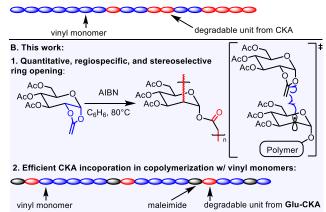
Quantitative, Regiospecific, and Stereoselective Radical Ring-Opening Polymerization of Monosaccharide Cyclic Ketene Acetals

Na-Chuan Jiang, Zefeng Zhou, Jia Niu*

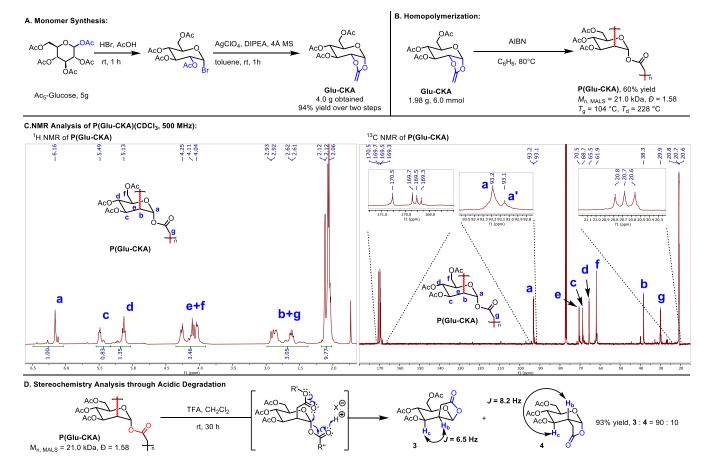
Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States *Email: jia.niu@bc.edu

ABSTRACT: Cyclic ketene acetals (CKAs) are among the most well-studied monomers for radical ring-opening polymerization (rROP). However, ring-retaining side reactions and low reactivities in homopolymerization and copolymerization remain significant challenges for existing CKAs. Here, we report that a class of monosaccharide CKAs can be facilely prepared from a short and scalable synthetic route and can undergo quantitative, regiospecific, and stereoselective rROP. NMR analyses and degradation experiments revealed a reaction mechanism involving a propagating radical at the C2 position of pyranose, with different monosaccharides exhibiting distinct stereoselectivity in the radical addition of the monomer. Furthermore, adding maleimide was found to improve the incorporation efficiency of the monosaccharide CKA in the copolymerization with vinyl monomers, producing unique degradable terpolymers with carbohydrate motifs in the polymer backbone.

Degradable polymers have shown great promise in biomedical applications^{1, 2} and offer a potential solution to address the accumulation of persistent plastics in the environment.³⁻⁶ During the past decade, significant efforts have been devoted to the development of degradable polymers.⁷⁻²⁴ Parallel to synthetic polymers, biopolymers in nature, e.g., nucleic acids, proteins, and polysaccharides, are intrinsically biodegradable. Inspired by the structures and properties of biopolymers, chemists have sought to construct degradable polymers using biologically derived building blocks. In particular, carbohydrates have been considered a promising feedstock for polymer synthesis due to their natural abundance and unique material properties.²⁵⁻²⁷ For example, carbohydrate polymers and native polysaccharides have been generated via anionic and cationic polymerizations.²⁸⁻³⁸ Despite progress in the ionic polymerization of carbohydrate-derived monomers, radical polymerization, which is widely used to synthesize vinyl polymers and has demonstrated good functional group tolerance,³⁹ remains underutilized for producing carbohydratebased degradable polymers.


Cyclic ketene acetals (CKAs) are one of the most extensively studied monomer classes for the synthesis of degradable polymers, thanks to their ability to introduce degradable ester groups into the polymer backbone via radical ring-opening polymerization (rROP).^{7-9, 24} Despite the pioneering works by Bailey,⁴⁰ Dove,⁴¹⁻⁴⁵ Nicolas,⁴⁶⁻⁵¹ Sumerlin,^{52, 53} and others,^{7-9, 54} existing CKAs still suffer from two major limitations: (1) the ring-retaining side reaction that leaves non-degradable motifs in the polymer backbone and (2) low reactivity in the copolymerization with vinyl monomers, leading to uneven incorporation and necessitating a high feeding ratio of CKA (Figure 1A). For example, in a recent example reported by Buchard *et al.*,⁵⁵ 50% CKA in the feed was needed to achieve 11.9% incorporation of the ester group, with 21.1% non-degradable motifs derived from ring-retaining side reactions of the CKA also incorporated in the resulting polymer.

To address these challenges, we envisioned that fusing a fivemembered CKA with a monosaccharide pyranose structure at C1–C2 could result in activated CKA monomers due to the anomeric effect and the additional twist of the ring structure caused by the 1,2-cis substitution, leading to higher reactivity in homopolymerization and copolymerization (Figure 1B). Furthermore, inspired by the high reactivity of the maleimide radical to CKAs, ⁵²⁻⁵⁴ we reasoned that maleimides could be added in the copolymerization of vinyl monomers and CKA to improve the incorporation of CKA (Figure 1B).


A. Two major limitations of existing CKAs:

Undesired ring-retaining propagation

2. Inefficient incorporation in copolymerization w/ vinyl monomers:

Figure 1. Overview of this work. (A) Limitations of existing CKAs. (B) Innovations of this work: 1) quantitative, regiospecific, and stereoselective ring-opening polymerization of monosaccharide CKAs; 2) efficient incorporation of monosaccharide CKAs in the copolymerization with vinyl monomers and maleimide.

Figure 2. Synthesis and homopolymerization of Glu-CKA. (A) Synthetic route. (B) Homopolymerization of Glu-CKA. Reaction conditions: **Glu-CKA** (6.0 mmol), azobisisobutyronitrile (**AIBN**, 2.0 mol%, 0.12 mmol), C₆H₆ (30 mL, 0.2 M), 80 °C, under N₂ atmosphere, 24 h. Isolated yield is shown. (C) ¹H and ¹³C NMR spectra of **P(Glu-CKA)**. Symbol **a'** indicates the anomeric carbon in minor diastereomeric repeating unit. (D) Acidic degradation of **P(Glu-CKA)**. Stereochemistry of **P(Glu-CKA)** was assigned by NOE and coupling constants analysis for **3** and **4**.

CKAs are typically synthesized through inefficient acidcatalyzed transacetalization-elimination process that often requires harsh reaction conditions and results in low yields. ⁷⁻⁹ Following the report by Hecht and Ko, ^{56,57} we adopted a concise route to generate the desired **Glu-CKA** in multigram quantities in 94% yield over two steps. Starting from the readily available and inexpensive D-glucose pentaacetate, this route forms the CKA moiety via anomeric bromination followed by nucleophilic attack by the neighboring 2-O-acetate group and subsequent deprotonation. It requires no column chromatography, is readily scalable, and can be finished in three hours.

Free radical polymerization of Glu-CKA (0.20 M in benzene) initiated by 2.0 mol% azobisisobutyronitrile (AIBN) initiator gave a polymer P(Glu-CKA) ($M_{n, MALS} = 21.0 \text{ kDa}$, D= 1.58, T_g = 104 °C, T_d = 228 °C) as a white solid in 60% yield. Both ¹H and ¹³C NMR spectra of **P(Glu-CKA)** are surprisingly uncomplicated (Figure 2C). They suggested that the C2-O bond of Glu-CKA was quantitatively cleaved and a new C-C bond was formed at C2 (labeled as **b** in Figure 2C). No signals associated with the ring-retaining byproducts were detected. To assign the stereochemistry of this new stereogenic center, selective cleavage of the anomeric ester in P(Glu-CKA) was performed using trifluoroacetic acid (TFA), producing lactones 3 and 4 in a 90:10 ratio (Figure 2D). Both the coupling constant analysis of the ¹H NMR ($J_{bc} = 6.5$ Hz) and the Nuclear Overhauser Effect spectroscopy (NOESY) (Figure S16) suggested that proton b in 3 is equatorial, whereas proton b in

4 is axial. Such assignments are also consistent with the spectra of 4 in the literature.⁵⁸ Similarly, basic degradation of **P(Glu-CKA)** using sodium methoxide also suggest that proton **b** is predominantly equatorial in **P(Glu-CKA)** (Figure S18). Hence, these analyses allowed us to assign the newly formed C–C bond at C2 to be predominantly axial and in the *S* configuration. Similar stereochemistry preference has been observed by Ngai and coworkers in the radical addition involving the C2 radical of glucose.⁵⁹⁻⁶²

To determine how the monosaccharide structure influences stereoselectivity, we next prepared Man-CKA and Gal-CKA using the similar method from D-mannose pentaacetate (81% yield) and D-galactose pentaacetate (90% yield), respectively (Figure S1). Free radical polymerization of these monomers generated P(Man-CKA) ($M_{\rm n, MALS} = 16.7 \text{ kDa}$, D = 1.63, $T_{\rm g} =$ 102 °C, $T_d = 225$ °C) and **P(Gal-CKA)** ($M_{n, MALS} = 11.8 \text{ kDa}$, D= 1.38, $T_{\rm g}$ = 72 °C, $T_{\rm d}$ = 220 °C) in 58% and 40% yield, respectively (Figure 3A, Figure S6-11). The acidic degradation of P(Man-CKA) gave the same lactones 3 and 4 as the degradation products of P(Glu-CKA) in a 21:79 ratio. The acidic degradation of P(Gal-CKA) gave two new lactones 5 and 6 in an 80:20 ratio. ¹H NMR of 5 revealed a $J_{bc} = 6.5$ Hz between protons b and c, in agreement with a vicinal axialequatorial coupling. 1 H NMR of 6 revealed a $J_{bc} = 10.6$ Hz between protons \mathbf{b} and \mathbf{c} , in agreement with a vicinal axial-axial interaction, which is consistent with the spectrum of the same compound in the literature.⁵⁸

A. Man-CKA and Gal-CKA: Free radical polymerization, degradation, and stereochemical analysis

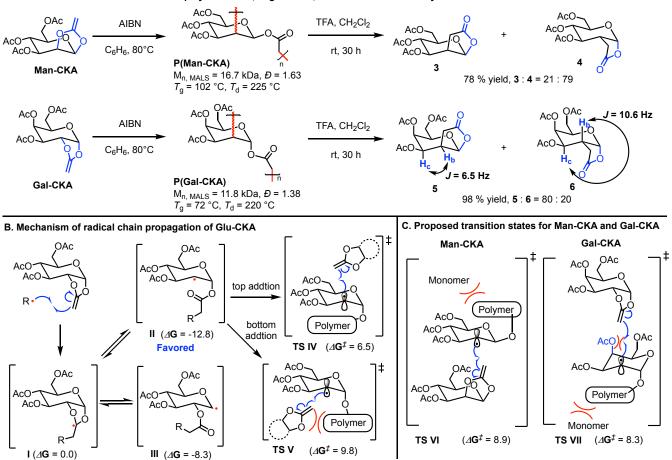
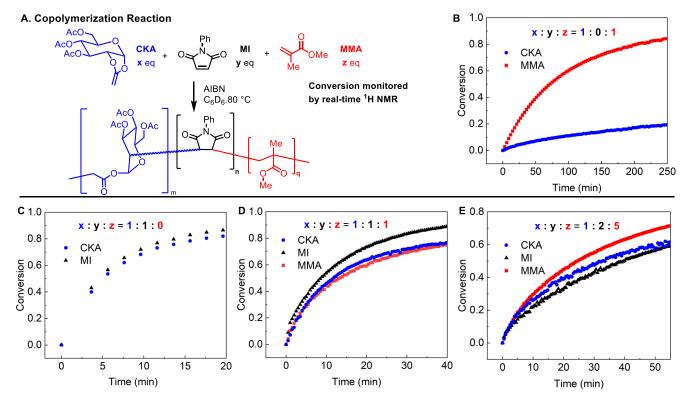



Figure 3. Stereochemical analysis of monosaccharide CKA polymerization. (A) Free radical polymerization, degradation, and stereochemical analysis for Man-CKA and Gal-CKA. (B) Mechanism of radical chain propagation pathway for Glu-CKA. ΔG , ΔG^{\dagger} indicate the Gibbs free energy and the activation energy, respectively (unit: kcal/mol). (C) Proposed transition states for Man-CKA and Gal-CKA.

DFT calculations provided further insights into the stereoselectivity of the polymerization of the monosaccharide CKAs. As shown in Figure 3B, intermediate I was generated from the radical addition of monomer Glu-CKA. Subsequent homocleavage of the C2-O bond and C1-O bond in I gave II and III, respectively. II is energetically favored over III by 4.5 kcal/mol (-12.8 kcal/mol vs. -8.3 kcal/mol), and III could also undergo 2,1-radical rearrangement to generate II. 63-67 The lower energy of II and the interconversion between II and III made II the predominant propagating species. The radical addition of II by the monomer could generate two potential diastereomers. Our calculations also suggested that the transition state for Glu-**CKA** to approach **II** from the top face of the pyranose (Figure 3B, TS IV) was 3.3 kcal/mol lower than that of a bottom face attack (Figure 3B, TS V), which could be attributed to the αglycosidic bond in II that put the bulky polymer chain in the bottom face of the propagating radical. As a result, the bottom face attack of the monomer was blocked. Likewise, the radical addition of the chain propagating species by Gal-CKA also preferred the bottom face, but the steric hindrance by the axial acetate group at C4 slightly reduced the stereoselectivity of the polymerization compared to Glu-CKA (Figure 3C, TS VII). As to Man-CKA, the β-glycosidic linkage in the TS VI placed the polymer chain on top of the pyranose, making the monomer to prefer the radical addition from the bottom face. With these

additional insights into the stereoselectivity, we chose to focus on **Glu-CKA**, which showed the highest stereoselectivity among the monomers examined, in the subsequent copolymerization studies.

Previous reports on the copolymerization of CKAs with activated vinyl monomers indicate that a high feeding ratio of the CKA is generally required.⁷⁻⁹ We wonder if the enhanced reactivity observed in the homopolymerization of Glu-CKA could extend to copolymerization. In the copolymerization at the 1:1 feed ratio of Glu-CKA and methyl methacrylate (MMA), the rate of conversion of **Glu-CKA** was significantly lower than MMA (Figure 4B). To address this challenge, we wondered if adding a third maleimide monomer could improve the incorporation of Glu-CKA, as maleimide was found to possess a high reactivity toward CKAs related to the electron donor-acceptor complex formation. 52-54 Indeed, we found that the copolymerization of Glu-CKA and N-phenyl maleimide (MI) at 1:1 feeding ratio exhibited similar rates of conversion for both monomers throughout the reaction (Figure 4C). Furthermore, copolymerization at a feed ratio of Glu-CKA: MI : MMA = 1 : 1 : 1 showed similar rates of conversion for all three monomers throughout the reaction (Figure 4D). These results suggested that the addition of MI improved the incorporation of **Glu-CKA** in the copolymerization with MMA.

Figure 4. Real-time ¹**H NMR monitoring of copolymerization.** (A) Reaction scheme; (B)–(E) Real-time ¹**H NMR monitoring of conversion as a function of reaction time:** (B) **Glu-CKA**: MMA = 1 : 1; (C) **Glu-CKA**: MI = 1 : 1; (D) **Glu-CKA**: MI : MMA = 1 : 1 : 1 (E) **Glu-CKA**: MI : MMA = 1 : 2 : 5.

We then attempted copolymerization with a higher amount of MMA relative to **Glu-CKA** and MI. While the reaction at the feeding ratio of **Glu-CKA**: MI: MMA = 1:1:5 showed lower of conversion for Glu-CKA (Figure copolymerization at the feeding ratio of Glu-CKA: MI: MMA = 1 : 2 : 5 (Figure 4E) demonstrated similar rates of conversion for all three monomers throughout the entire reaction, producing a terpolymer **coP1** in 71% yield (Figure 5A, entry 1). ¹H NMR analysis suggested the incorporated ratio of **Glu-CKA** : MI : MMA in coP1 was 1 : 3.1 : 9.3. Diffusion Ordered Spectroscopy NMR (DOSY NMR) analysis confirmed that all three components are incorporated in the same copolymer (Figure S21). Basic degradation of **coP1** by sodium methoxide resulted in significant reduction of molecular weight (Figure 5B), indicating that ester groups were efficiently incorporated into the polymer backbone. Further lowering **Glu-CKA** ratio in the feed to Glu-CKA: MI: MMA = 1:3:10 did not affect the reactivity, producing terpolymer coP2 with good degradability in 92% yield (Figure 5A, entry 2, and Figure 5C). In contrast to coP1 and coP2, a control copolymer of MI and MMA only, coP3, was poorly degradable. The slight reduction of molecular weight of coP3 under basic condition might be related to a small amount of retro-Michael reaction of the maleimide moieties⁶⁸ (Figure 5A, entry 3, and Figure S27). Next, we extend the monomers to methyl acrylate (MA) and

dimethylacrylamide (DMA). Both the resultant terpolymers **coP4** (Figure 5A, entry 4) and **coP5** (Figure 5A, entry 5) showed incorporation ratios of **Glu-CKA** comparable to the feed ratio, as well as degradability under basic conditions (Figure 5D and 5E), suggesting that **Glu-CKA** possesses good reactivity in the copolymerization with acrylates and acrylamides when MI is added as the third monomer.

In conclusion, we demonstrated that monosaccharide cyclic ketene acetals enabled quantitative, regiospecific, and stereoselective rROP. The structure of the homopolymers were confirmed by NMR analyses and degradation experiments, with the radical species at C2 acting as the propagating species during the polymerization. Structure-activity studies revealed that the monosaccharide structure profoundly influences the stereochemical outcome of the reaction, with Glu-CKA identified as an optimal monomer for stereoselective polymerization. In the copolymerization with vinyl monomers, we demonstrated that adding maleimide could increase the incorporation of Glu-CKA, thereby improving the degradability of the resultant copolymers. Overall, this work provided a promising platform for generating degradable polymers and copolymers with main-chain carbohydrate motifs for a wide range of potential applications from biomaterials to sustainable plastics.

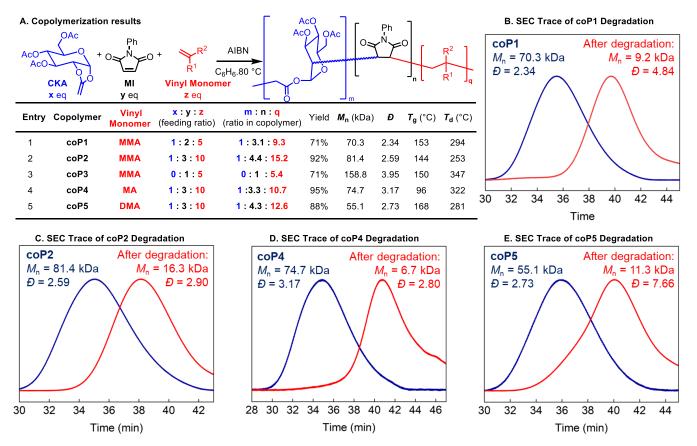


Figure 5. Synthesis and degradation of terpolymers of Glu-CKA, maleimide, and vinyl monomers. (A) Copolymerization results. (B)–(E) SEC traces of the terpolymer and their degradation products: (B) coP1, (C) coP2, (D) coP3, and (E) coP4. M_n and D were determined by the SEC analysis with DMF eluent, calibrated to polystyrene standards. ⁶⁹

ASSOCIATED CONTENT

Supporting information includes the supplementary figures, DFT calculations, characterization data, $^1\mathrm{H}/^{13}\mathrm{C}/2\mathrm{D}$ NMR spectra, DSC/TGA curves, and detailed experimental protocols (PDF). This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

Jia Niu - Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States; orcid.org/0000-0002-5622-6362; Email: jia.niu@bc.edu

Authors

Na-Chuan Jiang - Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States.

Zefeng Zhou - Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States.

Notes

The authors declare the following competing financial interest(s): a provisional patent application based on this work has been filed by Boston College (63/624,378).

ACKNOWLEDGMENT

This research is primarily supported by an NSF CAREER award (CHE-1944512) to J.N. Financial support is also provided by an ACS PRF Doctoral New Investigator Award (60747DNI7) to J.N. The NMR characterization of this research is supported by an NSF MRI award (CHE-2117246) and an NIH HEI-S10 award (1S10OD026910-01A1).

REFERENCES

- 1. Ulery, B. D.; Nair, L. S.; Laurencin, C. T. Biomedical applications of biodegradable polymers. *J. Polym. Sci., Part B: Polym. Phys.* **2011**, *49*, 832-864.
- 2. Delplace, V.; Nicolas, J. Degradable vinyl polymers for biomedical applications. *Nat. Chem.* **2015**, *7*, 771-784.
- 3. Geyer, R.; Jambeck, J. R.; Law, K. L. Production, use, and fate of all plastics ever made. *Sci. Adv.* **2017**, *3*, e1700782.
- 4. Seeley, M. E.; Song, B.; Passie, R.; Hale, R. C. Microplastics affect sedimentary microbial communities and nitrogen cycling. *Nat. Commun.* **2020**, *11*, 2372.
- 5. Schneiderman, D. K.; Hillmyer, M. A. 50th Anniversary Perspective: There Is a Great Future in Sustainable Polymers. *Macromolecules* **2017**, *50*, 3733-3749.
- 6. Coates, G. W.; Getzler, Y. D. Y. L. Chemical recycling to monomer for an ideal, circular polymer economy. *Nat. Rev. Mater.* **2020**, *5*, 501-516.
- 7. Agarwal, S. Chemistry, chances and limitations of the radical ring-opening polymerization of cyclic ketene acetals for the synthesis of degradable polyesters. *Polym. Chem.* **2010**, *1*, 953-964.

- 8. Tardy, A.; Nicolas, J.; Gigmes, D.; Lefay, C.; Guillaneuf, Y. Radical ring-opening polymerization: Scope, limitations, and application to (bio) degradable materials. *Chem. Rev.* **2017**, *117*, 1319-1406.
- 9. Pesenti, T.; Nicolas, J. 100th Anniversary of Macromolecular Science Viewpoint: Degradable Polymers from Radical Ring-Opening Polymerization: Latest Advances, New Directions, and Ongoing Challenges. *ACS Macro Lett.* **2020**, *9*, 1812-1835.
- 10. Paulusse, J. M. J.; Amir, R. J.; Evans, R. A.; Hawker, C. J. Free Radical Polymers with Tunable and Selective Bio- and Chemical Degradability. *J. Am. Chem. Soc.* **2009**, *131*, 9805-9812. 11. Huang, H.; Sun, B.; Huang, Y.; Niu, J. Radical Cascade-Triggered Controlled Ring-Opening Polymerization of Macrocyclic Monomers. *J. Am. Chem. Soc.* **2018**, *140*, 10402-10406.
- 12. Bingham, N. M.; Roth, P. J. Degradable vinyl copolymers through thiocarbonyl addition-ring-opening (TARO) polymerization. *Chem. Commun.* **2019**, *55*, 55-58.
- 13. Huang, H.; Wang, W.; Zhou, Z.; Sun, B.; An, M.; Haeffner, F.; Niu, J. Radical Ring-Closing/Ring-Opening Cascade Polymerization. *J. Am. Chem. Soc.* **2019**, *141*, 12493-12497.
- 14. Smith, R. A.; Fu, G.; McAteer, O.; Xu, M.; Gutekunst, W. R. Radical Approach to Thioester-Containing Polymers. *J. Am. Chem. Soc.* **2019**, *141*, 1446-1451.
- 15. Wang, W.; Zhou, Z.; Sathe, D.; Tang, X.; Moran, S.; Jin, J.; Haeffner, F.; Wang, J.; Niu, J. Degradable Vinyl Random Copolymers via Photocontrolled Radical Ring-Opening Cascade Copolymerization. *Angew. Chem., Int. Ed.* **2022**, *61*, e202113302. 16. Albanese, K. R.; Morris, P. T.; Read de Alaniz, J.; Bates, C. M.; Hawker, C. J. Controlled-Radical Polymerization of α-Lipoic Acid: A General Route to Degradable Vinyl Copolymers. *J. Am. Chem. Soc.* **2023**, *145*, 22728-22734.
- 17. Sun, H.; Ibrahim, T.; Ritacco, A.; Durkee, K. Biomass-Derived Degradable Polymers via Alternating Ring-Opening Metathesis Polymerization of Exo-Oxanorbornenes and Cyclic Enol Ethers. *ACS Macro Lett.* **2023**, 1642-1647.
- 18. Wang, W.; Rondon, B.; Wang, Z.; Wang, J.; Niu, J. Macrocyclic Allylic Sulfone as a Universal Comonomer in Organocatalyzed Photocontrolled Radical Copolymerization with Vinyl Monomers. *Macromolecules* **2023**, *56*, 2052-2061.
- 19. Watanabe, H.; Kamigaito, M. Direct Radical Copolymerizations of Thioamides To Generate Vinyl Polymers with Degradable Thioether Bonds in the Backbones. *J. Am. Chem. Soc.* **2023**, *145*, 10948-10953.
- 20. Gil, N.; Thomas, C.; Mhanna, R.; Mauriello, J.; Maury, R.; Leuschel, B.; Malval, J.-P.; Clément, J.-L.; Gigmes, D.; Lefay, C.; Soppera, O.; Guillaneuf, Y. Thionolactone as a Resin Additive to Prepare (Bio)degradable 3D Objects via VAT Photopolymerization. *Angew. Chem., Int. Ed.* **2022,** *61*, e202117700.
- 21. Lages, M.; Gil, N.; Galanopoulo, P.; Mougin, J.; Lefay, C.; Guillaneuf, Y.; Lansalot, M.; D'Agosto, F.; Nicolas, J. Degradable Latexes by Nitroxide-mediated Aqueous Seeded Emulsion Copolymerization Using a Thionolactone. *Macromolecules* **2023**, *56*, 7973-7983.
- 22. Lefay, C.; Guillaneuf, Y. Recyclable/Degradable Materials via the Insertion of Labile/Cleavable Bonds using a Comonomer Approach. *Prog. Polym. Sci.* **2023**, 101764.
- 23. Zhang, S.; Cao, C.; Jiang, S.; Huang, H. A General Strategy for Radical Ring-Opening Polymerization of Macrocyclic Allylic Sulfides. *Macromolecules* **2022**, *55*, 9411-9419.
- 24. Tardy, A.; Gil, N.; Plummer, C. M.; Siri, D.; Gigmes, D.; Lefay, C.; Guillaneuf, Y. Polyesters by a Radical Pathway:

- Rationalization of the Cyclic Ketene Acetal Efficiency. *Angew. Chem., Int. Ed.* **2020,** *59*, 14517-14526.
- 25. Xiao, R.; Grinstaff, M. W. Chemical synthesis of polysaccharides and polysaccharide mimetics. *Prog. Polym. Sci.* **2017**, *74*, 78-116.
- 26. Zhu, Y.; Romain, C.; Williams, C. K. Sustainable polymers from renewable resources. *Nature* **2016**, *540*, 354-362.
- 27. Zhang, Y.; Chan, J. W.; Moretti, A.; Uhrich, K. E. Designing polymers with sugar-based advantages for bioactive delivery applications. *J. Controlled Release* **2015**, *219*, 355-368.
- 28. Dane, E. L.; Grinstaff, M. W. Poly-amido-saccharides: synthesis via anionic polymerization of a β -lactam sugar monomer. *J. Am. Chem. Soc.* **2012**, *134*, 16255-16264.
- 29. Mikami, K.; Lonnecker, A. T.; Gustafson, T. P.; Zinnel, N. F.; Pai, P.-J.; Russell, D. H.; Wooley, K. L. Polycarbonates Derived from Glucose via an Organocatalytic Approach. *J. Am. Chem. Soc.* **2013**, *135*, 6826-6829.
- 30. Wu, L.; Zhou, Z.; Sathe, D.; Zhou, J.; Dym, S.; Zhao, Z.; Wang, J.; Niu, J. Precision native polysaccharides from living polymerization of anhydrosugars. *Nat. Chem.* **2023**, *15*, 1276-1284.
- 31. Wu, L.; Rondon, B.; Dym, S.; Wang, W.; Chen, K.; Niu, J. Regulating cationic polymerization: From structural control to life cycle management. *Prog. Polym. Sci.* **2023**, *145*, 101736.
- 32. Stidham, S. E.; Chin, S. L.; Dane, E. L.; Grinstaff, M. W. Carboxylated Glucuronic Poly-amido-saccharides as Protein Stabilizing Agents. *J. Am. Chem. Soc.* **2014**, *136*, 9544-9547.
- 33. Xiao, R.; Dane, E. L.; Zeng, J.; McKnight, C. J.; Grinstaff, M. W. Synthesis of Altrose Poly-amido-saccharides with β -N-(1 \rightarrow 2)-d-amide Linkages: A Right-Handed Helical Conformation Engineered in at the Monomer Level. *J. Am. Chem. Soc.* **2017**, *139*, 14217-14223.
- 34. Song, Y.; Ji, X.; Dong, M.; Li, R.; Lin, Y.-N.; Wang, H.; Wooley, K. L. Advancing the Development of Highly-Functionalizable Glucose-Based Polycarbonates by Tuning of the Glass Transition Temperature. *J. Am. Chem. Soc.* **2018**, *140*, 16053-16057.
- 35. Balijepalli, A. S.; Sabatelle, R. C.; Chen, M.; Suki, B.; Grinstaff, M. W. A Synthetic Bioinspired Carbohydrate Polymer with Mucoadhesive Properties. *Angew. Chem., Int. Ed.* **2020**, *59*, 704-710.
- 36. Song, Y.; Yang, X.; Shen, Y.; Dong, M.; Lin, Y.-N.; Hall, M. B.; Wooley, K. L. Invoking Side-Chain Functionality for the Mediation of Regioselectivity during Ring-Opening Polymerization of Glucose Carbonates. *J. Am. Chem. Soc.* **2020**, *142*, 16974-16981.
- 37. Xiao, R.; Zeng, J.; Bressler, E. M.; Lu, W.; Grinstaff, M. W. Synthesis of bioactive $(1 \rightarrow 6)$ - β -glucose branched poly-amidosaccharides that stimulate and induce M1 polarization in macrophages. *Nat. Commun.* **2022,** *13*, 4661.
- 38. Shen, Y.; Leng, M.; Yang, Y.; Boopathi, S. K.; Sun, G.; Wooley, K. L. Elucidation of Substantial Differences in Ring-Opening Polymerization Outcomes from Subtle Variation of Glucose Carbonate-Based Monomer Substitution Patterns and Substituent Types. *J. Am. Chem. Soc.* **2023**, *145*, 15405-15413.
- 39. Matyjaszewski, K.; Davis, T. P. *Handbook of radical polymerization*; John Wiley & Sons, 2002.
- 40. Bailey, W. J.; Ni, Z.; Wu, S.-R. Synthesis of poly-ε-caprolactone via a free radical mechanism. Free radical ring-opening polymerization of 2-methylene-1,3-dioxepane. *J. Polym. Sci., Polym. Chem. Ed.* **1982**, *20*, 3021-3030.
- 41. Hedir, G. G.; Bell, C. A.; Ieong, N. S.; Chapman, E.; Collins, I. R.; O'Reilly, R. K.; Dove, A. P. Functional Degradable Polymers

- by Xanthate-Mediated Polymerization. *Macromolecules* **2014**, *47*, 2847-2852.
- 42. Bell, C. A.; Hedir, G. G.; O'Reilly, R. K.; Dove, A. P. Controlling the synthesis of degradable vinyl polymers by xanthate-mediated polymerization. *Polym. Chem.* **2015**, *6*, 7447-7454.
- 43. Hedir, G. G.; Bell, C. A.; O'Reilly, R. K.; Dove, A. P. Functional Degradable Polymers by Radical Ring-Opening Copolymerization of MDO and Vinyl Bromobutanoate: Synthesis, Degradability and Post-Polymerization Modification. *Biomacromolecules* **2015**, *16*, 2049-2058.
- 44. Hedir, G.; Stubbs, C.; Aston, P.; Dove, A. P.; Gibson, M. I. Synthesis of Degradable Poly(vinyl alcohol) by Radical Ring-Opening Copolymerization and Ice Recrystallization Inhibition Activity. *ACS Macro Lett.* **2017**, *6*, 1404-1408.
- 45. Hedir, G. G.; Arno, M. C.; Langlais, M.; Husband, J. T.; O'Reilly, R. K.; Dove, A. P. Poly(oligo(ethylene glycol) vinyl acetate)s: A Versatile Class of Thermoresponsive and Biocompatible Polymers. *Angew. Chem., Int. Ed.* **2017**, *56*, 9178-9182.
- 46. Delplace, V.; Guégain, E.; Harrisson, S.; Gigmes, D.; Guillaneuf, Y.; Nicolas, J. A ring to rule them all: a cyclic ketene acetal comonomer controls the nitroxide-mediated polymerization of methacrylates and confers tunable degradability. *Chem. Commun.* **2015**, *51*, 12847-12850.
- 47. Tran, J.; Guégain, E.; Ibrahim, N.; Harrisson, S.; Nicolas, J. Efficient synthesis of 2-methylene-4-phenyl-1,3-dioxolane, a cyclic ketene acetal for controlling the NMP of methyl methacrylate and conferring tunable degradability. *Polym. Chem.* **2016**, *7*, 4427-4435.
- 48. Tardy, A.; Honoré, J.-C.; Tran, J.; Siri, D.; Delplace, V.; Bataille, I.; Letourneur, D.; Perrier, J.; Nicoletti, C.; Maresca, M.; Lefay, C.; Gigmes, D.; Nicolas, J.; Guillaneuf, Y. Radical Copolymerization of Vinyl Ethers and Cyclic Ketene Acetals as a Versatile Platform to Design Functional Polyesters. *Angew. Chem., Int. Ed.* **2017**, *56*, 16515-16520.
- 49. Guégain, E.; Michel, J.-P.; Boissenot, T.; Nicolas, J. Tunable Degradation of Copolymers Prepared by Nitroxide-Mediated Radical Ring-Opening Polymerization and Point-by-Point Comparison with Traditional Polyesters. *Macromolecules* **2018**, *51*, 724-736.
- 50. Guégain, E.; Tran, J.; Deguettes, Q.; Nicolas, J. Degradable polymer prodrugs with adjustable activity from drug-initiated radical ring-opening copolymerization. *Chem. Sci.* **2018**, *9*, 8291-8306
- 51. Guégain, E.; Zhu, C.; Giovanardi, E.; Nicolas, J. Radical Ring-Opening Copolymerization-Induced Self-Assembly (rROPISA). *Macromolecules* **2019**, *52*, 3612-3624.
- 52. Hill, M. R.; Guégain, E.; Tran, J.; Figg, C. A.; Turner, A. C.; Nicolas, J.; Sumerlin, B. S. Radical Ring-Opening Copolymerization of Cyclic Ketene Acetals and Maleimides Affords Homogeneous Incorporation of Degradable Units. *ACS Macro Lett.* **2017**, *6*, 1071-1077.
- 53. Hill, M. R.; Kubo, T.; Goodrich, S. L.; Figg, C. A.; Sumerlin, B. S. Alternating Radical Ring-Opening Polymerization of Cyclic Ketene Acetals: Access to Tunable and Functional Polyester Copolymers. *Macromolecules* **2018**, *51*, 5079-5084.
- 54. Shi, Y.; Agarwal, S. Thermally stable optically transparent copolymers of 2-methylene-1, 3-dioxepane and N-phenyl

- maleimide with degradable ester linkages. *e-Polym.* **2015,** *15*, 217-226
- 55. Hardy, C.; Levere, M. E.; Kociok-Kohn, G.; Buchard, A. Radical Ring Opening Polymerization of Cyclic Ketene Acetals Derived From d-Glucal. *ACS Macro Lett.* **2023**, *12*, 1443-1449.
- 56. Sznaidman, M. L.; Johnson, S. C.; Crasto, C.; Hecht, S. M. Carbohydrate Cyclic Ketene Acetals. *J. Org. Chem.* **1995**, *60*, 3942-3943.
- 57. Ko, Y.-J.; Shim, S.-B.; Shin, J.-H. Facile Synthesis of 2-O-Iodoacetyl Protected Glycosyl Iodides: Useful Precursors of 1→2-Linked 1,2-trans-Glycosides. *Org. Lett.* **2009**, *11*, 609-612.
- 58. Yousuf, S. K.; Mukherjee, D.; L, M.; Taneja, S. C. Highly Regio- and Stereoselective One-Pot Synthesis of Carbohydrate-Based Butyrolactones. *Org. Lett.* **2011**, *13*, 576-579.
- 59. Zhao, G.; Yao, W.; Kevlishvili, I.; Mauro, J. N.; Liu, P.; Ngai, M.-Y. Nickel-Catalyzed Radical Migratory Coupling Enables C-2 Arylation of Carbohydrates. *J. Am. Chem. Soc.* **2021**, *143*, 8590-8596.
- 60. Zhao, G.; Yao, W.; Mauro, J. N.; Ngai, M.-Y. Excited-State Palladium-Catalyzed 1,2-Spin-Center Shift Enables Selective C-2 Reduction, Deuteration, and Iodination of Carbohydrates. *J. Am. Chem. Soc.* **2021**, *143*, 1728-1734.
- 61. Yao, W.; Zhao, G.; Wu, Y.; Zhou, L.; Mukherjee, U.; Liu, P.; Ngai, M.-Y. Excited-State Palladium-Catalyzed Radical Migratory Mizoroki—Heck Reaction Enables C2-Alkenylation of Carbohydrates. *J. Am. Chem. Soc.* **2022**, *144*, 3353-3359.
- 62. Zhao, G.; Mukherjee, U.; Zhou, L.; Wu, Y.; Yao, W.; Mauro, J. N.; Liu, P.; Ngai, M.-Y. C2-ketonylation of carbohydrates via excited-state palladium-catalyzed 1,2-spin-center shift. *Chem. Sci.* **2022**, *13*, 6276-6282.
- 63. Barclay, L.; Griller, D.; Ingold, K. Kinetic applications of electron paramagnetic resonance spectroscopy. 38. Rearrangement of. beta.-(acyloxy) alkyl and. beta.-(benzoyloxy) alkyl radicals. *J. Am. Chem. Soc.* **1982**, *104*, 4399-4403.
- 64. Barclay, L. R. C.; Lusztyk, J.; Ingold, K. Mechanism of rearrangement of. beta.-acyloxyalkyl radicals. *J. Am. Chem. Soc.* **1984**, *106*, 1793-1796.
- 65. Giese, B.; Gröninger, K. S.; Witzel, T.; Korth, H.-G.; Sustmann, R. Synthesis of 2-Deoxy Sugars. *Angew. Chem., Int. Ed.* **1987**, *26*, 233-234.
- 66. Korth, H. G.; Sustmann, R.; Groeninger, K. S.; Leisung, M.; Giese, B. Electron spin resonance spectroscopic investigation of carbohydrate radicals. 4. 1, 2-Acyloxyl migration in pyranosyl radicals. *J. Org. Chem.* **1988**, *53*, 4364-4369.
- 67. Praly, J.-P., Structure of anomeric glycosyl radicals and their transformations under reductive conditions. In *Advances in Carbohydrate Chemistry and Biochemistry*, Academic Press: 2000; Vol. 56, pp 65-151.
- 68. Wu, H.; LeValley, P. J.; Luo, T.; Kloxin, A. M.; Kiick, K. L. Manipulation of Glutathione-Mediated Degradation of Thiol–Maleimide Conjugates. *Bioconjugate Chem.* **2018**, *29*, 3595-3605. 69. Because the dn/dc values of the copolymers change over different copolymer compositions, MALS detector could not be used to accurately measure the M_n and \mathcal{D} of the statistical copolymers.

For TOC use only:

