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Enhanced future vegetation growth with elevated
carbon dioxide concentrations could increase fire
activity
Robert J. Allen 1✉, James Gomez 1, Larry W. Horowitz 2 & Elena Shevliakova 2

Many regions of the planet have experienced an increase in fire activity in recent decades.

Although such increases are consistent with warming and drying under continued climate

change, the driving mechanisms remain uncertain. Here, we investigate the effects of

increasing atmospheric carbon dioxide concentrations on future fire activity using seven Earth

system models. Centered on the time of carbon dioxide doubling, the multi-model mean

percent change in fire carbon emissions is 66.4 ± 38.8% (versus 1850 carbon dioxide con-

centrations, under fixed 1850 land-use conditions). A substantial increase is associated with

enhanced vegetation growth due to carbon dioxide biogeochemical impacts at 60.1 ± 46.9%.

In contrast, carbon dioxide radiative impacts, including warming and drying, yield a negligible

response of fire carbon emissions at 1.7 ± 9.4%. Although model representation of fire pro-

cesses remains uncertain, our results show the importance of vegetation dynamics to future

increases in fire activity under increasing carbon dioxide, with potentially important policy

implications.
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F ire is an important Earth system process that alters eco-
system and atmospheric composition1–5. Over the last
decade, several regions, such as the western US, have

experienced an increase in the frequency and size of fires6 and a
lengthening of the fire weather season7. Fires are also projected to
increase in the coming years, with suggested drivers including
intensified drought, more frequent heatwaves, and changes in fire
suppression tactics8–13. More generally, anthropogenic climate
change has been projected to enhance fire weather across most
burnable global land area14, including the western US, Australia,
and the Mediterranean9,15–19, as well as the Amazon under low
climate mitigation scenarios20.

In addition to enhanced fire weather, increasing atmospheric
CO2 concentrations are associated with enhanced carbon uptake
and storage by the terrestrial biosphere through the CO2 fertili-
zation effect21,22. Several recent studies indicate the intensifica-
tion of terrestrial biosphere activity23–27, including “greening" of
the planet, much of which was attributed to the CO2 fertilization
effect25,28,29. However, it is uncertain how this fertilization effect
will influence fires. Higher CO2 fertilization has been estimated to
increase fire occurrence through increasing fuel load30,31, but
alternatively has been estimated to mitigate fire severity through
increasing live fuel moisture content32. These responses can also
depend on fire regimes. For example, in fuel-limited fire regimes,
fire is more responsive to fuel-loading changes whereas in
flammability-limited fire regimes, fire is more responsive to fuel
moisture changes33. Furthermore, fire regimes may also shift
from flammability- to fuel-limited or become increasingly fuel-
limited in response to climate change34.

Here, we use seven state-of-the-art Earth system models
(Methods) from the Coupled Model Intercomparison Project
version 6 (CMIP6)35, all of which include representation of fire
activity of varying complexity, to quantify the impact of an
idealized increase of CO2 on fire carbon emissions ("fFire" vari-
able from the CMIP6 database). Our goal is to assess how wildfire
activity is projected to change under idealized increases in
atmospheric CO2 in the current generation of models, and
moreover, to assess the relative importance of physical climate
impacts (e.g., warming and drying) relative to vegetation
dynamics (e.g., CO2 fertilization effect and enhanced vegetation
growth). Although the model spread is large, we find a robust
increase in fFire in response to increasing CO2, largely due to
biogeochemical mechanisms, i.e., the CO2 fertilization effect.

Results
Model evaluation. We first evaluate the ability of CMIP6 models
to simulate fire carbon emissions, using the historical simulation
from 2002-2014, which is extended through 2021 using Shared
Socioeconomic Pathway 5-8.5 (SSP5-8.5)36. Figure 1a shows the
2002-2021 annual mean fFire climatology for 12 world regions
(regions are graphically displayed in Fig. 1c) for seven CMIP6
models, as well as the corresponding climatology from two
satellite-based observational data sets (Methods), Global Fire
Emissions Database version 4.1 with small fires (GFED4.1s)37,38

and the Fire Inventory from NCAR version 2.5 (FINNv2.5)39,40.
Globally, the annual mean fFire ranges from 30.2 to 63.0 kgC
km−2 day−1 in CMCC-ESM2 and GFDL-ESM4 (Fig. 1a),
respectively, and the corresponding 90% confidence interval
(Methods) is 45.3 ± 6.6 kgC km−2 day−1. The two observational
estimates also yield a relatively broad range-indicating uncertainty
in observational estimates of fFire-at 35.6 kgC km−2 day−1 for
GFED4.1s and 49.9 kgC km−2 day−1 for FINNv2.5. Models tend
to overestimate fFire over global land relative to GFED4.1s. In
contrast, models tend to underestimate relative to FINNv2.5, but
the model-estimated 90% confidence interval includes FINNv2.5.

Figure 1a also shows that the model-estimated 90% confidence
interval for each of the 12 world regions generally includes at least
one of the observational estimates. However, considerable model
(and in some cases observational) diversity exists at the regional
scale, including notable biases (e.g., overestimation for US and
Europe). Models in general capture the observed seasonal cycle of
fFire for most world regions (Supplementary Fig. 1), including the
global land (i.e., seasonal maximum during July-August-Septem-
ber, JAS). Similar to the annual mean fFire climatology, the
simulated interannual fFire variations (Fig. 1b) agree reasonably
well with FINNv2.5, but exceed those based on GFED4.1s. The
model-estimated 90% confidence interval includes at least one of
the observational estimates for all regions except Europe (where
models tend to overestimate). Thus, although considerable
uncertainties remain, these models can reasonably reproduce
the observed amount, interannual variability and seasonality of
fire carbon emissions. Additional details are discussed in
Supplementary Note 1.

Fire response under increasing CO2. Figure 2 a shows that
nearly all land areas experience a significant fFire increase based
on the multi-model mean (MMM) under 1% per year increasing
atmospheric CO2 concentrations (based on years 100-140;
Methods). Most land areas also feature significant model agree-
ment on an increase in fFire (Fig. 2d), in particular most of North
America including the US and Canada, as well as much of Europe
and Asia. In the Southern Hemisphere, robust increases in fFire
occur in southern South America, southern South Africa and
southern/central Australia. Supplementary Figs. 2 and 3 show the
corresponding fFire responses (absolute and percent change) for
each model.

Over global land, the MMM percent increase is 127.7 ± 79.2%
and all models yield an increase, from 36.8% in CNRM-ESM2-1 to
408.6% in GFDL-ESM4 (Table 1). Re-estimating the MMM
percent increase without GFDL-ESM4 yields 80.9% ± 20.4%.
Similar conclusions (with approximately half the magnitude) are
obtained using 40 years centered on the time of CO2 doubling
(years 50–89). For example, the percent change in fFire over global
land is 66.4 ± 38.8%, ranging from 12.0% in CNRM-ESM2-1 to
202.2% in GFDL-ESM4. We note that the largest seasonal fFire
response over global land-for both absolute and relative changes-
occurs during JAS (coincident with the seasonal climatological
maximum discussed above; Supplementary Note 2).

Figure 3a shows the percent change in fFire by world region for
each model, as well as the multi-model mean and the
corresponding 90% confidence interval (Supplementary Fig. 4a
shows the absolute fFire responses). As with the climatological
analysis (Fig. 1), model spread is quite large for world regions.
Nonetheless, nearly all models yield a fFire increase for each of
the 12 regions, the notable exceptions being CNRM-ESM2-1 for
several regions and MRI-ESM2-0 for two regions. GFDL-ESM4
yields the largest increase for many regions. The 90% confidence
interval lays above the zero line for all regions except south Asia
(sA), indicating a significant increase for 11 of the 12 world
regions. Of particular note are Canada, US, Europe and central/
north Asia. Over the US, the MMM percent increase is
229.1 ± 106.2%, with a spread from 4.3% in MRI-ESM2-0 to
404.6% in CESM2. Both the western (i.e., the western third of the
US region, from 230-250∘E) and central (i.e., from 250–270°E) US
yield relatively large increases at 257.6 ± 145.2% and
267.7 ± 128.8%, respectively.

Why do the models, under idealized increases in atmospheric
CO2 concentrations, yield such a robust and large increase in
fFire? Quantifying the causes of the fFire response can be difficult,
due to the many processes that impact fire activity (“Methods”
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section), as well as the coupled nature of the atmosphere-land-
biosphere system. Fortunately, two additional sets of analogous
1% per year CO2 simulations are available (Methods), namely one
set of simulations where only the biogeochemical effects of the
increase in atmospheric CO2 concentration impact the model
state (1% per year CO2-bgc) and another set of simulations where
only the radiative effects of the increase in CO2 impact the model
state (1% per year CO2-rad).

Figure 2b, c show the MMM global maps of the fFire response
under 1% per year CO2-bgc and 1% per year CO2-rad,
respectively. Nearly all of the increase in fFire under 1% per
year CO2 occurs under 1% per year CO2-bgc, as the global
response maps are nearly indistinguishable. In contrast, 1% per
year CO2-rad shows a decrease in fFire in most locations, the
exceptions being the higher Northern Hemisphere (NH) latitudes
(e.g., boreal forest region of Canada, eastern Europe and Siberia)

and also the Tibetan Plateau region. These responses are also
quite robust (in terms of model agreement on the sign of the
response) across models (Fig. 2e, f). Supplementary Figures 5–8
show the corresponding fFire responses (absolute and percent
change) for each model.

Figure 3b, c show the percent change in fFire for each model, as
well as the multi-model mean and its 90% confidence interval, by
world regions for the 1% per year CO2-bgc and 1% per year CO2-
rad experiments, respectively (Supplementary Fig. 4b, c shows the
absolute fFire responses). For each world region, most of the
increase in fFire under 1% per year CO2 is consistent with 1% per
year CO2-bgc. In the US, for example, the MMM percent increase
under 1% per year CO2-bgc is 196.9 ± 85.1% (compared to
229.1 ± 106.2% under 1% per year CO2), with a model range from
3.9% to 398.8% in CMCC-ESM2 and GFDL-ESM4, respectively.
Over global land, the 1% per year CO2-bgc increase is

2002-2021 fFire Annual Climatologies [kgC km-2 day-1]
Annual Mean                     Standard Deviation
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Fig. 1 Regional climatologies of fire carbon emissions. 2002–2021 annual mean fire carbon emissions (fFire, [kgC km−2 day−1]) for the (a) climatology
and (b) standard deviation. Blue vertical bars represent the 90% confidence interval estimated as 1:65 ´ σffiffiffiffi

nm
p , where σ is the standard deviation across models

and nm is the number of models. Center of blue vertical bar (gray horizontal line) represents the multi-model mean. Each model’s response (symbols) is
also included, as are observations (in red) from the Global Fire Emissions Database (GFED4.1s) and the Fire inventory from NCAR version 2.5 (FINNv2.5).
Panel (c) shows the 12 world regions. The following abbreviations are used: Canada (Can; black), United States (US; magenta), Central America (cAm; sky
blue), South America (sAm; purple), south Africa (sAf; yellow), north Africa (nAf; green), Europe (Eu; pink), central and north Asia (cnA; orange), east
Asia (eA; navy), south Asia (sA; red), southeast Asia (seA; gray), and Australia (Au; beige). The average over these 12 land regions is abbreviated as “Ld".
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114.7 ± 101.3% (Table 1; compared to 127.7 ± 79.2% under 1%
per year CO2). One model, CMCC-ESM2, yields a decrease over
global land at− 3.8%. GFDL-ESM4 again yields the largest
increase at 466.4% under 1% per year CO2-bgc.

The fFire responses are much smaller for all world regions
based on 1% per year CO2-rad, and many regions lack a
significant response (i.e., the 90% confidence interval includes
zero change). Over global land, the multi-model mean percent
change is not significant at−1.3 ± 16.2%. Four models yield an
increase and three models yield a decrease (Table 1). Three of
the four models (CESM2, CMCC-ESM2 and NorESM2-LM)
that yield a fFire increase use the Community Land Model fire
module (Methods), and much of this increase occurs in the NH
boreal region (Supplementary Fig. 6a, b, g). In contrast, the two
models that yield the largest fFire decrease under 1% per year
CO2-rad (CNRM-ESM2-1 and GFDL-ESM4) yield large
decreases in the tropics, including the Amazon region and
southern Africa (Supplementary Fig. 6c, d). The only model
that shows the radiative impacts of CO2 are more important to
the increase in fFire under 1% per year CO2 is CMCC-ESM2.
Regionally, significant fFire decreases occur for south Africa
(−26.8 ± 19.1%), north Africa (−25.3 ± 22.4%) and Australia
(−21.0 ± 15.4%). In contrast, two regions yield a significant
increase including Canada (90.9 ± 89.1%) and central/north
Asia (53.2 ± 36.8%). We also note potential nonlinearity in the
fFire response (Supplementary Note 3) and we suggest it is
related to the superposition of enhanced vegetation (fuel load)
plus strong climate change (e.g., warming and drying
which can enhance fuel flammability) that occurs only in 1%
per year CO2.

Multi-Model Mean Annual Mean �fFire [kgC km-2 day-1]  

Model Agreement on the Sign of �fFire [%]

a b c

d e f

1% per year CO2                      1% per year CO2-bgc                   1% per year CO2-rad

1% per year CO2                      1% per year CO2-bgc                   1% per year CO2-rad

Fig. 2 Global maps showing the response of fire carbon emissions to idealized increases in the atmospheric concentration of carbon dioxide. a–cMulti-
model mean annual mean fire carbon emissions (fFire) response [kgC km−2 day−1] and (d–f) model agreement on the sign of the fFire response [%] under
(a, d) 1% per year CO2, (b, e) 1% per year CO2-bgc, and (c, f) 1% per year CO2-rad. Dots in a–c represent a significant response at the 90% confidence
level based on a two-tailed pooled t-test. Model agreement on the sign of the model-mean response (panels d-f) is estimated at each grid box as the
percentage of models that yield a positive or negative response. Red (blue) colors in indicate model agreement on a fFire increase (decrease). Dots in
d–f represent a significant model agreement at the 90% confidence level based on a two-tailed binomial test.

Table 1 Annual mean fire carbon emissions response over
global land.

Model Name 1% per year
CO2 (%)

1% per year
CO2-bgc (%)

1% per year
CO2-rad (%)

CESM2 26.7 (91.0) 7.8 (26.6) 0.5 (1.8)
CMCC-ESM2 24.1 (91.4) −1.0 (−3.8) 11.2 (42.6)
CNRM-ESM2-1 18.3 (36.8) 23.4 (47.1) −14.9 (−30.1)
GFDL-ESM4 293.8 (408.6) 335.4 (466.4) −15.7 (−21.9)
MPI-ESM1-2-LR 38.3 (125.9) 40.1 (131.7) 1.2 (3.8)
MRI-ESM2-0 26.9 (60.4) 48.3 (108.6) −10.3 (−23.1)
NorESM2-LM 18.1 (79.7) 5.9 (26.0) 4.1 (17.8)
MMM 63.7 (127.7) 65.7 (114.7) −3.4 (−1.3)
MMM (no GFDL-
ESM4)

25.4 (80.9) 20.8 (56.0) −1.4 (2.1)

Fire carbon emissions (fFire) responses are shown for each model and each of the three CO2

experiments. The first number shows the absolute response in units of [kgC km−2 day−1]; the
second number in parentheses shows the percent change [%]. Responses are estimated as the
difference in years 100–140 from the CO2 experiment relative to the corresponding 40 years
from the preindustrial control simulation. Individual model responses significant at the 99%
confidence level are shown in bold. Also included is the average over the 7 models (MMM) and
the corresponding MMM without GFDL-ESM4.
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Vegetation and climate responses under increasing CO2.
Figure 4a–c shows MMM global maps of the net primary
productivity (NPP; carbon uptake by vegetation after the
autotrophic respiration costs have been taken into account)
response under the three 1% per year CO2 simulations, as well
as the model agreement on the sign of the response (Fig. 4d–f).
A robust increase in NPP occurs for most locations under both
1% per year CO2 (Fig. 4a, d) and 1% per year CO2-bgc (Fig. 4b,
e). For example, over global land the MMM percent change in
NPP is 651.1 ± 167.9 kgC km−2 day−1 (74.8 ± 13.8%) for 1% per
year CO2 and 673.9 ± 223.8 kgC km−2 day−1 (77.1 ± 21.3%)
for 1% per year CO2-bgc, and all models yield an increase
(Supplementary Fig. 9). In contrast, 1% per year CO2-rad
shows relatively large NPP decreases in most locations,
except for the NH boreal region and Tibetan plateau (Fig. 4c, f).
The corresponding global land MMM percent change in
NPP is a significant decrease at−59.4 ± 41.0 kgC km−2 day−1

(− 7.3 ± 4.5%), with 6 of the 7 models yielding a decrease.
Thus, the increase in NPP under 1% per year CO2 is largely due
to the biogeochemical impacts on vegetation. That is, these
scenarios are showing the importance of the CO2 fertilization
effect21,22,25,27,29.

The second major point is that the spatial pattern of the NPP
response is quite similar to the corresponding spatial pattern of
the fFire response (Fig. 2)-not only for 1% per year CO2 and 1%
per year CO2-bgc, but interestingly also for 1% per year CO2-rad.
This is also the case for other vegetation parameters, including
leaf area index (LAI; Supplementary Figs. 10–11 and Supple-
mentary Note 4). This implies that the increase in fFire is largely
due to the increase in biomass production (i.e., more fuel to burn)
and likewise for decreases. The corresponding correlations
(between the NPP and fFire responses) across grid boxes yield
significant positive MMM correlations at 0.34, 0.26 and 0.17 for
1% per year CO2, 1% per year CO2-bgc, and 1% per year CO2-
rad, respectively. However, not all models yield a significant
positive correlation (Supplementary Table 1). Such an analysis
implicitly assumes a spatially invariant (and linear) relationship
between the two responses being correlated. However, repeating
this analysis over each world region does not yield much
improvement. This may in part also be related to the two-way
relation between fFire and NPP-an increase in fFire would also
act to consume biomass and decrease NPP (at least in the short
term). Somewhat better correlations occur between April-May-
June (AMJ) NPP and JAS fFire (Supplementary Table 2), where

1% per year CO2 1% per year CO2-bgc

1% per year CO2-rad

a b

c

Fig. 3 Regional fire carbon emissions percent change under increasing idealized increases in the atmospheric concentration of carbon dioxide. Annual
mean fire carbon emissions (fFire) percent change [%] by world region for (a) 1% per year CO2, (b) 1% per year CO2-bgc, and (c) 1% per year CO2-rad.
Blue vertical bars represent the 90% confidence interval estimated as 1:65 ´ σffiffiffiffi

nm
p , where σ is the standard deviation across models and nm is the number of

models. Center of blue vertical bar (gray horizontal line) represents the multi-model mean. Each model’s percent change (symbols) is also included. World
regions are as defined in Fig. 1.
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all models yield a significant positive correlation (MMM
correlation of 0.37) for 1% per year CO2. This improved lag
correlation implies the importance of the preceding season’s
vegetation on JAS fFire. Some models, however, still lack a
significant positive correlation under 1% per year CO2-bgc (and
1% per year CO2-rad; Supplementary Table 2). We also note that
the impact of increasing fuel load on wildfire activity can depend
on fire regimes33. For flammability-limited regions, increasing
fuel load may not increase burned area/fire carbon emissions.
Nonetheless, the similar spatial response patterns for fFire and
vegetation parameters suggests the importance of biomass to
future changes in fire carbon emissions–particularly in the
context of the CO2 biogeochemical effects on vegetation, but
also the CO2 radiative impacts on vegetation via climate
perturbations in 1% per year CO2-rad.

In addition to changes in vegetation indices under increasing
CO2, there are also significant climate responses. 1% per year CO2

(Supplementary Fig. 12) and 1% per year CO2-rad (Supplemen-
tary Fig. 13) yield very similar climate changes including warming
and an increase in precipitation over global land (but with
precipitation decreases in some regions, e.g., Amazon), as well as
drying (i.e., decreases in surface soil moisture and near-surface
relative humidity) over most land regions (Supplementary
Note 5).

There is also climate change in the 1% per year CO2-bgc
experiments (Fig. 5 and Supplementary Fig. 14 shows the
corresponding model agreement on the sign of the response).
Over global land the annual mean MMM warming is not

significant at 0.14 ± 0.19 K (versus 4.6 ± 0.50 K in 1% per year
CO2-rad). Some models, however, yield considerably larger
warming (e.g., CESM2 yields warming 0.51 K). Furthermore,
many land regions (e.g., most of North America) experience
significant warming (Fig. 5a). Additional global land annual
mean MMM climate responses include a decrease in surface
latent heat flux (Fig. 5b) of− 1.6 ± 0.56 W m−2 (percent
change of−3.8 ± 1.4%), as well as a decrease in near-surface
relative humidity (Fig. 5c) of− 0.74 ± 0.27% (− 1.1 ± 0.38%)
and total cloud cover (Fig. 5d) of− 0.30 ± 0.23%
(− 0.52 ± 0.40%), but an increase in surface soil moisture
(Fig. 5e) of 0.22 ± 0.18 kg m−2 (0.75 ± 0.71%). All of these
changes are likely driven by a decrease in transpiration (Fig. 5f)
of− 2.9 ± 1.4 W m−2 (− 15.4 ± 7.9%), due to enhanced
stomatal resistance under higher CO2 (Methods), i.e., more
efficient stomata that lose less water to the atmosphere41,42. We
note that CO2 increases can reduce transpiration through
enhanced stomatal resistance, but it can also increase
transpiration through increased LAI (as well as warming).
The fact that transpiration increases under 1% per year CO2-
bgc suggests enhanced stomatal resistance dominates over the
competing effect of enhanced LAI (e.g., Supplementary
Fig. 10b), which is consistent with the modeling results of
ref. 43. Furthermore, the decrease in transpiration is large
enough to offset the increase in evaporation at 1.3 ± 1.1 W m−2

(6.4 ± 5.2%). This increase is largely due to an increase in
evaporation from the vegetation canopy at 1.2 ± 0.87 W m−2

(18.5 ± 12.3%) as opposed to the soil (Supplementary Fig. 15).

Model Agreement on the Sign of �NPP [%]

a b c

d e f

1% per year CO2                      1% per year CO2-bgc                   1% per year CO2-rad

1% per year CO2                      1% per year CO2-bgc                   1% per year CO2-rad

Multi-Model Mean Annual Mean �NPP [kgC km-2 day-1]  

Fig. 4 Global maps showing the response of net primary productivity to idealized increases in the atmospheric concentration of carbon dioxide.
a–c Multi-model mean annual mean net primary productivity (NPP) response [kgC km−2 day−1] and (d–f) model agreement on the sign of the NPP
response [%] under (a, d) 1% per year CO2, (b, e) 1% per year CO2-bgc, and (c, f) 1% per year CO2-rad. Dots in a–c represent a significant response at the
90% confidence level based on a two-tailed pooled t-test. Red (blue) colors in d–f indicate model agreement on a NPP increase (decrease). Dots in
d–f represent a significant model agreement at the 90% confidence level based on a two-tailed binomial test.
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Near-Surface Air Temperature [K]                 Surface Latent Heat Flux [W m-2]

Multi-Model Mean Climate Responses
1% per year CO2-bgc 

Surface Soil Moisture [kg m-2]                              Transpiration [W m-2]

Near-Surface Relative Humidity [%]                        Total Cloud Cover [%]

a b

c d

e f

g h

Precipitation [mm day-1]                         Net Surface Solar Radiation [W m-2]

Surface Sensible Heat Flux [W m-2]                       Surface Wind Speed [m s-1]

i j

Fig. 5 Global maps showing climate responses under 1% per year CO2-bgc. Multi-model mean annual mean response for (a) near-surface air
temperature [K]; (b) surface latent heat flux [W m−2]; (c) near-surface relative humidity [%]; (d) total cloud cover [%]; (e) surface soil moisture [kg
m−2]; (f) transpiration [W m−2]; (g) precipitation [mm day−1]; (h) net surface solar radiation [W m−2]; (i) surface sensible heat flux [W m−2]; and (j)
surface wind speed [m s−1]. Dots represent a significant response at the 90% confidence level based on a two-tailed pooled t-test. MPI-ESM1-2-LR data is
not available for transpiration.
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Under 1% per year CO2-bgc, the overall decrease in latent heat
flux (due to less transpiration) and the increase in surface soil
moisture suggests a vertical redistribution of water, i.e., more
resides in the soil as opposed to the atmosphere. Consistent with
this notion, there is also a decrease in global land annual mean
precipitation (Fig. 5g) at−0.04 ± 0.02 mm day−1 (a percent
change of−1.7 ± 0.75%), as well as the aforementioned decrease
in cloud cover. The decrease in cloud cover is consistent with an
increase in net surface solar radiative flux (Fig. 5h) at 0.61 ± 0.49
W m−2 (0.42 ± 0.34%), which is why the surface (in particular the
NH mid- and high-latitude land) warms, and surface sensible
heat flux (Fig. 5i) increases at 1.7 ± 0.55 W m−2 (5.0 ± 2.1%).
Warming of low-latitude land (e.g., Amazon, Sub-Saharan Africa)
appears to be largely driven by the decrease in surface latent heat
flux (due to the decrease in transpiration), i.e., less of the
downwelling surface solar radiation goes into evapotranspiration,
allowing more to contribute to sensible heating. We also note a
robust decrease in near-surface wind speed (Fig. 5j) at− 0.04 ±
0.03 m s−1 (− 1.0 ± 0.78%), likely due to the increase in
vegetation and enhanced surface roughness. Thus, the vegetation
response in 1% per year CO2-bgc drives warming and a change in
land water storage, including atmospheric drying and an increase
in soil moisture. Some of these vegetation changes lead to
corresponding climate responses (e.g., decreased precipitation)
that may act to amplify the increase in fFire due to the increase in
biomass alone, whereas some may act to mute the increase in
fFire (e.g., increased soil moisture).

Traditionally, the impacts of vegetation (largely in the context
of land use and land cover change) on the surface water, radiation
and momentum fluxes are referred to as the biophysical effects,
whereas the corresponding impacts on the carbon cycle are
referred to as biogeochemical effects44. Due to uncertain climate
impacts, biophysical effects are not yet considered in land-based
climate policies45, but they may be as important as biogeochem-
ical effects (e.g., altered carbon sequestration)46. Our analysis
shows the possible importance of a combined biogeochemical-
biophysical effect, where enhanced carbon sequestration (i.e., CO2

fertilization) by vegetation under elevated CO2 impacts the
surface energy balance, and in turn, climate.

Additional investigation of mechanisms. Correlating the annual
mean fFire response with our climate variable responses yields the
expected relationships for most models, however the correlations
are relatively weak and not all models agree on the sign (Sup-
plementary Tables 3–7; Supplementary Note 6). We also conduct
a correlation analysis between fFire and several climate and
vegetation variables at each grid box over time (using the entire
140 years; example time series over global land for fFire and NPP
are included in Supplementary Fig. 16; Supplementary Note 7).
These grid box temporal correlations are generally stronger and
more consistent across models and CO2 experiments than those
based on spatially correlating the responses. For example, the
largest grid box temporal correlations between fFire and climate
variables occurs during JAS (Supplementary Fig. 17), with the
largest MMM correlations between fFire and surface soil moisture
at−0.41 for 1% per year CO2 (averaged over global land). Based
on vegetation (e.g., NPP, LAI, and vegetation carbon content
“cVeg"), the largest temporal correlations occur for AMJ vegeta-
tion and JAS fFire (Supplementary Fig. 18), with the largest
correlation of 0.36 (between fFire and cVeg under 1% per year
CO2; Supplementary Fig. 18g). All vegetation-fFire correlations
are weakest in the 1% per year CO2-rad experiment (Supple-
mentary Fig. 18c, f, i)

Thus, increasing near-surface air temperature, downwelling
surface solar radiation and net primary productivity are

associated with an increase in fFire. Similarly, decreasing surface
soil moisture, near-surface relative humidity and precipitation
(i.e., drying) are also associated with an increase in fFire. These
conclusions apply for both correlation analyses, with larger and
more consistent results when variables are correlated over time at
each grid box.

We note that although most models used here include
lightning-caused fire ignition (Methods), lightning flashrate is
prescribed from observations and hence cannot contribute to
changes in fFire (Supplementary Note 8 and Supplementary
Fig. 19). Furthermore, we perform additional analyses investigat-
ing the sensitivity of fFire to vegetation (e.g., regression slope
ΔfFire/ΔNPP) and find that GFDL-ESM4 yields very strong
sensitivities, implying the fire response in this model is
particularly sensitive to changes in vegetation (Supplementary
Note 9 and Supplementary Figs. 20–22).

Discussion
Some additional questions remain, including the spatially varying
vegetation (e.g., NPP) response under 1% per year CO2-rad
(consistent with the fFire response), with increases in the high
NH latitudes and decreases most everywhere else, particularly in
the Amazon region of South America, central America and much
of Africa (Fig. 4c). The high-latitude response is consistent with
the notion that warming (Supplementary Fig. 13a) and a longer
growing season may drive an increase in NH high-latitude (and
high-altitude) biomass47–50. There is also an increase in NH high-
latitude precipitation (Supplementary Fig. 13c), but a decrease in
surface soil moisture (Supplementary Fig. 13e). Much of the
tropical biomass responds oppositely-a decrease in vegetation
under warming51,52. These regions (e.g., Amazon) also feature
drying, including decreases in precipitation and surface soil
moisture (Supplementary Fig. 13). Thus, we suggest the vegeta-
tion decrease in many tropical regions under 1% per year CO2-
rad is related to the warming and drying. Although climate
change impacts on tropical ecosystems remains uncertain, several
studies53–57 have suggested a similar mechanism, including
drought-induced tree mortality and loss of stored carbon58–61.
We also note that two models are able to simulate changes in the
type of vegetation and both support its importance to the fFire
response (Supplementary Note 10 and Supplementary Fig. 23).

In contrast to the modeling results shown here, where the CO2

fertilization effect on vegetation dominates over the direct climate
impacts (e.g., warming and drying), several studies suggest the
opposite. For example, the European heat wave of 2003 caused
wide-spread reduction in vegetation primary productivity62.
Consistently, hotter and drier summers in both mid and high
latitudes have been associated with lower summer CO2 uptake,
implying that a warming climate need not lead to higher CO2

growing-season uptake63. Similarly, negative drought impacts on
vegetation have also been found for tropical forests (as mentioned
above). Compound extreme drought-heatwave frequency is also
projected to increase by tenfold globally under the highest
emissions scenario, along with a disproportionate negative impact
on vegetation and socio-economic productivity by the late 21st
century64.

The future emissions scenarios that feature relatively large
increases in atmospheric CO2 concentrations, such as SSP3-7.0,
yield fFire and NPP responses similar to, but weaker than those
shown here under the idealized 1% per year CO2 (Supplementary
Figs. 24–26 and Supplementary Note 11). Much of this difference
between SSP3-7.0 and 1% per year CO2 is due to GFDL-ESM4, as
its fFire response under SSP3-7.0 is less of an outlier than it was
under 1% per year CO2 (under SSP3-7.0, GFDL-ESM4’s absolute
fFire response is ~ 2x the multi-model mean, whereas under 1%
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per year CO2 it is ~ 4x the MMM). Re-estimating the corre-
sponding 90% fFire confidence intervals without GFDL-ESM4
(and MRI-ESM2-0 since it is missing fFire for SSP3-7.0) yields
19.9 ± 6.2 kgC km−2 day−1 for SSP3-7.0 and 25.1 ± 6.1 kgC km−2

day−1 for 1% per year CO2. Normalizing each of these responses
by the change in atmospheric CO2 (i.e., 422 ppm for SSP3-7.0
versus 641 ppm for 1% per year CO2) yields very similar nor-
malized absolute changes at 0.05 ± 0.01 kgC km−2 day−1 ppm−1

for SSP3-7.0 and 0.04 ± 0.01 kgC km−2 day−1 ppm−1 for 1% per
year CO2.

Additional considerations with the SSPs, which could act to
reduce the sensitivity of fFire to increasing CO2, include land use/
land cover change and parameterized fire suppression65,66. For
example, the large increase in SSP3-7.0 crop fraction (Supple-
mentary Fig. 24c and Supplementary Note 11), accounts for some
of the reduced fire activity67 (relative to 1% per year CO2, which
lacks changes in crop fraction). This is particularly the case for
GFDL-ESM4 (which is one of the models with an explicit
representation of fires in croplands; Methods), helping to explain
its weaker SSP3-7.0 versus 1% per year CO2 fFire response.

Although the fFire response in the SSPs is more difficult to
interpret, our results show a robust increase in fire carbon
emissions under idealized increases in atmospheric CO2 con-
centrations, and this response is largely due to the CO2 biogeo-
chemical effects on vegetation, i.e., the CO2 fertilization effect. We
also stress, however, the importance of interactions among both
the physical drivers (e.g., heat waves, droughts) and biotic factors.
Furthermore, we iterate that most of the models used here lack
dynamic vegetation (only GFDL-ESM4 and MPI-ESM1-2-LR
include it; Methods). The ability to simulate changing vegetation
type and distribution in response to increasing CO2 is likely
important for future wildfire activity.

Our results show that idealized increases in atmospheric CO2

lead to increases in NPP (i.e., the vegetation is fixing more carbon;
Fig. 4), which implies an enhanced carbon sink by the vegetation.
However, we also find a relatively large increase in fire carbon
emissions (e.g., Fig. 2), which would act to offset the increase in
NPP and in part mute the enhanced carbon sink by the vegeta-
tion. As the vegetation carbon content (cVeg) increases in all
models under 1% per year CO2 (MMM cVeg increase is 2.4 ± 0.51
kgC m−2), this implies the NPP increase dominates over the
increase in fFire, resulting in an overall accumulation of vegeta-
tion (enhanced carbon sink). Except for GFDL-ESM4, where the
increase in fFire is 29% as large as the increase in NPP, most
models show that the increase in fFire is a small percentage of the
increase in NPP (the MMM without GFDL-ESM4 shows the
increase in fFire is 4% as large as the increase in NPP). Similar
results exist under 1% per year CO2-bgc. Thus, despite the rela-
tively large increases in fire carbon emissions (e.g., Table 1), these
models show that vegetation will act as a carbon sink under
idealized increases in atmospheric CO2.

Our results also suggest that policy efforts to mitigate fire risk
should not overlook the importance of ecological drivers. There
are also implications for natural climate solutions68, such as
reforestation/afforestation initiatives (e.g., Trillion Trees) based
on recent assessments of the natural forest carbon potential69–71.
As the ultimate goal of such efforts is to enhance carbon
sequestration by repopulating the world’s trees, such efforts
should not overlook the possible counteracting effects of
enhanced wildfire activity.

Methods
CMIP6 models and their fire modules. It has been historically
difficult to represent fires and their emissions within Earth Sys-
tem Models65,72. This is due to a number of factors, including a

historical lack of remotely sensed fire observations, varying
human impacts on fire ignition and suppression, and the multi-
tude of factors controlling emissions from vegetation. A number
of state-of-the-art models participating in CMIP635 have adopted
fire modules into their global vegetation models within the last
decade. The Community Land Model Version 5 (CLM5)73 is
utilized by the Community Earth System Model version 2
(CESM2)74 and the Norwegian Earth System Model
(NorESM2)75. Its predecessor, CLM4.576 is used by the Euro-
Mediterranean Centre on Climate Change Earth System Model
version 2 (CMCC-ESM2)77. CLM’s fire module (CLM-Li) is
capable of parameterizing burned area, carbon emissions, as well
as biomass burning aerosol/precursor gas emissions65,66,78. Fire
occurrence in CLM-Li depends on ignitions, fire suppression, fuel
load, and fuel combustibility78–80. Ignition is parameterized as a
function of lightning frequency and population density. Fuel load
is determined by the amount of all types of vegetation and litter
present in a gridcell. CLM accounts for live leaf, stem (all of
which is aboveground), and root carbon pools, as well as inter-
mediate transfer and storage carbon pools. Dead carbon is
comprised of leaf and woody litter pools. All carbon pools except
live roots can be combusted when fire occurs, and all pools
experience fire-induced mortality, according to plant function
type-specific and tissue-specific fractions. An additional mortality
factor describes the transfer of biomass from sapwood ("live
stem") to heartwood ("dead stem") with fire65. The model does
not explicitly represent crown burning and associated enhanced
fire spread rates. Fuel combustibility is a function of soil moisture
and relative humidity, and fire spread depends on wind speed.
Once burned area is determined, the impact of the fire is calcu-
lated, including biomass and peat carbon losses, fire-induced
vegetation mortality, adjustment of the vegetation carbon:nitro-
gen pools, and fire carbon and other trace gas emissions73. CLM-
Li includes a representation of natural and anthropogenic ignition
sources and suppression along with agricultural, deforestation,
and peat fires. The Geophysical Fluid Dynamics Laboratory Earth
System Model version 4 (GFDL-ESM4)81 fire module, known as
the Fire Including Natural and Agricultural Lands model version
2 (FINAL v2)82, is capable of simulating area burned as well as
carbon, aerosol, and trace gas emissions from fires (aerosol and
trace gas emissions from fires are not included in the CMIP6
configuration of the model). These are parameterized in a similar
fashion of CLM-Li. FINAL also explicitly simulates cropland and
pasture management fires separately from non-agricultural
fires83, and also includes a representation of crown fires and
their associated enhanced fire spread rates. The impact of fires on
vegetation combines partial biomass loss and direct mortality.
The fraction of biomass lost depends on combustion rates that
differ among species and tissues, but are independent of plant
size20. The Max Planck Institute for Meteorology Earth System
Model version 1.2 (MPI-ESM-1-2)84 implements the SPread and
InTensity of FIRE (SPITFIRE) fire module85 into its land model,
JSBACH3.286,87. This configuration of SPITFIRE is capable of
simulating area burned, trace gas emissions, and carbon emis-
sions due to wildfires and anthropogenic fires. Ignitions are
parameterized similarly as the previously described models. Once
ignition commences, whether a fire spreads or not is dependent
on the probability of spread, which is a function of fuel load and
moisture content of the fuels. High moisture content and low fuel
load prevents fires from spreading into large fire events. Fuel
moisture in SPITFIRE depends on maximum temperature, dew
point temperature, precipitation, and plant functional type (PFT).
Fire spread is parameterized by PFT and wind speed. The
Meteorological Research Institute Earth System Model Version
2.0 (MRI-ESM2.0)88 uses the Hydrology, Atmosphere, and
Landsurface (HAL) model89,90. The terrestrial carbon cycle model
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is based on models of the biochemical processes of photosynthesis
at the organism leaf level91,92 and on a dynamic global vegetation
model93 on the ecosystem biogeochemical level (specific details
on its fire model are not available). The Centre National de
Recherches Météorologiques Earth system model version 2
(CNRM-ESM2)94,95 implements the Global FIRe Model (GLOB-
FIRM)96. Ignition in GLOB-FIRM is not parameterized as a
function of human activity or lightning. Instead a vegetation
threshold temperature must be reached in a gridcell (which
contains vegetation), then there is a probability that ignition will
occur or not. The occurrence of fire after an ignition is started
depends on two factors: litter moisture and fuel load. If fuel load
is less than 200 g/m2, a fire cannot occur and spread. Fires are not
allowed to occur if moisture content is above a certain level, with
the assumption that the energy from the ignition will be trans-
formed into latent heat of vaporization.

Most models translate burned area into ecosystem effects using
two general approaches65. Some models define constant combus-
tion and mortality factors to calculate the fraction of vegetation
burned or killed in a fire. Others (e.g., SPITFIRE) vary fractional
mortality and combustion based on estimated fire intensity, plant
function type-specific plant architecture and fire resistance, and
other factors.

Although most of the fire modules described above include the
effects of lightning flashrate on fire ignition, the lightning
flashrate as seen by the fire module is currently prescribed from
observations78,83,85, e.g., from a monthly climatology of lightning
flashrate based on data from the spaceborne Optical Transient
Detector (OTD) and Lightning Imaging Sensor (LIS)97,98.

Thus, although models have a wide diversity in their
representation of fire carbon emissions, all those used here
simulate “natural" fires. Such fires are those that respond to
increasing CO2 concentrations in the 1% per year CO2

experiments. The 1% per year CO2 experiments include the
same land use as in our preindustrial control runs. That is, they
include 1850 croplands and pastures, with the associated fire
regimes, and include 1850 population for the population-
dependent attributes (ignition, suppression).

Additional details on CMIP6 land and carbon cycle repre-
sentation. An overview of the carbon cycle representation CMIP6
models is given in ref. 99. Here, we present additional details,
largely focused on photosynthesis, stomatal conductance and
litter/soil carbon dynamics. Terrestrial plants open their stomata
to gain CO2 for the buildup of sugars, but the opening of the
stomata is also associated with water loss. Most plants therefore
control their stomata to achieve a high water use efficiency, i.e. a
high carbon gain per molecule of water transpired. CLM5 cal-
culates stomatal conductance using the Medlyn stomatal con-
ductance model100. The Medlyn model calculates stomatal
conductance based on net leaf photosynthesis, the vapor pressure
deficit, and the CO2 concentration at the leaf surface. Photo-
synthesis in C3 plants is derived from the Farquhar model101,
which is based on the observation that the assimilation rate in the
chloroplasts is limited either by the carboxylation rate of the
RuBP molecules (Ribulose 1,5-biphosphate) or the transport rate
of the two electrons freed during the photoreaction. Photo-
synthesis in C4 plants is based on the Collatz model102. The
photosynthate is allocated to vegetation carbon pools. The
transfer of vegetation carbon into litter-soil pools is described as a
transformation dynamical cascade going from coarse woody
debris to litter and soil organic matter pools. Recent studies have
shown that warming can promote faster decomposition of litter
fuel and decrease burn area and fire spread103. CLM5 includes a
vertically resolved soil biogeochemistry scheme with base

decomposition rates varying with depth and modified by soil
temperature, water, and oxygen limitation and also including
vertical mixing of soil carbon and nitrogen due to bioturbation,
cryoturbation and diffusion104. Additional details on CLM’s
representation of carbon cycle processes over land, including how
the model (e.g., soil carbon pools) is spun-up, can be found in the
CLM5 Technical Description105 and ref. 73.

GFDL LM4.1 includes revised transpiration and stomatal
conductance routines, which are based on the adaptive response
of stomata to limiting water that combines constraints on carbon
acquisition and hydraulic impairment20,106. Soil carbon dynamics
and biogeochemistry are represented through the Carbon,
Organisms, Rhizosphere, and Protection in the Soil Environment
(CORPSE) model107,108. There are six live carbon pools in LM4.1
representing leaves, fine roots, heartwood, sapwood, seeds, and
nonstructural carbon (i.e., sugars). Litter is broken into leaf and
coarse wood components and into fast versus slow timescale
partitions. Each of the 20 vertical soil levels in LM4.1 represents
separate fast and slow soil carbon pools along with two carbon
storage pools associated with soil microbes and microbial
products81.

MPI-ESM1-2-LR (with the JSBACH3.2 land biosphere model)
also uses the Farquhar model for C3 photosynthesis101 and the
Collatz model for C4 photosynthesis102. The photosynthesis
module in JSBACH derives the plant productivity (for carbon
issues), and also derives the stomatal conductance (for hydro-
logical issues). In a first step productivity is computed by ignoring
possible limitation in water availability87. The main assumption
here is that the leaf internal CO2-concentration is a fixed fraction
of the ambient CO2-concentration. The resulting potential
productivity determines the unstressed stomatal conductance.
Using this, the soil hydrology model is run to compute the
potential water losses from transpiration. This loss may be larger
than the water actually available to the plants from the storage in
the soils. Considering this possible water deficit, the unstressed
stomatal conductance is reduced to the stressed stomatal
conductance. The latter is then used in a second call of the
photosynthesis routine to compute the actual productivity. Litter
and soil decomposition is based on the Yasso07 model109,110,
which includes 18 carbon pools, 9 for organic material originating
from non-woody litter and another 9 for woody organic material.
Additional JSBACH3.2 details can be found in ref. 87.

The terrestrial carbon cycle model included in MRI-ESM1-089

(details on MRI-ESM2-0 are not available) is based on a model of
the biochemical processes of photosynthesis on the organism-leaf
level91,92 and on a dynamic global vegetation model on the
ecosystem-biogeochemical level93. On the leaf level, the model
calculates biochemical photosynthesis processes and the depen-
dence of CO2 exchange on stomatal conductance, which in turn
depends on temperature and soil moisture91. The model is able to
simulate the net photosynthetic effects of changes in the
photorespiratory rate, for example in response to changes in
CO2 concentration or irradiance. The photosynthetic rate of a leaf
is determined as in ref. 101 for C3 plants and as in refs. 92,111 for
C4 plants. Stomatal conductance controls the diffusion of CO2

from the atmosphere into the intercellular air spaces and thus the
supply of CO2, which affects the rates of carboxylation. Internal
CO2 adjusts to balance supply by diffusion and demand by
biochemical photosynthetic processes. Vegetation consists of 10
PFTs: 8 woody (2 tropical, 3 temperate, 3 boreal) and 2
herbaceous (tropical, temperate) types. Responses of the PFTs,
litter, and humus are calculated with formulations similar to
those in the Lund-Potstam-Jena Dynamic Global Vegetation
Model93.

Land carbon cycle and vegetation-climate interactions in
CNRM-ESM2-1 are simulated with the ISBA scheme embedded
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in SURFEXv8.0. ISBA simulates plant physiology, carbon
allocation and turnover, and carbon cycling through litter and
soil112–114. Vegetation in ISBA is represented by six biomass
pools (leaves, stem/twigs, wood, fine and coarse roots, and a
storage of nonstructural carbohydrates). Vegetation biomass is
simulated interactively based on the carbon assimilated by
photosynthesis and released by turnover and respiration. The
carbon balance of the leaves controls the vegetation phenology
and the LAI. The litter and soil organic matter module derives
from the Century soil carbon model115. It includes four litter
carbon pools which differ between each other by their location
(above- or below-ground), presumed chemical composition, and
potential decomposition rates. The three soil organic matter
reservoirs (active, slow, and passive) are characterized by their
resistance to decomposition with turnover times spanning from a
few months for the active pool to 240 years for the passive pool.
Additional CNRM-ESM2-1 land carbon cycle details can be
found in ref. 95.

Most of these models also include a prognostic representation
of the terrestrial nitrogen cycle and its coupling to land carbon
cycle99. Coupling of carbon and nitrogen dynamics can impact
the response of the biosphere to global change in several ways.
This includes a general reduction in the response of net primary
production and carbon storage to elevated levels of atmospheric
CO2, due to an increasing limit of nitrogen availability for
carboxylation enzymes and new tissue construction116. CLM5, for
example, explicitly simulates the photosynthetic capacity response
to environmental conditions through the Leaf Utilization of
Nitrogen for Assimilation (LUNA) module and accounts for how
nitrogen availability affects plant productivity through the
Fixation and Uptake of Nitrogen (FUN) module73. CNRM-
ESM2-1 includes an implicit nitrogen limitation scheme that
reduces specific leaf area with increasing CO2 concentration
based on the meta-analysis of ref. 117. MPI-ESM1-2-LR couples
nitrogen and carbon pools based on CO2-induced nitrogen
limitation118. GFDL-ESM4 does not include an interactive
nitrogen cycle.

Most of the models used here lack a Dynamic Global
Vegetation Model (DGVM) and thus do not simulate changes
in the distribution and type of vegetation in response to changes
in CO2. These models, however, do simulate changes in
vegetation physiology (e.g., photosynthesis, transpiration, stoma-
tal conductance) as well as vegetation state such as leaf area index
and canopy height65. CLM5, for example, specifies vegetation
distributions (natural plant functional types and crop functional
types) through time using a land use time series file, but
vegetation state (e.g., LAI) is prognostic73. Vegetation grows
when photosynthetic productivity is larger than respiration from
metabolic needs, and shrinks otherwise. In the first case NPP is
positive and the vegetation stores carbon (allocation), while in the
second case NPP is negative and it loses carbon (deallocation).

Two models, including MPI-ESM1-2-LR and GFDL-ESM4, are
able to simulate changes in the type of vegetation (i.e., the
biogeography of natural vegetation, as represented by PFTs, is
dynamically simulated as opposed to prescribed), and therefore
represent the broader suite of climate-vegetation-fire feedbacks.
DGVMs, including JSBACH3.287 (incorporated into MPI-ESM1-
2-LR), are based on a number of common principles. When
plants die (e.g., due to fire mortality), the space left behind (i.e.,
open spaces or “uncolonized" land) can be taken by other plants.
For PFTs (i.e., vegetation type), mortality means their coverage is
reduced, which opens spaces for migration by other PFTs. Thus,
different vegetation types compete to colonize the open spaces. In
the absence of disturbances, trees and shrubs dominate because
they preferentially take light from the grasses below. However,
because growth of woody vegetation types is slow relative to

grasses, the latter can migrate faster into open spaces after
disturbances. Furthermore, a higher NPP is considered to be a
competitive advantage. Thus, competition within the classes of
woody and non-woody vegetation types is modeled such that it is
controlled by NPP: PFTs with higher NPP migrate into
uncolonized land faster than PFTs with lower NPP87.

Vegetation dynamics in GFDL-ESM4 are represented by the
second-generation age-height-structured approach, the perfect
plasticity approximation119,120, which assumes that plants will
grow their canopies to capture available light. There are five types
of vegetation representing C3 grass, C4 grass, tropical trees,
temperate deciduous trees, and cold evergreen trees. The model
follows the evolution of a set of age cohorts composed of species
that belong to a given PFT. Several cohorts coexist and interact
within a patch or tile. Population dynamics and ecosystem
patterns emerge from the basic processes of individual growth,
reproduction and mortality, and from differences in physiological
performance associated with plant competition for light and
water resources20. To represent fire scars and their recovery after
the disturbance, fires affecting large areas ( > 1 km2) trigger the
formation of disturbed patches with reduced tree dominance.
Succession is an emergent behavior that follows with local
recovery, seed dispersal and colonization, though conditions in
newly disturbed patches tend to favor certain vegetation types
(e.g., grasses). The model implements universal dispersal within
grid cells and it does not account for the potential effect of
dispersal limitation on larger burned areas20.

CMIP6 model evaluation and satellite-based estimates of fire
activity. To evaluate the ability of CMIP6 models to simulate
fire carbon emissions, we use the historical simulation from
2002 to 2014, which is extended through 2021 using Shared
Socioeconomic Pathway 5-8.5 (SSP5-8.5)36. CMIP6 fire carbon
emissions (fFire) are defined as the carbon mass flux into the
atmosphere due to CO2 emissions from natural fires and
human ignition fires as calculated by the fire module of the
vegetation model but excluding land-use change. SSP5-8.5 is
chosen as all seven models have fFire data for this scenario. As
the historical simulation is extended by only 7 years, our results
should be independent of the exact choice of SSP, since the land
use and climate do not vary significantly across the scenarios
over this short period. When available, multiple realizations per
model are used. Different realizations have identical forcing but
are integrated from different initial conditions and thus sample
internal climate variability and sensitivity to the initial climate
state. This includes three realizations for CESM2, five realiza-
tions for CNRM-ESM2-1, and ten realizations for MPI-ESM1-
2-LR; the other four models including CMCC-ESM2, GFDL-
ESM4, MRI-ESM2-0, and NorESM2-LM have one realization
each. We do not analyze burned area, as this is not available in
most models.

The Global Fire Emissions Database version 4.1
(GFED4.1s)37,38 combines satellite information on fire activity
including burned area from the Moderate Resolution Imaging
Spectroradiometer (MODIS) and active fire detections from the
Visible and Infrared Scanner (VIRS) and the Along-Track
Scanning Radiometer (ATSR). The Carnegie-Ames-Stanford
approach (CASA) biogeochemical model is then used to convert
burned area estimates to carbon emissions using modeled fuel
consumption, which depends on the amount of flammable
biomass and combustion completeness. Monthly fire carbon
emissions are provided at 0.25∘ by 0.25∘ resolution from 1997 to
2021. Estimates include savanna, grassland and shrubland fires,
boreal forest fires, temperature forest fires, tropical deforestation
and degradation, peat fires and agricultural waste burning.
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The Fire Inventory from NCAR version 2.5 (FINNv2.5)39,40

provides daily emissions from open biomass burning at high (0.1°
by 0.1°) spatial resolution from 2002 to 2021. Open biomass
burning includes wildfire, agricultural fires, and prescribed
burning and does not include biofuel use and trash burning.
The FINN model uses satellite detection of active fires (thermal
anomalies) and the land cover type to determine the emission
estimates, based on MODIS fire detection.

Post-2016, GFED4.1s lacks the necessary conversion factors
to convert total carbon emissions to those associated with CO2

alone (i.e., to be consistent with CMIP6). Thus, to maximize the
time-period overlap between FINNv2.5 and GFED4.1s
(2002–2021), GFED4.1s fire emissions are based on total
carbon emissions. Although this introduces a small (~8%)
overestimation bias (based on 1997-2016, global GFED4.1s CO2

carbon emissions represent 92% of total carbon emissions), we
note the large uncertainties in satellite-based estimates of fire
carbon emissions, at about a factor of two. We also note that
some of the climatological differences (e.g., Fig. 1) in fire carbon
emissions are due to differing definitions of fires between the
observations, as well as differences in what types of fire each
model represents. For example, observations nominally capture
all types of fires, including wildfires, agricultural fires, peat fires
and deforestation fires. However, not all of the models used
here include a representation of each of these fire types (e.g.,
most models lack a representation of agricultural and peat
fires).

1% per year CO2 experiments. Our main analysis focuses on the
fully coupled 1% per year CO2 simulations from the same seven
models (using one realization each), where atmospheric CO2

concentrations increase from the preindustrial value ( ~ 284 ppm)
by 1% per year. The 1% per year CO2 simulations are part of the
CMIP6 DECK (Diagnostic, Evaluation and Characterization of
Klima) experiments, which use 1850 as the baseline35. In these
simulations, both biogeochemical and radiative processes respond
to the increasing atmospheric CO2 concentrations. These
experiments are integrated for 150 years. Based on a ~ 70-year
doubling time, this implies atmospheric CO2 concentrations have
doubled by year 70 and quadrupled near year 140. Two additional
sets of 1% per year CO2 simulations are also analyzed, namely a
biogeochemically (1% per year CO2-bgc) coupled simulation and
a radiatively (1% per year CO2-rad) coupled simulation121. Under
1% per year CO2-bgc, biogeochemical processes over land and
ocean respond to increasing atmospheric CO2 concentrations, but
the atmospheric radiative transfer calculations use a CO2 con-
centration that is fixed at the preindustrial value99. Under 1% per
year CO2-rad, increasing atmospheric CO2 concentration impacts
atmospheric radiative transfer and thus climate, but not the
biogeochemical processes directly over land and ocean (which see
the preindustrial atmospheric CO2 concentration). These two sets
of simulations are used to better understand the drivers of
changes in fire carbon emissions. We analyze these 7 models as
they are the models that performed the necessary simulations (1%
per year CO2 as well as 1% per year CO2-bgc and 1% per year
CO2-rad), while also including an interactive representation of
fire activity. All model data (e.g., monthly fFire) was downloaded
from the Earth System Grid Federation at https://esgf-node.llnl.
gov/search/cmip6/.

Data processing and statistics. Model horizontal resolution
ranges from ~ 100 km (e.g., CESM2) to ~200 km (e.g., MPI-
ESM1-2-LR). We use monthly mean CMIP6 data and spatially
interpolate all data to a 2.5° × 2.5° grid using conservative inter-
polation with the Earth System Modeling Framework software.

The climate response is estimated as the corresponding difference
in years 100-140 (e.g., from the 1% per year CO2 experiment)
relative to the corresponding 40 years from the preindustrial
control simulation. Preindustrial control simulations feature fixed
(to the preindustrial value) atmospheric CO2 concentration and
other climate drivers (e.g., other GHGs, solar irradiance, aero-
sols). Thus, all 40 years of the preindustrial control simulation
features fixed forcing. Using 40 years allows us to assess internal
climate variability. The use of the corresponding years in the
preindustrial control is intended to remove any confounding
effects of climate drift or low-frequency variability from our
analysis.

Statistical significance of the climate response is calculated
using two different methods. In the first method (e.g., Fig. 2a–c),
the multi-model mean time series is calculated for both the
experiment and the control, and a difference is calculated. A two-
tailed pooled t-test is used to assess significance (e.g., at the 90%
confidence level), where the null hypothesis of a zero difference is
evaluated, with n1+ n2− 2 degrees of freedom, where n1 and n2
are the number of years in the experiment and control (i.e., 40

years each). Here, the pooled variance, ðn1�1ÞS21þðn2�1ÞS22
n1þn2�2 , is used,

where S1 and S2 are the sample variances.
Significance of the multi-model mean response relative to each

individual model response (e.g., Fig. 3 and quoted throughout the
text to quantify uncertainty) is also estimated. Here, the multi-
model mean response is calculated as the average of the
individual model responses and its uncertainty is estimated as
plus/minus 1.65 × standard error (i.e., the 90% confidence
interval) according to 1:65 ´ σffiffiffiffi

nm
p , where σ is the standard deviation

across models and nm is the number of models. If this confidence
interval does not include zero, then the multi-model mean
response is significant at the 90% confidence level.

We also estimate the model agreement on the sign of the
model-mean response (e.g., Fig. 2d–f), which is estimated at
each grid box as the percentage of models that yield a positive
or negative response. Grid points for which 6 out of 7 models
(~86%) agree on sign pass a 2-tailed binomial test to reject
the null hypothesis of equal probability of positive or negative
sign at the 90% confidence level. Under such conditions, there
is good agreement on the sign of the response across the
models.

Significance of correlations (r) is estimated from a two-tailed t-
test as: t ¼ rffiffiffiffiffiffi

1�r2
N�2

p , with N− 2 degrees of freedom. Here, N is either

the number of grid boxes (for a spatial correlation) or the number
of years (for a correlation over time).

Data availability
All of the CMIP6 model data used here can be downloaded from the Earth System Grid
Federation at https://esgf-node.llnl.gov/search/cmip6/. FINNv2.5 can be downloaded
from https://rda.ucar.edu/datasets/ds312.9/. GFED4.1 can be downloaded from https://
daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1293. Processed data used to generate the
figures can be obtained at https://zenodo.org/records/10519748.
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