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Abstract

Extracellular electron transfer (EET) is a process by which bacterial cells can
exchange electrons with a redox active material located outside of the cell. In
Shewanella oneidensis, this process is natively used to facilitate respiration using
extracellular electron acceptors such as Fe(lll) or an anode. Previously, it was
demonstrated that this process can be used to drive microbial electrosynthesis of 2,3-
butanediol (2,3-BDO) in S. oneidensis exogenously expressing butanediol
dehydrogenase (Bdh). Electrons taken into the cell from a cathode are used to generate
NADH, which in turn is used to reduce acetoin to 2,3-BDO via Bdh. However,
generating NADH via electron uptake from a cathode is energetically unfavorable, so
NADH dehydrogenases couple the reaction to proton motive force. We therefore need
to maintain the proton gradient across the membrane to sustain NADH production. This
work explores accomplishing this task by bidirectional electron transfer, where electrons
provided by the cathode go to both NADH formation and Oz reduction by oxidases. We
show that oxidases use trace dissolved oxygen in a microaerobic bioelectrical chemical
system (BES), and the translocation of protons across the membrane during Oz
reduction supports 2,3-BDO generation. Interestingly, this process is inhibited by high
levels of dissolved oxygen in this system. In an aerated BES, O2 molecules react with
the strong reductant (cathode) to form reactive oxygen species, resulting in cell death.
Importance

Microbial electrosynthesis is increasingly employed for the generation of
specialty chemicals such as biofuels, bioplastics, and cancer therapeutics. For these

systems to be viable for industrial scale-up, it is important to understand the energetic



42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

requirements of the bacteria to mitigate unnecessary costs. This work demonstrates
sustained production of an industrially relevant chemical driven by a cathode.
Additionally, it optimizes a previously published system by removing any requirement for
phototrophic energy, thereby removing the additional cost of providing a light source.
We also demonstrate the severe impact of oxygen intrusion into bioelectrochemical
systems, offering insight to future researchers aiming to work in an anaerobic
environment. These studies provide insight into both the thermodynamics of
electrosynthesis and the importance of bioelectrochemical systems design.
Introduction

As reliance on fossil fuels becomes increasingly unsustainable from an economic
and environmental perspective, researchers work toward alternative energy sources.
One solution is microbial electrosynthesis, which is the microbially catalyzed transfer of
electrons from an electrode to cells to drive a biochemical reduction reaction(1-3).

Microbial electrosynthesis can be catalyzed by electroactive bacteria capable of
interfacing with an electrode surface in a BES or by using the electrode to generate
electron carriers, such as Hz or formate, that can be taken up by bacteria(4—6). When
using electroactive bacteria, a potential is applied to the system to drive oxidation of an
electron donor (typically H20) at the anode, and the electrons liberated are taken up by
bacteria at the cathode surface. These electrons are used for the reduction of a
feedstock, such as COz, to the desired product. When CO: is the reactant, microbial
electrosynthesis becomes a carbon sink, acting as a carbon-neutral platform to produce
biofuels, bioplastics, or specialty chemicals(7, 8). Because CO: is the ideal feedstock for

microbial electrosynthesis, much of the existing research focused on bacterial strains or
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communities with the capacity for autotrophic growth. However, these microbes can be
inefficient due to slow growth rates and poor interaction with electrodes(9-11). We have
chosen to focus on developing a microbial electrosynthesis platform using the well-
understood electroactive bacterial chassis, Shewanella oneidensis MR-1. In this way,
we can focus on understanding the energetics associated with inward electron transfer
and optimizing product generation(12, 13). This will also contribute to understanding of
respiration and basic physiology of this organism. Additionally, recent advances in
engineering autotrophy raise the possibility of expanding the applications of microbial
electrosynthesis beyond the need for native autotrophy or mixed microbial
populations(14-17).

S. oneidensis MR-1 is a metal-reducing bacterium with a well-characterized
extracellular electron transfer pathway using MtrCAB(12, 18-21). The Mtr pathway
allows S. oneidensis to respire anaerobically using extracellular, insoluble electron
acceptors such as Fe(lll) oxides, Mn(IV) oxides, and electrodes(22). As with aerobic
respiration, electrons are passed into the quinol pool (menaquinol and ubiquinol) by
dehydrogenases in the electron transport chain that oxidize metabolites such as lactate,
formate, and NADH. For extracellular electron transfer, the reduced quinones (quinols)
are oxidized by the inner membrane bound cytochrome CymA(23-26). This protein acts
as an electron hub, depositing electrons onto periplasmic electron carriers, such as
fumarate reductase (FccA) and a small tetraheme cytochrome protein (CctA), to be
shuttled onto terminal oxidoreductases. During respiration with an extracellular electron

acceptor such as an anode, electrons are transferred to the Mtr pathway, a three-
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protein complex that spans the outer membrane and extends into the extracellular

space(27, 28).
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Figure 1 Overview of Bidirectional Electron Transfer to 2,3-BDO. S. oneidensis
cells are incubated on a cathode poised at -500 mVagiagc. Electrons are taken up by the
cell via outer membrane MtrCAB pathway and passed to the inner membrane quinols
via various periplasmic electron carriers (FccA, CctA) and CymA. Electrons from the
quinol pool are used to reduce NAD* to NADH, catalyzed by NADH dehydrogenases
(NDHs) coupling the reaction to proton movement across the inner membrane. The
electrode produced NADH is used to reduce exogenous acetoin to 2,3-BDO via
butanediol dehydrogenase (BDH).

Importantly, the Mtr pathway is reversible, allowing inward electron transfer from
a cathode into the cell(2, 27, 29-33). Electrons that are taken up via the Mtr pathway
reduce respiratory quinones, and the cell can use the quinols as the electron donor for
NAD™ reduction by reversing NADH dehydrogenases. NADH can be used to drive a
wide variety of intracellular reduction reactions. As a proof-of-concept, we previously
demonstrated that reducing power from the electrode can be used to drive the NADH-

dependent reduction of acetoin to 2,3-BDO via the heterologous enzyme butanediol



105 dehydrogenase (Bdh) (Figure 1). By measuring the accumulation of 2,3-BDO in the

106  system, we can assess the rate and efficiency of electron uptake(29, 34).

107 Inward electron transfer requires a continuous supply of electrons and an

108 electron sink. In this system, acetoin is provided as the electron sink and electrons are
109  supplied by a cathode poised at -0.5 Vagiagci. At this electrode potential, electron

110 transfer from the cathode to the MtrCAB complex is thermodynamically favorable. All
111 subsequent reactions in the pathway from electrode to menaquinol are also freely

112 reversible. However, there is a significant energy barrier for electron transfer from

113 menaquinol (-80 mVske) to form NADH (-320 mVske) due to the large difference in

114  reduction potential. To overcome the energy barrier, the reaction is catalyzed by ion-
115  coupled NADH dehydrogenases working in reverse. S. oneidensis uses both H*-

116  coupled and Na*-coupled NADH dehydrogenases. In the forward direction, these

117  enzymes couple NAD* reduction to the movement of ions down the electrochemical

118  (Ay) and proton or sodium gradient (ApH or A[Na*]) known as proton or sodium motive
119  force (PMF or SMF) across the inner membrane(35). The movement of ions down these
120 gradients into the cytoplasm provides the energy needed to power unfavorable chemical
121 reactions; examples of this include formation of ATP via FoF+-ATP synthase or, as in
122 this case, NAD* reduction by NADH dehydrogenases. In nature, reverse NADH

123 dehydrogenase activity is a means to prevent the potentially lethal overreduction of the

124  quinol pool by generating NADH(26, 33, 35-37).

125 To enable electron uptake from the electrode, S. oneidensis cells are incubated
126  in a BES in the absence of an organic substrate or native terminal electron acceptor.

127  Under these conditions, the cells do not generate PMF via NADH dehydrogenases (Nuo
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or Nqr) or succinate dehydrogenase (Sdh) because no substrate for these complexes is
available(35, 36). Similarly, the absence of a terminal electron acceptor prevents forward
electron transport chain flux. Because the reduction of NAD* to NADH requires the free
energy provided by PMF, continuous PMF regeneration is necessary for the sustained
production of 2,3-BDO. This concept is supported by the prior observation that addition
of CCCP (carbonyl cyanide m-chlorophenyl hydrazone), an ionophore that dissipates
PMF, results in the cessation of 2,3-BDO production(34). This result underscores an
important consideration for microbial electrosynthesis design; how the cell will maintain
PMF to continuously drive the reduction reaction forward. To maintain PMF in previous
experiments, we introduced proteorhodopsin (PR). PR is a light-driven proton pump that
moves protons against the proton gradient into the periplasm, sustaining PMF. Active
PR and illumination resulted in an increase of both 2,3-BDO production and cathodic
current(29). However, relying on PR as a source of PMF is not a viable solution for
scale-up due to well-known issues with light penetration in industrial photobioreactors,
and the additional energy cost associated with continuous illumination(29).
Understanding this, we sought to utilize bidirectional electron transfer so electrons from

the electrode are used for generating both NADH and PMF.

Oxygen typically is excluded from cathodic systems due to the risk of reactive
oxygen species (ROS) forming. However, there is an increased interest in developing
microbial electrosynthesis with oxygen, either to expand on potential products or new
species as biocatalysts(38—40). Additionally, recent work suggests that oxic microbial
electrosynthesis can be as efficient as gas fermentation or using photosynthetic

organisms(41). For this work, oxygen in this system will instead be used to maintain
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energy balance via bidirectional electron transfer. During this process, electrons taken
up by the cell go towards both the generation of NADH and the reduction of a terminal
electron acceptor, e.g., oxygen.

This coupling of electron uptake to oxygen reduction by terminal oxidases for
PMF generation was first described in S. oneidensis by Rowe et al.(33). They found that
under carbon-starvation and aerobic conditions, S. oneidensis on a cathode generated
"non-growth-linked energy" in the form of PMF via terminal oxidase activity. Evidence
indicated that PMF was used for production of ATP and reduced cytoplasmic electron
carriers (FMNH2, NAD(P)H). However, it is still unknown whether this process could
continuously generate reducing power for use in MES as there was no sink for NADH.
By implementing the Bdh-based system, we sought to determine if bidirectional electron
transfer could sustain PMF generation to drive 2,3-BDO generation.
Results and Discussion

Eliminating electrode-independent 2,3-BDO Production

We previously demonstrated that the combination of an electrode and active PR
led to higher levels of 2,3-BDO production than without either of these components.
Before exploring the possibility of using bidirectional electron transfer instead of PR to
drive PMF generation, we reexamined 2,3-BDO production in wild-type (WT) S.
oneidensis MR-1 with and without active PR. Importantly, this experiment was done
using an updated version of the previously described experiment protocol. In previous
experiments, 35-50% of 2,3-BDO production was independent of the electrode, likely
generated using NADH from organic carbon oxidation. To address the high background,

we altered the protocol to promote residual organic carbon in the presence of an



174

175

176

177

178

179

180

181

182

183

184
185
186
187
188
189
190

electron acceptor (anode) to reduce the availability of alternative sources of NADH.
Briefly, in the updated protocol S. oneidensis is pre-grown in minimal medium (M5) with
20 mM lactate aerobically (or anaerobically with 40 mM fumarate as described later) for
18 hours, followed by inoculation into the BES under aerobic and anodic conditions
(+0.2 Vagagar). After six hours, N2 sparging is started to switch the cells from using
oxygen to the anode as the electron acceptor. In the current study, this anaerobic,
anodic phase continued for 40 hours (versus 18 hours in the previous protocol) before
the potential is switched to cathodic (-0.5 Vagiagci). After this modification, we observed

elimination of electrode-independent butanediol production (Figure 2, No Potential).

Strain
0.061 ™ WT pBDH + apo-PR
WT pBDH + holo-PR
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Figure 2 All 2,3-Butanediol Production is Electrode Dependent. Measurement of
2,3-butanediol in BES experiment with modified protocol. WT cells with pBDH or pBDH-
PR with (holo-) or without (apo-) retinal as a cofactor, were pre-grown aerobically,
washed, and inoculated into anodic BES (Table 1). After 40 hours potential was
switched to cathodic, and acetoin was added to a final concentration of 1 mM (T=0).
Samples were collected for HPLC analysis every 24 hours. Lines and error bars
represent averages and standard error (n=3).
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We tested the amended protocol using a strain expressing PR, with and without
the essential cofactor all-trans-retinal. Cells with active PR (holo-PR) produced more
2,3-BDO than those with inactive PR (apo-PR). Interestingly, cells with active PR
produced approximately the same amount of 2,3-BDO as cells not expressing PR, while
cells with inactive PR showed a decrease in 2,3-BDO production (Figure 2). This
finding suggests that when all 2,3-BDO production is electrode-dependent, PMF
generation by PR supports an increase in 2,3-BDO production but the metabolic burden
or membrane occupancy constraints of expressing PR outweigh the benefits. Moreover,
this result suggests that there is an unaccounted-for source of PMF in the absence of
PR. Another source of PMF appears more likely than the possibility that PMF is
unnecessary, based on experimental evidence and thermodynamic calculations. Our
prior work demonstrated that 2,3-BDO production is halted when PMF is dissipated by
CCCP(34). Additionally, electron transfer from quinols to form NADH cannot occur at an
appreciable rate without the energy gained from proton translocation across the
membrane. To sustain the NADH dehydrogenase-catalyzed reaction, which utilizes
PMF, there must be a mechanism to replenish the proton gradient. We considered
formate dehydrogenase and FoF1 ATP synthase as possible PMF sources but found
them unlikely due to the lack of a formate or ATP source after 40 hours in the BES with
no carbon source. Therefore, we speculated that trace amounts of oxygen entering the

BES could be sufficient to enable bidirectional electron transfer.

Bidirectional Electron Transfer to Oxygen and NAD*

We investigated the possibility of bidirectional electron transfer as the unknown

source of PMF because this reaction could be powered by the electrode, and the
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substrate (O2) is readily accessible. Although the working chamber was continuously
degassed by N2 bubbling (99.999% N2), we suspected that the environment was
microaerobic. The BESs may not be completely airtight due to the use of neoprene
tubing and plastic connectors, and the possibility of oxygen diffusion from the anode
through the ion exchange membrane (Supp. Figure S1). Additionally, the N2 tank used
can contain up to 1 ppm Oz contamination, per the product specifications (Airgas). To
ascertain if oxygen was present, we inserted an optical dissolved oxygen (DO) probe
into the BES and conducted an experiment as normal. The DO in the working chamber
was at ~100% saturation before inoculation, decreased to ~60% saturation upon cell
addition, and dropped to ~1% upon Nz bubbling (Figure 3A). This single experiment
produced 0.046 mM 2,3-BDO over 3 days, which is consistent with previous

experiments (Figure 2.3C).
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Figure 3 Presence of Oxygen in BES. Time course of the experiment from setup (Day
-3) to final timepoint (Day 4), showing the current (A) and dissolved oxygen (B).
Samples were taken daily from Day 0 to Day 3 to quantify 2,3-BDO production (C)
(n=1).

Production of one 2,3-BDO molecule from acetoin requires oxidation of one
NADH, which in turn depletes four H* from available PMF via Nuo(35, 37). One

molecule of oxygen (O2) allows translocation of four H" across the membrane if it is
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reduced by either of the proton-pumping terminal oxidases, Cco and Cox(42—44).
Therefore, the reduction of one O2 molecule can sustain production of one molecule of
2,3-BDO from the perspective of PMF balance. The 1% saturation DO concentration
observed is equivalent to 0.073 mg/L (30°C, 856" elevation), or ~2 yM of oxygen
available throughout the experiment(45). This concentration of DO is more than enough
oxygen available to support 0.046 mM 2,3-BDO production over 72 hours (0.638 uM

2,3-BDO/hour) as the sole source of PMF.

To verify the contribution of terminal oxidases in generating PMF during electron
uptake, we compared current and 2,3-BDO production between WT MR-1 and a strain
lacking all 3 terminal oxidases (AcydAccoAcox, here named Aoxidase)(33). This strain
cannot use Oz as a terminal electron acceptor meaning that even with trace amounts of
oxygen, the mutant cells would not be able to use it.(46) This mutant cannot grow in
aerobic conditions, so further comparisons were performed using anaerobic pre-growth
of all strains. To ensure consistency, we compared anaerobic growth of WT versus
Aoxidase cells in M5 minimal medium (20 mM lactate, 40 mM fumarate). We observed
similar growth rates (Supp. Figure S2), so for MES experiments, these strains were
pre-grown anaerobically. WT cells pre-grown in an anoxic environment produced 0.047
+ 0.002 mM butanediol by day 3, consistent with previous work, and exhibited similar
current profiles and magnitudes (Figure 4). Conversely, the Aoxidase strain produced
minimal butanediol, with only a small amount accumulating by day 4, and less than half
the current of WT cells. This result highlights that in the absence of aerobic terminal
oxidases, cells cannot maintain electrode-dependent acetoin reduction as effectively as

WT, leading to an 82.8% decrease in production. We hypothesize that the Aoxidase
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pBDH strain's production of a limited amount of 2,3-BDO can be attributed to the NADH

generated through the oxidation of organic carbon arising from cell death.
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Figure 4 2,3-BDO and Current Production in Microaerobic BES. (A) 2,3-Butanediol
accumulation in BES with WT pBDH, Aoxidase pBDH, and Aoxidase pBDH-PR with
nitrogen bubbling. (B) Cathodic current from BES. Points (A) and lines (B) represent
averages with standard error bars, n=3.

To confirm that the observed phenotype was due to the loss of PMF from proton-
pumping oxidase activity, the Aoxidase strain was functionally complemented by PR
expression. If 2,3-BDO production is rescued by PR, it indicates that the loss of 2,3-
BDO generation in Aoxidase is caused by a loss of PMF as opposed to off target
effects, such as changes in gene regulation. When PR was expressed in Aoxidase, we
observed a restoration of 2,3-BDO production and partial rescue of current (Figure 4).
In this instance, electron transfer to form NADH but not Oz is restored, and as one Oz is
required to produce one 2,3-BDO molecule, a 50% rescue of current is consistent with
our model. This is supported by the calculated coulombic efficiency for each strain (WT

pBDH=14.3%, Aoxidase pBDH=8.31%, Aoxidase pBDH-PR = 21.7%, Supp. Figure S4).
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Taken together, these results support the hypothesis that PMF is a limiting resource,
and the proton pumping activity of oxidases in this microaerobic environment is
essential to continuous electron transfer to form NADH.

Reactive Oxygen Species Formation

We next investigated whether increasing DO in the BES would result in an
increase in 2,3-BDO. To do this, BESs were not sparged with N2 to allow passive
aeration. DO measurements indicated a highly oxygenated environment (300 yM) in the
BES (Supp. Figure S3). This condition resulted in a severe decrease in 2,3-BDO
production relative to the N2-bubbling microaerobic condition (Figure 5). Current was

greatly inflated by O2 intrusion (data not shown).
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Figure 5 2,3-BDO Production in Aerobic and Microaerobic BES. (A) 2,3-Butanediol
accumulation in BES with WT pBDH with N2 bubbling (Microaerobic), and passive
aeration (Aerobic) with or without the addition of 0.3 U/mL catalase. Points represent
averages with standard error bars, n=3.
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The failure of increased DO to translate to an increase in 2,3-BDO accumulation
could be attributed to three factors: decreased mtrCAB expression, formation of ROS,
or a shift in electron flow to favor oxygen reduction over NADH generation. In the
presence of oxygen, S. oneidensis MR-1 decreases expression of anaerobic respiration
pathways such as Mtr in favor of aerobic respiration and a decrease in Mtr expression
will likely result in a decrease in inward ET(47). However, the cells are not actively
growing under the experimental conditions (e.g., no carbon source), and it is improbable
that a significant shift in the proteome occurred under the carbon starvation conditions
of the experiment. Similarly, while loss of all electron flux in favor of oxygen reduction is
possible, the small amount of 2,3-BDO produced during passive aeration suggests
there are still electrons going towards NADH formation. Additionally, it has been shown
that bidirectional electron transfer to NAD* and oxygen occurs under active aeration; if
all electrons were being lost to oxygen, the effect would likely have been more
pronounced under those conditions(33). Further research done to optimize DO

concentration should explore this possibility.

To assess the possibility of ROS formation, we measured hydrogen peroxide
(H202) in the BESs. In the presence of oxygen and a strong reductant, such as a
cathode or reduced flavin, O2 can be reduced to form H202(47-50). H202 accumulation
in the BESs may result in cell death and a decrease in the ability to produce 2,3-BDO.
H202 can also react directly with 2,3-BDO, possibly leading to reduced accumulation
because of abiotic degradation(51, 52). To investigate if ROS accumulated in the
passive aerobic condition, experiments with WT pBDH were performed with and without

N2 bubbling, with and without potential, and samples were taken for colony forming unit
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(CFU) and H202 measurements. When the potential was swapped from anodic to
cathodic, we observed an immediate drop in CFUs/mL and generation of H202 in BES
with passive aeration, while the microaerobic BES maintained the same levels of both
(Figure 6). There was no detectable peroxide formation in the no potential controls
(data not shown). This result demonstrates that the formation of H202 is dependent on
the presence of oxygen and a cathode. The formation of H202 was correlated with ~2.5
log1o cell death in the first 3 hours. Notably, the initial concentration of H202 generated
after the change in potential was not maintained over time in the aerobic BES.
Additionally, the concentration of H202 that was generated in the working chamber (20
MM) killed a large portion of cells within the first hour, but not all. We hypothesize that
this is due to a higher local concentration of oxygen on the surface on the carbon felt
electrode; after the initial reaction with the electrode, the oxygen levels remain low and
rate of cell death decreases. Cell attachment to the electrode surface, which promotes
the removal of oxygen through both its consumption and physical exclusion, is low(53).
Therefore, one potential future direction is to increase biofilm coverage on the electrode

surface to further decrease the local O2 concentration and decrease ROS formation.

We next explored whether addition of catalase (an H202 degrading enzyme)
could reduce H202 accumulation. This approach has the potential to harness the
benefits of oxygen inclusion, such as PMF generation, while minimizing the production
of harmful by-products(47). Aerobic BESs were run with the addition of 0.3 U/mL
catalase added immediately before the potential was switched to -0.5 Vagiagci. Aerobic
BESs with catalase did not result in the same rapid decrease in CFUs/mL is increase in

H20:2 as those without, as well as a less prominent spike in peroxide formation (Figure
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6). Catalase addition also resulted in a partial rescue of 2,3-BDO production (Figure 5).
These results show that one of the challenges with oxygen inclusion in a BES is the

cytotoxic formation of H20z2, resulting in cell death and decrease in product yield.
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Figure 6 CFUs and [H202] in Aerobic and Microaerobic BES. (A) CFUs/mL and (B)
[H202] uM in bulk medium of working chamber. Dashed line represents the potential
change from 0.2 Vagagcl to -0.5 Vagiagel. Points represent averages of n=3 with standard
error bars. Lines are included in CFU/mL data to guide the eye. CFUs/mL at inoculation
(~46 hrs. prior to T=0) for all conditions were ~1.8 x 108,

Conclusion
Effective microbial electrosynthesis requires attention to detail in both BES
design and bacterial physiology. In the system discussed here, understanding the

thermodynamic factors involved in driving inward electron transfer is crucial. The
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reversible nature of the electron transport pathways, which enables cells to use
electrodes as electron acceptors and donors, depends on the reduction potential of
each step(23, 54-58). Electron transfer reactions from electrode to quinol pool are
freely reversible, but the final transfer from menaquinol to NADH formation has a much
larger shift in potential between donor (-80 mV) and acceptor (-330 mV). This barrier is
overcome by NADH dehydrogenases catalyzing the reaction and coupling the reduction
to PMF utilization. In this work, we show that during electron transfer from an electrode
to NADH, PMF can be regenerated by bidirectional electron transfer. Importantly, S.
oneidensis’ native aerobic terminal oxidases (Cco, Cox, Cyd) can sustain PMF via
oxygen reduction without fully redirecting the flow of electrons away from NADH. This
ability was best demonstrated in microaerobic conditions, where the DO concentration
struck the balance between electron flow to oxygen and NAD*. Higher levels of oxygen
had the off-target effect of generating H202 that resulted in cell death. While the
conditions tested here were limited to microaerobic and passively aerobic, future work
should focus on fine tuning the DO in BES to fully restore 2,3-BDO production in
aerated BES. This could be done through a combination of oxygen scavengers, gas
mixing/modulating inflow, higher concentrations of catalase and inclusion of other ROS
neutralizing enzymes such as superoxide dismutase, or selective deletion of native
oxidases as they have varying oxygen affinities and proton pumping efficiencies. The
goal should be to balance the redox state of the quinone pool to maximize the flow of
electrons ‘uphill’ to NAD* relative to the energetically favorable reduction of oxygen.
Taken together, this work shows the strong influence even trace oxygen has on the

energetics of inward electron transport.
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Materials and Methods

Table 1

Strain or Description Source

Plasmid

S. oneidensis

MR-1 Wild type S. oneidensis Meyers and

Nealson, 1988

Aoxidase Mutant with gene deletion of cco, cyd, cox, Rowe et al.
(SO2361-S02364, SO3285-S03286, SO4606— 2018
S04609)

Plasmids

pBDH pBBR1MCS2 bearing butanediol dehydrogenase  Tefft and
gene from Enterobacter cloacae, kanr TerAvest, 2019

pBDH-PR pBBR1MCS2 bearing butanediol dehydrogenase  Tefft and

from Enterobacter cloacae and proteorhodopsin TerAvest, 2019
(uncultured marine gamma proteobacterium
EBAC31A08), kanr

Strains and Plasmids

Strains and plasmids used are listed in Table 2.1. S. oneidensis MR-1 strains were
grown at 30 °C and shaking at 275 rpm for aerobic growth, and no shaking for
anaerobic growth (~5% Hz, balanced with N2). For BES experiments, MR-1 was pre-
grown aerobically in 5 mL of lysogeny broth (LB) supplemented with 50 pg/mL
kanamycin for strains with pBBR1-BDH, for inoculating minimal medium. For pre-
growth, cells were grown in M5 minimal medium containing: 1.29 mM K2HPO4, 1.65 mM
KH2PO4, 7.87 mM NaCl, 1.70 mM NH4SOs4, 475 yM MgSO4-7 H20, 10 mM HEPES,
0.01% (w/v) casamino acids, 1x Wolfe’s vitamin solution, and 1x Wolfe’s mineral
solution, then the pH adjusted to 7.2 with 5 M NaOH. After autoclaving, b,L-lactate was
added to a final concentration of 20 mM. During anaerobic pre-growth, fumarate was

added to a final concentration of 40 mM and 400 mL of medium was used per repeat.



385  During bioelectrochemical experiments, the M5 medium recipe was amended to 100
386 mM HEPES, 0.2 uM riboflavin, and no D,L-lactate, fumarate, or casamino acids.

387  Growth Curves

388  For anaerobic growth experiments, cells were pre-grown in 5 mL LB supplemented with
389 40 mM fumarate and 20 mM p,L-lactate. Cells from the overnight culture were washed
390 with M5 medium and resuspended to an ODeoo of 0.05 in 2 mL M5 medium in a 24-well
391 plate. ODsoo was measured every 15 minutes for 35 hours in an anaerobic plate reader
392  (BioTek, HTX). This protocol was repeated 3 times for replication.

393  Bioelectrochemical System Experiments

394 BES experiments were conducted in custom made two-chamber bioreactors kept at 30
395 °C as described in previous work (Tefft and TerAvest 2019)(29), and a similar set up to
396  work described in (Tefft et al. 2022)(30). The working chamber was filled with 144 mL
397 amended M5 medium, with 0.2 uM riboflavin being added an hour before inoculation,
398 and the counter chamber contained ~150 mL of 1x PBS. For experiments run with PR,
399 green LED lights were attached to the reactors. Bioreactors were autoclaved for 45

400 minutes, then connected to a potentiostat (VMP, BioLogic USA) and current data was
401 collected every 1 s for the course of the experiment. After the initial setup, the working
402  electrode poised at an anodic potential of +0.2 Vagiagcl for ~16 hours. For aerobic pre-
403  growth experiments, cells were grown in two 50-mL cultures of M5 in 250-mL flasks for
404  each bioreactor (6 total for 3 replicates) for 18 hours. For anaerobic pre-growth

405  experiments, cells were grown in 400-mL cultures of M5 in 1-L flasks for each bioreactor
406 (3 total for 3 replicates) for 18 hours. For experiments with PR, 400 uL 20 mM all-trans-

407 retinal was added after 17 hours of growth as the essential cofactor for PR. Cultures
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were transferred to a 50-mL conical tube and centrifuged at 8000 rpm (Thermo
Scientific ST8R; Rotor: 75005709) for 5 minutes. Pellets were washed twice in 30 mL
M5 (100 mM HEPES, no carbon) and then resuspended in M5 (100 mM HEPES, no
carbon), to a final ODsoo of 3.6 in 10 mL. Then, 9 mL of this normalized resuspension
was inoculated into the working chamber of the bioreactor using a sterile 10 mL syringe
with an 18 g needle. Six hours after inoculation, N2 gas (99.999%, AirGas) was bubbled
into reactors through a 0.2 yM filter, and a bubbler attached to a 0.2 uM filter connected
to the gas outlet. For 40 hours after N2 bubbling, reactors were maintained at an anodic
potential of +0.2 Vagagci, before being changed to a cathodic potential of -0.5 Vagiagel.
After three hours at cathodic potential, 17 mL of a sterile, de-gassed 10 mM acetoin
solution was added to a final concentration of 1 mM in the bioreactor (Final volume in
working chamber = 170 mL). The bioreactors were sampled (2 mL) immediately after
acetoin addition for ODsoo and HPLC analysis every 24 hours for 144 hours.

DO Measurements

DO measurements shown in Figure 3 were collected using a Hamilton VisiFerm DO
sensor and ArcAir Software. The probe was calibrated before each experiment as
described in the manual. The probe was inserted into the BES prior to autoclaving and
secured with a rubber gasket. DO measurements were recorded every 5 s during the
experiment. To ensure that the inclusion of the DO probe did not interfere with oxygen
intrusion into the system, we also utilized a smaller fiber optic DO probe and collected
data every 30 s using a NeoFox Fluorimeter and Software (Ocean Insight). The probe
consists of a patch made from 5% mixture of polymer (poly(2,2,2-trifluoroethyl

methacrylate), Scientific Polymer Products Inc.) and 5 mM porphyrin (Pt(Il) meso-
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tetra(pentafluorophenyl)porphine, Frontier Scientific) dissolved in a 50/50 mixture of 1,4-
dioxane and 1,2-dichloroethane (Sigma Aldrich). This patch is deposited onto the end of
a fiber optic probe(59). Results from this probe corroborated observations made with
the Hamilton Probe (Supp. Figure 2.3A). Data from passively aerobic BES (Supp.
Figure 3B) was collected using the smaller fiber optic probe.

CFEU Plating

During BES experiments, samples were taken every ~24 hours starting at inoculation,
with additional time points in the three hours following potential change from anodic to
cathodic. These samples were used for CFU plating, H2O2 measurements, and HPLC
analysis. Samples were serially diluted in a 96-well plate and 10 yL of each of 8
dilutions (10°-107) was plated on LB + Kan. Dilutions with between ~10'-102 CFUs were
counted and back calculated to determine CFUs/mL in bulk solution. Mean and
standard error were calculated for biological replicates (n=3).

H->0O, Measurements

At each sampled time point, H202 formation was measured using the Pierce™
Quantitative Peroxide Assay Kit (ThermoFisher, Cat: 23280) according to the kit
instructions. In brief, 20 puL of sample was mixed with 200 uL of reagent mixture in a 96-
well plate, and absorbance was read at 595 nm. Sample values were compared to a
standard curve with background subtraction of cell-only controls in 1xPBS to exclude
any interference from cell ODesoo. Mean and standard error were calculated for biological

replicates (n=3).
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HPLC analysis

HPLC analysis was performed as previously described (Tefft and TerAvest, 2019) with
the amendments described in (Tefft et al., 2022)(29, 30). Sample analysis was
performed on a Shimadzu 20A HPLC, using an Aminex HPX-87H (BioRad, Hercules,
CA) column with a Microguard Cation H* guard column (BioRad, Hercules, CA) at 65 °C
with a 0.5 ml/min flow rate. 2,3-butanediol concentration in samples was calculated by
comparing sample value to an external standard curve.

Coulombic Efficiency Calculation

Coulombic efficiency was calculated by dividing the moles of 2,3-BDO produced by the
moles of electrons measured by the current and multiplying by 100 to get a percentage.

CE % = (BDOyfinay M) * 0.17 L % 100 = moles BDO < 100
°T 1M moles e~

QX gg485¢C

Data analysis

Analysis of HPLC data, DO %, OD, current data, and growth curve data was done using
RStudio using the following packages: ggplot2, dplyr, ggpubr, plyr, data.table, stringr,
and growthcurver(60-66).
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