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SUMMARY 

Changes in an animal’s behavior and internal state are accompanied by widespread 
changes in activity across its brain. However, how neurons across the brain encode 
behavior and how this is impacted by state is poorly understood. We recorded brain-wide 
activity and the diverse motor programs of freely-moving C. elegans and built probabilistic 
models that explain how each neuron encodes quantitative behavioral features. By 
determining the identities of the recorded neurons, we created an atlas of how the defined 
neuron classes in the C. elegans connectome encode behavior. Many neuron classes have 
conjunctive representations of multiple behaviors. Moreover, while many neurons encode 
current motor actions, others integrate recent actions. Changes in behavioral state are 
accompanied by widespread changes in how neurons encode behavior, and we identify 
these flexible nodes in the connectome. Our results provide a global map of how the cell 
types across an animal’s brain encode its behavior. 

 

INTRODUCTION 

 Animals generate diverse behavioral outputs that vary depending on their environment, 
context, and internal state. The neural circuits that control these behaviors are distributed across 
the brain. To decipher how these circuits work, it will be critical to relate the activity of this full 
population of neurons to specific features of animal behavior. However, it is challenging to 
record activity across the brain of a freely-moving animal and relate brain-wide activity to 
comprehensive behavioral information. For this reason, it has remained unclear how neurons and 
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circuits across entire nervous systems represent an animal’s varied behavioral repertoire and how 
this flexibly changes depending on context or state. 

 Recent studies suggest that internal states and moment-by-moment behaviors are 
associated with widespread changes in neural activity1–7. Behavioral states, like quiet versus 
active wakefulness, and homeostatic states, like thirst, are associated with activity changes in 
many brain regions1,7,8. In addition, instantaneous motor actions are associated with altered 
neural activity across many brain regions5,7. However, our understanding of how global 
dynamics spanning many brain regions encodes behavior remains limited. In mammals, 
representations of motor actions are found in cortex, cerebellum, spinal cord, and more. Given 
the vast number of cell types involved and their broad spatial distributions, characterizing this 
entire system is not yet tractable. 

 The C. elegans nervous system consists of 302 neurons with known connectivity9–13. C. 
elegans generates a well-defined repertoire of motor programs: locomotion, feeding, head 
oscillations, defecation, egg-laying, and postural changes. The C. elegans nervous system is 
subject to modulation, such that animals express different behaviors as they switch behavioral 
states14,15. Animals enter sleep-like states during development and after intense stress16,17. Awake 
animals exhibit different locomotion states during foraging, like roaming versus dwelling18–21. 
Sudden aversive stimuli induce sustained states of increased arousal22,23. In C. elegans, it may be 
feasible to decipher how behavioral variables are encoded by activity across an entire nervous 
system and how this can flexibly change across behavioral states. 

 Previous studies identified some C. elegans neurons that reliably encode specific 
behavioral features. The neurons AVA, AIB, and RIM encode backwards motion; AVB, RIB, 
AIY and RID encode forwards motion; SMD encodes head curvature; and HSN encodes egg-
laying24–31. In addition, corollary discharge signals from RIM and RIA propagate information 
about motor state to other neurons32–34. Proprioceptive responses to postural changes have also 
been observed in a handful of neurons35–37.  Large-scale recordings have suggested that there are 
widespread activity changes related to behavior. Brain-wide calcium imaging in immobilized 
animals identified population activity patterns associated with fictive locomotion25,26. In moving 
animals, velocity and curvature can be decoded from population activity3. While this suggests 
that many neurons carry behavioral information, we still lack an understanding of how 
quantitative behavioral features are encoded by most C. elegans neurons.  

 Here, we elucidate how neurons across the C. elegans brain encode the animal’s 
behavior. We developed technologies to record high-fidelity brain-wide activity and the diverse 
motor programs of >60 freely-moving animals. We then devised a probabilistic encoding model 
that fits most recorded neurons, providing an interpretable description of how each neuron 
encodes behavior. By also determining neural identity in 40 of these datasets, we created an atlas 
of how most C. elegans neuron classes encode behavior. This revealed the encoding properties of 
all recorded neurons and showed that ~30% of the neurons flexibly change how they encode 
behavior in a state-dependent manner. Our results reveal how activity across the defined cell 
types of an animal’s brain encodes its behavior. 
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RESULTS 

Technologies to record brain-wide activity and behavior 

 We built a microscopy platform for brain-wide calcium imaging in freely-moving 
animals and wrote software to automate processing of these recordings. We constructed a 
transgenic C. elegans strain that expresses NLS-GCaMP7f and NLS-mNeptune2.5 in all neurons. 
Recording nuclear-localized GCaMP makes it feasible to record brain-wide activity, though this 
approach misses local calcium signals in neurites34. Transgenic animals’ behavior was normal, 
based on assays for chemotaxis and learning (Fig. S1A). Animals were recorded on a microscope 
with two light paths 38,39. The lower light path is coupled to a spinning disk confocal for 
volumetric imaging of fluorescence in the head. The upper light path has a near-infrared (NIR) 
brightfield configuration to capture images for behavior quantification (Movie S1). To allow for 
closed-loop animal tracking, the location of the worm’s head is identified in real time with a 
deep neural network40 and input into a PID controller that moves the microscope stage to keep 
the animal centered.  

 We wrote software to automatically extract calcium traces from these videos (Fig. 1D). 
We used the time-invariant mNeptune2.5 signal to locate the neurons and register images to one 
another. First, a 3D U-Net41 locates and segments all neurons in all timepoints. We then register 
images from different timepoints to one another and use clustering to link neurons’ identities 
over time (see Methods). To test whether this accurately tracks neurons, we recorded a control 
strain expressing NLS-GFP at different levels in different neurons (Peat-4::NLS-GFP), along 
with pan-neuronal NLS-mNeptune2.5 (Fig. S1B). Mistakes in linking neurons’ identities would 
be obvious in this strain, since GFP levels would fluctuate in a neural trace if timepoints were 
sampled from different neurons. This analysis showed that neural traces were correctly sampled 
from individual neurons in 99.7% of the frames. We estimated motion artifacts by recording a 
strain with pan-neuronal NLS-GFP and NLS-mNeptune2.5 (Fig. 1E-G; Fig. S1C). Fluorescent 
signals were more narrowly distributed for GFP compared to GCaMP7f, suggesting that motion 
artifacts are negligible (Fig. 1F). Nevertheless, we used the GFP datasets to control for any such 
artifacts in all analyses below (see Methods). Compared to previous imaging systems38, there 
was a 9.7-fold increase in SNR of the GCaMP traces recorded on this platform (likely due to 3D 
U-Net segmentation; see Methods).  

 We also wrote software that extracts behavioral variables from the brightfield images: 
velocity, body posture, feeding (or pharyngeal pumping), angular velocity, and head curvature 
(oscillatory bending of the head, associated with steering). Animals did not exhibit egg-laying or 
defecation in these recording conditions. Together, these advances permit us to quantify brain-
wide calcium signals and a diverse list of behavioral variables from freely-moving C. elegans. 

A probabilistic neural encoding model reveals how C. elegans neurons encode behavior 

 We recorded brain-wide activity and behavior from 14 animals as they explored sparse 
food over 16 minutes (data available at www.wormwideweb.org). We obtained data from 143 ± 
12 head neurons per animal (example in Fig. 1G). 94.7% of the recorded neurons exhibited clear 
dynamics and could be classified as active (see Methods). Our goal was to define how each 
neuron “encodes” or “represents” the animal’s behavior, in other words how its activity is 
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quantitatively associated with behavioral features. Our initial efforts to build models of how 
neurons encode behavior revealed three features of neural encoding not fully characterized in 
prior work. We describe them here and systematically identify neurons with these features below 
(Fig. 2). 

First, neurons encoded behavior over a wide range of timescales. For example, the 
activity of individual neurons that encode velocity was precisely correlated with an exponentially 
weighted average of the animal’s recent velocity. The decays of the exponentials, which 
determine how much a given neuron’s activity weighs past versus present velocity, varied widely 
across neurons (range of half-decay: 0.9 – 31.7 sec; GCaMP7f half-decay is <1 sec42,43). Fig. 1H 
illustrates this by showing correlations between individual neuron’s activities and velocity that 
has been convolved with exponential filters with varying decay times (see also Fig. S1D-E). We 
also observed a broad range of timescales for neurons that encode other behaviors (see below). 
This suggests that C. elegans neurons differ in how much they reflect the animal’s past versus 
present behavior. 

Second, neurons reflected individual behaviors in a heterogeneous fashion. For example, 
for neurons that encode velocity, this encoding can be captured by a tuning curve that relates the 
neuron’s activity to velocity. Some neurons displayed analog tuning, but others displayed 
“rectification”, where the slopes of their tuning curves during reverse and forward velocity 
differed (Fig. 1I). While many neurons were more active during forward or reverse movement, 
others encoded slow locomotion regardless of movement direction (Fig. 1I, middle). This 
suggests that neurons that encode velocity can represent overall speed, movement direction, or 
finely tuned aspects of forward or reverse movement. 

 Third, many neurons conjunctively represented multiple motor programs. For example, 
most neurons whose activities were correlated with oscillatory head bending showed different 
tunings to head curvature during forwards versus reverse movement (Fig. 1J). Similarly, many 
neurons conjunctively represented the animal’s velocity and feeding rate. This suggests that 
many C. elegans neurons encode multiple motor programs in combination. 

Based on these observations, we constructed an encoding model that uses behavioral 
features to predict each neuron’s activity (Equation 1; Fig. 1K). This model provides a 
quantitative explanation of how each neuron’s activity is related to behavior. The relationship 
between activity and behavior for a given neuron could be due to that neuron causally 
influencing behavior or, alternatively, due to the neuron receiving proprioceptive or corollary 
discharge signals. In contrast to decoding analyses3, which can reveal the presence of behavioral 
information in groups of neurons, an encoding model can provide precise information about how 
each neuron’s dynamics relate to behavior. Each neuron’s activity was modeled as an 
exponentially weighted average of the animal’s recent behavior with a single decay parameter s, 
allowing for different timescale encoding. Neurons can additively weigh multiple behavioral 
predictor terms (based on coefficients 𝑐𝑣, 𝑐𝜃ℎ, and 𝑐𝑝), which can each interact with the animal’s 
movement direction parameterized by 𝑐𝑣𝑇. This allows for rectified and non-rectified tunings to 
behavior, as well as conjunctive encoding of multiple behaviors. We compared the goodness of 
fit of this full model to partial models with parameters deleted (and to a linear model) and found 
that deletion of any parameter significantly increased model error (Fig. S1F-G).  
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The model parameters are interpretable, describing how each neuron encodes each 
behavioral feature. However, because the model is fit on a finite amount of data, these 
parameters have a level of uncertainty that is important to estimate. Therefore, we determined the 
posterior distribution of all model parameters that were consistent with our recorded data, where 
consistency was defined as likelihood in the context of a Gaussian process residual model 
parameterized by 𝜎𝑛𝑜𝑖𝑠𝑒, 𝜎𝑆𝐸, and ℓ (see Methods). This allowed us to quantify our uncertainty in 
each model parameter and perform meaningful statistical analyses. The posterior distribution was 
determined using a custom inference algorithm implemented with the probabilistic programming 
system Gen44 (Fig. 1L). We confirmed the validity of this approach using simulation-based 
calibration, a technique that ensures that approximations from such inference algorithms are 
sufficiently accurate (Fig. S2A)45.  

 

Equation 1: The C. elegans Probabilistic Neural Encoding Model (CePNEM) expression  

𝑛[𝑡] =
1

𝑠 + 1
Rect(𝑐𝑣𝑇, 𝑣[𝑡]) (𝑐𝑣𝑣[𝑡] + 𝑐𝜃ℎ𝜃ℎ[𝑡] + 𝑐𝑝𝑝[𝑡]) +

𝑠
𝑠 + 1

(𝑛[𝑡 − 1] − 𝑏) + 𝑏 

Rect(𝑐𝑣𝑇, 𝑣[𝑡]) =  
𝑐𝑣𝑇 + 1

√𝑐𝑣𝑇
2 + 1  

− 2
𝑐𝑣𝑇

√𝑐𝑣𝑇
2 + 1 

(𝑣[𝑡] < 0) 

Observed neural activity ~ 𝒢𝒫(𝑛[𝑡], 𝐾𝐺𝑁(𝜎𝑛𝑜𝑖𝑠𝑒) + 𝐾𝑆𝐸(𝜎𝑆𝐸, ℓ)) 

Parameter Meaning 

Observed neural activity Observed neural activity trace (z-scored). 

𝑣[𝑡] Observed worm velocity. 

𝜃ℎ[𝑡] Observed worm head curvature. 

𝑝[𝑡] Observed worm pumping rate. 

𝑛[𝑡] Modeled neural activity. 

Rect(𝑐𝑣𝑇, 𝑣[𝑡]) Locomotion direction rectification term. 
Takes on different values based whether the 
worm is moving forwards or in reverse. 

𝑐𝑣𝑇 Locomotion direction rectification parameter.  

𝑐𝑣 Velocity parameter. 

𝑐𝜃ℎ Head curvature parameter. 

𝑐𝑝 Feeding parameter. 
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𝑠 Exponentially weighted moving average 
(EWMA) timescale parameter. 

𝑏 Baseline activity parameter. 

𝑛[0] Initial condition parameter. 

𝜎𝑛𝑜𝑖𝑠𝑒 White noise parameter. 

𝜎𝑆𝐸 Autocorrelative residual parameter. 

ℓ Autocorrelative residual timescale parameter. 

𝒢𝒫 Gaussian process. 

𝐾𝐺𝑁, 𝐾𝑆𝐸 Gaussian process kernels. 

 We fit this model (The C. elegans Probabilistic Neural Encoding Model, or CePNEM) on 
all neurons in all recordings and found significant encoding of at least one behavioral feature in 
83 ± 10 out of 143 neurons per animal (examples in Fig. 1M and Fig. S2B; see also Fig. S2C and 
Methods). To ensure that these results reflected genuine behavioral encoding, rather than motion 
or modeling artifacts, we applied the model to animals expressing pan-neuronal GFP and found 
that only 2.1% of neurons significantly encoded behavior (versus 58.6% in GCaMP datasets; Fig. 
S2D). We were also concerned whether the model could potentially explain neural activity via 
overfitting and tested this using two approaches. First, we tested whether neural activity from 
one animal could be explained using behavioral features from other animals. Only 2.7% of 
neurons encoded this incorrect behavior, suggesting that the model was unable to use overfitting 
to explain activity (Fig. S2D). Second, we performed 5-fold cross-validation across recorded 
neurons and found a high level of performance on withheld testing data (Fig. S2E).  

There were neurons with calcium dynamics not well fit by CePNEM (Fig. S2F shows 
their activity levels). However, it was ambiguous whether these neurons encoded behavior in a 
manner not captured by CePNEM or whether their activity was related to other ongoing sensory 
or internal variables. To distinguish between these possibilities, we examined the model 
residuals, i.e. the neural activity unexplained by CePNEM. We attempted to decode behavioral 
features using all neurons’ model residuals and, as a control, the original neural activity traces. 
Decoding from the full neural traces was successful, but decoding from the residuals was close to 
chance (Fig. S2G). This suggests that neural variance unexplained by CePNEM is unrelated to 
the overt behaviors quantified here. These residuals may be related to sensory inputs, internal 
states, or behaviors that we were unable to detect. We also found that decoding of specific 
behavior features was most successful from neurons that CePNEM suggested encode those 
features (Fig. S2H). Thus, CePNEM determines the encoding features of neurons in a manner 
that is concordant with decoding analyses. 

Diverse representations of behavior across the C. elegans brain 
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 We used the CePNEM results to analyze how the neurons across each animal’s brain 
encode its behavior. Among the recorded neurons, encoding of velocity was most prevalent, 
followed by head curvature and feeding (Fig. 2A). 58.6% of recorded neurons encoded at least 
one behavior (Fig. 2B), with approximately one third of these conjunctively encoding multiple 
behaviors (Fig. 2B). Most neurons primarily encoded current behavior, but a sizeable subset 
weighed past behavior (Fig. 2C). Long timescale encoding was especially prominent among 
forward-active velocity neurons (Fig. S2I-J). This suggested that current neural activity may 
contain information about past velocity. Indeed, we were able to train a linear decoder to predict 
past velocity up to at least 20 sec prior based on current neural activity (Fig. 2D; black line 
shows this was not due to current velocity predicting past velocity). A similar decoder could also 
predict past head bending behavior, albeit less robustly (Fig. S2K). However, we were not able 
to predict future velocity or head bending from current neural activity (Fig. 2D, S2K).  

 We analyzed how each behavior was represented across the full set of neurons, first 
focusing on velocity. Using the CePNEM fits, we determined the shapes of each neuron’s tuning 
curve to velocity (see Methods). There were eight ways that a neuron could be tuned to velocity 
(Fig. 2E; examples in Fig. 2F). Most neurons (83%) exhibited rectified tunings, in which the 
encoding of forward and reverse speed differed. A smaller set of neurons represented analog 
velocity and, as described above, others encoded slow locomotion. To highlight how CePNEM 
accurately captures the dynamics of neurons with different tunings, Fig. 2F shows five neurons 
with higher activity during forward movement, but with different dynamics. The CePNEM fits to 
each neuron reveal how they encode velocity with different tunings and timescales.  

 We also examined the neurons that encode head curvature, which underlies steering 
during navigation (Fig. 2E). Many neurons that encoded head curvature did so in a manner that 
depended on forward versus reverse movement. Thus, we categorized these neurons based on 
both their head curvature tuning and velocity tuning. Most neurons only displayed head 
curvature-associated activity changes during forward or reverse movement, with more neurons in 
the forward-rectified group (Fig. 2E; examples in Fig. 2G). These results indicate that the 
network that controls head steering is broadly impacted by the animal’s movement direction, 
which could relate to the fact that steering behavior must be controlled differently during forward 
versus reverse movement (range of head angles is similar during forward and reverse, Fig. S2L). 
In addition to these neurons that encode the animal’s acute head curvature, a smaller group of 
neurons encoded angular velocity (Fig. S2M).  

 Neural representations of the animal’s feeding rates were also diverse (Fig. 2E; examples 
in Fig. 2H). Many neurons displayed analog tuning to feeding rates; a separate set of neurons 
encoded feeding in conjunction with movement direction. Neurons could be positively or 
negatively correlated with feeding.  

 The above analyses suggest a surprising amount of heterogeneity in how C. elegans 
neurons encode behavior. To obtain a more complete and continuous view of these 
representations, we embedded the neurons into a two-dimensional UMAP subspace where 
proximity between neurons indicates how similarly they encode behavior (Fig. 3A; Fig. S3A-D 
for single animals, GFP controls, and median CePNEM fits). This analysis could reveal clusters 
of cells that encode behavior the same way or, alternatively, the neurons could be evenly 
distributed if the representations were more heterogeneous. We found that the neurons were 
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diffusely distributed, with no evident clustering (Fig. 3A). However, neurons’ localization still 
depended on their encoding (Fig. 3B-E). For example, encoding of velocity was graded along 
one axis, and encoding of feeding was graded along the other. The continuous distribution was 
especially evident when examining neurons with related tuning curves (Fig. 3F). Other standard 
clustering approaches also suggested that the neurons were not clusterable into discrete groups 
based on their encoding (Fig. S3E). These results suggest that in general the C. elegans neurons 
represent behavior along a continuum. 

 How do these diverse representations of behavior arise? Activity in the C. elegans 
nervous system can be decomposed into different modes of dynamics shared by the neurons26, 
identifiable through Principal Component Analysis (PCA). In our data, the first three PCs 
explained 42% of the variance in neural activity, and 18 PCs were required to explain 75% of the 
variance (Fig. S3F). Single neurons were almost exclusively described as complex mixtures of 
PCs rather than single PCs (Fig. 3G-H). The weights of the PCs on different neurons were 
diverse, and hierarchical clustering of these data revealed very little structure. However, as 
expected, the loadings were still predictive of the encoding type of the neurons (Fig. 3G). 
Overall, these results suggest that there are many ongoing modes of dynamics shared among 
neurons, which relate to their distinct representations of behavior.  

 

An atlas of how the defined neuron classes in the C. elegans connectome encode behavior 

 We next sought to map these diverse representations of behavior onto the defined cell 
types of the C. elegans connectome. Thus, we collected additional datasets in which we 
determined neural identity using NeuroPAL46, a transgene in which three fluorescent proteins 
(NLS-mTagBFP, NLS-CyOFP1, and NLS-mNeptune2.5) are expressed under well-defined 
genetic drivers. This makes it possible to determine neural identity based on neuron position and 
multi-spectral fluorescence. We crossed the pan-neuronal NLS-GCaMP7f transgene to 
NeuroPAL (using otIs670, a low brightness NeuroPAL integrant). Data were collected as above, 
except animals were immobilized by cooling47 after each freely-moving recording. We then 
collected multi-spectral NeuroPAL fluorescence (Fig. S4A) and registered those images to the 
freely-moving images.  

 We collected data from 40 NeuroPAL/GCaMP7f animals. Compared to the above 
datasets, a similar number of neurons encoded behavior (52.0%, compared to 58.6%), and 
projections into UMAP space were indistinguishable (Fig. S3B). Behavioral parameters and 
other metrics of neural activity were also mostly similar (Fig. S4B-E; though NeuroPAL animals 
reversed more frequently and had a slight ventral bias). Across recordings, we obtained data 
from 78 of the 80 neuron classes in the head. While most neuron classes are single left/right 
pairs, 13 classes consist of two or three pairs of neurons in 4- or 6-fold symmetric arrangements. 
In these cases, we separately analyzed each neuron pair. Left/right pairs were pooled for all 
neuron classes except four that displayed asymmetric activities (ASE, SAAD, IL1, IL2; see 
Methods). We generated CePNEM fits for all of these neurons to reveal how they encode 
behavior (Fig. 4A; Table S1; Fig. S4F shows UMAP embeddings; Fig. S4H shows overall 
activity levels). The encoding properties of the neuron classes determined via CePNEM 
predicted their activity changes in event-triggered averages aligned to key behaviors (Fig. S4G). 
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In addition, for well-studied neurons, our results provided a clear match to previous work: AVB, 
RIB, AIY, and RID encoded forward movement; AVA, RIM, and AIB encoded reverse 
movement; and SMDD and SMDV encoded dorsal and ventral head curvature, respectively24–30.  

 This analysis revealed many features of how the C. elegans nervous system is organized 
to control behavior. Among the velocity-encoding neurons, those that encode forward movement 
displayed a wide range of tunings to velocity and included many neurons not previously 
implicated (AIM, AUA, and others). The reverse neurons were more uniform in their tunings to 
velocity, but several also represented head curvature, suggesting that they may control turning 
during reversals. Neural representations of velocity also spanned multiple timescales. For 
example, RIC, ADA, AVK, AIM, and AIY integrated the animal’s recent velocity over tens of 
seconds. We silenced some of these neurons that encoded velocity (AIM, RIC, AUA, AVL, RIF) 
and found that this specifically altered animals’ velocity (Fig. S4I). In addition, we 
optogenetically stimulated ASG sensory neurons, which encoded reverse movement, and found 
that this triggered reversals (Fig. S4I). Thus, results from the neuron atlas can predict causal 
effects on behavior. 

 These data also revealed neural dynamics in the circuit that controls head steering. The 
neuron classes in this network are often 4-fold symmetric, consisting of separate neuron pairs 
that innervate the ventral and dorsal head muscles. These opposing dorsal and ventral neurons 
were functionally antagonistic in our analysis (Fig. 4A-C). We found that the neural control of 
head steering is different during forward versus reverse motion (Fig. 4B-C). Some neurons that 
encode head curvature are more active during forward (RMED/V) or reverse (SAAV) 
movement. Others have more robust tuning to head curvature during forward movement 
(SMDD/V, SMBD/V). In addition, RMDD was more active during dorsal head bending during 
forwards motion, but preferred ventral head bending during reverse movement. The forward-
rectified tuning of SMD was previously described and matches our results25. Our data now show 
that this entire network shifts its functional properties depending on movement direction. This 
suggests that the network functions differently while animals steer forwards towards a target 
compared to when they back away from one. We ablated some neurons that jointly encoded 
movement direction and head curvature (SAA, SMB) and found that this altered animal’s head 
bending and velocity (Fig. S4I).  

 We also identified other functional groups with interesting features (Fig. 4D). Most 
neurons that encoded feeding were in the pharyngeal nervous system, but several 
extrapharyngeal neurons also encoded feeding, including AIN, ASI, and AVK. Neurons within 
the pharyngeal system encoded feeding with both positive (I6, M3, M4, etc) and negative (M1, 
MI) relationships. Optogenetically silencing neurons that encoded feeding (M4, MC) specifically 
inhibited feeding behavior (Fig. S4I).  

Finally, we observed that many neurons (OLL, OLQ, IL1, RIH, URB, others) had tunings 
to different motor programs that were variable across animals. To directly examine this, we 
computed a variability index that describes how dissimilar each neuron class’s encoding of 
behavior was across all datasets (Fig. 4A; see Methods). While many neuron classes had 
invariant representations of behavior across animals (AVA, AIM, many others), others had high 
variability (Fig. 4A; Fig. S5A). NeuroPAL labeling and registration procedures for the neurons 
with high variability were determined with equal confidence to the other neuron classes, 
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suggesting that identification errors are unlikely to explain these observations (Fig. S5B-D). 
Further supporting this, these neurons also changed encoding over the course of continuous 
recordings (see below). The ability of models trained on one set of animals to generalize to other 
animals inversely scaled with the neuron class’s variability index (Fig. S5E). For these neurons 
with high variability, it is especially informative to look at the range of possible encodings 
reported in Fig. 4A rather than just the encoding strength metric. Overall, these datasets provide 
a functional map of how most neuron classes in the C. elegans nervous system encode the 
animal’s behavior. 

Different encoding features are localized to distinct regions of the connectome 

 We next examined how these representations of behavior relate to connectivity in the C. 
elegans connectome. We first examined whether synaptically connected neurons had similar 
dynamics. Indeed, neurons that were connected to one another were more highly correlated, 
compared to neurons that were not synaptically connected (Fig. 5A). This relationship was 
strongest for neurons that were bi-directionally connected, especially through electrical synapses. 
In addition, neurons were more strongly correlated (either positively or negatively) to their 
synaptic input and output neurons, compared to random controls (Fig. 5B).  

 This raised the possibility that local communities of neurons in the connectome may 
encode related behavioral information. To directly examine this, we determined the localization 
of behavioral information in the connectome. We examined localization with respect to: (i) 
whether neurons are connected to one another; and (ii) whether neurons are closer to sensory 
versus motor layers (x- and y-axes of the Fig. 5C-G). Velocity information was widespread, 
whereas head curvature and feeding were located in more restricted connectomic regions (Fig. 
5C-D). Neurons with distinct tunings to head curvature and feeding were still densely 
interconnected with each other. In general, behavioral information was most prominent at lower 
sensorimotor layers, closer to motor output (Fig. 5E). Neurons with long timescale information 
were located at middle sensorimotor layers, primarily in interneurons that innervated premotor 
and motor neurons (Fig. 5F). The neurons with variable encoding across animals were largely 
localized in one synaptic community (Fig. 5G-H), suggesting that they comprise an 
interconnected circuit that exhibits variable coupling. Together, these observations suggest that 
different features of behavior encoding are located in different regions of the C. elegans 
connectome. 

 

The encoding of behavior is dynamic in many neurons 

 In many cases, we noted that the encoding properties of neurons appeared to change over 
time in a single recording. Therefore, we analyzed our data to determine whether neural 
representations of behavior dynamically change. We fit two CePNEM models trained on the first 
and second halves of the same neural trace and used the Gen statistical framework to test 
whether the model parameters significantly changed between time segments (see Methods; see 
also Fig. S6A-B). Based on this test, ~31% of neurons that encoded behavior changed that 
encoding over the course of our continuous recordings. We found a similar fraction (24%) of 
neurons changed encoding in the NeuroPAL strain. These identified neurons substantially 



11 
 

overlapped with those that variably encode behavior between animals (Fig. 6A; Fig. S6C). and 
were densely interconnected (Fig. 6B; see also Fig. S6D). Overall, many different types of 
encoding changes were observed: some neurons changed which behaviors they encoded; others 
showed gains or losses of encoding; and others showed subtle changes in tuning (Fig. 6C; 
examples in Fig. 6D-E). This suggests that defined neurons in the C. elegans connectome are 
variably coupled to behavioral circuits and remap how they couple to these circuits over time. 

We next sought to understand the temporal structure of these encoding changes. For 
instance, individual neurons could remap independently or in a synchronized manner. We 
developed a metric to identify when an encoding change took place based on the difference 
between the errors of models trained on different time regions of the same trace. We then 
averaged this metric across all neurons that changed encoding in each animal (Fig. 6F-G; 
controls in Fig. S6E-F). We observed sharp changes (yellow lines) where many neurons 
simultaneously changed encoding in many datasets (Fig. 6F-G), although in some datasets there 
were more gradual shifts (Fig. S6G-H). Certain neuron classes were more likely to change 
encoding at the same time as one another; in fact, these neurons could be grouped into discrete 
clusters of interconnected neurons (Fig. 6H). Overall, the neurons that remap their encoding at 
the same time were more likely to have synaptic connections between them, especially gap 
junctions (Fig. 6I). In addition, the number of neurons that changed encoding was positively 
correlated with the degree of behavioral change across the hypothesized moment of the change 
(Fig. S6I). Therefore, at times there is a coordinated remapping where many neurons change how 
they represent behavior.  

 

The encoding of behavior is influenced by the behavioral state of the animal 

We next tested whether changes in the animal’s behavioral state could elicit these 
synchronous encoding changes. Behavioral states are persistent changes in behavior that outlast 
the sensory stimuli that initiate them48,49. Previous work has shown that aversive stimuli can 
induce this type of response in C. elegans22,23,50. Therefore, we recorded 30 datasets where we 
delivered a sudden, noxious heat stimulus to animals part way through the recording (Figure 7A-
B; 19 of these datasets had NeuroPAL labels). For stimulation, we heated the agar around the 
worm’s head by 10°C for 1 second (Fig. 7A; temperature decayed to baseline within 3 seconds). 
This stimulus elicited an immediate avoidance (reversal) behavior and reduction in feeding (Fig. 
7B). Animals continued to exhibit reduced feeding and increased reversals for minutes after the 
stimulus, revealing a persistent behavioral state change (Fig. 7B). However, behavior reverted to 
normal within an hour and animal viability was not adversely impacted by the stimulus (Fig. 
S7A-B).  

We measured brain-wide responses during this behavioral state change (Fig. 7C-G). 
Several neurons displayed transient responses to the sensory stimulus, including thermosensory 
neurons AFD, AWC, FLP, and others (Fig. 7D-E)51,52. Many interneurons also responded. While 
some responses were transient, others lasted for minutes after the stimulus. Neurons with 
transient responses were mostly in the higher sensorimotor layers (Fig. S7C-D). We also 
identified neurons with persistent changes in activity that lasted for the rest of the recordings 
after the stimulus (Fig. 7F). Finally, we found that 35% of the neurons that encoded behavior 
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changed encoding time-locked to the heat stimulus (compared to 24% in animals without any 
stimulus; p<0.05, Mann-Whitney U-Test; Fig. S7E; examples in Fig. 7H). The neurons that 
changed encoding were stereotyped across animals, especially the neurons related to feeding, 
which is the behavior most robustly altered by the heat stimulus (Fig. S7F; see also Fig. S7G-H). 
This suggests that inducing a behavioral state change elicits a reliable shift in the network that 
remaps the relationship between neural activity and behavior. 

 We examined how these activity changes related to the behavioral changes that comprise 
the aversive behavioral state, focusing on the robust suppression of feeding. Three neurons that 
encoded feeding showed persistent activity changes that paralleled the state: I2 activity 
persistently decreased and MI and M1 activity increased. In addition, four feeding neurons 
showed a change in encoding after the heat stimulus. These neurons, MC, M3, M4, and AIN, had 
correlated activity bouts aligned with bouts of feeding prior to the heat stimulus (Fig. 7I-J; see 
also Fig. S7F). After the stimulus, activity bouts still occurred in these neurons, but this was not 
accompanied by feeding. Notably, at baseline, MI and M1 activity were highest during pauses in 
feeding (Fig. 7I-J). This suggests that MI and M1 might inhibit feeding and that the state-
dependent increase in MI and M1 activity might suppress feeding normally elicited by 
MC/M3/M4/AIN. Overall, these results show how changes in behavioral state are accompanied 
by persistent activity changes and alterations in how neural activity is functionally coupled to 
behavior.  

 

DISCUSSION 

Animals must adapt their behavior to a constantly changing environment. How neurons 
represent these behaviors and how these representations flexibly change in the context of the 
whole nervous system was unknown. To address this question, we developed technologies to 
acquire high quality brain-wide activity and behavioral data. Using the probabilistic encoder 
model CePNEM, we constructed a brain-wide map of how each neuron encodes behavior. By 
also determining the ground-truth identity of these neurons, we overlaid this map upon the 
physical wiring diagram. Behavioral information is richly expressed across the brain in many 
different forms – with distinct tunings, timescales, and levels of flexibility – that map onto the 
defined neuron classes of the C. elegans connectome.  

 Previous work showed that animal behaviors are accompanied by widespread changes in 
activity across the brain, resulting in a low-dimensional neural space53. This largely redundant 
distribution of information across the brain seems non-parsimonious. Here we found that an extra 
layer of complexity emerged when we determined each neuron’s encoding of behavior. 
Representations were complex and diverse, and this heterogeneity could be largely explained by 
four motifs: varying timescales, non-linear tunings to behavior, conjunctive representations of 
multiple motor programs, and different levels of flexibility. Having many different forms of 
behavior representation present may confer the nervous system with computational flexibility. 
Depending on the context, the brain may be able to combine different representations to 
construct new coordinated behaviors. Our data here did not distinguish whether a given neuron’s 
encoding of behavior reflected the neuron causally driving behavior versus receiving a corollary 
discharge or proprioceptive signal related to behavior, which has been reported for several 
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neuron classes32–37. Future work separating these classes of signals across the C. elegans network 
should reveal the full set of causal interactions between neurons and behavior. 

While many neurons encoded current behavior, others integrated recent motor actions 
with varying timescales. This allows the brain to encode the animal’s locomotion state of the 
recent past. Combining representations with different timescales could allow the animal’s 
nervous system to perform computations that relate past and present behavior. We also observed 
that the dynamics of the nervous system can change over longer time courses. In particular, 
many neurons flexibly remapped their relationships to behavior over minutes. This occurred in a 
time-locked fashion across neurons when we elicited a behavioral state change with a sudden 
aversive stimulus. These changes may be triggered by changes in neuromodulation or other state-
dependent shifts in circuit function. This remapping may then change sensorimotor responses 
and the generation of behavior. Future studies of the flexible neurons identified here should 
provide deeper insights into the mechanisms at work. 

Our results here reveal how neurons across the C. elegans nervous system encode the 
animal’s behavior. Even in the narrow set of environmental conditions explored here, we 
observed that ~30% of the worm’s nervous system can flexibly remap. Future studies conducted 
in a wider range of contexts will reveal whether this comprises the core flexible neurons in the 
connectome or, alternatively, whether the neurons that remap differ depending on context or 
state.  

LIMITATIONS OF THE STUDY 

We wish to highlight three limitations of our study. First, our neural recordings were performed 
using nuclear-localized GCaMP. While this makes brain-wide recordings feasible, local calcium 
signals in neurites cannot be detected and the temporal resolution of calcium imaging is limited. 
Second, there are neurons with evident dynamics in our recordings not well fit by CePNEM. Our 
results suggest that these neurons may carry sensory, internal, or behavioral information not 
studied here, but additional work will be necessary to resolve this. Finally, we examined animals 
while they were exposed to food and, in some recordings, stimulated with an aversive stimulus. 
Future recordings in different contexts may identify other types of behavior encoding not yet 
revealed in our recordings. 
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FIGURE LEGENDS 

Figure 1. A probabilistic encoder model reveals how neurons across the C. elegans brain 
represent behavior 

(A) Light path of the microscope. Top: behavioral data are collected in NIR brightfield. Images 
(panel B) are processed by the online tracking system, which sends commands to the stage to 
cancel out the motion. Bottom: spinning disk confocal collects fluorescence from the sample.  

(B) Example image of a worm collected through the NIR brightfield light path. 

(C) Maximum intensity projection of a confocal volume captured at the same time as in (B). 

(D) Software pipeline to extract GCaMP signals from the confocal volumes over time. See 
Methods. 

(E) Heatmap of neural traces collected from a pan-neuronal GFP control animal. Data are shown 
using same color scale as GCaMP data in (G). 

(F) Comparison of signal (F/F20) variation in all neurons across 3 GFP control animals (σ = 
0.074) versus 14 GCaMP animals (σ=0.392). 
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(G) Example dataset, with GCaMP data and behavioral features. GCaMP data displayed on same 
color scale as (E). Body segment is a vector of body angles from head to tail. For head curvature, 
inset (green) shows a zoomed in region to illustrate fast oscillations. 

(H) Three example neurons from one animal that encode velocity over different timescales. Each 
neuron (blue) is correlated with an exponentially-weighted (red kernels) moving average (gray) 
of the animal’s recent velocity, over different timescales. Inset shows half-decay times of 
exponentials and correlations of neurons to gray traces.  

(I) Example tuning scatterplots for three neurons (different from those in H) showing how their 
activity relates to velocity. Dots are individual timepoints.  

(J) Example tuning scatterplots for three neurons that combine information about head curvature 
(color) and velocity (x-axis). Dots are individual timepoints. For each neuron, the red and green 
dots separate from one another only for negative or positive velocity values. 

(K) Simplified expression of the deterministic component of CePNEM. Here, we represent the 
effect of timescale via an integral with parameter 𝜆, whereas Equation 1 in the text represents 
timescale via recursion with parameter 𝑠. 

(L) Left and Middle: Fitting procedure. Likelihood weighting selects a particle with the best fit to 
the data and uses it to initialize a Monte Carlo process that infers the posterior distribution (see 
Methods for details of inference algorithm). Gray shading indicates model likelihood. Right: 
example posterior distribution for a neural trace, shown for two model parameters for illustrative 
purposes. 

(M) Example neural traces and median of all posterior CePNEM fits for that neuron. Inset cross-
validation (cv) scores are pseudo-R2 scores on withheld testing data (see Methods). 

See also Figure S1, Figure S2, and Movie S1. 

 

Figure 2. Varied representations of behavior across the C. elegans brain 

(A) Fraction of neurons per animal that encode velocity, head curvature, and feeding. If a neuron 
encoded >1 behavior, it is represented in multiple x-axis categories. Error bars show standard 
deviation between animals. 

(B) Fraction of neurons per animal that encode 0, 1, 2, or 3 of the behaviors. Error bars show 
standard deviation between animals. 

(C) ECDF of the median model half-decay time for neurons that encode at least one behavior. 
Shading shows standard deviation between animals. 

(D) Performance of linear decoders that predict velocity at times offset from current neural 
activity (brown). Performance is the difference in error between the actual decoders and control 
scrambled decoders. Predicted velocity values were averaged over a 10-sec sliding window 
centered Δ𝑡 seconds from the current time. Decoders trained to make this prediction based on 
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current velocity (black) or velocity values at all times (gray) are also shown. Shading shows 
standard deviation across animals. 

(E) Distributions of how neurons encode the indicated behaviors. For each behavior, neurons 
were categorized based on their tuning curves to that behavior (see Methods). Example tuning 
curves are shown above and prototypical tuning curves for each category are also shown.  

(F) Five example neurons that encode forward locomotion, together with CePNEM-derived 
tuning curves for each neuron, and the mean and standard deviation of each neuron’s half-decay 
time.  

(G) Three example neurons that all encode head curvature in conjunction with movement 
direction, together with CePNEM-derived tuning parameters for each neuron.  

(H) Three example neurons that all encode feeding information, together with CePNEM-derived 
tuning parameters for each neuron. 

 

Figure 3. Global analysis of how neurons encode behavior in the C. elegans nervous system 

(A) UMAP embedding of all neurons in 14 animals, where proximity indicates encoding 
similarity (see Methods). Here, we projected all points from each neuron’s CePNEM posterior. 
Fig. S3D shows only one dot per neuron. 

(B-E) UMAP space where neurons are colored by their behavioral encodings. Long versus short 
timescale is split at half-decay time of 20 sec. 

(F) Zoomed portion of UMAP space, where neurons are color-coded by their forward velocity 
tuning curves. 

(G) Example animal, showing neurons’ tuning to behavior and loadings onto the top five PCs. 
Neurons are hierarchically clustered by their PC loadings. 

(H) Number of PCs needed to explain 75% of the variance in a given neuron, averaged across 
neurons in 14 animals. Data are means and standard deviation across animals. 

See also Figure S3. 

 

Figure 4. An atlas of how the different C. elegans neuron classes encode behavior 

(A) An atlas of how the indicated neuron classes encode behavior, derived from analysis of fit 
CePNEM models. Columns show: 

 Encoding strength: approximate variance in neural activity explained by each 
behavioral variable.  

 Forwardness, Dorsalness, and Feedingness: slope of the tuning to each behavior.  
 Enc. timescale: median half-decay time 
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 Overall act. level: standard deviation of the calcium traces when normalized as F/Fmean. 
 Enc. Variability: how differently the neuron class encoded behavior across recordings.  

Other columns show the fraction of recorded neurons that significantly encoded behaviors: 

 Fwd, Rev, Dorsal, Ventral, Activated, and Inhibited: neurons with that overall tuning 
to behavior. 

 Fwd slope -, Fwd slope +, Rev slope -, and Rev slope +: neurons with that slope in their 
velocity tuning curves during the specified movement direction.  

 F slope > R slope and F slope < R slope: neurons displaying rectification in their 
velocity tuning curves. 

 Dorsal during F, Ventral during F, Dorsal during R, Ventral during R, Act during 
F, Inh during F, Act during R, and Inh during R: neurons with that tuning to behavior 
during the specified movement direction (Forward or Reverse). 

 More D during F, More V during F, More A during F, and More I during F: neurons 
with different tunings to behavior during forward versus reverse.  

Parenthesis on right indicates the number of CePNEM fits per neuron class (first and second 
halves of videos, which have different model fits, are counted separately). 

(B-C) Circuit diagram of neurons that innervate head muscles. Colors and circle sizes indicate 
tuning to behavior during forward (B) and reverse (C) movement. Edge thickness indicates 
number of synapses between neurons, averaged across two connectome datasets. Left/right 
neurons shown separately, because one of these pairs (SAAD) exhibited asymmetric activity, 
suggesting an asymmetry in this circuit. 

(D) Circuit diagrams of behavioral circuits. The Variable Coupling neurons have high encoding 
variability.  

See also Figures S4, Figure S5, and Table S1. 

 
Figure 5. Neural encoding features map onto different regions of the connectome 

(A) Cumulative distribution of the correlation coefficients of activities of pairs of neurons 
connected in different ways. Left/right pairs were merged for this analysis, so that it only 
considers relationships between different neuron classes. *p<0.05 **p<0.005 ***p<0.0005, 
Mann-Whitney U-test. 

(B) Median correlation coefficients between each neuron and its synaptic inputs (blue) or outputs 
(orange). Control (gray) shows randomly selected neurons of equal group size.  

(C) Neurons (circles) and connections (gray lines) in the C. elegans connectome, with behavior 
encoding information. Connectome region (x-axis): neurons with similar wiring are adjacent on 
this axis, computed as the second eigenvector of the laplacian of the connectome graph.  
Sensorimotor layer (y-axis): neurons arranged from sensory to motor (see Methods). Some 
neurons are labeled to provide rough orientation to the layout. 
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(D) Same as in (C), but one behavior per plot. 

(E-G) Distribution of encoding features in the connectome, arranged as in (C). Marginal 
distributions (blue) show values of each behavioral feature along each axis.  Gray control lines 
show how behavioral features are distributed when randomly shuffled. *p< 0.05 **p<0.005, 
***p<0.0005, one sample Z-test for proportion.  

(H) The number of synapses connecting the neurons with high variability (see Methods) is 
shown as a red line. Gray shows the number of synapses connecting random neuron groups. Inset 
shows rank of the true value in this shuffle distribution. 

 

Figure 6. Neural representations of behavior dynamically change over time 

(A) Relationship between the variability in how neuron classes encode behavior over time in the 
same animal versus across animals. Each dot is a neuron class. See Methods.  

(B) For the group of neurons that frequently change encoding, we show the percent of synapses 
onto these neurons that come from neurons within the group (red line). Gray controls are the 
same values for random groups of neurons of similar size. Inset percentile shows the rank of the 
true number in the control distribution.  

(C) How neurons changed encoding across SWF415 animals, examined for the neurons that 
significantly change encoding. Categories are: “lose all” (lost tuning to behavior), “lose some” 
(lost tuning to one or more behavior), “gain all”, “gain some”, “swap” (both gained and lost 
tuning to behaviors), and “modify” (encode the same behavior(s), but differently). 

(D) Two example neurons with CePNEM fits, showing a change in neural encoding of behavior. 
Yellow dashed lines indicate times when neurons across the full dataset displayed a sudden shift 
in encoding (see (F)). 

(E) Example neurons OLQDL and URYDL, depicted as in (D). 

(F) Data from same animal as (D) showing a sharp change in neural encoding of behavior. We fit 
CePNEM models to the first and second halves of the recording (Model 1 and Model 2). We then 
computed the difference between the errors of the two median model fits and smoothened with a 
200-timepoint moving average. This was then averaged across encoding changing neurons. A 
sudden change in this metric (yellow line) indicates a sudden shift in behavior encoding across 
neurons.  

(G) Data from the same animal as (E) showing a sudden change in neural encoding, displayed as 
in (F). 

(H) Fraction of times that neuron classes changed encoding at the same moment, relative to their 
encoding changes overall. Rows were clustered and white outlines depict main clusters. 
**p<0.005, empirical p-value that clustering would perform as well during random shuffles. 
Within each cluster, the neurons were more likely to have unidirectional synapses and/or gap 
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junctions with one another compared to random shuffles, as indicated. ***p<0.0005, empirical p-
value.  

(I) Neuron pairs with unidirectional synapses or electrical synapses were more likely to change 
encoding together, compared to random shuffles (gray distributions where joint encoding matrix 
was shuffled). *p<0.05, **p<0.005, empirical p-value. 

See also Figure S6. 

  
Figure 7. Behavioral state changes cause a widespread remapping of how neurons encode 
behavior 

(A) Illustrative cartoon: a 1436nm IR laser transiently increases the temperature by 10°C for 1 
sec around the animal’s head.  

(B) Event-triggered averages of behavior of 32 animals in response to the heat stimulus. 
**p<0.05, Wilcoxon signed rank test, pre- versus post-stimulus. 

(C) Neural data from an animal that received a heat stimulus (red line).  

(D-F) Event-triggered averages of neural activity aligned to the heat stimulus for some neurons 
with (D) excitatory or (E) inhibitory responses to the stimulus, or (F) persistent activity changes. 
ETAs in (F) are smoothed over 30 seconds; dashed lines indicate where the stim is within the 
moving average window. 

(G) Responses of different neuron classes to the heat stimulus (n=19 animals):  

 Immediate (<4 seconds) and sustained (15-30 seconds) GCaMP responses  
 Persistent activity changes. See Methods. 
 Encoding variability pre- vs post-stimulus. See Methods. 

(H) Four example neurons that showed abrupt changes in their behavior encoding immediately 
after the stimulus.  

(I)  Example GCaMP traces. Light blue neurons had persistent activity changes. Dark blue 
neurons changed encoding after the stimulus.  

(J) Top three plots: Average activity, computed as 𝐹−𝐹mean
𝐹mean

,  before and after the heat stimulus. 

Error bars show SEM across animals. **p<0.005, ***p<0.0005, Wilcoxon signed rank test. 
Bottom four plots: tuning curves to feeding behavior for each neuron class (pre- versus post-
heat-stimulus data). Data are pooled across 19 animals.  

See also Figure S7. 

 

SUPPLEMENTAL FIGURE LEGENDS 
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Supplemental Figure 1. Behavioral assays, GFP control recordings, and evaluation of 
model parameters, Related to Figure 1. 

(A) Salt learning assay for N2 control animals, compared to pan-neuronal GCaMP7f animals. 
Naïve refers to animals grown on 0 mM NaCl; conditioned (‘cond’) refers to animals grown 
under the same conditions but exposed to 50mM NaCl with food for one hour prior to assay, 
which causes animals to prefer higher salt concentrations. Chemotaxis was measured on a plate 
with a 0mM to 50mM NaCl gradient with sorbitol added to ensure uniform osmolarity. Positive 
values correspond to chemotaxis directed toward high NaCl. Data are shown as means and 
standard deviation across plates. n=12-13 chemotaxis plates per group for naïve and n=4-6 plates 
per group for conditioned. n.s. not significant, Mann-Whitney U-Test. 

 (B)  Un-normalized F heatmap of neural traces collected and extracted from a control animal 
expressing eat-4::NLS-GFP. Since GFP is expressed only in a fraction of cells in this strain, 
perfect neural identity mapping would result in a set of bright horizontal lines (GFP-positive 
neurons) and a set of dark horizontal lines (GFP-negative neurons), while a registration 
mismatch would appear as a bright spot in the trace of an otherwise GFP-negative neuron, or a 
dark spot in the trace of an otherwise GFP-positive neuron. Note that there are very few 
instances of registration mismatches visible in the traces. As described in the main text, we 
estimate the number of neuron identification errors to be 0.3% of frames (see Methods). 

(C) F/F20 heatmap of neural traces collected and extracted from three GFP control animals.  

(D) An example neuron that encodes behavior with a long timescale value according to 
CePNEM (blue; same for all four traces) and different processed versions of velocity (gray). 
Velocity was processed in different ways and the match to neural activity was evaluated. 
Average performance across all neurons is in panel (E). For each method of processing velocity, 
the optimal fit to the neuron was taken by minimizing the error (MSE) using gradient descent. 
The different methods of processing velocity were: (1) EWMA: exponentially-weighted average 
of recently velocity; (2) Optimal Shift: time-lagged shift in velocity; (3) Optimal Gaussian 
kernel: gaussian averaging of velocity at each time point; (4) Optimal lowpass filter: velocity 
filtered based on frequency. The alternative smoothing methods were evaluated to compare 
against the EWMA used in the model.  

(E) Average fit of how velocity filtered in the indicated ways (see panel (D) legend for more 
description) matches neural activity, quantified as mean square error (lower is better). This was 
averaged across all recorded neurons. ***p<0.0005, Wilcoxon signed rank test. 

(F) Degradation analysis on each model parameter, comparing the percentage that the error (as 
measured by cross-validated mean-squared error when fitting the model with MSE optimization 
– see Methods) increases when the model is refit with that parameter removed. Wilcoxon signed 
rank test (comparing the full model and the partial model) resulted in p-value below 0.0005 for 
all shown parameters. For reference, black line shows the error increase for a model with no 
behavioral parameters (just an offset parameter so that the model would guess each neuron’s 
mean activity). 
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(G) Degradation analysis using same procedure as in (F), but plotting a different outcome. For 
“behavior” predictor terms (left): for each neuron the three degraded models were fit (lacking 
each predictor term) and the predictor term whose deletion caused the greatest increase in error 
was determined. The fraction of neurons that had each parameter as their most important 
predictor term is displayed. For “non-linearity” terms (right): the same procedure was conducted, 
except the degraded models lacked one or both model non-linearities. Model lacking both non-
linearities was the fully “linear” model. The analysis was done on the encoding neurons and 
averaged across datasets. 

 
Supplemental Figure 2. Controls for model fitting, decoding analyses, and analyses of 
neurons’ timescales, Related to Figure 1. 

(A)  Simulation-based calibration results for CePNEM. Simulation-based calibration was 
performed by simulating 1997 neurons from CePNEM using behaviors from 4 different animals 
and fitting them each twice, on different time ranges. For each model parameter, the ground-truth 
parameter was ranked within the fitted posterior. If model fitting is perfectly calibrated, the 
ground-truth parameter’s rank should be the uniform distribution. Therefore, for each parameter, 
we performed a χ2 test to distinguish their distribution from the uniform distribution with p=0.05. 
All parameters passed this test, except for the timescale parameter s, which has a very small 
calibration artifact predicted to impact <4 neurons per dataset. See Methods. 

(B) A series of CePNEM model fits to various neurons, showing the model’s ability to fit a wide 
variety of neural tunings to behavior. The model was fit on the first half of the dataset, and tested 
on the second half, revealing that these neurons have robust tunings to behavior across time that 
is well-explained by CePNEM. The inset cross-validation (cv) indicates the goodness-of-fit of 
the model on testing data (see Methods for additional details). 

(C) The fraction of neurons with encoding vs the fraction of active neurons (the signal value 
above the GFP threshold). Each dot is a dataset. The fractions are computed by averaging across 
two time segments in each dataset. The tight clustering of dots indicates that datasets were 
roughly consistent, according to these basic metrics. 

(D) Controls comparing the percentage of neurons that were detected as encoding behavior using 
real GCaMP traces with the same animal’s behavior, using the same GCaMP traces but 
attempting to fit with a different animal’s behavior (essentially a scramble control; ‘wrong 
behavior’), and using GFP datasets. See Methods for statistical methods used to determine if a 
given neuron significantly encodes a behavior. 

(E) Cumulative distribution of cross-validation scores across neurons in continuous SWF415 
recordings (see Methods). Its intuitive meaning is that a value of zero indicates that the fit 
CePNEM model fails to generalize to the testing data, whereas a value of +1 indicates that the 
model perfectly explains neural activity on withheld testing data. 96% of neurons had a positive 
cross-validation score. 
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(F) Distribution of overall neuron signals (as a metric for overall activity levels) across all 
neurons in three categories: GFP control neurons, encoding neurons (GCaMP neurons that 
significantly encoded at least one behavior based on CePNEM), and non-encoding neurons 
(GCaMP neurons that did not significantly encode any behaviors according to CePNEM). 
Neuron signal here is defined as signal = std(𝐹)

mean(𝐹) where 𝐹 is the un-normalized ratiometric 
fluorescence of the neuron in question. It provides a measure of overall level of dynamics 
exhibited by the neuron. Note that non-encoding neurons still exhibited robust dynamics, for the 
most part exceeding the negative control GFP neurons. 

(G) Linear, L1-regularized decoder models were trained to predict various behaviors (velocity, 
head curvature, feeding, angular velocity, and curvature, respectively) from 11 animals from 
either neurons (blue) or CePNEM model residuals (orange). Decoding accuracy was assessed as 
1 – MSE (decoded behavior, true behavior), averaged over five 80/20 cross-validation splits (see 
Methods). Note that the decoder models do much worse when trained on CePNEM model 
residuals than when trained on the full neural data, suggesting that the model can explain most 
neural variance overtly related to behavior. 

(H) An analysis of decoding accuracy from specific subsets of neurons. Linear, L1-regularized 
decoder models were trained to predict the behavioral parameters listed on the x-axis. For each 
behavioral parameter we compared decoder accuracy when the model was trained on (i) the 
neurons that encoded that behavioral feature according to CePNEM (e.g. for forward speed, the 
full set of neurons that had significant information about forward speed; shown as red lines); 
versus (ii) random subsets of neurons equal in size to group (i) selected from the neurons that did 
not encode that behavioral feature (gray distributions). *p<0.05, **p<0.005, empirical p-values 
based on rank of red lines in respective gray distributions. 

(I) Mean ECDF of the model half-decay time of all neurons demonstrated to encode forward 
locomotion, contrasted with the ECDF of neurons demonstrated to encode reverse locomotion, in 
14 animals. The shaded regions represent the standard deviation between animals. The median 
fraction (across animals) of forward neurons with long timescales (half-decay 𝜏1/2 > 20𝑠) was 
0.12, compared with only 0.03 for reversal neurons; this difference was statistically significant 
(𝑝 = 0.029) under a Mann-Whitney U-Test. 

(J) Mean ECDF of model half-decay time of all neurons that encode the indicated behaviors. 
Data are shown as in panel (H). 

(K) Performance of a decoder trained to predict past and future head curvature of animals based 
on current population neural activity. Models were trained and data are displayed as in Fig. 2D, 
except these models were trained to predict head curvature rather than velocity. See Fig. 2D 
legend for additional details. 

(L) Violin plots showing distribution of head curvature angles (in radians) during forward and 
reverse movement. 

(M) A neuron that encodes angular velocity (defined as longer-timescale head curvature; due to 
the higher frequency nature of head curvature oscillations, longer-timescale is defined here as at 
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least 5 seconds). This neuron has a half-decay of 𝜏1/2 = 9.5 ± 1.3 seconds and is multiplexed 
with velocity as well. 

 

 Supplemental Figure 3. Additional analyses of UMAP projections, Related to Figure 3. 

(A) Projections of all neurons from each of four different SWF415 animals into the same UMAP 
space (built from full population of animals; same as in Fig. 3A). Observe that the overall 
structure is very similar, suggesting that the locations of neurons in UMAP space are similar 
across datasets. 

(B) Projections of all neurons from each of two different NeuroPAL animals into the UMAP 
space. These neurons also fill in a similar pattern to that of the SWF415 animals, suggesting that 
the overall neural encodings of the two strains are similar. 

(C) Projections of all neurons from each of two different GFP control animals into the UMAP 
space. These neurons fail to fill most of the space, which is consistent with the non-encoding 
nature of neurons in this control strain. 

(D) Projections of all neurons from 14 different SWF415 animals into the UMAP space, taking 
the median of each neuron’s posterior point cloud in the UMAP space.  Note that the medians fill 
out the same space as when projecting the full posteriors (as in Fig. 3), suggesting the continuity 
of the UMAP space is not merely an artifact of parameter uncertainty.  

(E) An analysis of clusterability of all neurons that encode behavior. For each dataset, we 
attempted to cluster all neurons that encode behavior using a similarity metric based on the 
difference of the neurons’ GCaMP traces. To determine the optimal number of clusters, we 
computed the Calinski-Harabasz index over varying number of clusters when performing k-
means clustering on the neural traces. Clustering was done on a per dataset basis on all SWF415 
datasets, and the mean and standard error values are plotted. Note that the optimal number of 
clusters in this analysis is 2, which is the minimum number that can be assessed with this metric. 
This suggests that there is not a larger set of discrete subgroups of neurons that are separable 
from one another. 

(F) Cumulative variance explained by the top 20 PCs, averaged over 14 animals. The shaded 
region is the standard deviation across animals. 

 

Supplemental Figure 4, Analysis of NeuroPAL recordings and effects of perturbing neural 
activity, Related to Figure 4. 

 (A) A RGB composite image of one of the NeuroPAL animals that we recorded. The composite 
was constructed by combining images of NLS-mTagBFP2 (shown in blue), NLS-cyOFP2 
(shown in green), and NLS-mNeptune2.5 (shown in red). Using this composite image, we were 
able to label a large number of neurons in this animal. Neural identity was determined while 
making use of all 3D information, but for display purposes here we show a maximum intensity 
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projection of a subset of the z-slices from the recording. Therefore, this image does not show all 
the neurons in the head (a maximum intensity projection of all z-slices is too dense with neurons 
to show for display purposes here). 

(B) Comparison of behavioral parameters during recordings of brain-wide GCaMP7f in animals 
without NeuroPAL (SW415, labeled “415”) and with NeuroPAL (SWF702, labeled “NP”). Four 
behavioral metrics are shown. n=14 and 21 animals for SWF415 and SWF702, respectively. 
*p<0.05 ***p<0.0005, Mann-Whitney U-Test. 

(C) Average overall neural signal across recordings of animals expressing pan-neural GFP 
(green), pan-neural GCaMP (blue) and pan-neural GCaMP with NeuroPAL transgene (orange). 
Overall neural signal here is defined as 𝑠𝑡𝑑(𝐹)

𝑚𝑒𝑎𝑛(𝐹) where 𝐹 is the un-normalized ratiometric 
fluorescence. 

(D) A comparison of how much variance in neural activity is explained by different number of 
principal components in pan-neural GCaMP strains without NeuroPAL (blue, SWF415) and with 
NeuroPAL (orange, SWF702).  

(E) Distribution of cross-validation scores (see Methods for quantitative details) for pan-neural 
GCaMP strain without NeuroPAL (blue) and with NeuroPAL (orange). 

(F) UMAP plot showing the posterior distributions of the CePNEM model fits for various 
neurons; each neuron is plotted in a different color. The same set of time points from the same 
animal were used for each neuron’s fit. This plot shows a subset of neurons with largely non-
overlapping tunings, just to illustrate how neurons map onto the UMAP space described in Fig. 
3. 

(G) Event-triggered averages showing average neural activity of the indicated neuron classes 
aligned to key behaviors, as indicated in the column labels. Data are pooled across all instances 
of recordings of the neuron classes for the behaviors indicated. Note that event-triggered 
averages in general are noisier for feeding due to a lower number of events where feeding 
suddenly started or stopped (compared to forward/reverse and dorsal/ventral transitions). The 
shading indicates the standard error across the recorded animals. 

(H) Table of the signal values of the neuron classes identified in NeuroPAL. For each neuron 
class, dot is the median level of overall activity (‘signal’) for the neuron across all recorded 
instances, quantified as in Fig. 4A. The line denotes the 25th - 75th percentile range. The neurons 
are ordered by the median signals. The dashed green line indicates the boundary below which 
neurons are likely to be inactive, determined based on the signal values in the GFP control 
datasets. 

(I) Effects of perturbing the indicated neurons on the animal’s behavioral output. For all 
perturbations, we quantified forward speed (shown as means  standard error of the mean 
(SEM)), reverse speed (means  SEM), median head curvature during dorsal and ventral head 
bends (box plots showing 25th and 75th percentiles and medians as red lines; separate boxes for 
dorsal and ventral bending), frequency of head bending (plotted as distribution of intervals 
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between head swings), and feeding rates (means  SEM). Neuron inactivation methods were: (1) 
RIC: tetanus toxin (TeTx) expression; (2) AIM: chemogenetic silencing using the Histamine-
gated chloride channel (HisCl); (3) AUA: chronic silencing via expression of leaky potassium 
channel unc-103(gf); (4) RIF: chronic silencing via unc-103(gf); (5) AVL: chronic silencing via 
unc-103(gf); (6) SAA: neuron ablation via split caspase expression; (7) SMB: neuron ablation 
via split caspase expression; (8) MC: optogenetic inactivation via GtACR2; (9) M4: optogenetic 
inactivation via GtACR2; (10) ASG: optogenetic activation via Chrimson. All promoters were 
single cell-specific, either through highly specific single-cell promoters or intersectional Cre/Lox 
promoters. Details of promoters used are in Method Details under the Transgenic Animals 
section. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001, Bonferroni-corrected Mann-Whitney 
test. n.s., not significant. 

 

Supplemental Figure 5, Analysis of variable encoding neurons, Related to Figure 4. 

 (A) Locations of different neuron classes in UMAP space, showing results for multiple 
recordings of each neuron. The UMAP space is the same as is shown in Fig. 3, where distance 
between neurons is proportional to the difference in how they encode behavior. Here, each 
colored dot depicts how the indicated neuron class encoded behavior in a single recording. Two 
types of neurons are shown: (1) Low variability neurons that have consistent encoding of 
behavior according to CePNEM: RIM, RIB, MC, IL2D; and (2) High variability neurons that 
have variable encoding across animals according to CePNEM: URX, OLQD. Note that the dots 
for the variable neurons are more distributed in this space than the dots for the low variability 
neurons. Only six neuron classes are shown to prevent the plot from being overcrowded. 

(B) Scatter plot of labeling confidence (a qualitative metric determined by person scoring, 
reflecting their confidence that the neuron is correctly identified based on position and multi-
spectral fluorescence; the higher the better; note that neurons with sufficiently low confidence 
were entirely excluded from all analyses in the paper, and this plot only shows values above this 
threshold) and encoding variability (lower value means more consistency). There is no evident 
relationship between these values, suggesting that labeling error does not introduce encoding 
variability. 

(C) Scatter plot of GCaMP ROI match score (the higher the better in terms of confidence that 
NeuroPAL ROI was confidently mapped to a GCaMP ROI; see Methods) and encoding 
variability shows no relationship. This suggests that the process that matches the NeuroPAL ROI 
to the GCaMP ROI does not introduce encoding variability. 

(D) Examples of a variable coupling neuron (OLQD from 3 animals shown). On the left column, 
the NeuroPAL fluorescence images with OLQD labeled show consistent color combination and 
location of this neuron class. On the right column, the corresponding neural traces (blue) are 
shown along with CePNEM fits (orange), and a written description of the encoding properties. 
Note that the neurons of the same class from different animals encode different sets of behaviors. 
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(E) Performance of CePNEM model across different animals, for neuron classes with different 
levels of variable encoding. In this analysis, the optimal CePNEM model parameters learned 
from 21 animals’ neural and behavioral data was determined (using a hierarchical Bayesian 
approach; see Methods). These model parameters were then used to predict neural activity in 
three additional animals shown here (animals 22-24). This analysis is shown for three categories 
of neurons: (1) neurons with low variability according to CePNEM: RIB, ASG, and SMDV; (2) 
neurons with moderate variability according to CePNEM: AUA, CEPD, and URYV; and (3) 
neurons with high variability according to CePNEM: URX, IL1D, and OLQD. The Variability 
Index for each neuron is displayed by the neuron’s name. Note that the level of variability in 
neural encoding, determined by our analysis, scales with the ability of models to successfully 
predict neural activity across different animals, as expected. 

 
Supplemental Figure 6, Analysis of dynamic encoding neurons, Related to Figure 6. 

(A) An analysis of what fraction of neurons were detected as changing encoding in our GCaMP 
datasets and simulated datasets. Simulated datasets are labeled ‘SBC’ for simulation-based 
calibrations. These are neurons simulated from the CePNEM model, where ground-truth 
parameters were set to not have any encoding changes.  

(B) Scatterplot of datasets showing that extent of photobleaching is not correlated with detection 
of encoding changes. Each dot is a SWF415 dataset. 

(C) Scatterplot depicting each neuron class’s likelihood of changing encoding in a single 
continuous recording (x-axis) versus its variability overall across all animals (y-axis). Each dot is 
a single neuron class. Note the positive trend (p<0.05, conditional independence test). The box 
highlights neurons that are variable both across and within animals. 

(D) The frequency of neurons changing encoding in single recordings, separating neurons based 
on whether they are sensory, inter-, or motor neurons. No major difference was observed 
between these three groups, and this remains true when variability index is used instead of 
encoding change fraction.  

(E) The same dataset in Fig. 6F but also plotting the relative model performance averaged over 
the static encoding neurons. Note that the black line does not show the sudden changes in value 
seen for the purple line. 

(F) Same as (E), but for the dataset in Fig. 6G. 

(G) An example dataset that shows a less synchronized encoding change, displayed in the same 
manner as in (E-F).  

(H) Two example encoding changing neurons from the animal in (G), one with an abrupt 
encoding change at approximately 12 minutes, and another neuron that appears to have a slowly-
increasing gain to its behavioral encoding over the last ~10 minutes of the recording. 

(I) A plot of the fraction of encoding neurons that exhibited encoding change in a dataset, 
compared with the behavioral difference between the first and second half of that dataset. 
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Behavioral variability was computed as the sum of the absolute values of the differences (across 
the two time segments) of the following behavioral parameters (each such parameter was 
normalized to the standard deviation of that behavior across all 14 SWF415 datasets): median of 
reverse velocity, median of forward velocity, 25th percentile of head curvature, 75th percentile of 
head curvature, 25th percentile of feeding rate, and 75th percentile of feeding rate. This value 
provides a general description of how much the distributions of behavioral parameters changed 
across the two halves of the recording. Observe that datasets with large behavioral changes tend 
to have more encoding changes, suggesting that the neural flexibility may be related to the 
observed behavior changing. 

 

Supplemental Figure 7, Analysis of stimulus-induced encoding changes, Related to Figure 
7. 

(A) Experiments to examine the impact of the heat stimulation on the behavior and health of the 
animals. Animals subjected to the heat stimulation did not display a significant difference (𝑝 =
0.62 in a Mann-Whitney U-Test computed over 10 animals) in their exploratory behavior 
(computed as counting the number of squares each animal entered on an assay plate) relative to 
mock-stimulated animals (animals that were mounted on imaging slides, but not given the 
thermal stimulus). Behavior was quantified one hour after the heat stimulation. 

(B) The heat stimulation did not kill any animals (all animals were alive 2 days after the 
stimulation). 

(C) Connectome localization of neurons that exhibit sensory responses to the thermal stimulus. 
Neurons in red generated transient (<4sec) excitatory responses to the heat stimulus and neurons 
in blue generated transient inhibitory responses. Layout of connectome is the same as in Fig. 5C-
F (see that legend for further details). Marginal distributions show the enrichment of each group 
of neurons along the two axes, relative to a random shuffle control (gray). *p< 0.05 **p<0.005, 
one sample Z-test for proportion on the excitatory responses; the inhibitory responses were not 
significant. 

(D) Connectome localization of neurons that exhibit long-lasting (15-30sec) excitatory (red) or 
inhibitory (blue) responses to the thermal stimulus. Data are displayed as in panel (C); there was 
not a significant enrichment of these neurons in any sensorimotor layer. 

(E) A comparison of the relative model performance averaged across all 11 SWF415 animals 
that underwent a heat shock (top) with the same metric computed over 4 animals that were not 
stimulated (bottom). Note that the baseline animals do not have a sharp change in relative model 
performance at the train/test split, suggesting that the encoding changes in the heat-stimulation 
datasets are a direct result of the stimulation. 

(F) Fraction of times that each neuron class changed encoding after the heat stimulus. More 
specifically, the fraction of times that decoders trained on baseline data to predict feeding from 
the given neuron’s activity performed better on the pre-stim data than the post-stim data (see 
Methods). Note that the neurons have degradations in performance well above what would be 
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expected by chance (50%); this indicates that the neurons changed encoding after the heat 
stimulus. *p<0.05, **p<0.005, ***p<0.0005, Wilcoxon signed rank test comparing pre-stimulus 
vs post-stimulus performance of the decoders across animals, as an indicator of whether these 
encoding changes were reliable across animals. The neurons shown here encoded feeding prior 
to the heat stimulus. p-values for encoding change were Benjamini-Hochberg corrected over all 
neurons where the decoder succeeded at predicting feeding in the baseline data (see Methods for 
additional details). 

(G) Average amount of encoding change between pre-stim and post-stim CePNEM fits across 
heat-stimulated animals. Insets display the fraction of times that the indicated neurons changed 
encoding at all after the heat stimulus. Neurons shown here encoded either velocity or head 
curvature prior to the heat stimulus (the neurons that encoded feeding prior to the stimulus are 
analyzed in panel F; different statistical methods needed to be used for these two categories, 
since feeding was strongly suppressed post-heat-stim; see Methods for details). (*)p<0.1, 
*p<0.05, **p<0.005, p-value based on rank of actual magnitude of encoding change across 
animals (red) to level expected by chance (grey distribution), as an indication of whether the 
reliability of encoding change was greater than expected by chance. The p-values were 
Benjamini-Hochberg corrected over this set of neurons. 

(H) A plot that relates each neuron class’s variability in encoding of behavior within heat 
stimulation datasets (y-axis) to its variability within baseline spontaneous behavior datasets (x-
axis). See Methods for additional detail on how intra-dataset variability was computed based on 
encoding in the first versus second halves of the recordings. Black line is the identity line and 
each dot is a neuron class. Note the positive trend. 

 

STAR METHODS 

KEY RESOURCES TABLE 

REAGENT or RESOURCE SOURCE IDENTIFIER 
Antibodies 
   
Bacterial and Virus Strains 
E. coli: Strain OP50 Caenorhabditis 

Genetics 
Center (CGC) 

OP50 

Chemicals, Peptides, and Recombinant Proteins 
Rhodamine 110 Millipore 

Sigma 
Cat#83695 

Rhodamine B Millipore 
Sigma 

Cat#83689 

Deposited Data 
Original code and data related to recording 
and analyzing neural activity and behavior 

This paper Data: https://doi.org/10.5281/zenodo.8150515 
Code: https://doi.org/10.5281/zenodo.8151918 
https://github.com/flavell-lab/AtanasKim-
Cell2023 

https://doi.org/10.5281/zenodo.8150515
https://doi.org/10.5281/zenodo.8151918
https://github.com/flavell-lab/AtanasKim-Cell2023
https://github.com/flavell-lab/AtanasKim-Cell2023
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Experimental Models: Organisms/Strains 
C. elegans: flvIs17[tag-168::NLS-
GCaMP7F, gcy-28.d::NLS-tag-RFPt, ceh-
36:NLS-tag-RFPt, inx-1::tag-RFPt, mod-
1::tag-RFPt, tph-1(short)::NLS-tag-
RFPt, gcy-5::NLS-tag-RFPt, gcy-7::NLS-
tag-RFPt]; flvIs18[tag-168::NLS-
mNeptune2.5]; lite-1(ce314); gur-3(ok2245) 

This paper SWF415 

C. elegans: flvIs17; otIs670 [low-brightness 
NeuroPAL]; lite-1(ce314); gur-3(ok2245) 

This paper SWF702 

C. elegans: flvEx450[eat-4::NLS-GFP, tag-
168::NLS-mNeptune2.5]; lite-1(ce314); 
gur-3(ok2245) 

This paper SWF360 

C. elegans: flvEx451[tag-168::NLS-GFP, 
tag-168::NLS-mNeptune2.5]; lite-1(ce314); 
gur-3(ok2245) 

This paper SWF467 

C. elegans: flvEx207[nlp-70::HisCl1, elt-
2::nGFP] 

This paper SWF515 

C. elegans: flvEx301[tbh-1::TeTx::sl2-
mCherry, elt-2::nGFP] 

This paper SWF688 

C. elegans: flvEx481[flp-8::inv[unc-103-
sl2-GFP], ceh-6::cre, myo-
2::mChrimson] 

This paper SWF996 

C. elegans: flvEx482[unc-25::inv[unc-
103-sl2-GFP], flp-22::cre, myo-
2::mChrimson] 

This paper SWF997 

C. elegans: kyEx4268 [mod-1::nCre, 
myo-2::mCherry]; kyEx4499 [odr-
2(2b)::inv[TeTx::sl2GFP], myo-
3::mCherry] 

This paper SWF703 

C. elegans: leIs4207 [Plad-2::CED-3 
(p15), Punc-42::CED-3 (p17), Plad-
2::GFP, Pmyo-2::mCherry] 

This paper UL4207 

C. elegans: leIs4230 [Pflp-12s::CED-3 
(p15), Pflp-12s::CED-3 (p17), Pflp-
12s::GFP, Pmyo-2::mCherry] 

This paper UL4230 

C. elegans: flvEx485[gcy-21::Chrimson-
t2a-mScarlett, elt-2::nGFP] 

This paper SWF1000 

C. elegans: flvEx502[ceh-28::GtACR2-
t2a-GFP, myo-2::mCherry] 

This paper SWF1026 

C. elegans: flvEx499[ceh-
19::inv[GtACR2-sl2-GFP], ins-10::nCre, 
myo-2::mCherry] 

This paper SWF1023 

Recombinant DNA 
pSF300[tag-168::NLS-GCaMP7F] This paper pSF300 
pSF301[tag-168::NLS-mNeptune2.5] This paper pSF301 
pSF302[tag-168::NLS-GFP] This paper pSF302 
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pSF303[tag-168::NLS-tag-RFPt] This paper pSF303 
Software and Algorithms 
NIS-Elements (v4.51.01) Nikon https://www.nikoninstruments. 

com/products/software 
Other 
Zyla 4.2 Plus sCMOS camera Andor N/A 
Ti-E Inverted Microscope Nikon N/A 

 

RESOURCE AVAILABILITY 

Lead Contact  

Further information and requests for resources and reagents should be directed to and will be 
fulfilled by the lead contact, Steven Flavell (flavell@mit.edu). 

 

Materials Availability  

All plasmids, strains, and other reagents generated in this study are freely available upon request. 
The key strains SWF415 and SWF702 are openly available through the Caenorhabditis Genetics 
Center (CGC). 

 

Data and Code Availability  

 Data: All brain-wide recordings and accompanying behavioral data are freely available in a 
browsable and downloadable format at www.wormwideweb.org. The data files have also 
been deposited at Zenodo and Github and are publicly available as of the date of publication. 
DOIs are listed in the key resources table. 

 Code: All original code has been deposited at Github and Zenodo and is publicly available as 
of the date of publication. DOIs are listed in the key resources table. 

 Any additional information required to reanalyze the data reported in this paper is available 
from the Lead Contact upon request. 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 

C. elegans 

C. elegans Bristol strain N2 was used as wild-type. All transgenic and mutant strains used in this 
study are listed in the Key Resources Table. One day-old adult hermaphrodite animals were used 
for experiments, after growth on nematode growth medium (NGM) supplemented with OP50. 
For crosses, animals were genotyped by PCR. For making transgenic animals, DNA was injected 
into the gonads of young adult hermaphrodites. 

 

METHOD DETAILS 

https://www/
mailto:flavell@mit.edu
http://www.wormwideweb.org/
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Transgenic animals 

Four transgenic strains were used for large-scale recordings in this study, as described in 
the text. The first (SWF415) contained two integrated transgenes: (1) flvIs17: tag-168::NLS-
GCaMP7f, along with NLS-TagRFP-T expressed under the followed promoters: gcy-28.d, ceh-
36, inx-1, mod-1, tph-1(short), gcy-5, gcy-7; and (2) flvIs18: tag-168::NLS-mNeptune2.5. The 
second strain we recorded (SWF702) contained two integrated transgenes: (1) flvIs17: described 
above; and (2) otIs670: low-brightness NeuroPAL (Yemini et al., 2021). Strains were 
backcrossed 5 generations after integration events. The third and fourth strains are non-integrated 
transgenic strains expressing NLS-GFP and NLS-mNeptune2.5 in defined neurons, listed in the 
Key Resources Table (SWF360 and SWF467). 

We also generated strains for neural activation and silencing. The promoters used for 
cell-specific expression were as follows: RIC (Ptbh-1), AIM (Pnlp-70), AUA (Pflp-8+Pceh-6; 
intersectional Cre/Lox), AVL (Punc-25+Pflp-22; intersectional Cre/Lox), RIF (Podr-2b+Pmod-
1; intersectional Cre/Lox), SAA (Plad-2+Punc-42; split Caspase), SMB (Pflp-12, 350bp), ASG 
(Pgcy-21), M4 (Pceh-28), MC (Pceh-19+Pins-10; intersectional Cre/Lox). The split caspase 
plasmids have been previously described54. For Cre/Lox intersection expression, we used the 
inverted/floxed plasmid design that has been previously described18. All promoters, including 
Cre/Lox intersectional combinations, were validated via co-expression of fluorophores (which 
were co-expressed via sl2 or t2a in each strain). Cell ablation lines were confirmed by loss of co-
expressed GFP signal in the ablated cells. 

 

Recordings of neural activity and behavior 

Microscope 

Animals were recorded under a dual light-path microscope that is similar though not 
identical to one that we have previously described20. The light path used to image GCaMP, 
mNeptune, and the fluorophores in NeuroPAL at single cell resolution is an Andor spinning disk 
confocal system with Nikon ECLIPSE Ti microscope. Light supplied from a 150 mW 488 nm 
laser, 50 mW 560 nm laser, 100 mW 405 nm laser, or 140 mW 637 nm laser passes through a 
5000 rpm Yokogawa CSU-X1 spinning disk unit with a Borealis upgrade (with a dual-camera 
configuration). A 40x water immersion objective (CFI APO LWD 40X WI 1.15 NA LAMBDA 
S, Nikon) with an objective piezo (P-726 PIFOC, Physik Instrumente (PI)) was used to image the 
volume of the worm’s head (a Newport NP0140SG objective piezo was used in a subset of the 
recordings). A custom quad dichroic mirror directed light emitted from the specimen to two 
separate sCMOS cameras (Zyla 4.2 PLUS sCMOS, Andor), which had in-line emission filters 
(525/50 for GcaMP/GFP, and 610 longpass for mNeptune2.5; NeuroPAL filters described 
below). Data was collected at 3 × 3 binning in a 322 × 210 region of interest in the center of the 
field of view, with 80 z planes collected at a spacing of 0.54 um. This resulted in a volume rate 
of 1.7 Hz (1.4 Hz for the datasets acquired with the Newport piezo). 
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The light path used to image behavior was in a reflected brightfield (NIR) configuration. 
Light supplied by an 850-nm LED (M850L3, Thorlabs) was collimated and passed through an 
850/10 bandpass filter (FBH850-10, Thorlabs). Illumination light was reflected towards the 
sample by a half mirror and was focused on the sample through a 10x objective (CFI Plan Fluor 
10x, Nikon). The image from the sample passed through the half mirror and was filtered by 
another 850-nm bandpass filter of the same model. The image was captured by a CMOS camera 
(BFS-U3-28S5M-C, FLIR). 

A closed-loop tracking system was implemented in the following fashion. The NIR 
brightfield images were analyzed at a rate of 40 Hz to determine the location of the worm’s head. 
To determine this location, the image at each time point is cropped and then analyzed via a 
custom-trained network with transfer learning using DeepLabCut40 that identified the location of 
three key points in the worm’s head (nose, metacorpus of pharynx, and grinder of pharynx). The 
tracking target was determined to be halfway between the metacorpus and grinder (central 
location of neuronal cell bodies). Given the target location and the error, the PID controller 
configured in disturbance rejection sends velocity commands to the stage to cancel out the 
motion at an update rate of 40 Hz. This permitted stable tracking of the C. elegans head. 

Mounting and recording 

L4 worms were picked 18-22 hours before the imaging experiment to a new NGM agar 
plate seeded with OP50 to ensure that we recorded one day-old adult animals. A concentrated 
OP50 culture to be used in the mounting buffer for the worm was inoculated 18h before the 
experiment and cultured in a 37C shaking incubator. After 18h of incubation, 1mL of the OP50 
culture was pelleted, then resuspended in 40uL of M9. This was used as the mounting buffer.  
Before each recording, we made a thin, flat agar pad (2.5cm x 1.8cm x 0.8mm) with NGM 
containing 2% agar. On the 4 corners of the agar pad, we placed a single layer of microbeads 
with a diameter of 80um to alleviate the pressure of the coverslip on the worm. Then a worm was 
picked to the middle of the agar pad, and 9.5uL of the mounting buffer was added on top of the 
animal. Finally, a glass coverslip (#1.5) was added on top of the worm. This caused the mounting 
buffer to spread evenly across the slide. We waited for 5 minutes after mounting the animal 
before imaging.  

Procedure for NeuroPAL imaging 

For NeuroPAL recordings, animals were imaged as described above, but they were 
subsequently immobilized by cooling, after which multi-spectral information was captured. The 
slide was mounted back on the confocal with a thermoelectric cooling element attached to it, set 
to cool the agar temperature to 4°C 55. A closed-loop temperature controller (TEC200C, 
Thorlabs) with a micro-thermistor (SC30F103A, Amphenol) embedded in the agar kept the agar 
temperature at the 1 °C set point. Once the temperature reached the set point, we waited 5 
minutes for the worm to be fully immobilized before imaging. Details on exactly which multi-
spectral images were collected are in the NeuroPAL annotation section below. 

Heat stimulation 
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For experiments involving heat stimulation, animals were recorded using the procedure 
described above, but were stimulated with a 1436-nm 500-mW laser (BL1436-PAG500, 
Thorlabs) a single time during the recording. The laser was controlled by a driver (LDC220C, 
Thorlabs) and cooled by the built-in TEC and a temperature controller (TED200C, Thorlabs). 
The light emitted by the laser fiber was collimated by a collimator (CFC8-C, Thorlabs) and 
expanded to be about 600 um at the sample plane. The laser light was fed into the NIR 
brightfield path via a dichroic with 1180-nm cutoff (DMSP1180R, Thorlabs). We determined the 
amplitude and kinetics of the heat stimulus in calibration experiments where temperature was 
determined based on the relative intensities of rhodamine 110 (temperature-insensitive) and 
rhodamine B (temperature-sensitive). This procedure was necessary because the thermistor size 
was considerably larger than the 1436-nm illumination spot, so it could not provide a precise 
measurement of temperature within the spot. Slides exactly matching our worm imaging slides 
were prepared with dyes added (and without worms). Dyes were suspended in water at 500mg/L 
and diluted into both agar and mounting buffer at a 1:100 dilution (final concentration of 5mg/L). 
Rhodamine 110 was imaged using a 510/20 bandpass filter and rhodamine B was imaged with a 
610LP filter. We recorded data using the confocal light path during a calibration procedure 
where a heating element ramped the temperature of the entire agar pad from room temp to 
>50C. Temperature was simultaneously recorded via a thermistor embedded on the surface of 
the agar, approximating the position of the worm. Fluorescence was also recorded at the same 
time, at the precise position where the worm’s head is imaged. This yielded a calibration curve 
that mapped the ratio of Rhodamine B/Rhodamine 110 intensity at the site of the worm’s head 
onto precise temperatures. Slides were then stimulated with the 1436-nm laser using identical 
setting to the experiments with animals. The response profile of the ratio of the fluorescent dyes 
was then converted to temperature. We quantitatively characterized the change in temperature, 
noting the mean temperature over the first second of stimulation (set to be exactly 10.0°C) and 
its decay (0.39 sec exponential decay rate, such that it returns to baseline within 3 sec). 

Extraction of behavioral parameters from NIR videos 

 We quantified behavioral parameters of recorded animals by analyzing the NIR 
brightfield recordings. All of these behaviors are initially computed at the NIR frame rate of 
20Hz, and then transformed into the confocal time frame using camera timestamps, averaging 
together all of the NIR data corresponding to each confocal frame. 

Velocity 

First, we read out the (x,y) position of the stage (in mm) as it tracks the worm. To 
account for any delay between the worm’s motion and stage tracking, at each time point we 
added the distance from the center of the image (corresponding to the stage position) to the 
position of the metacorpus of pharynx (detected from our neural network used in tracking). This 
then gave us the position of the metacorpus over time. To decrease the noise level (eg: from 
neural network and stage jitter), we then applied a Group-Sparse Total-Variation Denoising 
algorithm to the metacorpus position. Differentiating the metacorpus position then gives us a 
movement vector of the animal. 
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Because this movement vector was computed from the location of the metacorpus, it 
contains two components of movement: the animal’s velocity in its direction of motion, and 
oscillations of the animal’s head perpendicular to that direction. To filter out these oscillations, 
we projected the movement vector onto the animal’s facing direction, i.e. the vector from the 
grinder of the pharynx to its metacorpus (computed from the stage-tracking neural network 
output). The result of this projection is a signed scalar, which is reported as the animal’s velocity. 

Worm spline and body angle 

To generate curvature variables, we trained a 2D U-Net to detect the worm from the NIR 
images. Specifically, this network performs semantic segmentation to mark the pixels that 
correspond to the worm. To ensure consistent results if the worm intersects itself (for instance, 
during an omega-turn), we use information from worm postures at recent timepoints to compute 
where a self-intersection occurred, and mask it out. Next, we compute the medial axis of the 
segmented and masked image and fit a spline to it. Since the tracking neural network was more 
accurate at detecting the exact position of the worm’s nose, we set the first point of the spline to 
the point closest to the tracking neural network’s nose position. We next compute a set of points 
along the worm’s spline with consistent spacing (8.85 µm along the spline) across time points, 
with the first point at the first position on the spline. Body angles are computed as the angles that 
vectors 𝜃⃗𝑖,𝑖+1 between adjacent points make with the 𝑥-axis; for example, the first body angle 
would be the angle that the vector 𝜃⃗1,2 between the first and second point makes with the 𝑥-axis, 
the second body angle would be  𝜃⃗2,3, and so on. 

Head curvature 

Head curvature is computed as the angle between the points 1, 5, and 8 (ie: the angle 
between 𝜃⃗1,5 and 𝜃⃗5,8). These points are 0 µm, 35.4 µm, and 61.9 µm along the worm’s spline, 
respectively. 

Angular velocity 

Angular velocity is computed as smoothed 𝑑𝜃⃗⃗⃗12
𝑑𝑡

, which is computed with a linear 
Savitzky-Golay filter with a width of 300 time points (15 seconds) centered on the current time 
point.  

Body curvature 

Body curvature is computed as the standard deviation of 𝜃⃗𝑖,𝑖+1 for 𝑖 between 1 and 31 (ie: 
going up to 265 µm along the worm’s spline). This value was selected such that this length of the 
animal would almost never be cropped out of the NIR camera’s field of view. To ensure that 
these angles are continuous in 𝑖, they may each have 2𝜋 added or subtracted as appropriate. 

Feeding (pumping rate) 

Pumping rate was manually annotated using Datavyu, by counting each pumping stroke 
while watching videos slowed down the 25% of their real-time speeds. The rate is then filtered 
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via a moving average with a width of 80 time points (4 seconds) to smoothen the trace into a 
pumping rate rather than individual pumping strokes. 

Extraction of normalized GCaMP traces from confocal images 

We developed the Automatic Neuron Tracking System for Unconstrained Nematodes 
(ANTSUN) software pipeline to extract neural activity (normalized GCaMP) from the confocal 
data consisting of a time series of z-stacks of two channels (TagRFP-T or mNeptune2.5 for the 
marker channel and gCaMP7f for the neural activity channel). Each processing step is outlined 
below. 

Pre-processing 

The raw images first go through several pre-processing steps before registration and trace 
extraction. For datasets with a gap in the middle, all of the following processing is done 
separately and independently on each half of the dataset. 

Shear correction 

Shear correction is performed on the marker channel, and the same parameters are also 
used to transform the activity channel.  Since the images in a z-stack are acquired over time, 
there exists some translation across the images within the same z-stack, causing some shearing. 
To resolve this, we wrote a custom GPU accelerated version of the FFT based subpixel 
alignment algorithm 56. Using the alignment algorithm, each successive image pair is aligned 
with x/y-axis translations. 

Image cropping 

We crop the z-stacks to remove the irrelevant non-neuron pixels. For each z-stack in the 
time series, the shear-corrected stack is first binarized by thresholding intensity. Using principal 
component analysis on the binarized worm pixels, the rotation angle about the z-axis is 
determined. Then the stack is rotated about the z-axis with the determined angle to align the 
worm’s head. Then the 3D bounding box is determined using the list of worm pixels after the 
rotation. Finally, the rotated z-stack is cropped using the determined 3D bounding box. Similar 
to shear correction, this procedure is first done on the marker channel, and the same parameters 
are then applied to the activity channel. 

Image filtering using total variation minimization 

To filter out noise on the marker channel images, we wrote a custom GPU accelerated 
version of the total variation minimization filtering method, commonly known as the ROF model 
57. This method excels at filtering out noise while preserving the sharp edges in the images. Note 
that the activity channel is kept unfiltered for GCaMP extraction. 

Registering volumes across time points 

To match the neurons across the time series, we register the processed z-stacks across 
time points. However, simply registering all time points to a single fixed time point is intractable 
because of the high amount of both global and small-scale deformations. To resolve this, we 
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compute a similarity metric across all possible time point pairs that reports the similarity of 
worm postures. We then use this metric to construct a registration graph where nodes are 
timepoints and edges are added between timepoints with high posture similarity. The graph is 
constrained to be fully connected with an average connectedness of 10. Therefore, it is possible 
to fully link each time point to every other time point. Using this graph, we register strategically 
chosen pairs of z-stacks from different time points (i.e. the ones with edges). The details of the 
procedure are outlined below. 

Posture similarity determination 

For each z-stack, we first find the anterior tip of the animal using a custom trained 2D U-
Net, which outputs the probability map of the anterior tip given a maximum intensity projection 
of the z-stack. We then fit a spline across the centerline of the neuron pixels beginning at the 
determined anterior tip, which is the centroid of the U-Net prediction. Using the spline, we 
compare across time points pairs to determine the similarity. 

Image registration graph construction 

Next, we construct a graph of registration problems, with time points as vertices. For 
each time point, an edge is added to the graph between that time point and each of the ten time 
points with highest similarity to it. The graph is then checked for being connected. 

Image registration 

For each registration problem from the graph, we perform a series of registrations that 
align the volumes, iteratively in multiple steps in increasing complexity: Euler (rotation and 
translation), affine (linear deformation), and B-spline (non-linear deformation). In particular, the 
B-spline registration is performed in four scales, decreasing from global (the control points are 
farther apart) to local (the control points are placed closer together) registration. The image 
registrations and transformations are performed using elastix on OpenMind, a high-performance 
computing cluster. They are performed on the mNeptune2.5 marker channel. 

Channel alignment registration 

To align the two cameras used to acquire the marker and the activity channels, we 
perform Euler (translation and rotation) registration across the two channels over all time points. 
Then we average the determined transformation parameters from the different time points and 
apply across all time points. 

Neuron ROI determination 

To segment out the pixels and find the neuron ROIs, we first use a custom trained 3D U-
Net. The instance segmentation results from the U-Net are further refined with the watershed 
algorithm. 

Simultaneous semantic and instance segmentation with 3D U-Net 

We trained a 3D U-Net to simultaneously perform semantic and instance segmentation of 
the neuronal ROIs in the z-stacks of the unfiltered marker images. To achieve instance 
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segmentation, we labeled and assigned high weights to the boundary pixels of the neurons, which 
guides the network to learn to segment out the boundaries and separate out neighboring neurons. 
Given a z-stack, the network outputs the probability of each pixel being a neuron. We threshold 
and binarize this probability volume to mark pixels that are neurons. 

Instance segmentation refinement 

To refine the instance segmentation results from the 3D U-Net, we perform instance 
segmentation using the watershed algorithm. This generates, for each time point, a set of ROIs in 
the marker image corresponding to distinct neurons. 

Neural trace extraction  

ROI Similarity Matrix 

To link neurons over time, we first create a symmetric 𝑁 × 𝑁 similarity matrix, where 𝑁 
is the number of total ROIs detected by our instance segmentation algorithm across all time 
points. Thus, for each index 𝑖 ∈ 1: 𝑁 in this matrix, we can define the corresponding time point 
𝑡𝑖 and the corresponding ROI 𝑟𝑖 from that time point. This matrix is sparse, as its (𝑖, 𝑗)th entry is 
nonzero only if there was a registration between 𝑡𝑖 and 𝑡𝑗 that maps the ROI 𝑟𝑖 to 𝑟𝑗. In the case 
of such a registration existing, the (𝑖, 𝑗)th entry of the matrix is set to a heuristic intended to 
estimate confidence that the ROIs 𝑟𝑖 and 𝑟𝑗 are actually the same neuron at different timepoints. 
This heuristic includes information about the quality of the registration mapping 𝑟𝑖 to 𝑟𝑗 
(computed using Normalized Correlation Coefficient), the fractional volume of overlap between 
the registration-mapped 𝑟𝑖 and 𝑟𝑗 (i.e. position similarity),  the difference in marker expression 
between 𝑟𝑖 and 𝑟𝑗 (i.e. similarity of mNeptune expression), and the fractional difference in 
volume between 𝑟𝑖 and 𝑟𝑗 (i.e. size similarity of ROIs). The diagonal of the matrix is additionally 
set to a nonzero value.  

Clustering the Similarity Matrix 

Next, we cluster the rows of this similarity matrix using a custom clustering method; each 
resulting cluster then corresponds to a neuron. First, we construct a distance matrix between rows 
of the similarity matrix using L2 Euclidean distance. Next, we apply minimum linkage 
hierarchical clustering to this distance matrix, except that after a merge is proposed, the resulting 
cluster is checked for ROIs belonging to the same time point. If too many ROIs in the resulting 
cluster belong to the same time point, that would signify an incorrect merge, since neurons 
should not have multiple different ROIs at the same time point. Thus, if that happens, the 
algorithm does not apply that merge, and continues with the next-best merge. This continues 
until the algorithm’s next best merge reaches a merge quality threshold, at which point it is 
terminated, and the clusters are returned. These clusters define the grouping of ROIs into 
neurons. 

Linking multiple datasets 
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For datasets that were recorded with a gap in the middle, the above process was 
performed separately on each half of the data. Then, the above process was repeated to link the 
two halves of the data together, except that only two edges that must connect to the other half of 
the data are added to the registration graph per time point, and the clustering algorithm does not 
merge clusters beyond size 2.  

Trace extraction 

Next, neural traces are extracted from each ROI in each time point belonging to that neuron’s 
cluster. Specifically, we obtain the mean of the pixels in the ROI at that time point. This is done 
in both the marker and activity channels. They are then put through the following series of 
processing steps: 

 Background-subtraction, using the median background per channel per time point. 
 Deletion of neurons with too low of signal in the activity channel (mean activity lower 

than the background – this was not done in the SWF360 control dataset due to the 
presence of GFP-negative neurons in that strain), or too few ROIs corresponding to them 
(less than half of the total number of time points). 

 Correction to account for laser intensity changing halfway through our recording sessions 
(done separately on each channel based on intensity calibration measurements taken at 
various values of laser power). 

 Linear interpolation to any time point that lacked an ROI in the cluster. 
 Division of the activity channel traces by the marker channel traces, to filter out various 

types of motion artifacts. These divided traces are the neural activity traces.  

Bleach correction 

We then compute the mean neural activity (averaged across all neurons) over the entire 
time range, and fit a one-parameter exponential bleaching model to it. The bleaching model was 
initialized such that it had value equal to the median neural activity value at the median time 
point, and it was fit using log-MSE error to the averaged neural activity value. A small number 
of datasets with very high bleaching (determined using the exponential decay parameter of the 
bleaching model) were excluded from all analysis. Each neural activity trace is then divided by 
the best-fit bleaching curve; the resulting traces are referred to as 𝐹. In our SWF360 analysis, we 
refer directly to 𝐹; the trace heatmaps shown in this paper are 𝐹

𝐹20
 (where 𝐹20 is the 20th 

percentile, computed separately for each neuron); we also display z-scored neural activity in 
many figure panels, as indicated; and the CePNEM models are fit by z-scoring each neuron 
separately. 

Controls to test whether neurons are correctly linked over time 

We ran a control to test whether neurons were being mismatched by our registration 
process. We did this by processing data from our SWF360 strain that expresses GFP at different 
levels in different neurons (eat-4::NLS-GFP). The recording was made with a gap and was 
processed identically to GCaMP datasets with gaps in the middle, thus also serving as a test of 
inter-gap registration. This SWF360 recording allows us to detect errors in neuron registration, 
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since GFP-negative neuron could briefly become GFP-positive or vice versa. We quantified this 
by setting a threshold of median(𝐹) > 1.5 to call a neuron a GFP neuron. This threshold 
resulted in FracGFP = 27% of neurons being quantified as containing GFP, which is about what 
was expected for the promotors expressed. Then, for each neuron, we quantified the number of 
time points such that the neuron’s activity 𝐹 at that time point differed from its median by more 
than 1.5, and exactly one of [the neuron’s activity at that time point] and [its median activity] 
was larger than 1.5. These time points represent mismatches, since they correspond to GFP-
negative neurons that were mismatched to GFP-positive neurons (if the neuron’s activity 
increased at the time point) or vice versa (if its activity decreased). We then computed an error 
rate of number of mismatched time points

(number of total time points)⋅2⋅FracGFP⋅(1−FracGFP) as an estimate of the mis-registration rate of 

our pipeline. The 2 ⋅ FracGFP ⋅ (1 − FracGFP) term corrects for the fact that mis-registration 
errors that send GFP-negative to other GFP-negative neurons, or GFP-positive to other GFP-
positive neurons, would otherwise not be detected by this analysis. This error rate came out to 
0.3%, so we conclude that artifacts resulting from mismatched neurons are a negligible 
component of our data.  

Annotation of neural identities using NeuroPAL 

NeuroPAL images and annotation procedure 
The identities of neurons were determined via NeuroPAL using the following procedure. 

We obtained a series of images from each recorded animal, while the animal was immobilized 
after the freely-moving GCaMP recording (recording and immobilization procedures described 
above):  

(1-3) Spectrally isolated images of mTagBFP2, CyOFP1, and mNeptune2.5. We excited 
CyOFP1 using the 488nm laser at 32% intensity under a 585/40 bandpass filter. mNeptune2.5 
was recorded next using a 637nm laser at 48% intensity under a 655LP-TRF filter, in order to not 
contaminate this recording with TagRFP-T emission. Finally, mTagBFP2 was isolated using a 
405nm laser at 27% intensity under a 447/60 bandpass filter.  

(4) An image with TagRFP-T, CyOFP1, and mNeptune2.5 (all of the “red” markers) in 
one channel, and gCaMP7f in the other channel. As described below, this image was used for 
neuron segmentation and registration with both the freely moving recording and individually 
isolated marker images. We excited TagRFP-T and mNeptune2.5 via 561nm laser at 15% 
intensity and CyOFP1 and gCaMP7f via 488nm laser at 17% intensity. TagRFP-T, 
mNeptune2.5, and CyOFP1 were imaged with a 570LP.  

All isolated images were recorded for 60 timepoints. We increased the signal to noise 
ratio for each of the images by first registering all timepoints within a recording to one another 
and then averaging the transformed images. Finally, we created the composite, 3-dimensional 
RGB image by setting the mTagBFP2 image to blue, CyOFP1 image to green, and mNeptune2.5 
image to red as done by Yemini et al. (2021) and manually adjusting the intensity of each 
channel to optimally match their manual.  

The neuron segmentation U-Net was run on the “all red” image and we then determined 
the identities of U-Net identified neurons using the NeuroPAL instructions. The landmarks in the 
NeuroPAL atlas were identified first and the identities of the remaining neurons were 
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subsequently determined by comparing the individual channel intensities, overall coloring, and 
relative positioning of the cells. In some cases, neuronal identities could not be determined with 
certainty due a number of factors including: unexpectedly dim expression of one or more 
fluorophores, unexpected expression of a fluorophore in cells not stated to express a given 
marker, and extra cells in a region expressing similar intensities when no other cells are 
expected. Rarely, multiple cells were labeled as potential candidates for a given neuron and the 
most likely candidate (based on position, coloring, and marker intensity) was used for analysis. If 
a cell was not bright enough to be distinguished from its neighbors or was undetected by the 
neuron segmentation U-Net, we left it unlabeled.  

Finally, the neural identity labels from the RGB image were mapped back to the GCaMP 
traces from the freely-moving animal by first registering each fluorophore-isolated image to the 
image containing all of the red markers. The “all red” image was then registered back to the 
freely moving recording, permitting mapping of neuronal labels back to GCaMP traces. 

 
Determination of left/right asymmetry 
 
To determine which neuron classes had left/right asymmetry, we computed the mean correlation 
between the left and right neurons in each neuron class over all datasets where both the left and 
right neurons in that neuron class were detected. We included our heat-stimulus datasets in this 
analysis, but for those datasets the correlation was only computed using the pre-stim data; for our 
baseline datasets, the entire time series was used. For a neuron to be marked as having left/right 
asymmetry, we required that (i) we recorded at least five animals where both the left and right 
neurons of the pair were detected, (ii) the left and right neurons had a mean correlation averaged 
across animals of <0.2, and (iii) the neuron had a mean signal value (averaged across animals) of 
at least 0.25. The signal value threshold was intended to exclude inactive neurons with low 
correlation values due to noise. This analysis resulted in the neurons ASE, IL1, IL2, and SAAD 
showing left/right asymmetry. 
 
C. elegans Probabilistic Neural Encoding Model (CePNEM) 
 
CePNEM Residual Model 

The CePNEM model uses a Gaussian process residual model adding together a white-
noise kernel and a squared exponential kernel. The white-noise kernel is intended to capture 
measurement noise in our neural data, which is expected to be independent between time points, 
while the squared exponential kernel is intended to capture variance in neural activity unrelated 
to behavior, which may have a slower timescale. The squared-exponential residual term is 
critically important, as otherwise the model will be forced to try to explain all autocorrelation in 
neural activity with behavioral information, resulting in severe overfitting. 

 The white-noise kernel 𝐾𝐺𝑁 has standard deviation 𝜎𝑛𝑜𝑖𝑠𝑒 and thus its covariance matrix 
is 𝜎𝑛𝑜𝑖𝑠𝑒

2 𝐼. The squared-exponential kernel 𝐾𝑆𝐸 has standard deviation 𝜎𝑆𝐸 and length scale ℓ, 

giving a covariance matrix defined by 𝑀𝑖𝑗 = 𝜎𝑆𝐸
2 𝑒−(𝑖−𝑗)2

2 ℓ2 . The full residual model is then the 
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Gaussian process model with kernel 𝐾𝐺𝑁 + 𝐾𝑆𝐸, which is then added to the timeseries of the rest 
of the model fit to generate the likelihood of a given neural activity trace under CePNEM. 

CePNEM Prior Distributions 

𝑐𝑣𝑇, 𝑐𝑣, 𝑐𝜃ℎ, 𝑐𝑝, 𝑏, 𝑛(0) ~ 𝒩(0,1) 

ln(𝑠) ~ 𝒩(ln(10) , 1)  

ln(ℓ) ~ 𝒩(ln(20) , 1) 

ln(𝜎𝑆𝐸) ~ 𝒩(ln(0.5) , 1) 

ln(𝜎𝑛𝑜𝑖𝑠𝑒) ~ 𝒩(ln(0.125) , 0.5) 

Here 𝒩(𝜇, 𝜎) is the normal distribution with mean 𝜇 and standard deviation 𝜎. Since the 
neural traces being fit are all z-scored, the priors on the behavioral parameters are also 
standardized. The prior on the moving average term 𝑠 was based on preliminary data from fitting 
previous, conventional versions of our model. The priors on the residual terms were intended to 
be wide enough to accommodate both neurons that are well-explained by behaviors (in which 
case, the model would assign them a low residual value), and neurons that contain little to no 
information about behaviors (in which case, the model would assign them a high residual value). 

 
Fitting procedure 

Overview of fitting approach 

Let N be a neural trace from an animal, B be the behaviors of that animal, and X be the 
model parameters that we are trying to fit. Then the goal our model fitting procedure is to 
estimate the probability distribution of model parameters given our observations, namely 
P(X|N, B). Our model defines the likelihood P(N|X, B) – that is, the likelihood of observing a set 
of neural data given a set of model parameters and behavioral data. Our prior distributions define 
P(X|B); in this case, our prior distributions on model parameters are independent of the animal’s 
behaviors, so P(X|B) = P(X). Therefore, by Bayes’ rule,  

𝑃(𝑋|𝑁, 𝐵) =
𝑃(𝑁|𝑋, 𝐵)𝑃(𝑋)

𝑃(𝑁|𝐵)
 

Unfortunately, 𝑃(𝑁|𝐵) is difficult to compute. Crucially, however, it does not depend on 
the model parameters 𝑋. This means that by comparing the value of 𝑃(𝑁|𝑋, 𝐵)𝑃(𝑋) for different 
values of 𝑋, we can make meaningful insights into the distribution of 𝑃(𝑋|𝑁, 𝐵). In particular, 
we can define a Markov chain that defines a sequence of 𝑋𝑡, where 𝑋𝑡+1 is a stochastic “proposal 
function” of 𝑋𝑡. The idea is that the proposal function can be biased to walk toward regions in 
parameter space with higher likelihood. Indeed, there are a family of algorithms, such as 
Metropolis-Hastings58 and Hamiltonian Monte Carlo59 that define such proposal functions. In 
particular, the proposal functions defined by these algorithms have the property that, in the limit 



42 
 

of generating an infinitely long Markov chain, sampling from the chain is equivalent to sampling 
from the true posterior distribution 𝑃(𝑋|𝑁, 𝐵). 

Model fitting procedure 

Of course, in practice, we do not have computational resources for an infinitely long 
chain, so it is necessary to ensure that the chain can replicate the posterior distribution in a 
manageable amount of time. This in turn requires custom inference algorithms, moving beyond 
the generic MCMC and variational inference algorithms provided with probabilistic 
programming platforms such as Stan and Pyro. Accordingly, we used the Gen probabilistic 
programming platform44, and its inference meta-programming functionality60, to express a 
suitable custom inference algorithm. 

We fit our models using the Gen probabilistic programming platform, using a mixture of 
Metropolis-Hastings (MH) and Hamiltonian Monte Carlo (HMC) steps with adaptive proposals, 
embedded within a resample-move sequential Monte Carlo (SMC) scheme55 with one particle. 
The HMC step uses gradient information and tries to move the chain towards regions of higher 
likelihood. The other MH steps are intended to help the chain get out of local optima by using 
information about the structure of the model, so the Markov chain can better explore the full 
parameter space. Specifically, one iteration of our fitting algorithm involves the following steps 
(here 𝒩 is once again the normal distribution, and 𝒮 is drawn uniformly at random from the set 

[−1,1]), and 𝑖 is the current iteration of the algorithm: 

 MH proposal: ln(ℓ) → 𝒩(ln(ℓ) , 𝛿ℓ(𝑖)) 

 MH proposal: ln(𝜎𝑆𝐸) → 𝒩 (ln(𝜎𝑆𝐸) , 𝛿𝜎𝑆𝐸
(𝑖)) 

 MH proposal: ln(𝜎𝑛𝑜𝑖𝑠𝑒) → 𝒩 (ln(𝜎𝑛𝑜𝑖𝑠𝑒) , 1
2

𝛿𝜎𝑛𝑜𝑖𝑠𝑒
(𝑖)) 

 HMC proposal on parameters 𝑐𝑣𝑇, 𝑐𝑣, 𝑐𝜃ℎ, 𝑐𝑝, 𝑏, 𝑛(0), ln(𝑠) with 𝜖 =
𝛿𝐻𝑀𝐶(𝑖) 

 MH proposal: 𝑐𝑣𝑇 → 𝒩(𝑐𝑣𝑇𝒮, 1) 

 MH proposal (note that the instances of 𝒮 are drawn independently):  

o 𝑐𝑣𝑇 → 𝒩(𝑐𝑣𝑇𝒮, 1) 

o 𝑐𝑣 → 𝒩(𝑐𝑣𝒮, 1) 

o 𝑏 → 𝒩(𝑏, 10−4)  

 After each iteration of the algorithm, the proposal distribution parameters 𝛿 for each 
proposal are updated as follows: If the respective proposal was accepted, its 𝛿 parameter is 
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multiplied by 1.1; otherwise, it is divided by 1.1. (They are all initialized to 1.) This adaptive, 
heuristic choice of proposal distribution aims to encourage proposals that are accepted roughly 
half the time. Although repeated iteration of these adaptive proposals does not guarantee 
convergence via the usual MCMC convergence theory, these adaptive proposals remain valid 
target-preserving MCMC rejuvenation kernels for use within resample-move SMC. To construct 
the posterior samples used in our analysis, we run this fitting procedure for 11,000 iterations, and 
discard the first 1,000 (including the initialization point). The remaining 10,001 points are treated 
as approximate samples from the posterior distribution and are referred to as particles elsewhere 
in the paper. Our control experiments, including simulation-based calibration (detailed below), 
suggest that this approach results in good quality approximations. 

Model initialization 

Despite our efforts to use MH proposal steps to prevent the model fitting procedure from 
falling into local optima, we found that the algorithm still occasionally got stuck, preventing it 
from finding a good approximation to the true posterior. To remedy this, we added a likelihood 
weighting initialization step consisting of sampling 100,000 points from the prior distribution of 
model parameters and selecting the point with the highest likelihood under our model, given the 
neural and behavioral data to be fit. This point is then used to initialize the resample-move SMC 
scheme described above. 

Simulation-based calibration 

To ensure that our fitting process gave a calibrated description of the true model 
posterior, we performed simulation-based calibration41. In this procedure, we generated 4,000 
sample traces from the model distribution 𝑃(𝑋, 𝑁|𝐵) using the prior distribution for 𝑋. 500 
traces were generated using each of eight total values of 𝐵: two 800-time-point subsegments 
from each of four animals (two SWF415, and two SWF702 animals). We then ran our model 
fitting procedure on each sample (three of the 4,000 traces timed out and were discarded). After 
fitting, we then compared the sampled posterior distribution from our inference algorithm to the 
ground-truth parameter values using a rank test with 128 bins. If our inference process was 
giving unbiased estimates of the posterior distribution, then across all of our traces, the 
distribution of these ranks should be the uniform distribution. Gen automated the implementation 
of this simulation-based calibration procedure. 

We used a 𝜒2 test to differentiate the observed ranks from the uniform distribution, and 
found that 9 of the 10 model parameters passed the test at p=0.05. The final parameter, the 
EWMA decay constant 𝑠, seemed to have a minor bias towards larger values, meaning that our 
fitting algorithm is prone to occasionally overestimate this parameter. However, we quantified an 
upper bound on the degree of this overestimation by computing the maximum deviation of the 
CDF of the observed rank distribution for 𝑠, compared with the predicted CDF from the uniform 
distribution, and found a value of 3.5%. This means that the fits of at most 3.5% of encoding 
neurons will be affected by this minor bias, which is less than an average of 4 per animal. Thus, 
we do not believe this minor bias will substantially affect the results described in this paper. 

Controls 
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GFP Control 

We wanted to ensure that we would not spuriously detect motion artifacts as encodings of 
behavior. To do this, we used our pan-neuronal GFP control line SWF467, which by definition 
should not have any neurons that encode behavior. We fit our GFP datasets with CePNEM and 
applied the same encoding analysis to this strain and found that only 2.1% of neurons showed 
behavioral encoding, compared with 58.6% in the SWF415 strain, suggesting that the majority 
(>95%) of our detected encodings are not motion artifacts. We also used the GFP recordings to 
determine which neurons displayed low or no neural dynamics in a given recording. We defined 
a neuron with low or no dynamics to be one whose signal variation, defined as 𝑠𝑡𝑑(𝐹)

𝑚𝑒𝑎𝑛(𝐹) where 𝐹 
is un-normalized ratiometric fluorescence, was less than the 99th percentile of the signal 
variations of GFP neurons. For this analysis only (and not any other analyses in this paper), we 
fit a per-neuron bleaching model to each GCaMP neuron when computing its signal variation 
and used this corrected F, in order to ensure that apparently-active neurons were not due to 
GCaMP neurons having worse-quality bleach correction than the GFP controls. 

Based on this analysis, 5.3% of the neurons were inactive across our recordings. The 
fraction of inactive neurons here appears to be lower than in some prior brain-wide 
recordings.3,26 This may be related to experimental conditions (immobilized versus freely-
moving; off-food versus on-food) or differences in the SNR of the recordings, which determines 
the minimal neural signal that can be resolved from motion and data extraction artifacts. 

Scrambled Control 

 We furthermore wanted to ensure that the model would not overfit to spurious 
correlations between neural activity and behavior. To accomplish this, we fit 11 SWF415 
animals with CePNEM, but replaced the behaviors 𝑣, 𝜃ℎ, and 𝑝 with spurious behaviors from 
other recorded animals, which should result in few neurons showing behavioral encoding. The 
spurious behaviors were generated as follows: we first assign pairs of datasets to minimize the 
behavioral correlation across the datasets within a given pair. To do this, we compute correlation 
across all possible behavior and dataset combinations. After that, we determine the pairing such 
that it minimizes the maximum absolute cross-correlation value across all pairings. To penalize 
high correlation values, we raised the correlations to the power of 4.  

When we analyzed the CePNEM model results, we found that only 2.7% of neurons 
detected as having behavioral encoding, suggesting that the vast majority (>95%) of our detected 
encodings are not due to overfitting. 

Median model fits 

 For display purposes, or analyses where it was necessary to represent a neuron with a 
single model, we computed the median model by computing 𝑛𝑖[𝑡] for each set of parameters 𝑖 in 
the neuron’s posterior distribution, and then defining 𝑛𝑚𝑒𝑑[𝑡] = median𝑖(𝑛𝑖[𝑡]). This is what is 
meant by “median CePNEM fit” unless otherwise noted. 
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Validation metrics and analyses 

Cross-validation (cv) score 

The cross-validation pseudo-R2 metric, named ‘cross-validation score’ or simply ‘cv 
score’ in the text, is defined by 

𝑐𝑣 = mean𝑖 (1 −
MSE(𝑀𝑖(𝑡𝑖), 𝑁(𝑡𝑖))

MSE(𝜇𝑖, 𝑁(𝑡𝑖)) ) 

Here MSE(𝑥, 𝑦) is the mean squared error between data vectors 𝑥 and 𝑦, 𝑀𝑖(𝑡𝑖) is the evaluation 
of the median CePNEM model fit over the 𝑖th training data split evaluated on the corresponding 
testing data 𝑡𝑖, 𝜇𝑖 is the mean neuron activity over the 𝑖th training data split, and 𝑁(𝑡𝑖) is the 
observed neuron activity vector on the testing data 𝑡𝑖. This metric is an approximation of the 
variance of the neural activity explainable by the model on the testing data. 

 Since CePNEM contains a Gaussian process residual model, it can only be trained over 
continuous data. Additionally, the presence of this Gaussian process residual model could cause 
the mathematical properties of the model to change slightly based on the length of training data. 
Thus, we structured our five-fold training/testing splits such that each training data split 
consisted of 8 minutes of continuous data, exactly as the model was fit in the rest of the paper. 
These training splits were uniformly tiled along the 16-minute recordings. The testing splits were 
then constructed such that they were equal length (20% of full dataset), each time point in the 
recording was included in exactly one of the testing splits, and each testing split was near (but 
not overlapping with) its corresponding training split. 

 We only computed the cross-validation score in situations where it would be reasonable 
to expect our model to cross-validate. In particular, since there is no expectation of our behavior-
based model to cross-validate for neurons that don’t encode behavior, we ran it only on neurons 
that encoded behavior in both of the original 8-minute CePNEM fits in the dataset. Additionally, 
we excluded train/test splits where the training data did not contain feeding information while the 
testing data did, since in such splits there would be no way for any model to be able to constrain 
a feeding parameter in the training data (feeding was episodic in these datasets, giving rise to the 
necessity of imposing this constraint). 

Bayesian Generalization Index (BGI) 

We also computed a separate metric, which we call the Bayesian generalization index, to 
assess performance of the full CePNEM model, including the residual model, to generalize to 
withheld testing data. To compute it, each dataset was split in half temporally, and for each 
neuron, CePNEM models were fit on each half of the data (the training data). Each of those 
training models was then evaluated on the other half of the data (the testing data) as follows. 

First, 500 training samples were drawn from the CePNEM posterior distribution from the 
training model. Each sample (a 10-vector of all CePNEM parameters) was then evaluated on the 
testing data using CePNEM likelihood to compute a training array of test-time scores. 
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Similarly, 500 control samples were drawn from the set of all CePNEM posteriors from 
all neurons in our 14 SWF415 baseline datasets. This was done instead of sampling from the 
model prior to ensure that high BGI values were specifically learned from the training data, 
rather than being generally learned properties that apply across neurons. Each of the 10 model 
parameters was drawn independently. Each of these control samples was then evaluated with 
CePNEM on the testing data to compute a control array of test-time scores. 

 The Bayesian generalization index for the given CePNEM training fit was then computed 
as 

BGI =  2 ∗ Prob(𝑡𝑟𝑎𝑖𝑛 > 𝑐𝑜𝑛𝑡𝑟𝑜𝑙) − 1 

Here 𝑡𝑟𝑎𝑖𝑛 and 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 are randomly sampled from the respective distributions of test-time 
scores. In this manner, if the BGI is very close to 1, it means that it is extremely unlikely for a 
randomly-sampled model set of model parameters to be able to match the performance of any of 
the training model parameters on the testing data. On the other hand, a BGI of 0 means that the 
training model did not outperform the control model, either because CePNEM failed to constrain 
the training posterior distributions, or because a substantial portion of them failed to generalize 
to the testing data. Negative BGI values indicate overfitting, where the model performs worse on 
the testing data than simply randomly sampled model parameters. 

 We computed this index over all neurons in all SWF415 datasets. Note that unlike the 
cross-validation score, we included non-encoding neurons in this analysis because we would 
expect them to generalize to the testing data through their CePNEM residual parameters, which 
are included in the BGI computation (though we note that they did perform worse on average 
than the encoding neurons). We observed that 91% of neurons had positive BGI values, and 48% 
of neurons had BGI values above 0.9, indicating a high level of model generalization. The results 
were very similar between SWF415 and NeuroPAL strains. 

Comparison with simpler models 

MSE model fits 

 For some analyses (in particular model degradation analyses where fitting many different 
models with probabilistic inference would be extremely computationally expensive), we found it 
useful to fit our model in a more conventional manner, simply trying to minimize the mean-
squared error (MSE) between the model fit and neural activity rather than using Gen to compute 
the posterior. For these fits, we deleted the residual component of our model and instead simply 
fit 𝑛[𝑡] by trying to minimize the MSE between it and the observed neural activity, set 𝑛(0) = 0, 
and ignored the first 50 time points after each recording began for the MSE calculation (so for 
datasets with a gap in the middle, we would ignore the first 50 time points, as well as time points 
801:850). We used L-BFGS for local optimization and MLSL-LDS for global optimization, and 
performed these fits using the NLopt Julia package. 

Model degradation analysis 

 We tested how each component in the model affects the performance by quantifying the 
increase in error, compared to the full model, when removing the following component 
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individually: each predictor (velocity, head curvature, feeding), the velocity non-linearity, 
removing the EWMA, and all non-linear features (resulting in a fully linear model). The models 
were fitted using our MSE fitting technique with L2 regularization. Out of the 14 pan-neuronal 
GCaMP baseline datasets, 5 were excluded from this analysis due to low variance in the 
pumping rate. 3 datasets were used to optimize the regularization parameter, and the remaining 6 
datasets were used to compute the increase in error. Models were fit with 5-fold cross-validation 
set, splitting each dataset into 5 equal length time segments. The error was computed as the mean 
test time error of the cross-validation splits. For each degraded model type, neurons encoding the 
removed feature were selected for analysis. For example, degraded model without velocity was 
tested on the neurons with velocity encoding. The increase in error was computed by comparing 
the error in degraded model to the error of the full model. Finally, we used the Wilcoxon signed 
rank test for statistical significance. 

Comparing exponentially-weighted moving average (EWMA) to other filtering methods 

In Fig. S1D, alternative smoothing methods were evaluated to compare against the EWMA in the 
model. The alternatives were: optimal Gaussian kernel (Gaussian smoothing), optimal shift 
(shifting to maximize the absolute correlation), and optimal lowpass filter. For each method, 
including the EWMA, gradient descent was used to minimize the error (MSE) between the 
neural trace and the transformed velocity in order to find optimal filtered versions of velocity for 
each metho. This was repeated across all recorded neurons for the analysis in Fig. S1E. As is 
shown, EWMA performed the best. 

 

Statistical tests to determine encoding properties of neurons 

Summary of statistical approach 

Our strategy for determining whether neurons encode a particular behavioral feature (for 
example, whether the neuron encoded ventral head curvature during forward locomotion) is 
briefly summarized here. More details are provided below. 

 We first convert the CePNEM parameters into a space where the encoding of the neuron 
to that behavioral feature can be quantified for each point in the posterior. 
(‘Deconvolved activity matrix’ section below) 

 Compute an empirical p-value based on the fraction of points in the posterior with 
sufficiently strong encoding of the behavioral feature. “Sufficiently strong” means 
exceeding two thresholds that were defined based on GFP and wrong-behavior controls. 
(‘Statistical encoding tests’ section below). 

 Multiple-hypothesis correct these p-values across different types of tunings to each 
behavior, across neurons, and/or across time ranges, as appropriate for the analysis in 
question. 

Deconvolved activity matrix 
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 In order to be able to make statistical assertions about the neural encoding of behavior 
based on the posterior distributions from CePNEM fits, we first needed to transform model 
parameters into a more intuitive space. To accomplish this, for each neuron, we constructed a 
10001 × 4 × 2 × 2 deconvolved activity matrix 𝑀 constructed as follows: 𝑀𝑛𝑖𝑗𝑘 corresponds to 
the modeled activity of the 𝑛th particle from that neuron’s CePNEM fit at velocity 𝑉[𝑖], head 
curvature 𝜃𝐻[𝑗], and pumping rate 𝑃[𝑘]. Here, where 𝜃ℎ is the animal’s head curvature (dorsal 
is positive) and 𝑝 is the animal’s pumping rate over the course of the recording, we have: 

 

𝑉 = [med(rev speed),
1

100
med(rev speed),

1
100

med(fwd speed), med(fwd speed)] 

𝜃𝐻 = [percentile(𝜃ℎ, 25), percentile(𝜃ℎ, 75)] 

𝑃 = [percentile(𝑝, 25), percentile(𝑝, 75)] 

  

 For this calculation, the EWMA and residual components are excluded from the modeled 
activity; the idea is that this matrix contains information about the neuron’s activity at high and 
low values of each behavior, so we can now run analyses on this matrix and not have to take into 
account the actual behavior of the animal. In particular, many simple combinations of entries in 
this matrix have intuitive meanings: 

 The slope of the neuron’s tuning to velocity during forward locomotion is 
𝑀𝑛4𝑗𝑘 − 𝑀𝑛3𝑗𝑘 

 The slope of the neuron’s tuning to velocity during reverse locomotion is 
𝑀𝑛2𝑗𝑘 − 𝑀𝑛1𝑗𝑘 

 The neuron’s deconvolved forwardness (overall slope of the neuron’s tuning to velocity) is 
(𝑀𝑛4𝑗𝑘 − 𝑀𝑛3𝑗𝑘) + (𝑀𝑛2𝑗𝑘 − 𝑀𝑛1𝑗𝑘) 

 The rectification of the neuron’s tuning to velocity (difference between forward and reverse 
slopes) is 

(𝑀𝑛4𝑗𝑘 − 𝑀𝑛3𝑗𝑘) − (𝑀𝑛2𝑗𝑘 − 𝑀𝑛1𝑗𝑘) 
 The slope of the neuron’s tuning to head curvature during forward locomotion (positive 

means dorsal during forward) is  
𝑀𝑛42𝑘 − 𝑀𝑛41𝑘 

 The slope of the neuron’s tuning to head curvature during reverse locomotion (positive 
means dorsal during reverse) is  

𝑀𝑛12𝑘 − 𝑀𝑛11𝑘 
 The neuron’s deconvolved dorsalness (overall slope of the neuron’s tuning to head curvature) 

is 
(𝑀𝑛42𝑘 − 𝑀𝑛41𝑘) + (𝑀𝑛12𝑘 − 𝑀𝑛11𝑘) 
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 The rectification of the neuron’s tuning to head curvature with respect to locomotion 
direction (positive means the neuron is more dorsal during forward; negative means the 
neuron is more ventral during forward) is 

(𝑀𝑛42𝑘 − 𝑀𝑛41𝑘) − (𝑀𝑛12𝑘 − 𝑀𝑛11𝑘) 
 The neuron’s tuning to feeding follows the same pattern as its tuning to head curvature. 

Importantly, the linear structure of the multiplexing component of CePNEM implies that 
the value of the unset parameters 𝑖, 𝑗, 𝑘 in the expressions above do not change the value of those 
expressions. For head curvature, since worms can lay on either side, we manually checked the 
location of the animal’s vulva from the NIR recordings of each animal and flipped dorsal/ventral 
labels as appropriate. 

Statistical encoding tests 

With the intuition derived from the deconvolved activity matrix, for each particle in the 
posterior distribution of the neuron, we can ask whether that particle satisfies a certain property. 
For example, to categorize a particle as representing forward locomotion, we would check 
whether that particle had a sufficiently large deconvolved forwardness value. Specifically, we 
would check whether its deconvolved forwardness value was at least max (𝜉1, 𝜉2), where 𝜉1 =
 0.125
signal

  (here signal = std(𝐹)
mean(𝐹) and 𝐹 is the un-normalized ratiometric fluorescence of the neuron 

in question), and 𝜉2 = 0.25 𝜎𝐷
𝜎𝑀

  (here 𝜎𝐷 is the standard deviation of the model fit corresponding 

to that particle with 𝑠 = 0 and 𝜎𝑀 is the standard deviation of the model fit corresponding to that 
particle). The number 0.125 was selected based on its ability to filter out the small amount of 
motion artifacts observed in our three GFP control datasets (see Methods section on that control 
above). Specifically, we chose a value that filtered out almost all of the motion artifacts (leaving 
only 2.1% of GFP neurons showing false behavioral encoding), while removing as few true 
encodings from our GCaMP data as possible. Similarly, the number 0.25 was selected based on 
its ability to filter out extremely weak correlations between neural activity and behavior, which 
was measured by our controls attempting to fit neurons with behaviors from different animals 
(after the correction, only 2.7% of such neurons showed behavioral encoding). The 𝜎𝐷

𝜎𝑀
 term is a 

correction for the fact that neurons with large 𝑠 values will have higher values in 𝑀. If the 
particle’s deconvolved forwardness value was at least max (𝜉1, 𝜉2), it would be classified as 
representing forward locomotion. 

By the same token, we would classify a particle as representing reverse locomotion if its 
deconvolved reverseness (negative forwardness) value was at least max (𝜉1, 𝜉2), we would 
classify a particle as representing more dorsal information during forward locomotion if its 
rectification to head curvature with respect to locomotion direction was at least max (𝜉1, 𝜉2), and 
so on.  

Now that we can classify particles, we can create empirical 𝑝-values for neurons based on 
the fraction of their particles that share a category. For example, if 98% of particles for a neuron 
are classified as representing forward locomotion, then that neuron’s 𝑝-value for forward 
locomotion would be 0.02. We can then construct a list of such 𝑝 values computed for each 
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neuron in an animal that was fit with CePNEM and use Benjamini-Hochberg correction with 
FDR=0.05 to get a list of forward-encoding neurons in that animal. We can similarly get a list of 
reversal neurons, dorsally-rectified head curvature neurons, neurons activated by feeding during 
forward locomotion (i.e. have a positive slope to feeding during forward locomotion), and so on. 

To construct larger categories, such as neurons with any behavioral encoding, or neurons 
with head curvature encoding, another multiple hypothesis correction step is necessary. For this 
step, we first use Bonferroni correction on opposing categories where it is impossible for a 
neuron to have both categories (for instance, dorsal and ventral tuning), followed by a 
Benjamini-Hochberg correction step on the Bonferroni-corrected 𝑝-values. We then proceed 
with the inter-neuron Benjamini-Hochberg correction, as before. 

A neuron is categorized as encoding head curvature if it expresses statistically significant 
information about any of the four head curvature categories outlined above, in either direction; 
feeding encoding is computed similarly. A neuron is categorized as encoding velocity if it either 
expresses statistically significant information about any of the four velocity categories, or if it 
expresses statistically significant information about any of the rectified categories, since 
rectification of head curvature or feeding based on forward/reverse locomotion state is a form of 
velocity information. A neuron is categorized as encoding if it has statistically significant 
information in any of the tests. Note that for datasets without any feeding information (defined as 
the 25th and 75th percentile of feeding in that dataset being the same, causing 𝑃[1] = 𝑃[2]), 
neurons cannot encode feeding information, so feeding is not included in the multiple-hypothesis 
correction to check whether a neuron encoded any behavior. 

Time ranges 

One final note is that all neurons are fit twice – once over the first half of the data, and 
once over the second half. Thus, for consistency between all our datasets, we fit all of our 
SWF415 and NeuroPAL datasets in this manner.  

For Figure 2A, the encoding statistics are computed on a per-neuron basis, with an 
additional Benjamini-Hochberg correction step to account for the fact that each neuron got two 
chances to qualify as encoding. Time ranges with insufficient feeding variance (this time, 
defined as the difference between the 25th and 75th percentile of feeding being at most 0.5) are 
excluded from feeding analysis. To avoid different behaviors having different amounts of 
available data, animals that never had sufficient feeding variance are excluded from Figure 2A 
entirely. For Figure 2B, the same analysis is used, and there is an additional multiple-hypothesis 
step across the three behaviors. For Figures 2C and S2I-J, all time ranges are used. Fits on 
different time ranges from the same animal are added to the CDF independently of each other, 
but only encoding neurons are included. For example, a neuron that encoded behavior in both 
time ranges would have its EWMA timescale from both fits added to the CDF, while a neuron 
that only encoded behavior once would have that EWMA timescale added. In Figure S2I-J, only 
neurons that statistically significantly encoded the appropriate behavior are included 

Neuron Subcategorization 
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We next sought to combine various pieces of information from our encoding analysis 
together to generate a holistic view of how a given neuron is tuned to a given behavioral 
parameter (Figure 2E). To accomplish this, we sorted neurons as follows (this analysis is done 
independently on each time range): 

 If the neuron had a different sign to its tuning to behavior during forward and reverse (eg: a 
slow neuron that has a positive slope in its tuning to velocity during reversal, but a negative 
slope during forward locomotion), then the neuron was categorized as such. In Figures 2G-
2I, these neurons would appear in the bins (+,-) and (-,+); for head curvature, they would be 
(D,V) or (V,D). 

 Otherwise, if the neuron has rectified tuning to the behavior (depending on the behavior, one 
of the following categories: forward slope > reverse slope, reverse slope < forward slope, 
more dorsal during forward, more ventral during more activated during forward, more 
activated during forward, or more inhibited during forward), it will be placed in one of the 
four rectified bins (+,0), (-,0), (0,-), or (0,+), depending on the sign of the rectification and 
sign of the slopes of the neural tuning to behavior. 

 Otherwise, if the neuron had the same slope during both forward and reverse movement, it 
will be classified in one of the two analog bins (+,+) or (-,-) depending on the sign of that 
slope. Notably, it would be placed in a rectified bin (and not an analog bin) if it had rectified 
information, even if it had the same slope during both forward and reverse locomotion. 

 If none of the above were true, the neuron lacked statistical significance in at least two of the 
three parameters (forward slope, reversal slope, rectification) with respect to the behavior in 
question, and it will be excluded from Figure 2E. 

Methods to determine encodings of neuron classes across recordings 

Hierarchical model to fit neuron classes recorded across multiple animals 

 Neuron classes that were detected in multiple animals had multiple CePNEM fits. To 
attain a more accurate depiction of the neuron across datasets, we used a hierarchical model that 
takes into account the parameters and uncertainty of each CePNEM fit to compute the global 
mean and variability between datasets. The global mean provides the best overall model to the 
neuron class, while the variability (see below for further details) provides a description of how 
reliably the neuron encodes behavior. 

 Specifically, if the neuron was detected 𝑛 times, with CePNEM posteriors 𝑃𝑖 
corresponding to each model fit 1 ≤ 𝑖 ≤ 𝑛, the hierarchical model fits maximum a posteriori 
(MAP) estimates of vectors of parameters 𝜇, 𝜎, 𝑥𝑖, where 1 ≤ 𝑖 ≤ 𝑛. Here 𝜇 corresponds to the 
global mean parameters for the neuron taking into account its data across observations, 𝜎 
corresponds to the global variability, and 𝑥𝑖 corresponds to a point estimate for the parameters of 
the neuron in each observation. The rough form of the hierarchical model is that 𝑥𝑖 come from a 
distribution determined by 𝜇 and 𝜎, but simultaneously come from the distributions 𝑃𝑖, so they 
are fit in such a way as to maximize the likelihood under both of these distributions. 
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 More specifically, the parameters 𝜇 and 𝑥𝑖 are comprised of a 5-vector [𝑐𝑣𝑇, 𝑟, 𝜃, 𝜑, 𝑠], 
where 𝑐𝑣𝑇 and 𝑠 are analogous to their respective CePNEM parameters, (𝑟, 𝜃, 𝜑) is a spherical-
coordinate transform of (𝑐𝑣, 𝑐𝜃ℎ, 𝑐𝑃). The variability 𝜎 is comprised of a 4-vector [𝜎𝑐𝑣𝑇, 𝜎𝑟, 𝜅, 𝜎𝑠]. 
The reason for the spherical transform is that some neural variability could be simply a result of 
different normalization in different animals, which is difficult to perfectly correct for; in 
spherical coordinates, all of that possibly-spurious variability is encapsulated in one parameter 
𝜎𝑟, rather than being spread across multiple parameters. 

 The likelihood function of the hierarchical model then specifies the distribution of the 𝑥𝑖 
given 𝜇 and 𝜎. Specifically, for the non-angle parameters, model assumes the normal 
distributions 𝑥𝑖𝑣~𝒩(𝜇𝑣, 𝜎𝑣) for 1 ≤ 𝑖 ≤ 𝑛, 𝑣 ∈ [𝑐𝑣𝑇, 𝑟, 𝑠]. Meanwhile, the angular parameters 
are determined by a von Mises-Fisher distribution: 𝑥𝑖𝑣~ 𝑉𝑀𝐹(𝜇𝑣, 𝜅) for 1 ≤ 𝑖 ≤ 𝑛, 𝑣 ∈ [𝜃, 𝜑]. 

 Finally, to ensure that the 𝑥𝑖 carry information about the actual CePNEM fits, the 
posterior distributions 𝑃𝑖 are first approximated by fitting them with a multivariate-normal 
distribution 𝑀𝑉𝑁𝑖. This approximation was necessary in order to make the problem of fitting the 
hierarchical model computationally tractable. We verified using manual examination of Q-Q 
plots that the posteriors were well approximated by multivariate-normal distributions, though the 
approximation was not perfect. After this approximation, the parameters 𝑥𝑖 are transformed back 
to Cartesian coordinates 𝑥̂𝑖 = [𝑐𝑣𝑇, 𝑐𝑣, 𝑐𝜃ℎ, 𝑐𝑃, 𝑠] and then the likelihood of these parameters 
under the multivariate-normal approximation is computed: 𝑥̂𝑖 ~ 𝑀𝑉𝑁𝑖. The other five CePNEM 
parameters are not of biological interest and are not included in the hierarchical model. 

 The priors for the hierarchical model are as follows (the priors for the mean values were 
created by examining the full set of CePNEM parameter values, after fitting): 

𝜇[𝑐𝑣𝑇] ~ 𝒩(0,0.3) 
ln(𝜇[𝑟]) ~ 𝒩(0.1,0.4) 
𝜇[𝜃, 𝜑] ~ unit sphere 
ln(𝜇[𝑠]) ~ 𝒩(0.7,0.7) 
ln(𝜎𝑐𝑣𝑇) ~ 𝒩(−1, 1) 
ln(𝜎𝑟) ~ 𝒩(−1, 1) 
ln(𝜅) ~ 𝒩(1, 1) 
ln(𝜎𝑠) ~ 𝒩(−1, 1) 

Cartesian average 

The hierarchical model was designed to compute neural variability, but we also found 
that it provided a useful method of measuring mean neural parameters across animals. However, 
for neurons with high variability, simply using 𝜇 as the mean parameters is not the correct metric 
since the spherical coordinates prevent it from properly canceling out opposing tunings (rather, it 
would instead try to pick an angle in between and keep the same 𝑟). Thus, we decided to instead 
convert all the 𝑥𝑖 of the model back into Cartesian coordinates and average them to produce 
𝜇cart, the Cartesian average model parameters of the neuron under the hierarchical model. This 
𝜇cart is what is being plotted in Figure S5E. 
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Forwardness, Dorsalness, and Feedingness 

The forwardness metric for a neuron class is computed as 𝐹𝐷 ⋅ 𝜎𝑀
𝜎𝐷

⋅ signal, where 𝐹𝐷 is the 

deconvolved forwardness of the Cartesian average 𝜇cart of the hierarchical model fit to that 
neuron class (see “Deconvolved activity matrix” and “Hierarchical model” methods sections 
above for more details; the behavior values used in the deconvolved forwardness computation 
were constructed by appending together all of the behaviors for the neuron class), 𝜎𝐷 is the 
standard deviation of the model fit corresponding to 𝜇cart with 𝑠 = 0, 𝜎𝑀 is the standard 
deviation of the model fit corresponding to 𝜇cart, 𝜎𝐷, and signal as before. This ratio is intended 
to correct for the fact that the model parameters need to be larger (resulting in larger 
deconvolved forwardness values) for the same neural response size if the neuron has a long 
EWMA decay. Dorsalness and feedingness are computed in a similar fashion. 

Encoding strength and relative encoding strength 

Encoding strength is a metric designed to approximate the information content a neuron 
contains about each behavior, given its CePNEM model fits. It is computed on each particle 𝑖 of 
the CePNEM posterior by generating three model traces 𝑛𝑖𝑣, 𝑛𝑖𝜃ℎ, and 𝑛𝑖𝑃, each of which is 
identical to the full model 𝑛𝑖[𝑡] except that the behavior 𝑏 is set to 0 for model 𝑛𝑖𝑏. Thus, the 
MSE between 𝑛𝑖 and 𝑛𝑖𝑏 provides a metric of how important behavior 𝑏 was for the neuron. We 
compute the relative encoding strength of a neuron to behavior 𝑏 as the ratio 

𝑅𝐸𝑆𝑏 = median𝑖 (
𝑀𝑆𝐸(𝑛𝑖, 𝑛𝑖𝑏)

∑ 𝑀𝑆𝐸(𝑛𝑖, 𝑛𝑖𝑐)𝑐∈[𝑣,𝜃ℎ,𝑃]
) 

For neuron classes labeled with NeuroPAL (eg: in Figures 4 and 5), instead of taking the median 
over parameters from the posterior distribution, we used one set of parameters which was the 
Cartesian average of the hierarchical model fit for that neuron, and we used behaviors 
constructed by appending together the behaviors from all observations of that neuron class. Then 
we define the encoding strength of the neuron to behavior 𝑏 as 𝐸𝑆𝑏 = 𝑅𝐸𝑆𝑏

𝑀𝑆𝐸(𝑛,0)
, where 𝑛 was the 

full model fit.  

Analyses of dynamic encoding of behavior 
 
Statistical tests to examine dynamic changes in neural encoding. 

 To determine whether a given neuron in a recording changed how it encoded behavior, 
we used the following procedure. First, we fit two CePNEM models to compare against each 
other. For baseline datasets without any stimulation (both SWF415 and NeuroPAL), we split the 
dataset in half and used fits from each half – the same fits used in the encoding analysis. For the 
NeuroPAL heat-stimulation datasets, we took one fit from the timepoints up until just before the 
stimulation (799 or 800 timepoints), and another fit from the 800 time point block (stim+10) to 
(stim+809). For the SWF415 heat-stimulation datasets, we took one fit from the timepoints up 
until just before the stimulation, and another fit from the 400 timepoint block (stim+10) to 
(stim+409) for heat-stimulation datasets without a gap in the middle, or alternatively (stim+10) 
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to 800 for datasets with such a gap. Note that almost all of the heat-stim analysis uses the 
NeuroPAL datasets rather than the SWF415 ones, because the longer durations and equal time 
lengths of the pre-stim and post-stim data allow for much more powerful analysis. 

 Next, we computed deconvolved activity matrices as defined above on each of the 
CePNEM fit posteriors. We ran the same procedure used to detect encoding, but this time instead 
of computing metrics on individual particles, we computed those metrics on differences between 
the deconvolved activity matrices for all possible pairs of particles from each of the two model 
fits, which was a total of slightly more than 108 such differences per neuron. We used our 
residual threshold 𝜉1 as before, but 𝜉2 is set to 0 for this test because it is not well-defined when 
considering multiple model fits. Neurons that passed our encoding test at 𝑝 = 0.05 using the 
differences between the deconvolved activity matrices for behaviors other than feeding (there 
were too few datasets with enough feeding variance in both time ranges to make a meaningful 
statistical comparison), and encoded behavior (using our standard behavior encoding test) in at 
least one time range were added to the list of encoding changing neuron candidates. 
Additionally, we checked whether the EWMA parameter 𝑠 changed by computing differences 
between all possible values of 𝑠 in the two model fits, and asking whether that was greater than 
0. This comparison was Benjamini-Hochberg corrected over all neurons, and neurons that passed 
the test at 𝑝 = 0.05 and also encoded behavior (using our standard behavior encoding test) in 
both time ranges were added to the list of encoding changing neuron candidates. 

Variability index 

 To compute the variability index of labeled neurons, we fit our hierarchical model (see 
above) on all CePNEM fits for that neuron, and then computed the variability index as 𝜎𝑐𝑣𝑇 +
𝐶𝑖𝑟𝑐𝑆𝐷(𝜅), where 𝐶𝑖𝑟𝑐𝑆𝐷 is a function that computes the circular standard deviation from the 
von Mises-Fisher concentration parameter 𝜅. Note that variability in the EWMA parameter 𝑠 is 
not included as this parameter is not meaningful if the neuron lacked behavioral information. 
Furthermore, variability in encoding strength 𝑟 is also not included as this can include variability 
related to data normalization differences between animals. 

Inter-dataset variability 

 To compute the inter-dataset variability, first the set of model parameters 𝑥𝑖 of the neuron 
within the same animal are transformed into Cartesian coordinates (because normalization is the 
same within the same animal, we can use the scaling information), averaged together, and 
projected back into spherical coordinates to produce a per-animal model estimate 𝑦𝑖. Then 𝜎𝑐𝑣𝑇 is 
computed as the standard deviation of the 𝑐𝑣𝑇 component of the 𝑦𝑖, and 𝜅 is estimated by fitting a 
von Mises-Fisher distribution to the angular parameters 𝜃, 𝜑 of the 𝑦𝑖. Variability is then 
computed as above. 

Intra-dataset variability 

 To compute the intra-dataset variability, first the set of model parameters 𝑥𝑖 
corresponding to different observations of the neuron in the same animal in the same time range 
are averaged together as with inter-dataset variability. This results in a set of averaged model 
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parameters 𝑦𝑖1 and 𝑦𝑖2, where 𝑖 is the animal number, corresponding to the CePNEM fits in the 
first and second halves of the recording. We then compute 

𝑑𝑖 = [|𝑦𝑖1[𝑐𝑣𝑇] − 𝑦𝑖2[𝑐𝑣𝑇]|, 2
𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛𝐷𝑖𝑠𝑡(𝑦𝑖1[𝑐𝑣, 𝑐𝜃ℎ, 𝑐𝑃], 𝑦𝑖2[𝑐𝑣, 𝑐𝜃ℎ, 𝑐𝑃])

𝑦𝑖1[𝑟] + 𝑦𝑖2[𝑟] ] 

Here 𝑦𝑖𝑗[𝑝] is the value of the parameter or vector of parameters 𝑝 in the averaged model 
parameters 𝑦𝑖𝑗, transforming coordinates as appropriate. This 𝑑𝑖 represents a distance in model 
parameter space between the two CePNEM fits in the same animal; the normalization by 
1
2

(𝑦𝑖1[𝑟] + 𝑦𝑖2[𝑟]) serves to ensure that differences in normalization do not result in different 
animals being weighted differently, similarly to how 𝑟 wasn’t included in the variability index. 
The intra-dataset variability can then be computed as 1

√2
(mean(𝑑𝑖[1]) + mean(𝑑𝑖[2])), where 

the division by √2 transforms distance into standard deviation. 

Amount of encoding change (Figure S7G) 

 The amount of encoding change of a neuron in an animal is defined as 0 if that neuron 
did not exhibit an encoding change in that animal, and the variability index of a hierarchical 
model fit on data from only that animal (for Figure S7G, pre-stim and post-stim data) if that 
neuron did exhibit an encoding change. It is computed separately for different components of 
neuron pairs, and in Figure S7G it is averaged over all detections of the given neuron. 

Feeding decoder analysis for encoding change (Figure 7I-J) 

 In order to detect encoding changes in the feeding circuit triggered by the heat stimulus, 
we needed to develop a different approach. This is because the animal doesn’t feed after the heat 
stimulation, so the CePNEM post-stim feeding parameters for each neuron will not be possible to 
constrain, resulting in it being impossible to statistically demonstrate a difference when 
compared with the pre-stim condition. Thus, instead of using the CePNEM encoder model, we 
compared the performance of decoder models on the pre-stim and post-stim data to determine if 
an encoding change was taking place for a given neuron class. 

 More specifically, for each neuron class, we trained a linear decoder model to predict 
feeding behavior from neural activity. Each model was trained on detections of its neuron class 
in the 21 baseline NeuroPAL animals, with the neural activity and feeding behavior being 
appended together for the training. The neural activity was normalized as 𝐹

𝐹10
, where 𝐹10 was the 

10th percentile of the raw (ratiometric) fluorescence in each animal.  

 After training, we determined the set of neuron classes where the decoder analysis 
succeeded. This was determined based on the MSE of the predicted feeding rate in the training 
data (compared to the actual feeding rate) being at least 0.0075 better than the MSE of the null 
model (which is given a constant vector as neural activity). We also only considered neurons that 
had at least 3 detections in both the baseline and heat-stim datasets. This yielded a set of neurons 
that are almost exactly the same as the feeding-encoding neurons from CePNEM: AIN, AQR, I2, 
I3, I6, IL2L, M1, M3, M4, M5, MC, MI, RIH, RIR, RMG, and SIBV. For this set of neurons, we 



56 
 

then evaluated the performance difference of the trained model and the null model on each heat 
stimulus dataset, evaluating the pre-stim and post-stim halves of each dataset separately. We then 
ran a Wilcoxon rank-sum test on this paired data to identify neuron classes where the decoder 
performed significantly worse on post-heat-stim data. Benjamini-Hochberg multiple-hypothesis 
correction was applied across the list of neurons subject to this analysis.  

Modified intra-dataset variability (Figure 7G) 

 In Figure 7G, we also made a modification to the intra-dataset variability index (see 
above) to account for CePNEM’s inability to resolve feeding information post-stim (which 
would erroneously lead to neurons with feeding encoding changes having low variability). 
Specifically, we defined the modified intra-dataset variability of a neuron to be  

𝑀𝐼𝑉 = 𝐼𝑉 + 10 ⋅ max(0, 𝑃𝑒𝑟𝑓𝑝𝑟𝑒 − 𝑃𝑒𝑟𝑓𝑝𝑜𝑠𝑡) 

Here 𝐼𝑉 is the intra-dataset variability index for the neuron and 𝑃𝑒𝑟𝑓𝑥 is the mean performance 
(measured as MSE of the training model minus MSE of the null model) of the feeding decoder 
for that neuron evaluated on the 𝑥-stim data. Thus, if the decoder performs better on the pre-stim 
data and degrades on the post-stim data, it will result in an increase to the modified intra-dataset 
variability index for that neuron. 

 

Connectome analysis 

Connectomes used 

 For all quantitative analysis, the two adult datasets from Witvliet et al. 2021 were 
averaged. Self-looping edges and single-synapse edges were excluded. For the pharyngeal circuit 
analysis, the connectome from the original White et al. 1986 was used, as the Witvliet 
connectome only covers the head ganglion. For the 2D embedding of the connectome (the 
sensorimotor layer and the graph eigenvector; see below), the White et al. 1986 connectome was 
used to replicate the embedding previously used in the field61. On Fig. 4 (B,C,D), the Witvliet 
connectome was used for visualization. 

2D embedding of the connectome 

 The 2D embedding of the connectome was performed by determining the sensorimotor 
layer (referred to as processing depth in the original paper) for each neuron and the 2nd 
eigenvector of the Laplacian of the graph. See the Supporting Text S1 in Varshney et al.61 for the 
exact methods used in determining those values.  

Connectome localization analysis 

 In Fig. 5 (E,F,G), the marginal distribution (kernel density estimation using 
KernelDensity.jl) of the group of neurons of interest (top 15th percentile of the feature of interest, 
which was either (i) high encoding strength, (ii) long decay, or (iii) high variability) was 
compared to the marginal distribution of the random control group (shuffling the features across 
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the neurons that were recorded). One-proportion z-test was used in each trisected segment, along 
the sensorimotor layer axis of the connectome region axis. All selected neuron distributions (blue 
lines) were significantly different from the random control distributions (overall, without 
trisecting) at *p<0.05. Mann-Whitney U test. For the localization in the connectome region axis 
(Fig. 5G), further testing was done to show that the high variability group of neurons were 
interconnected above chance. For that test, the variability values were shuffled across the 
recorded neurons and the intra-group synapse fraction was computed in the same way for these 
random shuffles (Fig. 5H). The random sampling was repeated 100,000 times. Then the p-value 
was empirically determined by computing the percentile of the actual intra-group synapse 
fraction among the random control samples. 

Connectivity vs joint encoding change analysis 

 To assess the relationship between the connectivity type and joint encoding probability 
for neuron pairs (Fig. 6I), a random shuffling test was used. Among the joint encoding neurons 
shown in Fig. 6H, we iterate through all possible pairs (other than self-pairing). For each pair of 
neurons, we record the type of the connection (no connection, unidirectional chemical, 
bidirectional chemical, bidirectional electrical/gap junction) and the joint encoding change 
probability. For control, we shuffle the neuron assignments on the joint encoding change matrix 
and repeat the analysis (1000 random samples). Finally, the actual value was compared to the 
random shuffled distribution for each connection type to empirically compute p-value. 

Handling of left/right bilateral pairs 

 For the neuron classes with bilateral pairing (left/right), the left/right pairs were merged 
for all quantitative analysis, except for the group of neurons with bilateral asymmetry in 
encoding (ASE, SAAD, IL1, IL2). Analysis of relationships between connectivity and 
correlation (or other aspects of encoding) were then conducted on merged neuron classes. The 
purpose of this merging was to prevent the special case of left/right connectivity and correlation 
from dominating our analyses of connectome trends. Left/right pairs are typically well connected 
and strongly correlated, so including them in these analyses would have resulted in there being 
strong relationships between connectivity and activity, even if these were only found in the 
left/right pairs. Excluding them allowed us to ask whether connections between neuron classes 
were associated with trends in neural activity and behavior encoding. 

 For visualization (2D embedding of the connectome), left/right pairs were kept separate 
and not merged. 

Other analysis methods applied to neural recordings 
 
Decoding behavior from neural activity 

Full activity, current behavior 

 We trained L1-regularized linear decoder models to predict the worm’s current velocity, 
head curvature, feeding rate, angular velocity, and body curvature based on its current (z-scored) 
neural activity. To set the regularization parameter, we withheld three datasets that were 
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randomly selected from the set of datasets with feeding standard deviation of at least 0.5. The 
other eleven datasets were used to evaluate decoder performance. The decoders were evaluated 
using five-fold cross-validation splits. All behaviors were z-scored for the decoder, and the 
decoder accuracy is reported as one minus the MSE between the decoder’s prediction and actual 
behavior, evaluated on the test-time data. 

Model residuals, current behavior 

 We computed model residuals for each neuron by taking that neuron’s activity and 
subtracting the modeled 𝑛[𝑡] (computed based off of the median of all posterior CePNEM 
parameters for that neuron), and then z-scoring the resulting residual trace. We then trained 
separate decoder models using the same procedure as above, except using the model residuals 
instead of neural activity. We regularized these decoders separately using the same three set-
aside datasets. 

Decoding past and future behavior (Figures 2D, S2K) 

The following outlines the decoder method for predicting past (retrospective) or future 
behavior (prospective). For predicting head curvature and velocity, the same method was used; 
for ease of explanation, in this description we focus on velocity. We trained linear decoder 
models to predict the average velocity of the worm at various temporal shifts, based on the 
worm’s current (z-scored) neural activity; only neurons that encoded velocity (or head curvature, 
for the head curvature prediction) were included. The models were trained on data from all 14 
SWF415 animals. A separate model was trained for each time point. The average velocity was 
computed in the window spanning (Δt − 8, Δ𝑡 + 8] where Δ𝑡 is the difference between the time 
point to be predicted and the current time (Δ𝑡 = 0 is current; positive values indicate future 
values of behavior while negative values indicate past values). This approximately corresponds 
to a 10-sec time window. Velocity across the full 1600 time points was z-scored before being 
averaged. Each dataset was split into 5 segments for cross-validation, with 100-timepoint gaps in 
between to prevent the training time information from spilling over to the test time segment. The 
models were regularized using an elastic net (L1 and L2).  

As a control, separate models were trained that attempted to predict shifted velocity, 
which should scramble the relationship between neural activity and behavior. Velocity was 
circularly shifted by an amount between 125 and 600 time points, and, additionally, shifts that 
would result in a correlation of greater than 0.2 with actual velocity were discarded. 50 such 
decoders were trained, each using a different, randomly-selected shift. The performance of the 
decoder trained to predict averaged velocity Δ𝑡 time points into the past was then defined as the 
difference between the cost (square root of MSE) of that decoder and the average cost of each of 
the 50 decoders trained on shifted velocity.  

To ensure that decoder performance based on neural activity with Δ𝑡 > 0 was actually a 
representation of historical velocity information, and not simply due to the autocorrelative nature 
of velocity, a separate family of decoders were trained that was given the worm’s current (z-
scored) velocity as input instead of neural activity. The error of those decoders to their shifted 
controls is also displayed in Figure 2D. Finally, to estimate the maximum possible performance 
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of these decoder models, separate “perfect” decoders were trained that were given the worm’s (z-
scored) velocity at time points 𝑡 + Δ𝑡 for each value of Δ𝑡 ∈ (−108, 108), and were then 
subjected to the same shift test. 

Constructing low-dimensional embeddings of neurons via UMAP 

 We wanted to use CePNEM to construct a low-dimensional UMAP space where any 
neuron from any animal could be embedded. To accomplish this, we took the three modeled 
behaviors from 12 SWF415 animals and appended them, so as to have a wide range of possible 
behavioral dynamics. Then, we took 4,004 median CePNEM fits (sampled from 4004 neurons 
across 14 SWF415 animals) and extrapolated them over the appended behavioral data, to 
estimate what the neuron would have done under our model over a wide range of behaviors. We 
then ran UMAP on the resulting 4004 × 19200 matrix to define a two-dimensional embedding 
space. Finally, we projected all posterior CePNEM fits from each neuron into this UMAP space 
to create the point cloud shown in Figure 3A. We also projected subsets of neurons based on 
encoding type (Figures 3B-3F), identity (Figure 5E), and dataset (Figure S3); to do this, we 
simply run the same projection procedure on all posterior CePNEM fits from each neuron in the 
subset in question (i.e. the UMAP space was the same for all embeddings shown in the paper). 

Neural trace reconstruction using principal component analysis 

To determine the number of principal components needed to reconstruct each neuron, 
PCA was performed first on all neurons in each dataset. Neurons without high enough SNR were 
excluded from the analysis. We determined the SNR cutoff based on our GFP datasets. 
Specifically, a given neuron needed to have signal standard deviation higher than 1

1−𝑝
σ𝐺𝐹𝑃, 

where σ𝐺𝐹𝑃 is the GFP signal standard deviation and 𝑝 is the required fraction of variance 
explained. To reconstruct the neurons, each neuron’s loadings were sorted by absolute value. 
Then we increase the number of principal components used to reconstruct until the required 
variance explained is met. In each dataset, this process is repeated for all neurons with high 
enough SNR. 

Neural trace clustering analysis 

 To estimate the optimal number of clusters in the neural traces (Fig. S4A), we first mean 
center neuron. Then k-means clustering is performed on each dataset with varying number of 
clusters, k, ranging from 2 to 10. For each k, we compute the Calinski-Harabasz index. We 
repeat this on all SWF415 datasets. 

State neuron detection analysis (Figure 7F-G) 

 For detecting state neurons whose persistent activity changes are aligned to the heat-
induced state change, we needed to find neurons with activity changes that were approximately 
time-locked to the heat stimulus, rather than neurons that simply have very slowly varying 
activity. To accomplish this, we trained decoder models to decode the indicator function of a 
time point 𝑡 from neural activity, and then asked whether the neuron was able to decode better 
when 𝑡 was the time of the heat-stim, when compared to other control values of 𝑡. Neurons 
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where the heat-stim decoder outperformed all of the other decoders were considered to have 
time-locked state responses to the stimulus. Time points that were too close to the beginning or 
end of the recording, or too close to the heat-stim were excluded from the controls. 

 The average persistent change in activity in response to the heat stimulus metric 
displayed in the Figure 7G heatmap was computed as the average difference between mean pre-
stim and post-stim neural activity 𝐹

𝐹𝑚𝑒𝑎𝑛
. When the neuron statistically failed to have time-locked 

responses to the stim in a dataset, the difference was entered into the average as 0 for that dataset 
in order to filter out responses that were not time-locked to the stimulus. 

 

Behavioral analyses during cellular perturbations 

 For behavioral analysis in animals that had single neuron classes chronically silenced or 
ablated, we (i) recorded animal speed on multi-worm trackers, as previously described62, (ii) 
recorded head curvature behaviors on high-resolution single worm trackers, as previously 
described63, and (iii) quantified pharyngeal pumping manually. For single neuron manipulations 
that involved optogenetic activation or silencing, we used the same methods for behavioral 
quantification, but delivered blue (250 uW/mm2) or red (700 uW/mm2) wavelength light at 
defined times, as described in the figures and figure legends. 

List of key software packages used 

Gen.jl, PyPlot.jl, PyCall.jl, HDF5.jl, ProgressMeter.jl, Distributions.jl, Images.jl, Nlopt.jl, DelimitedFiles.jl, 
NaNMath.jl, Clustering.jl, DataStructures.jl, Interpolations.jl, MultivariateStats.jl, Optim.jl, TotalVariation.jl, 
UMAP.jl, Lasso.jl, VideoIO.jl, Impute.jl, JLD2.jl, JSON.jl LsqFit.jl, MLBase.jl, ImageTransformations.jl, 
HypothesisTests.jl, MultipleTesting.jl, GLM.jl, GLMNet.jl, ForwardDiff.jl, FFTW.jl, Distances.jl, DSP.jl, 
CoordinateTransformations.jl, Combinatorics.jl, Colors.jl, ColorTypes.jl, Cairo.jl, CUDA.jl, KernelDensity.jl 

 

QUANTIFICATION AND STATISTICAL ANALYSES 

All statistical methods used in the paper are described in the figure legends and, where indicated, 
additional details are provided in the Method Details. Definitions of sample size, measures of 
center and dispersion, and precision measures are also indicated in figure legends. Statistics were 
computed using Julia, MATLAB, and GraphPad Prism. Non-parametric statistics were 
exclusively used in the study. When appropriate, corrections for multiple comparisons were 
implemented via Benjamini-Hochberg or Bonferroni correction, as indicated in the figure 
legends. 
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Movie S1. Example video of baseline recording conditions, Related to Figure 1. An excerpt 
from an example neural/behavioral dataset, showing the NIR behavioral recording. Raw video 
data is shown with overlaid information: (i) blue, orange, and green dots are the identified targets 
for worm tracking that were determined during live recording, which allowed us to locate the 
worm’s head and keep the animal centered in view; (ii) black line shows a spline fit to the 
animal’s centerline; (iii) upper left shows time and values of three ongoing behavioral 
parameters: velocity, head curvature, and feeding rate. 

 

Table S1. Model parameters for each neuron class, illustrating how each encodes behavior, 
Related to Figure 4. This table lists the neuron classes recorded in this study, along with the 
best fit CePNEM model parameters. Here, the best fit was determined via a hierarchical 
Bayesian model that analyzed all recorded instances of each neuron class, excluding the post-
heat-stimulus time intervals (see Methods for details). 

Neuron class c_vT c_v c_h c_P ln(s) 
ADA -0.0747 -1.1042 0.3262 -0.4887 1.737 
ADE -0.168 0.6751 0.0329 -0.3033 1.3235 
ADL 0.1337 0.5701 0.1018 -0.6085 0.9854 
AIA 0.1908 0.7582 0.5478 0.4632 0.4864 
AIB -0.2955 -1.8976 -0.1886 0.314 0.6751 
AIM 0.3618 1.3617 0.4239 0.0682 0.7529 
AIN 0.1466 0.2491 0.4073 1.3602 1.1035 
AIY -0.0719 1.5741 0.5228 -0.2692 1.3032 
AIZ -0.1972 1.0437 0.244 -0.1811 1.1792 
ALA 0.1476 1.0395 0.0829 -0.4448 1.431 
AQR -0.1801 1.1287 0.2694 -0.8653 1.3355 
ASEL -0.1181 -0.4025 0.1617 -0.8439 0.8252 
ASER 0.4019 0.4122 0.493 -0.9438 1.0186 
ASG -0.3667 -0.9734 -0.2192 0.2627 -0.1237 
ASH -0.0745 -1.0327 0.0317 -0.5308 1.1804 
ASI -0.1072 0.8027 0.1635 -0.9797 1.0495 
ASJ 0.3714 2.1397 0.1643 -0.1951 1.4312 
ASK 0.0808 0.8515 0.223 -0.3178 1.1496 
AUA 0.4162 1.4042 0.1369 0.2035 0.4376 
AVA -0.5549 -2.3945 -0.1054 0.6246 1.0221 
AVB 0.4793 1.4791 -0.1633 0.0377 -0.0379 
AVD 0.2022 0.455 0.1078 -0.5817 0.8813 
AVE -0.5967 -1.9586 -0.2262 0.4617 0.4635 
AVH 0.097 0.7233 -0.2932 -0.107 1.6321 
AVJ 0.1828 0.5513 -0.9193 -0.0579 0.68 
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AVK 0.2205 0.6658 0.8966 1.5256 0.9109 
AVL -0.1549 -1.8472 0.6569 0.294 0.6861 
AWA -0.1462 -0.8752 0.1528 -0.5631 1.138 
AWB 0.1029 -0.8433 -0.179 -0.4553 0.5467 
AWC 0.1821 -0.3868 -0.0273 -1.084 0.8034 
BAG 0.4744 -0.9178 -0.4279 0.6035 -0.1352 
CEPD 0.3226 0.8509 -0.6184 0.0525 0.0358 
CEPV -0.1221 0.9103 -0.0938 0.6132 -0.1028 
FLP 0.0557 0.3063 -0.1267 -0.9487 1.3528 
I1 -0.112 -0.4283 0.5764 0.8827 1.6353 
I2 -0.1002 0.8775 0.6756 0.6992 0.8881 
I3 0.2507 0.1303 0.8989 0.745 3.0585 
I4 0.0185 0.4263 -0.0496 0.3309 2.1861 
I5 0.2032 0.7462 -0.0368 0.1183 1.0348 
I6 -0.0355 0.9297 0.3531 1.2906 1.7549 
IL1D -0.5409 0.9936 0.2196 0.135 0.021 
IL1L -0.0682 0.8402 0.2529 -0.8545 0.7363 
IL1R -0.0058 1.0951 0.0159 -0.4245 0.245 
IL1V -0.1249 1.009 0.7426 0.074 0.4468 
IL2D -0.042 0.00E+00 0.00E+00 0.1822 1.441 
IL2L 0.1762 0.5378 -0.2612 0.7737 0.8793 
IL2R 0.4357 1.0016 -0.342 -0.2444 0.0852 
IL2V 0.1241 0.7839 0.3423 0.6677 1.2808 
M1 -0.1823 -0.8325 0.1606 -0.9464 1.1971 
M3 0.0416 -0.0237 0.1479 1.4556 -0.0129 
M4 -0.4016 0.9711 -0.2283 0.8133 1.8082 
M5 -0.353 0.8643 -0.0523 0.7196 2.0373 
MC -0.064 0.00E+00 0.00E+00 0.9889 0.6465 
MI -0.0296 -0.3426 0.1974 -0.7314 1.2836 
NSM -0.3002 0.812 0.1522 0.1007 2.3612 
OLL -0.2079 0.8186 -0.8882 0.4139 0.3195 
OLQD -0.129 0.8242 -0.7382 0.5459 -0.0064 
OLQV -0.0616 0.5924 -0.651 0.9636 0.2898 
RIA 0.2487 -0.9773 -0.0007 0.6984 0.6574 
RIB 0.4095 1.3122 -0.0619 0.1264 -0.3528 
RIC -0.0039 1.3908 0.2169 -0.0934 1.3826 
RID 0.2434 1.1858 -0.2398 -0.1896 0.3096 
RIF 0.1648 -0.4404 0.3155 0.47 0.8642 
RIH -0.2647 0.9957 -0.6678 -0.6503 0.6039 
RIM -0.5434 -2.0096 -0.0312 0.1383 0.9469 
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RIR 0.1198 0.3114 0.8052 0.7874 0.5361 
RIS -0.1648 0.6703 1.2411 0.0232 0.6365 
RIV 0.6069 -0.3913 -1.6318 0.132 0.7358 
RMD 0.2084 -0.368 0.4957 0.939 0.162 
RMDD -0.0771 1.1631 0.357 0.4204 0.1076 
RMDV 0.258 -0.172 -0.5697 0.9609 0.0524 
RME -0.4134 1.5265 -0.1173 0.2035 0.2927 
RMED -0.2903 1.8542 -0.11 0.1004 0.6186 
RMEV -0.1426 1.0373 -0.227 -0.0027 -0.1855 
RMF -0.0643 0.7733 0.053 -0.9454 0.3747 
RMG 0.133 0.7826 -0.0163 -0.5091 2.1483 
SAADL -0.0265 0.8603 -0.8019 -0.4663 0.1695 
SAADR -0.3202 -0.7513 -0.9351 -0.0945 0.0204 
SAAV -0.5589 -1.0162 1.1692 -0.0383 0.2579 
SIAD 0.2487 0.5654 0.9842 -0.054 0.6857 
SIAV 0.594 0.3674 -1.4819 0.5467 0.0961 
SIBD 0.1905 1.4006 -0.6041 -0.5973 -0.0402 
SIBV 0.0966 1.477 -0.3649 -0.1624 0.2682 
SMBD 0.3208 0.603 1.1496 0.0327 0.499 
SMBV 0.3374 0.4552 -1.5465 0.6018 0.5735 
SMDD 0.19 0.0876 1.1368 0.3935 -0.1892 
SMDV 0.6219 0.2005 -0.908 0.1954 -0.8147 
URAD 0.2582 -0.6388 0.968 0.1819 1.991 
URAV -0.1474 -1.0535 0.3925 0.4031 1.5906 
URB -0.1045 1.0358 -0.3038 0.1091 0.0393 
URX 0.2222 0.8705 -0.2083 -0.5746 -0.4277 
URYD -0.119 -1.4351 0.2779 -0.2458 0.6991 
URYV -0.0917 -1.4846 -0.1561 0.0855 0.5956 
VB02 0.5548 1.4044 -0.9063 0.0949 0.5848 
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