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ABSTRACT: Cyclic ketene acetals (CKAs) are among the most well-studied monomers for radical ring-opening polymerization
(rROP). However, ring-retaining side reactions and low reactivities in homopolymerization and copolymerization remain significant
challenges for existing CKAs. Here, we report that a class of monosaccharide CKAs can be facilely prepared from a short and scalable
synthetic route and can undergo quantitative, regiospecific, and stereoselective rROP. NMR analyses and degradation experiments
revealed a reaction mechanism involving a propagating radical at the C2 position of pyranose, with different monosaccharides
exhibiting distinct stereoselectivity in the radical addition of the monomer. Furthermore, adding maleimide was found to improve the
incorporation efficiency of the monosaccharide CKA in the copolymerization with vinyl monomers, producing unique degradable

terpolymers with carbohydrate motifs in the polymer backbone.

Degradable polymers have shown great promise in
biomedical applications > and offer a potential solution to
address the accumulation of persistent plastics in the
environment.*¢ During the past decade, significant efforts have
been devoted to the development of degradable polymers.”**
Parallel to synthetic polymers, biopolymers in nature, e.g.,
nucleic acids, proteins, and polysaccharides, are intrinsically
biodegradable. Inspired by the structures and properties of
biopolymers, chemists have sought to construct degradable
polymers using biologically derived building blocks. In
particular, carbohydrates have been considered a promising
feedstock for polymer synthesis due to their natural abundance
and unique material properties.”?’ For example, carbohydrate
polymers and native polysaccharides have been generated via
anionic and cationic polymerizations.”*** Despite progress in
the ionic polymerization of carbohydrate-derived monomers,
radical polymerization, which is widely used to synthesize vinyl
polymers and has demonstrated good functional group
tolerance,*® remains underutilized for producing carbohydrate-
based degradable polymers.

Cyclic ketene acetals (CKAs) are one of the most extensively
studied monomer classes for the synthesis of degradable
polymers, thanks to their ability to introduce degradable ester
groups into the polymer backbone via radical ring-opening
polymerization (rROP).”* > Despite the pioneering works by
Bailey,* Dove,** Nicolas,*! Sumerlin,> 3 and others,”* 3
existing CKAs still suffer from two major limitations: (1) the
ring-retaining side reaction that leaves non-degradable motifs
in the polymer backbone and (2) low reactivity in the
copolymerization with vinyl monomers, leading to uneven
incorporation and necessitating a high feeding ratio of CKA
(Figure 1A). For example, in a recent example reported by
Buchard ef al.,>® 50% CKA in the feed was needed to achieve
11.9% incorporation of the ester group, with 21.1% non-
degradable motifs derived from ring-retaining side reactions of
the CKA also incorporated in the resulting polymer.

To address these challenges, we envisioned that fusing a five-
membered CKA with a monosaccharide pyranose structure at
C1-C2 could result in activated CKA monomers due to the

anomeric effect and the additional twist of the ring structure
caused by the 1,2-cis substitution, leading to higher reactivity
in homopolymerization and copolymerization (Figure 1B).
Furthermore, inspired by the high reactivity of the maleimide
radical to CKAs,”>* we reasoned that maleimides could be
added in the copolymerization of vinyl monomers and CKA to
improve the incorporation of CKA (Figure 1B).

A. Two major limitations of existing CKAs:
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Figure 1. Overview of this work. (A) Limitations of existing
CKAs. (B) Innovations of this work: 1) quantitative, regiospecific,
and stereoselective ring-opening polymerization of
monosaccharidle CKAs; 2) efficient incorporation of
monosaccharidle CKAs in the copolymerization with vinyl
monomers and maleimide.
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Figure 2. Synthesis and homopolymerization of Glu-CKA. (A) Synthetic route. (B) Homopolymerization of Glu-CKA. Reaction
conditions: Glu-CKA (6.0 mmol), azobisisobutyronitrile (AIBN, 2.0 mol%, 0.12 mmol), C¢Hs (30 mL, 0.2 M), 80 °C, under N, atmosphere,
24 h. Isolated yield is shown. (C) 'H and '*C NMR spectra of P(Glu-CKA). Symbol a’ indicates the anomeric carbon in minor diastereomeric
repeating unit. (D) Acidic degradation of P(Glu-CKA). Stereochemistry of P(Glu-CKA) was assigned by NOE and coupling constants

analysis for 3 and 4.

CKAs are typically synthesized through inefficient acid-
catalyzed transacetalization-elimination process that often
requires harsh reaction conditions and results in low yields.™
Following the report by Hecht and Ko, *” we adopted a concise
route to generate the desired Glu-CKA in multigram quantities
in 94% yield over two steps. Starting from the readily available
and inexpensive D-glucose pentaacetate, this route forms the
CKA moiety via anomeric bromination followed by
nucleophilic attack by the neighboring 2-O-acetate group and
subsequent  deprotonation. It requires no column
chromatography, is readily scalable, and can be finished in three
hours.

Free radical polymerization of Glu-CKA (0.20 M in
benzene) initiated by 2.0 mol% azobisisobutyronitrile (AIBN)
initiator gave a polymer P(Glu-CKA) (M, mars= 21.0 kDa, D
=1.58, T, =104 °C, Tq=228 °C) as a white solid in 60% yield.
Both 'H and *C NMR spectra of P(Glu-CKA) are surprisingly
uncomplicated (Figure 2C). They suggested that the C2—O bond
of Glu-CKA was quantitatively cleaved and a new C—C bond
was formed at C2 (labeled as b in Figure 2C). No signals
associated with the ring-retaining byproducts were detected. To
assign the stereochemistry of this new stereogenic center,
selective cleavage of the anomeric ester in P(Glu-CKA) was
performed using trifluoroacetic acid (TFA), producing lactones
3 and 4 in a 90:10 ratio (Figure 2D). Both the coupling constant
analysis of the 'H NMR (Jye = 6.5 Hz) and the Nuclear
Overhauser Effect spectroscopy (NOESY) (Figure S16)
suggested that proton b in 3 is equatorial, whereas proton b in

4 is axial. Such assignments are also consistent with the spectra
of 4 in the literature.*® Similarly, basic degradation of P(Glu-
CKA) using sodium methoxide also suggest that proton b is
predominantly equatorial in P(Glu-CKA) (Figure S18). Hence,
these analyses allowed us to assign the newly formed C—C bond
at C2 to be predominantly axial and in the S configuration.
Similar stereochemistry preference has been observed by Ngai
and coworkers in the radical addition involving the C2 radical
of glucose.>*

To determine how the monosaccharide structure influences
stereoselectivity, we next prepared Man-CKA and Gal-CKA
using the similar method from D-mannose pentaacetate (81%
yield) and D-galactose pentaacetate (90% yield), respectively
(Figure S1). Free radical polymerization of these monomers
generated P(Man-CKA) (M, mars = 16.7 kDa, D = 1.63, Ty =
102 °C, Tq=225 °C) and P(Gal-CKA) (M, maLs= 11.8 kDa, D
=138, T, = 72 °C, Ty = 220 °C) in 58% and 40% yield,
respectively (Figure 3A, Figure S6—11). The acidic degradation
of P(Man-CKA) gave the same lactones 3 and 4 as the
degradation products of P(Glu-CKA) in a 21:79 ratio. The
acidic degradation of P(Gal-CKA) gave two new lactones 5§
and 6 in an 80:20 ratio. '"H NMR of 5 revealed a Jy. = 6.5 Hz
between protons b and ¢, in agreement with a vicinal axial-
equatorial coupling. 'H NMR of 6 revealed a Jy. = 10.6 Hz
between protons b and ¢, in agreement with a vicinal axial- axial
interaction, which is consistent with the spectrum of the same
compound in the literature.*®
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Figure 3. Stereochemical analysis of monosaccharide CKA polymerization. (A) Free radical polymerization, degradation, and
stereochemical analysis for Man-CKA and Gal-CKA. (B) Mechanism of radical chain propagation pathway for Glu-CKA. 4G, AG*
indicate the Gibbs free energy and the activation energy, respectively (unit: kcal/mol). (C) Proposed transition states for Man-CKA and

Gal-CKA.

DFT calculations provided further insights into the
stereoselectivity of the polymerization of the monosaccharide
CKAs. As shown in Figure 3B, intermediate I was generated
from the radical addition of monomer Glu-CKA. Subsequent
homocleavage of the C2—-O bond and C1-O bond in I gave II
and II1, respectively. II is energetically favored over III by 4.5
kcal/mol (-12.8 kcal/mol vs. -8.3 kcal/mol), and III could also
undergo 2,1-radical rearrangement to generate I1.5-7 The lower
energy of II and the interconversion between II and III made
II the predominant propagating species. The radical addition of
II by the monomer could generate two potential diastereomers.
Our calculations also suggested that the transition state for Glu-
CKA to approach II from the top face of the pyranose (Figure
3B, TS IV) was 3.3 kcal/mol lower than that of a bottom face
attack (Figure 3B, TS V), which could be attributed to the a-
glycosidic bond in II that put the bulky polymer chain in the
bottom face of the propagating radical. As a result, the bottom
face attack of the monomer was blocked. Likewise, the radical
addition of the chain propagating species by Gal-CKA also
preferred the bottom face, but the steric hindrance by the axial
acetate group at C4 slightly reduced the stereoselectivity of the
polymerization compared to Glu-CKA (Figure 3C, TS VII). As
to Man-CKA, the B-glycosidic linkage in the TS VI placed the
polymer chain on top of the pyranose, making the monomer to
prefer the radical addition from the bottom face. With these

additional insights into the stereoselectivity, we chose to focus
on Glu-CKA, which showed the highest stereoselectivity
among the monomers examined, in the subsequent
copolymerization studies.

Previous reports on the copolymerization of CKAs with
activated vinyl monomers indicate that a high feeding ratio of
the CKA is generally required.”” We wonder if the enhanced
reactivity observed in the homopolymerization of Glu-CKA
could extend to copolymerization. In the copolymerization at
the 1 : 1 feed ratio of Glu-CKA and methyl methacrylate
(MMA), the rate of conversion of Glu-CKA was significantly
lower than MMA (Figure 4B). To address this challenge, we
wondered if adding a third maleimide monomer could improve
the incorporation of Glu-CKA, as maleimide was found to
possess a high reactivity toward CKAs related to the electron
donor-acceptor complex formation.>>* Indeed, we found that
the copolymerization of Glu-CKA and N-phenyl maleimide
(MI) at 1:1 feeding ratio exhibited similar rates of conversion
for both monomers throughout the reaction (Figure 4C).
Furthermore, copolymerization at a feed ratio of Glu-CKA : MI
:MMA =1:1: 1 showed similar rates of conversion for all
three monomers throughout the reaction (Figure 4D). These
results suggested that the addition of MI improved the
incorporation of Glu-CKA in the copolymerization with MMA.
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Figure 4. Real-time 'H NMR monitoring of copolymerization. (A) Reaction scheme; (B)~(E) Real-time 'H NMR monitoring of
conversion as a function of reaction time: (B) Glu-CKA : MMA =1:1; (C) Glu-CKA : MI=1:1; (D) Glu-CKA: MI: MMA=1:1:1

(E) Glu-CKA : MI: MMA =1:2:5.

We then attempted copolymerization with a higher amount of
MMA relative to Glu-CKA and MI. While the reaction at the
feeding ratio of Glu-CKA : MI: MMA = 1: 1 : 5 showed lower
rate of conversion for Glu-CKA (Figure S19),
copolymerization at the feeding ratio of Glu-CKA : MI : MMA
=1:2:5 (Figure 4E) demonstrated similar rates of conversion
for all three monomers throughout the entire reaction,
producing a terpolymer coP1 in 71% yield (Figure 5A, entry 1).
'H NMR analysis suggested the incorporated ratio of Glu-CKA
: MI : MMA in coP1 was 1 : 3.1 : 9.3. Diffusion Ordered
Spectroscopy NMR (DOSY NMR) analysis confirmed that all
three components are incorporated in the same copolymer
(Figure S21). Basic degradation of coP1 by sodium methoxide
resulted in significant reduction of molecular weight (Figure
5B), indicating that ester groups were efficiently incorporated
into the polymer backbone. Further lowering Glu-CKA ratio in
the feed to Glu-CKA : MI: MMA =1 : 3 : 10 did not affect the
reactivity, producing terpolymer coP2 with good degradability
in 92% yield (Figure 5A, entry 2, and Figure 5C). In contrast
to coP1 and coP2, a control copolymer of MI and MMA only,
coP3, was poorly degradable. The slight reduction of molecular
weight of coP3 under basic condition might be related to a small
amount of retro-Michael reaction of the maleimide moieties®®
(Figure 5A, entry 3, and Figure S27). Next, we extend the
monomers to methyl acrylate (MA) and N,N-

dimethylacrylamide (DMA). Both the resultant terpolymers
coP4 (Figure 5A, entry 4) and coP5 (Figure 5A, entry 5)
showed incorporation ratios of Glu-CKA comparable to the
feed ratio, as well as degradability under basic conditions
(Figure 5D and 5E), suggesting that Glu-CKA possesses good
reactivity in the copolymerization with acrylates and
acrylamides when MI is added as the third monomer.

In conclusion, we demonstrated that monosaccharide cyclic
ketene acetals enabled quantitative, regiospecific, and
stereoselective rROP. The structure of the homopolymers were
confirmed by NMR analyses and degradation experiments, with
the radical species at C2 acting as the propagating species
during the polymerization. Structure-activity studies revealed
that the monosaccharide structure profoundly influences the
stereochemical outcome of the reaction, with Glu-CKA
identified as an optimal monomer for stereoselective
polymerization. In the copolymerization with vinyl monomers,
we demonstrated that adding maleimide could increase the
incorporation of Glu-CKA, thereby improving the
degradability of the resultant copolymers. Overall, this work
provided a promising platform for generating degradable
polymers and copolymers with main-chain carbohydrate motifs
for a wide range of potential applications from biomaterials to
sustainable plastics.
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Figure 5. Synthesis and degradation of terpolymers of Glu-CKA, maleimide, and vinyl monomers. (A) Copolymerization results. (B)—
(E) SEC traces of the terpolymer and their degradation products: (B) coP1, (C) coP2, (D) coP3, and (E) coP4. M, and D were determined
by the SEC analysis with DMF eluent, calibrated to polystyrene standards.®®
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