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SUMMARY

Changes in an animal’s behavior and internal state are accompanied by widespread
changes in activity across its brain. However, how neurons across the brain encode
behavior and how this is impacted by state is poorly understood. We recorded brain-wide
activity and the diverse motor programs of freely-moving C. elegans and built probabilistic
models that explain how each neuron encodes quantitative behavioral features. By
determining the identities of the recorded neurons, we created an atlas of how the defined
neuron classes in the C. elegans connectome encode behavior. Many neuron classes have
conjunctive representations of multiple behaviors. Moreover, while many neurons encode
current motor actions, others integrate recent actions. Changes in behavioral state are
accompanied by widespread changes in how neurons encode behavior, and we identify
these flexible nodes in the connectome. Qur results provide a global map of how the cell
types across an animal’s brain encode its behavior.

INTRODUCTION

Animals generate diverse behavioral outputs that vary depending on their environment,
context, and internal state. The neural circuits that control these behaviors are distributed across
the brain. To decipher how these circuits work, it will be critical to relate the activity of this full
population of neurons to specific features of animal behavior. However, it is challenging to
record activity across the brain of a freely-moving animal and relate brain-wide activity to
comprehensive behavioral information. For this reason, it has remained unclear how neurons and
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circuits across entire nervous systems represent an animal’s varied behavioral repertoire and how
this flexibly changes depending on context or state.

Recent studies suggest that internal states and moment-by-moment behaviors are
associated with widespread changes in neural activity!~’. Behavioral states, like quiet versus
active wakefulness, and homeostatic states, like thirst, are associated with activity changes in
many brain regions'’*%. In addition, instantaneous motor actions are associated with altered
neural activity across many brain regions>’. However, our understanding of how global
dynamics spanning many brain regions encodes behavior remains limited. In mammals,
representations of motor actions are found in cortex, cerebellum, spinal cord, and more. Given
the vast number of cell types involved and their broad spatial distributions, characterizing this
entire system is not yet tractable.

The C. elegans nervous system consists of 302 neurons with known connectivity’ 1. C.
elegans generates a well-defined repertoire of motor programs: locomotion, feeding, head
oscillations, defecation, egg-laying, and postural changes. The C. elegans nervous system is
subject to modulation, such that animals express different behaviors as they switch behavioral
states'*!>. Animals enter sleep-like states during development and after intense stress'®!”. Awake
animals exhibit different locomotion states during foraging, like roaming versus dwelling!® 2!,
Sudden aversive stimuli induce sustained states of increased arousal®>*. In C. elegans, it may be
feasible to decipher how behavioral variables are encoded by activity across an entire nervous
system and how this can flexibly change across behavioral states.

Previous studies identified some C. elegans neurons that reliably encode specific
behavioral features. The neurons AVA, AIB, and RIM encode backwards motion; AVB, RIB,
ATY and RID encode forwards motion; SMD encodes head curvature; and HSN encodes egg-
laying®*3!. In addition, corollary discharge signals from RIM and RIA propagate information
about motor state to other neurons®?*. Proprioceptive responses to postural changes have also
been observed in a handful of neurons®>=’. Large-scale recordings have suggested that there are
widespread activity changes related to behavior. Brain-wide calcium imaging in immobilized
animals identified population activity patterns associated with fictive locomotion?>*, In moving
animals, velocity and curvature can be decoded from population activity®. While this suggests
that many neurons carry behavioral information, we still lack an understanding of how
quantitative behavioral features are encoded by most C. elegans neurons.

Here, we elucidate how neurons across the C. elegans brain encode the animal’s
behavior. We developed technologies to record high-fidelity brain-wide activity and the diverse
motor programs of >60 freely-moving animals. We then devised a probabilistic encoding model
that fits most recorded neurons, providing an interpretable description of how each neuron
encodes behavior. By also determining neural identity in 40 of these datasets, we created an atlas
of how most C. elegans neuron classes encode behavior. This revealed the encoding properties of
all recorded neurons and showed that ~30% of the neurons flexibly change how they encode
behavior in a state-dependent manner. Our results reveal how activity across the defined cell
types of an animal’s brain encodes its behavior.



RESULTS
Technologies to record brain-wide activity and behavior

We built a microscopy platform for brain-wide calcium imaging in freely-moving
animals and wrote software to automate processing of these recordings. We constructed a
transgenic C. elegans strain that expresses NLS-GCaMP7f and NLS-mNeptune2.5 in all neurons.
Recording nuclear-localized GCaMP makes it feasible to record brain-wide activity, though this
approach misses local calcium signals in neurites®*. Transgenic animals’ behavior was normal,
based on assays for chemotaxis and learning (Fig. S1A). Animals were recorded on a microscope
with two light paths **3°. The lower light path is coupled to a spinning disk confocal for
volumetric imaging of fluorescence in the head. The upper light path has a near-infrared (NIR)
brightfield configuration to capture images for behavior quantification (Movie S1). To allow for
closed-loop animal tracking, the location of the worm’s head is identified in real time with a
deep neural network*® and input into a PID controller that moves the microscope stage to keep
the animal centered.

We wrote software to automatically extract calcium traces from these videos (Fig. 1D).
We used the time-invariant mNeptune2.5 signal to locate the neurons and register images to one
another. First, a 3D U-Net*! locates and segments all neurons in all timepoints. We then register
images from different timepoints to one another and use clustering to link neurons’ identities
over time (see Methods). To test whether this accurately tracks neurons, we recorded a control
strain expressing NLS-GFP at different levels in different neurons (Peat-4::NLS-GFP), along
with pan-neuronal NLS-mNeptune2.5 (Fig. S1B). Mistakes in linking neurons’ identities would
be obvious in this strain, since GFP levels would fluctuate in a neural trace if timepoints were
sampled from different neurons. This analysis showed that neural traces were correctly sampled
from individual neurons in 99.7% of the frames. We estimated motion artifacts by recording a
strain with pan-neuronal NLS-GFP and NLS-mNeptune2.5 (Fig. 1E-G; Fig. S1C). Fluorescent
signals were more narrowly distributed for GFP compared to GCaMP7{, suggesting that motion
artifacts are negligible (Fig. 1F). Nevertheless, we used the GFP datasets to control for any such
artifacts in all analyses below (see Methods). Compared to previous imaging systems>®, there
was a 9.7-fold increase in SNR of the GCaMP traces recorded on this platform (likely due to 3D
U-Net segmentation; see Methods).

We also wrote software that extracts behavioral variables from the brightfield images:
velocity, body posture, feeding (or pharyngeal pumping), angular velocity, and head curvature
(oscillatory bending of the head, associated with steering). Animals did not exhibit egg-laying or
defecation in these recording conditions. Together, these advances permit us to quantify brain-
wide calcium signals and a diverse list of behavioral variables from freely-moving C. elegans.

A probabilistic neural encoding model reveals how C. elegans neurons encode behavior

We recorded brain-wide activity and behavior from 14 animals as they explored sparse
food over 16 minutes (data available at www.wormwideweb.org). We obtained data from 143 +
12 head neurons per animal (example in Fig. 1G). 94.7% of the recorded neurons exhibited clear
dynamics and could be classified as active (see Methods). Our goal was to define how each
neuron “encodes” or “represents” the animal’s behavior, in other words how its activity is



quantitatively associated with behavioral features. Our initial efforts to build models of how
neurons encode behavior revealed three features of neural encoding not fully characterized in
prior work. We describe them here and systematically identify neurons with these features below

(Fig. 2).

First, neurons encoded behavior over a wide range of timescales. For example, the
activity of individual neurons that encode velocity was precisely correlated with an exponentially
weighted average of the animal’s recent velocity. The decays of the exponentials, which
determine how much a given neuron’s activity weighs past versus present velocity, varied widely
across neurons (range of half-decay: 0.9 — 31.7 sec; GCaMP7f half-decay is <1 sec*?*). Fig. 1H
illustrates this by showing correlations between individual neuron’s activities and velocity that
has been convolved with exponential filters with varying decay times (see also Fig. SID-E). We
also observed a broad range of timescales for neurons that encode other behaviors (see below).
This suggests that C. elegans neurons differ in how much they reflect the animal’s past versus
present behavior.

Second, neurons reflected individual behaviors in a heterogeneous fashion. For example,
for neurons that encode velocity, this encoding can be captured by a tuning curve that relates the
neuron’s activity to velocity. Some neurons displayed analog tuning, but others displayed
“rectification”, where the slopes of their tuning curves during reverse and forward velocity
differed (Fig. 1I). While many neurons were more active during forward or reverse movement,
others encoded slow locomotion regardless of movement direction (Fig. 11, middle). This
suggests that neurons that encode velocity can represent overall speed, movement direction, or
finely tuned aspects of forward or reverse movement.

Third, many neurons conjunctively represented multiple motor programs. For example,
most neurons whose activities were correlated with oscillatory head bending showed different
tunings to head curvature during forwards versus reverse movement (Fig. 1J). Similarly, many
neurons conjunctively represented the animal’s velocity and feeding rate. This suggests that
many C. elegans neurons encode multiple motor programs in combination.

Based on these observations, we constructed an encoding model that uses behavioral
features to predict each neuron’s activity (Equation 1; Fig. 1K). This model provides a
quantitative explanation of how each neuron’s activity is related to behavior. The relationship
between activity and behavior for a given neuron could be due to that neuron causally
influencing behavior or, alternatively, due to the neuron receiving proprioceptive or corollary
discharge signals. In contrast to decoding analyses®, which can reveal the presence of behavioral
information in groups of neurons, an encoding model can provide precise information about how
each neuron’s dynamics relate to behavior. Each neuron’s activity was modeled as an
exponentially weighted average of the animal’s recent behavior with a single decay parameter s,
allowing for different timescale encoding. Neurons can additively weigh multiple behavioral
predictor terms (based on coefficients ¢, cgp, and ¢, ), which can each interact with the animal’s
movement direction parameterized by c,. This allows for rectified and non-rectified tunings to
behavior, as well as conjunctive encoding of multiple behaviors. We compared the goodness of
fit of this full model to partial models with parameters deleted (and to a linear model) and found
that deletion of any parameter significantly increased model error (Fig. S1F-G).



The model parameters are interpretable, describing how each neuron encodes each
behavioral feature. However, because the model is fit on a finite amount of data, these
parameters have a level of uncertainty that is important to estimate. Therefore, we determined the
posterior distribution of all model parameters that were consistent with our recorded data, where
consistency was defined as likelihood in the context of a Gaussian process residual model
parameterized by 0,,pise, Osg, and £ (see Methods). This allowed us to quantify our uncertainty in
each model parameter and perform meaningful statistical analyses. The posterior distribution was
determined using a custom inference algorithm implemented with the probabilistic programming
system Gen** (Fig. 1L). We confirmed the validity of this approach using simulation-based
calibration, a technique that ensures that approximations from such inference algorithms are
sufficiently accurate (Fig. S2A)*.

Equation 1: The C. elegans Probabilistic Neural Encoding Model (CePNEM) expression
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Parameter Meaning

Observed neural activity | Observed neural activity trace (z-scored).

v[t] Observed worm velocity.
6h[t] Observed worm head curvature.
plt] Observed worm pumping rate.
n[t] Modeled neural activity.
Rect(c,r, v[t]) Locomotion direction rectification term.

Takes on different values based whether the
worm is moving forwards or in reverse.

Cyr Locomotion direction rectification parameter.
Cy Velocity parameter.

Con Head curvature parameter.

Cp Feeding parameter.




s Exponentially weighted moving average
(EWMA) timescale parameter.
b Baseline activity parameter.
n[0] Initial condition parameter.
Onoise White noise parameter.
Osg Autocorrelative residual parameter.
' Autocorrelative residual timescale parameter.
gP Gaussian process.
Ken, Ksg Gaussian process kernels.

We fit this model (The C. elegans Probabilistic Neural Encoding Model, or CePNEM) on
all neurons in all recordings and found significant encoding of at least one behavioral feature in
83 4+ 10 out of 143 neurons per animal (examples in Fig. IM and Fig. S2B; see also Fig. S2C and
Methods). To ensure that these results reflected genuine behavioral encoding, rather than motion
or modeling artifacts, we applied the model to animals expressing pan-neuronal GFP and found
that only 2.1% of neurons significantly encoded behavior (versus 58.6% in GCaMP datasets; Fig.
S2D). We were also concerned whether the model could potentially explain neural activity via
overfitting and tested this using two approaches. First, we tested whether neural activity from
one animal could be explained using behavioral features from other animals. Only 2.7% of
neurons encoded this incorrect behavior, suggesting that the model was unable to use overfitting
to explain activity (Fig. S2D). Second, we performed 5-fold cross-validation across recorded
neurons and found a high level of performance on withheld testing data (Fig. S2E).

There were neurons with calcium dynamics not well fit by CePNEM (Fig. S2F shows
their activity levels). However, it was ambiguous whether these neurons encoded behavior in a
manner not captured by CePNEM or whether their activity was related to other ongoing sensory
or internal variables. To distinguish between these possibilities, we examined the model
residuals, 1.e. the neural activity unexplained by CePNEM. We attempted to decode behavioral
features using all neurons’ model residuals and, as a control, the original neural activity traces.
Decoding from the full neural traces was successful, but decoding from the residuals was close to
chance (Fig. S2G). This suggests that neural variance unexplained by CePNEM is unrelated to
the overt behaviors quantified here. These residuals may be related to sensory inputs, internal
states, or behaviors that we were unable to detect. We also found that decoding of specific
behavior features was most successful from neurons that CePNEM suggested encode those
features (Fig. S2H). Thus, CePNEM determines the encoding features of neurons in a manner
that is concordant with decoding analyses.

Diverse representations of behavior across the C. elegans brain



We used the CePNEM results to analyze how the neurons across each animal’s brain
encode its behavior. Among the recorded neurons, encoding of velocity was most prevalent,
followed by head curvature and feeding (Fig. 2A). 58.6% of recorded neurons encoded at least
one behavior (Fig. 2B), with approximately one third of these conjunctively encoding multiple
behaviors (Fig. 2B). Most neurons primarily encoded current behavior, but a sizeable subset
weighed past behavior (Fig. 2C). Long timescale encoding was especially prominent among
forward-active velocity neurons (Fig. S2I-J). This suggested that current neural activity may
contain information about past velocity. Indeed, we were able to train a linear decoder to predict
past velocity up to at least 20 sec prior based on current neural activity (Fig. 2D; black line
shows this was not due to current velocity predicting past velocity). A similar decoder could also
predict past head bending behavior, albeit less robustly (Fig. S2K). However, we were not able
to predict future velocity or head bending from current neural activity (Fig. 2D, S2K).

We analyzed how each behavior was represented across the full set of neurons, first
focusing on velocity. Using the CePNEM fits, we determined the shapes of each neuron’s tuning
curve to velocity (see Methods). There were eight ways that a neuron could be tuned to velocity
(Fig. 2E; examples in Fig. 2F). Most neurons (83%) exhibited rectified tunings, in which the
encoding of forward and reverse speed differed. A smaller set of neurons represented analog
velocity and, as described above, others encoded slow locomotion. To highlight how CePNEM
accurately captures the dynamics of neurons with different tunings, Fig. 2F shows five neurons
with higher activity during forward movement, but with different dynamics. The CePNEM fits to
each neuron reveal how they encode velocity with different tunings and timescales.

We also examined the neurons that encode head curvature, which underlies steering
during navigation (Fig. 2E). Many neurons that encoded head curvature did so in a manner that
depended on forward versus reverse movement. Thus, we categorized these neurons based on
both their head curvature tuning and velocity tuning. Most neurons only displayed head
curvature-associated activity changes during forward or reverse movement, with more neurons in
the forward-rectified group (Fig. 2E; examples in Fig. 2G). These results indicate that the
network that controls head steering is broadly impacted by the animal’s movement direction,
which could relate to the fact that steering behavior must be controlled differently during forward
versus reverse movement (range of head angles is similar during forward and reverse, Fig. S2L).
In addition to these neurons that encode the animal’s acute head curvature, a smaller group of
neurons encoded angular velocity (Fig. S2M).

Neural representations of the animal’s feeding rates were also diverse (Fig. 2E; examples
in Fig. 2H). Many neurons displayed analog tuning to feeding rates; a separate set of neurons
encoded feeding in conjunction with movement direction. Neurons could be positively or
negatively correlated with feeding.

The above analyses suggest a surprising amount of heterogeneity in how C. elegans
neurons encode behavior. To obtain a more complete and continuous view of these
representations, we embedded the neurons into a two-dimensional UMAP subspace where
proximity between neurons indicates how similarly they encode behavior (Fig. 3A; Fig. S3A-D
for single animals, GFP controls, and median CePNEM fits). This analysis could reveal clusters
of cells that encode behavior the same way or, alternatively, the neurons could be evenly
distributed if the representations were more heterogeneous. We found that the neurons were



diffusely distributed, with no evident clustering (Fig. 3A). However, neurons’ localization still
depended on their encoding (Fig. 3B-E). For example, encoding of velocity was graded along
one axis, and encoding of feeding was graded along the other. The continuous distribution was
especially evident when examining neurons with related tuning curves (Fig. 3F). Other standard
clustering approaches also suggested that the neurons were not clusterable into discrete groups
based on their encoding (Fig. S3E). These results suggest that in general the C. elegans neurons
represent behavior along a continuum.

How do these diverse representations of behavior arise? Activity in the C. elegans
nervous system can be decomposed into different modes of dynamics shared by the neurons®,
identifiable through Principal Component Analysis (PCA). In our data, the first three PCs
explained 42% of the variance in neural activity, and 18 PCs were required to explain 75% of the
variance (Fig. S3F). Single neurons were almost exclusively described as complex mixtures of
PCs rather than single PCs (Fig. 3G-H). The weights of the PCs on different neurons were
diverse, and hierarchical clustering of these data revealed very little structure. However, as
expected, the loadings were still predictive of the encoding type of the neurons (Fig. 3G).
Overall, these results suggest that there are many ongoing modes of dynamics shared among
neurons, which relate to their distinct representations of behavior.

An atlas of how the defined neuron classes in the C. elegans connectome encode behavior

We next sought to map these diverse representations of behavior onto the defined cell
types of the C. elegans connectome. Thus, we collected additional datasets in which we
determined neural identity using NeuroPAL*®, a transgene in which three fluorescent proteins
(NLS-mTagBFP, NLS-CyOFP1, and NLS-mNeptune2.5) are expressed under well-defined
genetic drivers. This makes it possible to determine neural identity based on neuron position and
multi-spectral fluorescence. We crossed the pan-neuronal NLS-GCaMP7f transgene to
NeuroPAL (using otls670, a low brightness NeuroPAL integrant). Data were collected as above,
except animals were immobilized by cooling*’ after each freely-moving recording. We then
collected multi-spectral NeuroPAL fluorescence (Fig. S4A) and registered those images to the
freely-moving images.

We collected data from 40 NeuroPAL/GCaMP7f animals. Compared to the above
datasets, a similar number of neurons encoded behavior (52.0%, compared to 58.6%), and
projections into UMAP space were indistinguishable (Fig. S3B). Behavioral parameters and
other metrics of neural activity were also mostly similar (Fig. S4B-E; though NeuroPAL animals
reversed more frequently and had a slight ventral bias). Across recordings, we obtained data
from 78 of the 80 neuron classes in the head. While most neuron classes are single left/right
pairs, 13 classes consist of two or three pairs of neurons in 4- or 6-fold symmetric arrangements.
In these cases, we separately analyzed each neuron pair. Left/right pairs were pooled for all
neuron classes except four that displayed asymmetric activities (ASE, SAAD, IL1, IL2; see
Methods). We generated CePNEM fits for all of these neurons to reveal how they encode
behavior (Fig. 4A; Table S1; Fig. S4F shows UMAP embeddings; Fig. S4H shows overall
activity levels). The encoding properties of the neuron classes determined via CePNEM
predicted their activity changes in event-triggered averages aligned to key behaviors (Fig. S4G).



In addition, for well-studied neurons, our results provided a clear match to previous work: AVB,
RIB, ALY, and RID encoded forward movement; AVA, RIM, and AIB encoded reverse
movement; and SMDD and SMDV encoded dorsal and ventral head curvature, respectively?*°.

This analysis revealed many features of how the C. elegans nervous system is organized
to control behavior. Among the velocity-encoding neurons, those that encode forward movement
displayed a wide range of tunings to velocity and included many neurons not previously
implicated (AIM, AUA, and others). The reverse neurons were more uniform in their tunings to
velocity, but several also represented head curvature, suggesting that they may control turning
during reversals. Neural representations of velocity also spanned multiple timescales. For
example, RIC, ADA, AVK, AIM, and AIY integrated the animal’s recent velocity over tens of
seconds. We silenced some of these neurons that encoded velocity (AIM, RIC, AUA, AVL, RIF)
and found that this specifically altered animals’ velocity (Fig. S41). In addition, we
optogenetically stimulated ASG sensory neurons, which encoded reverse movement, and found
that this triggered reversals (Fig. S41). Thus, results from the neuron atlas can predict causal
effects on behavior.

These data also revealed neural dynamics in the circuit that controls head steering. The
neuron classes in this network are often 4-fold symmetric, consisting of separate neuron pairs
that innervate the ventral and dorsal head muscles. These opposing dorsal and ventral neurons
were functionally antagonistic in our analysis (Fig. 4A-C). We found that the neural control of
head steering is different during forward versus reverse motion (Fig. 4B-C). Some neurons that
encode head curvature are more active during forward (RMED/V) or reverse (SAAV)
movement. Others have more robust tuning to head curvature during forward movement
(SMDD/V, SMBD/V). In addition, RMDD was more active during dorsal head bending during
forwards motion, but preferred ventral head bending during reverse movement. The forward-
rectified tuning of SMD was previously described and matches our results?®. Our data now show
that this entire network shifts its functional properties depending on movement direction. This
suggests that the network functions differently while animals steer forwards towards a target
compared to when they back away from one. We ablated some neurons that jointly encoded
movement direction and head curvature (SAA, SMB) and found that this altered animal’s head
bending and velocity (Fig. S41I).

We also identified other functional groups with interesting features (Fig. 4D). Most
neurons that encoded feeding were in the pharyngeal nervous system, but several
extrapharyngeal neurons also encoded feeding, including AIN, ASI, and AVK. Neurons within
the pharyngeal system encoded feeding with both positive (I6, M3, M4, etc) and negative (M1,
MI) relationships. Optogenetically silencing neurons that encoded feeding (M4, MC) specifically
inhibited feeding behavior (Fig. S41).

Finally, we observed that many neurons (OLL, OLQ, IL1, RIH, URB, others) had tunings
to different motor programs that were variable across animals. To directly examine this, we
computed a variability index that describes how dissimilar each neuron class’s encoding of
behavior was across all datasets (Fig. 4A; see Methods). While many neuron classes had
invariant representations of behavior across animals (AVA, AIM, many others), others had high
variability (Fig. 4A; Fig. S5A). NeuroPAL labeling and registration procedures for the neurons
with high variability were determined with equal confidence to the other neuron classes,



suggesting that identification errors are unlikely to explain these observations (Fig. S5B-D).
Further supporting this, these neurons also changed encoding over the course of continuous
recordings (see below). The ability of models trained on one set of animals to generalize to other
animals inversely scaled with the neuron class’s variability index (Fig. S5E). For these neurons
with high variability, it is especially informative to look at the range of possible encodings
reported in Fig. 4A rather than just the encoding strength metric. Overall, these datasets provide
a functional map of how most neuron classes in the C. elegans nervous system encode the
animal’s behavior.

Different encoding features are localized to distinct regions of the connectome

We next examined how these representations of behavior relate to connectivity in the C.
elegans connectome. We first examined whether synaptically connected neurons had similar
dynamics. Indeed, neurons that were connected to one another were more highly correlated,
compared to neurons that were not synaptically connected (Fig. SA). This relationship was
strongest for neurons that were bi-directionally connected, especially through electrical synapses.
In addition, neurons were more strongly correlated (either positively or negatively) to their
synaptic input and output neurons, compared to random controls (Fig. 5B).

This raised the possibility that local communities of neurons in the connectome may
encode related behavioral information. To directly examine this, we determined the localization
of behavioral information in the connectome. We examined localization with respect to: (i)
whether neurons are connected to one another; and (ii) whether neurons are closer to sensory
versus motor layers (x- and y-axes of the Fig. 5C-G). Velocity information was widespread,
whereas head curvature and feeding were located in more restricted connectomic regions (Fig.
5C-D). Neurons with distinct tunings to head curvature and feeding were still densely
interconnected with each other. In general, behavioral information was most prominent at lower
sensorimotor layers, closer to motor output (Fig. SE). Neurons with long timescale information
were located at middle sensorimotor layers, primarily in interneurons that innervated premotor
and motor neurons (Fig. 5F). The neurons with variable encoding across animals were largely
localized in one synaptic community (Fig. 5G-H), suggesting that they comprise an
interconnected circuit that exhibits variable coupling. Together, these observations suggest that
different features of behavior encoding are located in different regions of the C. elegans
connectome.

The encoding of behavior is dynamic in many neurons

In many cases, we noted that the encoding properties of neurons appeared to change over
time in a single recording. Therefore, we analyzed our data to determine whether neural
representations of behavior dynamically change. We fit two CePNEM models trained on the first
and second halves of the same neural trace and used the Gen statistical framework to test
whether the model parameters significantly changed between time segments (see Methods; see
also Fig. S6A-B). Based on this test, ~31% of neurons that encoded behavior changed that
encoding over the course of our continuous recordings. We found a similar fraction (24%) of
neurons changed encoding in the NeuroPAL strain. These identified neurons substantially
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overlapped with those that variably encode behavior between animals (Fig. 6A; Fig. S6C). and
were densely interconnected (Fig. 6B; see also Fig. S6D). Overall, many different types of
encoding changes were observed: some neurons changed which behaviors they encoded; others
showed gains or losses of encoding; and others showed subtle changes in tuning (Fig. 6C;
examples in Fig. 6D-E). This suggests that defined neurons in the C. elegans connectome are
variably coupled to behavioral circuits and remap how they couple to these circuits over time.

We next sought to understand the temporal structure of these encoding changes. For
instance, individual neurons could remap independently or in a synchronized manner. We
developed a metric to identify when an encoding change took place based on the difference
between the errors of models trained on different time regions of the same trace. We then
averaged this metric across all neurons that changed encoding in each animal (Fig. 6F-G;
controls in Fig. S6E-F). We observed sharp changes (yellow lines) where many neurons
simultaneously changed encoding in many datasets (Fig. 6F-G), although in some datasets there
were more gradual shifts (Fig. S6G-H). Certain neuron classes were more likely to change
encoding at the same time as one another; in fact, these neurons could be grouped into discrete
clusters of interconnected neurons (Fig. 6H). Overall, the neurons that remap their encoding at
the same time were more likely to have synaptic connections between them, especially gap
junctions (Fig. 61). In addition, the number of neurons that changed encoding was positively
correlated with the degree of behavioral change across the hypothesized moment of the change
(Fig. S6I). Therefore, at times there is a coordinated remapping where many neurons change how
they represent behavior.

The encoding of behavior is influenced by the behavioral state of the animal

We next tested whether changes in the animal’s behavioral state could elicit these
synchronous encoding changes. Behavioral states are persistent changes in behavior that outlast
the sensory stimuli that initiate them*3*°. Previous work has shown that aversive stimuli can
induce this type of response in C. elegans®****°. Therefore, we recorded 30 datasets where we
delivered a sudden, noxious heat stimulus to animals part way through the recording (Figure 7A-
B; 19 of these datasets had NeuroPAL labels). For stimulation, we heated the agar around the
worm’s head by 10°C for 1 second (Fig. 7A; temperature decayed to baseline within 3 seconds).
This stimulus elicited an immediate avoidance (reversal) behavior and reduction in feeding (Fig.
7B). Animals continued to exhibit reduced feeding and increased reversals for minutes after the
stimulus, revealing a persistent behavioral state change (Fig. 7B). However, behavior reverted to
normal within an hour and animal viability was not adversely impacted by the stimulus (Fig.
S7A-B).

We measured brain-wide responses during this behavioral state change (Fig. 7C-G).
Several neurons displayed transient responses to the sensory stimulus, including thermosensory
neurons AFD, AWC, FLP, and others (Fig. 7D-E)*"2. Many interneurons also responded. While
some responses were transient, others lasted for minutes after the stimulus. Neurons with
transient responses were mostly in the higher sensorimotor layers (Fig. S7C-D). We also
identified neurons with persistent changes in activity that lasted for the rest of the recordings
after the stimulus (Fig. 7F). Finally, we found that 35% of the neurons that encoded behavior
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changed encoding time-locked to the heat stimulus (compared to 24% in animals without any
stimulus; p<0.05, Mann-Whitney U-Test; Fig. S7TE; examples in Fig. 7H). The neurons that
changed encoding were stereotyped across animals, especially the neurons related to feeding,
which is the behavior most robustly altered by the heat stimulus (Fig. S7F; see also Fig. S7G-H).
This suggests that inducing a behavioral state change elicits a reliable shift in the network that
remaps the relationship between neural activity and behavior.

We examined how these activity changes related to the behavioral changes that comprise
the aversive behavioral state, focusing on the robust suppression of feeding. Three neurons that
encoded feeding showed persistent activity changes that paralleled the state: 12 activity
persistently decreased and MI and M1 activity increased. In addition, four feeding neurons
showed a change in encoding after the heat stimulus. These neurons, MC, M3, M4, and AIN, had
correlated activity bouts aligned with bouts of feeding prior to the heat stimulus (Fig. 71-J; see
also Fig. S7F). After the stimulus, activity bouts still occurred in these neurons, but this was not
accompanied by feeding. Notably, at baseline, MI and M1 activity were highest during pauses in
feeding (Fig. 71-J). This suggests that MI and M1 might inhibit feeding and that the state-
dependent increase in MI and M1 activity might suppress feeding normally elicited by
MC/M3/M4/AIN. Overall, these results show how changes in behavioral state are accompanied
by persistent activity changes and alterations in how neural activity is functionally coupled to
behavior.

DISCUSSION

Animals must adapt their behavior to a constantly changing environment. How neurons
represent these behaviors and how these representations flexibly change in the context of the
whole nervous system was unknown. To address this question, we developed technologies to
acquire high quality brain-wide activity and behavioral data. Using the probabilistic encoder
model CePNEM, we constructed a brain-wide map of how each neuron encodes behavior. By
also determining the ground-truth identity of these neurons, we overlaid this map upon the
physical wiring diagram. Behavioral information is richly expressed across the brain in many
different forms — with distinct tunings, timescales, and levels of flexibility — that map onto the
defined neuron classes of the C. elegans connectome.

Previous work showed that animal behaviors are accompanied by widespread changes in
activity across the brain, resulting in a low-dimensional neural space™. This largely redundant
distribution of information across the brain seems non-parsimonious. Here we found that an extra
layer of complexity emerged when we determined each neuron’s encoding of behavior.
Representations were complex and diverse, and this heterogeneity could be largely explained by
four motifs: varying timescales, non-linear tunings to behavior, conjunctive representations of
multiple motor programs, and different levels of flexibility. Having many different forms of
behavior representation present may confer the nervous system with computational flexibility.
Depending on the context, the brain may be able to combine different representations to
construct new coordinated behaviors. Our data here did not distinguish whether a given neuron’s
encoding of behavior reflected the neuron causally driving behavior versus receiving a corollary
discharge or proprioceptive signal related to behavior, which has been reported for several
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neuron classes®?’. Future work separating these classes of signals across the C. elegans network
should reveal the full set of causal interactions between neurons and behavior.

While many neurons encoded current behavior, others integrated recent motor actions
with varying timescales. This allows the brain to encode the animal’s locomotion state of the
recent past. Combining representations with different timescales could allow the animal’s
nervous system to perform computations that relate past and present behavior. We also observed
that the dynamics of the nervous system can change over longer time courses. In particular,
many neurons flexibly remapped their relationships to behavior over minutes. This occurred in a
time-locked fashion across neurons when we elicited a behavioral state change with a sudden
aversive stimulus. These changes may be triggered by changes in neuromodulation or other state-
dependent shifts in circuit function. This remapping may then change sensorimotor responses
and the generation of behavior. Future studies of the flexible neurons identified here should
provide deeper insights into the mechanisms at work.

Our results here reveal how neurons across the C. elegans nervous system encode the
animal’s behavior. Even in the narrow set of environmental conditions explored here, we
observed that ~30% of the worm’s nervous system can flexibly remap. Future studies conducted
in a wider range of contexts will reveal whether this comprises the core flexible neurons in the
connectome or, alternatively, whether the neurons that remap differ depending on context or
state.

LIMITATIONS OF THE STUDY

We wish to highlight three limitations of our study. First, our neural recordings were performed
using nuclear-localized GCaMP. While this makes brain-wide recordings feasible, local calcium
signals in neurites cannot be detected and the temporal resolution of calcium imaging is limited.
Second, there are neurons with evident dynamics in our recordings not well fit by CePNEM. Our
results suggest that these neurons may carry sensory, internal, or behavioral information not
studied here, but additional work will be necessary to resolve this. Finally, we examined animals
while they were exposed to food and, in some recordings, stimulated with an aversive stimulus.
Future recordings in different contexts may identify other types of behavior encoding not yet
revealed in our recordings.
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FIGURE LEGENDS

Figure 1. A probabilistic encoder model reveals how neurons across the C. elegans brain
represent behavior

(A) Light path of the microscope. Top: behavioral data are collected in NIR brightfield. Images
(panel B) are processed by the online tracking system, which sends commands to the stage to
cancel out the motion. Bottom: spinning disk confocal collects fluorescence from the sample.

(B) Example image of a worm collected through the NIR brightfield light path.
(C) Maximum intensity projection of a confocal volume captured at the same time as in (B).

(D) Software pipeline to extract GCaMP signals from the confocal volumes over time. See
Methods.

(E) Heatmap of neural traces collected from a pan-neuronal GFP control animal. Data are shown
using same color scale as GCaMP data in (G).

(F) Comparison of signal (F/F20) variation in all neurons across 3 GFP control animals (c =
0.074) versus 14 GCaMP animals (6=0.392).
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(G) Example dataset, with GCaMP data and behavioral features. GCaMP data displayed on same
color scale as (E). Body segment is a vector of body angles from head to tail. For head curvature,
inset (green) shows a zoomed in region to illustrate fast oscillations.

(H) Three example neurons from one animal that encode velocity over different timescales. Each
neuron (blue) is correlated with an exponentially-weighted (red kernels) moving average (gray)
of the animal’s recent velocity, over different timescales. Inset shows half-decay times of
exponentials and correlations of neurons to gray traces.

(I) Example tuning scatterplots for three neurons (different from those in H) showing how their
activity relates to velocity. Dots are individual timepoints.

(J) Example tuning scatterplots for three neurons that combine information about head curvature
(color) and velocity (x-axis). Dots are individual timepoints. For each neuron, the red and green
dots separate from one another only for negative or positive velocity values.

(K) Simplified expression of the deterministic component of CePNEM. Here, we represent the
effect of timescale via an integral with parameter A, whereas Equation 1 in the text represents
timescale via recursion with parameter s.

(L) Left and Middle: Fitting procedure. Likelihood weighting selects a particle with the best fit to
the data and uses it to initialize a Monte Carlo process that infers the posterior distribution (see
Methods for details of inference algorithm). Gray shading indicates model likelihood. Right:
example posterior distribution for a neural trace, shown for two model parameters for illustrative
purposes.

(M) Example neural traces and median of all posterior CePNEM fits for that neuron. Inset cross-
validation (cv) scores are pseudo-R2 scores on withheld testing data (see Methods).

See also Figure S1, Figure S2, and Movie S1.

Figure 2. Varied representations of behavior across the C. elegans brain

(A) Fraction of neurons per animal that encode velocity, head curvature, and feeding. If a neuron
encoded >1 behavior, it is represented in multiple x-axis categories. Error bars show standard
deviation between animals.

(B) Fraction of neurons per animal that encode 0, 1, 2, or 3 of the behaviors. Error bars show
standard deviation between animals.

(C) ECDF of the median model half-decay time for neurons that encode at least one behavior.
Shading shows standard deviation between animals.

(D) Performance of linear decoders that predict velocity at times offset from current neural
activity (brown). Performance is the difference in error between the actual decoders and control
scrambled decoders. Predicted velocity values were averaged over a 10-sec sliding window
centered At seconds from the current time. Decoders trained to make this prediction based on
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current velocity (black) or velocity values at all times (gray) are also shown. Shading shows
standard deviation across animals.

(E) Distributions of how neurons encode the indicated behaviors. For each behavior, neurons
were categorized based on their tuning curves to that behavior (see Methods). Example tuning
curves are shown above and prototypical tuning curves for each category are also shown.

(F) Five example neurons that encode forward locomotion, together with CePNEM-derived
tuning curves for each neuron, and the mean and standard deviation of each neuron’s half-decay
time.

(G) Three example neurons that all encode head curvature in conjunction with movement
direction, together with CePNEM-derived tuning parameters for each neuron.

(H) Three example neurons that all encode feeding information, together with CePNEM-derived
tuning parameters for each neuron.

Figure 3. Global analysis of how neurons encode behavior in the C. elegans nervous system

(A) UMAP embedding of all neurons in 14 animals, where proximity indicates encoding
similarity (see Methods). Here, we projected all points from each neuron’s CePNEM posterior.
Fig. S3D shows only one dot per neuron.

(B-E) UMAP space where neurons are colored by their behavioral encodings. Long versus short
timescale is split at half-decay time of 20 sec.

(F) Zoomed portion of UMAP space, where neurons are color-coded by their forward velocity
tuning curves.

(G) Example animal, showing neurons’ tuning to behavior and loadings onto the top five PCs.
Neurons are hierarchically clustered by their PC loadings.

(H) Number of PCs needed to explain 75% of the variance in a given neuron, averaged across
neurons in 14 animals. Data are means and standard deviation across animals.

See also Figure S3.

Figure 4. An atlas of how the different C. elegans neuron classes encode behavior

(A) An atlas of how the indicated neuron classes encode behavior, derived from analysis of fit
CePNEM models. Columns show:

¢ Encoding strength: approximate variance in neural activity explained by each
behavioral variable.

e Forwardness, Dorsalness, and Feedingness: slope of the tuning to each behavior.

e Enc. timescale: median half-decay time
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e Overall act. level: standard deviation of the calcium traces when normalized as F/Fmean.
e Enc. Variability: how differently the neuron class encoded behavior across recordings.

Other columns show the fraction of recorded neurons that significantly encoded behaviors:

e Fwd, Rev, Dorsal, Ventral, Activated, and Inhibited: neurons with that overall tuning
to behavior.

e Fwd slope -, Fwd slope +, Rev slope -, and Rev slope +: neurons with that slope in their
velocity tuning curves during the specified movement direction.

e Fslope > R slope and F slope < R slope: neurons displaying rectification in their
velocity tuning curves.

e Dorsal during F, Ventral during F, Dorsal during R, Ventral during R, Act during
F, Inh during F, Act during R, and Inh during R: neurons with that tuning to behavior
during the specified movement direction (Forward or Reverse).

e More D during F, More V during F, More A during F, and More I during F: neurons
with different tunings to behavior during forward versus reverse.

Parenthesis on right indicates the number of CePNEM fits per neuron class (first and second
halves of videos, which have different model fits, are counted separately).

(B-C) Circuit diagram of neurons that innervate head muscles. Colors and circle sizes indicate
tuning to behavior during forward (B) and reverse (C) movement. Edge thickness indicates
number of synapses between neurons, averaged across two connectome datasets. Left/right
neurons shown separately, because one of these pairs (SAAD) exhibited asymmetric activity,
suggesting an asymmetry in this circuit.

(D) Circuit diagrams of behavioral circuits. The Variable Coupling neurons have high encoding
variability.

See also Figures S4, Figure S5, and Table S1.

Figure 5. Neural encoding features map onto different regions of the connectome

(A) Cumulative distribution of the correlation coefficients of activities of pairs of neurons
connected in different ways. Left/right pairs were merged for this analysis, so that it only
considers relationships between different neuron classes. *p<0.05 **p<0.005 ***p<0.0005,
Mann-Whitney U-test.

(B) Median correlation coefficients between each neuron and its synaptic inputs (blue) or outputs
(orange). Control (gray) shows randomly selected neurons of equal group size.

(C) Neurons (circles) and connections (gray lines) in the C. elegans connectome, with behavior
encoding information. Connectome region (x-axis): neurons with similar wiring are adjacent on
this axis, computed as the second eigenvector of the laplacian of the connectome graph.
Sensorimotor layer (y-axis): neurons arranged from sensory to motor (see Methods). Some
neurons are labeled to provide rough orientation to the layout.

17



(D) Same as in (C), but one behavior per plot.

(E-G) Distribution of encoding features in the connectome, arranged as in (C). Marginal
distributions (blue) show values of each behavioral feature along each axis. Gray control lines
show how behavioral features are distributed when randomly shuffled. *p< 0.05 **p<0.005,
*#%p<0.0005, one sample Z-test for proportion.

(H) The number of synapses connecting the neurons with high variability (see Methods) is
shown as a red line. Gray shows the number of synapses connecting random neuron groups. Inset
shows rank of the true value in this shuffle distribution.

Figure 6. Neural representations of behavior dynamically change over time

(A) Relationship between the variability in how neuron classes encode behavior over time in the
same animal versus across animals. Each dot is a neuron class. See Methods.

(B) For the group of neurons that frequently change encoding, we show the percent of synapses
onto these neurons that come from neurons within the group (red line). Gray controls are the
same values for random groups of neurons of similar size. Inset percentile shows the rank of the
true number in the control distribution.

(C) How neurons changed encoding across SWF415 animals, examined for the neurons that
significantly change encoding. Categories are: “lose all” (lost tuning to behavior), “lose some”

(lost tuning to one or more behavior), “gain all”, “gain some”, “swap” (both gained and lost
tuning to behaviors), and “modify” (encode the same behavior(s), but differently).

(D) Two example neurons with CePNEM fits, showing a change in neural encoding of behavior.
Yellow dashed lines indicate times when neurons across the full dataset displayed a sudden shift
in encoding (see (F)).

(E) Example neurons OLQDL and URYDL, depicted as in (D).

(F) Data from same animal as (D) showing a sharp change in neural encoding of behavior. We fit
CePNEM models to the first and second halves of the recording (Model 1 and Model 2). We then
computed the difference between the errors of the two median model fits and smoothened with a
200-timepoint moving average. This was then averaged across encoding changing neurons. A
sudden change in this metric (yellow line) indicates a sudden shift in behavior encoding across
neurons.

(G) Data from the same animal as (E) showing a sudden change in neural encoding, displayed as
in (F).

(H) Fraction of times that neuron classes changed encoding at the same moment, relative to their
encoding changes overall. Rows were clustered and white outlines depict main clusters.
*#p<0.005, empirical p-value that clustering would perform as well during random shuftles.
Within each cluster, the neurons were more likely to have unidirectional synapses and/or gap
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junctions with one another compared to random shuffles, as indicated. ***p<0.0005, empirical p-
value.

(I) Neuron pairs with unidirectional synapses or electrical synapses were more likely to change
encoding together, compared to random shuffles (gray distributions where joint encoding matrix
was shuffled). *p<0.05, **p<0.005, empirical p-value.

See also Figure S6.

Figure 7. Behavioral state changes cause a widespread remapping of how neurons encode
behavior

(A) Illustrative cartoon: a 1436nm IR laser transiently increases the temperature by 10°C for 1
sec around the animal’s head.

(B) Event-triggered averages of behavior of 32 animals in response to the heat stimulus.
*#p<0.05, Wilcoxon signed rank test, pre- versus post-stimulus.

(C) Neural data from an animal that received a heat stimulus (red line).

(D-F) Event-triggered averages of neural activity aligned to the heat stimulus for some neurons
with (D) excitatory or (E) inhibitory responses to the stimulus, or (F) persistent activity changes.
ETAs in (F) are smoothed over 30 seconds; dashed lines indicate where the stim is within the
moving average window.

(G) Responses of different neuron classes to the heat stimulus (n=19 animals):

e Immediate (<4 seconds) and sustained (15-30 seconds) GCaMP responses
e Persistent activity changes. See Methods.
e Encoding variability pre- vs post-stimulus. See Methods.

(H) Four example neurons that showed abrupt changes in their behavior encoding immediately
after the stimulus.

() Example GCaMP traces. Light blue neurons had persistent activity changes. Dark blue
neurons changed encoding after the stimulus.

(J) Top three plots: Average activity, computed as m, before and after the heat stimulus.

mean

Error bars show SEM across animals. **p<0.005, ***p<0.0005, Wilcoxon signed rank test.
Bottom four plots: tuning curves to feeding behavior for each neuron class (pre- versus post-
heat-stimulus data). Data are pooled across 19 animals.

See also Figure S7.

SUPPLEMENTAL FIGURE LEGENDS
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Supplemental Figure 1. Behavioral assays, GFP control recordings, and evaluation of
model parameters, Related to Figure 1.

(A) Salt learning assay for N2 control animals, compared to pan-neuronal GCaMP7f animals.
Naive refers to animals grown on 0 mM NaCl; conditioned (‘cond’) refers to animals grown
under the same conditions but exposed to 5S0mM NaCl with food for one hour prior to assay,
which causes animals to prefer higher salt concentrations. Chemotaxis was measured on a plate
with a 0OmM to 50mM NaCl gradient with sorbitol added to ensure uniform osmolarity. Positive
values correspond to chemotaxis directed toward high NaCl. Data are shown as means and
standard deviation across plates. n=12-13 chemotaxis plates per group for naive and n=4-6 plates
per group for conditioned. n.s. not significant, Mann-Whitney U-Test.

(B) Un-normalized F heatmap of neural traces collected and extracted from a control animal
expressing eat-4::NLS-GFP. Since GFP is expressed only in a fraction of cells in this strain,
perfect neural identity mapping would result in a set of bright horizontal lines (GFP-positive
neurons) and a set of dark horizontal lines (GFP-negative neurons), while a registration
mismatch would appear as a bright spot in the trace of an otherwise GFP-negative neuron, or a
dark spot in the trace of an otherwise GFP-positive neuron. Note that there are very few
instances of registration mismatches visible in the traces. As described in the main text, we
estimate the number of neuron identification errors to be 0.3% of frames (see Methods).

(C) F/F20 heatmap of neural traces collected and extracted from three GFP control animals.

(D) An example neuron that encodes behavior with a long timescale value according to
CePNEM (blue; same for all four traces) and different processed versions of velocity (gray).
Velocity was processed in different ways and the match to neural activity was evaluated.
Average performance across all neurons is in panel (E). For each method of processing velocity,
the optimal fit to the neuron was taken by minimizing the error (MSE) using gradient descent.
The different methods of processing velocity were: (1) EWMA: exponentially-weighted average
of recently velocity; (2) Optimal Shift: time-lagged shift in velocity; (3) Optimal Gaussian
kernel: gaussian averaging of velocity at each time point; (4) Optimal lowpass filter: velocity
filtered based on frequency. The alternative smoothing methods were evaluated to compare
against the EWMA used in the model.

(E) Average fit of how velocity filtered in the indicated ways (see panel (D) legend for more
description) matches neural activity, quantified as mean square error (lower is better). This was
averaged across all recorded neurons. ***p<0.0005, Wilcoxon signed rank test.

(F) Degradation analysis on each model parameter, comparing the percentage that the error (as
measured by cross-validated mean-squared error when fitting the model with MSE optimization
— see Methods) increases when the model is refit with that parameter removed. Wilcoxon signed
rank test (comparing the full model and the partial model) resulted in p-value below 0.0005 for
all shown parameters. For reference, black line shows the error increase for a model with no
behavioral parameters (just an offset parameter so that the model would guess each neuron’s
mean activity).

20



(G) Degradation analysis using same procedure as in (F), but plotting a different outcome. For
“behavior” predictor terms (left): for each neuron the three degraded models were fit (lacking
each predictor term) and the predictor term whose deletion caused the greatest increase in error
was determined. The fraction of neurons that had each parameter as their most important
predictor term is displayed. For “non-linearity” terms (right): the same procedure was conducted,
except the degraded models lacked one or both model non-linearities. Model lacking both non-
linearities was the fully “linear” model. The analysis was done on the encoding neurons and
averaged across datasets.

Supplemental Figure 2. Controls for model fitting, decoding analyses, and analyses of
neurons’ timescales, Related to Figure 1.

(A) Simulation-based calibration results for CePNEM. Simulation-based calibration was
performed by simulating 1997 neurons from CePNEM using behaviors from 4 different animals
and fitting them each twice, on different time ranges. For each model parameter, the ground-truth
parameter was ranked within the fitted posterior. If model fitting is perfectly calibrated, the
ground-truth parameter’s rank should be the uniform distribution. Therefore, for each parameter,
we performed a ¥ test to distinguish their distribution from the uniform distribution with p=0.05.
All parameters passed this test, except for the timescale parameter s, which has a very small
calibration artifact predicted to impact <4 neurons per dataset. See Methods.

(B) A series of CePNEM model fits to various neurons, showing the model’s ability to fit a wide
variety of neural tunings to behavior. The model was fit on the first half of the dataset, and tested
on the second half, revealing that these neurons have robust tunings to behavior across time that
is well-explained by CePNEM. The inset cross-validation (cv) indicates the goodness-of-fit of
the model on testing data (see Methods for additional details).

(C) The fraction of neurons with encoding vs the fraction of active neurons (the signal value
above the GFP threshold). Each dot is a dataset. The fractions are computed by averaging across
two time segments in each dataset. The tight clustering of dots indicates that datasets were
roughly consistent, according to these basic metrics.

(D) Controls comparing the percentage of neurons that were detected as encoding behavior using
real GCaMP traces with the same animal’s behavior, using the same GCaMP traces but
attempting to fit with a different animal’s behavior (essentially a scramble control; ‘wrong
behavior’), and using GFP datasets. See Methods for statistical methods used to determine if a
given neuron significantly encodes a behavior.

(E) Cumulative distribution of cross-validation scores across neurons in continuous SWF415
recordings (see Methods). Its intuitive meaning is that a value of zero indicates that the fit
CePNEM model fails to generalize to the testing data, whereas a value of +1 indicates that the
model perfectly explains neural activity on withheld testing data. 96% of neurons had a positive
cross-validation score.
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(F) Distribution of overall neuron signals (as a metric for overall activity levels) across all
neurons in three categories: GFP control neurons, encoding neurons (GCaMP neurons that
significantly encoded at least one behavior based on CePNEM), and non-encoding neurons

(GCaMP neurons that did not significantly encode any behaviors according to CePNEM).
std(F)
mean(F)

fluorescence of the neuron in question. It provides a measure of overall level of dynamics
exhibited by the neuron. Note that non-encoding neurons still exhibited robust dynamics, for the

most part exceeding the negative control GFP neurons.

Neuron signal here is defined as signal = where F is the un-normalized ratiometric

(G) Linear, L1-regularized decoder models were trained to predict various behaviors (velocity,
head curvature, feeding, angular velocity, and curvature, respectively) from 11 animals from
either neurons (blue) or CePNEM model residuals (orange). Decoding accuracy was assessed as
1 — MSE (decoded behavior, true behavior), averaged over five 80/20 cross-validation splits (see
Methods). Note that the decoder models do much worse when trained on CePNEM model
residuals than when trained on the full neural data, suggesting that the model can explain most
neural variance overtly related to behavior.

(H) An analysis of decoding accuracy from specific subsets of neurons. Linear, L1-regularized
decoder models were trained to predict the behavioral parameters listed on the x-axis. For each
behavioral parameter we compared decoder accuracy when the model was trained on (i) the
neurons that encoded that behavioral feature according to CePNEM (e.g. for forward speed, the
full set of neurons that had significant information about forward speed; shown as red lines);
versus (i1) random subsets of neurons equal in size to group (i) selected from the neurons that did
not encode that behavioral feature (gray distributions). *p<0.05, **p<0.005, empirical p-values
based on rank of red lines in respective gray distributions.

(I) Mean ECDF of the model half-decay time of all neurons demonstrated to encode forward
locomotion, contrasted with the ECDF of neurons demonstrated to encode reverse locomotion, in
14 animals. The shaded regions represent the standard deviation between animals. The median
fraction (across animals) of forward neurons with long timescales (half-decay 7/, > 20s) was
0.12, compared with only 0.03 for reversal neurons; this difference was statistically significant
(p = 0.029) under a Mann-Whitney U-Test.

(J) Mean ECDF of model half-decay time of all neurons that encode the indicated behaviors.
Data are shown as in panel (H).

(K) Performance of a decoder trained to predict past and future head curvature of animals based
on current population neural activity. Models were trained and data are displayed as in Fig. 2D,
except these models were trained to predict head curvature rather than velocity. See Fig. 2D
legend for additional details.

(L) Violin plots showing distribution of head curvature angles (in radians) during forward and
reverse movement.

(M) A neuron that encodes angular velocity (defined as longer-timescale head curvature; due to
the higher frequency nature of head curvature oscillations, longer-timescale is defined here as at
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least 5 seconds). This neuron has a half-decay of 7,,, = 9.5 + 1.3 seconds and is multiplexed
with velocity as well.

Supplemental Figure 3. Additional analyses of UMAP projections, Related to Figure 3.

(A) Projections of all neurons from each of four different SWF415 animals into the same UMAP
space (built from full population of animals; same as in Fig. 3A). Observe that the overall
structure is very similar, suggesting that the locations of neurons in UMAP space are similar
across datasets.

(B) Projections of all neurons from each of two different NeuroPAL animals into the UMAP
space. These neurons also fill in a similar pattern to that of the SWF415 animals, suggesting that
the overall neural encodings of the two strains are similar.

(C) Projections of all neurons from each of two different GFP control animals into the UMAP
space. These neurons fail to fill most of the space, which is consistent with the non-encoding
nature of neurons in this control strain.

(D) Projections of all neurons from 14 different SWF415 animals into the UMAP space, taking
the median of each neuron’s posterior point cloud in the UMAP space. Note that the medians fill
out the same space as when projecting the full posteriors (as in Fig. 3), suggesting the continuity
of the UMAP space is not merely an artifact of parameter uncertainty.

(E) An analysis of clusterability of all neurons that encode behavior. For each dataset, we
attempted to cluster all neurons that encode behavior using a similarity metric based on the
difference of the neurons’ GCaMP traces. To determine the optimal number of clusters, we
computed the Calinski-Harabasz index over varying number of clusters when performing k-
means clustering on the neural traces. Clustering was done on a per dataset basis on all SWF415
datasets, and the mean and standard error values are plotted. Note that the optimal number of
clusters in this analysis is 2, which is the minimum number that can be assessed with this metric.
This suggests that there is not a larger set of discrete subgroups of neurons that are separable
from one another.

(F) Cumulative variance explained by the top 20 PCs, averaged over 14 animals. The shaded
region is the standard deviation across animals.

Supplemental Figure 4, Analysis of NeuroPAL recordings and effects of perturbing neural
activity, Related to Figure 4.

(A) A RGB composite image of one of the NeuroPAL animals that we recorded. The composite
was constructed by combining images of NLS-mTagBFP2 (shown in blue), NLS-cyOFP2
(shown in green), and NLS-mNeptune2.5 (shown in red). Using this composite image, we were
able to label a large number of neurons in this animal. Neural identity was determined while
making use of all 3D information, but for display purposes here we show a maximum intensity
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projection of a subset of the z-slices from the recording. Therefore, this image does not show all
the neurons in the head (a maximum intensity projection of all z-slices is too dense with neurons
to show for display purposes here).

(B) Comparison of behavioral parameters during recordings of brain-wide GCaMP7f in animals
without NeuroPAL (SW415, labeled “415”) and with NeuroPAL (SWF702, labeled “NP”). Four
behavioral metrics are shown. n=14 and 21 animals for SWF415 and SWF702, respectively.
*p<0.05 ***p<0.0005, Mann-Whitney U-Test.

(C) Average overall neural signal across recordings of animals expressing pan-neural GFP
(green), pan-neural GCaMP (blue) and pan-neural GCaMP with NeuroPAL transgene (orange).
std(F)

where F is the un-normalized ratiometric
mean(F)

Overall neural signal here is defined as

fluorescence.

(D) A comparison of how much variance in neural activity is explained by different number of
principal components in pan-neural GCaMP strains without NeuroPAL (blue, SWF415) and with
NeuroPAL (orange, SWF702).

(E) Distribution of cross-validation scores (see Methods for quantitative details) for pan-neural
GCaMP strain without NeuroPAL (blue) and with NeuroPAL (orange).

(F) UMAP plot showing the posterior distributions of the CePNEM model fits for various
neurons; each neuron is plotted in a different color. The same set of time points from the same
animal were used for each neuron’s fit. This plot shows a subset of neurons with largely non-

overlapping tunings, just to illustrate how neurons map onto the UMAP space described in Fig.
3.

(G) Event-triggered averages showing average neural activity of the indicated neuron classes
aligned to key behaviors, as indicated in the column labels. Data are pooled across all instances
of recordings of the neuron classes for the behaviors indicated. Note that event-triggered
averages in general are noisier for feeding due to a lower number of events where feeding
suddenly started or stopped (compared to forward/reverse and dorsal/ventral transitions). The
shading indicates the standard error across the recorded animals.

(H) Table of the signal values of the neuron classes identified in NeuroPAL. For each neuron
class, dot is the median level of overall activity (‘signal’) for the neuron across all recorded
instances, quantified as in Fig. 4A. The line denotes the 25™ - 75" percentile range. The neurons
are ordered by the median signals. The dashed green line indicates the boundary below which
neurons are likely to be inactive, determined based on the signal values in the GFP control
datasets.

() Effects of perturbing the indicated neurons on the animal’s behavioral output. For all
perturbations, we quantified forward speed (shown as means =+ standard error of the mean
(SEM)), reverse speed (means = SEM), median head curvature during dorsal and ventral head
bends (box plots showing 25" and 75" percentiles and medians as red lines; separate boxes for
dorsal and ventral bending), frequency of head bending (plotted as distribution of intervals
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between head swings), and feeding rates (means £ SEM). Neuron inactivation methods were: (1)
RIC: tetanus toxin (TeTx) expression; (2) AIM: chemogenetic silencing using the Histamine-
gated chloride channel (HisCl); (3) AUA: chronic silencing via expression of leaky potassium
channel unc-103(gf); (4) RIF: chronic silencing via unc-103(gf); (5) AVL: chronic silencing via
unc-103(gf); (6) SAA: neuron ablation via split caspase expression; (7) SMB: neuron ablation
via split caspase expression; (8) MC: optogenetic inactivation via GtACR2; (9) M4: optogenetic
inactivation via GtACR2; (10) ASG: optogenetic activation via Chrimson. All promoters were
single cell-specific, either through highly specific single-cell promoters or intersectional Cre/Lox
promoters. Details of promoters used are in Method Details under the Transgenic Animals
section. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001, Bonferroni-corrected Mann-Whitney
test. n.s., not significant.

Supplemental Figure S, Analysis of variable encoding neurons, Related to Figure 4.

(A) Locations of different neuron classes in UMAP space, showing results for multiple
recordings of each neuron. The UMAP space is the same as is shown in Fig. 3, where distance
between neurons is proportional to the difference in how they encode behavior. Here, each
colored dot depicts how the indicated neuron class encoded behavior in a single recording. Two
types of neurons are shown: (1) Low variability neurons that have consistent encoding of
behavior according to CePNEM: RIM, RIB, MC, IL2D; and (2) High variability neurons that
have variable encoding across animals according to CePNEM: URX, OLQD. Note that the dots
for the variable neurons are more distributed in this space than the dots for the low variability
neurons. Only six neuron classes are shown to prevent the plot from being overcrowded.

(B) Scatter plot of labeling confidence (a qualitative metric determined by person scoring,
reflecting their confidence that the neuron is correctly identified based on position and multi-
spectral fluorescence; the higher the better; note that neurons with sufficiently low confidence
were entirely excluded from all analyses in the paper, and this plot only shows values above this
threshold) and encoding variability (lower value means more consistency). There is no evident
relationship between these values, suggesting that labeling error does not introduce encoding
variability.

(C) Scatter plot of GCaMP ROI match score (the higher the better in terms of confidence that
NeuroPAL ROI was confidently mapped to a GCaMP ROI; see Methods) and encoding
variability shows no relationship. This suggests that the process that matches the NeuroPAL ROI
to the GCaMP ROI does not introduce encoding variability.

(D) Examples of a variable coupling neuron (OLQD from 3 animals shown). On the left column,
the NeuroPAL fluorescence images with OLQD labeled show consistent color combination and
location of this neuron class. On the right column, the corresponding neural traces (blue) are
shown along with CePNEM fits (orange), and a written description of the encoding properties.
Note that the neurons of the same class from different animals encode different sets of behaviors.
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(E) Performance of CePNEM model across different animals, for neuron classes with different
levels of variable encoding. In this analysis, the optimal CePNEM model parameters learned
from 21 animals’ neural and behavioral data was determined (using a hierarchical Bayesian
approach; see Methods). These model parameters were then used to predict neural activity in
three additional animals shown here (animals 22-24). This analysis is shown for three categories
of neurons: (1) neurons with low variability according to CePNEM: RIB, ASG, and SMDV; (2)
neurons with moderate variability according to CePNEM: AUA, CEPD, and URYV; and (3)
neurons with high variability according to CePNEM: URX, IL1D, and OLQD. The Variability
Index for each neuron is displayed by the neuron’s name. Note that the level of variability in
neural encoding, determined by our analysis, scales with the ability of models to successfully
predict neural activity across different animals, as expected.

Supplemental Figure 6, Analysis of dynamic encoding neurons, Related to Figure 6.

(A) An analysis of what fraction of neurons were detected as changing encoding in our GCaMP
datasets and simulated datasets. Simulated datasets are labeled ‘SBC’ for simulation-based
calibrations. These are neurons simulated from the CePNEM model, where ground-truth
parameters were set to not have any encoding changes.

(B) Scatterplot of datasets showing that extent of photobleaching is not correlated with detection
of encoding changes. Each dot is a SWF415 dataset.

(C) Scatterplot depicting each neuron class’s likelihood of changing encoding in a single
continuous recording (x-axis) versus its variability overall across all animals (y-axis). Each dot is
a single neuron class. Note the positive trend (p<0.05, conditional independence test). The box
highlights neurons that are variable both across and within animals.

(D) The frequency of neurons changing encoding in single recordings, separating neurons based
on whether they are sensory, inter-, or motor neurons. No major difference was observed
between these three groups, and this remains true when variability index is used instead of
encoding change fraction.

(E) The same dataset in Fig. 6F but also plotting the relative model performance averaged over
the static encoding neurons. Note that the black line does not show the sudden changes in value
seen for the purple line.

(F) Same as (E), but for the dataset in Fig. 6G.

(G) An example dataset that shows a less synchronized encoding change, displayed in the same
manner as in (E-F).

(H) Two example encoding changing neurons from the animal in (G), one with an abrupt
encoding change at approximately 12 minutes, and another neuron that appears to have a slowly-
increasing gain to its behavioral encoding over the last ~10 minutes of the recording.

(I) A plot of the fraction of encoding neurons that exhibited encoding change in a dataset,
compared with the behavioral difference between the first and second half of that dataset.
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Behavioral variability was computed as the sum of the absolute values of the differences (across
the two time segments) of the following behavioral parameters (each such parameter was
normalized to the standard deviation of that behavior across all 14 SWF415 datasets): median of
reverse velocity, median of forward velocity, 25" percentile of head curvature, 75" percentile of
head curvature, 25" percentile of feeding rate, and 75" percentile of feeding rate. This value
provides a general description of how much the distributions of behavioral parameters changed
across the two halves of the recording. Observe that datasets with large behavioral changes tend
to have more encoding changes, suggesting that the neural flexibility may be related to the
observed behavior changing.

Supplemental Figure 7, Analysis of stimulus-induced encoding changes, Related to Figure
7.

(A) Experiments to examine the impact of the heat stimulation on the behavior and health of the
animals. Animals subjected to the heat stimulation did not display a significant difference (p =
0.62 in a Mann-Whitney U-Test computed over 10 animals) in their exploratory behavior
(computed as counting the number of squares each animal entered on an assay plate) relative to
mock-stimulated animals (animals that were mounted on imaging slides, but not given the
thermal stimulus). Behavior was quantified one hour after the heat stimulation.

(B) The heat stimulation did not kill any animals (all animals were alive 2 days after the
stimulation).

(C) Connectome localization of neurons that exhibit sensory responses to the thermal stimulus.
Neurons in red generated transient (<4sec) excitatory responses to the heat stimulus and neurons
in blue generated transient inhibitory responses. Layout of connectome is the same as in Fig. 5C-
F (see that legend for further details). Marginal distributions show the enrichment of each group
of neurons along the two axes, relative to a random shuffle control (gray). *p< 0.05 **p<0.005,
one sample Z-test for proportion on the excitatory responses; the inhibitory responses were not
significant.

(D) Connectome localization of neurons that exhibit long-lasting (15-30sec) excitatory (red) or
inhibitory (blue) responses to the thermal stimulus. Data are displayed as in panel (C); there was
not a significant enrichment of these neurons in any sensorimotor layer.

(E) A comparison of the relative model performance averaged across all 11 SWF415 animals
that underwent a heat shock (top) with the same metric computed over 4 animals that were not
stimulated (bottom). Note that the baseline animals do not have a sharp change in relative model
performance at the train/test split, suggesting that the encoding changes in the heat-stimulation
datasets are a direct result of the stimulation.

(F) Fraction of times that each neuron class changed encoding after the heat stimulus. More
specifically, the fraction of times that decoders trained on baseline data to predict feeding from
the given neuron’s activity performed better on the pre-stim data than the post-stim data (see
Methods). Note that the neurons have degradations in performance well above what would be
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expected by chance (50%); this indicates that the neurons changed encoding after the heat
stimulus. *p<0.05, **p<0.005, ***p<0.0005, Wilcoxon signed rank test comparing pre-stimulus
vs post-stimulus performance of the decoders across animals, as an indicator of whether these
encoding changes were reliable across animals. The neurons shown here encoded feeding prior
to the heat stimulus. p-values for encoding change were Benjamini-Hochberg corrected over all
neurons where the decoder succeeded at predicting feeding in the baseline data (see Methods for
additional details).

(G) Average amount of encoding change between pre-stim and post-stim CePNEM fits across
heat-stimulated animals. Insets display the fraction of times that the indicated neurons changed
encoding at all after the heat stimulus. Neurons shown here encoded either velocity or head
curvature prior to the heat stimulus (the neurons that encoded feeding prior to the stimulus are
analyzed in panel F; different statistical methods needed to be used for these two categories,
since feeding was strongly suppressed post-heat-stim; see Methods for details). (*)p<0.1,
*p<0.05, **p<0.005, p-value based on rank of actual magnitude of encoding change across
animals (red) to level expected by chance (grey distribution), as an indication of whether the
reliability of encoding change was greater than expected by chance. The p-values were
Benjamini-Hochberg corrected over this set of neurons.

(H) A plot that relates each neuron class’s variability in encoding of behavior within heat
stimulation datasets (y-axis) to its variability within baseline spontaneous behavior datasets (x-
axis). See Methods for additional detail on how intra-dataset variability was computed based on
encoding in the first versus second halves of the recordings. Black line is the identity line and
each dot is a neuron class. Note the positive trend.

STAR METHODS
KEY RESOURCES TABLE

REAGENT or RESOURCE [SOURCE  [IDENTIFIER
Antibodies
Bacterial and Virus Strains
E. coli: Strain OP50 Caenorhabditis|OP50
Genetics
Center (CGC)
Chemicals, Peptides, and Recombinant Proteins
Rhodamine 110 Millipore Cat#83695
Sigma
Rhodamine B Millipore Cat#83689
Sigma
Deposited Data
Original code and data related to recording |This paper Data: https://doi.org/10.5281/zenodo.8150515
and analyzing neural activity and behavior Code: https://doi.org/10.5281/zenodo.8151918
https://github.com/flavell-lab/AtanasKim-
Cell2023
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Experimental Models: Organisms/Strains

C. elegans: flvlsl7[tag-168::NLS-
GCaMP7F, gcy-28.d::NLS-tag-RFPt, ceh-
36:NLS-tag-RFPt, inx-1::tag-RFPt, mod-
1::tag-RFPt, tph-1(short)::NLS-tag-

REPt, gcy-5::NLS-tag-RFPt, gcy-7::NLS-
tag-RFPt]; flvis18[tag-168::NLS-
mNeptune2.5]; lite-1(ce314); gur-3(0k2245)

This paper

SWEF415

C. elegans: flvis17; otls670 [low-brightness
NeuroPAL]; lite-1(ce314); gur-3(0k2245)

This paper

SWE702

C. elegans: flvEx450[eat-4::NLS-GFP, tag-
168::NLS-mNeptunel.5],; lite-1(ce314);
lgur-3(0k2245)

This paper

SWF360

C. elegans: flvEx451[tag-168.::NLS-GFP,
tag-168::NLS-mNeptune2.5]; lite-1(ce314);
gur-3(0k2245)

This paper

SWF467

C. elegans: flvEx207[nlp-70::HisCl1, elt-
2::nGFP]

This paper

SWF515

C. elegans: flvEx301[tbh-1::TeTx.:sl2-
mCherry, elt-2::nGFP]

This paper

SWEF688

C. elegans: flvEx481[flp-8::inv[unc-103-
sI2-GFP], ceh-6::cre, myo-
2::mChrimson]

This paper

SWF996

C. elegans: fIvEx482[unc-25::inv[unc-
103-sl2-GFPJ, flp-22::cre, myo-
2::mChrimson]

This paper

SWEF997

C. elegans: kyEx4268 [mod-1::nCre,
myo-2::mCherryj; kyEx4499 [odr-
2(2b)::inv[TeTx::sI2GFP], myo-
3::mCherry]

This paper

SWE703

C. elegans: lels4207 [Plad-2::CED-3
(p15), Punc-42::CED-3 (p17), Plad-
2::GFP, Pmyo-2::mCherry]

This paper

UL4207

C. elegans: lels4230 [Pflp-12s::CED-3
(p15), Pflp-12s::CED-3 (p17), Pflp-
12s::GFP, Pmyo-2::mCherry]

This paper

UL4230

C. elegans: flvEx485[gcy-21::Chrimson-
t2a-mScarlett, elt-2::nGFP]

This paper

SWE1000

C. elegans: flvEx502[ceh-28::GtACR2-
t2a-GFP, myo-2::mCherry]

This paper

SWF1026

C. elegans: flvEx499][ceh-
19::inv[GtACR2-sI2-GFP], ins-10::nCre,
myo-2::mCherry]

This paper

SWF1023

Recombinant DNA

pSF300[tag-168::NLS-GCaMP7F]

This paper

pSF300

pSF301[tag-168::NLS-mNeptune2.5]

This paper

pSF301

pSF302[tag-168::NLS-GFP]

This paper

pSF302
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pSF303[tag-168::NLS-tag-RFPt] This paper pSF303

Software and Algorithms

NIS-Elements (v4.51.01) Nikon https://www.nikoninstruments.

com/products/software

Other

Zyla 4.2 Plus sSCMOS camera Andor N/A

Ti-E Inverted Microscope Nikon N/A
RESOURCE AVAILABILITY

Lead Contact

Further information and requests for resources and reagents should be directed to and will be
fulfilled by the lead contact, Steven Flavell (flavell@mit.edu).

Materials Availability

All plasmids, strains, and other reagents generated in this study are freely available upon request.
The key strains SWF415 and SWF702 are openly available through the Caenorhabditis Genetics
Center (CGC).

Data and Code Availability

e Data: All brain-wide recordings and accompanying behavioral data are freely available in a
browsable and downloadable format at www.wormwideweb.org. The data files have also
been deposited at Zenodo and Github and are publicly available as of the date of publication.
DOIs are listed in the key resources table.

e Code: All original code has been deposited at Github and Zenodo and is publicly available as
of the date of publication. DOIs are listed in the key resources table.

e Any additional information required to reanalyze the data reported in this paper is available
from the Lead Contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS
C. elegans

C. elegans Bristol strain N2 was used as wild-type. All transgenic and mutant strains used in this
study are listed in the Key Resources Table. One day-old adult hermaphrodite animals were used
for experiments, after growth on nematode growth medium (NGM) supplemented with OP50.
For crosses, animals were genotyped by PCR. For making transgenic animals, DNA was injected
into the gonads of young adult hermaphrodites.

METHOD DETAILS
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Transgenic animals

Four transgenic strains were used for large-scale recordings in this study, as described in
the text. The first (SWF415) contained two integrated transgenes: (1) flvlsi7: tag-168::NLS-
GCaMP7f, along with NLS-TagRFP-T expressed under the followed promoters: gcy-28.d, ceh-
36, inx-1, mod-1, tph-1(short), gcy-5, gcy-7; and (2) flvis18: tag-168::NLS-mNeptune2.5. The
second strain we recorded (SWF702) contained two integrated transgenes: (1) flvlsl7: described
above; and (2) otls670: low-brightness NeuroPAL (Yemini et al., 2021). Strains were
backcrossed 5 generations after integration events. The third and fourth strains are non-integrated
transgenic strains expressing NLS-GFP and NLS-mNeptune2.5 in defined neurons, listed in the
Key Resources Table (SWF360 and SWF467).

We also generated strains for neural activation and silencing. The promoters used for
cell-specific expression were as follows: RIC (Ptbh-1), AIM (Pnlp-70), AUA (Pflp-8+Pceh-6;
intersectional Cre/Lox), AVL (Punc-25+Pflp-22; intersectional Cre/Lox), RIF (Podr-2b+Pmod-
I; intersectional Cre/Lox), SAA (Plad-2+Punc-42; split Caspase), SMB (Pflp-12, 350bp), ASG
(Pgcy-21), M4 (Pceh-28), MC (Pceh-19+Pins-10; intersectional Cre/Lox). The split caspase
plasmids have been previously described®. For Cre/Lox intersection expression, we used the
inverted/floxed plasmid design that has been previously described!®. All promoters, including
Cre/Lox intersectional combinations, were validated via co-expression of fluorophores (which
were co-expressed via sl2 or t2a in each strain). Cell ablation lines were confirmed by loss of co-
expressed GFP signal in the ablated cells.

Recordings of neural activity and behavior
Microscope

Animals were recorded under a dual light-path microscope that is similar though not
identical to one that we have previously described?’. The light path used to image GCaMP,
mNeptune, and the fluorophores in NeuroPAL at single cell resolution is an Andor spinning disk
confocal system with Nikon ECLIPSE Ti microscope. Light supplied from a 150 mW 488 nm
laser, 50 mW 560 nm laser, 100 mW 405 nm laser, or 140 mW 637 nm laser passes through a
5000 rpm Yokogawa CSU-X1 spinning disk unit with a Borealis upgrade (with a dual-camera
configuration). A 40x water immersion objective (CFI APO LWD 40X WI 1.15 NA LAMBDA
S, Nikon) with an objective piezo (P-726 PIFOC, Physik Instrumente (PI)) was used to image the
volume of the worm’s head (a Newport NP0140SG objective piezo was used in a subset of the
recordings). A custom quad dichroic mirror directed light emitted from the specimen to two
separate SCMOS cameras (Zyla 4.2 PLUS sCMOS, Andor), which had in-line emission filters
(525/50 for GcaMP/GFP, and 610 longpass for mNeptune2.5; NeuroPAL filters described
below). Data was collected at 3 % 3 binning in a 322 x 210 region of interest in the center of the
field of view, with 80 z planes collected at a spacing of 0.54 um. This resulted in a volume rate
of 1.7 Hz (1.4 Hz for the datasets acquired with the Newport piezo).
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The light path used to image behavior was in a reflected brightfield (NIR) configuration.
Light supplied by an 850-nm LED (M850L3, Thorlabs) was collimated and passed through an
850/10 bandpass filter (FBH850-10, Thorlabs). Illumination light was reflected towards the
sample by a half mirror and was focused on the sample through a 10x objective (CFI Plan Fluor
10x, Nikon). The image from the sample passed through the half mirror and was filtered by
another 850-nm bandpass filter of the same model. The image was captured by a CMOS camera
(BFS-U3-28S5M-C, FLIR).

A closed-loop tracking system was implemented in the following fashion. The NIR
brightfield images were analyzed at a rate of 40 Hz to determine the location of the worm’s head.
To determine this location, the image at each time point is cropped and then analyzed via a
custom-trained network with transfer learning using DeepLabCut* that identified the location of
three key points in the worm’s head (nose, metacorpus of pharynx, and grinder of pharynx). The
tracking target was determined to be halfway between the metacorpus and grinder (central
location of neuronal cell bodies). Given the target location and the error, the PID controller
configured in disturbance rejection sends velocity commands to the stage to cancel out the
motion at an update rate of 40 Hz. This permitted stable tracking of the C. elegans head.

Mounting and recording

L4 worms were picked 18-22 hours before the imaging experiment to a new NGM agar
plate seeded with OP50 to ensure that we recorded one day-old adult animals. A concentrated
OP50 culture to be used in the mounting buffer for the worm was inoculated 18h before the
experiment and cultured in a 37C shaking incubator. After 18h of incubation, ImL of the OP50
culture was pelleted, then resuspended in 40uL of M9. This was used as the mounting buffer.
Before each recording, we made a thin, flat agar pad (2.5cm x 1.8cm x 0.8mm) with NGM
containing 2% agar. On the 4 corners of the agar pad, we placed a single layer of microbeads
with a diameter of 80um to alleviate the pressure of the coverslip on the worm. Then a worm was
picked to the middle of the agar pad, and 9.5uL of the mounting buffer was added on top of the
animal. Finally, a glass coverslip (#1.5) was added on top of the worm. This caused the mounting
buffer to spread evenly across the slide. We waited for 5 minutes after mounting the animal
before imaging.

Procedure for NeuroPAL imaging

For NeuroPAL recordings, animals were imaged as described above, but they were
subsequently immobilized by cooling, after which multi-spectral information was captured. The
slide was mounted back on the confocal with a thermoelectric cooling element attached to it, set
to cool the agar temperature to 4°C >>. A closed-loop temperature controller (TEC200C,
Thorlabs) with a micro-thermistor (SC30F103A, Amphenol) embedded in the agar kept the agar
temperature at the 1 °C set point. Once the temperature reached the set point, we waited 5
minutes for the worm to be fully immobilized before imaging. Details on exactly which multi-
spectral images were collected are in the NeuroPAL annotation section below.

Heat stimulation
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For experiments involving heat stimulation, animals were recorded using the procedure
described above, but were stimulated with a 1436-nm 500-mW laser (BL1436-PAG500,
Thorlabs) a single time during the recording. The laser was controlled by a driver (LDC220C,
Thorlabs) and cooled by the built-in TEC and a temperature controller (TED200C, Thorlabs).
The light emitted by the laser fiber was collimated by a collimator (CFC8-C, Thorlabs) and
expanded to be about 600 um at the sample plane. The laser light was fed into the NIR
brightfield path via a dichroic with 1180-nm cutoff (DMSP1180R, Thorlabs). We determined the
amplitude and kinetics of the heat stimulus in calibration experiments where temperature was
determined based on the relative intensities of rhodamine 110 (temperature-insensitive) and
rhodamine B (temperature-sensitive). This procedure was necessary because the thermistor size
was considerably larger than the 1436-nm illumination spot, so it could not provide a precise
measurement of temperature within the spot. Slides exactly matching our worm imaging slides
were prepared with dyes added (and without worms). Dyes were suspended in water at 500mg/L
and diluted into both agar and mounting buffer at a 1:100 dilution (final concentration of Smg/L).
Rhodamine 110 was imaged using a 510/20 bandpass filter and rhodamine B was imaged with a
610LP filter. We recorded data using the confocal light path during a calibration procedure
where a heating element ramped the temperature of the entire agar pad from room temp to
>50°C. Temperature was simultaneously recorded via a thermistor embedded on the surface of
the agar, approximating the position of the worm. Fluorescence was also recorded at the same
time, at the precise position where the worm’s head is imaged. This yielded a calibration curve
that mapped the ratio of Rhodamine B/Rhodamine 110 intensity at the site of the worm’s head
onto precise temperatures. Slides were then stimulated with the 1436-nm laser using identical
setting to the experiments with animals. The response profile of the ratio of the fluorescent dyes
was then converted to temperature. We quantitatively characterized the change in temperature,
noting the mean temperature over the first second of stimulation (set to be exactly 10.0°C) and
its decay (0.39 sec exponential decay rate, such that it returns to baseline within 3 sec).

Extraction of behavioral parameters from NIR videos

We quantified behavioral parameters of recorded animals by analyzing the NIR
brightfield recordings. All of these behaviors are initially computed at the NIR frame rate of
20Hz, and then transformed into the confocal time frame using camera timestamps, averaging
together all of the NIR data corresponding to each confocal frame.

Velocity

First, we read out the (x,y) position of the stage (in mm) as it tracks the worm. To
account for any delay between the worm’s motion and stage tracking, at each time point we
added the distance from the center of the image (corresponding to the stage position) to the
position of the metacorpus of pharynx (detected from our neural network used in tracking). This
then gave us the position of the metacorpus over time. To decrease the noise level (eg: from
neural network and stage jitter), we then applied a Group-Sparse Total-Variation Denoising
algorithm to the metacorpus position. Differentiating the metacorpus position then gives us a
movement vector of the animal.
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Because this movement vector was computed from the location of the metacorpus, it
contains two components of movement: the animal’s velocity in its direction of motion, and
oscillations of the animal’s head perpendicular to that direction. To filter out these oscillations,
we projected the movement vector onto the animal’s facing direction, i.e. the vector from the
grinder of the pharynx to its metacorpus (computed from the stage-tracking neural network
output). The result of this projection is a signed scalar, which is reported as the animal’s velocity.

Worm spline and body angle

To generate curvature variables, we trained a 2D U-Net to detect the worm from the NIR
images. Specifically, this network performs semantic segmentation to mark the pixels that
correspond to the worm. To ensure consistent results if the worm intersects itself (for instance,
during an omega-turn), we use information from worm postures at recent timepoints to compute
where a self-intersection occurred, and mask it out. Next, we compute the medial axis of the
segmented and masked image and fit a spline to it. Since the tracking neural network was more
accurate at detecting the exact position of the worm’s nose, we set the first point of the spline to
the point closest to the tracking neural network’s nose position. We next compute a set of points
along the worm’s spline with consistent spacing (8.85 pm along the spline) across time points,
with the first point at the first position on the spline. Body angles are computed as the angles that

vectors éi,iﬂ between adjacent points make with the x-axis; for example, the first body angle
would be the angle that the vector 671,2 between the first and second point makes with the x-axis,

the second body angle would be 52,3, and so on.
Head curvature

Head curvature is computed as the angle between the points 1, 5, and 8 (ie: the angle

between 51,5 and 55,8). These points are 0 pm, 35.4 pm, and 61.9 um along the worm’s spline,
respectively.

Angular velocity

dé o : .
diz, which is computed with a linear

Savitzky-Golay filter with a width of 300 time points (15 seconds) centered on the current time
point.

Angular velocity is computed as smoothed

Body curvature

Body curvature is computed as the standard deviation of éi,iﬂ for i between 1 and 31 (ie:
going up to 265 pm along the worm’s spline). This value was selected such that this length of the
animal would almost never be cropped out of the NIR camera’s field of view. To ensure that
these angles are continuous in i, they may each have 2m added or subtracted as appropriate.

Feeding (pumping rate)

Pumping rate was manually annotated using Datavyu, by counting each pumping stroke
while watching videos slowed down the 25% of their real-time speeds. The rate is then filtered
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via a moving average with a width of 80 time points (4 seconds) to smoothen the trace into a
pumping rate rather than individual pumping strokes.

Extraction of normalized GCaMP traces from confocal images

We developed the Automatic Neuron Tracking System for Unconstrained Nematodes
(ANTSUN) software pipeline to extract neural activity (normalized GCaMP) from the confocal
data consisting of a time series of z-stacks of two channels (TagRFP-T or mNeptune2.5 for the
marker channel and gCaMP7f for the neural activity channel). Each processing step is outlined
below.

Pre-processing

The raw images first go through several pre-processing steps before registration and trace
extraction. For datasets with a gap in the middle, all of the following processing is done
separately and independently on each half of the dataset.

Shear correction

Shear correction is performed on the marker channel, and the same parameters are also
used to transform the activity channel. Since the images in a z-stack are acquired over time,
there exists some translation across the images within the same z-stack, causing some shearing.
To resolve this, we wrote a custom GPU accelerated version of the FFT based subpixel
alignment algorithm *°. Using the alignment algorithm, each successive image pair is aligned
with x/y-axis translations.

Image cropping

We crop the z-stacks to remove the irrelevant non-neuron pixels. For each z-stack in the
time series, the shear-corrected stack is first binarized by thresholding intensity. Using principal
component analysis on the binarized worm pixels, the rotation angle about the z-axis is
determined. Then the stack is rotated about the z-axis with the determined angle to align the
worm’s head. Then the 3D bounding box is determined using the list of worm pixels after the
rotation. Finally, the rotated z-stack is cropped using the determined 3D bounding box. Similar
to shear correction, this procedure is first done on the marker channel, and the same parameters
are then applied to the activity channel.

Image filtering using total variation minimization

To filter out noise on the marker channel images, we wrote a custom GPU accelerated
version of the total variation minimization filtering method, commonly known as the ROF model
37, This method excels at filtering out noise while preserving the sharp edges in the images. Note
that the activity channel is kept unfiltered for GCaMP extraction.

Registering volumes across time points

To match the neurons across the time series, we register the processed z-stacks across
time points. However, simply registering all time points to a single fixed time point is intractable
because of the high amount of both global and small-scale deformations. To resolve this, we
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compute a similarity metric across all possible time point pairs that reports the similarity of
worm postures. We then use this metric to construct a registration graph where nodes are
timepoints and edges are added between timepoints with high posture similarity. The graph is
constrained to be fully connected with an average connectedness of 10. Therefore, it is possible
to fully link each time point to every other time point. Using this graph, we register strategically
chosen pairs of z-stacks from different time points (i.e. the ones with edges). The details of the
procedure are outlined below.

Posture similarity determination

For each z-stack, we first find the anterior tip of the animal using a custom trained 2D U-
Net, which outputs the probability map of the anterior tip given a maximum intensity projection
of the z-stack. We then fit a spline across the centerline of the neuron pixels beginning at the
determined anterior tip, which is the centroid of the U-Net prediction. Using the spline, we
compare across time points pairs to determine the similarity.

Image registration graph construction

Next, we construct a graph of registration problems, with time points as vertices. For
each time point, an edge is added to the graph between that time point and each of the ten time
points with highest similarity to it. The graph is then checked for being connected.

Image registration

For each registration problem from the graph, we perform a series of registrations that
align the volumes, iteratively in multiple steps in increasing complexity: Euler (rotation and
translation), affine (linear deformation), and B-spline (non-linear deformation). In particular, the
B-spline registration is performed in four scales, decreasing from global (the control points are
farther apart) to local (the control points are placed closer together) registration. The image
registrations and transformations are performed using elastix on OpenMind, a high-performance
computing cluster. They are performed on the mNeptune2.5 marker channel.

Channel alignment registration

To align the two cameras used to acquire the marker and the activity channels, we
perform Euler (translation and rotation) registration across the two channels over all time points.
Then we average the determined transformation parameters from the different time points and
apply across all time points.

Neuron ROI determination

To segment out the pixels and find the neuron ROIs, we first use a custom trained 3D U-
Net. The instance segmentation results from the U-Net are further refined with the watershed
algorithm.

Simultaneous semantic and instance segmentation with 3D U-Net

We trained a 3D U-Net to simultaneously perform semantic and instance segmentation of
the neuronal ROIs in the z-stacks of the unfiltered marker images. To achieve instance
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segmentation, we labeled and assigned high weights to the boundary pixels of the neurons, which
guides the network to learn to segment out the boundaries and separate out neighboring neurons.
Given a z-stack, the network outputs the probability of each pixel being a neuron. We threshold
and binarize this probability volume to mark pixels that are neurons.

Instance segmentation refinement

To refine the instance segmentation results from the 3D U-Net, we perform instance
segmentation using the watershed algorithm. This generates, for each time point, a set of ROIs in
the marker image corresponding to distinct neurons.

Neural trace extraction

ROI Similarity Matrix

To link neurons over time, we first create a symmetric N X N similarity matrix, where N
is the number of total ROIs detected by our instance segmentation algorithm across all time
points. Thus, for each index i € 1: N in this matrix, we can define the corresponding time point
t; and the corresponding ROI r; from that time point. This matrix is sparse, as its (i, j)th entry is
nonzero only if there was a registration between t; and t; that maps the ROI 7; to 7;. In the case
of such a registration existing, the (i, j)th entry of the matrix is set to a heuristic intended to
estimate confidence that the ROIs 7; and 7; are actually the same neuron at different timepoints.
This heuristic includes information about the quality of the registration mapping 7; to 7;
(computed using Normalized Correlation Coefficient), the fractional volume of overlap between
the registration-mapped 7; and 7; (i.e. position similarity), the difference in marker expression
between 7; and 7; (i.e. similarity of mNeptune expression), and the fractional difference in
volume between 7; and 1 (i.e. size similarity of ROIs). The diagonal of the matrix is additionally
set to a nonzero value.

Clustering the Similarity Matrix

Next, we cluster the rows of this similarity matrix using a custom clustering method; each
resulting cluster then corresponds to a neuron. First, we construct a distance matrix between rows
of the similarity matrix using L2 Euclidean distance. Next, we apply minimum linkage
hierarchical clustering to this distance matrix, except that after a merge is proposed, the resulting
cluster is checked for ROIs belonging to the same time point. If too many ROIs in the resulting
cluster belong to the same time point, that would signify an incorrect merge, since neurons
should not have multiple different ROIs at the same time point. Thus, if that happens, the
algorithm does not apply that merge, and continues with the next-best merge. This continues
until the algorithm’s next best merge reaches a merge quality threshold, at which point it is
terminated, and the clusters are returned. These clusters define the grouping of ROIs into
neurons.

Linking multiple datasets
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For datasets that were recorded with a gap in the middle, the above process was
performed separately on each half of the data. Then, the above process was repeated to link the
two halves of the data together, except that only two edges that must connect to the other half of
the data are added to the registration graph per time point, and the clustering algorithm does not
merge clusters beyond size 2.

Trace extraction

Next, neural traces are extracted from each ROI in each time point belonging to that neuron’s
cluster. Specifically, we obtain the mean of the pixels in the ROI at that time point. This is done
in both the marker and activity channels. They are then put through the following series of
processing steps:

e Background-subtraction, using the median background per channel per time point.

e Deletion of neurons with too low of signal in the activity channel (mean activity lower
than the background — this was not done in the SWF360 control dataset due to the
presence of GFP-negative neurons in that strain), or too few ROIs corresponding to them
(less than half of the total number of time points).

e Correction to account for laser intensity changing halfway through our recording sessions
(done separately on each channel based on intensity calibration measurements taken at
various values of laser power).

¢ Linear interpolation to any time point that lacked an ROI in the cluster.

¢ Division of the activity channel traces by the marker channel traces, to filter out various
types of motion artifacts. These divided traces are the neural activity traces.

Bleach correction

We then compute the mean neural activity (averaged across all neurons) over the entire
time range, and fit a one-parameter exponential bleaching model to it. The bleaching model was
initialized such that it had value equal to the median neural activity value at the median time
point, and it was fit using log-MSE error to the averaged neural activity value. A small number
of datasets with very high bleaching (determined using the exponential decay parameter of the
bleaching model) were excluded from all analysis. Each neural activity trace is then divided by
the best-fit bleaching curve; the resulting traces are referred to as F. In our SWF360 analysis, we

refer directly to F; the trace heatmaps shown in this paper are FL (where F, is the 20™
20

percentile, computed separately for each neuron); we also display z-scored neural activity in
many figure panels, as indicated; and the CePNEM models are fit by z-scoring each neuron
separately.

Controls to test whether neurons are correctly linked over time

We ran a control to test whether neurons were being mismatched by our registration
process. We did this by processing data from our SWF360 strain that expresses GFP at different
levels in different neurons (eat-4.::NLS-GFP). The recording was made with a gap and was
processed identically to GCaMP datasets with gaps in the middle, thus also serving as a test of
inter-gap registration. This SWF360 recording allows us to detect errors in neuron registration,
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since GFP-negative neuron could briefly become GFP-positive or vice versa. We quantified this
by setting a threshold of median(F) > 1.5 to call a neuron a GFP neuron. This threshold
resulted in Fracggp = 27% of neurons being quantified as containing GFP, which is about what
was expected for the promotors expressed. Then, for each neuron, we quantified the number of
time points such that the neuron’s activity F at that time point differed from its median by more
than 1.5, and exactly one of [the neuron’s activity at that time point] and [its median activity]
was larger than 1.5. These time points represent mismatches, since they correspond to GFP-
negative neurons that were mismatched to GFP-positive neurons (if the neuron’s activity

increased at the time point) or vice versa (if its activity decreased). We then computed an error
number of mismatched time points

rate of as an estimate of the mis-registration rate of

(number of total time points)-2-Fracggp-(1—Fracggp)
our pipeline. The 2 - Fracgpp - (1 — Fracggp) term corrects for the fact that mis-registration
errors that send GFP-negative to other GFP-negative neurons, or GFP-positive to other GFP-
positive neurons, would otherwise not be detected by this analysis. This error rate came out to
0.3%, so we conclude that artifacts resulting from mismatched neurons are a negligible
component of our data.

Annotation of neural identities using NeuroPAL

NeuroPAL images and annotation procedure

The identities of neurons were determined via NeuroPAL using the following procedure.
We obtained a series of images from each recorded animal, while the animal was immobilized
after the freely-moving GCaMP recording (recording and immobilization procedures described
above):

(1-3) Spectrally isolated images of mTagBFP2, CyOFP1, and mNeptune2.5. We excited
CyOFP1 using the 488nm laser at 32% intensity under a 585/40 bandpass filter. mNeptune2.5
was recorded next using a 637nm laser at 48% intensity under a 655LP-TRF filter, in order to not
contaminate this recording with TagRFP-T emission. Finally, mTagBFP2 was isolated using a
405nm laser at 27% intensity under a 447/60 bandpass filter.

(4) An image with TagRFP-T, CyOFP1, and mNeptune2.5 (all of the “red” markers) in
one channel, and gCaMP7f in the other channel. As described below, this image was used for
neuron segmentation and registration with both the freely moving recording and individually
isolated marker images. We excited TagRFP-T and mNeptune2.5 via 56 1nm laser at 15%
intensity and CyOFP1 and gCaMP7f via 488nm laser at 17% intensity. TagRFP-T,
mNeptune2.5, and CyOFP1 were imaged with a 570LP.

All isolated images were recorded for 60 timepoints. We increased the signal to noise
ratio for each of the images by first registering all timepoints within a recording to one another
and then averaging the transformed images. Finally, we created the composite, 3-dimensional
RGB image by setting the mTagBFP2 image to blue, CyOFP1 image to green, and mNeptune2.5
image to red as done by Yemini et al. (2021) and manually adjusting the intensity of each
channel to optimally match their manual.

The neuron segmentation U-Net was run on the “all red” image and we then determined
the identities of U-Net identified neurons using the NeuroPAL instructions. The landmarks in the
NeuroPAL atlas were identified first and the identities of the remaining neurons were
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subsequently determined by comparing the individual channel intensities, overall coloring, and
relative positioning of the cells. In some cases, neuronal identities could not be determined with
certainty due a number of factors including: unexpectedly dim expression of one or more
fluorophores, unexpected expression of a fluorophore in cells not stated to express a given
marker, and extra cells in a region expressing similar intensities when no other cells are

expected. Rarely, multiple cells were labeled as potential candidates for a given neuron and the
most likely candidate (based on position, coloring, and marker intensity) was used for analysis. If
a cell was not bright enough to be distinguished from its neighbors or was undetected by the
neuron segmentation U-Net, we left it unlabeled.

Finally, the neural identity labels from the RGB image were mapped back to the GCaMP
traces from the freely-moving animal by first registering each fluorophore-isolated image to the
image containing all of the red markers. The “all red” image was then registered back to the
freely moving recording, permitting mapping of neuronal labels back to GCaMP traces.

Determination of left/right asymmetry

To determine which neuron classes had left/right asymmetry, we computed the mean correlation
between the left and right neurons in each neuron class over all datasets where both the left and
right neurons in that neuron class were detected. We included our heat-stimulus datasets in this
analysis, but for those datasets the correlation was only computed using the pre-stim data; for our
baseline datasets, the entire time series was used. For a neuron to be marked as having left/right
asymmetry, we required that (i) we recorded at least five animals where both the left and right
neurons of the pair were detected, (ii) the left and right neurons had a mean correlation averaged
across animals of <0.2, and (iii) the neuron had a mean signal value (averaged across animals) of
at least 0.25. The signal value threshold was intended to exclude inactive neurons with low
correlation values due to noise. This analysis resulted in the neurons ASE, IL1, IL2, and SAAD
showing left/right asymmetry.

C. elegans Probabilistic Neural Encoding Model (CePNEM)

CePNEM Residual Model

The CePNEM model uses a Gaussian process residual model adding together a white-
noise kernel and a squared exponential kernel. The white-noise kernel is intended to capture
measurement noise in our neural data, which is expected to be independent between time points,
while the squared exponential kernel is intended to capture variance in neural activity unrelated
to behavior, which may have a slower timescale. The squared-exponential residual term is
critically important, as otherwise the model will be forced to try to explain all autocorrelation in
neural activity with behavioral information, resulting in severe overfitting.

The white-noise kernel Ky has standard deviation a,,,;s. and thus its covariance matrix

is 02,;s01. The squared-exponential kernel Kz has standard deviation ggz and length scale 2,

i-N?

giving a covariance matrix defined by M;; = o4;e” 242 . The full residual model is then the
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Gaussian process model with kernel K;y + Kgg, which is then added to the timeseries of the rest
of the model fit to generate the likelihood of a given neural activity trace under CePNEM.

CePNEM Prior Distributions
CyT» Cps Cons €p, b,m(0) ~ N(0,1)
In(s) ~NM(In(10),1)
In(¥) ~ N¥(In(20),1)
In(osg) ~ N (In(0.5),1)
In(0,,0ise) ~ N (In(0.125),0.5)

Here V' (u, 0) is the normal distribution with mean u and standard deviation o. Since the
neural traces being fit are all z-scored, the priors on the behavioral parameters are also
standardized. The prior on the moving average term s was based on preliminary data from fitting
previous, conventional versions of our model. The priors on the residual terms were intended to
be wide enough to accommodate both neurons that are well-explained by behaviors (in which
case, the model would assign them a low residual value), and neurons that contain little to no
information about behaviors (in which case, the model would assign them a high residual value).

Fitting procedure

Overview of fitting approach

Let N be a neural trace from an animal, B be the behaviors of that animal, and X be the
model parameters that we are trying to fit. Then the goal our model fitting procedure is to
estimate the probability distribution of model parameters given our observations, namely
P(X|N, B). Our model defines the likelihood P(N|X, B) — that is, the likelihood of observing a set
of neural data given a set of model parameters and behavioral data. Our prior distributions define
P(X]|B); in this case, our prior distributions on model parameters are independent of the animal’s
behaviors, so P(X|B) = P(X). Therefore, by Bayes’ rule,

P(N|X,B)P(X)

P(X|N,B) = PNIE)

Unfortunately, P(N|B) is difficult to compute. Crucially, however, it does not depend on
the model parameters X. This means that by comparing the value of P(N|X, B)P(X) for different
values of X, we can make meaningful insights into the distribution of P(X|N, B). In particular,
we can define a Markov chain that defines a sequence of X;, where X;, is a stochastic “proposal
function” of X;. The idea is that the proposal function can be biased to walk toward regions in
parameter space with higher likelihood. Indeed, there are a family of algorithms, such as
Metropolis-Hastings>® and Hamiltonian Monte Carlo® that define such proposal functions. In
particular, the proposal functions defined by these algorithms have the property that, in the limit
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of generating an infinitely long Markov chain, sampling from the chain is equivalent to sampling
from the true posterior distribution P(X|N, B).

Model fitting procedure

Of course, in practice, we do not have computational resources for an infinitely long
chain, so it is necessary to ensure that the chain can replicate the posterior distribution in a
manageable amount of time. This in turn requires custom inference algorithms, moving beyond
the generic MCMC and variational inference algorithms provided with probabilistic
programming platforms such as Stan and Pyro. Accordingly, we used the Gen probabilistic
programming platform**, and its inference meta-programming functionality®, to express a
suitable custom inference algorithm.

We fit our models using the Gen probabilistic programming platform, using a mixture of
Metropolis-Hastings (MH) and Hamiltonian Monte Carlo (HMC) steps with adaptive proposals,
embedded within a resample-move sequential Monte Carlo (SMC) scheme™ with one particle.
The HMC step uses gradient information and tries to move the chain towards regions of higher
likelihood. The other MH steps are intended to help the chain get out of local optima by using
information about the structure of the model, so the Markov chain can better explore the full
parameter space. Specifically, one iteration of our fitting algorithm involves the following steps

(here V" is once again the normal distribution, and & is drawn uniformly at random from the set

[—1,1]), and [ is the current iteration of the algorithm:

e MH proposal: In(£) — N(ln({)) , 5{’(0)
e MH proposal: ln(aSE) - N (ln(O'SE) ) 5055 (l))

1 .
M propost: I(Gipize) =V (1n(Goise) 8 ()

e HMC proposal on parameters Cy,, Cy, Cgp, Cp, b, 1(0),In(s) with € =
Sumc (D)
e MH proposal: ¢,7 = N (c,7S, 1)
e MH proposal (note that the instances of S are drawn independently):
o Cyr 2> N(cyrS,1)
o Cy>N(cyd, 1)
o b— N(b,107%)

After each iteration of the algorithm, the proposal distribution parameters § for each
proposal are updated as follows: If the respective proposal was accepted, its 6 parameter is
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multiplied by 1.1; otherwise, it is divided by 1.1. (They are all initialized to 1.) This adaptive,
heuristic choice of proposal distribution aims to encourage proposals that are accepted roughly
half the time. Although repeated iteration of these adaptive proposals does not guarantee
convergence via the usual MCMC convergence theory, these adaptive proposals remain valid
target-preserving MCMC rejuvenation kernels for use within resample-move SMC. To construct
the posterior samples used in our analysis, we run this fitting procedure for 11,000 iterations, and
discard the first 1,000 (including the initialization point). The remaining 10,001 points are treated
as approximate samples from the posterior distribution and are referred to as particles elsewhere
in the paper. Our control experiments, including simulation-based calibration (detailed below),
suggest that this approach results in good quality approximations.

Model initialization

Despite our efforts to use MH proposal steps to prevent the model fitting procedure from
falling into local optima, we found that the algorithm still occasionally got stuck, preventing it
from finding a good approximation to the true posterior. To remedy this, we added a likelihood
weighting initialization step consisting of sampling 100,000 points from the prior distribution of
model parameters and selecting the point with the highest likelihood under our model, given the
neural and behavioral data to be fit. This point is then used to initialize the resample-move SMC
scheme described above.

Simulation-based calibration

To ensure that our fitting process gave a calibrated description of the true model
posterior, we performed simulation-based calibration*!. In this procedure, we generated 4,000
sample traces from the model distribution P (X, N|B) using the prior distribution for X. 500
traces were generated using each of eight total values of B: two 800-time-point subsegments
from each of four animals (two SWF415, and two SWF702 animals). We then ran our model
fitting procedure on each sample (three of the 4,000 traces timed out and were discarded). After
fitting, we then compared the sampled posterior distribution from our inference algorithm to the
ground-truth parameter values using a rank test with 128 bins. If our inference process was
giving unbiased estimates of the posterior distribution, then across all of our traces, the
distribution of these ranks should be the uniform distribution. Gen automated the implementation
of this simulation-based calibration procedure.

We used a y? test to differentiate the observed ranks from the uniform distribution, and
found that 9 of the 10 model parameters passed the test at p=0.05. The final parameter, the
EWMA decay constant s, seemed to have a minor bias towards larger values, meaning that our
fitting algorithm is prone to occasionally overestimate this parameter. However, we quantified an
upper bound on the degree of this overestimation by computing the maximum deviation of the
CDF of the observed rank distribution for s, compared with the predicted CDF from the uniform
distribution, and found a value of 3.5%. This means that the fits of at most 3.5% of encoding
neurons will be affected by this minor bias, which is less than an average of 4 per animal. Thus,
we do not believe this minor bias will substantially affect the results described in this paper.

Controls

43



GFP Control

We wanted to ensure that we would not spuriously detect motion artifacts as encodings of
behavior. To do this, we used our pan-neuronal GFP control line SWF467, which by definition
should not have any neurons that encode behavior. We fit our GFP datasets with CePNEM and
applied the same encoding analysis to this strain and found that only 2.1% of neurons showed
behavioral encoding, compared with 58.6% in the SWF415 strain, suggesting that the majority
(>95%) of our detected encodings are not motion artifacts. We also used the GFP recordings to
determine which neurons displayed low or no neural dynamics in a given recording. We defined

. . . .. std(F)
a neuron with low or no dynamics to be one whose signal variation, defined as ——

is un-normalized ratiometric fluorescence, was less than the 99" percentile of the signal
variations of GFP neurons. For this analysis only (and not any other analyses in this paper), we
fit a per-neuron bleaching model to each GCaMP neuron when computing its signal variation
and used this corrected F, in order to ensure that apparently-active neurons were not due to
GCaMP neurons having worse-quality bleach correction than the GFP controls.

where F

Based on this analysis, 5.3% of the neurons were inactive across our recordings. The
fraction of inactive neurons here appears to be lower than in some prior brain-wide
recordings.>?® This may be related to experimental conditions (immobilized versus freely-
moving; off-food versus on-food) or differences in the SNR of the recordings, which determines
the minimal neural signal that can be resolved from motion and data extraction artifacts.

Scrambled Control

We furthermore wanted to ensure that the model would not overfit to spurious
correlations between neural activity and behavior. To accomplish this, we fit 11 SWF415
animals with CePNEM, but replaced the behaviors v, 8h, and p with spurious behaviors from
other recorded animals, which should result in few neurons showing behavioral encoding. The
spurious behaviors were generated as follows: we first assign pairs of datasets to minimize the
behavioral correlation across the datasets within a given pair. To do this, we compute correlation
across all possible behavior and dataset combinations. After that, we determine the pairing such
that it minimizes the maximum absolute cross-correlation value across all pairings. To penalize
high correlation values, we raised the correlations to the power of 4.

When we analyzed the CePNEM model results, we found that only 2.7% of neurons
detected as having behavioral encoding, suggesting that the vast majority (>95%) of our detected
encodings are not due to overfitting.

Median model fits

For display purposes, or analyses where it was necessary to represent a neuron with a
single model, we computed the median model by computing n;[t] for each set of parameters i in
the neuron’s posterior distribution, and then defining n,,.4[t] = median;(n;[t]). This is what is
meant by “median CePNEM fit” unless otherwise noted.
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Validation metrics and analyses
Cross-validation (cv) score

The cross-validation pseudo-R? metric, named ‘cross-validation score’ or simply ‘cv
score’ in the text, is defined by

v = mean. <1 B MSE(Mi(ti)rN(ti))>
l MSE (u;, N(¢:))

Here MSE(x, y) is the mean squared error between data vectors x and y, M;(t;) is the evaluation

of the median CePNEM model fit over the ith training data split evaluated on the corresponding

testing data t;, y; is the mean neuron activity over the ith training data split, and N(t;) is the

observed neuron activity vector on the testing data t;. This metric is an approximation of the

variance of the neural activity explainable by the model on the testing data.

Since CePNEM contains a Gaussian process residual model, it can only be trained over
continuous data. Additionally, the presence of this Gaussian process residual model could cause
the mathematical properties of the model to change slightly based on the length of training data.
Thus, we structured our five-fold training/testing splits such that each training data split
consisted of 8 minutes of continuous data, exactly as the model was fit in the rest of the paper.
These training splits were uniformly tiled along the 16-minute recordings. The testing splits were
then constructed such that they were equal length (20% of full dataset), each time point in the
recording was included in exactly one of the testing splits, and each testing split was near (but
not overlapping with) its corresponding training split.

We only computed the cross-validation score in situations where it would be reasonable
to expect our model to cross-validate. In particular, since there is no expectation of our behavior-
based model to cross-validate for neurons that don’t encode behavior, we ran it only on neurons
that encoded behavior in both of the original 8-minute CePNEM fits in the dataset. Additionally,
we excluded train/test splits where the training data did not contain feeding information while the
testing data did, since in such splits there would be no way for any model to be able to constrain
a feeding parameter in the training data (feeding was episodic in these datasets, giving rise to the
necessity of imposing this constraint).

Bayesian Generalization Index (BGI)

We also computed a separate metric, which we call the Bayesian generalization index, to
assess performance of the full CePNEM model, including the residual model, to generalize to
withheld testing data. To compute it, each dataset was split in half temporally, and for each
neuron, CePNEM models were fit on each half of the data (the training data). Each of those
training models was then evaluated on the other half of the data (the testing data) as follows.

First, 500 training samples were drawn from the CePNEM posterior distribution from the
training model. Each sample (a 10-vector of all CePNEM parameters) was then evaluated on the
testing data using CePNEM likelihood to compute a training array of test-time scores.
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Similarly, 500 control samples were drawn from the set of all CePNEM posteriors from
all neurons in our 14 SWF415 baseline datasets. This was done instead of sampling from the
model prior to ensure that high BGI values were specifically learned from the training data,
rather than being generally learned properties that apply across neurons. Each of the 10 model
parameters was drawn independently. Each of these control samples was then evaluated with
CePNEM on the testing data to compute a control array of test-time scores.

The Bayesian generalization index for the given CePNEM training fit was then computed
as

BGI = 2 % Prob(train > control) — 1

Here train and control are randomly sampled from the respective distributions of test-time
scores. In this manner, if the BGI is very close to 1, it means that it is extremely unlikely for a
randomly-sampled model set of model parameters to be able to match the performance of any of
the training model parameters on the testing data. On the other hand, a BGI of 0 means that the
training model did not outperform the control model, either because CePNEM failed to constrain
the training posterior distributions, or because a substantial portion of them failed to generalize
to the testing data. Negative BGI values indicate overfitting, where the model performs worse on
the testing data than simply randomly sampled model parameters.

We computed this index over all neurons in all SWF415 datasets. Note that unlike the
cross-validation score, we included non-encoding neurons in this analysis because we would
expect them to generalize to the testing data through their CePNEM residual parameters, which
are included in the BGI computation (though we note that they did perform worse on average
than the encoding neurons). We observed that 91% of neurons had positive BGI values, and 48%
of neurons had BGI values above 0.9, indicating a high level of model generalization. The results
were very similar between SWF415 and NeuroPAL strains.

Comparison with simpler models

MSE model fits

For some analyses (in particular model degradation analyses where fitting many different
models with probabilistic inference would be extremely computationally expensive), we found it
useful to fit our model in a more conventional manner, simply trying to minimize the mean-
squared error (MSE) between the model fit and neural activity rather than using Gen to compute
the posterior. For these fits, we deleted the residual component of our model and instead simply
fit n[t] by trying to minimize the MSE between it and the observed neural activity, set n(0) = 0,
and ignored the first 50 time points after each recording began for the MSE calculation (so for
datasets with a gap in the middle, we would ignore the first 50 time points, as well as time points
801:850). We used L-BFGS for local optimization and MLSL-LDS for global optimization, and
performed these fits using the NLopt Julia package.

Model degradation analysis

We tested how each component in the model affects the performance by quantifying the
increase in error, compared to the full model, when removing the following component
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individually: each predictor (velocity, head curvature, feeding), the velocity non-linearity,
removing the EWMA, and all non-linear features (resulting in a fully linear model). The models
were fitted using our MSE fitting technique with L2 regularization. Out of the 14 pan-neuronal
GCaMP baseline datasets, 5 were excluded from this analysis due to low variance in the
pumping rate. 3 datasets were used to optimize the regularization parameter, and the remaining 6
datasets were used to compute the increase in error. Models were fit with 5-fold cross-validation
set, splitting each dataset into 5 equal length time segments. The error was computed as the mean
test time error of the cross-validation splits. For each degraded model type, neurons encoding the
removed feature were selected for analysis. For example, degraded model without velocity was
tested on the neurons with velocity encoding. The increase in error was computed by comparing
the error in degraded model to the error of the full model. Finally, we used the Wilcoxon signed
rank test for statistical significance.

Comparing exponentially-weighted moving average (EWMA) to other filtering methods

In Fig. S1D, alternative smoothing methods were evaluated to compare against the EWMA in the
model. The alternatives were: optimal Gaussian kernel (Gaussian smoothing), optimal shift
(shifting to maximize the absolute correlation), and optimal lowpass filter. For each method,
including the EWMA, gradient descent was used to minimize the error (MSE) between the
neural trace and the transformed velocity in order to find optimal filtered versions of velocity for
each metho. This was repeated across all recorded neurons for the analysis in Fig. S1E. As is
shown, EWMA performed the best.

Statistical tests to determine encoding properties of neurons
Summary of statistical approach

Our strategy for determining whether neurons encode a particular behavioral feature (for
example, whether the neuron encoded ventral head curvature during forward locomotion) is
briefly summarized here. More details are provided below.

e We first convert the CePNEM parameters into a space where the encoding of the neuron
to that behavioral feature can be quantified for each point in the posterior.
(‘Deconvolved activity matrix’ section below)

e Compute an empirical p-value based on the fraction of points in the posterior with
sufficiently strong encoding of the behavioral feature. “Sufficiently strong” means
exceeding two thresholds that were defined based on GFP and wrong-behavior controls.
(“Statistical encoding tests’ section below).

e Multiple-hypothesis correct these p-values across different types of tunings to each
behavior, across neurons, and/or across time ranges, as appropriate for the analysis in
question.

Deconvolved activity matrix
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In order to be able to make statistical assertions about the neural encoding of behavior
based on the posterior distributions from CePNEM fits, we first needed to transform model
parameters into a more intuitive space. To accomplish this, for each neuron, we constructed a
10001 X 4 x 2 X 2 deconvolved activity matrix M constructed as follows: My, corresponds to
the modeled activity of the nth particle from that neuron’s CePNEM fit at velocity V[i], head
curvature 8H[j], and pumping rate P[k]. Here, where 6h is the animal’s head curvature (dorsal
is positive) and p is the animal’s pumping rate over the course of the recording, we have:

1 1
V = |med(rev speed), 100 med(rev speed), 100 med(fwd speed), med(fwd speed)

O0H = [percentile(8h, 25), percentile(6h, 75)]

P = [percentile(p, 25), percentile(p, 75) ]

For this calculation, the EWMA and residual components are excluded from the modeled
activity; the idea is that this matrix contains information about the neuron’s activity at high and
low values of each behavior, so we can now run analyses on this matrix and not have to take into
account the actual behavior of the animal. In particular, many simple combinations of entries in
this matrix have intuitive meanings:

e The slope of the neuron’s tuning to velocity during forward locomotion is
Mn4 jk — Mn3 jk
e The slope of the neuron’s tuning to velocity during reverse locomotion is
MnZ jk — Mnl jk
e The neuron’s deconvolved forwardness (overall slope of the neuron’s tuning to velocity) is
(Mn4jk - Mn3jk) + (anjk - Mnljk)
e The rectification of the neuron’s tuning to velocity (difference between forward and reverse
slopes) is
(Mn4jk - Mn3jk) - (anjk - Mnljk)
e The slope of the neuron’s tuning to head curvature during forward locomotion (positive
means dorsal during forward) is
Mz — Mnaik
e The slope of the neuron’s tuning to head curvature during reverse locomotion (positive
means dorsal during reverse) is
M2k — Mn11k
e The neuron’s deconvolved dorsalness (overall slope of the neuron’s tuning to head curvature)
is

(Mpa2k — Mygar) + (Mpa2k — Mp11x)
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e The rectification of the neuron’s tuning to head curvature with respect to locomotion
direction (positive means the neuron is more dorsal during forward; negative means the
neuron is more ventral during forward) is

(Mn42k - Mn41k) - (Mnlzk - Mnllk)
e The neuron’s tuning to feeding follows the same pattern as its tuning to head curvature.

Importantly, the linear structure of the multiplexing component of CePNEM implies that
the value of the unset parameters i, j, k in the expressions above do not change the value of those
expressions. For head curvature, since worms can lay on either side, we manually checked the
location of the animal’s vulva from the NIR recordings of each animal and flipped dorsal/ventral
labels as appropriate.

Statistical encoding tests

With the intuition derived from the deconvolved activity matrix, for each particle in the
posterior distribution of the neuron, we can ask whether that particle satisfies a certain property.
For example, to categorize a particle as representing forward locomotion, we would check
whether that particle had a sufficiently large deconvolved forwardness value. Specifically, we

would check whether its deconvolved forwardness value was at least max(&;, €,), where &; =
0.125 std(F)
signal mean(F)

in question), and &, = 0.25 :—D (here oy, is the standard deviation of the model fit corresponding
M

and F is the un-normalized ratiometric fluorescence of the neuron

(here signal =

to that particle with s = 0 and gy, is the standard deviation of the model fit corresponding to that
particle). The number 0.125 was selected based on its ability to filter out the small amount of
motion artifacts observed in our three GFP control datasets (see Methods section on that control
above). Specifically, we chose a value that filtered out almost all of the motion artifacts (leaving
only 2.1% of GFP neurons showing false behavioral encoding), while removing as few true
encodings from our GCaMP data as possible. Similarly, the number 0.25 was selected based on
its ability to filter out extremely weak correlations between neural activity and behavior, which
was measured by our controls attempting to fit neurons with behaviors from different animals

(after the correction, only 2.7% of such neurons showed behavioral encoding). The j—D term is a
M

correction for the fact that neurons with large s values will have higher values in M. If the
particle’s deconvolved forwardness value was at least max(&4, &,), it would be classified as
representing forward locomotion.

By the same token, we would classify a particle as representing reverse locomotion if its
deconvolved reverseness (negative forwardness) value was at least max(¢;, &,), we would
classify a particle as representing more dorsal information during forward locomotion if its
rectification to head curvature with respect to locomotion direction was at least max(&4, 5), and
SO on.

Now that we can classify particles, we can create empirical p-values for neurons based on
the fraction of their particles that share a category. For example, if 98% of particles for a neuron
are classified as representing forward locomotion, then that neuron’s p-value for forward
locomotion would be 0.02. We can then construct a list of such p values computed for each
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neuron in an animal that was fit with CePNEM and use Benjamini-Hochberg correction with
FDR=0.05 to get a list of forward-encoding neurons in that animal. We can similarly get a list of
reversal neurons, dorsally-rectified head curvature neurons, neurons activated by feeding during
forward locomotion (i.e. have a positive slope to feeding during forward locomotion), and so on.

To construct larger categories, such as neurons with any behavioral encoding, or neurons
with head curvature encoding, another multiple hypothesis correction step is necessary. For this
step, we first use Bonferroni correction on opposing categories where it is impossible for a
neuron to have both categories (for instance, dorsal and ventral tuning), followed by a
Benjamini-Hochberg correction step on the Bonferroni-corrected p-values. We then proceed
with the inter-neuron Benjamini-Hochberg correction, as before.

A neuron is categorized as encoding head curvature if it expresses statistically significant
information about any of the four head curvature categories outlined above, in either direction;
feeding encoding is computed similarly. A neuron is categorized as encoding velocity if it either
expresses statistically significant information about any of the four velocity categories, or if it
expresses statistically significant information about any of the rectified categories, since
rectification of head curvature or feeding based on forward/reverse locomotion state is a form of
velocity information. A neuron is categorized as encoding if it has statistically significant
information in any of the tests. Note that for datasets without any feeding information (defined as
the 25" and 75" percentile of feeding in that dataset being the same, causing P[1] = P[2]),
neurons cannot encode feeding information, so feeding is not included in the multiple-hypothesis
correction to check whether a neuron encoded any behavior.

Time ranges

One final note is that all neurons are fit twice — once over the first half of the data, and
once over the second half. Thus, for consistency between all our datasets, we fit all of our
SWF415 and NeuroPAL datasets in this manner.

For Figure 2A, the encoding statistics are computed on a per-neuron basis, with an
additional Benjamini-Hochberg correction step to account for the fact that each neuron got two
chances to qualify as encoding. Time ranges with insufficient feeding variance (this time,
defined as the difference between the 25" and 75" percentile of feeding being at most 0.5) are
excluded from feeding analysis. To avoid different behaviors having different amounts of
available data, animals that never had sufficient feeding variance are excluded from Figure 2A
entirely. For Figure 2B, the same analysis is used, and there is an additional multiple-hypothesis
step across the three behaviors. For Figures 2C and S21-J, all time ranges are used. Fits on
different time ranges from the same animal are added to the CDF independently of each other,
but only encoding neurons are included. For example, a neuron that encoded behavior in both
time ranges would have its EWMA timescale from both fits added to the CDF, while a neuron
that only encoded behavior once would have that EWMA timescale added. In Figure S21-J, only
neurons that statistically significantly encoded the appropriate behavior are included

Neuron Subcategorization
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We next sought to combine various pieces of information from our encoding analysis
together to generate a holistic view of how a given neuron is tuned to a given behavioral
parameter (Figure 2E). To accomplish this, we sorted neurons as follows (this analysis is done
independently on each time range):

e [f the neuron had a different sign to its tuning to behavior during forward and reverse (eg: a
slow neuron that has a positive slope in its tuning to velocity during reversal, but a negative
slope during forward locomotion), then the neuron was categorized as such. In Figures 2G-
21, these neurons would appear in the bins (+,-) and (-,+); for head curvature, they would be
(D,V) or (V,D).

e Otherwise, if the neuron has rectified tuning to the behavior (depending on the behavior, one
of the following categories: forward slope > reverse slope, reverse slope < forward slope,
more dorsal during forward, more ventral during more activated during forward, more
activated during forward, or more inhibited during forward), it will be placed in one of the
four rectified bins (+,0), (-,0), (0,-), or (0,%), depending on the sign of the rectification and
sign of the slopes of the neural tuning to behavior.

e Otherwise, if the neuron had the same slope during both forward and reverse movement, it
will be classified in one of the two analog bins (+,+) or (-,-) depending on the sign of that
slope. Notably, it would be placed in a rectified bin (and not an analog bin) if it had rectified
information, even if it had the same slope during both forward and reverse locomotion.

e If none of the above were true, the neuron lacked statistical significance in at least two of the
three parameters (forward slope, reversal slope, rectification) with respect to the behavior in
question, and it will be excluded from Figure 2E.

Methods to determine encodings of neuron classes across recordings
Hierarchical model to fit neuron classes recorded across multiple animals

Neuron classes that were detected in multiple animals had multiple CePNEM fits. To
attain a more accurate depiction of the neuron across datasets, we used a hierarchical model that
takes into account the parameters and uncertainty of each CePNEM fit to compute the global
mean and variability between datasets. The global mean provides the best overall model to the
neuron class, while the variability (see below for further details) provides a description of how
reliably the neuron encodes behavior.

Specifically, if the neuron was detected n times, with CePNEM posteriors P;
corresponding to each model fit 1 < i < n, the hierarchical model fits maximum a posteriori
(MAP) estimates of vectors of parameters y, g, x;, where 1 < i < n. Here u corresponds to the
global mean parameters for the neuron taking into account its data across observations, &
corresponds to the global variability, and x; corresponds to a point estimate for the parameters of
the neuron in each observation. The rough form of the hierarchical model is that x; come from a
distribution determined by ¢ and o, but simultaneously come from the distributions P;, so they
are fit in such a way as to maximize the likelihood under both of these distributions.
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More specifically, the parameters p and x; are comprised of a 5-vector [c,r, 7,6, @, S],
where c,r and s are analogous to their respective CePNEM parameters, (7, 8, @) is a spherical-
coordinate transform of (c,, cgp, cp). The variability o is comprised of a 4-vector [o, ., 0y, K, T5].
The reason for the spherical transform is that some neural variability could be simply a result of
different normalization in different animals, which is difficult to perfectly correct for; in
spherical coordinates, all of that possibly-spurious variability is encapsulated in one parameter
o,, rather than being spread across multiple parameters.

The likelihood function of the hierarchical model then specifies the distribution of the x;
given u and o. Specifically, for the non-angle parameters, model assumes the normal
distributions x;,~N (U, 0,,) for 1 < i < n, v € [cyr, 7, S]. Meanwhile, the angular parameters
are determined by a von Mises-Fisher distribution: x;,~ VMF (u,, k) for 1 <i <n, v € [, ¢].

Finally, to ensure that the x; carry information about the actual CePNEM fits, the
posterior distributions P; are first approximated by fitting them with a multivariate-normal
distribution MV N;. This approximation was necessary in order to make the problem of fitting the
hierarchical model computationally tractable. We verified using manual examination of Q-Q
plots that the posteriors were well approximated by multivariate-normal distributions, though the
approximation was not perfect. After this approximation, the parameters x; are transformed back
to Cartesian coordinates X; = [c,r, €, Con, Cp, S] and then the likelihood of these parameters
under the multivariate-normal approximation is computed: X; ~ MV N;. The other five CePNEM
parameters are not of biological interest and are not included in the hierarchical model.

The priors for the hierarchical model are as follows (the priors for the mean values were
created by examining the full set of CePNEM parameter values, after fitting):

uleyr] ~ N(0,0.3)
In(u[r]) ~ ¥(0.1,0.4)
ul@, @] ~ unit sphere
In(u[s]) ~ N (0.7,0.7)
In(o,,) ~N(-1,1)
In(o,)~N(-1,1)
In(k) ~N(1,1)
In(os) ~ N(—1,1)

Cartesian average

The hierarchical model was designed to compute neural variability, but we also found
that it provided a useful method of measuring mean neural parameters across animals. However,
for neurons with high variability, simply using u as the mean parameters is not the correct metric
since the spherical coordinates prevent it from properly canceling out opposing tunings (rather, it
would instead try to pick an angle in between and keep the same 7). Thus, we decided to instead
convert all the x; of the model back into Cartesian coordinates and average them to produce
Ucart» the Cartesian average model parameters of the neuron under the hierarchical model. This
Ucart 18 What is being plotted in Figure S5E.
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Forwardness, Dorsalness, and Feedingness

. . (o) . .
The forwardness metric for a neuron class is computed as Fp, - G—M - signal, where Fj, is the
D

deconvolved forwardness of the Cartesian average ¢, of the hierarchical model fit to that
neuron class (see “Deconvolved activity matrix” and “Hierarchical model” methods sections
above for more details; the behavior values used in the deconvolved forwardness computation
were constructed by appending together all of the behaviors for the neuron class), gy, is the
standard deviation of the model fit corresponding to p.,t With s = 0, gy, is the standard
deviation of the model fit corresponding to p.art, 0p, and signal as before. This ratio is intended
to correct for the fact that the model parameters need to be larger (resulting in larger
deconvolved forwardness values) for the same neural response size if the neuron has a long
EWMA decay. Dorsalness and feedingness are computed in a similar fashion.

Encoding strength and relative encoding strength

Encoding strength is a metric designed to approximate the information content a neuron
contains about each behavior, given its CePNEM model fits. It is computed on each particle i of
the CePNEM posterior by generating three model traces n;,,, njgp, and n;p, each of which is
identical to the full model n;[t] except that the behavior b is set to 0 for model n;;,. Thus, the
MSE between n; and n;;, provides a metric of how important behavior b was for the neuron. We
compute the relative encoding strength of a neuron to behavior b as the ratio

MSE(nl-,nib) )
Y ce[v,onp] MSE (n, nyc)

For neuron classes labeled with NeuroPAL (eg: in Figures 4 and 5), instead of taking the median
over parameters from the posterior distribution, we used one set of parameters which was the
Cartesian average of the hierarchical model fit for that neuron, and we used behaviors

constructed by appending together the behaviors from all observations of that neuron class. Then
RES)

MSE(n,0)’

RES, = median; (

we define the encoding strength of the neuron to behavior b as ES;, = where n was the

full model fit.

Analyses of dynamic encoding of behavior

Statistical tests to examine dynamic changes in neural encoding.

To determine whether a given neuron in a recording changed how it encoded behavior,
we used the following procedure. First, we fit two CePNEM models to compare against each
other. For baseline datasets without any stimulation (both SWF415 and NeuroPAL), we split the
dataset in half and used fits from each half — the same fits used in the encoding analysis. For the
NeuroPAL heat-stimulation datasets, we took one fit from the timepoints up until just before the
stimulation (799 or 800 timepoints), and another fit from the 800 time point block (stim+10) to
(stim+809). For the SWF415 heat-stimulation datasets, we took one fit from the timepoints up
until just before the stimulation, and another fit from the 400 timepoint block (stim+10) to
(stim+409) for heat-stimulation datasets without a gap in the middle, or alternatively (stim+10)
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to 800 for datasets with such a gap. Note that almost all of the heat-stim analysis uses the
NeuroPAL datasets rather than the SWF415 ones, because the longer durations and equal time
lengths of the pre-stim and post-stim data allow for much more powerful analysis.

Next, we computed deconvolved activity matrices as defined above on each of the
CePNEM fit posteriors. We ran the same procedure used to detect encoding, but this time instead
of computing metrics on individual particles, we computed those metrics on differences between
the deconvolved activity matrices for all possible pairs of particles from each of the two model
fits, which was a total of slightly more than 10® such differences per neuron. We used our
residual threshold &; as before, but &, is set to 0 for this test because it is not well-defined when
considering multiple model fits. Neurons that passed our encoding test at p = 0.05 using the
differences between the deconvolved activity matrices for behaviors other than feeding (there
were too few datasets with enough feeding variance in both time ranges to make a meaningful
statistical comparison), and encoded behavior (using our standard behavior encoding test) in at
least one time range were added to the list of encoding changing neuron candidates.
Additionally, we checked whether the EWMA parameter s changed by computing differences
between all possible values of s in the two model fits, and asking whether that was greater than
0. This comparison was Benjamini-Hochberg corrected over all neurons, and neurons that passed
the test at p = 0.05 and also encoded behavior (using our standard behavior encoding test) in
both time ranges were added to the list of encoding changing neuron candidates.

Variability index

To compute the variability index of labeled neurons, we fit our hierarchical model (see
above) on all CePNEM fits for that neuron, and then computed the variability index as o, . +
CircSD(x), where CircSD is a function that computes the circular standard deviation from the
von Mises-Fisher concentration parameter k. Note that variability in the EWMA parameter s is
not included as this parameter is not meaningful if the neuron lacked behavioral information.
Furthermore, variability in encoding strength 7 is also not included as this can include variability
related to data normalization differences between animals.

Inter-dataset variability

To compute the inter-dataset variability, first the set of model parameters x; of the neuron
within the same animal are transformed into Cartesian coordinates (because normalization is the
same within the same animal, we can use the scaling information), averaged together, and
projected back into spherical coordinates to produce a per-animal model estimate y;. Then o, . is
computed as the standard deviation of the ¢, component of the y;, and k is estimated by fitting a
von Mises-Fisher distribution to the angular parameters 0, ¢ of the y;. Variability is then
computed as above.

Intra-dataset variability

To compute the intra-dataset variability, first the set of model parameters x;
corresponding to different observations of the neuron in the same animal in the same time range
are averaged together as with inter-dataset variability. This results in a set of averaged model
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parameters y;; and y;,, where i is the animal number, corresponding to the CePNEM fits in the
first and second halves of the recording. We then compute

EuClideanDiSt(yil [Cvﬂ Con CP]I Yi2 [Cw Con CP])
yirlr] + yiz[r]

d; = (lyi1lcor] — yizleurll, 2

Here y;;[p] is the value of the parameter or vector of parameters p in the averaged model
parameters y;;, transforming coordinates as appropriate. This d; represents a distance in model
parameter space between the two CePNEM fits in the same animal; the normalization by

%()’n [r] + yi2[r]) serves to ensure that differences in normalization do not result in different
animals being weighted differently, similarly to how r wasn’t included in the variability index.
The intra-dataset variability can then be computed as % (mean(di [1D + mean(di[Z])), where

the division by v/2 transforms distance into standard deviation.
Amount of encoding change (Figure S7G)

The amount of encoding change of a neuron in an animal is defined as 0 if that neuron
did not exhibit an encoding change in that animal, and the variability index of a hierarchical
model fit on data from only that animal (for Figure S7G, pre-stim and post-stim data) if that
neuron did exhibit an encoding change. It is computed separately for different components of
neuron pairs, and in Figure S7G it is averaged over all detections of the given neuron.

Feeding decoder analysis for encoding change (Figure 71-J)

In order to detect encoding changes in the feeding circuit triggered by the heat stimulus,
we needed to develop a different approach. This is because the animal doesn’t feed after the heat
stimulation, so the CePNEM post-stim feeding parameters for each neuron will not be possible to
constrain, resulting in it being impossible to statistically demonstrate a difference when
compared with the pre-stim condition. Thus, instead of using the CePNEM encoder model, we
compared the performance of decoder models on the pre-stim and post-stim data to determine if
an encoding change was taking place for a given neuron class.

More specifically, for each neuron class, we trained a linear decoder model to predict
feeding behavior from neural activity. Each model was trained on detections of its neuron class
in the 21 baseline NeuroPAL animals, with the neural activity and feeding behavior being

appended together for the training. The neural activity was normalized as FL, where F;, was the
10

10™ percentile of the raw (ratiometric) fluorescence in each animal.

After training, we determined the set of neuron classes where the decoder analysis
succeeded. This was determined based on the MSE of the predicted feeding rate in the training
data (compared to the actual feeding rate) being at least 0.0075 better than the MSE of the null
model (which is given a constant vector as neural activity). We also only considered neurons that
had at least 3 detections in both the baseline and heat-stim datasets. This yielded a set of neurons
that are almost exactly the same as the feeding-encoding neurons from CePNEM: AIN, AQR, 12,
13, 16, IL2L, M1, M3, M4, M5, MC, MI, RIH, RIR, RMG, and SIBV. For this set of neurons, we

55



then evaluated the performance difference of the trained model and the null model on each heat
stimulus dataset, evaluating the pre-stim and post-stim halves of each dataset separately. We then
ran a Wilcoxon rank-sum test on this paired data to identify neuron classes where the decoder
performed significantly worse on post-heat-stim data. Benjamini-Hochberg multiple-hypothesis
correction was applied across the list of neurons subject to this analysis.

Modified intra-dataset variability (Figure 7G)

In Figure 7G, we also made a modification to the intra-dataset variability index (see
above) to account for CePNEM’s inability to resolve feeding information post-stim (which
would erroneously lead to neurons with feeding encoding changes having low variability).
Specifically, we defined the modified intra-dataset variability of a neuron to be

MIV =1V + 10 - maX(O,Perfpre - Perfpost)

Here IV is the intra-dataset variability index for the neuron and Perf, is the mean performance
(measured as MSE of the training model minus MSE of the null model) of the feeding decoder
for that neuron evaluated on the x-stim data. Thus, if the decoder performs better on the pre-stim
data and degrades on the post-stim data, it will result in an increase to the modified intra-dataset
variability index for that neuron.

Connectome analysis
Connectomes used

For all quantitative analysis, the two adult datasets from Witvliet et al. 2021 were
averaged. Self-looping edges and single-synapse edges were excluded. For the pharyngeal circuit
analysis, the connectome from the original White et al. 1986 was used, as the Witvliet
connectome only covers the head ganglion. For the 2D embedding of the connectome (the
sensorimotor layer and the graph eigenvector; see below), the White et al. 1986 connectome was
used to replicate the embedding previously used in the field®!. On Fig. 4 (B,C,D), the Witvliet
connectome was used for visualization.

2D embedding of the connectome

The 2D embedding of the connectome was performed by determining the sensorimotor
layer (referred to as processing depth in the original paper) for each neuron and the 2™
eigenvector of the Laplacian of the graph. See the Supporting Text S1 in Varshney et al.®! for the
exact methods used in determining those values.

Connectome localization analysis

In Fig. 5 (E,F,Q), the marginal distribution (kernel density estimation using
KernelDensity.jl) of the group of neurons of interest (top 15" percentile of the feature of interest,
which was either (1) high encoding strength, (i1) long decay, or (ii1) high variability) was
compared to the marginal distribution of the random control group (shuffling the features across
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the neurons that were recorded). One-proportion z-test was used in each trisected segment, along
the sensorimotor layer axis of the connectome region axis. All selected neuron distributions (blue
lines) were significantly different from the random control distributions (overall, without
trisecting) at *p<0.05. Mann-Whitney U test. For the localization in the connectome region axis
(Fig. 5G), further testing was done to show that the high variability group of neurons were
interconnected above chance. For that test, the variability values were shuffled across the
recorded neurons and the intra-group synapse fraction was computed in the same way for these
random shuffles (Fig. SH). The random sampling was repeated 100,000 times. Then the p-value
was empirically determined by computing the percentile of the actual intra-group synapse
fraction among the random control samples.

Connectivity vs joint encoding change analysis

To assess the relationship between the connectivity type and joint encoding probability
for neuron pairs (Fig. 61), a random shuffling test was used. Among the joint encoding neurons
shown in Fig. 6H, we iterate through all possible pairs (other than self-pairing). For each pair of
neurons, we record the type of the connection (no connection, unidirectional chemical,
bidirectional chemical, bidirectional electrical/gap junction) and the joint encoding change
probability. For control, we shuffle the neuron assignments on the joint encoding change matrix
and repeat the analysis (1000 random samples). Finally, the actual value was compared to the
random shuffled distribution for each connection type to empirically compute p-value.

Handling of left/right bilateral pairs

For the neuron classes with bilateral pairing (left/right), the left/right pairs were merged
for all quantitative analysis, except for the group of neurons with bilateral asymmetry in
encoding (ASE, SAAD, IL1, IL2). Analysis of relationships between connectivity and
correlation (or other aspects of encoding) were then conducted on merged neuron classes. The
purpose of this merging was to prevent the special case of left/right connectivity and correlation
from dominating our analyses of connectome trends. Left/right pairs are typically well connected
and strongly correlated, so including them in these analyses would have resulted in there being
strong relationships between connectivity and activity, even if these were only found in the
left/right pairs. Excluding them allowed us to ask whether connections between neuron classes
were associated with trends in neural activity and behavior encoding.

For visualization (2D embedding of the connectome), left/right pairs were kept separate
and not merged.

Other analysis methods applied to neural recordings

Decoding behavior from neural activity

Full activity, current behavior

We trained L1-regularized linear decoder models to predict the worm’s current velocity,
head curvature, feeding rate, angular velocity, and body curvature based on its current (z-scored)
neural activity. To set the regularization parameter, we withheld three datasets that were
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randomly selected from the set of datasets with feeding standard deviation of at least 0.5. The
other eleven datasets were used to evaluate decoder performance. The decoders were evaluated
using five-fold cross-validation splits. All behaviors were z-scored for the decoder, and the
decoder accuracy is reported as one minus the MSE between the decoder’s prediction and actual
behavior, evaluated on the test-time data.

Model residuals, current behavior

We computed model residuals for each neuron by taking that neuron’s activity and
subtracting the modeled n[t] (computed based off of the median of all posterior CePNEM
parameters for that neuron), and then z-scoring the resulting residual trace. We then trained
separate decoder models using the same procedure as above, except using the model residuals
instead of neural activity. We regularized these decoders separately using the same three set-
aside datasets.

Decoding past and future behavior (Figures 2D, S2K)

The following outlines the decoder method for predicting past (retrospective) or future
behavior (prospective). For predicting head curvature and velocity, the same method was used;
for ease of explanation, in this description we focus on velocity. We trained linear decoder
models to predict the average velocity of the worm at various temporal shifts, based on the
worm’s current (z-scored) neural activity; only neurons that encoded velocity (or head curvature,
for the head curvature prediction) were included. The models were trained on data from all 14
SWF415 animals. A separate model was trained for each time point. The average velocity was
computed in the window spanning (At — 8, At + 8] where At is the difference between the time
point to be predicted and the current time (At = 0 is current; positive values indicate future
values of behavior while negative values indicate past values). This approximately corresponds
to a 10-sec time window. Velocity across the full 1600 time points was z-scored before being
averaged. Each dataset was split into 5 segments for cross-validation, with 100-timepoint gaps in
between to prevent the training time information from spilling over to the test time segment. The
models were regularized using an elastic net (L1 and L2).

As a control, separate models were trained that attempted to predict shifted velocity,
which should scramble the relationship between neural activity and behavior. Velocity was
circularly shifted by an amount between 125 and 600 time points, and, additionally, shifts that
would result in a correlation of greater than 0.2 with actual velocity were discarded. 50 such
decoders were trained, each using a different, randomly-selected shift. The performance of the
decoder trained to predict averaged velocity At time points into the past was then defined as the
difference between the cost (square root of MSE) of that decoder and the average cost of each of
the 50 decoders trained on shifted velocity.

To ensure that decoder performance based on neural activity with At > 0 was actually a
representation of historical velocity information, and not simply due to the autocorrelative nature
of velocity, a separate family of decoders were trained that was given the worm’s current (z-
scored) velocity as input instead of neural activity. The error of those decoders to their shifted
controls is also displayed in Figure 2D. Finally, to estimate the maximum possible performance
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of these decoder models, separate “perfect” decoders were trained that were given the worm’s (z-
scored) velocity at time points t + At for each value of At € (—108,108), and were then
subjected to the same shift test.

Constructing low-dimensional embeddings of neurons via UMAP

We wanted to use CePNEM to construct a low-dimensional UMAP space where any
neuron from any animal could be embedded. To accomplish this, we took the three modeled
behaviors from 12 SWF415 animals and appended them, so as to have a wide range of possible
behavioral dynamics. Then, we took 4,004 median CePNEM fits (sampled from 4004 neurons
across 14 SWF415 animals) and extrapolated them over the appended behavioral data, to
estimate what the neuron would have done under our model over a wide range of behaviors. We
then ran UMAP on the resulting 4004 X 19200 matrix to define a two-dimensional embedding
space. Finally, we projected all posterior CePNEM fits from each neuron into this UMAP space
to create the point cloud shown in Figure 3A. We also projected subsets of neurons based on
encoding type (Figures 3B-3F), identity (Figure SE), and dataset (Figure S3); to do this, we
simply run the same projection procedure on all posterior CePNEM fits from each neuron in the
subset in question (i.e. the UMAP space was the same for all embeddings shown in the paper).

Neural trace reconstruction using principal component analysis

To determine the number of principal components needed to reconstruct each neuron,
PCA was performed first on all neurons in each dataset. Neurons without high enough SNR were
excluded from the analysis. We determined the SNR cutoff based on our GFP datasets.

Specifically, a given neuron needed to have signal standard deviation higher than ﬁ OGrp>

where o;pp 1s the GFP signal standard deviation and p is the required fraction of variance
explained. To reconstruct the neurons, each neuron’s loadings were sorted by absolute value.
Then we increase the number of principal components used to reconstruct until the required
variance explained is met. In each dataset, this process is repeated for all neurons with high
enough SNR.

Neural trace clustering analysis

To estimate the optimal number of clusters in the neural traces (Fig. S4A), we first mean
center neuron. Then k-means clustering is performed on each dataset with varying number of
clusters, k, ranging from 2 to 10. For each k, we compute the Calinski-Harabasz index. We
repeat this on all SWF415 datasets.

State neuron detection analysis (Figure 7F-G)

For detecting state neurons whose persistent activity changes are aligned to the heat-
induced state change, we needed to find neurons with activity changes that were approximately
time-locked to the heat stimulus, rather than neurons that simply have very slowly varying
activity. To accomplish this, we trained decoder models to decode the indicator function of a
time point t from neural activity, and then asked whether the neuron was able to decode better
when t was the time of the heat-stim, when compared to other control values of t. Neurons
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where the heat-stim decoder outperformed all of the other decoders were considered to have
time-locked state responses to the stimulus. Time points that were too close to the beginning or
end of the recording, or too close to the heat-stim were excluded from the controls.

The average persistent change in activity in response to the heat stimulus metric
displayed in the Figure 7G heatmap was computed as the average difference between mean pre-

stim and post-stim neural activity . When the neuron statistically failed to have time-locked

mean
responses to the stim in a dataset, the difference was entered into the average as 0 for that dataset

in order to filter out responses that were not time-locked to the stimulus.

Behavioral analyses during cellular perturbations

For behavioral analysis in animals that had single neuron classes chronically silenced or
ablated, we (i) recorded animal speed on multi-worm trackers, as previously described®?, (ii)
recorded head curvature behaviors on high-resolution single worm trackers, as previously
described®, and (iii) quantified pharyngeal pumping manually. For single neuron manipulations
that involved optogenetic activation or silencing, we used the same methods for behavioral
quantification, but delivered blue (250 uW/mm?2) or red (700 uW/mm?2) wavelength light at
defined times, as described in the figures and figure legends.

List of key software packages used

Gen.jl, PyPlot.jl, PyCall.jl, HDF5 jl, ProgressMeter.jl, Distributions.jl, Images.jl, Nlopt.jl, DelimitedFiles.jl,
NaNMath.jl, Clustering.jl, DataStructures.jl, Interpolations.jl, MultivariateStats.jl, Optim.jl, TotalVariation.jl,
UMAP jl, Lasso.jl, VideolO jl, Impute.jl, JLD2.j1, JSON.j1 LsqFit.jl, MLBase.jl, ImageTransformations.jl,
HypothesisTests.jl, MultipleTesting.jl, GLM.jl, GLMNet.jl, ForwardDiff.jl, FFTW jl, Distances.jl, DSP jl,
CoordinateTransformations.jl, Combinatorics.jl, Colors.jl, ColorTypes.jl, Cairo.jl, CUDA. jl, KernelDensity.jl

QUANTIFICATION AND STATISTICAL ANALYSES

All statistical methods used in the paper are described in the figure legends and, where indicated,
additional details are provided in the Method Details. Definitions of sample size, measures of
center and dispersion, and precision measures are also indicated in figure legends. Statistics were
computed using Julia, MATLAB, and GraphPad Prism. Non-parametric statistics were
exclusively used in the study. When appropriate, corrections for multiple comparisons were
implemented via Benjamini-Hochberg or Bonferroni correction, as indicated in the figure
legends.

SUPPLEMENTAL VIDEOS AND TABLES
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Movie S1. Example video of baseline recording conditions, Related to Figure 1. An excerpt
from an example neural/behavioral dataset, showing the NIR behavioral recording. Raw video

data is shown with overlaid information: (i) blue, orange, and green dots are the identified targets

for worm tracking that were determined during live recording, which allowed us to locate the
worm’s head and keep the animal centered in view; (ii) black line shows a spline fit to the
animal’s centerline; (iii) upper left shows time and values of three ongoing behavioral
parameters: velocity, head curvature, and feeding rate.

Table S1. Model parameters for each neuron class, illustrating how each encodes behavior,

Related to Figure 4. This table lists the neuron classes recorded in this study, along with the
best fit CePNEM model parameters. Here, the best fit was determined via a hierarchical
Bayesian model that analyzed all recorded instances of each neuron class, excluding the post-
heat-stimulus time intervals (see Methods for details).

Neuron class

ADA
ADE
ADL
AIA
AIB
AIM
AIN
ATY
AlZ
ALA
AQR
ASEL
ASER
ASG
ASH
ASI
ASJ
ASK
AUA
AVA
AVB
AVD
AVE
AVH
AV]J

c vl
-0.0747
-0.168
0.1337
0.1908
-0.2955
0.3618
0.1466
-0.0719
-0.1972
0.1476
-0.1801
-0.1181
0.4019
-0.3667
-0.0745
-0.1072
0.3714
0.0808
0.4162
-0.5549
0.4793
0.2022
-0.5967
0.097
0.1828

cv
-1.1042
0.6751
0.5701
0.7582
-1.8976
1.3617
0.2491
1.5741
1.0437
1.0395
1.1287
-0.4025
0.4122
-0.9734
-1.0327
0.8027
2.1397
0.8515
1.4042
-2.3945
1.4791
0.455
-1.9586
0.7233
0.5513

¢ 6h
0.3262
0.0329
0.1018
0.5478
-0.1886
0.4239
0.4073
0.5228

0.244
0.0829
0.2694
0.1617

0.493
-0.2192
0.0317
0.1635
0.1643

0.223
0.1369
-0.1054
-0.1633
0.1078
-0.2262
-0.2932
-0.9193

cP
-0.4887
-0.3033
-0.6085
0.4632
0.314
0.0682
1.3602
-0.2692
-0.1811
-0.4448
-0.8653
-0.8439
-0.9438
0.2627
-0.5308
-0.9797
-0.1951
-0.3178
0.2035
0.6246
0.0377
-0.5817
0.4617
-0.107
-0.0579

In(s)
1.737

1.3235
0.9854
0.4864
0.6751
0.7529
1.1035
1.3032
1.1792
1.431
1.3355
0.8252
1.0186
-0.1237
1.1804
1.0495
1.4312
1.1496
0.4376
1.0221
-0.0379
0.8813
0.4635
1.6321
0.68
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AVK
AVL
AWA
AWB
AWC
BAG
CEPD
CEPV
FLP
1l

2

3

14

15

16
ILID
ILIL
ILIR
IL1V
IL2D
IL2L
IL2R
L2V
M1
M3
M4
M5
MC
MI
NSM
OLL
OLQD
OLQV
RIA
RIB
RIC
RID
RIF
RIH
RIM

0.2205
-0.1549
-0.1462

0.1029

0.1821

0.4744

0.3226
-0.1221

0.0557

-0.112
-0.1002

0.2507

0.0185

0.2032
-0.0355
-0.5409
-0.0682
-0.0058
-0.1249

-0.042

0.1762

0.4357

0.1241
-0.1823

0.0416
-0.4016

-0.353

-0.064
-0.0296
-0.3002
-0.2079

-0.129
-0.0616

0.2487

0.4095
-0.0039

0.2434

0.1648
-0.2647
-0.5434

0.6658
-1.8472
-0.8752
-0.8433
-0.3868
-0.9178

0.8509

0.9103

0.3063
-0.4283

0.8775

0.1303

0.4263

0.7462

0.9297

0.9936

0.8402

1.0951

1.009
0.00E+00

0.5378

1.0016

0.7839
-0.8325
-0.0237

0.9711

0.8643

0.00E+00
-0.3426
0.812

0.8186

0.8242

0.5924
-0.9773

1.3122

1.3908

1.1858
-0.4404

0.9957
-2.0096

0.8966
0.6569
0.1528
-0.179
-0.0273
-0.4279
-0.6184
-0.0938
-0.1267
0.5764
0.6756
0.8989
-0.0496
-0.0368
0.3531
0.2196
0.2529
0.0159
0.7426
0.00E+00
-0.2612
-0.342
0.3423
0.1606
0.1479
-0.2283
-0.0523
0.00E+00
0.1974
0.1522
-0.8882
-0.7382
-0.651
-0.0007
-0.0619
0.2169
-0.2398
0.3155
-0.6678
-0.0312

1.5256
0.294
-0.5631
-0.4553
-1.084
0.6035
0.0525
0.6132
-0.9487
0.8827
0.6992
0.745
0.3309
0.1183
1.2906
0.135
-0.8545
-0.4245
0.074
0.1822
0.7737
-0.2444
0.6677
-0.9464
1.4556
0.8133
0.7196
0.9889
-0.7314
0.1007
0.4139
0.5459
0.9636
0.6984
0.1264
-0.0934
-0.1896
0.47
-0.6503
0.1383

0.9109
0.6861
1.138
0.5467
0.8034
-0.1352
0.0358
-0.1028
1.3528
1.6353
0.8881
3.0585
2.1861
1.0348
1.7549
0.021
0.7363
0.245
0.4468
1.441
0.8793
0.0852
1.2808
1.1971
-0.0129
1.8082
2.0373
0.6465
1.2836
2.3612
0.3195
-0.0064
0.2898
0.6574
-0.3528
1.3826
0.3096
0.8642
0.6039
0.9469
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RIR
RIS
RIV
RMD
RMDD
RMDV
RME
RMED
RMEV
RMF
RMG
SAADL
SAADR
SAAV
SIAD
SIAV
SIBD
SIBV
SMBD
SMBV
SMDD
SMDV
URAD
URAV
URB
URX
URYD
URYV
VB02

0.1198
-0.1648
0.6069
0.2084
-0.0771
0.258
-0.4134
-0.2903
-0.1426
-0.0643
0.133
-0.0265
-0.3202
-0.5589
0.2487
0.594
0.1905
0.0966
0.3208
0.3374
0.19
0.6219
0.2582
-0.1474
-0.1045
0.2222
-0.119
-0.0917
0.5548

0.3114
0.6703
-0.3913
-0.368
1.1631
-0.172
1.5265
1.8542
1.0373
0.7733
0.7826
0.8603
-0.7513
-1.0162
0.5654
0.3674
1.4006
1.477
0.603
0.4552
0.0876
0.2005
-0.6388
-1.0535
1.0358
0.8705
-1.4351
-1.4846
1.4044

0.8052
1.2411
-1.6318
0.4957
0.357
-0.5697
-0.1173
-0.11
-0.227
0.053
-0.0163
-0.8019
-0.9351
1.1692
0.9842
-1.4819
-0.6041
-0.3649
1.1496
-1.5465
1.1368
-0.908
0.968
0.3925
-0.3038
-0.2083
0.2779
-0.1561
-0.9063

0.7874
0.0232
0.132
0.939
0.4204
0.9609
0.2035
0.1004
-0.0027
-0.9454
-0.5091
-0.4663
-0.0945
-0.0383
-0.054
0.5467
-0.5973
-0.1624
0.0327
0.6018
0.3935
0.1954
0.1819
0.4031
0.1091
-0.5746
-0.2458
0.0855
0.0949

0.5361
0.6365
0.7358
0.162
0.1076
0.0524
0.2927
0.6186
-0.1855
0.3747
2.1483
0.1695
0.0204
0.2579
0.6857
0.0961
-0.0402
0.2682
0.499
0.5735
-0.1892
-0.8147
1.991
1.5906
0.0393
-0.4277
0.6991
0.5956
0.5848
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