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Abstract 
 

Cationic polymerization is a powerful strategy for the production of well-defined polymers and 

advanced materials. In particular, the emergence of living cationic polymerization has enabled 

pathways to complex polymer architectures inaccessible before. The use of light and electricity as 

an external stimuli to regulate cationic polymerization represents another advance with increasing 

applications in surface fabrication and patterning, additive manufacturing, and other advanced 

material engineering. The past decade also witnessed vigorous progress in stereoselective cationic 

polymerizations, allowing for the dual control of both the tacticity and the molecular weight of 

vinyl polymers towards precision polymers. In addition, in addressing the plastics pollution crisis 

and achieving a circular materials economy, cationic polymerization offers unique advantages for 

generating chemically recyclable polymers, such as polyacetals, polysaccharides, polyvinyl ethers, 

and polyethers. In this review, we provide an overview of recent developments in regulating 

cationic polymerization, including emerging control systems, spatiotemporally controlled 

polymerization (light and electricity), stereoselective polymerization, and chemically 

recyclable/degradable polymers. Hopefully, these discussions will help to stimulate new ideas for 

the further development of cationic polymerization for researchers in the field of polymer science 

and beyond. 
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Abbreviations 
   

α-MeSt  α-Methylstyrene 

AIBN   Azobisisobutyronitrile 

Ane   trans-Anethole 

BDE   Bond dissociation energy 

BVE              n-Butyl vinyl ether     

BzF   Benzofuran 

e-CL   e-Caprolactone 

CEVE   2-Chloroethyl vinyl ether 

CHVE   Cyclohexyl vinyl ether 

cPPA   Cyclic PPA 

CTA   Chain transfer agent  

Ctr   Chain transfer constants 

DBPDA  N,N’-Di-sec-butyl-1,2-phenylenediamine 

DDQ   2,3-Dichloro-5,6-dicyano-1,4-benzoquinone 

DEP   Diethyl phthalate 

DHF   2,3-Dihydrofuran 

DOLO   1,3-Dioxolan-2-one 

DOP   1,2-Dioxepane 

DOX   1,3-Dioxane 

DPn   Number-average degree of polymerization 

DPw   Weight-average degree of polymerization 

DXL   1,3-Dioxolane  

ee   Enantiomeric excess  

Er    Reduced modulus 

EPE   Ethyl-1-propenyl ether  

EVE   Ethyl vinyl ether  

Fc   Ferrocene 

H   Hardness 

HBD   Hydrogen bond donor 
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HNTf2   Trifluoromethanesulfonimide 

IBVE   Isobutyl vinyl ether 

IDPi   Imidodiphosphorimidate 

IPVE   Isopropyl vinyl ether 

LA   Lactide  

MA   Methyl acrylate  

MAO     Methylaluminoxane 

MDOL   2-Methyl-1,3-dioxolane 

MesSt   2,4,6-Trimethylstyrene 

MOMBr  Bromomethyl methyl ether 

MOTP   2-methyl-1,3-oxathiepane 

MOVE   2-Methoxyethyl vinyl ether 

MSA   Methanesulfonic acid 

NVC   N-Vinylcarbazole 

o-PA   o-Phthalaldehyde 

PADIs   N,N’-Bis(triflyl)phosphoramidimidates 

PCCP   1,2,3,4,5-Pentacarbo-methoxycyclopentadiene 

pCSt   4-Chlorostyrene  

PDXL   Poly(1,3-dioxolane) 

pFSt   4-Fluorostyrene 

PLA   Polylactic acid 

pMOS   4-Methoxystyrene 

pMeSt   4-Methylstyrene 

pMeBzA  4-Methylbenzaldehyde 

PMP   p-methoxyphenyl 

PMPDOL  2-(4-Methoxyphenyl)-1,3-dioxolane 

PVE   n-Propyl vinyl ether 

PTH   10-Phenylphenothiazine 

RAFT   Reversible addition-fragmentation chain transfer 

ROP   Ring opening polymerization  

St   Styrene  
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TADDOL  Tetraaryl-1,3-dioxolane-4,5-dimethanol 

TBVE              tert-Butyl vinyl ether 

TEMPO  (2,2,6,6-Tetramethylpiperidin-1-yl)oxy 

TFA   Trifluoroacetic acid  

TfOH   Triflic acid 

t-HBD   trans-Hexahydro-1,3-benzodioxole 

TMSVE  Trimethylsilyl vinyl ether 

UTS   Ultimate tensile strength 

VAc   Vinyl acetate  

 

1. Introduction 
 
Despite its important commercial applications, e.g., the production of polybutene-based butyl 

rubbers and polyvinyl ethers, cationic polymerization was considered to be highly prone to side 

reactions, challenging to control, and only applicable to a limited subset of monomers. This 

pessimistic view was proven to be grossly inaccurate when the living cationic polymerization was 

first reported by Higashimura and Sawamoto in the 1970s [1-4], as well as the subsequent report 

of living cationic polymerization of isobutylene by Faust and Kennedy [5,6]. Since then, the field 

has undergone rapid developments, and several reviews that focus on significant aspects of living 

cationic polymerization, such as Lewis acid-catalyzed controlled cationic polymerization [7-10], 

the living cationic polymerization mediated by reversible addition-fragmentation chain transfer 

(RAFT) mechanism [11], and photoinitiated and photocontrolled cationic polymerization [12-15], 

have already been published. To complement those seminal works, this review will attempt to not 

only provide a summary of recent advances in new initiation and control strategies for cationic 

polymerization, but also connect these methodology innovations to emerging applications in 

stereochemical control, biopolymer synthesis, and sustainability (Fig. 1). In doing so, we hope to 

introduce a broader perspective that advances in fundamental polymer chemistry can create 

exciting opportunities for accessing new materials with structures and functions beyond the realm 

of traditional synthetic polymers.  
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Fig. 1. Recent developments in cationic polymerization. 

 

2. General features of cationic polymerization 
 

Monomer scope. Cationic polymerization generally requires monomers with electron-donating 

substitutions that can stabilize the propagating cation, e.g., vinyl ethers, 2,3-dihydrofuran (DHF), 

benzofuran (BzF), styrene (St), styrene derivatives, isobutene (IB), N-vinylcarbazole (NVC), 

lactones, isocyanides, o-phthalaldehyde (o-PA), cyclic acetals, and anhydrosugars (Fig. 2). This 

requirement makes the monomer scope of cationic polymerization distinct from, and largely 

complementary to, the radical polymerization, which is commonly used to polymerize monomers 

with electron-withdrawing substitutions such as (meth)acrylates, (meth)acrylamides, and 

styrenics. In particular, vinyl ethers [16], anhydrosugars [17,18], and NVC [19] have demonstrated 

the best versatility in living cationic polymerization thus far, due to their abilities to form long-

lived propagating cationic species in polymerization.  
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Fig. 2. Typical monomers for cationic polymerization. 

 
Initiating method. In classic cationic polymerization, the cations are typically generated from the 

reaction between an initiator and a Lewis or Brønsted acid [7-10]. In cationic RAFT 

polymerization, cationic species are produced through the reaction between a chain transfer agent 

(CTA) and a Brønsted or Lewis acid catalyst (Fig. 3) [11]. These initiators are often also referred 

to as cationogens. Typical initiators (cationogens) for cationic polymerization are listed in Fig. 3, 

including organohalides, esters, sulfonates, thioethers, selenoethers, phosphates and 

thiocarbonylthio compounds. It is noteworthy that Lewis bases such as ethers, esters, and amides 

are sometimes used in conjunction with Lewis acids to regulate the initiation or reversible 

deactivation process for improved control over the cationic polymerization. Furthermore, recent 

works on photocontrolled and electrochemically controlled cationic polymerization suggest that 

one-electron oxidation of the CTA by photocatalysts or electrochemistry can also be used to 

produce cationic species, allowing for preparation of precise polymer in a spatiotemporal manner 

[14,15]. 
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Fig. 3. Typical initiators and initiating methods for cationic polymerization. 

 

Propagating species. A hallmark of cationic polymerization is the propagating cations, such as 

carbenium, oxocarbenium, oxonium, iminium, and sulfonium. Firstly, different classes of 

propagating species display different reactivities. For example, compared with carbenium species, 

oxocarbenium and iminium species are less reactive because of the p-donation of heteroatoms 

(oxygen or nitrogen). Moreover, the counteranions, forming by the leaving groups of initiators and 

Lewis/Brønsted acid catalysts, also play a significant role in the propagation step. Furthermore, 

both the cationic propagating species and the counteranions are typically solvated by solvent 

molecules. Therefore, solvents have profound impacts on the reactivity of propagating cations and 

are often strategically chosen for regulating cationic polymerization. It should also be noted that 

the propagating cations are highly electrophilic. As a result, they are more prone to side reactions, 

such as E1-type elimination, SN1-type substitutions by water or other environmental nucleophiles. 

The high reactivity of cation species also means that its half-life is relatively short, and controlling 

this propagating species through a reversible deactivation mechanism is challenging. 

 

 

Fig. 4. General scheme for counteranion-rebound and RAFT process in cationic polymerization. 

 
Control mechanism. Key to controlling the intrinsically unstable propagating cation in living 

cationic polymerization is to establish an efficient reversible deactivation process, in which the 
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equilibrium between the dormant species and the propagating species strongly favors the former 

to keep the concentration of the propagating cations low. Two main control mechanisms have been 

explored: counteranion-rebound and RAFT. In the counteranion-rebound cationic polymerization 

[7-10], activation of the chain-capping group (e.g., halide) by catalyst (e.g., metal catalyst) 

produces an ion pair of the propagating carbocation and a counteranion. The rebound of the 

counteranion reversibly deactivates the carbocation and regenerates the dormant species (Fig. 4a). 

In cationic RAFT polymerization [11], a dormant chain end can readily undergo reversible 

nucleophilic addition to the propagating carbocation to form a transient adduct, which then 

undergoes fragmentation to regenerate the propagating carbocation and the dormant species (Fig. 
4b). Therefore, a reversible chain transfer process is established to exert control over the 

polymerization.  

 

3. Emerging control systems 
 

The past decade has witnessed the rapid development of control strategies for living cationic 

polymerization. New catalytic systems that show remarkable reactivity and higher selectivity were 

reported [15]. This section will start with a cationic RAFT polymerization mechanism, followed 

by a comprehensive summary of the recent advances in organocatalytic cationic polymerization, 

and end with an overview of the spatiotemporally controlled polymerizations through light and 

electricity. 

 
3.1. Cationic RAFT polymerization 
 

RAFT polymerization was first reported in 1998 as a radical polymerization method and represents 

one of the most powerful strategies in living radical polymerization [20-22]. In 2015, RAFT 

polymerization was further developed into an elegant method for controlled cationic 

polymerization [11,23] (Fig. 4b). In the cationic RAFT polymerization, the propagating cation 

(PnÅ) readily undergoes reversible addition-fragmentation chain transfer with another dormant 

polymer chain end (Pm-X, X indicates the chain end group) to generate the other cationic 

propagating polymer chain (PmÅ) and another dormant polymer chain (Pn-X). During a productive 

RAFT process, the rate of the addition/fragmentation equilibrium is higher than that of 
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propagation, thus making all polymer chains grow at similar rates and imposing control over the 

polymerization. A key component in cationic RAFT polymerization is the nature of CTAs 

employed (Fig. 5). Therefore, this section will discuss different CTAs that have been examined 

thus far, as well as their chain-transfer constants (Ctr). 

 

     
Fig. 5. Chain transfer agents (CTAs) for cationic polymerization discussed in this review. 

 

Building on the reversible addition-fragmentation between sulfur-based nucleophiles and 

carbocation, in 2015, Kamigaito and coworkers investigated the potential of thiocarbonylthio 

compounds for gaining control over cationic polymerizations (Fig. 6) [23]. They screened several 

thiocarbonylthio derivatives for the polymerization of isobutyl vinyl ether (IBVE) with triflic acid 

(TfOH) as the catalyst. Among them, dithiocarbamate compounds provided the best control over 

polymerization. A well-defined polymer (Mn = 5.1 kDa, Đ = 1.08) was obtained when CTA-1 was 

used. In contrast, loss of control was observed in the absence of CTA-1 (Mn = 24.6 kDa, Đ = 3.58). 

They also found that trithiocarbamate CTA-2 gave a comparable performance (Mn = 5.0 kDa, Đ 

= 1.18). However, CTA-3 with an electron-withdrawing pyrrolidione group gave higher dispersity 

(Đ > 1.80). Additionally, a high molecular weight polymer (Mn = 104 kDa, Đ = 1.23) was obtained 

by fixing the [M]0/[CTA-2]0 to be 1000. Based on these results, the authors claimed that the 

electronic effects of the nitrogen groups on the CTAs play the key role in the controlled 

polymerization, as more electron-donating substituents in the CTAs can stabilize the formed 

cationic intermediate, thereby allowing for control over polymerization. The living nature of the 

polymerization was confirmed by the linear relationship between Mn and monomer conversion, 1H 

NMR identification of the ω-chain end, and successful chain extension experiments [23]. The 
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versatility of CTA-2 was also demonstrated by block copolymerization of ethyl vinyl ether (EVE) 

with methyl acrylate (MA). Poly(EVE-b-MA) (Mn = 12.4 kDa, Đ = 1.32) was successfully 

prepared, showcasing the ability to combine cationic and radical RAFT for the synthesis of block 

copolymers previously difficult to access. The comprehensive mechanistic studies revealed that a 

distinct cationic RAFT mechanism was responsible for the controlled polymerization (Fig. 5). 

Polymerization was initiated by the protonation of the monomer by TfOH, forming the cationic 

propagating species PnÅ (I). The cationic species PnÅ then could undergo reversible chain transfer 

with the CTAs to form a dormant polymer chain and a cation RÅ (II). The cationic fragment RÅ 

(re)initiated polymerization by adding to the monomer, generating another propagating cationic 

species PmÅ (III). The propagating species PmÅ then underwent reversible chain transfer with 

another dormant polymer chain, generating another cationic propagating species PnÅ and another 

dormant polymer chain (IV). 

 

  
Fig. 6. General mechanism for cationic RAFT polymerization of vinyl ethers initiated by TfOH 

and mediated by a thiocarbonylthio-type CTA. [11,23], Copyright 2022. Adapted with permission 

from Elsevier Science Ltd. 

 

OiBu

Me

OiBu

S

S

SEt
+

Me

OiBu OiBu

S

S

SEt
n

Organic acid catalyzed cationic RAFTpolymerization of vinyl ethers

OTf H
R1 R1

OTfn-1

(Pn   )H
R1

OTf

OTf
SS

Z
R + OTf

SS

Z
+ Pn

OTf
SS

Z
RPn

M

OTf
 Pm

SS

Z
Pn+ +

OTf
SS

Z
PnPm M

OTf
 Pn

SS

Z
Pm

H

Pn R

(I)

(II)

(III)

(IV)

R1
(M)

R1
(M)

OTf R
R1 R1

OTfm-1

(Pm  )R
R1

OTfR
R1

(M)
R1

(M)

TfOH

Mn up to 104 kDaCTA-2

n-hexane/DCM/Et2O
-40 ℃



 12 

Compared with thiocarbonylthio compounds, thioacetals are easier to prepare and have more stable 

C-S bonds. Kamigaito and coworkers proposed that a more stable sulfonium intermediate would 

be formed, allowing for faster chain transfer, and thus exerting better control over the 

polymerization. Accordingly, they discovered that thioacetals could mediate the chain transfer 

process during the polymerization of IBVE with trace amounts of TfOH as the catalyst (Fig 7a) 

[24]. Using thioacetal CTA-4, a well-defined poly(IBVE) (Mn = 3.3 kDa, Đ = 1.18) was obtained 

when IBVE was polymerized at -40 °C. Additionally, by increasing the [M]0:[I]0 ratio to 1000 and 

lowering the temperature to -78 °C, a high molecular weight polymer (Mn = 117 kDa, Đ = 1.24) 

was obtained while achieving full conversion. Furthermore, CTA-4 also displayed excellent 

control in the polymerization of EVE (Mn = 4.7 kDa, Đ = 1.11). However, loss of control was 

observed for the bulky monomers, such as cyclohexyl vinyl ether (CHVE) (Mn = 6.6 kDa, Đ = 

1.63), presumably was due to the increased steric hinderance preventing formation of the 

sulfonium intermediate. 

 

   
Fig. 7. Cationic RAFT polymerization of IBVE mediated by thioacetal-type CTA [24,25].  
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polymer with full conversion but significantly higher molecular weight and dispersity (Mn = 10.8 

kDa, Đ = 2.83). 

 

Using the weak/strong acid pairing method, sulfonic acids were also investigated for the 

polymerization of IBVE (Fig. 8) [25]. TfOH is used as a catalyst to generate the adduct (CTA-6) 

of IBVE and sulfonic acids in situ. Kamigaito and coworkers found that there was a significant 

improvement when using CH3SO3H (Mn = 5.5 kDa, Đ = 1.51) instead of PhSO3H (Mn = 5.6 kDa, 

Đ = 2.51). The authors proposed that the methyl group was extra stabilizing for the chain transfer 

intermediate through electron-donation, making the reversible deactivation faster. Additionally, 

acetic acid and trifluoroacetic acid (TFA) were not as effective as sulfonic acids, as demonstrated 

by unpredictable molecular weight and high dispersity (Mn > 10 kDa, Đ > 3.0). The poor 

performance of acetic acid derivatives as CTAs might be due to the inability of ester groups to 

stabilize the positive charge, further suggesting that sulfonic acid (sulfonate group) is important 

for chain transfer process. 

 

 

Fig. 8. Cationic RAFT polymerization of IBVE mediated by a methane sulfonic acid-derived CTA 

generated in situ by TfOH [25].  
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suggested that the good control was due to the high nucleophilicity of selenium atom, as it could 

readily attack the stabilized propagating carbocation species during the propagation of pMOS. 

  

 
Fig. 9. Cationic RAFT polymerization of pMOS mediated by a selenoether-type CTA generated 

in situ [26].  
  

Although sulfur has been the typical heteroatom involved in RAFT chemistry, sulfur-containing 

CTAs tend to have undesired odors and colors, impacting polymer application. As a result, efforts 

have been made toward developing CTAs bearing other elements. Kamigaito and coworkers 

demonstrated that phosphoric and phosphonic acid-based initiators could offer an alternative route 

to controlled cationic polymerization (Fig. 10) [27]. Polymerization of IBVE in the presence of 

phosphate-type CTA-9 and TfOH was highly efficient, yielding a polymer with quantitative 

conversion in 30 minutes and excellent control (Mn = 2.8 kDa and Đ = 1.10). Notably, a high 

molecular weight polymer (Mn = 102 kDa and Đ = 1.13) was obtained within three hours. The 

reversible chain transfer between the dormant phosphate chain end and the propagating species 

proceeds through a phosphonium intermediate with resonance stabilization, providing improved 

control compared with previous CTAs employed.   
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Fig. 10. Cationic RAFT polymerization of IBVE mediated by a phosphate-type CTA and initiated 

by TfOH. [27], Copyright 2016. Adapted with permission from The Royal Society of Chemistry. 
 

The reactivities of different CTAs in the polymerization of IBVE were compared by measuring 
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were obtained from the polymerization of IBVE, the same trend might also work for other typical 

monomers for cationic polymerization, such as NVC, St, and isobutene, etc.  
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Fig. 11. The logarithmic chain-transfer constants Ctr of different CTAs in the cationic RAFT 

polymerization of IBVE. [11], Copyright 2022. Adapted with permission from Elsevier Science 

Ltd. 

 

3.2 Organocatalytic cationic polymerization 
 

Metal-based Lewis acids are typically utilized in living cationic polymerization to mediate the 
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(Fig. 12) [33]. A library of poly(e-CL) with molecular weights ranging from 3.0 kDa to 10 kDa 

could be readily obtained by adjusting the feed ratio of the monomer and initiator. Moreover, this 

work described the facile preparation of diblock copolymers consisting of lactones and cyclic 

carbonates by chain extension. Since then, a variety of organic acids, such as TfOH [34], 

trifluoromethanesulfonimide (HNTf2) [35], methanesulfonic acid (MSA) [36], and carboxylic 

acids [37], were disclosed to show excellent control over the ROP of lactones, lactides (LA), and 

cyclic carbonates. The activated monomer mechanism was suggested in these organic Brønsted 

acids catalyzed polymerizations. The acidic catalysts functioned as a hydrogen donor that 

preferentially activates the monomer compared with the polymer chain, followed by a nucleophilic 

attack of the hydroxy group of the propagating chain end onto the carbonyl of the activated 

monomer, leading to controlled chain growth and avoiding the transesterification reactions.  

 

   

Fig. 12. The first example of living cationic ROP of e-caprolactone and proposed activated 

monomer mechanism [33].  

 

Inspired by great advances in organocatalysis [38-40], various phosphate-based Brønsted acids 

featuring bifunctional active site were designed and showed remarkable reactivity in the 

polymerization of lactones or LA [41-45]. In a pioneering example, Bourissou and co-workers 

applied the phosphoramidic acids as bifunctional catalysts for the ROP of lactones (Fig. 13) [46]. 

Poly(e-caprolactone) with controllable molecular weight (Mn = 1.2-18.3 kDa) and low dispersity 

(Ð = 1.06-1.22) could be readily obtained from the living cationic ROP of e-CL. Computational 

calculations disclosed a bifunctional activation mode, in which the acidic site of the catalyst 

operated as a hydrogen-bond donor to activate the monomer and the basic P=O moiety behaved as 

a hydrogen-bond acceptor to deprotonate the alcoholic w-chain end. This appealing bifunctional 
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activation model was further supported by the 1H NMR titration experiments between catalyst and 

initiator or monomer. Although numerous catalysts have been designed and showed excellent 

control over the cationic polymerization, the early catalytic systems usually were limited to lactone 

polymerization. Therefore, developing organic Brønsted/Lewis acidic catalysts that showed 

broader monomer scope, particularly the vinyl monomers, is highly desirable. 

 

 

Fig. 13. Living cationic ROP of e-caprolactone using a bifunctional catalyst [46].  

 

Brønsted acid organocatalysts were also found to exert excellent control over the polymerization 

of vinyl monomers. In an early example, the Gates group developed a novel Brønsted acid catalyst 

featuring a unique hexacoordinate phosphorus (V) anion, which can act as a weakly coordinating 

anion during the polymerizations (Fig. 14) [47]. This initiating system provided an efficient 
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(a-MeSt), and St. However, the optimal reaction conditions required low temperatures (-78 to -
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Fig. 14. H(OEt2)2[P(1,2-O2C6Cl4)3] as a single-component initiator for cationic polymerization 

[47].  

 

In 2016, Tang and others reported a single component mediated polymerization of IBVE using 

HNTf2 [48], a strong brønsted acid, as initiator and organocatalyst. Polymerizations exhibited 

excellent living characteristics as molecular weight increased linearly with monomer conversion. 

Furthermore, polymerizations reached quantitative conversion within 10 seconds, affording 

polymers with a broad range of molecular weights (Mn = 3.5 - 60 kDa), all in alignment with their 

predicted molecular weights while maintaining low dispersity (Đ <1.21).  
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cyclopentadienyl anion, and thus meditating the polymerization. The excellent living 

characteristics of this system are attributed to the stabilizing hydrogen bonding interactions present 

in the transition state of polymerization between the PCCP anion and the propagating chain 

end/monomer. In addition, the strong tight-ion pair formed provides a method of slowing down 

propagation while suppressing terminating and chain transfer events. Furthermore, this system 

could polymerize various vinyl ethers with different alkyl substitutions. Surprisingly, a 
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temperatures (0°C) and nitrogen atmosphere, while maintaining moderate dispersity (Đ < 1.33) 

and moderate molecular weights (Mn = 5.4 - 49 kDa). Nonetheless, when a higher degree of 

polymerization was targeted (DP > 100), a significant amount of elimination and chain transfer 

events were observed. These side reactions were evidenced by the deviation from the first-order 

kinetics during polymerization, resulting in polymers with lower Mn and higher dispersity, likely 

due to the intermolecular deprotonation of a propagating chain end by the cyclopentadienyl anion 

resulting in regeneration of PCPP and a terminated chain.  

 

 

Fig. 15. Single-component controlled cationic polymerization of vinyl ethers utilizing PCCP as 

the catalyst. [49], Copyright 2019. Adapted with permission from American Chemical Society. 
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To address this concern, follow up work was conducted by introducing hydrogen bond donors 

(HBD) as co-catalysts to posit further stabilization of the cyclopentadienyl anion. Polymerization 

of IBVE was probed in the presence of HBD 1-6, aiming to suppress the intermolecular elimination 

event at the propagating chain end (Fig. 16) [51]. Notably, HBD-4 exerted good control over the 

polymerization (Mn  = 29.8 kDa, Đ=1.16), likely because of being able to provide three hydrogen-

bonding interactions to the PCCP anion. Moreover, the introduction of hydrogen-bonding donor 

co-catalysts provided faster polymerization rates as well as higher molecular weights (Mn up to 66 

kDa). Further work also demonstrated this system is compatible with conventional RAFT methods 

[52], thus providing further moisture tolerance and broader monomer scope.  

 

 

Fig. 16. Hydrogen bond donor assisted controlled cationic polymerization of vinyl ethers utilizing 

PCCP as the catalyst. [51], Copyright 2020. Adapted with permission from John Wiley & Sons 

Inc. 
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revealed that the strong Cl- affinity and/or acidity of catalysts is crucial for efficiently promoting 

the cationic polymerization. The comprehensive experimental and computational studies revealed 

a novel polymerization mechanism, wherein catalyst and dormant species form a polarized 

covalent complex, followed by a dynamic anion binding process to regulate the chain growth (Fig. 
17). The formation of polarized covalent complex is responsible to produce extremely low 

concentration of cationic active species, leading to excellent control over the polymerization under 

mild conditions. Notably, the polymerization was highly practical and user-friendly, no 

compromise on control over molecular weight and dispersity was observed when using unpurified 

monomer and solvent under ambient atmosphere. Furthermore, the catalyst could be readily 

recovered without compromising its performance on the controlled polymerization (e.g., virgin 

catalyst: 99% conversion, Mn = 9.5 kDa, Đ = 1.11; recycled catalyst: 99% conversion, Mn = 9.2 

kDa, Đ = 1.14). 
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Fig. 17. Living cationic polymerization of vinyl monomers enabled by anion-binding catalysis. 

[53], Copyright 2022. Adapted with permission from Springer Nature Limited. 

 
3.2.2 Organic Lewis acid assisted cationic polymerization 
 

In 2023, Zhou and co-workers employed a stable and inexpensive organic Lewis acid trityl 

tetrafluoroborate (TrBF4) in the controlled polymerization of e-CL (Fig. 18) [54]. A series of 

poly(e-CL) with predictable molecular weight and low dispersity were obtained by changing the 

feed ratio between the monomer and methanol initiator. The linear relationship between the 

molecular weight and monomer conversion, linear pseudo-first-order kinetic plot, together with 

successful chain extension by e-CL indicated a well-controlled polymerization was achieved (e.g., 

before chain extension: Mn = 8.4 kDa; after chain extension: Mn = 17.1 kDa). The monomer was 

activated through the coordination of carbonyl oxygen and trityl cation, thereby facilitating the 

nucleophilic attack of the hydroxy group of the polymer chain end. Then the sequential steps of a 

O

R
n

+ O

Cl

R
O

P
N

P
N

Se
N

Se
N
HH

tBu

tBu

F3C

F3C

CF3

CF3

Cl

R

R

P
N

P
N

Se
N

Se
N
HH

tBu

tBu

F3C

F3C

CF3

CF3

polarized covalent species
dormant species

Cl

R

R

P
N

P
N

Se
N

Se
N
HH

tBu

tBu

F3C

F3C

CF3

CF3

tight ion pairs
active species

H

dynamic
anion boding

kdeact >> kact

Dynamic anionic 
-binding catalysis

Monomer scope and 
selected results ([M]0/[I]0 = 100)

O O O

OTBDMS
O

N

Mn

Đ

7.6 kDa

1.12

14.7 kDa

1.15

8.4 kDa

1.32

19.0 kDa

1.30

9.5 kDa

1.11



 24 

proton transfer and ring opening process furnish the chain growth process, and the regenerated 

trityl cation will continue to activate the next monomer until the completion of the polymerization. 

 

  

Fig. 18. Living cationic polymerization of e-CL using trityl tetrafluoroborate. [54], Copyright 

2023. Adapted with permission from American Chemical Society. 
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resulting high dispersity. Additionally, high resolution ESI-MS of oligomers obtained confirmed 

the chain ends corroborating the proposed mechanism.  

 

  

Fig. 19. Helical-sense cationic polymerization of aryl isocyanides initiated by [Ph3C][B(C6F5)4]. 

[55], Copyright 2018. Adapted with permission from John Wiley & Sons Inc. 
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Fig. 20. Halogen (XB) and chalcogen-bonding (ChB). 

 

Pioneering work of Higashimura and Sawamoto in the 1970-1980s first studied the halogen-

bonding catalysis for controlled cationic polymerizations of a series of vinyl monomers, including 

styrenic monomers [1], alkyl vinyl ethers [2,3], and NVC [4]. For instance, linear increase of Mn 

over conversion was achieved for the polymerization of IBVE, and nearly monodispersed polymer 

(Đ ~ 1.1) can be obtained when used HI/I2 as a binary catalytic system (Fig. 21). Key to these 

controlled cationic polymerizations was the use of a dual catalytic system of HI/I2. The monomer 

undergoes addition by HI, resulting in a monomer-HI adduct. Followed by activation by I2, 

resulting in a triiodide species and a cationic species that can undergo chain propagation. 

 

 
Fig. 21. HI/I2-catalyzed controlled cationic polymerization of vinyl ethers [2].  
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indicating that the halogen bonding catalysis is crucial for the control of polymerization. Follow-

up work in 2020 further extended this chemistry by exploring non-ionic halogen bond catalyst N-

p2 and N-m3 [59], obviating solubility, and decomposition issues. Additionally, other vinyl 

monomers were explored as well, and notably, the polymerization of pMOS was conducted to 

yield poly(pMOS) (Mn = 4.3 kDa, Đ = 1.3), demonstrating the broad monomer scope of this 

system. 

 

 

Fig. 22. Halogen-bonding controlled cationic polymerization of vinyl ethers and styrenic 

monomers [58,59].  
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regioselectivity, elaborate catalyst design and condition optimization might solve the problems to 

generate these reactive and functional polyallene materials.  

 

  

Fig. 23. Cationic polymerization of n-hexyloxyallene using halogen-bonding organocatalyst [60].  
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Fig. 24. Living cationic polymerization using diaryliodonium salts as halogen-bonding 

organocatalyst [61].  
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of 6 equivalent of water relative to TeMe-OTf catalyst generated a polymer (Ð =1.33) with 

comparable molecular weight to that of the polymer obtained in the absence of water (Ð =1.47). 

Notably, the organocatalyst could be readily recovered without decomposition. Although this new 

method displayed moderate control over the polymerization and relatively narrow monomer scope, 

this finding will open a new avenue for precision polymer synthesis via chalcogen bonding 

catalysis. 

 

  

Fig. 25. Living cationic polymerization of pMOS using tellurium-based chalcogen-bonding 

organocatalyst. [62], Copyright 2022. Adapted with permission from American Chemical Society. 
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Since first reported in the 1970s [65], the investigation of photoinitiated cationic polymerization 

has rapidly expanded. Many early efforts focused on using onium salts as the photoinitiator to 

initiate cationic polymerization due to their high oxygen and moisture tolerance [66]. Other 

photoinitiation systems were also developed in the past few decades [67]. 

 

In 2011, Yagci and coworkers developed a novel photoinitiation approach by the photolysis of 

triaryl vinyl bromide initiator, 1-bromo-1,2,2-tris(p-methoxyphenyl)ethene, in the presence of 

metallic zinc (Fig. 26) [68]. When triaryl vinyl bromide was subjected to UV light irradiation (λ = 

350 nm), homolytic cleavage of the C-Br bond followed by spontaneous electron transfer process 

could generate a vinyl cation species, which then initiated the cationic polymerization of VE. On 

the other hand, zinc bromide, generating from the reaction of metallic zinc and photochemically 

produced bromine radicals, could also assist the propagation in a controlled manner. As a result, 

the polymerization established quasi-living characters and poly(IBVE) with high molecular weight 

(Mn up to 69 kDa) and moderate dispersity (Ð < 1.4) was obtained. 

 

  

Fig. 26. Photoinitiated cationic polymerization of IBVE in the presence of triaryl vinyl bromide 

and metallic zinc. [68], Copyright 2011. Adapted with permission from American Chemical 

Society. 
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salt, benzyl cation was formed and reacted with IBVE to generate an adduct. The adduct could 

undergo successive photoinduced radical oxidation and propagation, allowing the preparation of 

poly(IBVE) with ultra-high molecular weight (Mn up to 153 kDa, Ð < 2.0). 

 

  

Fig. 27. Cationic polymerization of IBVE via a photoinduced radical oxidation/ 

activation/deactivation mechanism. [69], Copyright 2017. Adapted with permission from John 

Wiley & Sons Inc. 

 

The previous photoinitiated cationic polymerization enabled the initiation of polymerization by 

using light as an external stimulus. However, temporal control was not achievable for the chain 

growth process due to the difficulty of deactivating the propagating species. Integrated with 

photoredox catalysis [70], photocontrolled cationic polymerization can reversibly activate and 

deactivate the propagating chain end and achieve spatiotemporal control over polymerization. 
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the key for excellent control over polymerization. The polymerization was halted when the light 

source was removed, while the reaction efficiently reinitiated after exposure to light, which 

suggested an excellent temporal control. 

 

  

Fig. 28. Photocontrolled cationic RAFT polymerization of IBVE and its mechanism. [71], 

Copyright 2016. Adapted with permission from American Chemical Society. 

 

Further investigation confirmed the proposed mechanism and inspired further exploration of other 

photocontrolled cationic polymerization systems [72]. For instance, Fors et al. utilized thioacetals 

as the CTA to initiate and mediate the photocontrolled cationic polymerization of vinyl ethers 

under blue light irradiation (λ = 456 nm) through a reversible chain-transfer mechanism [73]. 

Notably, using an oxidizing photocatalyst with a higher ground state reduction potential 

significantly improved the temporal control of the polymerization. In 2021, Fors combined radical 

and cationic photocontrolled polymerization and enabled the selective incorporation of different 

type of monomers into a growing chain (Fig. 29) [74]. By switching the wavelength of light, this 
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and acrylates (λ = 456 nm) under the cationic and radical mechanism, respectively. The mechanical 
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properties of the crosslinked polymers were spatially and temporally controlled by modulating the 

dosage and wavelength of light irradiation. By comparing the value of hardness (H) and reduced 

modulus (Er), the more crosslinked regions (H = 16.36 ± 0.95 and Er = 36.69 ± 2.06) exposed to 

light irradiation displayed higher stiffness than the unexposed regions (H = 0.70 ± 0.14 and Er = 

1.83 ± 0.12). 

 

  

Fig. 29. Photoswitching RAFT cationic and radical Polymerizations [74].  

 

In 2021, Liao and coworkers introduced a new type of organic photocatalyst, bisphosphonium 

salts, for the photocontrolled polymerization of vinyl ethers (Fig. 30) [75]. Compared to pyrylium 

salts Fors used, higher oxidation potential of the excited photocatalyst and higher reduction 

potential of the reduced state of bisphosphonium salts enabled highly efficient photocontrolled 

cationic polymerization of vinyl ethers with catalyst loading as low as 2.5 ppm under blue light 

irradiation (λ = 460 nm). Mediated with CTA-2, the polymerization afforded poly(IBVE) with 

high molecular (Mn up to 26 kDa) and low dispersity (Ð < 1.4). In 2023, the same group further 

developed a class of monophosphonium photocatalysts for the controlled cationic polymerization 

of vinyl ethers, in which well-defined poly(vinyl ethers) were afforded under excellent temporal 

control [76]. The mechanism of these catalytic systems was similar to the previous photocontrolled 

cationic polymerization proposed by Fors [71].  
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Fig. 30. Photocontrolled cationic RAFT polymerization of vinyl ethers with bisphosphonium salts 

as the photocatalysts [75].  

 

In 2022, Kamigaito and coworkers utilized acridinium salts as strong oxidizing photoredox 

organocatalysts to mediate the cationic polymerization of vinyl ethers under visible light (blue: 

lmax = 470 nm; green: lmax = 525 nm; white LEDs) (Fig. 31) [77]. Poly(IBVE) with high molecular 

weight (Mn = 40.7 kDa) and low dispersity (Đ = 1.28) was obtained when the M/I ratio was 500/1. 

Temporal control of the photomediated polymerization was partially achieved, despite incomplete 

halt of the chain growth in the dark period. 

 

 

Fig. 31. Photocontrolled cationic RAFT polymerization of IBVE with acridinium salts as the 

photocatalysts [77].  
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Besides vinyl ethers, photoinduced and photocontrolled cationic polymerization of pMOS was also 

extensively investigated in the past decade. For instance, Nicewicz and You first discovered the 

photocontrolled cationic polymerization of pMOS in the presence of pyrylium salt as a 

photocatalyst and alcohol as the CTA (Fig. 32) [78]. The initiation of the polymerization started 

with the excitation of photocatalyst under blue light irradiation (λ = 450 nm) followed by the 

oxidation of electron-rich pMOS monomer. The resulting styrenyl cation radical then underwent 

the anti-Markovnikov addition by alcohol, protonation of a monomer led to the initiating cationic 

species. A rapid chain transfer process, consisting of nucleophilic capture of cation by methanol 

and subsequent protonation of an additional monomer, proceeded until all methanol was consumed 

and a relatively small number of active cationic chain ends remained to undergo propagation. With 

the reversible chain transfer process through oxonium intermediate, the polymerization 

demonstrated living characteristics, including first-order kinetics, linear increase of molecular 

weight with respect to monomer conversion, and complete chain extension. 
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Fig. 32. Photoinitiated living cationic polymerization of pMOS in the presence of methanol as the 

CTA. [78], Copyright 2015. Adapted with permission from American Chemical Society. 

 

Later, Spokoyny et al. utilized a boron-rich cluster B12(OR)12 as a novel photooxidant to initiate 

the cationic polymerization of St and its derivatives under blue light (λ = 470 nm) (Fig. 33) [79]. 

The polymerization of pMOS achieved ultra-high molecular weight (Mn up to 198 kDa) with 

moderate dispersity (Ð < 1.7). The unprecedented polymerization of styrene derivatives with 

electron-withdrawing and bulky substituents can also be realized by using these powerful boron-

rich cluster photooxidants. 
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Fig. 33. Photoinitiated cationic polymerization of styrene derivatives using a boron-rich cluster as 

a photooxidant [79].  

 

The aforementioned two examples of photoinitiating systems paved the way for the further 

development of photocontrolled cationic polymerization of pMOS. In 2022, Zhou and Zhang 

developed an elegant photocontrolled cationic polymerization of pMOS by using tris(2,4-

dimethoxyphenyl)methylium tetrafluoroborate as the photocatalyst and phosphate as the CTA 

under green light irradiation (λ = 532 nm) (Fig. 34) [80]. The mechanism was similar to the 

previous photocontrolled cationic polymerization proposed by Fors, except a phosphonium 

intermediate was involved in the RAFT process [71]. The polymerization could reach high 

molecular weights (Mn up to 53 kDa) and low dispersity (Ð < 1.3). Notably, the polymerization 

proceeded under green light irradiation and ceased immediately upon the removal of the light 

source, suggesting an excellent temporal control. 

 

  

Fig. 34. Photoinitiated cationic RAFT polymerization of pMOS with phosphate as the CTA [80].  
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The ROP of lactones has become one of the major approaches to producing biodegradable 

polyesters [81]. However, this method has rarely been regulated by light. In 2013, Barker and 

Dove utilized triarylsulfonium hexafluorophosphate salts to catalyze the photoinitiated cationic 

ROP of lactones (Fig. 35) [82]. By exposing the photocatalyst to UV light (λ = 365 nm), the 

resulting H+ initiated the polymerization, and well-defined polymers with moderate molecular 

weight (Mn up to 27 kDa) and low dispersity (Ð < 1.2) were generated. The high chain-end fidelity 

was supported by the one-pot synthesis of a triblock copolymer poly(δ-valerolactone)-b-poly(L-

LA)-b-poly(δ-valerolactone) through a dual basic/acidic catalytic system. In 2020, You and 

coworkers combined different photocatalysts and onium salts into a series of photoacid 

composites, which could activate the photoinduced cationic ROP of lactones under visible light 

irradiation (Fig. 35) [83]. By applying different photocatalysts (Ir(ppy)3, Eosin Y, ZnTPP), the 

polymerization can be initiated under different visible lights (blue, green, and red). Moreover, the 

concurrently generated radical species also facilitated a simultaneous RAFT radical 

polymerization when a hydroxy group capped trithiocarbonate was used as the initiator. 
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Fig. 35. Photoinitiated living cationic ROP of lactones and some representative photocatalysts 

[82,83].  

 

In 2021, Liao and coworkers developed another interesting visible-light regulated ROP of lactones 

(Fig. 36) [84]. They utilized the increased acidity of the excited aromatic alcohol photocatalyst to 

catalyze the cationic polymerization under purple light irradiation (λ = 365 nm). The 

polymerization achieved high molecular weight (Mn up to 39 kDa) under excellent control (Ð < 
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Fig. 36. Photocontrolled cationic ROP of lactones using photoacids [84].  

 

3.3.2 Electrocontrolled cationic polymerization 
 

Electrochemistry has emerged as a powerful tool to achieve desired chemical transformations, as 

it can achieve precise control over redox processes ubiquitous in all fields of chemistry [86]. 

Moreover, electrochemically controlled reactions can be carried out under mild conditions while 

maintaining high functional group tolerance and obviating the need for stoichiometric amounts of 

oxidants or reductants. Recently, electrochemical processes have been applied in polymer science 

[87-89], and this subsection will highlight the advances in electrocontrolled cationic 

polymerization. 
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and high chain-end fidelity corroborated by chain extension experiments. The proposed 

mechanism starts with the oxidation of TEMPO to TEMPO+, which is then trapped by a terminal 

dithiocarbamate chain end to form an adduct. Followed by a subsequent fragmentation process, 

generating an oxocarbenium species that can participate in the RAFT process. Notably, this work 

exhibited excellent temporal control, as changing the external stimulus (oxidizing current or 

reducing potential) resulted in "On/Off" switching of the polymerization process with high 

efficiency.  

 

 

Fig. 37. TEMPO as a mediator for the electrocontrolled cationic polymerization of vinyl ethers. 

[90], Copyright 2018. Adapted with permission from American Chemical Society. 
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of well-defined homo- and copolymers under a cationic RAFT mechanism. This system proved to 

be efficient for the synthesis of polymers with varying monomer to CTA ratios (100-500), while 

reaching quantitative monomer conversion and maintaining low dispersity (Đ < 1.28). 

Furthermore, this method achieved the synthesis of a diblock copolymer poly(IBVE-b-pMOS (Mn 

= 23.3 kDa, Đ = 1.21) from poly(IBVE) (Mn = 9.7 kDa, Đ = 1.15), as confirmed by unimodal 

profile in size exclusion chromatography (SEC) analysis.  

 

  

Fig. 38. DDQ as a mediator for the electrocontrolled cationic polymerization of VE. [91], 

Copyright 2018. Adapted with permission from John Wiley & Sons Inc. 

 

Polymerizations controlled by external stimuli have proven effective in generating polymers of 

more complex architectures. Fors and coworkers reported a dual stimuli system, consisting of 

electricity and light, for precise synthesis of high-order multiblock copolymers containing 

acrylates and vinyl ethers (Fig. 39) [93]. In this work, Ferrocene (Fc) was utilized as an electro-

mediator for the cationic polymerization of IBVE, while fac-Ir(ppy)3 was chosen as a photocatalyst 

to regulate the polymerization of methyl acrylate (MA) via a radical mechanism. This dual method 

proved efficient for synthesizing a variety of block copolymers in situ by alternating the applied 

stimuli (visible light or electric potential). Several multiblock copolymers were synthesized, such 

as diblock poly(IBVE-b-MA) (Mn = 12.5 kDa, Đ = 1.40), tetrablock poly(IBVE-b-MA-b-IBVE-

b-MA) (Mn = 13.4 kDa, Đ = 1.33), and even hexablock poly(MA-b-IBVE-b- MA-b-IBVE-b-MA-

b-IBVE) (Mn = 9.7 kDa, Đ = 1.41), displaying orthogonal nature and excellent temporal control of 

this system. 
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Fig. 39. Copolymerization of methyl methacrylate and IBVE using electricity and light [93].  

 

Parallel to the previous approach reported by Fors and coworkers [93], in 2021, Read de Alaniz 

and Sepunaru reported an elegant one catalyst-dual stimuli strategy for the synthesis of multiblock 

copolymers bearing MA and IBVE blocks (Fig. 40) [94]. Harnessing the orthogonal nature of 10-

phenylphenothiazine (PTH) as a radical and cationic mediator, the on-demand living 

polymerization of each monomer was achieved upon application of photo- or electrochemical 
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methodology demonstrated the ability to selectively mediate monomer addition by choice of 

stimuli applied, which was shown by synthesizing various multiblock copolymers. Most 

importantly, this system displayed excellent temporal control, allowing for temporal control, as 

demonstrating by multiple on/off cycles. 
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Fig. 40. Copolymerization of methyl methacrylate and IBVE using a dual photoelectrochemical 

catalyst. [94], Copyright 2021. Adapted with permission from American Chemical Society. 

 

Additionally, the Fors group also reported using ferrocenyl acids to achieve the living cationic 

polymerization of cyclic esters (Fig. 41) [95]. The ferrocene derivatives with tethered acid moieties 

could be oxidized electrochemically, thus lowering their pKa and providing the ability to catalyze 

the cationic ROP of e-CL. This methodology proved efficient to synthesize several polyesters with 

molecular weights in agreement with their theoretical values, while maintaining low dispersity (Đ 

< 1.28).  
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Fig. 41. Ferrocenyl acid as a mediator for the electrocontrolled cationic polymerization of lactones 

[95].  

4. Stereocontrolled cationic polymerization 
 

Stereoregularity plays a critical role in determining the physical properties (e.g., mechanical 

strength, thermal performance, optical property) of polymers [96]. Polypropylene represents the 

most well-known example (Fig. 42), in which isotactic polypropylene (adjacent methyl groups on 

successive stereocenters are all of the same configuration) is a semicrystalline and tough 

thermoplastic [97]. Syndiotactic polypropylene (adjacent methyl groups on successive 

stereocenters are of perfectly alternating configuration) often has excellent impact strength [98]. 

In contrast, atactic polypropylene (adjacent methyl groups on successive stereocenters are of a 

random configuration) usually is as an amorphous material. Thus, achieving on-demand 

stereocontrol during polymerization remains of high interest [99,100]. Although enormous 

advances in the stereo-control for anionic [101] and coordination-insertion polymerization [102-

104] have been made in the last decades, the stereoregularity control in cationic polymerization 

remains a formidable challenge. The difficulty in controlling stereochemistry during the cationic 

polymerization of olefinic monomers is attributed to the undefined stereochemical environment of 

the planar sp2-hybridized growing carbenium species. Therefore, elaborately designed catalysts or 

counterions are required to achieve stereoregulation in cationic polymerization [105]. In this 

section, selected seminal discoveries in stereoselective cationic polymerization will be first 

discussed, followed by a comprehensive summary of recent breakthroughs, and ended with an 

outlook in this emerging field. 
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Fig. 42. The structure of isotactic, syndiotactic, and atactic polypropylene (PP). 

 

4.1 Stereoselective cationic polymerization of vinyl ethers 
 

Although the stereoselective cationic polymerization of vinyl ethers can be dated back to the 1940s 

[106,107], high stereoselectivity was still beyond reach at the time. For example, applying 

BF3•Et2O as a catalyst, Schildknecht and co-workers found that polymerization of IBVE at low 

temperature (-78 °C) in neat condition gave rise to semicrystalline materials (Fig. 43). Further 

studies suggested that the polymer crystallinity might arise from the relative stereochemical 

relationship between adjacent pendant substituents. In the following decades, a variety of catalytic 

systems have been applied in the polymerization of vinyl ethers to improve the stereoselectivity, 

such as Ziegler-type catalysts [108,109], metallocene-based transition metal catalysts [110], 

heterogeneous metal-sulfate complexes [111], and others, however, achieving a high degree of 

tacticity (e.g., ³90% m diad, m stands for meso) remained challenging. 

 

  

Fig. 43. Early examples in stereoselective cationic polymerization of IBVE [106 - 111].  
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triad) in hexane at -78 °C with a bulky pyridine (2,6-di-tert-butyl-4-methylpyridine) (DTBP) as an 

additive. Initial mechanistic studies implied that not only the bulkiness of the Lewis acid but also 

the spatial shape and electronic nature of the forming counterion are responsible for the 

stereoregulation during the propagation process.  

 

 

Fig. 44. Stereoselective cationic polymerization of vinyl ethers using phenoxy-Ti complex [113]. 

 

Their following studies found that this elaborate catalyst system is not general to all alkyl vinyl 

ethers (Fig. 44) [113]. Instead, the polymers obtained displayed different stereoregularity 

depending on monomer substitution (e.g., ethyl, 64% m diad; n-propyl, 78% m diad; iso-propyl, 

88% m diad; n-butyl, 69% m diad; t-butyl, 76% m diad). A statistical analysis of the triad 

distributions revealed that low stereoselective systems (69-76% m diad) might follow chain-end 

control, where the stereochemistry of the last enchained monomer influences the facial addition of 

the incoming monomer. In contrast, the high isospecificity (~90% m diad) in the polymerization 

of IBVE and isopropyl vinyl ether (IPVE) was attributed to the catalyst control, in which bulky 

catalysts or the corresponding counterions would dictate the facial addition of the monomers (Fig. 
45). Based on these results, a new transition state was proposed, where the effective interaction 

between catalyst and monomer could regulate the direction of the incoming monomer to the 

propagating species to result in the stereoselective propagation. 
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Fig. 45. Chain-end control and catalyst control in the cationic polymerization of vinyl ethers. 

 

Sawamoto and co-workers additionally disclosed another binary catalytic system, in which a bulky 

phosphoric acid paired with SnCl4 gave highly isotactic poly(IBVE) (up to 86% m diad) (Fig. 46) 

[114]. The low polymerization temperature (-78 °C) and low concentration of Lewis acid (1.0 mM) 

were found to have effects on improving the stereoselectivity. A series of initiators screening 

revealed that phosphoric acids (RO)2POOH with long alkyl chains (R = n-decyl) induced the 

highest isotacticity (m = 86%) in the SnCl4-catalyzed cationic polymerization of IBVE. In addition, 

Eyring analysis of the stereoselective polymerization demonstrated that enthalpic factor was 

responsible for the high isotacticity with bulky phosphoric acids. Finally, this seminal work 

demonstrated that tacticity control is achievable by applying bulky counterions during cationic 

polymerizations, which lay a strong foundation for following studies. 

 

 

Fig. 46. Stereoselective cationic polymerization of IBVE using bulky phosphoric acid [114]. 
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enchainment and dictate the facial addition of the incoming monomers (Fig. 47) [115]. This novel 

methodology showed a broad monomer scope, vinyl ethers bearing a variety of pendant alkyl 

substituents all gave highly isotactic polymers (e.g., ethyl, 92% m diad; n-propyl, 92% m diad; iso-

propyl, 88% m diad; n-butyl, 93% m diad; iso-butyl, 93% m diad). All the resulting polymers were 

semicrystalline solids, which is in sharp contrast to the amorphous liquids produced by the chain-
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end control model. Additionally, the highly stereoregular polymer poly(IBVE) displayed 

comparable thermomechanical properties (Tm = 138 – 150 °C. E = 200 ± 20 MPa, sy= 8.4 ± 0.5 

MPa, sb = 8.2 ± 0.5 MPa, eB = 170 ± 20%) to widely used commodity polymers, such as the low-

density polyethylene Dow LDPE 4012 (Tm = 105 °C. E = 280 ± 40 MPa, sy= 8 ± 1 MPa, sb = 10 

± 2 MPa).  Notably, isotactic poly(BVE) also exhibited stronger adhesion to glass than that of the 

Dow LDPE, as demonstrated by apparent lap shear strengths of 1600 ± 100 MPa and 130 ± 20 

MPa, respectively. The excellent mechanical and adhesive properties, together with good thermal 

stabilities (Td  > 325 °C, defined by 5% weight loss) make these isotactic poly(vinyl ethers) 

promising candidates for next-generation engineering materials. 

 

  

Fig. 47. Stereoselective polymerization of vinyl ethers using BINOL-based phosphoric acid [115]. 

 

The generality of this new system with respect to alkyl vinyl ether monomers represent a 

significant improvement in stereoselective cationic polymerization, leading to the first highly 

stereoselective copolymerization of vinyl ethers (Fig. 48) [116]. The systematic tuning of both 

glass transition (Tg) and melting temperature (Tm) in copolymers could be readily achieved by 

adjusting the feed ratio of the comonomers, meanwhile the high stereoselectivities were 

successfully maintained (91-94% m diad). Moreover, a novel pyrene-appended copolymer with 

interesting fluorescent properties could be obtained when using acyl-protected ethylene glycol 

vinyl ether as a comonomer, followed by facile post-functionalization reactions. Therefore, this 

ion-pairing mediated stereoselective cationic polymerization strategy represents a promising 

approach toward thermoplastics with diverse material properties.  
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Fig. 48. Stereoselective copolymerization of vinyl ethers using BINOL-based phosphoric acids 

[116]. 

 

The comprehensive mechanistic studies provided a deep understanding of the polymerization 

mechanism [117]. Firstly, the statistical analysis of the triad distributions reveals an evident 

preference for catalyst control, while chain-end control is the dominant mechanism for 

stereocontrol in the absence of the chiral phosphoric acid catalyst. Additionally, kinetic analysis 

indicates a significant ligand deceleration effect, agreeing well with the observation that a molar 

excess of chiral ligand relative to Lewis acid was necessary to produce the highest tacticity. This 

observation was supported by density functional theory (DFT) calculations, in which a Ti complex 

consisting of three coordinated phosphoric acids was identified. Eyring analysis of the 

stereoselective polymerization showed a good linear relationship between the ln(m/r) and 1/T, 

indicating the overall mechanism remained unchanged between -78 °C and -40 °C. Furthermore, 

from the Eyring plot, the difference in the energy barrier between meso and racemo addition was 

calculated to be -0.73 kcal/mol, which was corresponding to 87% m diad. Finally, when 

enantioenriched vinyl ethers were applied in the stereoselective polymerization, the highest 

isotacticity (95% m diad) ever reported was achieved, suggesting a fully match system between 

chiral monomer and catalyst.  

 

In their continuous efforts toward controlled cationic polymerization of vinyl ethers, Aoshima and 

co-workers have tested an extensive array of ligands, including salen [118], salphen [119], and 

phenoxyimine [120]. The content of meso diad were kept in a range of 65-75% m diad, implying 
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the chain-end control mechanism might be operative in these systems. In 2020, they successfully 

generated highly isotactic poly(IBVE) (up to 90 diad) by using chiral titanium complexes of 

tetraaryl-1,3-dioxolane-4,5-dimethanol (TADDOL) (Fig. 49) [121]. Owing to their facile 

preparation from naturally abundant tartaric acid, a series of TADDOLs ligands were evaluated in 

the stereoselective polymerization of IBVE. The statistical analysis of triad sequences excluded 

the chain-end control mechanism, implying the high stereoselectivity arises from the catalyst 

control pathway. More interestingly, the same tacticity was observed when enantiopure (S, S)- or 

(R, R)-TADDOLs were used as ligands. Therefore, the authors hypothesized that the chiral catalyst 

should remain within the polymer chain-end and no shuffling of the catalyst was occurring 

throughout the propagation. 

 

 

Fig. 49. Stereoselective polymerization of IBVE catalyzed by zirconium and titanium complexes 

[118-121].  

 

In 2022, Liao and co-workers subsequently reported a metal-free stereoselective cationic 

polymerization of vinyl ethers, in which a class of confined Brønsted acids, 

imidodiphosphorimidates (IDPi), were used as chiral catalysts (Fig. 50) [122]. Examination of a 

series of chiral Brønsted acids disclosed that the electron-withdrawing trifluoromethyl group was 

beneficial for improving stereoselectivity, and a stereoregular poly(IBVE) with high isotacticity 

(91% m diad) and Mn of 18.9 kDa could be obtained in 30 min at full monomer conversion. 
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Additionally, this organocatalytic stereoselective polymerization method was compatible to a 

range of alkyl vinyl ether monomers, affording corresponding polymers with moderate degrees of 

isotacticity (e.g., ethyl, 85% m diad; n-propyl, 90% m diad; n-butyl, 88% m diad). 

 

  

Fig. 50. Organocatalytic stereoselective polymerization of vinyl ethers [122].  

 

Despite significant advances in the stereoselective cationic polymerization of vinyl ethers, dual 

control of tacticity and molecular weight have proven more challenging. To achieve highly 

stereospecific cationic polymerization, bulky or chiral Lewis/Brønsted acids are required to 

regulate the facial addition of the incoming monomer. However, these catalysts are usually 

incapable of establishing the reversible activation-deactivation equilibrium between dormant and 

active species, which is the key to living polymerization. Therefore, developing appropriate 

catalytic systems in which molecular weight and stereochemistry controls are not disturbed by 

each other remains challenging [123]. 

 

In an early example, Sudhakar and co-workers reported a highly stereoselective living 

polymerization of vinyl ethers at ambient temperature (Fig. 51) [124,125]. Triethanolamine ligated 

titanium complexes coupled with Methylaluminoxane (MAO) or Ph3CB(C6F5)4 were capable of 

polymerizing IBVE in a controllable manner and generated highly stereoregular poly(IBVE) with 

good isotacticity (90-94% m diad). Furthermore, linear growth of the molecular weights over 

conversion and low dispersity (Ð = 1.16-1.25) indicated a living polymerization system. Although 
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the mechanism of stereocontrol requires further exploration, the initial mechanistic studies 

suggested that this polymerization likely followed a carbocationic pathway.  

 

 

Fig. 51. Early example of stereoselective living cationic polymerization of IBVE [124,125]. 

 

In 2021, Leibfarth and co-workers showed an elegant catalytic system, in which control of 

molecular weight and tacticity could be simultaneously achieved (Fig. 52) [126]. A bulky Brønsted 

acid IDPi functioned as the chiral catalyst to direct the stereochemistry of monomer addition, while 

a thioacetal-type CTA was utilized to modulate the molecular weight. Accordingly, poly(IBVE) 

with molecular weight ranging from 6.8 to 58.7 kDa could be readily obtained by adjusting the 

feed ratio between monomer IBVE and CTA, while moderately high stereoselectivity was 

maintained (88-89% m diad). It is worth nothing that the chiral Brønsted acid could be readily 

recycled (>95%) and reused in the stereoselective polymerization, without a noticeable change in 

reactivity and stereoselectivity (89.7±0.6% m diad). 

 

  

Fig. 52. Brønsted acids catalyzed stereoselective living cationic polymerization of IBVE [126]. 

 

Independently, Liao and co-workers developed another stereoselective living cationic 

polymerization of vinyl ethers (Fig. 53) [127]. They introduced a different type of chiral organic 

Brønsted acid,  1,1’-bi-2-naphthol-derived N,N’-bis(triflyl)phosphoramidimidates (PADIs), to 

facilitate the tacticity control. Similarly, a trithiocarbonate-type CTA was employed to control the 
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molecular weight via cationic RAFT process. As a result, poly(IBVE)s with MW ranging from 4.1 

to 14.5 kDa were obtained with relatively low dispersity (Ð = 1.20-1.46) and moderately high 

stereoregularity (87-88% m diad). The well-defined structure of poly(IBVE), including the a-, w-

chain ends and main-chain structure, were further demonstrated by 1H NMR. Given the high 

fidelity (>96%) in the w-chain end, the macromolecular initiator could be used for chain extension 

to prepare complex stereoblock copolymers. When combined with other polymerization methods, 

including photo-controlled cationic or radical polymerization and thermo-induced radical RAFT 

polymerization, a series of diblock copolymers were produced in a controlled manner, as 

confirmed by unimodal peaks appearing in the high molecular weight regime. 

 

  

Fig. 53. Organocatalytic stereoselective living polymerization of IBVE via RAFT process [127]. 

 

In 2021, Kamigaito and co-workers described the preparation of isotactic poly(vinyl alcohol) via 

stereoselective cationic RAFT polymerization of bulky vinyl ethers (Fig. 54) [128]. When 

trimethylsilyl vinyl ether (TMSVE) was treated with a Lewis acid (EtAlCl2) in the presence of a 

dithiocarbamate-type CTA, isotactic-rich polymer was obtained (Mn = 8.7 kDa, mm = 70%). The 

moderately high isotacticity was attributed to the electrostatic repulsion between the bulky side 

groups and counteranions derived from the Lewis acid catalysts. In addition, the resulting polymer 

with high w-chain end fidelity can be used as a macroinitiator for radical RAFT polymerization of 

vinyl acetate (Vac), which engendered a rare isotactic-b-atactic stereoblock poly(vinyl alcohol) 

after the global deprotection of both the silyl and acetyl groups in the copolymer. 
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Fig. 54. Stereoselective cationic RAFT polymerization of bulky vinyl ethers [128]. 

 

Furthermore, Kamigaito and co-workers discovered the first asymmetric living polymerization of 

BzF, producing optically active polymers poly(BzF) (Fig. 55) [129,130]. In this system, dual 

control of the molecular weight and optical activity was achieved using thioether as CTA in 

conjunction with bulky b-amino acid and AlCl3 as chiral catalyst. The linear relationship between 

the molecular weights and conversion in conjunction with moderate dispersity (Ð = 1.36-1.54) 

indicated a living polymerization system. Interestingly, the optical specific rotations gradually 

increased with the increasing molecular weights. When each enantiomer of b-amino acid (R or S) 

was employed in the living polymerization of BzF, the obtained polymers exhibited nearly equal 

but opposite-in-sign specific rotation values and mirror-image CD spectra. Moreover, a 

stereoblock copolymer containing opposite absolute configuration segments were first prepared 

when two enantiomeric b-amino acid (R and S) was added in sequence. Preliminary studies 

revealed that the propagation should proceed through oxocarbenium ions instead of styryl-type 

cations. An extensive analysis of 1H NMR spectra of polymer identified the threo-diisotactic 

repeating units as the predominant stereostructure within the polymers, which leads to the resulting 

optical activity. 
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Fig. 55. Asymmetric cationic RAFT polymerization of BzF [129,130]. 

 

4.2 Stereoselective cationic polymerization of other monomers 
 
The stereocontrolled cationic polymerization of monomers other than vinyl ethers have been 

developed since the 1980s. In a pioneering example, Terrell and co-workers reported the first 

stereoselective polymerization of NVC (Fig. 56) [131]. Interestingly, the reaction temperature did 

not play a major role in the stereoregularity of the polymerization. However, researchers observed 

significant influence by choice of catalyst and solvent. Polar solvent often gave higher 

syndiotacticity and 58% r diad was observed when the polymerization was carried out in the 

presence of BF3•Et2O catalyst in dichloromethane or diethyl ether at 20 °C. The observed 

correlation between tacticity and solvent polarity was interpreted to arise from the tightness of the 

propagating ion pairs, in which tighter ion pairs benefited stereocontrol during the polymerization.  

 

  

Fig. 56. An early example of stereoselective cationic polymerizations of NVC [131]. 

 

In 2017, Aoshima and coworkers reported a systematic analysis on the stereoselective cationic 

polymerization of NVC (Fig. 57) [132]. Using a three-component initiating system consisting of 

a metal halide (MXn), an onium salt (AX), and TfOH, the stereoselective living cationic 

polymerization of NVC can be achieved, yielding poly(NVC) with excellent stereoregularity (94% 

mm triad) and narrow dispersity (Ð = 1.30). Additionally, DFT calculations suggested that the 

electrostatic interactions between the counteranion, the carbocation propagating species, and the 

incoming monomers were responsible for the stereoregulation during propagation [133]. The 
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transition state energy of the meso addition was 1.5 kcal/mol lower than the racemo addition. 

Notably, this system also showed the ability to readily synthesize block copolymers consisting of 

atactic and isotactic blocks of NVC, enabled by different initiating systems. 

 

  

Fig. 57. Stereoselective living cationic polymerization of NVC using the metal halide 

(MXn)/onium halide (AX)/CF3SO3H initiating systems [132]. 

 

In 2022, Leibfarth and coworkers reported a chain-end controlled polymerization of NVC by using 

chiral Box ligand-metal complexes to result in a helix-sense-selective polymerization (Fig. 58) 

[134]. This seminal work demonstrated that polymer tacticity was controlled by the conformation 

of the growing polymer chain end. Notably, they found that polymer helicity was deeply 

influenced by the stereoselectivity of the first monomer propagation event. Using a Box-scandium 

Lewis acid catalyst and a hemiaminal initiator, highly isotactic (92% mm triad) and optically active 

helical (molar ellipticity q = 380 deg•cm2•dmol-1) poly(NVC) was obtained.  

 

 

Fig. 58. Stereoselective helix-sense-selective cationic polymerizations of NVC [134]. 

 

In 2013, Mandal and co-workers succeeded in conducting stereospecific living cationic 

polymerization of α-MeSt using FeCl3 as a catalyst and HBr-St adduct as an initiator (Fig. 59) 

[135]. Notably, an external salt (nBu4NBr) was employed to stabilize propagation. First-order 

reaction kinetics and linear growth of molecular weight over monomer conversion were both 

observed, suggesting living characteristics of the polymerization. Accordingly, P(α-MeSt) with 
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molecular weight ranging from 4.3 to 32 kDa could be readily prepared by varying the feed ratio 

between monomer and initiator, displaying low to moderate syndiotacticity (59%-84% rr). 

Furthermore, the effect of tacticity on thermal properties was investigated. Tg increased from 115 

°C to 159 °C, and Td increased from ~310 °C to 398 °C as the syndiotacticity increased from 59% 

rr to 79% rr.  

 

  
Fig. 59. Stereospecific living cationic polymerization of α-MeSt using FeCl3/HBr-St/ nBu4NBr 

initiating system [135]. 

 

In 2010, Chen and coworkers developed a highly isospecific cationic polymerization of 

nonconjugated chiral oxazolidinone-functionalized alkenes in the presence of Lewis or Brønsted 

acids, such as [Ph3C][B(C6F5)4], BF3•Et2O, and [H(Et2O)2][B(C6F5)4], providing highly isotactic 

(a single mmmm pentad peak in the C=O region) and optically active ([α]!"# = +156°) polymers 

(Fig. 60) [136]. The nonconjugated chiral vinyl oxazolidinone monomer, N-vinyl-(R)-4-phenyl-2-

oxazolidinone (R)-VOZ was presumed to adopt a solution-stable one-handed helical conformation 

during polymerization, therefore showing significant chiral amplifications. The proposed 

mechanism involves the terminal olefin attacking [Ph3C][B(C6F5)4] to form an iminium, followed 

by a monomer propagation that is dictated by the chiral environment of the chain end. Moreover, 

the synthesized chiral helical vinyl polymers exhibited high Td (435 °C) and crystallinity. A 

highlight of this work lies on a chiral auxiliary-controlled mechanism at play, which combines 

side-chain chirality with main-chain chirality affording one-handed helicity polymers. 
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Fig. 60. Stereoselective cationic polymerizations of nonconjugated chiral oxazolidinone-

functionalized alkenes. [136], Copyright 2010. Adapted with permission from American Chemical 

Society. 

 

Despite the great advances have been made in the stereoselective cationic polymerization since 

last decades, there still exists some limitation in this fast-growing field. Firstly, monomer scope 

needs to be further expanded, since most of successful examples focused on generating 

stereoregular poly(vinyl ether). In this context, more elaborate catalysts design and new reaction 

models are required. Secondly, more precise control over the polymerization structure is highly 

desirable, such as simultaneous control of the tacticity, molecular weight, and dispersity. Finally, 

the unique material properties associated with the stereoregular polymer needs to be further 

investigated, which will lead to the discovery of functional polymeric materials. 

 

5. Chemically recyclable/degradable polymers 
 
Synthetic polymers play an essential role in the modern human society due to their low cost, 

chemical robustness, thermal stability, and high mechanical strength. However, the increasingly 

serious environmental issue, caused by unsustainable generation (~320 Mt in 2015) and disposal 

of single-use commodity plastics [137,138], compels polymer scientists to find efficient 

approaches to address the end-of-life dilemma of plastics from the perspective of circular economy 

[139]. Therefore, the development of polymers with on-demand degradability or inherent chemical 

recyclability is highly desirable to alleviate the current global issues on polymer-waste pollution 

[140-144]. In the last decades, numerous polymer platforms have been established, and the 
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sustainability of these polymers was systematically investigated [145-147]. This section will 

illustrate the recent efforts toward developing cationic polymerization platforms that are 

chemically recyclable or degradable [148-151]. Particularly, different classes of polymers will be 

discussed, including polyacetals, polysaccharides, polyvinyl ethers, and polyethers. 

 

5.1 Polyacetals 
 

Polyacetals are promising as degradable materials due to the inherent chemical recyclability of 

acetal functional groups, which can readily undergo depolymerization [152]. Among them, poly(o-

phthalaldehyde) (PPA) is one of the most easily accessible polymers via both cationic and anionic 

homopolymerization of o-phthalaldehyde (o-PA) [153,154]. Since the 1960s, it has been 

investigated as a potential material for lithography [155-157], but the low ceiling temperature (Tc 

= ~ -40 ºC) made actualizing its potential challenging [154]. 

 

In 2009, Ribitsch and coworkers disclosed that PPA synthesized via cationic polymerization was 

thermally stable, as demonstrated by moderate degradation temperature of 150 ºC [158]. In 

contrast, PPA obtained by anionic polymerization required end-capping to prevent degradation 

upon purification. Furthermore, cationic conditions achieved a moderate molecular weight 

polymer (Mn = 46 kDa) by using BF3 as a catalyst, whereas anionic polymerization was limited to 

lower molecular weight polymer (Mn = 6.8 kDa) when nBuLi was used as a catalyst. 

 

  

Fig. 61. Reversible cationic polymerization of o-PA catalyzed by BF3 and expansion of the 

resulting polymer [159]. 

 

In 2013, Moore and coworkers launched a detailed investigation into the synthesis of PPA by 

cationic polymerization using BF3 as the catalyst at -78 °C (Fig. 61) [159]. MALDI-TOF analysis 

indicated that cationic polymerization of o-PA yields a cyclic PPA polymer (cPPA). Importantly, 
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cyclization was discovered to be reversible. Addition of BF3 and monomer to cPPA at low 

concentration (0.6 M) enabled the acetal backbone to reopen and expand even below the ceiling 

temperature (Tc = -43 ºC at 1.0 M). More importantly, a complete depolymerization of cPPA was 

achieved, in which 97% of monomer was recovered with BF3 and heat [160]. 

 

 

Fig. 62. Effect of o-PA substituents on the ceiling temperature of the resulting cPPA [161]. 

 

In 2019, McNeil and coworkers carried out a comprehensive study of the effect of substituted o-

PA monomers on the properties of the resulting cPPA (Fig. 62) [161]. In the presence of SnCl4 as 

a catalyst, polymerization of 2-octyl-1,3-dioxoisoindoline-5,6-dicarbaldehyde generated a cyclic 

polymer (Mn = 25 kDa, Đ =1.9). The thermodynamic analysis revealed that electron-donating 

substituents lowered the Tc of cPPA, whereas electron-withdrawing substituents increased the Tc, 

with Tc ranging from below -60 to 106 ºC. Notably, poly(tetrafluorophthalaldehyde) with electron-

withdrawing substituent group exhibited higher decomposition temperature (Td = 196 ºC) than 

glass transition temperature (Tg = 106 ºC), positioning it as a promising material for processing. 

Methods to improve the thermal stability of cPPA were further developed by Moore and coworkers 

[162]. It was found that addition of TEMPO stabilized the polymer by raising the degradation 

temperature to 131 ºC. Furthermore, the combined addition of diethyl phthalate (DEP, a 

plasticizer) and N,N’-di-sec-butyl-1,2-phenylenediamine (DBPDA) resulted in a robust cPPA 

suitable for thermal processing with minimal degradation. In addition to improved thermal 

processing, complete depolymerization of cPPA could also be achieved with addition of TfOH as 

a catalyst. 

 

Cyclic acetal monomers present an alternative path to accessing polyacetal materials. One such 

material, poly(1,3-dioxolane) (PDXL) is a tough thermoplastic which has been used since the 

1940s for a variety of applications, such as wax substitutes, plasticizers for rubber, and water-
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soluble lubricant [163]. PDXL can be readily obtained by rapid polymerization of 1,3-dioxolane 

(DXL) under acidic conditions. However, actualizing the potential of PDXL has proven to be 

challenging, as polyacetals with high molecular weights are difficult to access [164]. 

 

 
Fig. 63. Living cationic polymerization of cyclic acetals mediated by InBr3 and bromomethyl 

methyl ether (MOMBr) [165]. 

 

In 2021, Coates et al. established a living cationic polymerization approach to high molecular 

weight PDXL (Fig. 63) [165]. MOMBr and InBr3 were identified as an efficient initiator/catalyst 

pair for controlled cationic polymerization of DXL. This system was also applicable to other cyclic 

acetal monomers with different ring sizes, such as 1,3-dioxepane (DXP), 1,3-dioxocane (DXC), 

1,3,7-trioxocane (TXC), and trans-hexahydro-1,3-benzodioxole (t-HBD). The polymerization met 

the characteristics for living polymerization, including a linear relationship between Mn and 

[M]0:[I]0, and successful chain extension. The thermogravimetric analysis (TGA) indicated good 

thermal stability for each polyacetal derivative, with degradation temperatures measured to be 

>337 ºC. Notably, the semicrystalline PDXL displayed similar thermal properties to several 

commercial plastics, such as poly(lactic) acid and poly(ethylene) oxide (Tg = -63 ºC, Tm = 58 ºC). 

A high MW PDXL (180 kDa) exhibited excellent mechanical properties (σB = 40.4 ± 1.2 MPa, εB 

= 720 ± 20%), comparable to those of isotactic propylene and high-density polyethylene. 

Moreover, the addition of catalytic amount of camphorsulfonic acid (2 mol %) to neat PDXL at 

150 ºC efficiently depolymerized PDXL back to DXL, which was collected by simple distillation 

in nearly quantitative yield. Repolymerization of the recovered monomer resulted in PDXL with 

tensile properties identical to pristine PDXL of similar molecular weight, suggesting a circular 

monomer-polymer-monomer life cycle of the polyacetals materials. In 2023, by using meerwein 
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salts [Et3O+][PF6-] as an initiator and DTBP as a proton trap, Coates and coworkers accessed for 

the first time ultra-high-molecular-weight PDXL (UHMW PDXL) [166].This UHMW PDXL 

material (Mn > 2000 kDa) displayed comparable mechanical properties to ultra-high-molecular-

weight polyethylene. 

 

  

Fig. 64. (a) Cationic copolymerization of IBVE and o-PA catalyzed by GaCl3 and EtSO3H. (b) 

Possible sequences generated by homo- and cross-propagation [167]. 

 

Copolymerization of vinyl ethers and aldehydes offers another route to accessing degradable 

polyacetals. To this end, Aoshima and coworkers developed the cationic copolymerization of 

IBVE and o-PA in the presence of GaCl3 as a Lewis acid catalyst and EtSO3H as a proton source 

(Fig. 64a) [167]. A copolymer with moderate molecular weight (Mn = 17 kDa, Đ = 1.21) was 

readily obtained. The reactivity ratios calculated using the Kelen-Tüdõs method (rIBVE = 0.49, ro-

PA = 0.09) indicated frequent crossover reactions were involved during the polymerization (Fig. 
64b). Owing to the labile acetal groups in the main chain, acid hydrolysis of the copolymer (Mn = 

17 kDa, Đ = 1.21) produced oligomers which showed significantly lower molecular weight (Mn = 

0.36 kDa, Đ = 1.44). 
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Fig. 65. Dependency of copolymerization behavior of o-PA and vinyl ethers on relative rates of 

homo- and crossover-propagation, which are affected by relative bulkiness of monomers [168]. 

 

Copolymerization of o-PA with vinyl ethers was further expanded to various bulky enol ethers. 

The copolymerizability depended on the substituent groups of the vinyl ether comonomers (Fig. 
65) [168]. Less bulky alkyl substituents correlated with better alternating propagation, vinyl ethers 

with secondary cyclic substituents also generated alternating copolymer. In contrast, vinyl ethers 

with non-locking secondary or tertiary substituents negatively impacted alternating 

copolymerization. Different propagation mechanisms were proposed to understand the impact of 

steric hinderance on homo- and crossover reactivity (Fig. 65). As the vinyl ether monomer 

becomes bulkier, steric hinderance suppresses the crossover reaction from o-PA to vinyl ethers, 

thus generating homopolymer of o-PA. On the other hand, less bulky vinyl ether monomers 

preferably react with o-PA, resulting in the copolymer formation. Moreover, all copolymers 

degraded to oligomers via acidic methanolysis or hydrolysis. For instance, a copolymer of 

isopropyl-EVE and o-PA (Mn = 9.3 kDa, Đ = 1.68) underwent complete methanolysis to yield an 

oligomer (Mn = 0.2 kDa). 
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Fig. 66. Cationic copolymerization of o-PA and Ane catalyzed by SnCl4 or GaCl3 [169]. 

 

In 2022, Aoshima and coworkers extended the comonomer scope to styrene derivatives [169]. 

Copolymerization of trans-anethole (Ane) and o-PA proceeded well in the presence of SnCl4 or 

GaCl3, generating moderate molecular weight copolymers (Mn = 12 kDa, Đ = 1.70; Mn = 9.8 kDa, 

Đ = 1.91, respectively) (Fig. 66). The copolymer synthesized by SnCl4 consisted of 47% Ane units 

and 53% o-PA units, as calculated by 1H NMR analysis. Thermal degradation of poly(Ane-co-o-

PA) began around 200 ºC and a glass transition temperature was not observed below 180 ºC. 

Moreover, the copolymer was also chemically degradable. An oligomer (Mn = 0.2 kDa) was 

obtained under methanolysis conditions. 

 

  

Fig. 67. Synthesis of a polyacetal copolymer with discrete cleavable units via controlled cationic 

copolymerization of CEVE and pMeBzA catalyzed by GaCl3 [170]. 

 
To place the cleavable acetal linkage in the specific position, Aoshima et al. developed an elegant 

living copolymerization of vinyl ehters with aldehydes (Fig. 67) [170]. Specially, living 

polymerization of CEVE was carried out to reach 32% conversion with GaCl3 as catalyst. This 

was followed by sequential addition of five equivalents of 4-methylbenzaldehyde (pMeBzA). 

After full consumption of pMeBzA, the polymerization was allowed to continue until the lengths 

of two poly(CEVE) block ends were similar. Acid hydrolysis reflected that the CEVE-pMeBzA 
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alternating sequence was incorporated into the middle of the main chain. The degradation resulted 

in an oligomer (Mn = 5.1 kDa, Đ = 1.10), which suggested the copolymer (Mn = 10 kDa, Đ = 1.08) 

was cleaved in half. Furthermore, this strategy was applied to the synthesis of star-shaped polymers 

with degradable cores. Therefore, this method has potential applications for the development of 

stimuli-responsive polymers. 

 

 

Fig. 68. Synthesis of an alternating polyacetal copolymer with pendent imidazole ionic-liquid type 

vinyl ether units via controlled cationic copolymerization of CEVE and pMeBzA catalyzed by 

GaCl3. [171], Copyright 2019. Adapted with permission from American Chemical Society. 

 

The facile copolymerization of vinyl ethers with aldehydes allows for easy access to customized 

copolymers by post-polymerization functionalization. To this end, an alternative copolymerization 

of CEVE and pMeBzA was carried out. Followed by a SN2 reaction, a novel copolymer with 

pendent imidazole ionic-liquid type vinyl ether units was obtained (Fig. 68) [171]. Solubility tests 

in water demonstrated that UCST-type phase separation behaviors of these alternating copolymers 

were similar to that of the imidazole homopolymer poly([Me2Im][BF4]). Moreover, all the 

substituted alternating copolymers underwent complete degradation upon acid hydrolysis, yielding 

p-methylcinnamaldehyde and alcohol in quantitative yield. 
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Fig. 69. Cationic copolymerization of CEVE with (a) 1,3-dioxepane (DOP), (b) 2-methyl-1,3-

dioxolane (MDOL), and (c) 2-(4-methoxyphenyl)-1,3-dioxolane (PMPDOL) catalyzed by 

TiCl4/SnCl4 [172,173]. 

 
In addition to aldehydes, vinyl ethers can be copolymerized with cyclic acetals to prepare 

degradable polyacetals. The controlled copolymerization of vinyl ethers and cyclic acetals was 

first studied by the Aoshima group in 2016 [172]. In this work, CEVE was copolymerized with 

1,3-dioxepane (DOP) using TiCl4/SnCl4 as a catalyst system and IBEA (the adduct of IBVE and 

acetic acid) as an initiator (Fig. 69a). When fixing the feed ratio to be 1:1, a copolymer (Mn = 7.1 

kDa, Đ = 2.45) with 91% DOP conversion and 73% CEVE conversion was obtained. Acid 

hydrolysis of this copolymer resulted in an oligomer (Mn = 0.6 kDa, Đ = 2.44). Notably, the clear 

preference for DOP incorporation indicated higher reactivities of DOP comonomers and 

insufficient crossover reactions. To generate copolymers with more degradable acetal units 

dispersed throughout the chain, 2-methyl-1,3-dioxolane (MDOL) was utilized as comonomer in 

their following works (Fig. 69b). Homopropagation of MDOL was negligible, as indicated by 

insignificant integration of the 1H NMR peak unique to the MDOL-MDOL sequence. Moreover, 

the reactivity ratio measured by the Kelen-Tüdõs method was 0.06 for MDOL (rMDOL = 0.06), and 

2.6 for CEVE (rCEVE = 2.6). As a result, acid hydrolysis of poly(CEVE-co-MDOL) (Mn = 5.2 kDa, 

Đ = 1.48) resulted in oligomer with low molecular weight (Mn = 0.2 kDa, Đ = 1.33). In 2022, by 

employing a bulkier cyclic acetal, 2-(4-Methoxyphenyl)-1,3-dioxolane (PMPDOL), as a 

comonomer, a degradable alternating copolymer was obtained (Mn = 5.4 kDa, Đ = 1.23) (Fig. 69c) 
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[173]. 1H NMR analysis revealed that homopropagation of PMPDOL was absent and nearly 

alternative copolymers were produced. Further, all the peaks in the 1H NMR of the acid hydrolysis 

product (Mn = 0.1 kDa, Đ = 1.04) belonged to the cinnamaldehyde derivative from the alternating 

CEVE/PMPDOL sequence.  

 

 

Fig. 70. (a) Controlled cationic copolymerization of VAc and 5-methyl-1,3-dioxolan-4-one 

(DOLO) catalyzed by GaCl3 and (b) The proposed crossover reactions in the propagation step. 

[174], Copyright 2022. Adapted with permission from American Chemical Society. 

 

In 2022, the cationic copolymerization of VAc with 5-methyl-1,3-dioxolan-4-one (DOLO) was 

also achieved by the Aoshima group (Fig. 70a) [174]. A low molecular weight copolymer (Mn = 

3.4 kDa, Đ = 2.20) was obtained using GaCl3 as a catalyst at -40 ºC. Additionally, 1H NMR analysis 

showed well-defined copolymer structure without the presence of DOLO and VAc 

homosequences, suggesting the formation of nearly alternating copolymers. The authors suggested 

a possible mechanism in which the carbocationic species generating from VAc would preferably 

react with DOLO, whereas the carbocation derives from DOLO fully prevents it from 

homopolymerization (Fig. 70b). As a result, alternative chain growth was readily achieved, 

engendering degradable copolymers.  

 

A highly branched copolymer (Mn = 1.5 kDa, Đ = 7.65) was prepared from copolymerization of 

VAc and a non-substituted cyclic acetal 1,3-dioxane (DOX) (Fig. 71) [174]. The acetoxy moieties 
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in the polymer chains could be abstracted by an electrophile, generating oxocarbenium species and 

thus resulting in branching polymerization. The copolymer was degradable by both acid and base. 

The addition of hydrochloric acid and propanol resulted in an oligomer (Mn = 0.4 kDa, Đ = 2.2). 

Subjecting the copolymer to K2CO3 caused degradation of hemiacetal moieties, leading to 

dramatic reduction of the molecular weight (Mn = 0.2 kDa, Đ = 1.5). 

 

  

Fig. 71. Cationic copolymerization of VAc and 1,3-dioxane (DOX) catalyzed by GaCl3 and acidic 

degradation of branched copolymer in alcohols. [174], Copyright 2022. Adapted with permission 

from American Chemical Society. 

 

In 2023, Kamigaito and coworkers developed the precision synthesis of degradable vinyl 

copolymers via cationic RAFT copolymerization of vinyl ethers and 2-methyl-1,3-oxathiepane 

(MOTP) [175]. A moderate molecular weight copolymer poly(EVE-b-MOTP) (Mn = 22 kDa, Đ = 

1.59) was synthesized using ZnCl2 as a catalyst at -40 ºC (Fig. 72). When poly(EVE-b-MOTP) 

was treated by AgNO3 or p-toluenesulfonic acid, an oligomer with low-molecular weight (Mn = 
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2.0 kDa) was obtained. Notably, a unimodal SEC peak and low dispersity (Đ = 1.3) were observed 

for the resulting oligomer, implying the even distribution of poly(EVE) segments throughout the 

pristine copolymer. 

 

 

Fig. 72. Cationic RAFT copolymerization of EVE and 2-methyl-1,3-oxathiepane (MOTP) 

catalyzed by ZnCl2 and acidic degradation of the copolymer. [175], Copyright 2023. Adapted with 

permission from John Wiley & Sons Inc. 

 

5.2 Polysaccharides and carbohydrate polymers 
 

Polysaccharides are the most abundant class of biopolymers on Earth and play important roles in 

biology [176], renewable energy [177], and sustainable materials [178]. These polymers are 

attractive, since the labile functionality within backbones provide a good handle to trigger efficient 

degradation or depolymerization. Recently, many carbohydrate-derived monomers have been 

designed to generate (bio)degradable carbohydrate polymers, such as isosorbide [179], xylose 

[180], isohexide [181], and monosaccharide-derived cyclic carbonates [182] and lactams [183]. 

However, anionic polymerization or step growth polymerization are usually involved in these 

examples, preparing degradable polysaccharides and carbohydrate polymers via cationic 

polymerization have rarely been explored [184,185]. 

 

Schlaad and co-workers discovered a degradable polysaccharide mimetic from the cationic 

polymerization of a cellulose-derived monomer levoglucosenyl methyl ether (Fig. 73) [186]. A 
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semicrystalline polymer (Mn = 36 kDa) could be obtained when boron trifluoride etherate was used 

as an initiator. The double bonds in the polymer backbone provided a good handle for post-

polymerization functionalization. For example, addition of methyl 3-mercaptopropionate to the 

polymer backbone was furnished via a photo-induced thiol-ene reaction. More importantly, 

because of the inherent acid-lability of acetal group, the resulting polymer could be completely 

degraded in the presence of BF3•Et2O and methanol. The facile degradability andversatile 

reactivity of the double bonds makes this semicrystalline polymer a promising candidate for next-

generation functional materials. 

 

  

Fig. 73. Cellulose-derived functional polyacetal from cationic polymerization of levoglucosenyl 

methyl ether [186]. 

 

Inspired by the reversible-deactivation mechanism in living cationic polymerization, we developed 

a chemical approach to precision polysaccharides with native glycosidic linkages via living 

cationic ROP of 1,6-anhydrosugars (Fig. 74) [187]. A series of well-defined polysaccharides with 

tunable molecular weight, low dispersity, and excellent regio- and stereoselectivity were prepared 

using a boron trifluoride etherate catalyst and glycosyl fluoride initiators. The livingness of the 

polymerization was supported by a series of experiments, including first-order reaction kinetics, 

linear growth of the molecular weight over conversion, controlled molecular weights proportional 

to [M]0/[I]0 ratio, and successful chain extension and chain end modification. This methodology 

also displayed broad monomer scope, O-alkylated 1,6-anhydroglucose with various alkyl side 

chains (Me, Et, nPr, nBu, nPen, allyl), 1,6-anhydromannose, and 1,6-anhydrogalactose all exhibited 

good reactivities and excellent control over the polymerization. Notably, the synthetic protocol 

could be readily scaled up, and 1.1 grams of precise polysaccharide was obtained without loss of 

control. A well-defined a-1,6-D-glucan was prepared after global deprotection, which showed 

identical 1H NMR and 13C NMR spectra to the natural a-1,6-D-glucan. Finally, these precision 

BF3 Et2O• n
O

O

OH

H O O

O

n
O O

OS
MeO

O
MeO

O

SH

acid-promoted
degradation

levoglucosenyl 
methyl ether

150 W Hg-medium 
pressure UV lamp



 73 

polysaccharides also demonstrated excellent chemical recyclability. The quantitative 

depolymerization was observed at 80 °C in the presence of a catalytic amount of BF3•Et2O. 

Additionally, the recovered monomer was repolymerized to give corresponding polymer with an 

efficiency comparable to the pristine monomer, providing a circular monomer-polymer-monomer 

life cycle of the precision polysaccharides. 

 

 

Fig. 74. Chemically recyclable polysaccharides from living cationic polymerization of 1,6-

anhydrosugars. [187], Copyright 2023. Adapted with permission from Springer Nature Limited. 

 

5.3 Polyvinyl ethers and polyethers 
 

Due to the lack of labile functional groups, poly(vinyl ether) and polyethers are usually challenging 

to be degraded or depolymerized. Despite these challenges, considerable efforts have been made 

in the degradation/depolymerization of these polymers, which will be highlighted in the following 

subsection. 

 

In 2022, Fors and co-workers created a strong and tough plastic from the cationic polymerization 

of DHF (Fig. 75) [188]. Using PCCP as an acidic initiator, a high molecular weight poly(DHF) 
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high molecular weight sample displayed comparable tensile properties to commodity 

polycarbonate, with an ultimate tensile strength (UTS) of 70 MPa, a toughness of 14 MPa, and 

elongation at break of 52%. Moreover, the free-standing films showed excellent transparency with 

89% transmittance across visible light (380-700 nm). Furthermore, the gas permeation 

measurements suggested poly(DHF) attractive for food packing applications, given its moderate 

gas (e.g. O2, CO2) and water permeability. More importantly, it was found that poly(DHF) could 

undergo smooth degradation in the presence of hydrogen peroxide and (NH4)2Fe(SO4)2•6H2O 

(known as Fenton’s reagent). A reduction in molecular weight from 50 to ~1 kDa over  48 h was 

observed after treating polymer with Fenton’s reagent. The initial mechanistic studies 

demonstrated that a radical chain scission mechanism was likely involved in this accelerated 

oxidative degradation process. Therefore, the scalable preparation from biomass-derived 

monomer, excellent mechanical properties, high optical clarity, low oxygen and water 

permeability, and facile degradability make this material appealing for sustainable engineering 

thermoplastic manufacture.   

 

  

Fig. 75. A strong and degradable thermoplastic from living cationic polymerization of DHF. [188], 

Copyright 2022. Adapted with permission from American Chemical Society. 

 

In their pursuit of preparing 5-substituted benzofuran, Hua and co-workers found an unprecedented 

monomer-polymer-monomer process of poly(BzF) (Fig. 76) [189]. In the presence of 0.2 mol% 

of TFA in 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP), the cationic polymerization of BzF 
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proceeded efficiently, generating a poly(BzF) (Mn = 36 kDa) with 99% yield. The complete 

depolymerization of the polymer was achieved using practical pyrolysis conditions (320 °C, N2), 

and 95% of monomer could be readily recovered in gram scale. More interestingly, they also 

demonstrated that the poly(BzF) could undergo highly regioselective electrophilic aromatic 

substitution (SEAr), yielding a variety of functional polymer poly(E-BzF) with electrophiles para 

to the “alkoxy” group. Additionally, these functional polymers could also be completely 

depolymerized to engender various 5-substituted benzofuran in a range of yield of 36-91%. 

According to the DFT calculations, a radical chain scission mechanism was proposed during the 

depolymerization. Due to the relatively low bond dissociation energy (BDE = 46.2 kcal/mol at 

600.0 K), homolytic cleavage of the polymer chain readily occurred to give a pair of radicals. 

Followed by a facile b-scission pathway, monomer was generated together with another 

macroradical, which would undergo complete depolymerization in the same manner. Therefore, 

this novel monomer-polymer-monomer strategy not only served as an efficient approach for 

functional benzofuran synthesis, but also provided an ideal end-of-life solution for poly(BzF) 

materials. 

 

 

Fig. 76. A circular monomer-polymer-monomer life cycle of poly(BzF). [189], Copyright 2021. 

Adapted with permission from John Wiley & Sons Inc. 
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styrene derivatives and benzaldehyde (BzA) to create degradable polystyrene materials (Fig. 77) 
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copolymerization of pMeSt and BzA proceeded efficiently to generate copolymers with 

predetermined molecular weight and moderate dispersity. More significantly, the resulting 

copolymer featured a nearly alternating sequence, which was due to the frequent crossover reaction 

during the polymerization. Particularly, the pMeSt-derived carbocation favorably reacts with a 

BzA monomer. On the other hand, the resulting BzA-derived carbocation was exclusively captured 

by another pMeSt monomer, due to the non-homopolymerizability of BzA. Detailed analysis of 

the copolymer composition by the Kelen−Tüdõs method suggested that the monomer reactivity 

ratios were 0.42 and 0 for pMeSt and BzA, respectively. As a result, the labile sec-benzylic ether 

functionality was incorporated into the polymer main chain evenly, providing a good opportunity 

for polymer degradation. After treated by TFA (0.5 M) in dichloromethane at room temperature 

for 3 h, a significant reduction of molecular weight from 15.0 to 0.4 kDa was observed. 

Furthermore, the authors also demonstrated that the obtained copolymer showed comparable 

thermal properties to pMeSt homopolymer with a Tg of 86 °C and a Td of 353 °C. Although this 

method is incompatible with styrene copolymerization, further optimization of the conditions, such 

as Lewis acid and benzaldehydes screening, might overcome the limitation to generate degradable 

polystyrene materials. 

 

 

Fig. 77. Precise synthesis of degradable copoly(styrene) via cationic copolymerization of styrene 

derivative and benzaldehyde [190]. 

O+

O
n

Acid degradability

Nearly alternating sequence

Controllable molecular weight

Comparable thermal properties to poly(pMeSt)

TFA

acid labile

Mn = 15.0 kDa

Mn = 0.4 kDa

O
O

major

O

exclusive

O

Possible mechanism
and acid hydrolysis of copolymer

GaCl3



 77 

6. Conclusion and outlook 
 

In this review, representative recent developments of catalysts, initiating methods, control 

mechanisms, and new monomers are discussed. These advances together have allowed for a 

dramatic growth of research in cationic polymerization. Unprecedented precision polymeric 

materials with well-controlled molecular weight, dispersity, chain end group, stereochemistry, and 

backbone architecture have been generated, with some having already entered commercial 

production. Many of these materials have also demonstrated new properties that go beyond what 

can be achieved by traditional synthetic polymers, making them great candidates for emerging 

applications that gear toward sustainability and biocompatibility. While these successes deserve 

much celebration, developments in the following aspects could propel cationic polymerization 

technologies into a new phase that matches the ever-increasing demands for future materials. 

 

Integration of photo- and electro-catalysis. Using photocatalysis and electrocatalysis to initiate 

and control cationic polymerizations represents a significant advance in the last decades. They 

enable more efficient and precise control over the polymerization, thanks to the ability to fine-tune 

the redox potentials to match the reactivities of photo/electrocatalysts, monomers, and CTAs, 

creating the opportunity for achieving spatiotemporal regulation and surface patterning for 

advanced material synthesis. The recent works by Fors [71], Yan [91,92], Liao [75], and Read de 

Alaniz [94] provide inspirations for future developments in this area.  

 

New monomers. While it is likely that petroleum-based monomers will continue playing an 

important role in developing cationic polymerization techniques in academia and industry, the 

movements toward sustainable monomers and green chemistry are unstoppable. The renaissance 

of bio-based monomers such as anhydrosugars [184,185,187] and DHF [188] are a strong 

testimony of this growing trend. Compared to their petroleum-derived counterparts, bio-based 

monomers often contain higher fractions of heteroatoms, presenting new challenges as well as 

opportunities for the development of cationic polymerization techniques. Correspondingly, the 

development of new catalytic systems in response to the use of bio-based monomers in cationic 

polymerization will dramatically accelerate.    
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New control mechanisms and agents. The cationic RAFT polymerization developed by 

Kamigaito [11] in 2015 has spurred the rapid development of a variety of CTAs capable of 

mediating cationic reversible deactivation polymerization. This development is concurrent with 

the developments of new initiating methods and new monomers, creating the possibility to 

modulate the reaction conditions of cationic polymerization based on monomer reactivity and the 

demand for spatiotemporal control. Following this trend, control systems that match the 

reactivities of new monomer classes and can effectively interface with photo- and electro-catalysis 

would likely become focus of future studies.    

 

Stereochemical control. Seminal contributions by Sawamoto [112], Aoshima [121], Kamigaito 

[129], Leibfarth [115], Chen [136], and Liao [127] have revealed key insights into the catalyst and 

monomer design for controlling tacticity in cationic polymerization. Their works also 

demonstrated the profound impact of tacticity on the properties of the polymers generated from 

cationic polymerization. Significant progress can be expected in both catalyst-controlled and 

substrate-controlled stereoselective polymerization. Catalyst-controlled approaches are expected 

to benefit significantly from the cutting-edge asymmetric catalysis techniques developed in 

synthetic organic chemistry, with many chiral catalysts and reagents being applied to control 

stereochemistry during polymerization. Development of substrate-controlled approaches for bio-

based monomers, e.g., anhydrosugars, will likely require synergies with chemical biology and 

carbohydrate chemistry.   
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