frequency signal
components correspond to slowly-varying features of the target,
such as the overall liver geometry or tumor volume. High-
frequency signal components, on the other hand, represent fast-
varying features inside the target, such as individual blood
vessels or tumor-tissue boundaries. In many applications,
functional parameters of biological tissues such as temperature
vary slowly in space. Thus, low-frequency signal components
are useful to quantify functional parameters at the macroscopic
level. (2) With sufficient light illumination, the amplitude of the
PA signal typically increases with the target size or the spatial
resolution voxel size, whichever is smaller, due to the increased
number of effective absorbers [22]. Assuming that the thermal
noise in PA is broadband, low-frequency signal components
also contain less noise than high-frequency components,
providing a better signal-to-noise ratio (SNR). This is
particularly important for deep-tissue applications, in which the
SNR decays exponentially with the imaging depth due to the
optical attenuation.

B.Ring array-based PACT system

The ring array-based PACT system is depicted schematically
in Fig. la. The system uses a customized full-ring-shaped
transducer array (Imasonics, Inc.) combing two half-ring
transducers, with 512 elements in total, 8-cm diameter, 5-MHz
center frequency, and >100% receiving bandwidth optimized
for the receiving mode. The ring array is connected to four pre-
amplifiers (LEGION AMP, PhotoSound, Inc.) and is
multiplexed with a 256-channel data acquisition system
(Vantage 256, Verasonics, Inc.). The ring array is capable of
acquiring a cross-sectional image with two laser pulses. For
light illumination, laser pulses (1064-nm wavelength, 10-ns
pulse width, and 10-Hz pulse repetition rate (PRR)) are
delivered to the target through two four-branched fiber bundles
(Dolan-Jenner Industries, Inc.) (Figs. la and le). The fiber
outlets are positioned around the ring for uniform illumination.
Laser firing and ultrasound detection are synchronized by a
LabVIEW-based FPGA module (myRIO-1900, National
Instrument, Inc.).

Authorized licensed use limited to: Duke University. Downloaded on October 04,2023 at 13:00:11 UTC from IEEE Xplore. Restrictions apply.

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Medical Imaging. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMI.2023.3320668

~Monitor

Ring-array
Transducer

LabVIEW
Control

FPGA | Soomecton
Modiel P

Signal

Trigger

tew

0

tiotat

CW Laser r
v 750 nm
]

CWt Cycle1

g
&

635 nm

Cycle 2
Trig.
tCW
>
PA
Trig,| ||| " “I || | | Ring-array Transducer
-

Fig. 1. Schematics of the PACT system and light delivery for each
experiment. (a) Dual-wavelength whole-body illumination for hypoxia
challenge experiments, showing the ring-array transducer. (b) 1064-nm
light for PA illumination and heating in photothermal experiments. (c)
Photograph of the photothermal experiment setup. (d) Photoswitching
experiment with a 750-nm pulsed laser for PA excitation, and a 635-nm
CW laser for turning on the phytochromes. (e) Photograph of the in vivo
experiment setup with whole-body illumination. Amp, amplifier; BS,
beamsplitter; DAQ, data-acquisition instrument; FB, fiber bundle; MUX,
multiplexing; RM, reflection mirror; DM, dichroic mirror; CM, collimator;
PL, pulsed laser.

The laser light illumination was tailored in each experiment.
For photothermal treatment, continuous-wave (CW) 1064-nm
light (650 mW/cm?) was delivered to the heating area as
illustrated in Figs. 1b and 1c. In the single-cycle treatment, the
heating light was turned on for 10 minutes (t., = 10)
following 1-minute baseline (t;,,,; = 11). In the three-cycle
treatment, a one-minute heating phase was followed by a three-
minute cooling phase in each cycle. For photoswitching
experiments, PA excitation and photoswitching light were
instead delivered through one fiber bundle with two outlets to
the kidney region of a mouse to maximize laser energy density
delivered to this photoswitchable organ (Fig. 1d). A total of 11
photoswitching cycles were used. In each switching cycle, a
635-nm CW laser was turned on for the first t,,, = 8 seconds
to switch on the phytochromes. For generating PA signals and
switching off the phytochromes, we turned on a 750-nm pulsed
OPO laser (10-ns pulse width and 10-Hz pulse repetition rate)
for another 8 seconds. Before photoswitching, an anatomic
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image of the mouse’s kidney region was acquired with ring
illumination at 1064 nm. In the hypoxia challenge experiments,
PA signals at 1064 nm and 750 nm were acquired around the
liver region for multispectral measurement of blood
oxygenation (Fig. le) [39]. The laser energy levels in all
experiments are listed in Table I.

C. Characterization of the system's electrical impulse
response

To characterize the frequency response of the detection
system, we used short-pulsed 1064-nm laser excitation on an
optically-thin planar target, which generated wideband unipolar
PA signals close to a delta pulse [40, 41]. The target was a thin
sheet (~83-um thickness) made of gold nanoparticles
sandwiched between two layers of agarose (Figs. 2a, 2b). More
information on the nanoparticle is provided in sec. II. E. The
experimental setup for measuring the impulse response is
depicted in Fig. 2c. The PA signal from the planar target
received by the middle ring array element was used as the
receiving electrical impulse response (EIR), while its frequency
spectrum was the transfer function (TF) of the detection system.
The receiving EIR was validated with an analytical solution and
was used for Wiener deconvolution of the RF data before the

image reconstruction [42].
Ring-array Transducer

o -\

4 9
y A
y \
g Eiber
L =
-
\ Phantom 4
b 4
b b //

Fig. 2. Measurement of the system’s receiving EIR using a planar target.
(a-b) Side and top views of the phantom with an optically-thin sheet of
nanoparticles as a planar target. (c) Setup of the EIR measurement. The
nanoparticle sheet was positioned perpendicular to the imaging plane of
the ring-array transducer.

D. Low-pass filter design with optimal cutoff frequency

To retain the integrity of the passband signal, we used a
second-order low-pass Butterworth filter (LPF) because of its
flat response in the passband [43]. The second-order LPF
provided a damping ratio of 0.707 and had adequate roll-off in
gain after the cutoff frequency while retaining a flat response in
the passband. To choose the optimal cutoff frequency, the LPF
was applied with cutoff frequencies ranging from 10 kHz to 7
MHz, and images were reconstructed with the delay-and-sum
method [44]. The contrast (Eq. (6)) in the reconstructed region
of interest (ROI) from each band is defined as

Contrast = 20 log;, ( £Rol
UBGD

): (6)
where u, , is the target mean signal and p,. is the background
mean signal [45]. A representative area of the image with
functional or molecular information was chosen for each
experiment. For example, in the photoswitching phantom
experiment, the ROI included the cells. The cutoff frequency for
the LPF was experimentally-dependent and corresponded to the

peak contrast value for molecular and functional analysis.
When no peak was found between 10 kHz and 7 MHz, an
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TABLE I
LASER ENERGY USED IN EACH EXPERIMENT (TOTAL ENERGY FROM ALL FIBER
OUTLETS).
EXPERIMENT Laser Energy (mlJ)
Photothermal phantom (in vitro) 36 (1064 nm)
Photoswitching cell phantom (in vitro) 20 (750 nm)

Photoswitching mouse (in vivo) 31.1 (750 nm)
50.5 (1064 nm)
8.8 (750 nm)

20 (1064 nm)

Hypoxia challenge (in vivo)

empirical cutoff frequency of 0.5 MHz was used. The LPF
cutoff frequencies for each experiment are listed in Table II.
Low-pass signals were compared with all-pass and band-pass
signals. Cutoff frequencies of 2.5 MHz and 7.5 MHz were
chosen for the band-pass filter (BPF), because this range covers
the nominal bandwidth of the ring-array transducer used in
PACT with 5-MHz center frequency at 100% bandwidth [39,
46]. Thus, it is worth noting that there could be a frequency gap
between LPF and BPF, depending on the optimal cutoff
frequency for the LPF.

E. Gold nanostar phantom

The nanoparticles used in our experiments were highly-
absorbing gold nanostars (GNS). Increasing interest in
nanoparticle-mediated thermal therapies [47, 48] has required
the development of a biocompatible GNS. We succeeded in
developing a novel surfactant-free synthesis method to make
GNS biocompatible for in vivo applications [49, 50]. These
GNS have a tunable plasmonic resonance within the therapeutic
window of 750-1000 nm, making them promising
photothermal ~ agents  for  solid tumor  ablation,
photoimmunotherapy, and multimodal theranostic applications
[51, 52]. GNS are also good absorbers for PA imaging
experiments, with strong optical absorption in the NIR window
(Fig. 3a).

Surfactant-free GNS were prepared using the method
developed by Yuan et al. [53]. Briefly, 1 mL of 10 nM 12-nm
gold seed solution was added to a rapidly stirring mixture of
100 mL of 0.25 mM HAuCly4 and 100 pL of hydrochloric acid.
500 pL of 4 mM AgNO; and 500 uL of 0.1 M ascorbic acid
were then immediately added to the mixing solution. The GNS
solution was stabilized by adding SH-PEGsoo (final
concentration, 10 uM). The solution was centrifuged and
resuspended at 10 nM before phantom fabrication. Extinction
spectra were obtained using a dual-beam spectrophotometer
(Shimadzu UV-3600; Shimadzu Corporation, Japan). The GNS
solution exhibited peak absorption at 749 nm (Fig. 3a). To

TABLE II
LPF CUTOFF FREQUENCY IN EACH EXPERIMENT, DETERMINED BY THE
CONTRAST.
Cutoff Frequency
EXPERIMENT
(MHz)
GNS photothermal phantom (in vitro)
Single-cycle treatment 0.95
Three-cycle treatment 1.95

Photoswitching cell phantom (in vitro) 3
Photoswitching in mice (in vivo) 0.25
Hypoxia challenge (in vivo) 0.51
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verify GNS formation, particle morphology was observed via
transmission electron microscopy (TEM) (FEI Tecnai G* Twin)
(Fig. 3b).

For all PA phantoms, 100 mL of deionized water was brought
to a boil and 3 g of agarose powder was added slowly to avoid
clumping. The agarose solution was poured into the phantom
molds and was cooled to room temperature before removal
from the molds. The concentrated GNS solution was then added
to aliquots of boiled agarose solution to achieve a concentration
of 0.5 nM in the desired regions of each phantom.
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Fig. 3. GNS nanoparticles in gel phantoms for photothermal treatment

and quantitative PA thermometry. (a) The normalized absorption

spectrum of GNS. (b) TEM image of GNS; scale bar, 500 nm. Inset: the
magnified image of a single GNS. (c) Spherical and (d) star-shaped GNS
phantoms in clear agarose gel for PA imaging.

Several different GNS-based phantoms were used to mimic
tissue models. (1) An ultra-thin layer of GNS sandwiched
between two pieces of clear agarose gel was used to measure
the EIR of the PACT system. A thin slab can generate a
monopolar PA signal close to the Dirac delta function, whereas
a point target generates a bipolar sawtooth waveform which is
the derivative of the Dirac delta function [36, 40]. (2) A set of
spherical GNS phantoms with a respective radius of 1, 3.3, 5,
and 7 mm were embedded 2 mm beneath the agarose surface.
Frequency spectra of the PA signals before and after EIR
deconvolution from these spherical phantoms were compared
with the analytical solution. (3) For PA temperature mapping in
the photothermal experiment, a spherical phantom with a radius
of 3.3 mm was used to mimic a tumor in SYMPHONY
treatments (Fig. 3¢) [52, 54]. A thermocouple (TC-08, Omega
Engineering, Inc.) with its tip inside the phantom was used to
validate the PA temperature measurements. A single-cycle
treatment for 10 mins was used according to the standard
photothermal therapy protocol with GNS [55, 56]. (4) To study
the effect of sparse sampling, we used a star-shaped GNS
phantom that had sharp spatial features (Fig. 3d).

F. Photoswitching experiment with  DrBphP-PCM-
expressing tumor cells and BphP1-expressing mice

To examine the effect of low-frequency signals on
photoswitching PA imaging in vitro, we used 4T 1 mouse breast
cancer cells that stably expressed DrBphP-PCM, a NIR
photoswitchable phytochrome [57]. Plasmids co-encoding
DrBphP-PCM and EGFP were used to transduce 4T1 cells via
a lentivirus. The co-expressed EGFP signals were used to select
stable DrBphP-PCM-expressing cells. Transduced 4T1 cells
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were cultured in DMEM with 10% FBS and 1% penicillin at
37°C in 5% CO, atmosphere. Approximately 5x10° 4T1 cells
were washed three times with 50 mL PBS. The cells were
concentrated at 1000 rpm for 5 minutes, then embedded inside
an agarose phantom with a radius of 5 mm.

For in vivo photoswitching experiments, BphP1-expressing
mice were used following the procedure in Kasatkina et a/ [58].
Homozygous loxP-BphP1 mice (males, 6 months old) were
anesthetized with 2% isoflurane through a face mask during the
surgical procedure, and body temperature was maintained at
37.0 £ 0.2 °C [58]. Mice were kept in the prone position. The
lower back area was shaved and cleaned with iodine and
alcohol. A 1 cm longitudinal skin incision was made below the
rib edge at the location of 1 cm lateral to the midline. The
muscle of the abdominal wall was cut using a high-temperature
cautery loop tip. Two small retractors were placed, and the
kidney was exposed. A 25G needle with a 5-pL Hamilton
syringe was inserted 5 mm into the left kidney, and 1 pl of Cre-
expressing AAV vector was injected slowly, while the right
kidney was used as the control. The needle remained in position
for 5 minutes and then was removed. The muscle and skin
layers were sutured separately [58]. At 22 days after the AAV
injection, the mice were imaged by PACT, using the
photoswitching light illumination strategy described above. All
animal procedures were approved by Institutional Animal Care
and Use Committee (IACUC) at Duke University.

G. Hypoxia challenge

A hypoxia challenge was performed with mice under
anesthesia using 1% isoflurane at a 1.5 L/min flow rate. The
experiment consisted of normoxia and hypoxia conditions. For
normoxia conditions, the breathing air was a mixture of 21%
oxygen and 79% nitrogen; for hypoxia conditions, the breathing
air was 2% oxygen and 98% nitrogen. Each experiment started
with 1 minute of normoxia baseline, followed by 30 s of
hypoxia challenge, and 6 minutes of recovery under normoxia
conditions. The hypoxia/normoxia cycle was repeated three
times. Two wavelengths at 750 nm and 1064 nm were chosen,
because deoxy- and oxy-hemoglobin were respectively the
dominating absorbers at these wavelengths [59, 60]. All animal
procedures were approved by IACUC at Duke University.

H. PA image reconstruction and quantitative analysis

RF signals were first deconvolved with the measured EIR
using Wiener deconvolution to improve low-frequency
components [42]. Images are then reconstructed from the
deconvolved RF data using the delay-and-sum method [44].
The speed of sound (SOS) was determined by measuring the
coupling medium temperature during imaging. For
photothermal experiments, the change in the phantom SOS was
calibrated by measuring the arrival time of the PA signals.
Reconstructed bipolar images were converted into unipolar
images by multi-view Hilbert transform (MVHT) for in vivo
data, and by thresholding negative pixels for phantom data [61].

For functional and molecular imaging experiments,
additional quantitative analysis was applied. The relative
temperature change during photothermal experiments was
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calculated from PA signals based on the relationship between
the Griineisen coefficient I" and PA signal amplitude p as [62,
63]

Py = I'm, 1, F (7
where 7, is the thermal conversion percentage, p, is the
optical absorption coefficient, and F is the optical fluence. In
agar phantoms, I has a linear dependence on temperature 7
[64, 65]

r'(T) =0.04T +0.11 (®)
From Egs. (7) and (8), the relationship between PA signal

change Ap, and relative temperature change AT is [66]
Apy __ 0.04AT

Doo  0.04Tp+0.11

9
where T and p, , are the baseline temperature and PA signal
amplitude, respectively. Rewriting Eq. (9), we can estimate AT
as

AT = 222(T, + 2.75) (10)
Po,0

To estimate sO; in the hypoxia challenge experiment, we
applied linear spectral unmixing to post-MVHT images
acquired at 750 nm (P (44, x,y)) and 1064 nm (P (4,,x,y)) to
estimate the molar concentration of HbR (Cy,e) and HbO,
(Chpo, ), assuming uniform optical fluence [5, 67]:

[CHbR(x, y)] ()T [P(/h, X, }’)] (11

Chpo, (%, ¥) P(A2,%,y)
in which
_ |:£HbR (4D EHbo, (4) (12)
enpr(A2) EHbo, (42)

where &,,(1;) and Enbo, (2,) are the molar extinction

coefficients of HbR and HbO, at two wavelengths, respectively.
The signal processing pipeline is summarized in Fig. 4.
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Fig. 4. Signal processing, imaging reconstruction, quantitative analysis
pipeline.

lll. RESULTS

A. System electrical impulse response

The receiving (one-way) EIR and transfer function of the
system are shown in Fig. 5. The Fourier transform of the EIR
signal shows a —6 dB receiving bandwidth of 0.15-7 MHz (Fig.
5a), which reflects the system’s high sensitivity to low-
frequency signals. The wide bandwidth allowed for quantitative
comparison between different frequency bands in this study. By
comparison, the —6 dB transmitting-receiving (two-way)
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bandwidth of the system is 3.5-6.5 MHz (Fig. 5a). The
reconstructed image of the planar nanoparticle target is shown
in Fig. 5b.

a Time (ps)
0 1 2 3 2 b
o : — One-way IR b E
5 51 — One-way TF 0.5 =
= -10- — Two-way TF =
@ £
T -15- r0.0 <
£ 30 10 € !
.25 152 0 0.5 1

Frequency (MHz)
Fig. 5. System characterization using a planar target. (a) EIR and TF of
the ring-array system, extracted from the one-way RF signal of the
planar target. (b) Corresponding PA image of the planar target. Scale
bar, 2 mm.

B. PA signal frequency dependence on the target size

To validate the measured EIR of the PACT system, the
frequency spectra of the deconvolved RF data and
reconstructed PA images of spherical GNS phantoms were
compared with the analytical solutions of spherical targets (Fig.
6a) [68]. The limited-band (LB) analytical solution is generated
by convolving the full-band (FB) analytical solution with the
measured EIR. As expected, the experimental images without
deconvolution and the analytical images with LB solution had
hollow inner structures (Fig. 6b, 6d). These hollow structures
even appeared in LB analytical solution where optical fluence
attenuation was not considered. Thus, these hollow structures
were resultant from the limited bandwidth, but not from the
optical fluence attenuation. The only exception was the 1-mm-
radius sphere, simply because this small sphere did not generate
strong low-frequency signals. Reconstructed experimental
images with deconvolved signals of homogenous sphere
structures were similar to the FB analytical solutions (Figs. 6c¢,
6¢). The only exception was the 7-mm-radius sphere, on which
the effect of optical fluence attenuation became significant. The
improvement in internal structural visibility in Fig. 6¢ shows
the importance of deconvolution as a necessary step before
image reconstruction to boost the low-frequency components.

We further computed the structural similarity index (SSIM)
and peak signal-to-noise ratio (PSNR) between the
reconstructed experimental images and FB analytical solution,
showing 23 fold higher SSIM and PSNR for the experimental
images with deconvolution than those without the
deconvolution (Figs. 6f-g). The SSIM and PSNR had no
difference for the 1-mm-radius sphere because the small
sphere’s frequency spectrum could be fully covered by the
system’s detection bandwidth even without deconvolution
Interestingly, both SSIM and PSNR reached the maximum for
the 3.3-mm-radius sphere with the deconvolved signals,
suggesting that this may be the closet to the target size best
matched with the system’s bandwidth, as long as the optical
fluence attenuation was negligible.

The image profiles in Figs 6b-e are shown in Fig. 7a. The
frequency spectra shifted towards lower frequencies with the
increasing target size in the deconvolved data and FB analytical
solution, but not in the original data and LB analytical solution
(Fig. 7b). The frequency shift shows that deconvolution using
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the measured EIR signal can broaden the bandwidth of the
experimental data, particularly in the low-frequency range. The

3.3 mm 5 mm 7 mm

1 mm

0.1~ Original 44+ Original
I P Deconvolved 4= Deconvolved
1.2 3 4 5 6 7 1 2 3 4 5 6 7
Sphere Radius (mm) Sphere Radius (mm)

Fig. 6. Reconstructing sphere targets without deconvolution (original),
with deconvolution, and analytical solution. (a) Photographs of the
sphere phantoms. Reconstructed images of spheres with a radius of (i)
1 mm, (ii) 3.3 mm, (iii) 5 mm, and (iv) 7 mm using (b) experimental data
without deconvolution, (c) experimental data with deconvolution, (d)
band-pass analytical solution, and (e) all-pass analytical solution.
Reconstructed images in (b-d) are normalized to the maximum absolute
PA signal amplitude, while those in (e) are normalized between -1 and
1. (f) SSIM and (g) PSNR of the reconstructed experimental images with
and without deconvolution compared to the full-band analytical solution.
The red dashed rectangles indicate the ROIs for SSIM and PSNR
calculation. The dashed line in (b) denotes the image profiles shown in
Fig. 7. Scale bar, 2 mm.

wide receiving bandwidth (0.15—7 MHz) of our customized
transducer allows for comparing the effects of low-frequency
components with the band-pass signals (2.5-7.5 MHz). The
frequency shift in the deconvolved data also matched the
analytical solution (Figs. 7b and 8a).

The size-dependent frequency of the PA signals demonstrates
the importance of low-frequency signals for detecting targets
with large sizes. Figure 8a shows that frequency spectra of PA
signals from 5-mm- and 7-mm-radius spheres decrease quickly
down to 0.1 MHz. Thus, a detection system that cannot provide
a frequency bandwidth below 1 MHz may only detect the
boundaries of large organs with relatively homogeneous optical
properties, such as the kidney, liver, and brain. Again, the
frequency shift highlights the importance of deconvolution in
recovering the inner structures of large targets (Fig. 8a).
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Fig. 7. Comparison of reconstructed image profiles and frequency
spectra without deconvolution, with deconvolution, with LB and FB
analytical solution. (a) PA image profiles along the dashed line in Fig.
6b-i with a sphere radius of (i) 1 mm, (ii) 3.3 mm, (iii) 5 mm, and (iv) 7
mm in Fig. 6. (b) The corresponding signal frequency spectra with
different sphere sizes.

Further investigation on the size-dependent PA signal using
FB analytical solution shows the increased PA signal amplitude
and the decreased peak frequency with the target size (Fig. 8b).
When the sphere radius increases from 1 mm to 5 mm, the peak
frequency drops from 0.4 MHz to 0.1 MHz, while the signal
magnitude increases by 20 dB. This result suggests a better
detection sensitivity at low frequency is beneficial for detecting
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Fig. 8. Size-dependent peak frequency shift and signal magnitude from
PA signals of the sphere phantoms and analytical solution. (a) Peak
signal frequency versus the sphere radius. (b) PA signal magnitude and
peak frequency versus the sphere radius, using the FB analytical

solution.
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large targets, which has contributed to the improved functional
and molecular imaging described below.

C. In vitro temperature mapping at different frequency
ranges

PA Image 1.8 min 2.8 min 3.8 min 4.8 min 5.8 min
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Fig. 9. Mapping relative temperature change during photothermal

treatment. (a-c) Temperature maps at incremental timepoints in single-
cycle photothermal treatment, with PA images of a sphere
reconstructed from all-pass, low-pass, and high-band-pass (2.5-7.5
MHz) data respectively. The green ellipse in (a) at 1.8-min timepoint
denotes the thermocouple region for signal averaging. (d) Spatial profile
of temperature change along the red dashed line in (a). (e-f) Time
courses of relative temperature change with single-cycle and three-
cycle-treatment, respectively. Shaded regions indicate the time during
which the CW laser was turned on. All temporal plots were smoothed
with a moving average of 60 time points. Scale bar, 2 mm.

Temperature mapping for photothermal treatment of GNS
spheres using all-pass, low-pass, and band-pass (2.5-7.5 MHz)
data are shown in Fig. 9. Qualitatively, reconstructed images
from all-pass and low-pass data have comparable visibility of
the sphere and similar temperature maps over time (Figs. 9a,
9b). We can observe a thermal gradient from the hotter core
towards the cooler boundary of the sphere (Fig. 9d). In contrast,
the frequency band of 2.5-7.5 MHz only reconstructs the edge
of the sphere, and the center of the sphere was not visible (Figs.
9¢, 9d). For all-pass and low-pass data, the PA-measured
temperature around the thermocouple tip correlated well with
readings from the thermocouple for both single and three
heating cycles (Figs. 9e, 9f). Temperature quantification from
the low-pass data has better accuracy for the single-cycle
heating than the all-pass data. Temperature measurement with
the band-pass data shows substantial underestimation,
especially in single-cycle heating (Fig. 9¢). Thus, using low-
frequency signals, quantitative temperature mapping can be
more reliable.

D. In vitro photoswitching imaging of cells expressing
DrBphP-PCM

As an example of molecular imaging, PACT images of
photoswitching cells expressing DrBphP-PCM using different
frequency ranges are shown in Fig. 10. By subtracting the OFF-
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Fig. 10. Detection of photoswitching phytochromes on a cell phantom.
(a-c) ON-state, OFF-state, and differential PA images of the cell
phantom from (a) all-pass, (b) low-pass and (c) band-pass data. (d)
Frequency spectra and (e) RF signals of the cell phantom with different
frequency ranges. (f) Time-course of the averaged PA signal amplitude
of the cell phantom over four photoswitching cycles. (g) The averaged
PA signal changes over four cycles. Scale bar, 1 mm.

state image from the ON-state image of the cells, the resultant
differential image has enhanced image contrast due to the
reduced non-switching background signals [58]. Differential
images of the DrBphP-PCM-expressing cells (Figs. 10a and
10c) show clear photoswitching signal changes for both all-pass
and low-pass signals. However, using the band-pass signals, we
cannot observe clear photoswitching signals from the cells. Due
to the relatively homogeneous distribution of cells as a bulk PA
target, PA signal from the cell phantom has a low-frequency
band peaking at 0.16 MHz with a narrow bandwidth (Fig. 10d).
Thus, a band-pass filter of 2.5—7.5 MHz removed almost all the
signals from the cells (Fig. 10e). Figure 10(f) shows four
repeated photoswitching cycles using low-frequency signals
with an average switching ratio of 25% (Fig. 10g). In contrast,
the band-pass data failed to capture the photoswitching process,
showing only transient PA signal increase due to laser heating.
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E. In vivo photoswitching imaging of a mouse kidney
expressing BphP1

The whole-body image of a mouse kidney region is shown in
Fig. 11a. The control (right) kidney exhibits no photoswitching
compared to the left kidney (Fig. 11b). Here, in vivo
quantification of photoswitching kidney tissue with low-
frequency signals shows clear improvement over the all-pass
and band-pass signals (Fig. 11c). While the differential image
with the all-pass data shows a photoswitching area of 19.6 mm?
near the skin surface, the differential image with the low-pass
data shows photoswitching signals at depths up to 8 mm from
the skin surface, with a total photoswitching area of 61.6 mm?
(Figs. 11d, 11e). The differential image with the band-pass
signals shows little photoswitching signals. The BphP1-
expressing kidney had a relatively uniform expression level,
resulting in the differential signals concentrated largely in the
low-frequency range. In addition, it is clear that low-frequency
signals have greater photoswitching amplitude, enabling deeper
and more sensitive PA detection of the molecular probes. One-
way ANOVA test for multiple comparisons presents a
significant increase in the photoswitching amplitude when
using the low-pass data (p < 0.0001) (Fig. 11f).

In addition, it is evident that the band-pass signals were more
sensitive to the breathing motions, which decreased the cross-
correlation over the consecutive frames (Fig. 11g). An unpaired
t-test on cross-correlation of breathing frames shows a
significant difference between the all-pass and low-pass data (p
<0.0001) (Fig. 11h), mostly because the all-pass data contains
the motion-sensitive band-pass data. Since the photoswitching
quantification depends on averaging multiple switching cycles
over an extended period of time (176 seconds for 11 switching
cycles), the improvement of low-pass data over all-pass data is
due to suppression of the band-pass signal fluctuations induced
by breathing motion. By contrast, under the motionless
circumstances in the phantom experiment in Section III D, all-
pass and low-pass data had similar quantification performance.

F. In vivo mapping of blood oxygenation level in hypoxia
challenge

Blood oxygenation (sO;) measurement is a common
application of PA imaging. Here, we studied the impact of low-
frequency signals on whole-body temporal and spatial sO»
estimation in the hypoxia challenge. Figures 12a and 12b are
PA images of the mouse liver region under normoxia and
hypoxia at 1064 nm and 750 nm. Temporally, low-pass signals
yielded less sO, fluctuations with a standard deviation (SD) of
8.8% over the baseline measurement, compared to 12% and
25% from all-pass and band-pass signals, respectively (Fig.
12f). The low-pass signals also yielded more homogeneous sO>
mapping in space over three cycles of the hypoxia challenge
(Figs. 12d, 12f). Spatial profiles reveal improvement in the
stability of sO, measurements from low-pass signals, with the
spatial SD below 6% throughout the mouse cross-section both
under normoxia and hypoxia (Figs. 12g, 12h). In contrast,
because high-frequency signals were more attenuated with
increasing depth, both all-pass and band-pass signals led to
noisier sO> measurements, especially at deeper regions. sO»
quantification was less accurate in hypoxia, due to the reduced
PA signal amplitudes, especially at 1064 nm where the

Authorized licensed use limited to: Duke University. Downloaded on October 04,2023 at 13:00:11 UTC from IEEE Xplore. Restrictions apply.

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Medical Imaging. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMI.2023.3320668

Control:
Right Kidney

Photoswitching:
Left Kidney

IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. xx, NO. X, 2020

-0.5 0 0.5 1] 0.5 1
Norm. PA Amplitude at 1064nm  Norm. Diff. PA Amplitude at 750nm
— All-pass
80 d o 1.0 e — Low-pass o 1.0 f e
o= - j— L A wkk A
E 60 61.6 EE 0.8 Band-pass £ "g- 0.8
E ; 506 : E_ 0.6
g 19.6 5<04 £ 04
< 20 483 =02 Z <02
0 001234567809 00
3 3 2 ) o o
) o > Cl & &
L & F Distance (mm) L& & &
AN & (‘b ?\'\ ‘-5“x (\6
v 8 & S &
[+] st h .
E 1.0+ 1% cycle Last cycle _g 1.00
= 5 YT 3 @
© 2 & 2099
- g =]
E 2 0.9 § £ 098] —=
= =1
; E i g E 0.97
o o 0.96 J_
(&) O 095

Time (s)

0.7
0 4 8 1216 0 4 8 12 16

All-pass Low-pass

Fig. 11. In vivo photoswitching imaging of mouse kidney. (a) The whole-body cross-sectional PA image at 1064 nm around the kidney region. (b-c)
Close-up PA images of the right (control) and left (photoswitching) kidney, overlaid with the differential image at 750 nm reconstructed with (i) all-
pass, (ii) low-pass, and (iii) band-pass signals. (d) Photoswitching area quantified from differential images in (c). (e) Spatial profiles of the
reconstructed differential images along the dashed line in (c)-ii. (f) Averaged differential PA signal amplitudes. (g) Cross-correlation of the PA signals
over two photoswitching cycles, showing the band-pass signals are more sensitive to the breathing motions. The shaded regions indicate turning
on the phytochromes. (h) Cross-correlation amplitude of breathing frames with the all-pass and low-pass data. **** p < 0.0001. Scale bar, 2 mm.

absorption of oxy-hemoglobin is dominant. For all-pass signals,
the spatial SDs increased from ~7.9% in normoxia to ~10% in
hypoxia (Figs. 12g, 12h). For band-pass signals, sO,
measurements were substantially less accurate than the low-
pass and all-pass signals, especially under hypoxia (Fig. 12h).
At all depths, band-pass results showed strong fluctuations with
spatial SDs of ~20% under normoxia and ~28% under hypoxia
(Figs. 12g, 12h). The improvement in sO, measurements using
low-pass signals is useful for tracking hemodynamic changes in
deep tissues.

G. Imaging complex targets with sparse-sampling

Sparse sampling is a common source of artifacts in PACT and
is often caused by the lack of sufficient transducer elements.
Here we examined the impact of low-frequency signals on
sparse-sampling artifacts by imaging star-shaped phantoms that
have sharp features and complex spatial-frequency patterns. We
artificially induced sparse sampling by reducing the number of

equally-spaced transducer elements instead of using the full
aperture of 512 elements. A LPF cutoff frequency of 0.5 MHz
was empirically selected. We observed increasing streaking
artifacts with decreasing number of transducer elements, using
all-pass and band-pass signals (Figs. 13a, 13c¢). In contrast, low-
pass signals yielded reduced streaking artifacts with fewer
transducer elements compared to all-pass and band-pass signals
(Fig. 13b). In addition, we calculated SSIM and PSNR with
sparse sampling compared with the full detection aperture (i.e.,
512 transducer elements). Relatively consistent imaging quality
was maintained by using only 32 or 64 elements with low-
frequency signals, which outperformed both all-pass and band-
pass signals (Figs. 13d, 13e). Thus, reconstructing PACT
images with low-frequency signals can reduce the number of
elements required for spatial anti-aliasing, particularly for large
targets.
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Fig. 12. Whole-body cross-sectional blood oxygenation measurement in hypoxia challenge. (a-b) Representative bipolar PA images of the mouse
liver region under (a) normoxia and (b) hypoxia, acquired at 1064 nm and 750 nm. White dashed lines denote the mask to separate the mouse
body from background for sO, quantification. (c-e) sO, mapping under normoxia and hypoxia conditions using (c) all-pass, (d) low-pass, and (e)
band-pass data. (f) Temporal profile of averaged sO in the whole cross-section, smoothed with a moving average of 60 timepoints. Shaded regions
are the standard deviations of sO, of the whole cross-section at each timepoint. The green boxes denote hypoxia challenge. (g-h) Spatial profiles
along the dashed line in (c) with the animal under (g) normoxia and (h) hypoxia, respectively. Scale bar, 2 mm.

IV. DISCUSSION

In this study, we investigated the importance of low-
frequency signal components in functional and molecular
PACT. We showed that low-frequency signals can improve the
quantitative accuracy of functional and molecular applications,
especially for relatively large and homogeneous targets. Guided
by the PA signal spectrum from analytical solutions, we
experimentally verified the dependence of the PA signal
frequency on the characteristic size of the target. This
dependence strongly suggests that large PA targets with
relatively homogenous optical and acoustic properties, such as
the liver and kidney, can generate strong low-frequency signals.
We demonstrated the importance of low-frequency signals in
various functional and molecular applications by using in vitro
phantoms made of GNS nanoparticles, photoswitching cells,
and in vivo animal models expressing photoswitching
phytochromes or under hypoxia challenge. The experimental
results confirmed that low-frequency signals are beneficial for

imaging large structures and quantifying temperature, blood
oxygenation, and photoswitching molecular probes.

In traditional PACT, low-frequency signals are usually
omitted either due to the detection system or signal filtering.
This lack of low-frequency signals is at least partially
responsible for the low visibility of inner structures of large
targets, while the optical fluence attenuation also contributes to
the weaker inner structures. Such deterioration of structural
integrity hinders accurate quantitation of functional and
molecular information. For example, in temperature mapping,
band-pass signals resulted in hollow GNS spheres in
reconstructed images, and temperature changes inside the
phantom during photothermal treatment could not be measured.
In contrast, low-pass signals correctly tracked temperature
increases that agreed with thermocouple readings. In molecular
imaging, band-pass signals were unable to capture clear
photoswitching signals of the BphP1-expressing kidney, which
were captured by low-frequency signals. Similar to the in vivo
photoswitching experiment, in the hypoxia challenge
experiment, we observed more consistent sO, quantification
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Fig. 13. Effects of sparse-sampling artifacts. (a-c) Reconstructed images with decreasing number of elements using all-pass, low-pass, and band-
pass signals, respectively. (d-e) SSIM and PSNR of the sparse-sampling results compared with the full aperture detection. Scale bar, 2 mm.

temporally and spatially when using low-pass signals for image
reconstruction. This was especially evident in deeper regions.
Such improvement in blood oxygenation measurements
without optical fluence compensation is encouraging for deep-
tissue applications such as functional brain imaging.

Thus, in PACT, for large PA targets with relatively
homogenous optical and acoustic properties, it is useful to
utilize low-frequency signals to accurately quantify functional
and molecular information. In practice, biodistributions of
drugs and contrast agents inside tissues may be more
homogenous than internal structures such as blood vessels,
which favors the low-frequency signal components [69, 70].
Thus, for large organs with uniformly distributed molecular
probes, low-frequency signals should be carefully preserved for
functional and molecular data analysis.

Separating low-frequency signals from the all-pass signals is
beneficial for in vivo applications, in which imaging quality is
prone to adverse conditions, especially motion artifacts. For
example, when imaging a BphP1-expressing mouse kidney in
vivo, we showed that low-frequency signals improved the
detection sensitivity when compared with all-pass and band-
pass signals. Several factors contribute to this improvement: (1)
the increased low-frequency signal magnitude of large PA
targets, and (2) the suppression of high-frequency signal
fluctuations due to motion artifacts. However, it is important to
mention that these improvements in quantification do not apply
to phantom experiments. In phantom experiments, motion
artifacts are absent, and the low-frequency signals of
homogenous targets already dominate. It is also crucial to
acknowledge that while low-pass data can initially have a
higher SNR than the band-pass data for large targets, the two

bands may have comparable contributions for quantitative
analysis when signal changes or ratiometric measurements are
utilized.

We also observed that using low-frequency signals can
reduce the impact of sparse-sampling artifacts. Compared to
reconstructed images from all-pass and band-pass data,
reconstructions from low-pass PA signals can be performed
using 8—16 times fewer transducer elements while maintaining
the image quality of complex targets. Collectively, our
experimental results indicate that when PACT is used for
functional and molecular applications and high spatial
resolution is less critical, it is more robust to use low-frequency
signals to achieve high quantitative accuracy and high detection
sensitivity.

It should also be noted that using low-frequency signals in
PACT has a key drawback of degraded spatial resolution, which
may not be acceptable for biomedical applications that need
high resolutions, such as visualizing small vessels,
microbubbles, and nanodroplets [14, 15]. However, if the
targets of interest have relatively large sizes and uniform optical
and acoustic properties, trading resolution for quantitation
accuracy may favor low-frequency signals. Another drawback
of low-frequency signals is the artifact from transducer-light
interaction when the initial SNR is low [71], which could be a
source of error for quantitative analysis. Coating the transducer
surface with optically reflective material may minimize the
transducer-light interaction artifacts [71].

The low-frequency PACT can be improved in several aspects.
First, better methods are needed for identifying the optimal
cutoff frequency. Current contrast-based techniques are target-
oriented and require prior knowledge of the ROI, such as the
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size of photoswitching organs. For applications in which target
sizes are unknown, it is challenging to choose the optimal cutoff
frequency. Second, further investigation is needed on different
image reconstruction methods, improved deconvolution
approaches, and varied detection geometries. For example,
iterative  Richardson-Lucy or regularized Tikhonov
deconvolution can potentially improve low-frequency
components over the Wiener deconvolution. Low-frequency
components might also have different effects on PACT systems
using a linear-array transducer with a severely limited view.
Third, incorporating optical fluence compensation with low-
frequency PACT can potentially improve quantification at
deeper locations. Fourth, it is also interesting to study the low-
frequency signals on the boundary build-up effect in PACT,
particularly with a linear-array transducer. Improving the low-
frequency signal detection may help mitigate the boundary
build-up effect since the inner structures of large targets are
dominated by low-frequency signals [72]. Last, another future
direction is studying the effects of low-frequency signals on
human imaging with larger and deeper organs. The advantages
of low-frequency signals in functional imaging in humans such
as early tumor detection and drug uptake in the brain will likely
accelerate the clinical translation of PACT technologies.

V. CONCLUSION

In summary, this study highlights the use of low-frequency
signals in PACT to improve quantitative accuracy in functional
and molecular imaging applications such as temperature
mapping, blood oxygenation measurement, and molecular
probe detection. We expect that our results will contribute to a
better understanding of low-frequency signals in functional and
molecular imaging and in optimizing PACT systems.
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