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Abstract

Quadratic NURBS-based discretizations of the Galerkin method suffer from volumetric locking
when applied to nearly-incompressible linear elasticity. Volumetric locking causes not only smaller
displacements than expected, but also large-amplitude spurious oscillations of normal stresses.
Continuous-assumed-strain (CAS) elements have been recently introduced to remove membrane lock-
ing in quadratic NURBS-based discretizations of linear plane curved Kirchhoff rods (Casquero et al.,
CMAME, 2022). In this work, we propose two generalizations of CAS elements (named CAS1 and
CAS2 elements) to overcome volumetric locking in quadratic NURBS-based discretizations of nearly-
incompressible linear elasticity. CAS1 elements linearly interpolate the strains at the knots in each
direction for the term in the variational form involving the first Lamé parameter while CAS2 elements
linearly interpolate the dilatational strains at the knots in each direction. For both element types, a
displacement vector with C? continuity across element boundaries results in assumed strains with C°
continuity across element boundaries. In addition, the implementation of the two locking treatments
proposed in this work does not require any additional global or element matrix operations such as
matrix inversions or matrix multiplications. The locking treatments are applied at the element level
and the nonzero pattern of the global stiffness matrix is preserved. The numerical examples solved in
this work show that CAS1 and CAS2 elements, using either two or three Gauss-Legrendre quadra-
ture points per direction, are effective locking treatments since they not only result in more accurate
displacements for coarse meshes, but also remove the spurious oscillations of normal stresses.

Keywords: Isogeometric analysis, Linear elasticity, Nearly-incompressible solids, Volumetric locking,
Assumed strains, Convergence studies

1 Introduction

In commercial finite element analysis (FEA) pro-
grams, the use of linear Lagrange polynomials as
basis functions dominates in engineering appli-
cations involving solid mechanics, particularly in
nonlinear dynamic simulations. One of the main
reasons why the use of higher-order Lagrange

polynomials as basis functions has had very lim-
ited success in complex solid mechanics applica-
tions is that the higher discrete natural frequencies
diverge as the degree of the Lagrange polynomi-
als is increased [1-3]. Isogeometric analysis (IGA)
[4, 5] proposed the use of nonuniform rational
B-splines (NURBS) as basis functions in FEA.



In contrast with Lagrange polynomials, even the
whole discrete spectrum of natural frequencies
may converge to their exact values as the degree
of the NURBS basis functions is increased [1-3].
In addition, NURBS exhibit enhanced robustness
in handling severe mesh distortions in comparison
with Lagrange polynomials [6]. Thus, the use of
NURBS in complex solid mechanics applications
has great potential. However, when applied to
nearly-incompressible solids or elastoplastic solids,
NURBS-based discretizations suffer from volu-
metric locking as it is also the case for standard
FEA discretizations based on Lagrange polyno-
mials [7]. Thus, efficient locking treatments for
NURBS-based discretizations are needed.

Since our goal is to develop a locking treatment
that has the highest possible probability to be
adopted in a commercial FEA software, it is useful
to first summarize some of the locking treatments
that have been widely adopted in commercial
FEA software to deal with volumetric locking
when using linear Lagrange polynomials. Reduced
integration rules have been proposed in which spu-
rious energy modes are handled through the use
of hourglass control [8-11]. Assumed-strain treat-
ments have been proposed in which the assumed
strains are obtained from the compatible strains
through either projection or interpolation [12, 13].
Reduced integration rules with hourglass control
and assumed strains are likely the two locking
treatments more widely employed by the end users
of major FEA programs. Under certain conditions,
these two locking treatments are equivalent to
mixed methods [14-16]. Nevertheless, other types
of locking treatments are also available in major
FEA programs. We mention here the incompatible
mode technique [17] which was generalized as the
enhanced assumed strain (EAS) method using a
three-field variational principle [18, 19]. The origi-
nal version of the EAS method was later on found
to suffer from spurious energy modes in certain
cases and new versions of the EAS method were
proposed in [20-22] to overcome this issue.

Due to the higher continuity across element
boundaries of NURBS, a direct utilization of
the numerical schemes developed to overcome
volumetric locking in conventional FEA does
not effectively remove volumetric locking from
NURBS-based discretizations. Thus, new numeri-
cal schemes to overcome locking in NURBS-based

discretizations are needed. In [23], a stream func-
tion formulation was developed to remove volu-
metric locking from NURBS-based discretizations
of linear plane-strain problems. In [7], the global
B projection method was proposed for linear
elasticity and the global F projection method
was proposed for nonlinear elasticity and plastic-
ity. The global F projection method was further
tested for plasticity in [24]. The global B and F
are very effective in removing volumetric locking
from NURBS-based discretizations of arbitrary
degree. However, a significant computational bur-
den is added by these locking treatments. These
projection methods are assumed-strain treatments
in which the assumed strains are linked to the
compatible strains through a L2? projection at
the patch level. Thus, these locking treatments
require to invert a mass matrix at the patch level
and the resulting stiffness matrix at the patch
level is not sparse, but full instead. In [25], an
assumed-strain treatment that is inf-sup stable
was developed to remove volumetric locking in
arbitrary-degree NURBS-based discretizations of
nearly-incompressible linear elasticity. This lock-
ing treatment is based on a macro-element tech-
nique [26, 27] which defines the assumed strains
on a coarser mesh than the displacement vec-
tor, namely, (p + 1) elements are used for the
displacement vector per element used for the
assumed strains, where p is the degree of the
basis functions used for the displacement vector
and d is the number of spatial dimensions. This
locking treatment is significantly more computa-
tionally efficient than the global B method. To
the best of the authors’ knowledge, it is the only
asymptotically-optimal assumed-strain treatment
that eliminates volumetric locking from NURBS-
based discretizations while having sparse stiffness
matrices. However, it still requires matrix inver-
sions and matrix multiplications at the macro-
element level to obtain the stiffness matrix and
its bandwidth increases with respect to the stan-
dard locking-prone NURBS-based discretization
of the Galerkin method. In [28], a three-field
mixed method is proposed in which the displace-
ment vector, the mean stress, and the volume
effects are independent variables. The volume
effect can be condensed out, but the mean stress
needs to be kept as an additional unknown. The



two-dimensional examples show that the numer-
ical scheme effectively removes volumetric lock-
ing for quadratic NURBS-based discretizations of
linear elasticity, nonlinear elasticity, and plastic-
ity. In [29], two EAS methods are proposed for
quadratic NURBS-based discretizations of linear
plane-strain problems that add four and six addi-
tional unknowns. The EAS method that adds
four additional unknowns only partially alleviates
volumetric locking. Adding this high number of
additional unknowns hampers the computational
efficiency of the numerical scheme. In [30, 31],
a selective integration rule at the element level
using Taylor expansions was proposed to alle-
viate volumetric locking in quadratic NURBS
discretizations of linear elasticity, nonlinear elas-
ticity, and plasticity. In [32], reduced and selective
integration rules at the patch level are proposed to
overcome volumetric locking in linear plane-strain
problems using quadratic and cubic NURBS. The
selective integration rules are more effective in
vanquishing locking than the reduced integration
rules since the reduced integration rules need to
be slightly over-integrated around the boundary
to avoid spurious energy modes. Since the integra-
tion rules proposed in [32] are at the patch level,
a generalization of these integration rules capa-
ble of effectively vanquishing volumetric locking
in trimmed NURBS [33-38] or in unstructured
splines [39-46] is unlikely to be developed. Lock-
ing treatments to vanquish volumetric locking in
NURBS-based discretizations that collocate the
strong form instead of approximate the variational
form have been proposed in [47, 48].
Continuous-assumed-strain  (CAS) elements
were recently introduced to remove membrane
locking in quadratic NURBS-based discretiza-
tions of linear plane curved Kirchhoff rods
[49], to remove shear and membrane locking in
quadratic NURBS-based discretizations of linear
plane curved Timoshenko rods [50], and to remove
membrane locking in quadratic NURBS-based dis-
cretizations of linear Kirchhoff-Love shells [51].
In this work, we propose two generalizations of
CAS elements (named CAS1 and CAS2 elements)
that vanquish the volumetric locking existent in
quadratic NURBS-based discretizations of linear
elasticity combining the following distinctive char-
acteristics: (1) No additional systems of algebraic
equations need to be solved, (2) No additional
matrix operations such as matrix inversions or

matrix multiplications are needed, (3) No addi-
tional unknowns are added, and (4) The nonzero
pattern of the stiffness matrix is preserved. To
the best of the authors’ knowledge, these are
the first two assumed-strain locking treatments
for quadratic NURBS that combine the afore-
mentioned characteristics. CAS1 elements linearly
interpolate the strains at the knots in each direc-
tion for the term in the variational form involving
the first Lamé parameter while CAS2 elements
linearly interpolate the dilatational strains at the
knots in each direction. When using a displace-
ment vector with C! continuity across element
boundaries (i.e., when no repeated interior knots
are introduced), both CAS1 and CAS2 elements
result in assumed strains with C° continuity across
element boundaries. Volumetric locking causes not
only smaller displacements than expected, but
also large-amplitude spurious oscillations of nor-
mal stresses. Thus, we study the convergence and
plot the distributions of both displacements and
stresses to show that CAS1 and CAS2 elements
excise the spurious oscillations of normal stresses.

The paper is outlined as follows. Section 2
sets forth the mathematical theory of plane-
strain and three-dimensional linear -elasticity.
Section 3 summarizes how to solve the problem
using compatible-strain (CS) elements. Section 4
explains CAS1 and CAS2 elements, the two new
element types proposed in this work to overcome
volumetric locking in quadratic NURBS-based
discretizations. Section 5 evaluates the perfor-
mance of CS, CAS1, and CAS2 elements with full
and reduced integration, including comparisons
with exact solutions. Sections 5.1, 5.2, and 5.3
consider the Cook’s membrane, an infinite plate
with circular hole under in-plane tension, and a
three-dimensional block under a compressive volu-
metric force, respectively. Concluding remarks and
directions of future work are drawn in Section 6.

2 Linear elasticity

The domain of the solid is denoted by 2 and
its boundary by I'. The displacement vector is
denoted by u = {u;}L,, where d is the number
of spatial dimensions. The equations written in
this section represent plane-strain linear elasticity
for d = 2 and three-dimensional linear elasticity
for d = 3. In the following, the indices %, j, and
k take the values {1,2,3} for three-dimensional



linear elasticity and the values {1,2} for plane-
strain linear elasticity. Repeated indices imply
summation.

2.1 Infinitesimal strain theory

The infinitesimal strain tensor is defined as follows

- 1 aul an
“i = 5 <6$J + 8,@,) ' (1)

Note that in the incompressibility limit, eg; =

oxy
The infinitesimal strain tensor can be addi-

tively split into its dilatational (i.e., volumetric)
and deviatoric (i.e., isochoric) parts, viz.,

€ = €5 + €55, (2)
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where d;; is the Kronecker delta, e?}l is the dilata-
tional part of the infinitesimal strain tensor, and
e?f" is the deviatoric part of the infinitesimal
strain tensor.

2.2 Linear isotropic material

For a linear isotropic material, the Cauchy stress
tensor has the following expression

0ij = A0y + 2065, (5)

where A\ is the first Lamé parameter and p is the
second Lamé parameter. The Lamé parameters
can be written in terms of the Young’s modulus
(E) and the Poisson’s ratio v as

Ev
A= AT =) (©6)
E
H= m (7)

Note how as we approach the incompressibility
limit (i.e., as v tends to 1/2), A tends to infinity.

The hydrostatic stress is defined as follows

g
o = % (8)

In the context of evaluating the performance of
numerical schemes with respect to volumetric
locking, the hydrostatic stress is a scalar quantity
that can be plotted to evaluate whether or not the
normal stresses suffer from spurious oscillations.
In plane strain, the normal stress in the direction
perpendicular to the plane is obtained as

Ozz = V(Uxx+0yy)- (9)

2.3 Variational form

The variational form is obtained from the princi-
ple of virtual work. The principle of virtual work
states that the internal virtual work (W) must
be equal to the external virtual work (6W¢**) for
any virtual displacement (du), i.e.,

SWt = §Wert VYou, (10)
with
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Q
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Q
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where J¢;; are the virtual strains, f = {fi}¢_, is
a force per unit volume, I'y, represents the part of
the boundary with Neumann boundary conditions
applied, and h = {h;}L, is a traction applied
(force per unit area). The functional spaces for u
and du are defined taking into account Dirichlet
boundary conditions.

3 Compatible-strain (CS)
elements

The geometry of the solid is represented as a linear
combination of NURBS basis functions, viz.,

Nep

z(€) =Y Na(£)Qua, (13)
A=1



where Q4 is the A-th control point, £ repre-
sents a point in parametric space, and n., is
the total number of control points. In this work,
we use open knot vectors with no repeated inte-
rior knots and quadratic basis functions. For the
details of how to define a geometry using NURBS
basis functions and how to perform h-refinement
using the knot insertion algorithm, the reader is
referred to [5]. Using the isoparametric concept,
the displacement vector is discretized as follows

Nep

=S Na€)Ua, (14)
A=1

where Uy is the A-th control variable of the
displacement vector. Using the Bubnov-Galerkin
method, the virtual displacements are discretized
as du” (&) € span{N4(&)}}%,.

The aforementioned discretization results in
the following element stiffness matrix for CS ele-
ments

k = [kiajo] (15)
ION, aNb
kiaip = dQ
T Jge O 6%
ON, ON,
T 5,220 40
+ Qe Bmk 104 8xk
ONa 0Ny 1o, (16)

Qe 8l'j 8{1,‘2

Following standard FEA paraphernalia, the inte-
grals above are computed performing change of
variables twice. First, from the physical coordi-
nates (z) to the parametric coordinates (£) and
then from the parametric coordinates § to the
parent element with coordinates € € [—1,1]4.
The assembly of the n; element stiffness matrices
into the global stiffness matrix is performed using
conventional connectivity arrays as explained in
[5, 52], where ng; is the total number of elements
in the mesh.

4 Continuous-assumed-strain
(CAS) elements

The strains of a quadratic CS element have the
following expression

e%@=§<iﬁ@+aém0. (1)

Thanks to the C' continuity across element
boundaries of the geometry and the displacement
vector given by quadratic NURBS, the linear
interpolation of the compatible strains at the
knots in each direction results in assumed strains
with C° continuity across element boundaries.
Thus, the assumed strains of a CAS1 element are
defined as follows

CASl Z Ll (18)

where xj are the physical coordinates of the I-th
corner of element e and L; is the [-th bilin-
ear Lagrange polynomial if d = 2 (plane-strain
linear elasticity) and the I-th trilinear Lagrange
polynomial if d = 3 (three-dimensional linear
elasticity).

CAS]1 elements use the assumed strains for the
term of the variational form involving the first
Lamé parameter and the compatible strains for
the terms of the variational form involving the sec-
ond Lamé parameter. Thus, the element stiffness
matrix of CAS1 elements is obtained as follows

kCASl [kgz?bsq , (19>
ko
2 2 N, ON
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do. 2
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When using CAS1 elements, the stresses are com-
puted as follows

oM = et + 2pel. (21)

CAS2 elements use the assumed strains for the
dilatational part of the infinitesimal strain tensor



and the compatible strains for the deviatoric part
of the infinitesimal strain tensor, viz.,

2(1
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Therefore, the element stiffness matrix of CAS2
elements is obtained as follows
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When using CAS2 elements, the stresses are com-
puted as follows
os A% = Nei%0;; + 2peg A2 (27)
For both CAS1 and CAS2 elements, the com-
putation of the integrals to obtain each element
stiffness matrix and the assembly of each element
stiffness matrix into the global stiffness matrix fol-
lows the same steps as those summarized for CS
elements in the last paragraph of the preceding
section. Note that the implementation of CAS1
and CAS2 elements does not require any addi-
tional global or element matrix operations such as
matrix inversions or matrix multiplications. The
locking treatments are applied at the element level
and the nonzero pattern of the global stiffness
matrix is preserved.
Remark 1. If needed to represent a certain geom-
etry exactly, the numerical schemes that define

CAS1 and CAS2 elements can be applied to a
quadratic NURBS mesh with repeated interior
knots, i.e., no changes at all are needed in the
numerical schemes to handle a quadratic NURBS
mesh with repeated interior knots. In that case, the
displacement vector has C° continuity across the
repeated interior knot and the compatible strains
are discontinuous across the repeated interior
knot. The assumed strains obtained by applying
the numerical schemes described in this section are
discontinuous across the repeated interior knot.
Thus, no matter interior knots are repeated or not,
the numerical schemes described in this section
lead to assumed strains that preserve the conti-
nuity patterns of the compatible strains resulting
i an effective locking treatment in both cases.
In [50], the numerical scheme of CAS elements
for linear plane Timoshenko rods was applied to
quadratic NURBS meshes in which all interior
knots are repeated. The resulting element type
was called discontinuous-asssumed-strain (DAS)
elements since the assumed strains obtained for
this type of input mesh are discontinuous across
all element boundaries. Comparisons among CAS
and DAS elements showed that once locking
is properly removed, C*'-continuous quadratic
NURBS meshes result in higher accuracy than
CO-continuous quadratic NURBS meshes. This is
the main reason why we focus on C-continuous
quadratic NURBS meshes in this work.

Remark 2. For CAS elements, the dimension of
the space used for the displacement vector divided
by the dimension of the space for the assumed
strains tends to d as the mesh size tends to zero.
This is also the case for the global B method
[7, 25].

5 Numerical experiments

In this section, we perform numerical investi-
gations using the discretizations explained in
Sections 3 and 4. The code used to perform these
simulations has been developed on top of the
PetIGA framework [53], which adds NURBS dis-
cretization capabilities and integration of forms
to the scientific library PETSc [54]. Unless men-
tioned otherwise, a Gauss-Legendre quadrature
rule with three integration points per direction is
used to compute all the integrals.

Plane-strain problems are known to be par-
ticularly prone to volumetric locking. Thus, they



constitute demanding benchmark problems to
evaluate the performance of locking treatments.

5.1 Cook’s membrane
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Fig. 1 Geometry and boundary conditions for the Cook’s
membrane.
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Fig. 2 (Color online) Cook’s membrane. The vertical dis-
placement at the top right corner using CAS1, CAS2, and
CS elements is plotted for different mesh resolutions.

The first problem is a widespread benchmark
problem to evaluate the performance of discretiza-
tions of nearly-incompressible solids under com-
bined bending and shear [7, 21, 30, 55-57]. It
consists of a parallelogram that is fixed at one side
and has a tangential force per unit area applied at
the opposite side whose value is ¢ = 6.25. Homoge-
neous Neumann boundary conditions are applied

at the other two sides. The geometry and the
boundary conditions of this problem are shown in
Fig. 1. The problem is solved under the assump-
tion of plain strain. The Young’s modulus and
Poisson’s ratio used in this problem are

E = 240.565, v = 0.4999, (28)
respectively. The reference value for the vertical
displacement at point A (point A is indicated
in Fig. 1) is 8.075. We initiate our convergence
study with a uniform mesh composed of 2 x 2 C'-
continuous quadratic elements. Subsequently, we
carry out uniform h-refinement seven times using
the knot insertion algorithm. Fig. 2 plots the con-
vergence of the vertical displacement at point A
using CS, CAS1, and CAS2 elements. As shown
in Fig. 2, CS elements need significantly more ele-
ments than CAS1 and CAS2 elements to obtain
an accurate result. For a given mesh, the dis-
placement values obtained with CAS1 and CAS2
elements are indistinguishable at the scale of the
plot.

Fig. 3 plots the distribution of the hydrostatic
stress using 8 x 8 CAS1 elements, 8 x 8 CAS2 ele-
ments, and 8 x8 CS elements. As discussed in [58],
this benchmark problem has a singularity at the
top left corner. Thus, in Figs. 3 a) and b), we use
scales for the hydrostatic stress whose minimum
value has the same absolute value as the maxi-
mum hydrostatic stress of the numerical solution,
but the opposite sign. As shown in Fig. 3, CAS1
and CAS2 elements are free from spurious oscilla-
tions. However, CS elements have large-amplitude
spurious oscillations. In Fig. 3 ¢), we use the same
scale for CS elements as for CAS1 elements to bet-
ter show that the number of spurious oscillations
is related to the number of elements in the mesh.
This was also the case for rods [49, 50]. The errors
in stresses will be properly quantified in the bench-
mark problem considered next by leveraging the
fact that its exact solution is known.

5.2 Infinite plate with a circular
hole under in-plane tension

The second problem is a infinite plate with a
circular hole under uniaxial tension in the hor-
izontal direction. This problem has been used
in preceding works to evaluate the performance
of discretizations of nearly-incompressible solids
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Fig. 3 Cook’s membrane. (a) Distribution of the hydrostatic stress using CAS1 elements. (b) Distribution of the hydrostatic
stress using CAS2 elements. (c¢) Distribution of the hydrostatic stress using CS elements. A mesh with 8 x 8 elements is

used in all three plots.

symmetry

Fig. 4 Geometry and boundary conditions for the infinite
plate with a hole under tension.

X symmetry

since its exact solution is known [7, 32, 59, 60].
Under the assumption of plain strain, the exact
solution of this problem is

T.R
8

+ ? ((4 — 4v) cos (0) + cos (30))
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where T, is the uniaxial horizontal tension
applied and R is the radius of the hole.

Due to the symmetry of the problem, only a
quarter of the geometry is considered in the simu-
lations. In addition, the infinite plate needs to be
approximated by a finite plate in the simulations.
We choose to consider a circular plate with an
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Fig. 5 (Color online) Infinite plate with a hole under ten-
sion. Convergence of the displacement vector in L? norm.
At the scale of the plot, the numerical solution using
CAS1 and CAS2 elements overlap using either two or three
Gauss-Legendre quadrature points per direction.

10*2

+1
10 = -
10°

s 4\
> X

/7
/

er2(ah)

10! — e
— RN
5\\&\% .

102 S—

| [[CASL, 3GP —=— CS, 3GP —»—
1073 || CASL, 2GP - -+ - CS. 2GP - -x -
CAS2, 3CP —a— ¢ /ng 0 ——

1074 : : : :
2 4 8 16 32 64
6 Nel

128 256

Fig. 6 (Color online) Infinite plate with a hole under ten-
sion. Convergence of the stress tensor in L? norm. At the
scale of the plot, the numerical solution using CAS1 and
CAS2 elements overlap using either two or three Gauss-
Legendre quadrature points per direction.

outer radius whose value is 4. The exact values of
the stresses are evaluated at the outer radius of our
circular plate and enforced as a Neumann bound-
ary condition. The geometry and the boundary
conditions of this problem are shown in Fig. 4.
The Young’s modulus and Poisson’s ratio used in
this problem are
E=1x10° v =0.49999, (36)
respectively. We initiate our convergence study
with a uniform mesh composed of 2 x 2 C'-
continuous quadratic elements. The geometry is
represented exactly since we are using quadratic

NURBS. After that, we carry out uniform h-
refinement seven times using the knot insertion
algorithm. We use the exact solution of this prob-
lem to study the convergence in L? norm of the
displacements and the stresses. In order to do so,
we define the relative errors in L? norm of the
displacement vector and the Cauchy stress tensor
as

€r2 (uh) = \/‘[Q Zf:l (u? - ui)2 dQ
[o 37 u2d
o) = \/fﬂ Z?:l Z?:l (O'% B Uij)2 a0
\/fQ 2?21 Z?Zl U?j dQ

, (37)

€L2(

(38)

Since we are solving second-order partial differen-
tial equations with basis functions of degree 2, the
optimal asymptotic convergence rates of ey (u”)
and er2(o") are 3 and 2, respectively [52]. Figs.
5 and 6 plot the convergence in L? norm of the
displacements and the stresses, respectively, using
CS elements, CAS1 elements, and CAS2 elements
with both two and three Gauss-Legendre quadra-
ture points per direction. As shown in Figs. 5 and
6, the convergence curves of CS elements, with
either two or three Gauss-Legendre quadrature
points per direction, suffer heavily from locking.
Specifically, Fig. 6 shows how the relative error
in L? norm of the stresses increases as uniform
h-refinement is performed multiple times. In addi-
tion, for quite refined meshes, the relative error in
L? norm of the stresses can be still high (namely,
greater than 100%) while the relative error in L2
norm of the displacements is already low (namely,
smaller than 1%). This fact evidences the need for
studying the accuracy of both the displacements
and the stresses when evaluating the performance
of a numerical scheme to deal with volumetric
locking. In contrast, as shown in Figs. 5 and 6,
CAS1 and CAS2 elements do not suffer from lock-
ing since their convergence curves have a clear
convergence pattern throughout the eight mesh
resolutions considered. For CAS1 and CAS2 ele-
ments, the same level of accuracy is obtained using
either two or three Gauss-Legendre quadrature
points per direction. Thus, employing two Gauss-
Legendre quadrature points per direction is prefer-
able to decrease the computational time spent in
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Fig. 7 Infinite plate with a hole under tension. (a) Distribution of the normal stress in = direction using CAS1 elements.
(b) Distribution of the normal stress in  direction using CAS2 elements. (c) Distribution of the normal stress in « direction
using CS elements. A mesh with 16 X 16 elements is used in all three plots.

computing each element stiffness matrix. For most
engineering applications, discretization errors of hS
1% are acceptable since such errors are likely to be
smaller than model errors (errors between reality
and the mathematical model). CS elements have
optimal asymptotic convergence rates while CAS1
and CAS2 elements do not. However, for either —
the displacements or the stresses, CAS1 and CAS2
elements obtain relative errors in L? norm smaller
than 1% for significantly coarser meshes than CS )
elements (particularly for the stresses). This evi-
dences that optimal asymptotic convergence rates
are not the only metrics that one should focus Y X
on when evaluating the suitability of a numerical
scheme for engineering applications.

Fig. 7 plots the distribution of the normal 7T
stress in z direction using 16 x 16 CAS1 elements, Eig. 8. Geometry and boundary co%lditions for ‘Fhe three-
16 x 16 CAS2 elements, and 16 x 16 CS elements. dimensional block under a compressive volumetric force.
Using Eq. (31), we obtain that the maximum value
of the exact solution of the normal stress in z
direction for this problem is 30. As shown in Fig.
7, CAS1 and CAS?2 elements are free from spurious
oscillations. However, CS elements have spurious
oscillations. In Fig. 7 ¢), we use the same scale for
CS elements as for CAS1 elements to better show

é&d
€
> 7 &

to the symmetry of the problem, only a quarter
of the geometry is considered in the simulations.
The geometry and the boundary conditions of this
problem are shown in Fig. 8. The force per unit of
volume has the following expression

that once again the number of spurious oscillations fo =0, (39)
is related to the number of elements in the mesh. fy=0, (40)
fo==10(1 = [2|)(1 = [y]), (41)
5.3 Three-dimensional block under
a compressive volumetric force where |(+)| denotes the absolute value of (-) and
the axes used in this problem are shown in Fig. 8.
The last example consists of a three-dimensional The Young’s modulus and Poisson’s ratio used in
block with zero vertical displacements at the bot- this problem are
tom plane and undergoing compression through
the application of a force per unit volume. Due E =250.0, v =0.49999, (42)
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Fig. 9 Three-dimensional block under a compressive volumetric force. (a), (c), and (e) plot the vertical displacement
using CAS1, CAS2, and CS elements, respectively. (b), (d), and (f) plot the hydrostatic stress using CAS1, CAS2, and CS
elements, respectively. A mesh with 16 x 16 X 16 elements is used in all the plots.

respectively. A mesh with 16 x 16 x 16 quadratic hydrostatic stress using CS elements, CAS1 ele-
elements is used in this example. Fig. 9 plots the ments, and CAS2 elements. The viewpoint used in
distribution of the vertical displacement and the Fig. 9 is the same as the viewpoint used in Fig. 8.
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If we only take a look to the displacement distri-
butions, it may look like the amount of volumetric
locking that CS elements have for this problem
and mesh resolution is relatively low. However,
when looking at the distributions of the hydro-
static stress, we can see that CS elements undergo
large-amplitude spurious oscillations while CAS1
elements and CAS2 elements excise these spurious
oscillations.

6 Conclusions and future work

In this work, plane strain and three-dimensional
linear elasticity are used to investigate how
to effectively overcome volumetric locking in
quadratic NURBS-based discretizations. We
developed two assumed-strain treatments, named
CAS1 and CAS2 elements, that vanquish volu-
metric locking in mnearly-incompressible solids.
CAS1 elements linearly interpolate the strains at
the knots in each direction for the term involving
the first Lamé parameter in the variational form.
CAS2 elements linearly interpolate the dilata-
tional strains at the knots in each direction. For
both CAS1 and CAS2 elements, assumed strains
with CY continuity across element boundaries are
obtained for a displacement vector with C' con-
tinuity across element boundaries. The effects of
volumetric locking are not only smaller displace-
ments than expected, but also large-amplitude
spurious oscillations of normal stresses. The spu-
rious oscillations of normal stresses can take place
for quite refined meshes for which the displace-
ment values are already accurate. Thus, when the
effectivity of a locking treatment is evaluated,
it is not enough to only study the accuracy of
the displacements. The accuracy of the normal
stresses must be studied as well. Both CAS1 and
CAS2 eliminate the spurious oscillations of nor-
mal stresses. For a given mesh, CAS1 and CAS2
elements result in very similar level of accuracy
(when small differences are found, CAS1 ele-
ments are frequently slightly more accurate than
CAS2 elements). Therefore, the authors favor the
use of CAS1 elements since this element type
requires fewer operations per quadrature point
than CAS2 elements. For both CAS1 and CAS2
elements, the same level of accuracy is obtained
with either 2¢ or 3¢ Gauss-Legendre quadrature
points per element. Thus, 2¢ Gauss-Legendre
quadrature points per element can be used to
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speed up the simulations. Future research direc-
tions include extending the proposed locking
treatments to nearly-incompressible hyperelastic
solids and elastoplastic solids. As shown in [61],
locking not only negatively affects discretizations
of boundary-value problems, but also discretiza-
tions of eigenvalue problems. Thus, studying the
spectral accuracy of CAS and CS elements for
nearly-incompressible linear elasticity is another
interesting direction of future work.
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