ShapeCoder: Discovering Abstractions for Visual Programs

from Unstructured Primitives

R. KENNY JONES, Brown University, USA
PAUL GUERRERO, Adobe Research, United Kingdom

NILOY J. MITRA, University College London and Adobe Research, United Kingdom

DANIEL RITCHIE, Brown University, USA

Def Absze(a, b, ¢, d, e): QE:? 37,.07)

Union()

Abstractions
ShapeCoder ~ UE&TE(.US..G.BQJ.37,.39),
(.
1.

07,.76,.64,.25),

Union(Union(Union(
Absz(.07,.65,-.41,1.23,.41), Abs7(.06,.51,.33,1.47,.33), Edit Abs(.05,1,.5,1,.5),
Abs(.07,.82,.62,.29), Abs1g(.03,.6,-.78,.23), Abs1g(.05,1,-5,.5),
Abs1(1.37,.0 31), Abs1(.06,.06,.67,.24), Abs1(1.05,.05,1.05,.55),

Abs2(.03,.8,.65,.2,1.22,-.42), Abs11(.64,.03,.77), Abs11(1,.05,1),

)

v

Absi4(a, b, c),
Abs;(d, a, b-a/2., e) J

)

))

Def Abs1s(a, b, c, d):

SymRef(
Move(
Cuboid(a, a, b),
Dataset of Shapes EBHEhERE
Collections of)). AX
unstructured primitives

Fig. 1. ShapeCoder automatically discovers abstraction functions, and infers visual programs that use these abstractions, to compactly explain an input
dataset of shapes represented with unstructured primitives. For example, the orange abstraction uses only five parameters to encode a distribution of 4-legged

table bases with adjoining horizontal support bars.

We introduce ShapeCoder, the first system capable of taking a dataset of
shapes, represented with unstructured primitives, and jointly discovering
(i) useful abstraction functions and (ii) programs that use these abstractions
to explain the input shapes. The discovered abstractions capture common
patterns (both structural and parametric) across a dataset, so that programs
rewritten with these abstractions are more compact, and suppress spurious
degrees of freedom. ShapeCoder improves upon previous abstraction dis-
covery methods, finding better abstractions, for more complex inputs, under
less stringent input assumptions. This is principally made possible by two
methodological advancements: (a) a shape-to-program recognition network
that learns to solve sub-problems and (b) the use of e-graphs, augmented
with a conditional rewrite scheme, to determine when abstractions with
complex parametric expressions can be applied, in a tractable manner. We
evaluate ShapeCoder on multiple datasets of 3D shapes, where primitive de-
compositions are either parsed from manual annotations or produced by an
unsupervised cuboid abstraction method. In all domains, ShapeCoder discov-
ers a library of abstractions that captures high-level relationships, removes
extraneous degrees of freedom, and achieves better dataset compression
compared with alternative approaches. Finally, we investigate how programs
rewritten to use discovered abstractions prove useful for downstream tasks.

CCS Concepts: « Computing methodologies — Shape modeling.

Additional Key Words and Phrases: procedural modeling, visual programs,
shape analysis, shape abstraction, library learning, e-graph

Authors’ addresses: R. Kenny Jones, russell_jones@brown.edu, Brown University, USA;
Paul Guerrero, guerrero@adobe.com, Adobe Research, United Kingdom; Niloy J. Mitra,
n.mitra@cs.ucl.ac.uk, University College London and Adobe Research, United Kingdom;
Daniel Ritchie, daniel_ritchie@brown.edu, Brown University, USA.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in ACM Transactions on
Graphics, https://doi.org/10.1145/3592416.

ACM Reference Format:

R. Kenny Jones, Paul Guerrero, Niloy J. Mitra, and Daniel Ritchie. 2023.
ShapeCoder: Discovering Abstractions for Visual Programs from Unstruc-
tured Primitives. ACM Trans. Graph. 42, 4, Article 1 (August 2023), 17 pages.
https://doi.org/10.1145/3592416

1 INTRODUCTION

Procedural models are an attractive representation for visual data.
Visual programs, expressions that produce visual outputs when exe-
cuted, offer many advantages over alternative representations, such
as compactness, interpretability, and editability [Ritchie et al. 2023].
There is a wide-range of domains that fall under the purview of
visual programs, and procedural workflows are becoming increas-
ingly common in modeling software [Freiknecht and Effelsberg 2017;
SideFx 2014]. A trait that many visual programming domains share,
is that their programs often contain both structural diversity and
variables that are constrained by complex parametric relationships.

Typically, visual programs are written in domain-specific lan-
guages (DSLs) targeted for specific visual applications. Not all
visual programs are equally useful. Well-structured programs that
capture and constrain properties of the visual data they represent
typically benefit downstream applications (e.g. editing, generation,
analysis). On the other hand, badly written programs lose this ad-
vantage. For instance, given an input visual scene composed of a
collection of primitives, a visual program that simply unions instan-
tiated primitives together might achieve a perfect reconstruction,
but would lose all of the aforementioned benefits of the underlying
representation. The functions a DSL contains influences the types of
programs it can represent, and access to a ‘good’ collection of func-
tions is often a prerequisite for finding well-structured programs.

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

https://doi.org/10.1145/3592416
https://doi.org/10.1145/3592416

1:2 « R.Kenny Jones, Paul Guerrero, Niloy J. Mitra, and Daniel Ritchie

Abstraction functions that extract out common patterns of struc-
tural and parametric use for a particular domain, can significantly
improve visual program quality, but these types of programs (and
their abstractions) are hard to obtain without expert manual design.

The idea of automatic abstraction discovery has been investi-
gated for general programming domains [Ellis et al. 2021]. Some
approaches have also been designed for visual domains [Jones et al.
2021], where programs contain complex parametric relationships
that complicate this task. While previous methods have made head-
way towards solving this task, none offer a complete solution. Two
central limitations holding back the applicability of such methods
are that they are either designed without visual programs in mind
(so fail to find meaningful parametric relationships) or rely on heavy
input assumptions that are hard to meet.

In this paper, we present ShapeCoder, a method that is able to
discover useful abstractions for visual data under relaxed assump-
tions. ShapeCoder consumes a base DSL and a dataset of shapes
represented as collections of primitives without any additional anno-
tations. It discovers a collection of abstraction functions (a library)
over the base DSL that is tailored to the input distribution. It uses the
discovered library to find programs with abstractions that explain
the shapes from the dataset (Figure 1). Our approach is inspired by,
and improves upon, previous abstraction discovery approaches.

Like DreamCoder [Ellis et al. 2021], a library learning method for
general programming domains, we employ an iterative procedure
with interleaved phases (dream, wake, proposal, and integration).
These phases are run repeatedly, gradually discovering a library of
abstraction functions that minimize a compression-based objective
function. The dream phase trains a recognition network, which
is used by the wake phase to infer visual programs that explain
input shapes. Critically, we design our recognition network in a
way that allows it to find partial solutions for difficult input scenes.
This allows ShapeCoder to still work on input datasets that lack a
curriculum of examples (some inputs are easy to solve under the
base DSL), which is a limitation of some prior work [Ellis et al. 2021].

Using programs from the wake phase, a proposal phase suggests
candidate abstractions, which an integration phase reasons over to
find improved library versions. These phases draw inspiration from
ShapeMOD [Jones et al. 2021], an abstraction discovery method de-
signed for visual data. ShapeMOD’s integration stage relies on enu-
merative search over a limited, curated subset of possible program
line-orderings. ShapeMOD assumes access to a dataset containing
hierarchical part annotations, to keep the number of line-orderings
small, but this approach scales poorly. To overcome this limitation,
we design an integration stage that makes use of e-graphs [Tate
et al. 2011; Willsey et al. 2021], a data structure that represents large
sets of equivalent programs in a efficient manner through rewrite
operations. This enables us to search over a huge space of refac-
tored programs, and allows ShapeCoder to integrate more complex
abstractions that better match the input distribution. Critical to
making e-graph expansion and extraction tractable for our prob-
lem setting, we implement a novel conditional rewrite scheme that
lazily evaluates parametric relationships before applying abstraction
rewrites, avoiding e-graph size blowup.

We run ShapeCoder over multiple visual domains, and demon-
strate that across all domains ShapeCoder finds abstractions that

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

dramatically simplify the input datasets by discovering meaningful
parametric and structural relationships. With respect to an objec-
tive function that tracks how well the input dataset has been ab-
stracted, we find that ShapeCoder significantly outperforms Shape-
MOD (even when given access to our wake phase) and DreamCoder
(which fails to converge without a curriculum of tasks). In a series of
ablation experiments, we justify the design decisions of our method,
and demonstrate the importance of our conditional rewrite scheme
and bottom-up recognition network. Finally, we investigate com-
bining our approach with methods that automatically convert 3D
shapes into primitives in an unsupervised fashion, allowing us to
discover programs and abstraction functions directly from ‘in the
wild’ 3D meshes [Chang et al. 2015]. In this setting, we observe
ShapeCoder still discovers interesting, high-level abstractions, even
over noisy, inconsistent primitive decompositions.
In summary, our contributions are:

(i) ShapeCoder, a method that learns to infer visual programs
that use automatically-discovered abstractions to explain and
simplify a collection of shapes represented with unstructured
primitives;

(ii) a recognition network capable of inferring visual programs
that use discovered abstractions, even without access to a task
curriculum; and

(iii) a refactor operation that augments e-graphs with a conditional
rewriting scheme to identify matches on complex parametric
relationships in a tractable manner.

Our code is available at github.com/rkjones4/ShapeCoder/ .

2 RELATED WORK

Our method is related to a host of prior work that relate in differ-
ent ways to visual programs: abstraction discovery for non-visual
programs, visual program induction (VPI), and visual program gen-
eration. We first provide an overview of these areas, and then end
this section with a detailed discussion of the two most related works,
DreamCoder [Ellis et al. 2021] and ShapeMOD [Jones et al. 2021].

Program abstraction. Several prior methods aim to discover ab-
stractions in context-free languages, where only a reduced set of
relations between primitives or sub-programs can be modeled, in
the context of facade grammars [Martinovic and Van Gool 2013] or
more general grammar types [Hwang et al. 2011; Ritchie et al. 2018;
Talton et al. 2012]. Abstraction discovery for more general sets of
programs has been explored in the Exploration-Compression algo-
rithm [Dechter et al. 2013] and more recently in DreamCoder [Ellis
et al. 2021]. Similar to our approach, these methods find abstrac-
tions in multiple rounds that alternate between program induction,
where programs for a given set of problems are discovered, and
abstraction discovery, where discovered programs are examined to
find recurring patterns. We discuss DreamCoder in more detail at
the end of this section. Recently, improvements have been proposed
for the abstraction step of DreamCoder’s algorithm [Bowers et al.
2023]. Most relevant to our work, Babble [Cao et al. 2023], also uses
e-graphs [Tate et al. 2009] to identify abstraction applications, but
has no special mechanism for handling rewriters with complex para-
metric expressions, which allows ShapeCoder to scale to complex
3D visual domains. Babble employs anti-unification over e-graphs

ShapeCoder: Discovering Abstractions for Visual Programs from Unstructured Primitives + 1:3

to propose abstractions, and it would be interesting to consider how
this scheme could be extended to work with our e-graph formula-
tion, where we explicitly avoid expanding parametric operations
into e-nodes. A related problem is to discover common patterns in
a single program, as opposed to a set of programs. This has been
explored for L-Systems [Guo et al. 2020] or CAD programs [Nandi
et al. 2020; Wu et al. 2019].

Visual program induction. Inferring a visual program that recon-
structs a given target is a long-standing problem in computer graph-
ics. Early approaches focused on vegetation [Stava et al. 2014; Xu
and Mould 2015], facades [Miiller et al. 2007; Wu et al. 2014], and
urban landscapes [Demir et al. 2014; Vanegas et al. 2012]. We refer
to [Aliaga et al. 2016] for a more complete overview.

In more recent work, neural components are typically employed
in key parts of the method. Some of these approaches require an
existing program structure to be available and only estimate the pa-
rameters of the program to match a given target 3D shape [Michel
and Boubekeur 2021; Pearl et al. 2022] or 2D material [Shi et al.
2020]. Other approaches aim to jointly infer both program param-
eters and program structure. Visual programming domains range
from commonly used program types, such as CSG construction
sequences [Du et al. 2018; Kania et al. 2020; Ren et al. 2021, 2022;
Sharma et al. 2018; Yu et al. 2022], CAD Modelling Sequences [Ganin
et al. 2021; Li et al. 2020, 2022; Seff et al. 2022; Xu et al. 2021], SVG
shapes [Reddy et al. 2021a,b], and L-Systems [Guo et al. 2020], to
custom program domains, like primitive declarations with loops
and conditionals in 2D [Ellis et al. 2018] and 3D [Tian et al. 2019],
geometry instancing with linear transformations [Deng et al. 2022]
and masked procedural noise models for materials [Hu et al. 2022].
A few methods also propose inference methods that apply to diverse
types of programs [Ellis et al. 2019; Jones et al. 2022]. Most related
to our program domain are ShapeAssembly [Jones et al. 2020] and
ShapeMOD [Jones et al. 2021], which output programs that arrange
cuboid primitives. All of these methods, excluding ShapeMOD, as-
sume a DSL with a complete set of operators. We discuss ShapeMOD
separately at the end of this section.

Visual program generation. Several deep generative models have
been proposed to generate visual programs. MatFormer [Guerrero
et al. 2022] generates node graphs for materials, several methods
propose generative models for SVG images [Carlier et al. 2020; Reddy
et al. 2021a], CAD sketches [Ganin et al. 2021; Para et al. 2021; Seff
et al. 2022], and 3D CAD Modelling sequences [Li et al. 2022; Wu
et al. 2021; Xu et al. 2022]. The ShapeAssembly [Jones et al. 2020]
and ShapeMOD [Jones et al. 2021] methods mentioned above can
also be used as generative models. Similar to methods for visual
program induction, all of these methods, except for ShapeMOD,
require a DSL with a full set of operators.

DreamCoder. This work proposes a system that jointly discovers
abstractions and performs program induction over arbitrary func-
tional programming languages [Ellis et al. 2021]. At its core Dream-
Coder uses three phases to perform this hard task. A dream phase
samples random programs from a library (optionally augmented
with abstractions). A wake phase trains a recognition network to
infer programs based on the dream samples. An abstraction phase

looks over a corpus of returned programs from the wake phase, and
proposes and integrates abstractions that improve an objective func-
tion. The objective function trade-offs program likelihood under the
library with the complexity of the library.

While DreamCoder’s generality allows it to effectively scale
across a wide-variety of program inference tasks, its abstractions
are purely structural, treating real-valued program components as
discretizations. This means that it is not well-suited for shapes (or
other visual domains) where ideally abstractions would capture
both complex parametric and structural relationships. Another chal-
lenge of applying DreamCoder to shape programs is that its iterative
procedure is reliant on a curriculum to solve tasks: all of its stages
(dreaming, waking, abstraction) rely on the assumption that solu-
tions to at least some of the input tasks have a high probability under
the current library functions. When the input tasks form a curricu-
lum (e.g. some tasks are very easy to solve under the base DSL), then
this procedure works very nicely, gradually discovering more and
more abstractions that allow it to solve increasingly complex VPI
tasks. Unfortunately, when this curriculum assumption is broken,
DreamCoder can fail to discover any programs or abstractions for
a given domain. Based on these properties, we ran investigations
of how DreamCoder fairs on a simple grammar with parametric
relationships, and found that it wasn’t able to discover the kinds of
abstractions that ShapeCoder is able to find. We provide details in
the supplemental material.

ShapeMOD. In contrast to DreamCoder, ShapeMOD is a system
designed for visual datasets, like shape programs. It has been shown
to discover abstractions that extract out meaningful relationships
in terms of both parametric expressions and program structure.
Yet, it does not solve the problem completely. ShapeMOD is able
to find these abstractions under fairly stringent input assumptions:
it requires a collection of imperative programs as input, where all
possible valid line reorderings are known. In fact, as its intractable
to reason over all line reorderings that would lead to the same se-
mantic output, heuristics were employed to limit the orders to a
very small set. Applying these heuristics required access to a hierar-
chical semantic segmentation, which allowed sub-parts to be treated
as independent sub-programs. ShapeMOD’s integration and pro-
posal stages (analogous to DreamCoder’s abstraction phase), relied
on these limited program reorderings to both discover candidate
macros, and identify when those macros could be applied.

ShapeCoder shares the same goals as ShapeMOD, but aims to
discover useful abstractions while making much weaker assump-
tions: it does not assume access to ground-truth programs, canonical
line-orderings, or hierarchy decompositions. Instead ShapeCoder
takes in a dataset where each shape is expressed as an unordered
set of primitives. Discovering abstractions under these assumptions
requires both developing logic to infer programs that explain the
input shapes, along with extending the abstraction phase so that
it is able to reason over arbitrary reorderings of the inferred pro-
grams. We solve the latter problem through the use of e-graphs and
a conditional rewrite scheme.

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

1:4 « R.Kenny Jones, Paul Guerrero, Niloy J. Mitra, and Daniel Ritchie

- Integration Phase
Library £ Optimize Refactor
p 1. Abs, — CandidateAbstractions.top_score() (Fig

2. £={+Abs,)

Objective Repeat Candidats
andidate
Abstractions

3. P’ ={ refactor(p, L) for pin P}
p4. fFLC, P)<FL P):LP=LP

Sample

Proposal Phase

(Fig4)

Dream Phase Wake Phase
(Fig 3) (Fig3) @

Fig. 2. Overview. ShapeCoder consumes an initial library £, an objec-
tive 7, and a dataset of shapes D (brown boxes). Each round of the algo-
rithm iterates through a series of phases that progressively add abstractions
into L to improve 7. A dream phase trains a recognition network by sam-
pling from L. A wake phase infers programs for shapes in D. A proposal
phase produces candidate abstractions. An integration phase uses a refac-
tor operation to decide when these abstractions should be added into L.

Programs

3 OVERVIEW

ShapeCoder automatically discovers a library of abstraction func-
tions tailored for an input dataset of shapes. It takes the following as
input: a library £ describing a functional domain-specific language,
a dataset of shapes O, and an objective function ¥. Each d € D
is represented as a collection of unstructured primitives, and we
assume that there exists some program expansion of £, p, such that
executing p would recreate d.

ShapeCoder’s goal is to minimize ¥ (Section 3.1), which expresses
a trade-off between how well-suited £ is for D (program complex-
ity) and how many abstractions functions have been added to £
(library complexity). We break this task into multiple steps that
each tackle a tractable sub-problem. We depict the distinct phases
of ShapeCoder in Figure 2. The dream phase (Section 4.2) samples
scenes from £ to train a program recognition network. The wake
phase (Section 4.3) uses this network to infer programs % that recre-
ate shapes in D. The proposal phase (Section 5.1) consumes P as
input, and generates candidate abstraction functions. Finally, the
integration phase (Section 5.2) considers proposed candidate ab-
stractions and finds modified versions of £ to improve ¥, which
can be passed in to a subsequent dream phase. Of note, the integra-
tion phase uses a refactor function (Section 6) to find minimal cost
equivalent programs under different libraries in a tractable manner
through use of e-graphs and a novel conditional rewriting scheme.

In the following sections, we walk-through these various stages,
where examples in the text and figures use programs from a toy 2D
grammar for rectilinear shapes (Appendix A). Further implementa-
tion details are provided in Appendix B.

3.1 Optimization Objective ¥

ShapeCoder’s objective function ¥ takes in two arguments: a li-
brary £ and a collection of programs from £ that correspond with
a shape dataset D. ¥ measures the trade-off between two competing
terms: the complexity of £ and P.

The complexity of each p € P is computed according to Occam’s
razor: all else equal, shorter programs are better. We compute pro-
gram length with a weighted sum of program tokens: if £ has
token types T (e.g. booleans, floats, etc.), we allow users to specify a

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

weight A for each 7 € T. Further, ShapeCoder employs a geometric er-
ror function, err, that compares the executed geometry of each p € P
against its corresponding shape, d € D. If err(p, d) returns a value
above a user-defined threshold, # returns co. Otherwise, the error
is added into ¥ with weight A,.

Library complexity can be measured by tracking the number of
functions that £ contains. ShapeCoder allows users to specify a
function weighting scheme, w. w consumes a function f from £
and returns a value in the range (0,). Lower w values make it
easier to add f into L. As an example, we find it useful to increase
the w of f according to the number of input parameters f consumes,
as this often indicates an overly general pattern.

With this machinery, where 7 (p) expresses the number of tokens
in p that have type 7, we can express ShapeCoder’s objective as:

FLP) = — > (Z A,*f(p)) + A werr(p,d) |+ > o(f).

|P| peP \reT fel

4 INFERRING VISUAL PROGRAMS

While ShapeCoder consumes a shape dataset D as input, it doesn’t
know what programs ¥ from a given library version £ can best
represent d € D. To solve this problem, ShapeCoder uses a program
recognition network (Section 4.1), trained on randomly sampled pro-
grams from £ (dream phase, Section 4.2), to infer # that minimize ¥
(wake phase, Section 4.3).

To simplify this search, our recognition network learns to infer
partial solutions: expressions from £ that recreate a subset of input
primitives. Found expressions are then combined together to form
a complete program that explains an input scene. This framing
requires that £ contains a combinator operation (e.g. Union). To
ensure that our search procedure never fails to find some solution,
we assume access to an analytical procedure for finding expressions
in £ that can recreate any primitive in d (e.g. any cuboid can be
represented with a scale, rotation, and translation sequence).

4.1 Recognition Network

We depict ShapeCoder’s recognition network on the left side of
Figure 3. The recognition network consumes a scene of geometric
primitives as input, and aims to output an expression from £ that
corresponds with a subset of the input primitives. We implement
this network as a Transformer [Vaswani et al. 2017] decoder that
autoregressively predicts a sequence of tokens from £. The net-
work is conditioned (through causal-masking) on an encoding of
the input primitives: if M primitives are each represented with K
parameters, the network attends over K X M conditioning tokens
(M =3 and K = 4 in the figure example). To convert expressions into
token sequences, discrete elements of £ are given a unique index.
To tokenize real-valued parameters, we employ a simple mapping
procedure: for a given input scene, we take all real values in the
primitive parameterizations, bin them through rounding (to 2 deci-
mal places), and sort them to produce a token mapping (light-blue
box). This mapping is used to form the conditioning tokens, and
converts network predictions back into real values.

ShapeCoder: Discovering Abstractions for Visual Programs from Unstructured Primitives + 1:5

Recognition Network

Dream Phase (Training)

Wake Phase (Inference)

Library
Functions

Dreams

Abs,(1, 2, 4) HEH

1O

Sample &
Combine

Expressions Error Cost

| =

Input

Sample

Input
Scene

l Input Output T Abs; (J\) ompe

Token

Abs,(3, 4,1

Hm

Rect(2,6,-4,-2) Mappi
Rect(6.20.6) apping Absy(2,6,4)
Rect(2,6,4,2) 410

-2 > t1
0—t2
213
4 —t4
6 —t5

N

]

InnensmasEnny

DD.
pngEE

SymRef(Move(
Rect(1,1),-2,-2).AX)|

Net

2 || B

l ‘ Absy(4,3) ‘

Abs(1,2,4)

Absy(4, 3)
Absy () Gompe

Target Expressions ’D Prediction —» Union{ 9 }

Fig. 3. Dream and Wake Phases. (Left) ShapeCoder’s recognition network is a Transformer decoder that attends over tokenized input primitives and
autoregressively predicts functions and parameterizations. (Middle) The dream phase trains the recognition network by sampling expressions from library

functions, which are randomly combined together to form (input, target) training pairs. (Right) The wake phase uses the recognition network to find programs
that explain input shapes. In a series of iterative steps, it samples expressions, chooses the expression that achieves the best cost, and removes covered

primitives from the input canvas, until the canvas is empty.

4.2 Dream Phase

The dream phase trains the recognition network by randomly sam-
pling example scenes from £. We show this process in the middle
box of Figure 3. To begin the dream phase, for each function f € L,
ShapeCoder creates Np number of dreams for f. Dreams are gen-
erated by sampling random instantiations of each parameter slot
of f. Rejection sampling is employed to avoid dreams that create
bad geometry by checking easy to enforce properties (geometry out-
side scene bounds, primitives with negative dimensions, primitives
wholly contained by other primitive, etc.).

However, as shapes in D often contain scenes best explained by
more than one function, its not enough to train on function-specific
dreams directly. We solve this issue with composite scenes formed
by sampling function-specific dreams and combining their output
primitives together (blue arrow). If a composite scene was formed by
combining K sampled dreams, then we can derive K paired training
examples for the recognition network: the input to the network will
be the composite scene, and each of the K sampled dreams would
be a target output. For instance, given the input scene with orange
and green primitives in Figure 3, we would train the network to
predict both the green and orange expression sequences (i.e. there is
a one-to-many mapping). Once this paired data has been assembled,
by ensuring that each f € £ appears in at least Np target sequences,
the recognition network can be trained in a supervised fashion with
maximum likelihood updates.

4.3 Wake Phase

The wake phase takes an input shape d and aims to infer a program p
that minimizes ¥ using the recognition network. We depict this
process on the right side of Figure 3.

To begin, the scene is initialized to contain the primitives of d.
Then the wake phase performs the following steps in an iterative
fashion. First the input scene is used to condition the recognition
network, which samples a large set of expressions from £ according
to its output probabilities, up to a timeout (1 second). For every

sampled expression, e, we record its cost: the program complexity
of e under ¥, normalized by the number primitives it explains. Note
that if e does not recreate a subset of primitives in the input scene,
it will have a high geometric error, and ¥ will return co (red X in
figure). The wake phase chooses the lowest cost e* (dotted green
lines), and removes all primitives it covers from the input scene,
which is then fed back into the recognition network. These steps are
repeated until the canvas is empty. Once this condition is met, the
final program p explaining d is formed by applying the combinator
operation in L over each e* (e.g. the Union of the orange and green
expressions in the bottom-row). For every input scene, the ‘naive’
expression for a single primitive under £ is added to the sampled
set of expressions, so that a valid solution is guaranteed to be found.

During each ShapeCoder round, the wake phase uses the recog-
nition network to infer a set of programs that explain 9. But should
we treat these predictions independently? One option is to clear all
program entries in before every wake phase. However, this would
cause ShapeCoder to ‘forget’ good solutions discovered in previous
rounds. Instead, we use the following approach: for round r, r > 0,
if P contains previously discovered programs, and P, contain pro-
grams discovered in round r’s wake phase, then we set each entry
of P to be the result of combine(p, p,), where combine performs a
greedy replacement search to optimize 7.

5 PROPOSING AND INTEGRATING ABSTRACTIONS

Together, the dream and wake phases train and use a recognition
network to infer a set of programs ¥ that explain the shapes of the
input dataset D. The proposal phase (Section 5.1) reasons over P
to suggest candidate abstractions functions, used by the integration
phase (Section 5.2) to find library variants that improve ¥.

5.1 Proposal Phase

The goal of the proposal phase is to search over # for abstraction
functions that would improve ¥ if added into L. As this search

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

1:6 + R.Kenny Jones, Paul Guerrero, Niloy J. Mitra, and Daniel Ritchie

Input Programs Structures Parameters

Union g P | [P N
I M nion: Abs,(Po, P;) |—» | 6 3
Ak
P | [Py
0 [orn] | ¢ || 2
Sample Structure
} and Parameters
Union([_Abs.PoP) |,
Union{ < >
AR A
Abs.(4, 3) . ERIEAE 2 Repeat
} . 6 3 6 4
3l2[2]]|s
[6 (| 4l6|[1
. | 5 [[25[] 5 3
.
~ /

Greedy Abstraction Search

Cluster .
Partial Expression Gain Freq Score
Abstraction
Po 0.0 1.0 00—
Union(Abs.(? Too 1 o 00 X

!

Union(Abs,(Vo, ?

def abs(V,, V4):
Union(
Abs,(Vo, Vo ! 2),
Absy(Vo, V) | P, 0 o ors
) Union(Absa(Vo, Vo /2), | Po 20 075 15,
Abs.(? S o o naE o
(Po/2)+2. 20 0.25 0.5
Record -

Candidate Abstractions |

Fig. 4. Proposal Phase. The proposal phase consumes a collection of programs and outputs a set of candidate abstractions. First, possible structures and their
parameterizations are recorded from the input programs. Then clusters are formed by sampling a structure and a subset of parameterizations. For each cluster,

a greedy abstraction search generates a possible abstraction, which is recorded.

is computationally intractable to solve globally, ShapeCoder’s pro-
posal phase instead solves more tractable sub-problems (subsets
of P), and aggregates local solutions. Figure 4 outlines this process.

Identifying Structures and Parameters. As L is a functional lan-
guage, generating an abstraction a requires two steps: deciding the
structure of a (what are its sub-functions) and deciding how a is
parameterized (what input does a take, and how are those mapped
to its sub-functions). What structures should we consider for possi-
ble abstractions? Each program p € ¥ is found in the wake phase
by combining expressions that solve sub-tasks, so p will have no
consistent or canonical ordering. Therefore, we would like to factor
out expression ordering by considering structural variants over any
possible function reordering of each p € . However, as the general
solution is intractable, we instead consider a limited set of potential
abstraction structures: singleton and paired combinations of sub-
expressions found in . We record all such observed structures as
keys and how those structures were parameterized as values (see
bracketed data structure in figure). We additionally find it useful
to apply a simple filtering step that removes infrequently observed
structures in # from this mapping (seen in less than 5% of P).

Cluster Sampling and Search. Once potential structures and their
observed parameterizations have been recorded, the proposal phase
begins an iterative process. To convert the global problem into a
local one, a random structure and a subset of its parameterizations
are sampled to form a cluster. Then a greedy search is run over this
cluster to find an abstraction a that would optimize 7. The generated
function is recorded into a candidate abstraction data structure that
keeps track of a coverage set of p € P that could be simplified
through applications of a. This procedure is repeated many times,
and coverage sets are expanded whenever the candidate abstraction
data structure receives a previously observed abstraction.

Greedy Abstraction Search. We employ a greedy search to find an
abstraction a for a given cluster (right side Figure 4) This search is
guided by a score function that provides a heuristic estimate of how a
would improve ¥ if it were added into L. The score of a is a product
of two terms: the frequency and the gain. The frequency (Freq column

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

in figure) is the percentage of instances in the cluster that a could
recreate (with the correct parameterization). The gain tracks the
number of parameters removed from a program p, whenever p
could be rewritten with a, denoted as p,. For instance, the proposed
abstraction in Figure 4 would remove two float-typed parameters
whenever it could be applied, corresponding with slots P; and Pz in
the cluster. Using the weighting from # (Section 3.1), we have:

gain(@)= " A x (2(p) = 7(pa)) -
T€T
The function sequence in the proposed abstraction is determined
by the structure of the sampled cluster, but how should we fill in
the parameter slots? For each slot, we consider a set of possible ex-
pressions, calculate the score of each option, and add the expression
with the highest score into the partial abstraction. If the frequency
is ever zero, then the score is voided. For float-typed parameter slots,
ShapeCoder produces expressions by iterating over a preference
ordering of possible parametric relationships. For discrete-typed
parameter slots, a previously instantiated parameter can be reused,
or a static value can be assigned. This search always includes defin-
ing a new free parameter (e.g. using the parameterization in the
sampled cluster) as an option (depicted as the top-row of each step).

5.2 Integration Phase

The integration phase takes in a library £, a set of programs P,
and candidate abstractions from the proposal phase. It searches for
modified version of .L that can be used to refactor # to improve ¥ .
The refactor operation (Section 6) uses e-graphs to efficiently search
for minimal cost equivalent programs under different £ variants.

The integration phase begins by first recording the starting objec-
tive value: F (L, P). It then iterates through a series of steps in an
attempt to greedily improve this value. First, a new library variant £’
is formed by sampling a candidate abstraction and adding it into L.
The abstraction with the top score value is chosen, where the notion
of frequency is generalized from clusters to all of #. Then a new
program set, ’, is formed by applying the refactor operation over
each p € P under £L’. Finally, if ¥ (£’, P’) is better than F (L, P),
both £ and P are replaced with their modified versions.

ShapeCoder: Discovering Abstractions for Visual Programs from Unstructured Primitives + 1:7

I Convert to e-graph

Input
P"°g"(a"“P: Shape d Library £ Output
Union
def Absy(a, b):
1,.2),-3,. Net
mﬁsiﬁiﬁ.lji}j 211;) < D D SymRef(Move(Rect(a, b), a+b, b-a), AX) A*:Si(-1,-2)
Extract from e-graph

Refactor

T Semantic Rewrites:

(2c=-1"7a)

Nodes (Table 1)

‘ Parametric Operator

Union(Move(?S, ?a, ?b), Move(?S, ?c, ?b)) -> SymRef(Move(?s, ?a, ?b, AX)

SymRef(Move(?s, ?a, ?b), AX) -> SymRef(Move(?s, Mul(?a, -1.0), ?b), AX)

Abstraction Rewrite:

F SymRef(Move(Rect(?a, ?b), ?c, ?d), AX)) — Absn(?a, ?b) IF
(?c= ?a+?bAND?2d=?b-%a)

Fig. 5. Refactor. The refactor operation uses e-graphs to identify when abstractions can be applied. Input programs are converted into e-graphs, which are
expanded with semantic and library-specific rewrites to uncover lower-cost equivalent expressions that can be extracted. We develop a conditional rewrite
scheme that reasons over parametric relationships (green highlights) without adding excessive e-nodes for parametric operators (red box).

Evaluating a modified library £’ is expensive, as it requires run-
ning the refactor operation for every p € £, so we usually consider
a small number, N4, of top-ranked candidate abstractions during
each integration phase. To keep the score heuristic as accurate as
possible, whenever £, that added a to £, improves ¥, we check
which p € P contributed to the frequency of a and discount the
frequency of other abstractions that overlapped on the covered set.

Beyond this greedy search, two other forms of library variants are
also considered during the integration phase. Whenever adding a
to £ does not improve ¥, we compute the set of functions whose fre-
quency between # and P’ decreased significantly; call this set fy,..
We then consider L., ={ L + a- fje. } as a library variant. This
procedure allows the greedy integration search to avoid a local min-
ima where a would not be added to .£ because similar (but worse)
functions already exist in £. In addition, to finish the integration
phase, we consider library variants where each f € L is removed
one at time. In all comparisons, the library variant becomes the new
default if it improves the objective function. At the end of the inte-
gration phase, the £ that achieved the best ¥ score is then passed
into the subsequent dream phase to begin a new ShapeCoder round.

6 REFACTORING PROGRAMS WITH E-GRAPHS

ShapeCoder’s integration phase evaluates how library variants can
be used to compactly represent £ but how does it know when ab-
stractions can be applied? For this task, we use the refactor operation:
it takes as input a program, p, and aims to find p*, an equivalent pro-
gram to p that minimizes . This is a hard search problem, which
we make tractable through the use of e-graphs [Tate et al. 2011]
and a conditional rewriting scheme. In the rest of this section, we
provide a quick background on e-graphs, and walk-through their
role in refactor with a running example, depicted in Figure 5.

Background on e-graphs. E-graphs are a specialized data structure
capable of efficiently representing a large set of equivalent programs.

We show an example e-graph in the left call-out of the figure. E-
graphs are made up of e-nodes (solid boxes) and e-classes (dotted
boxes) Each e-node is associated with a term from £ and has a
pointer (arrows) to e-class children, if that term is a function. Each
e-class contains a set of equivalent e-nodes. The root of the e-graph
is the e-class that contains the e-node associated with the outermost
operator in the input expression (Union in the figure).

This representation becomes useful when it is combined with
rewrite rules. Rewrite rules are domain-specific, pattern matching
program transformations that maintain semantic equivalence. For in-
stance, for any ?a and ?b: Union(?a, ?b) is equivalent to Union (?b, ?a).
E-graphs are expanded by iteratively applying rewrite rules to cre-
ate new e-classes and new e-nodes. These newly created constructs
reference existing e-class and e-nodes, allowing the e-graph to rep-
resent a large set of equivalent programs in a space-efficient manner.
Importantly, e-graphs also provide support for quickly finding min-
imal cost rewritten versions of a starting expression, by running a
greedy recursive algorithm starting at the root e-class.

Refactor Operation. The refactor operation consumes an input
program p from the wake phase. First, it converts p into an e-graph,
as depicted in the left call-out of Figure 5. In this step, each float-
typed token is replaced with an independent variable (Vy to V7).

The operation also consumes a library £ as input. It uses £ to
source two types of rewrite operations. Semantic rewrites express
domain-knowledge over base DSL functions and are provided as part
of the language definition. For instance, the blue rewrite expresses
the following logic: a sub-expression ?s moved to xy position (?a, ?b)
and reflected over the X axis is equivalent to moving ?s to xy posi-
tion (-1 X ?a, ?b) and reflecting it over the X axis. Abstraction rewrites
correspond with the abstractions in £, where rewrites express the
conditions that need to be met in order for the abstraction to be
applied. For instance, Absy (top-middle) in the input library creates
the purple highlighted abstraction rewrite (lower-right).

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

1:8 + R.Kenny Jones, Paul Guerrero, Niloy J. Mitra, and Daniel Ritchie

ShapeCoder expands the e-graph by iteratively applying these
rewrite operators. In the middle-frame, the orange rewrite first
introduces a new AX e-node into a new e-class and a new SymRef
e-node into the root e-class. Following this, the blue rewrite can be
applied, matching on the orange e-nodes, to add the blue highlighted
e-nodes. At this point, the purple abstraction rewrite can be applied,
and a new Absy e-node is added into the root e-class. The refactor
operation will continue expanding the e-graph until it is saturated
(nothing can be added) or a timeout is reached.

Once the rewrites have expanded the e-graph, we can run an
extraction procedure on the root e-class to find the minimum cost
expression p* in the e-graph equivalent to the starting program p.
In this example, p* will be equal to Absn(Vp, V1), which we can
rewrite to Absn (.1, .2) using the reverse of the parameter mapping
we used to convert the initial program into an e-graph.

Conditional Rewrite Scheme. The above explanation is complete
up to one critical step: how do know when rewrites can be applied?
E-graphs typically search for structural pattern-based matches, and
some semantic rewrites can be included in this framework (e.g. the
blue rewrite). However, other rewrites, such as the purple abstrac-
tion rewrite, require both structural and parametric matches. For
instance, the structural matching requirement to apply Absy would
be finding some sub-graph of e-classes that matches the pattern
of: SymRef (Move(Rect(?a, ?b), ?c,?d),AX), where ?a through ?d
can be filled in with any e-class. Beyond this, applications of Absy
also require parametric matching with logic expressed in green
highlights: the ?c spot must be equal to the sum of the ?a and ?b
slots, and the ?d spot must be equal to the ?b slot minus the ?a slot.

How we can support this type of parametric matching? A naive
solution would convert parametric constraints into structural ones:
SymRef (Move (Rect(?a,?b),Add(?a, ?b),Sub(?b,?a)),AX). The
issue with this approach is that it requires adding e-nodes for para-
metric operations (e.g. Add or Sub) into the e-graph, before it is
known whether or not that e-node will be useful. When there are
many input parameters (V;’s) this naive solution will blow up the
size of the e-graph, making the refactor operation ineffective. We
visualize our choice to avoid this blowup with the disconnected red
box in the figure.

ShapeCoder addresses this issue of exploding e-graph size by
leveraging a conditional rewrite scheme. Conditional rewrites are
rewrite operations that first find structural matches but only make a
rewrite application if additional checks pass. In this way, each para-
metric relationship (green highlights on rewrites) is only evaluated
lazily, after a structural match has been identified.

Concretely, in the working example applying the purple rewrite
will find the following matches: ?a with Vp, ?b with V;, ?c with
Mul (Va,-1), and ?d with V3. To check that the parametric relation-
ships hold, we need to know the real value associated with each
matched e-class. Then to check a relationship such as ?d = ?b - ?a, we
can simply compare the difference in values between V3 and V; - V.
This check does not enforce exact matches, but rather allows the
user to specify a maximum error threshold, allowing us to apply
approximately-equivalent rewrites, which is typically a limitation
of e-graphs.

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

Table 1. Comparing our conditional rewriting scheme against the naive
alternative. The conditional scheme is able to quickly saturate the e-graph
(time reported in seconds), even for complex input expressions with many
parameters. The naive approach times out when the complexity is too high.

Rewrite Scheme 8 params 16 params 32 params

Naive .22 2.6 X
Conditional .01 0.04 2.1

For some e-classes, finding their associated real-values is trivial:
for each e-class associated with a float-typed parameter e-node (Vp
to V7) we record a mapping between e-class ids and values. This
procedure is complicated by the fact that some rewrites create new
float-typed nodes (e.g. the blue Mul e-class). We handle this case
by dynamically updating the e-class-to-real-value mapping during
all rewrite steps (represented with green-highlights on e-classes),
which is a constant time operation. Our conditional rewrite step is
just as fast as a non-conditional rewrite step and critically avoids
unnecessarily expanding the e-graph with unneeded parametric
operator e-nodes. In sum, conditional rewrites provide a dramatic
speedup over the naive approach for the kinds of refactoring prob-
lems that ShapeCoder typically reasons over (see Table 1).

7 RESULTS AND EVALUATION

We run ShapeCoder over distributions of visual shapes represented
as collections of unstructured primitives. We describe these do-
mains in Section 7.1. In Section 7.2, we compare how well the ab-
stractions discovered by ShapeCoder improve the objective function
compared to alternative approaches. Our main comparison is against
ShapeMOD [Jones et al. 2021]. In the main text, we do not include
comparisons against DreamCoder [Ellis et al. 2021], as we found it
performed poorly on a toy grammar with parametric relationships
(see supplemental). In Section 7.3, we analyze properties of the dis-
covered abstractions and investigate their generality with a post hoc
inference procedure. In Section 7.4, we run an ablation experiment
to investigate the importance of various algorithm components. In
Section 7.5 we show another application of our method: inferring vi-
sual programs, that contain abstractions, given only a dataset of 3D
meshes as input, where we leverage noisy primitives sourced from a
pretrained unsupervised cuboid decomposition approach [Yang and
Chen 2021]. Finally, in Section 7.6 we explore how ShapeCoder’s
discovered abstractions benefit downstream tasks.

7.1 Experimental Domains

For the main result section, we consider domains of 3D shapes. We
provide experimental results over a toy dataset of 2D shapes in the
supplemental. Our experiments use manufactured objects sourced
from PartNet [Mo et al. 2019], where manual annotations are used
to convert each 3D object into an unstructured collection of cuboids,
that represent part bounding boxes. We follow past-work in the 3D
shape abstraction discovery space, and run experiments on shapes
from the Chair, Table, and Storage categories of PartNet. We perform
the cuboid simplification steps outlined by [Jones et al. 2020], so that
our starting primitive set is the same as that used by ShapeMOD,
except we remove all hierarchy and canonical ordering information.

ShapeCoder: Discovering Abstractions for Visual Programs from Unstructured Primitives + 1:9

Table 2. Abstraction discovery performance, measured with objective func-
tion F, for libraries of abstractions discovered by different methods.

Category Method FU |£| NumStruct Num Param
Input Prims 146.0 6 29 61
Chair ShapeMOD+Input ~ 109.0 21 16 46
ShapeMOD+Wake 83.0 21 12 36
ShapeCoder 63.6 33 10 27
Input Prims 125.0 6 25 51
Table ShapeMOD+Input ~ 84.2 25 11 34
ShapeMOD+Wake 69.1 17 10 30
ShapeCoder 40.9 37 8 18
Input Prims 154.0 6 30 62
Storage ShapeMOD+Input ~ 119.0 16 20 48
ShapeMOD+Wake 103.0 10 19 45
ShapeCoder 71.3 31 11 33

The DSL (Appendix A) we use for our experiments has 4 low-
level operations: (i) instantiating a primitive (Cuboid); (ii) moving a
shape (Move); (iii) rotating a shape (Rotate); and (iv) unioning two
shapes together (Union). We also provide two mid-level symmetry
operations in the base DSL, that correspond with (v) reflectional
and (vi) translational symmetry (SymRef and SymTrans).

7.2 Discovering Abstractions

For each PartNet category, we run ShapeCoder for four rounds
over 400 shapes from that category. ShapeCoder is implemented in
Python and Rust, using PyTorch and Egg, an e-graph library [Willsey
et al. 2021]. We run ShapeCoder on a machine with a GeForce RTX
3090 Ti GPU and an Intel 17-11700K CPU, and find that it takes less
than 24 hours to finish discovering abstractions for a single category
(taking at most 4GB of GPU memory).

Discovering abstractions that improve our objective. We report how
the abstractions discovered from ShapeCoder impact the objective
function we optimize over, in Table 2. From left to right, the columns
express the objective function score (¥, where lower is better),
the number of functions that the library contains (| £]), and the
average number of operations (Num Struct) and parameters (Num
Param) that are needed to represent the input dataset of shapes
using programs that make use of the discovered abstractions.

The top Input Prims row for each category conveys the start-
ing objective function value for ShapeCoder. This row reports the
cost of using ‘naive’ programs to cover the primitives of the input
shapes, where each primitive is rotated, moved, and instantiated,
whenever that command would have an effect (e.g. moving zero
distance would be ignored). The final objective function score found
by ShapeCoder, in the bottom rows, is dramatically better than this
starting point. For Chairs, Tables, and Storage, the starting objective
function value drops by 56%, 67%, and 53%, respectively. This im-
provement is achieved by adding abstraction functions (2nd column)
that remove degrees of freedom needed to represent the shapes of
the input set (3rd and 4th columns).

We also compare how ShapeCoder performs against ShapeMOD
in this setting. The ShapeMOD algorithm requires a dataset of im-
perative programs as input, along with the possible ways that the

lines of the programs can be ordered. As we lack ground-truth pro-
grams for our problem setting, we compare against two versions of
ShapeMOD, that attempt to optimize the same objective function as
ShapeCoder:

o ShapeMOD+Input: We take the ‘naive’ programs that can be
directly parsed from the input collection of primitives, and
provide this as input to ShapeMOD.

o ShapeMOD+Wake: We take the output from ShapeCoder’s
first wake phase as the input to ShapeMOD. Note that the
only ‘non-trivial’ functions in the library for the first wake
phase are the symmetry operations, roughly equivalent to
running symmetry detection on the ‘naive’ programs.

For both program datasets, we have no way of knowing how the var-
ious expressions (e.g. sub-shapes combined through Union) should
be ordered, so we pass a random subset of all possible valid order-
ings to ShapeMOD, as without limiting the set of orders ShapeMOD
takes prohibitively long to run (see supplemental).

Comparing ShapeMOD variants and ShapeCoder in Table 2, it
is clear that ShapeCoder finds abstractions that significantly im-
prove the objective function over those found by ShapeMOD. While
ShapeCoder’s wake phase provides a better starting point than the
‘naive’ programs, in either case, the complexity of the input pro-
grams is too high for ShapeMOD to handle-well when canonical
orderings and hierarchy annotations are absent.

We also compare ShapeCoder against approaches that operate
over single programs, like Szalinski [Nandi et al. 2020]. Szalinski also
uses e-graphs in the context of visual programs, and while its fixed
rewrite rules are well-suited for simplifying a single heuristically-
inferred CAD program of a mechanical object, we found that these
rules did not significantly compress shape programs in our domain:
Szalinksi’s rewrites improved our objective function from 146 to 131,
for chairs, whereas ShapeCoder reached 63.

7.3 Analysis of Discovered Abstractions

We visualize a subset of abstractions discovered by ShapeCoder
when run over PartNet shapes in Figure 6. The recognition network
learns how to use these abstractions to explain shapes in the input
dataset (first three columns). Programs rewritten with these abstrac-
tions can be edited to create new shapes, as we show in the fourth
column. The discovered abstractions contain many desirable proper-
ties: they capture diverse geometric expressions and constrain many
extraneous degrees of freedom by introducing parametric relation-
ships. Abstractions in later rounds of ShapeCoder can reference
previously discovered abstractions in sub-function calls, forming a
nesting hierarchy of abstractions. In extreme cases, ShapeCoder can
even discover single abstractions that explain entire input shapes,
e.g., in the first and third columns of the top-row, a single abstraction
function, that consumes five input parameters can output an entire
chair when executed. Access to these types of abstractions can even
be helpful for structural analysis of 3D shapes. For instance, the
shown abstraction for tables (2nd row) is consistently mapped to the
same semantic part (regular table legs), even though the part has a
wide range of possible output geometries. For each abstraction, we
also visualize a subset of random parameterizations (i.e. dreams), to
give a sense of the possible output space described by each function.

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

1:10 « R.Kenny Jones, Paul Guerrero, Niloy J. Mitra, and Daniel Ritchie

DLle Ab?n(a,b,c,d,e)i Absy(.12,.42, 41,AZ,42) Absy (.15,.7,-.28,AZ,.46) Absy (1,.83,-.25,AZ,.46) Absy, (.25,.55,-4,AZ,.2)
nion

Abs,(

a, b, ¢, c*(b+1),d

)

Absio(Edit

a—(2*c),

1.0 + (c/2.0)

c*2*(a-1.0),

e,

(e *2.0)-b,
(€/2.0)+b

&

Def Abs;e(a,b,c): Abs14(.03,-.63,.09) ABSIE(.05,-.84,-.23) Abs1H(.12,.49,-.52)
Union(
AbSa(
a,
(@+1.0)2.0,
b,a*b, c, ——— B ~ 1 Edit

)
Abs(

a,
(@a+1.0)/20,
b,a*b,-1*c,
AX
) Dream

)

by | u| () | %) (DQ0

Def Abs,s(a,b,c,d,e):
Union(

Abs(
a, b, c,
c/2.0,
d,
AZ

)

AbSe(
C,

RBS3(1.41,.99,.08,-.34,.7) ABS35(.96,.55,.02,.43,.89)

Edit

c’- al2.0

)) Dream ’ W

(
1.39,0.,.18,-.1,AY,6,1.39) 1.07,.07,0.51,-.36,AY,2,.78)

Union(

Move(

Cuboid(a, b, c),
b*(c-1.0)/2.0,
d,
b*(d/2.0)

),

SymTrans(
Cuboid(a, b, c),
e,

f,
9
) Dream ’

Edit

& B

WINIEAE AW LY,

)

! I

Fig. 6. Qualitative examples of discovered abstractions. We show one abstraction each for Chair and Table, and two abstractions for Storage furniture. The
abstraction code is shown on the left, followed by three different usages of the abstraction in our shape dataset discovered by ShapeCoder. In the right-most
column, we manually edit the discovered program to create a new shape. Along the bottom, we visualize randomly sampled dreams.

T

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

ShapeCoder: Discovering Abstractions for Visual Programs from Unstructured Primitives « 1:11

Table 3. We measure the generality of the abstractions that ShapeCoder
discovers by comparing how well it can compress shapes (objective func-
tion ¥) from a held-out set (Val) with post hoc inference (PHI) compared
with the programs it discovers during normal operation (top-row).

Shape Set Inference Method # Abs Count
Train ShapeCoder 63.6 4.31
Train PHI 67.5 4.67
Val PHI 70.6 4.77

Table 4. (Left) Ablating design decisions of ShapeCoder by tracking objec-
tive function improvement (see condition details in Section 7.4). Our default
configuration (bottom) performs best. (Right) Measuring output execution
validity (with Frechet Distance) under increasing perturbations (Noise Level)
for programs with, or without, abstractions. Abstractions help keep shapes
‘in distribution’ under parameter edits.

Condition Vil

No Abstraction 104.9 Noise Level No Abs With Abs
Single Iter 81.6 0.1 8 8

No Dream+Wake 99.0 0.2 18 13
No Semantic Rws 75.2 0.3 40 27
No Conditional Rws 100.0 0.4 88 48
No Abs Preferences 70.7 0.5 157 84
ShapeCoder 63.6

Post hoc inference. During the course of abstraction discovery,
ShapeCoder finds programs that use abstractions to explain the
shapes in its input dataset. We investigate if these abstractions
can generalize to shapes from the same distribution that were not
included in its optimization procedure. We leverage ShapeCoder’s
recognition network to find programs that explain shapes that were
not included in the ‘training’ phase of abstraction discovery. We run
the wake phase over these shapes, to find programs that explain the
input set of primitives. These programs are then passed through the
refactor operation, to see if any of the library rewrites can further
improve the program.

We present the results of this post hoc inference (PHI) procedure
in Table 3, for shapes from the Chair category of PartNet. The
top row of this table shows the objective function values, and the
average number of abstraction-uses, for the programs that were
iteratively built up during ShapeCoder ‘training’ (e.g., abstraction
discovery). In the middle row, we take this same set of shapes, ‘forget’
the programs discovered during abstraction discovery, and run the
PHI procedure, which aims to infer programs from scratch. In the
last row, we run PHI on validation shapes, never before seen by
ShapeCoder. While doing inference post hoc is slightly worse than
iteratively discovering programs over multiple rounds, the difference
between running PHI over the ‘training’ shapes and ‘validation’
shapes, is relatively small. This fact, along with the consistently
high-values in the abstraction usage column, indicates that many of
the abstractions that ShapeCoder discovers can generalize beyond
the dataset of shapes it optimizes over.

7.4 ShapeCoder Ablations

To evaluate the design decisions behind ShapeCoder, we run an
ablation experiment, by tracking how the removal of different com-
ponents of our method impacts the types of abstractions we discover,
and how those abstractions impact the optimization of the objective
function. We consider the following ablation conditions:
o No Abstraction: We report the results of running just the wake
phase, once, without an abstraction phase.
o Single Iter: We only run ShapeCoder for a single round.
No Dream+Wake: We run multiple rounds of ShapeCoder
without access to a recognition network. Instead ‘naive’ pro-
grams are used to initialize the algorithm.
o No Semantic Rws: We remove all of the semantic rewrites
associated with our base DSL in the refactor operation.
No Conditional Rws: We replace our conditional rewriting
scheme with the ‘naive’ approach described in Section 6.
o No Abs Preferences: We remove the preference weighting w,
described in Section 3.1.

We report how these different variants perform in Table 4, left,
using shapes from the Chair category of PartNet. All ablation con-
ditions lead to worse optimization behavior than our default config-
uration (bottom row). Without an abstraction phase, the programs
returned from wake can’t leverage higher-order functions. With just
a single iteration of ShapeCoder, hierarchical abstractions can’t be
discovered, and the wake phase can’t learn to apply the discovered
abstractions more broadly. When the abstraction phase is run with-
out a dream or wake phase, the method runs into a similar problem,
where the abstractions can be underutilized, and won’t be integrated
into all of the shapes that they could be used to represent. The se-
mantic rewrites allow e-graphs to represent a large set of equivalent
programs that we efficiently search over during refactoring; when
we don’t consider this large set of equivalent programs, we, once
again, under-apply proposed abstractions. The importance of our
conditional rewrite scheme is made evident by the no conditional
rewrite ablation: within the computational budget allotted for this
ablation experiment (3 days) the version of ShapeCoder that used
the ‘naive’ rewrite scheme failed to finish a complete abstraction
phase. As such, we report its objective function value at this 3-day
cut-off. Finally, our preference weighting scheme helps ShapeCoder
avoid local minima: mostly by down-weighting obviously bad (e.g.
too constrained or too general) candidate abstraction functions.

7.5 Discovering Abstractions from Unstructured Shapes

As an illustrative application of ShapeCoder, we investigate its abil-
ity to jointly discover a library of abstraction functions and pro-
grams that use those abstractions, when run over a dataset of 3D
meshes. To source this kind of input data, we use a method that
performs unsupervised cuboid decomposition of 3D shapes [Yang
and Chen 2021]. Specifically, we employ this approach to convert
sets of ShapeNet meshes into arrangements of unstructured, noisy
primitives — a data format that ShapeCoder can reason over. We
provide details of this data preprocessing in Appendix B.8

Similar to the experiments in Section 7.2, we construct a dataset
of 400 shapes, with primitives produced by this unsupervised algo-
rithm. We run ShapeCoder over a dataset of chairs sourced from

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

1:12 « R.Kenny Jones, Paul Guerrero, Niloy J. Mitra, and Daniel Ritchie

Dataset of
DSf Abizo(a,b,c,d): Input Meshes DLle .Ab?n(a,b,c,d,e):
nion nion
Abs14(a, b, c), l Abs14(a, b, c),
Ab: +1.)2.,a,d,-1*c,a+ 5 P ,d, e .0, (a-b)/2.0,
) s7((c+1.)/2., a c,a+c) | Cuboid Decomposition |)Ab59(a d, e, a/ 2.0, (a-b)/2.0, AX)

Primitive
Decomposition

ShapeCoder

Absy(.03,.37 -.24,.44) Absz(.03,.41,-.16,.41) Abs3(.03,.34,-.21,.37,.16) Abs3(.05,.37,-.27,.39,.15)

Fig. 7. We leverage an unsupervised primitive decomposition approach [Yang and Chen 2021] to run ShapeCoder over datasets of 3D meshes. Even on these
noisy primitive decompositions, our method still finds high-level, useful abstractions that capture meaningful degrees of shape variation. Interestingly, the two
top-level abstractions we show, in orange and blue, both make use of the same abstraction sub-function (highlighted in yellow) to create a four-leg base.

ShapeNet [Chang et al. 2015] for three rounds and show results
of some of the discovered abstractions in Figure 7. Even though
the primitive decompositions that ShapeCoder receives are noisy
and irregular, it still manages to discover a collection of meaningful
abstraction functions that expose higher-order properties and can
be applied across instances of the input distribution. For instance,
the discovered Absy, captures the same fundamental chair structure
found by ShapeCoder when run over PartNet annotations (Absz4,
Figure 6). In fact, over the course of 3 rounds, ShapeCoder improves
the objective function score by 61% (140 — 53.9), which is similar to
the quantitative improvement observed when ShapeCoder operates
over clean, manually annotated parts. These results are promising,
and indicate that systems like ShapeCoder can be used to discover
useful high-level programmatic representations of complex visual
phenomena, without reliance on manual annotations.

7.6 Downstream Benefits of Abstractions

In this section, we investigate how ShapeCoder’s discovered abstrac-
tions can benefit downstream applications with two experiments:
maintaining validity under perturbations and novel shape synthesis.

Maintaining validity under perturbation. As we aim to discover
abstractions that remove extraneous degrees of freedom, we can
evaluate success by perturbing degrees of freedom in shape pro-
grams, and checking whether they ‘stay in distribution’. We take two
shape program datasets, where programs are written with or with-
out abstractions, and perturb their parameters under different noise
levels. Specifically, the noise level modulates the standard deviation

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

of Gaussian noise distributions fit to each parameter slot of each
DSL function. For each perturbed set of programs, we measure how
similar their output executions are to a validation set with Frechet
Distance (FD) in the feature space of a pretrained model. We report
results of this experiment in Table 4, right. We find that rewriting
programs with abstractions discovered by ShapeCoder helps to keep
shapes ‘in distribution’ under parameters perturbations, which is
an important property for goal-directed editing tasks.

Novel Shape Synthesis. We evaluate if generative models that learn
to write novel shape-programs benefit from training over programs
that have been rewritten with discovered abstractions. For this
experiment, we use the PHI procedure (Section 7.3) to construct a
dataset of 3600 chair-programs written with ShapeCoder discovered
abstractions. We use this dataset to train an auto-regressive network,
a Transformer decoder, that learns to generate sub-programs condi-
tioned on a canvas that tracks the execution output of previously
predicted program parts (Appendix B.9) To synthesize novel shapes,
the network starts with a blank canvas, and then gradually builds up
a complex program by iteratively sampling expressions, and adding
their outputs to the canvas, until a STOP token is predicted.

We visualize outputs of this model in Figure 8. Qualitatively, we
find that this model can create new shapes not observed from the
training set, that clearly stay within the training-distribution. Quan-
titatively, we compare the outputs of this model against an ablated
version that trains over programs without abstractions, and find
that learning over programs written with abstractions improves
Frechet Distance (against a validation set) from 17.1 to 13.8, a 19%

ShapeCoder: Discovering Abstractions for Visual Programs from Unstructured Primitives + 1:13

Fig. 8. Sampled programs (top) from a generative model that writes pro-
grams containing abstractions, along with nearest neighbors (bottom).

improvement. Moreover, generative models of visual programs that
learn over abstractions are particularly attractive, because the pro-
grams they output have less extraneous degrees of freedom, and
will be better suited for downstream tasks.

8 CONCLUSION

We have presented ShapeCoder, a system capable of discovering
visual program abstractions in a collection of shapes represented
as unstructured primitives. Our method does not require any ad-
ditional supervision such as ground truth programs, any specific
ordering of program operations, or any program curriculum. We
have shown that ShapeCoder discovers high-level abstractions, that
result in significant compression, on domains that other state-of-
the-art methods cannot handle. ShapeCoder can find programs that
use these abstractions to explain shapes not observed during op-
timization, compactly. Finally, we demonstrated the flexibility of
ShapeCoder by showing that it can discover useful abstractions,
that capture meaningful degrees of freedom when run over noisy
primitive decompositions produced by an unsupervised method.

8.1 Limitations and Future Work

While ShapeCoder is the first method to discover non-trivial pro-
gram abstractions directly from unstructured primitives, it does
have some important limitations:

(i) Redundant abstractions. We find multiple abstractions that
explain the same concept. While these can be seen as structural vari-
ations for the same semantic concept (e.g. pedestal chair bases and
four-leg chair bases), the abstracted programs can feel redundant
for downstream tasks. This is hard to avoid as, at present, we do not
‘execute’ the programs to compare their geometric output. In the
future, we want to explore ‘conditional’ or ‘probabilistic’ abstrac-
tions. For instance, a chair base abstraction could expand into either
a pedestal base or a four-leg base, depending on either a discrete
input parameter, or a given probability for each variation.

(ii) Unsaturated e-graphs. For complicated input expressions, it
can be computationally infeasible to fully saturate e-graphs, as they
lack the ability to efficiently represent associativity-commutativity
constraints. While ShapeCoder doesn’t offer a direct solution to
this issue, our use of conditional rewrites avoids inserting extrane-
ous parametric operation nodes. This helps to alleviate exponential

blowup, and allows ShapeCoder to explore a much richer range
of possible program structures than prior work. Despite this, we
cannot always saturate our e-graphs within the allotted computa-
tional budget. This implies that some possibly useful rewrites go
unexplored and never get appended to the abstraction library. One
possibility is to amortize the integration stage with neural compo-
nents: either by learning rewrites (e.g., using a reward structure in
a reinforced learning setup), by learning which parts of the e-graph
to expand, or by putting the burden of ‘large’ rewrites on a learned
module, rather than the e-graph. However, training such modules
in an unsupervised setup requires further research.

(iii) Bottom-up wake network. ShapeCoder’s recognition network
(used in the wake phase) solves sub-problems that are stitched to-
gether through combinator operations. A downside of this design
decision is that the recognition network must be retrained when-
ever the library version changes. Further, as the network does not
predict an entire program in one-shot, inference can be expensive to
run, and there is less consistency in how programs will be inferred
across a dataset. Replacing this bottom-up network with a top-down
network would be more challenging. Still, it would open up other
possibilities, such as removing the need for the input data to be
represented as collections of primitives.

Looking forward, we believe that ShapeCoder should be helpful
for many other visual programming domains, beyond the 2D and 3D
shape grammars we consider in this report. ShapeCoder requires
the following domain attributes: (a) the language is functional, (b)
it contains a combinator operation (e.g. Union), and (c) visual in-
puts can be decomposed into primitive types. In fact, properties (b)
and (c) are only needed for the wake phase, so this requirement
could be relaxed by using program inference networks that consume
‘raw’ visual data. Sketches, CSG, SVG, and even shader programs
could make good matches for future explorations. For the first time,
ShapeCoder provides the ability to perform program abstraction dis-
covery directly on unstructured collections of primitives, reducing
the burden of collecting, annotating, and grouping shape categories.

ACKNOWLEDGMENTS

We would like to thank Srinath Sridhar and the anonymous review-
ers for their helpful suggestions. Renderings of shape programs were
produced using the Blender Cycles renderer. This work was funded
in parts by NSF award #1941808, a Brown University Presidential
Fellowship, and an ERC grant (SmartGeometry). Daniel Ritchie is
an advisor to Geopipe and owns equity in the company. Geopipe
is a start-up that is developing 3D technology to build immersive
virtual copies of the real world with applications in various fields,
including games and architecture.

REFERENCES

Daniel G. Aliaga, Ilke Demir, Bedrich Benes, and Michael Wand. 2016. Inverse Proce-
dural Modeling of 3D Models for Virtual Worlds. In ACM SIGGRAPH 2016 Courses
(SIGGRAPH ’16). Article 16, 316 pages. https://doi.org/10.1145/2897826.2927323

Matthew Bowers, Theo X. Olausson, Lionel Wong, Gabriel Grand, Joshua B. Tenenbaum,
Kevin Ellis, and Armando Solar-Lezama. 2023. Top-Down Synthesis for Library
Learning. Proc. ACM Program. Lang. 7, POPL, Article 41 (jan 2023), 32 pages. https:
//doi.org/10.1145/3571234

David Cao, Rose Kunkel, Chandrakana Nandi, Max Willsey, Zachary Tatlock, and
Nadia Polikarpova. 2023. Babble: Learning Better Abstractions with E-Graphs and

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

https://doi.org/10.1145/2897826.2927323
https://doi.org/10.1145/3571234
https://doi.org/10.1145/3571234

1:14 « R.Kenny Jones, Paul Guerrero, Niloy J. Mitra, and Daniel Ritchie

Anti-Unification. Proc. ACM Program. Lang. 7, POPL, Article 14 (jan 2023), 29 pages.
https://doi.org/10.1145/3571207

Alexandre Carlier, Martin Danelljan, Alexandre Alahi, and Radu Timofte. 2020.
DeepSVG: A Hierarchical Generative Network for Vector Graphics Animation. In
Advances in Neural Information Processing Systems (NeurIPS), Vol. 33. 16351-16361.

Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang,
Zimo Li, Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, Jianxiong Xiao, Li
Yi, and Fisher Yu. 2015. ShapeNet: An information-rich 3D model repository. arXiv
preprint arXiv:1512.03012 (2015).

Eyal Dechter, Jon Malmaud, Ryan P. Adams, and Joshua B. Tenenbaum. 2013. Boot-
strap Learning via Modular Concept Discovery. In Proceedings of the Twenty-Third
International Joint Conference on Artificial Intelligence (Beijing, China) (IJCAI ’13).
AAAI Press, 1302-1309.

Ilke Demir, Daniel G Aliaga, and Bedrich Benes. 2014. Proceduralization of buildings at
city scale. In 2014 2nd International Conference on 3D Vision, Vol. 1. IEEE, 456-463.

Boyang Deng, Sumith Kulal, Zhengyang Dong, Congyue Deng, Yonglong Tian, and
Jiajun Wu. 2022. Unsupervised Learning of Shape Programs with Repeatable Implicit
Parts. In Advances in Neural Information Processing Systems (NeurIPS).

Tao Du, Jeevana Priya Inala, Yewen Pu, Andrew Spielberg, Adriana Schulz, Daniela
Rus, Armando Solar-Lezama, and Wojciech Matusik. 2018. InverseCSG: automatic
conversion of 3D models to CSG trees. In Annual Conference on Computer Graphics
and Interactive Techniques Asia (SIGGRAPH Asia). ACM.

Kevin Ellis, Maxwell Nye, Yewen Pu, Felix Sosa, Joshua B. Tenenbaum, and Armando
Solar-Lezama. 2019. Write, Execute, Assess: Program Synthesis with a REPL. In
Advances in Neural Information Processing Systems (NeurIPS).

Kevin Ellis, Daniel Ritchie, Armando Solar-Lezama, and Josh Tenenbaum. 2018. Learn-
ing to Infer Graphics Programs from Hand-Drawn Images. In Advances in Neural
Information Processing Systems (NeurIPS).

Kevin Ellis, Catherine Wong, Maxwell Nye, Mathias Sablé-Meyer, Lucas Morales, Luke
Hewitt, Luc Cary, Armando Solar-Lezama, and Joshua B Tenenbaum. 2021. Dream-
Coder: Bootstrapping inductive program synthesis with wake-sleep library learning.
In ACM SIGPLAN International Symposium on New Ideas, New Paradigms, and Re-
flections on Programming and Software (SIGPLAN). 835-850.

Jonas Freiknecht and Wolfgang Effelsberg. 2017. A Survey on the Procedural Generation
of Virtual Worlds. Multimodal Technologies and Interaction 1, 4 (2017). https:
//doi.org/10.3390/mti1040027

Yaroslav Ganin, Sergey Bartunov, Yujia Li, Ethan Keller, and Stefano Saliceti. 2021.
Computer-aided design as language. In Advances in Neural Information Processing
Systems (NeurIPS).

Paul Guerrero, Milos Hasan, Kalyan Sunkavalli, Radomir Mech, Tamy Boubekeur, and
Niloy Mitra. 2022. MatFormer: A Generative Model for Procedural Materials. ACM
Transactions on Graphics (TOG) 41, 4, Article 46 (2022).

Jianwei Guo, Haiyong Jiang, Bedrich Benes, Oliver Deussen, Xiaopeng Zhang, Dani
Lischinski, and Hui Huang. 2020. Inverse procedural modeling of branching struc-
tures by inferring L-systems. ACM Transactions on Graphics (TOG) 39, 5 (2020),
1-13.

Yiwei Hu, Chengan He, Valentin Deschaintre, Julie Dorsey, and Holly Rushmeier. 2022.
An inverse procedural modeling pipeline for svbrdf maps. ACM Transactions on
Graphics (TOG) 41, 2 (2022), 1-17.

Irvin Hwang, Andreas Stuhlmiiller, and Noah D. Goodman. 2011. Inducing Probabilistic
Programs by Bayesian Program Merging. CoRR arXiv:1110.5667 (2011).

R. Kenny Jones, Theresa Barton, Xianghao Xu, Kai Wang, Ellen Jiang, Paul Guerrero,
Niloy J. Mitra, and Daniel Ritchie. 2020. ShapeAssembly: Learning to Generate
Programs for 3D Shape Structure Synthesis. ACM Transactions on Graphics (TOG),
Siggraph Asia 2020 39, 6 (2020), Article 234.

R. Kenny Jones, David Charatan, Paul Guerrero, Niloy J. Mitra, and Daniel Ritchie. 2021.
ShapeMOD: Macro Operation Discovery for 3D Shape Programs. ACM Transactions
on Graphics (TOG), Siggraph 2021 40, 4 (2021), Article 153.

R. Kenny Jones, Homer Walke, and Daniel Ritchie. 2022. PLAD: Learning to Infer
Shape Programs with Pseudo-Labels and Approximate Distributions. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR).

Kacper Kania, Maciej Zieba, and Tomasz Kajdanowicz. 2020. UCSG-NET - unsupervised
discovering of constructive solid geometry tree. In Advances in Neural Information
Processing Systems (NeurIPS), Vol. 33. 8776-8786.

Changjian Li, Hao Pan, Adrien Bousseau, and Niloy J. Mitra. 2020. Sketch2CAD:
Sequential CAD Modeling by Sketching in Context. ACM Transactions on Graphics
(TOG) 39, 6 (2020), 164:1-164:14.

Changjian Li, Hao Pan, Adrien Bousseau, and Niloy J. Mitra. 2022. Free2CAD: Parsing
Freehand Drawings into CAD Commands. ACM Transactions on Graphics (TOG) 41,
4(2022), 93:1-93:16.

Andelo Martinovic and Luc Van Gool. 2013. Bayesian Grammar Learning for Inverse
Procedural Modeling. In 2013 IEEE Conference on Computer Vision and Pattern Recog-
nition. 201-208. https://doi.org/10.1109/CVPR.2013.33

Elie Michel and Tamy Boubekeur. 2021. DAG Amendment for Inverse Control of
Parametric Shapes. ACM Transactions on Graphics 40, 4 (2021), 173:1-173:14.

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

Kaichun Mo, Shilin Zhu, Angel X. Chang, Li Yi, Subarna Tripathi, Leonidas J. Guibas, and
Hao Su. 2019. PartNet: A Large-Scale Benchmark for Fine-Grained and Hierarchical
Part-Level 3D Object Understanding. In The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR).

Pascal Miiller, Gang Zeng, Peter Wonka, and Luc Van Gool. 2007. Image-based proce-
dural modeling of facades. ACM Trans. Graph. 26, 3 (2007), 85.

Chandrakana Nandi, Max Willsey, Adam Anderson, James R. Wilcox, Eva Darulova,
Dan Grossman, and Zachary Tatlock. 2020. Synthesizing Structured CAD Models
with Equality Saturation and Inverse Transformations. In Proceedings of the 41st
ACM SIGPLAN Conference on Programming Language Design and Implementation
(London, UK) (PLDI 2020). Association for Computing Machinery, New York, NY,
USA, 31-44. https://doi.org/10.1145/3385412.3386012

Wamiq Reyaz Para, Shariq Farooq Bhat, Paul Guerrero, Tom Kelly, Niloy Mitra, Leonidas
Guibas, and Peter Wonka. 2021. SketchGen: Generating Constrained CAD Sketches.
In Advances in Neural Information Processing Systems (NeurIPS).

Ofek Pearl, Itai Lang, Yuhua Hu, Raymond A. Yeh, and Rana Hanocka. 2022. GeoCode:
Interpretable Shape Programs. arXiv:2212.11715 [cs.GR]

Pradyumna Reddy, Michael Gharbi, Michal Lukac, and Niloy J Mitra. 2021a. Im2Vec:
Synthesizing vector graphics without vector supervision. In IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR). 7342-7351.

Pradyumna Reddy, Zhifei Zhang, Matthew Fisher, Hailin Jin, Zhaowen Wang, and
Niloy J Mitra. 2021b. A Multi-Implicit Neural Representation for Fonts. In Advances
in Neural Information Processing Systems (NeurIPS).

Daxuan Ren, Jianmin Zheng, Jianfei Cai, Jiatong Li, Haiyong Jiang, Zhongang Cai,
Junzhe Zhang, Liang Pan, Mingyuan Zhang, Haiyu Zhao, et al. 2021. CSG-Stump:
A Learning Friendly CSG-Like Representation for Interpretable Shape Parsing. In
IEEE/CVF International Conference on Computer Vision (ICCV). 12478-12487.

Daxuan Ren, Jianmin Zheng, Jianfei Cai, Jiatong Li, and Junzhe Zhang. 2022. ExtrudeNet:
Unsupervised Inverse Sketch-and-Extrude for Shape Parsing. In European Conference
on Computer Vision (ECCV).

Daniel Ritchie, Paul Guerrero, R. Kenny Jones, Niloy J. Mitra, Adriana Schulz, Karl
D. D. Willis, and Jiajun Wu. 2023. Neurosymbolic Models for Computer Graphics.
Computer Graphics Forum (2023).

Daniel Ritchie, Sarah Jobalia, and Anna Thomas. 2018. Example-based Authoring
of Procedural Modeling Programs with Structural and Continuous Variability. In
EUROGRAPHICS.

Ari Seff, Wenda Zhou, Nick Richardson, and Ryan P. Adams. 2022. Vitruvion: A
Generative Model of Parametric CAD Sketches. In International Conference on
Learning Representations (ICLR).

Gopal Sharma, Rishabh Goyal, Difan Liu, Evangelos Kalogerakis, and Subhransu Maji.
2018. CSGNet: Neural Shape Parser for Constructive Solid Geometry. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR).

Liang Shi, Beichen Li, Milo§ Hasan, Kalyan Sunkavalli, Tamy Boubekeur, Radomir
Mech, and Wojciech Matusik. 2020. MATch: Differentiable Material Graphs for
Procedural Material Capture. ACM Trans. Graph. 39, 6 (Dec. 2020), 1-15.

SideFx. 2014. Introduction to Procedural Modeling. https://www.sidefx.com/learn/
collections/introduction-to-procedural-modeling/. Accessed: 2023-04-18.

Ondrej Stava, Séren Pirk, Julian Kratt, Baoquan Chen, Radomir Méch, Oliver Deussen,
and Bedrich Benes. 2014. Inverse procedural modelling of trees. In Computer Graphics
Forum, Vol. 33. Wiley Online Library, 118-131.

Jerry O. Talton, Lingfeng Yang, Ranjitha Kumar, Maxine Lim, Noah D. Goodman, and
Radomir Mech. 2012. Learning design patterns with Bayesian grammar induction.
In UIST.

Ross Tate, Michael Stepp, Zachary Tatlock, and Sorin Lerner. 2009. Equality Saturation:
A New Approach to Optimization (POPL '09). Association for Computing Machinery,
New York, NY, USA, 264-276. https://doi.org/10.1145/1480881.1480915

Ross Tate, Michael Stepp, Zachary Tatlock, and Sorin Lerner. 2011. Equality Saturation:
A New Approach to Optimization. Logical Methods in Computer Science Volume 7,
Issue 1 (March 2011). https://doi.org/10.2168/LMCS-7(1:10)2011

Yonglong Tian, Andrew Luo, Xingyuan Sun, Kevin Ellis, William T. Freeman, Joshua B.
Tenenbaum, and Jiajun Wu. 2019. Learning to Infer and Execute 3D Shape Programs.
In International Conference on Learning Representations (ICLR).

Carlos A Vanegas, Ignacio Garcia-Dorado, Daniel G Aliaga, Bedrich Benes, and Paul
Waddell. 2012. Inverse design of urban procedural models. ACM Transactions on
Graphics (TOG) 31, 6 (2012), 1-11.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, L ukasz Kaiser, and Illia Polosukhin. 2017. Attention is All you Need.
In Advances in Neural Information Processing Systems, I. Guyon, U. Von Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (Eds.), Vol. 30.
Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock, and
Pavel Panchekha. 2021. egg: Fast and Extensible Equality Saturation. Proc. ACM
Program. Lang. 5, POPL, Article 23 (Jan. 2021), 29 pages. https://doi.org/10.1145/
3434304

https://doi.org/10.1145/3571207
https://doi.org/10.3390/mti1040027
https://doi.org/10.3390/mti1040027
https://doi.org/10.1109/CVPR.2013.33
https://doi.org/10.1145/3385412.3386012
https://arxiv.org/abs/2212.11715
https://www.sidefx.com/learn/collections/introduction-to-procedural-modeling/
https://www.sidefx.com/learn/collections/introduction-to-procedural-modeling/
https://doi.org/10.1145/1480881.1480915
https://doi.org/10.2168/LMCS-7(1:10)2011
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.1145/3434304
https://doi.org/10.1145/3434304

ShapeCoder: Discovering Abstractions for Visual Programs from Unstructured Primitives « 1:15

Chenming Wu, Haisen Zhao, Chandrakana Nandi, Jeffrey I. Lipton, Zachary Tatlock,
and Adriana Schulz. 2019. Carpentry Compiler. ACM Trans. Graph. 38, 6, Article
195 (Nov. 2019), 14 pages. https://doi.org/10.1145/3355089.3356518

Fuzhang Wu, Dong-Ming Yan, Weiming Dong, Xiaopeng Zhang, and Peter Wonka.
2014. Inverse Procedural Modeling of Facade Layouts. ACM Trans. Graph. 33, 4,
Article 121 (jul 2014), 10 pages. https://doi.org/10.1145/2601097.2601162

Rundi Wu, Chang Xiao, and Changxi Zheng. 2021. DeepCAD: A Deep Generative
Network for Computer-Aided Design Models. In IEEE/CVF International Conference
on Computer Vision (ICCV). 6772-6782.

Ling Xu and David Mould. 2015. Procedural tree modeling with guiding vectors. In
Computer Graphics Forum, Vol. 34. Wiley Online Library, 47-56.

Xianghao Xu, Wenzhe Peng, Chin-Yi Cheng, Karl D. D. Willis, and Daniel Ritchie. 2021.
Inferring CAD Modeling Sequences Using Zone Graphs. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR).

Xiang Xu, Karl DD Willis, Joseph G Lambourne, Chin-Yi Cheng, Pradeep Kumar Jayara-
man, and Yasutaka Furukawa. 2022. SkexGen: Autoregressive Generation of CAD
Construction Sequences with Disentangled Codebooks. In International Conference
on Machine Learning (ICML).

Kaizhi Yang and Xuejin Chen. 2021. Unsupervised Learning for Cuboid Shape Abstrac-
tion via Joint Segmentation from Point Clouds. ACM Trans. Graph. 40, 4, Article
152 (jul 2021), 11 pages. https://doi.org/10.1145/3450626.3459873

Fenggen Yu, Zhiqin Chen, Manyi Li, Aditya Sanghi, Hooman Shayani, Ali Mahdavi-
Amiri, and Hao Zhang. 2022. CAPRI-Net: Learning Compact CAD Shapes With
Adaptive Primitive Assembly. In IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). 11768-11778.

A SHAPE GRAMMAR

3D Shape Grammar. Below we detail our 3D shape grammar:

START — SHAPE

SHAPE — Union(SHAPE, SHAPE) |
SymRef(SHAPE, AXIS) |
SymTrans(SHAPE, AXIS, INT, FLOAT) |
Rotate(SHAPE, AXIS, FLOAT) |
Move(SHAPE, FLOAT, FLOAT, FLOAT) |
Cuboid(FLOAT, FLOAT, FLOAT);

AXIS— AX | AY | AZ;

INT— [1, 6];

FLOAT — Prim;j [-1]0] 12|
Add(FLOAT, FLOAT) | Sub(FLOAT, FLOAT)
Mul(FLOAT, FLOAT) | Div(FLOAT, FLOAT);

We italicize all non-terminal parts of the grammar, and explain
what the terminal operators in the language do (non-italicized).
Union combines two sub-shapes together. SymRef is a symmetry
reflection across an axis. SymTrans is a symmetry translation over
an axis, that creates a specified number of copies, up to a specified
distance. Rotate specifies an Euler angle rotation about an axis.
Move moves a cuboid by a specified amount. Cuboid instantiates a
cuboid with the specified dimensions. Axes can be either the X, Y, or
Z axis. Ints can be an integer between 1 and 6. Floats can be either
be sourced from a primitive parameter of an input scene (Prim;;),
be a constant, or the result of a parametric operation.

2D Shape Grammar. Below we detail our 2D shape grammar:

START — SHAPE

SHAPE — Union(SHAPE, SHAPE) |
SymRef(SHAPE, AXIS) |
SymTrans(SHAPE, AXIS, INT, FLOAT) |
Move(SHAPE, FLOAT, FLOAT) |
Rect(FLOAT, FLOAT);

AXIS— AX|AY;

INT— [1, 4];

FLOAT — Prim;; [-1]0|1]2]
Add(FLOAT, FLOAT) | Sub(FLOAT, FLOAT)
Mul(FLOAT, FLOAT) | Div(FLOAT, FLOAT);

This is a simplified version of our 3D grammar, where the rota-
tion command has been removed, and all 3D parameterizations are
replaced with 2D parameterizations.

B IMPLEMENTATION DETAILS

We provide implementation details for ShapeCoder below. For all
experiments in Section 7 we set N4 = 20 and Np = 10000.

B.1 Objective Function Weights

We use the following weights for A in ShapeCoder’s objective func-
tion (Section 3.1): float tokens are 2.0, shape-returning function
tokens are 1.0, float-returning function tokens are 0.1 (i.e. paramet-
ric operations), and categorical tokens (including integers) are 0.5 .
Additionally we set the geometric error weight, 1., to be 10.

For the function weighting scheme w, described in Section 3.1 and
ablated in Section 7.4, ShapeCoder employs the following logic. The
base cost of adding a new abstraction f into £ is 0.25, but this value
can be modulated within the range of 0.125 to 0.5 based on proper-
ties of f. The presence of parametric expressions in f decrease w.
Too many input parameters in f increases w, where more than 6
parameters starts to incur penalties, and abstractions with more
than 10 input parameters are rejected outright. We decrease w for
doubleton abstractions (those that use multiple sub-functions), and
increase w for singleton abstractions that use a single sub-function.
Finally, if f is found to be used very infrequently over #, less than 1%
observation rate, then we also reject f outright.

B.2 Geometric Error Function

The objective function (Section 3.1) uses a geometric error func-
tion err that compares how closely an executed expression e from £
matches a target shape d. As this error function is used extensively
in the wake phase (Section 4.3), it checks for partial solutions. Say
executing e creates a set of primitives prime, and d contains prim-
itives primy. First our geometric error functions finds an optimal
mapping from primitives in prim, to some primitive in primg. Me-
chanically, we construct a distance matrix of size |prime| X |primy|,
that calculates a domain-specific distance metric between each pair
of input and target primitives (explained later). For any pair of
primitives whose distance is above a user-defined maximum error
threshold, we set their paired distance to an arbitrarily high value
(10000). We use the Hungarian matching algorithm to find an opti-
mal match over this distance matrix. If none of the paired matches
between prim, and primg have distance over 10000, then the match

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

https://doi.org/10.1145/3355089.3356518
https://doi.org/10.1145/2601097.2601162
https://doi.org/10.1145/3450626.3459873

1:16 « R.Kenny Jones, Paul Guerrero, Niloy J. Mitra, and Daniel Ritchie

is valid, and the total error incurred by e for d is simply the sum of
all entries in the distance matrix involved in this optimal match.

During the integration phase (Section 5.2), we can modify this
approach to check for a program p that explains d, by enforcing that
the distance matrix must be square. Whenever this condition is not
met, it means that there is a mismatch in the number of primitives
created by p, and the number of primitives expected in the target
shape d, so p is invalid.

2D geometric distance. Each primitive (rectangle) is represented
as 4 parameters: width, height, x position, and y position. To find
the distance between two primitives, we take the average of the
absolute differences between each parameter slot. The maximum
allowable error threshold is set to 0.05.

3D geometric distance. Each primitive (cuboid) is represented as 9
parameters: dimensions, position, Euler angle rotations. To find the
distance between two primitives, we calculate the corner positions
of each cuboid, and record the Hausdorff distance between the two
sets of points. The maximum allowable error threshold is set to 0.1 .

B.3 Recognition Network

Our recognition network uses a Transformer decoder backbone
architecture with causal masking. We allow it to condition on up
to 16 primitives (where each primitive will contribute K tokens),
and fix its max prediction length to be 32. It uses 2 attention blocks,
with 8 heads in each block, and a hidden dimension of 128. Training
uses a batch size of 64, dropout of 0.5, and a learning rate of .0001.
Each dream phase (Section 4.2) trains the recognition network for a
maximum of 300 epochs, where early stopping is performed on a
validation set of held-out dreams (10% of samples).

B.4 Dream Creation

Sampling library functions. During the dream phase (Section 4.2),
ShapeCoder randomly samples instantiations of library functions
to train the recognition network. Some dreams are visualized in
Figure 6. For each discrete decision needed to parameterize a func-
tion f, we find all tokens in L that type-match, and uniformly
sample from this distribution. Float-typed tokens are represented
as mixtures of Gaussians distributions (max 3 mixture components).
These distributions are designed to broadly reflect reasonable values
for certain parameter slots in the base DSL. For instance, the first
float parameter slot in the ‘Move’ operator is associated with x-axis
positioning, so we design a trimodal mixture distribution with the
following properties: it has a 0-centered dominant component, and
then two minor components placed to the left and right of the origin.
These distributions don’t meaningfully change the performance of
the recognition model, as it gets to trains on a massive amount of
samples, but it does speed up the rate at which we can find valid
dreams under our rejection criteria (explained below). When sam-
pling dreams for abstraction functions, the parameter inputs in the
abstraction inherent the distributions of their child sub-functions.

Dream rejection criteria. We use simple checks to validate that
randomly sampled dreams produce meaningful training data, and re-
ject any dreams that don’t meet the following criteria. All primitives
must have positive dimensions. The corners of all primitives must

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

be within the allotted scene bounding volume [-1, 1], with a 10%
leniency threshold. At least 50% of each primitives area must be
visible (i.e. not contained within another primitive). Each primitive
must be bigger than a specified threshold: 0.005 area of 2D, .00025
volume for 3D. Dreams cannot contain more than 16 primitives.
Dreams cannot use redundant operations, for instance, applying
two Move commands in a row.

Forming composite scenes. ShapeCoder’s recognition network trains
on composite scenes, that are formed by sampling function-specific
dreams and combining them together. To form a composite scene,
we sample a random integer k from [1,4], sample k functions from
the set of all library functions that have not been represent in Np
dreams, and choose a random dream from each chosen function.
Additionally, with 50% chance, we add distractor primitives into
the composite scene. Distractor primitives are sourced by randomly
sub-sampling primitives found in some d € D. To encourage the
recognition network to be position invariant, we optionally sam-
ple a Move operation (with 50% frequency) and apply it over the
primitives created by a function-specific dream. Note that this Move
operation is not included in the target expression, so the recognition
network must become invariant to where the target primitives show
up in the composite scene.

B.5 Combining Wake Programs

As discussed in Section 4.3, programs discovered in round r’s wake
phase need to be combined with programs discovered in rounds
before r. Here we detail how combine is implemented.

Assume we are in the wake phase of round r,r > 0.For some d € D
there is currently some program entry in P, p.. Using a split func-
tion, that recursively removes combinator operations from a pro-
gram, we can convert p. into a set of expressions in L:
split(pe) = Ec = {€%, ..., eLEC‘ }. When executed, each e, will create
a set of primitives, primé, that is a subset of the primitives in d.
ShapeCoder keeps track of all such previous expressions associated
with d in a data-structure Qg , sourced from either the wake or
integration phases.

The wake inference procedure uses the recognition network to
prediction a new program in round r, p,, for d. We decide what
program p should be kept in # by constructing 4 program variants,
and keeping the one that minimizes 7. The variants we consider
are as follows. (i) Use p.. (ii) Use p, (note this variant will always
be chosen if r = 0). (iii) Greedily merge p, into p.. To do this, we
first compute split(p,) = Er = {e%, ..., elECl }. Then for each e, we
find primi, and see if there is a set of matching instances in E., M,
such that prim’ = {prim} for j € M}. If M exists, then we compare
the cost under F of e} versus the sum of each e (with |M| — 1
combinator calls): if e’ improves F then each e/ is removed from E,
and el is added into E,. (iv) Greedily construct an entirely new
program from Q. First E, is added into Q4. Then Q greedily creates
a new program by initializing E, (to be empty) and repeating the
following steps: find the cost of each e in Qy, take the minimum
cost expression e* and add it into Ej,, and temporarily remove all
other entries of Qy that have nonzero overlap with primj. This is
repeated until E, contains expressions that cover all primitives in d.

ShapeCoder: Discovering Abstractions for Visual Programs from Unstructured Primitives + 1:17

After these four program variants have been created (where in
(iii) and (iv) combinator operations are applied over E. and E,
respectively), the variant with the minimum score under ¥ is kept
in P. Finally, we note that some extra logic is required to ensure
that Q4 and p, are kept up-to-date. Whenever the integration phase
tries removing a function f from L, all expressions in Q that use f
are temporarily removed. Moreover if f appears in pc, then the
greedy search in (iv) is used to find replacement expressions for pe.

B.6 Preference Ordering of Parametric Relationships

The proposal phase (Section 5.1) generates candidate abstractions
using a greedy search. These candidate abstractions contain para-
metric expressions. Below we detail the preference ordering we use
to search for matching parametric expressions with respect to a
sampled cluster.

The choice of which parametric expression to propose is always
made in the context of a cluster, that contains a structure and a
group of parameterizations. As we are filling in slots for the candi-
date abstraction, we may have already instantiated free variables
that were used in previous slots. To find a possible expression for
the current parameter slot, we reason over the free variables previ-
ously instantiated. We iterate through a preference ordering that
considers increasingly complex parametric expressions over previ-
ous variables: expressions with only constants, then one variable
expressions, two variable expressions, and finally three variable ex-
pressions. The set of all expressions under £ that contain n variables
can be found by calculating the cross-product of (i) all parametric
operator combinations that would require n variables with (ii) all
ordered sequences of n previously instantiated variables. To avoid
overfitting, we limit the possible constants we consider (just 0 for
our shape grammars). For each expression, we check which mem-
bers of the cluster are covered by that expression. Once we find a
set of expressions that collectively cover all instances within the
cluster, we break out of this loop early. This procedure creates a
large set of possible expressions (visualized in Figure 4), from which
one is chosen according to the score function.

B.7 E-graphs

Our refactor operation (Section 6), implements e-graphs using the
Egg library [Willsey et al. 2021]. Egg provides support for defining a
DSL, rewrite operations, and a cost function, that can be used by an
extraction operation. Egg provides an interface for defining rewrites
that reason over conditional logic, but they cannot be directly ap-
plied for our use case. Our version of conditional rewrites requires
that each rewrite has access to a shared e-class-to-real-value map-
ping, so we build out this feature. Maintaining this mapping requires
dummy rewrite operations, that check for structural matches for
various parametric operations, and update the mapping, without
changing the structure of the e-graph. When we first instantiate
an e-graph, we apply dummy rewrites that match on each float
variable, V;, and adds an entry for V; into the mapping. Then, dur-
ing each rewrite round, after applying all semantic and abstraction
rewrites, we apply all dummy rewrites, to ensure the mapping is
up-to-date (this handles the blue Mul e-class from Figure 5). For each
domain, we provide Egg with a set of semantic rewrites that express

domain-specific semantic preserving transformations. There are 25
such rewrites for 3D, and 16 such rewrites for 2D. We ablate the
importance of including these semantic rewrites in our ablation
experiment (Section 7.4).

B.8 Unsupervised Primitive Decomposition

As described in Section 7.5, we make use of an unsupervised cuboid
decomposition method, so that we can apply ShapeCoder to shapes
from datasets that contain only meshes. We use the approach de-
scribed by [Yang and Chen 2021], using their released pretrained
models to predict cuboid decompositions over chairs from their
test set. We compile a dataset of 400 such predictions, and parse
these output predictions into a primitive representation compatible
with our method. This conversion procedure performs a few minor
filtering steps, rejecting scenes that contain more than 12 cuboids
(we found these often were noisy predictions) and snapping cuboids
to be axis-aligned whenever their Euler angles were within a 0.05
threshold of 0 or 27.

B.9 Generative Model for Programs

We provide details for the generative model described in Section 7.6.
This model is capable of synthesizing novel 3D shapes. We imple-
ment our generative model as a Transformer decoder, with causal
masking. It uses a CNN to encode a shape voxelization into an
embedding vector, which conditions the Transformer that autore-
gressively predicts tokens from £. The network starts with a blank
scene, iteratively predicts an expression e from £, and adds it back
into the scene (which will be encoded by the CNN in the next
time-step). This process is repeated until a special ‘STOP’ token is
predicted.

We source training data for this model by running our post hoc
inference procedure (Section 7.3) over a dataset of 3600 chairs, to
form a program dataset #. For each epoch, we randomize expres-
sion ordering by applying split (Section B.5) to each p € P, shuffling
the expressions found by split, and treating every (previous expres-
sions, next expression) tuple as an independent training example.
We use teacher-forcing and maximum likelihood updates to train
the generative model. We train the model for 4000 epochs. It has 8
Transformer layers, 16 heads, a hidden size of 256. We train with
a batch size of 64, dropout of 0.1, and a learning rate of 0.0005 . At
inference time, we use nucleus sampling (top 90%) to predict expres-
sions from the networks probabilities. The ‘without abstractions’
version we compare against has exactly the same setup, except the
post-hoc inference procedure was run using the starting £ version
(not the one discovered by ShapeCoder).

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

	Abstract
	1 Introduction
	2 Related Work
	3 Overview
	3.1 Optimization Objective F

	4 Inferring Visual Programs
	4.1 Recognition Network
	4.2 Dream Phase
	4.3 Wake Phase

	5 Proposing and Integrating Abstractions
	5.1 Proposal Phase
	5.2 Integration Phase

	6 Refactoring Programs with E-Graphs
	7 Results and Evaluation
	7.1 Experimental Domains
	7.2 Discovering Abstractions
	7.3 Analysis of Discovered Abstractions
	7.4 ShapeCoder Ablations
	7.5 Discovering Abstractions from Unstructured Shapes
	7.6 Downstream Benefits of Abstractions

	8 Conclusion
	8.1 Limitations and Future Work

	Acknowledgments
	References
	A Shape Grammar
	B Implementation Details
	B.1 Objective Function Weights
	B.2 Geometric Error Function
	B.3 Recognition Network
	B.4 Dream Creation
	B.5 Combining Wake Programs
	B.6 Preference Ordering of Parametric Relationships
	B.7 E-graphs
	B.8 Unsupervised Primitive Decomposition
	B.9 Generative Model for Programs

