

1 **A single neuron in *C. elegans* orchestrates multiple motor outputs**
2 **through parallel modes of transmission**

3 **Yung-Chi Huang¹, Jinyue Luo¹, Wenjia Huang², Casey M. Baker¹, Matthew A. Gomes¹,**
4 **Bohan Meng¹, Alexandra B. Byrne², Steven W. Flavell^{1,*}**

5 ¹Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of
6 Technology, Cambridge, MA, USA

7 ²Department of Neurobiology, UMass Chan Medical School, Worcester, MA, USA

8 *Corresponding Author: flavell@mit.edu

9

10 **SUMMARY**

11 **Animals generate a wide range of highly coordinated motor outputs, which allows them to**
12 **execute purposeful behaviors. Individual neurons in the circuits that generate behaviors**
13 **have a remarkable capacity for flexibility, as they exhibit multiple axonal projections,**
14 **transmitter systems, and modes of neural activity. How these multi-functional properties of**
15 **neurons enable the generation of adaptive behaviors remains unknown. Here we show that**
16 **the HSN neuron in *C. elegans* evokes multiple motor programs over different timescales to**
17 **enable a suite of behavioral changes during egg-laying. Using HSN activity perturbations**
18 **and *in vivo* calcium imaging, we show that HSN acutely increases egg-laying and**
19 **locomotion while also biasing the animals towards low-speed dwelling behavior over**
20 **minutes. The acute effects of HSN on egg-laying and high-speed locomotion are mediated**
21 **by separate sets of HSN transmitters and different HSN axonal compartments. The long-**
22 **lasting effects on dwelling are mediated in part by HSN release of serotonin, which is taken**
23 **up and re-released by NSM, another serotonergic neuron class that directly evokes**
24 **dwelling. Our results show how the multi-functional properties of a single neuron allow it**
25 **to induce a coordinated suite of behaviors and also reveal that neurons can borrow**
26 **serotonin from one another to control behavior.**

27

28 **INTRODUCTION**

29 Individual neurons are the basic units of computation in the brain. While some neuron
30 classes have straightforward functional roles, many others exhibit complex multi-functional
31 roles. First, neurons can exhibit multiple modes of dynamics. For example, in the stomatogastric
32 ganglion of crustaceans, individual neuron classes can be co-active with multiple oscillatory
33 networks, each with their own rhythm, and influence activity in each of these networks^{1,2}.
34 Neuron classes whose activities are associated with multiple motor programs have also been
35 identified in worms, flies, and mice³⁻⁶. Second, neurons can co-release multiple transmitters⁷.
36 For example, in *C. elegans*, RIM neurons control escape responses via release of glutamate,
37 acetylcholine, tyramine, and neuropeptides⁸⁻¹⁰. In mammals, midbrain dopamine neurons co-
38 release GABA to modulate basal ganglia circuits¹¹. Third, neurons can contain multiple
39 electrotonically isolated compartments^{12,13}. *In vivo* studies that relate these multi-functional
40 properties of neurons to animal behavior remain limited.

41 The roundworm *C. elegans* provides a tractable system for dissecting the functional
42 properties of individual neurons in the context of behavior. There are 302 neurons in the *C.*
43 *elegans* nervous system and the connectivity among these neurons is known^{14–16}. *C. elegans*
44 exhibit a well-characterized set of motor programs¹⁷ that are extensively coordinated with one
45 another^{18–21} and can be flexibly generated depending on the context²². These include locomotion,
46 egg-laying, head and body posture, defecation, and feeding. Mechanisms that underlie the
47 coordination of these motor programs are still mostly unknown.

48 The egg-laying behavior of *C. elegans* is controlled by a neural circuit that innervates the
49 vulval muscles whose contraction causes egg-laying²³. A key neuron in the egg-laying circuit is
50 HSN, which synapses onto VC neurons and vulval muscles and has a command-like role in
51 controlling egg-laying. HSN also extends a neurite to the nerve ring in the head where it
52 synapses with neurons in other circuits (Fig. 1A). However, the function of this projection to the
53 nerve ring is not yet understood. HSN releases acetylcholine, serotonin, and several
54 neuropeptides^{23,24} and receives diverse modulatory inputs^{25,26}. In freely-moving animals, HSN
55 exhibits calcium peaks that are sometimes accompanied by egg-laying^{19,27}; its release of
56 serotonin and the NLP-3 neuropeptide is required for egg-laying²⁸. HSN’s effects on egg-laying
57 appear to be coordinated with changes in locomotion. Egg-laying is correlated with high-speed
58 locomotion^{18,20}, which depends on the AVF neuron and dopamine signaling^{18,20}. Somewhat
59 paradoxically, ablation of HSN or reduced serotonin production in HSN impairs low-speed
60 dwelling states, which are stable periods of slow locomotion on food^{29,30}. The cellular
61 mechanisms that explain the diverse impacts of HSN on these distinct behaviors are still unclear.

62 Here, we examine the cellular mechanisms that allow HSN to exert multiple influences
63 on behavior. We show that HSN plays a causal role in driving egg-laying and high-speed
64 locomotion during egg-laying while also eliciting low-speed dwelling over minutes-long
65 timescales. HSN increases egg-laying and acute locomotion via different transmitters and distinct
66 subcellular compartments. In addition, serotonin released from HSN acts over minutes to induce
67 low-speed dwelling. This effect is due in part to serotonin being taken up and re-released by the
68 serotonergic neuron NSM in the head that directly evokes dwelling. Our results reveal how a
69 single neuron can influence a broad suite of behaviors over multiple timescales and show that
70 neurons can ‘borrow’ serotonin from one another to control behavior.

71

72 RESULTS

73 HSN neurons induce acute egg-laying and speeding, as well as long-term slowing

74 To examine the causal effect of HSN activity on behavior (Fig. 1A), we performed gain-
75 and loss-of-function perturbations to HSN. To activate HSN, we generated a strain with HSN-
76 specific expression of the blue light-sensitive opsin CoChR³¹. There were no promoters known to
77 drive expression uniquely in HSN, so we developed an intersectional approach for cell-specific
78 expression based on the *cat-4* and *egl-6* promoters (Fig. 1B; Fig. S1A shows specificity; we refer
79 to this strain as HSN::CoChR). We first examined the effects of activating HSN::CoChR with
80 blue light in animals that were dwelling on a food source. HSN activation evoked an immediate

81 increase in egg-laying, as previously reported²⁵ (Fig. 1C). In addition, we observed an immediate
82 increase in forward locomotion speed (Fig. 1C; Fig. S1B). Since HSN activation had not been
83 shown to induce speeding before, we performed additional controls to ensure that this effect was
84 specifically due to HSN activation. We examined the effect of activating HSN::CoChR in *egl-*
85 *1(gf)* mutants, where HSN dies from programmed cell death³². This abolished the light-induced
86 increase in egg-laying and locomotion speed, indicating that both effects are due to HSN
87 activation (Fig. 1D). We also examined whether the increase in locomotion speed was a
88 consequence of egg-laying or, alternatively, a parallel output. To test this, we activated HSN in
89 animals sterilized with FUDR. In these animals, there were no eggs, but HSN stimulation still
90 increased locomotion speed (Fig. 1E). Taken together, these experiments indicate that HSN
91 activity acutely increases egg-laying and forward locomotion and that the effect on locomotion is
92 separable from HSN's effect on egg-laying.

93 We also examined the effects of HSN activation under conditions where animals were
94 travelling at high speed due to recent transfer to a low-density food plate. HSN activation still
95 increased locomotion during light stimulation, but this was followed by an acute reduction in
96 locomotion that lasted for minutes (Fig. 1F). This slowing effect remained intact in animals
97 sterilized with FUDR, suggesting that it was not dependent on egg-laying (Fig. S1C). Together
98 with the above results, this suggest that HSN activation promotes acute egg-laying and high-
99 speed locomotion, followed by a reduction in locomotion speed.

100 We next examined the impact of endogenous HSN activity on locomotion. For these
101 experiments, we utilized *egl-1(gf)* mutants in which HSN is specifically killed. *egl-1(gf)* mutants
102 are known to exhibit reduced egg-laying³². We examined whether the eggs that are laid in the
103 mutant are accompanied by increased locomotion, as is the case in wild-type. To do so, we
104 recorded egg-laying and locomotion simultaneously and examined animal speed surrounding
105 egg-laying. Consistent with previous data²⁰, wild-type animals displayed increased forward
106 movement before and during egg-laying, but this was disrupted in *egl-1(gf)* mutants (Fig. 1G).
107 This indicates that HSN is required for speeding prior to egg-laying and matches our finding that
108 HSN activation increases speed and egg-laying. *egl-1(gf)* animals actually displayed a speed
109 reduction prior to egg-laying, which could be due to other components of the egg-laying circuit
110 that remain intact in *egl-1(gf)*. We also examined dwelling behavior in *egl-1(gf)* mutants using an
111 assay that quantifies animal exploration across a bacterial food lawn. As described previously,
112 *egl-1(gf)* mutants displayed reduced dwelling behavior (or, equivalently, increased roaming; Fig.
113 1H)³⁰. This indicates that HSN is necessary for proper dwelling and matches our findings that
114 HSN activation can increase dwelling for minutes after optogenetic stimulation. Taken together,
115 these data indicate that HSN is required for increased locomotion speed surrounding egg-laying
116 events and low-speed dwelling on bacterial food.

117

118 **HSN activity is correlated with egg-laying and increased locomotion**

119 The above experiments suggest that HSN activity induces acute egg-laying and speeding,
120 as well as long-term slowing. We next examined how endogenous HSN activity was coupled to

121 these behaviors. We generated a strain expressing GCaMP5A and mScarlett in HSN and
122 performed ratiometric imaging as animals freely moved at low speed on bacterial food lawns.
123 HSN activity was organized into discrete calcium peaks that commonly occurred in bursts (Fig.
124 2A), as previously described^{19,27,33,34}. Egg-laying was invariably coupled to HSN calcium peaks
125 (Fig. 2B and S2A). However, there were many calcium peaks that were not accompanied by egg-
126 laying. We also examined animal speed surrounding HSN calcium peaks and found that the
127 peaks were on average time-locked to transient increases in speed (Fig. 2C and S2B). This effect
128 was just as robust when excluding the HSN peaks associated with egg-laying (Fig. S2C). This
129 suggests that HSN calcium peaks are often accompanied by egg-laying and increased animal
130 speed.

131 HSN calcium peaks often occur in bursts^{19,27}. Based on an analysis of inter-peak
132 intervals, HSN peaks within one minute of one another appeared likely to be part of the same
133 burst (Fig. S2D). We examined whether HSN peaks differed in their correlation with behavior
134 depending on whether they occurred earlier or later in bursts. HSN calcium peaks that were
135 associated with egg-laying most frequently occurred later in bursts, shortly after several other
136 peaks (Fig. 2D). In contrast, HSN calcium peaks were most strongly correlated with locomotion
137 speed when there were fewer previous HSN peaks (Fig. 2E; see also Fig. S2E). Thus, when
138 several HSN calcium peaks occur in close succession, earlier peaks are associated with increased
139 locomotion and later peaks are associated with egg-laying. These data provide evidence that
140 endogenous HSN activity is acutely correlated with speeding and egg-laying.

141 To examine the intrinsic coupling of HSN activity to motor networks, we also examined
142 HSN activity in immobilized animals. During immobilization, the *C. elegans* nervous system
143 exhibits fictive locomotion dynamics where neurons that encode forward and reverse movement
144 switch between high and low activity states³⁵⁻³⁷. RIB is one of the forward-active neurons and its
145 bi-stable activity reports the fictive locomotion state of the network. Therefore, we recorded
146 HSN and RIB simultaneously. HSN calcium peaks were significantly more likely to occur when
147 RIB activity was high (Fig. S2F-G), suggesting that HSN activity is coupled to the forward
148 locomotion network even in the absence of actual movement.

149

150 **HSN increases locomotion speed through its neuropeptidergic outputs**

151 We next sought to determine which HSN transmitter(s) mediate these behavioral effects.
152 To determine the transmitters that underlie HSN-induced speeding, we performed optogenetic
153 HSN stimulation in mutant backgrounds lacking specific HSN transmitters. HSN evokes egg-
154 laying via serotonin and NLP-3 neuropeptides²⁸. However, animals lacking serotonin (*tph-1*
155 mutants) or both serotonin and NLP-3 still displayed increased speed upon HSN::CoChR
156 activation (Fig. 3A-B). HSN also releases acetylcholine³⁸, so we examined its impact on HSN-
157 induced speeding. Animals fully deficient in acetylcholine release are uncoordinated³⁹.
158 Therefore, we engineered a conditional knockout allele of *unc-17*, which encodes the vesicular
159 acetylcholine transporter (VACHT)⁴⁰ required for acetylcholine release (Fig. 3C; see Methods for
160 validation). However, animals with an HSN-specific deletion of *unc-17* still displayed robust

161 HSN-induced speeding (Fig. 3D). This suggests that serotonin, NLP-3, and HSN-produced
162 acetylcholine are not essential for HSN-induced speeding.

163 Several neuropeptides are expressed in HSN, according to previous gene expression
164 studies^{24,41,42}. Thus, we next asked whether HSN neuropeptide production is required for HSN-
165 induced speeding. We examined HSN-induced speeding in animals with a null mutation in *egl-*
166 *21*, which encodes a carboxypeptidase required for the production of many neuropeptides⁴³.
167 HSN-induced speeding was abolished in these mutants (Fig. 3E). However, *egl-21* is expressed
168 very broadly, so it was unclear whether this effect was due to loss of neuropeptide production in
169 HSN or other neurons. Therefore, we examined HSN-induced speeding in a strain harboring an
170 HSN-specific deletion of *egl-21* (Fig. 3F). We used *egl-6::nCre* to inactivate *egl-21* in HSN
171 (along with ~5 other neurons that express *egl-6*)²⁶ and found that this abolished HSN-induced
172 speeding (Fig. 3G; Fig. S3A shows no effect on baseline velocity off food). This suggests that
173 HSN neuropeptide production is required for HSN-induced speeding.

174 We attempted to determine which HSN neuropeptide(s) mediate HSN-induced speeding.
175 We obtained a panel of 12 mutants lacking neuropeptides reported to be expressed in HSN^{24,41,42}.
176 We examined speeding surrounding native egg-laying events in each of these single mutants. Of
177 these, *flp-26* and *fip-28* impacted animal speed surrounding egg-laying (Fig. S3B-D; other
178 mutants had no effect). We also crossed neuropeptide mutants into HSN::CoChR and found that
179 loss of *fip-2* and *fip-26* partially attenuated HSN-induced speeding (Fig. 3H-J). This suggests that
180 *fip-2*, *fip-26*, and *fip-28* may be involved in egg-laying- or HSN-induced speeding. *fip-2* is
181 known to impact locomotion⁴⁴, but *fip-26* and *fip-28* have not been closely examined. We made
182 compound mutants lacking multiple neuropeptides and found that both HSN-induced speeding
183 and the native coupling of speeding to egg-laying were attenuated in double mutants lacking *fip-*
184 *2* and *fip-28* (Fig. 3K-L). HSN-specific expression of *fip-2* and *fip-28* in the double mutant
185 restored normal HSN-induced speeding (Fig. 3M). Taken together, these experiments suggest
186 that HSN acutely increases locomotion via its release of neuropeptides, including *fip-2* and *fip-*
187 *28*.

188

189 **HSN serotonin promotes slow locomotion and NSM-induced slowing**

190 We next examined which HSN transmitter(s) drive the decrease in locomotion speed over
191 longer time scales. Here, we analyzed baseline dwelling behavior and HSN-stimulated slowing
192 (see Fig. 1F). We first examined serotonin and NLP-3, the HSN transmitters that control egg-
193 laying²⁸. We found that *tph-1* mutants (lacking serotonin) displayed decreased baseline dwelling
194 (Fig. 4A) and a reduction in HSN-stimulated slowing, particularly several minutes after
195 stimulation (Fig. 4B and D). Animals lacking *nlp-3* had normal baseline dwelling (Fig. 4A) and
196 normal HSN-stimulated slowing (Fig. 4C-D; see also Fig. S4A). We previously showed that cell-
197 specific *tph-1* deletion in HSN also causes a deficit in dwelling³⁰. Here, we found that HSN-
198 specific *tph-1* expression partially rescued the *tph-1* mutant deficit in dwelling, suggesting that
199 HSN-produced serotonin is sufficient to drive dwelling (Fig. 4E). Thus, multiple lines of
200 evidence suggest that HSN serotonin promotes dwelling behavior.

201 We characterized the timescale over which HSN influences low-speed dwelling on food.
202 As shown above, HSN activation induces low-speed dwelling with a short latency and these
203 effects last for minutes. To determine the timescale over which native HSN activity controls
204 dwelling, we examined how long it takes for chemogenetic HSN silencing (with a histamine-
205 gated chloride channel, HisCl⁴⁵) to alter dwelling on food. We first used egg-laying assays to
206 characterize how quickly HSN is inactivated after HSN::HisCl animals are transferred to
207 histamine-containing plates. Egg-laying was inhibited within 5min of transfer, suggesting that
208 HSN is silenced within minutes after histamine exposure (Fig. S4B). We then determined the
209 time course of the effect of HSN silencing on low-speed dwelling behavior. Animals were
210 recorded right after being transferred onto histamine-containing plates. HSN-silenced animals
211 showed significantly higher speed only after 30-40min of histamine exposure (Fig. 4F). This
212 suggests that HSN needs to be inactivated for tens of minutes for there to be an increase in speed,
213 revealing a long-lasting effect.

214 Given this slow time scale, we hypothesized that HSN-released serotonin influences
215 dwelling by contributing to the tonic pool of serotonin. In addition to directly interacting with
216 downstream serotonin receptors, extracellular serotonin might be taken up by other serotonergic
217 neurons via MOD-5^{46,47}, the serotonin transporter (SERT), and re-released to influence behavior
218 (Fig. 4G and S4G). The serotonergic neuron NSM in particular expresses high levels of *mod-*
219 *5*.^{46,47} NSM is activated by feeding; its activity is correlated with dwelling and NSM activation
220 drives dwelling via serotonin release^{6,48-50} (Fig. 4G). It can produce its own serotonin, but it was
221 unclear whether NSM serotonin can also be supplied by other neurons. Thus, we next examined
222 whether HSN-produced serotonin could be taken up and re-released by NSM to influence
223 dwelling.

224 A key prediction of this hypothesis is that NSM's ability to induce slow locomotion via
225 serotonin release should depend on HSN serotonin production. To test this, we used an assay
226 where we optogenetically activated NSM. Consistent with previous work⁵⁰, we found that
227 optogenetic NSM activation evoked slowing in a *tph-1*-dependent manner, indicating that NSM
228 serotonin drives slowing (Fig. S4C). We next examined whether animals that only have *tph-1*
229 expressed in HSN displayed a rescue in NSM-induced slowing. Indeed, restoring HSN serotonin
230 production via HSN::*tph-1* expression partially rescued the ability of optogenetic NSM
231 stimulation to induce slowing (Fig. 4H). This suggests that HSN serotonin production can
232 partially rescue NSM-induced slowing.

233 We next performed a complementary experiment where we tested whether the loss of
234 HSN (via *egl-1* mutation) in a wild-type background impairs the ability of NSM to induce slow
235 locomotion. Indeed, there was a significant reduction in NSM-induced slowing in *egl-1(gf)*
236 mutants (Fig. 4I). This suggests that HSN is required for normal NSM-induced slowing.

237 These results are consistent with two possible interpretations. First, HSN serotonin might
238 be taken up by NSM via MOD-5/SERT, such that altering HSN serotonin production alters
239 NSM's ability to evoke slow locomotion via serotonin re-release. Alternatively, HSN serotonin
240 may be required downstream of NSM activation for slowing. To distinguish between these
241 possibilities, we tested whether HSN could still influence NSM-stimulated slowing in a mutant

242 background where *mod-5*/SERT was deleted. If the first interpretation is correct, there should be
243 no additional effect of HSN ablation on NSM-stimulated slowing if *mod-5* is already deleted,
244 since the *mod-5* mutation would already prevent extracellular serotonin from being taken up by
245 NSM. Alternatively, if NSM-stimulated slowing requires a downstream function of HSN, then
246 HSN ablation should still affect NSM-induced slowing even when *mod-5* is absent. Thus, we
247 compared the effects of optogenetic NSM stimulation on locomotion in *mod-5* mutants versus
248 *mod-5;egl-1(gf)* double mutants. We performed this experiment using a range of different light
249 intensities to ensure that we were examining NSM-induced slowing under conditions where
250 slowing was non-saturating (Fig. 4J; see Fig. S4D-F for multiple light intensities). This was
251 necessary because the loss of *mod-5* leads to hyper-enhanced slowing, since released serotonin
252 cannot be rapidly cleared by MOD-5/SERT^{47,51}. At all light levels tested, there was no difference
253 between the two strains (Fig. 4I-J). This indicates that HSN only impacts NSM-induced slowing
254 when *mod-5*/SERT-dependent serotonin re-uptake is intact. Taken together, this set of
255 experiments suggests that HSN serotonin is taken up and re-released by NSM to evoke slow
256 locomotion.

257

258 **The distinct behavioral functions of HSN map onto different subcellular compartments**

259 HSN causally influences behavior in at least three ways: (1) it drives acute egg-laying
260 through serotonin and NLP-3 release; (2) it drives acute speeding through release of
261 neuropeptides; and (3) it drives dwelling over longer time scales via serotonin release. We next
262 asked how these distinct functions of HSN map onto its unique anatomy. The HSN soma is in the
263 mid-body, posterior to the vulva (Fig. 5A), and its neurite projects anteriorly towards the head¹⁵.
264 In the region where it passes over the vulva, HSN extends short branches where it synapses with
265 vulval muscles and VC neurons (the ‘vulval presynaptic region’). The main HSN axon then
266 enters the ventral cord, projects anteriorly, and enters the nerve ring in the head, where it makes
267 synapses with other neurons.

268 How does HSN activity propagate across the neuron? Previous work showed that HSN
269 calcium peaks in the soma occur normally even when the HSN axon is severed before reaching
270 the vulval presynaptic region³³. This suggests that the HSN activity peaks can originate in the
271 soma. To determine whether HSN soma calcium peaks are accompanied by calcium peaks along
272 the entire axon, we performed calcium imaging of the whole HSN neuron in immobilized
273 animals and examined signals in the soma, vulval presynaptic region, and distal axon near the
274 nerve ring (Fig. 5B). HSN calcium peaks in each compartment were accompanied by calcium
275 peaks in the other compartments (Fig. 5C), suggesting that calcium peaks are rapidly propagated
276 across the entire neuron.

277 Next, we mapped out sites of transmitter release in HSN, focusing on serotonin. *cat-1*
278 encodes the *C. elegans* vesicular monoamine transporter (VMAT) that loads serotonin into
279 synaptic vesicles. Its subcellular localization can be used as an indicator of serotonin-containing
280 vesicle release sites⁵². Because *cat-1* is broadly expressed, we generated a strain to visualize
281 endogenous CAT-1 localization in individual neurons, like HSN. We engineered a strain with

282 three tandem repeats of the split-GFP fragment GFP11 inserted before the native *cat-1* stop
283 codon, creating an in-frame fusion protein (Fig. 5D). We then expressed the other split-GFP
284 fragment GFP1-10 under the *egl-6* promoter that drives expression in HSN, but no other *cat-1*-
285 expressing neurons. When GFP1-10 interacts with CAT-1-3xGFP11 in HSN it reconstitutes a
286 functional GFP fluorophore. Reconstituted CAT-1::GFP in HSN displayed punctate localization,
287 suggestive of presynaptic release sites, matching previous non-cell-specific CAT-1
288 immunostaining⁵². HSN CAT-1::GFP puncta were brightest in the vulval presynaptic region,
289 with much weaker fluorescence in the head and no expression along the neurite (Fig. 5E; Fig.
290 S5A). EM studies indicated that HSN synapses in the mid-body are larger than those in the head,
291 which may be related to the difference we observed here¹⁵. This suggests that HSN primarily
292 releases serotonin in the vulval presynaptic region.

293 We also tested which behavioral functions of HSN require its axonal projection to the
294 nerve ring. To do so, we examined animals where we axotomized the HSNL/R neurites just
295 anterior to the vulval presynaptic region (Fig. 5F; Fig. S5B shows exact cut site). This leaves the
296 HSN soma connected to the vulval presynaptic region but not to the remainder of the neurite that
297 projects into the nerve ring. Egg-laying rates were unaffected by laser axotomy at this position
298 (Fig. 5G), consistent with the notion that the HSN vulval presynaptic region controls egg-laying.
299 However, egg-laying in the axotomized animals displayed much weaker coupling to increased
300 locomotion speed (Fig. 5H; laser controls in Fig. S5C). This suggests that HSN signal
301 propagation to the head is required for proper speeding during egg-laying. In contrast, the
302 baseline speed of animals on food was not significantly affected by HSN axotomy (Fig. 5I).
303 Thus, disrupting the HSN axonal projection to the nerve ring does not bias the animals towards
304 roaming, even though HSN cell ablation or HSN silencing does (Fig. 5I; and above). Together,
305 these experiments suggest that HSN axonal projections to the head are required for acute
306 speeding during egg-laying but not baseline egg-laying or baseline on-food locomotion.

307

308 **Sensory control of egg-laying requires humoral release of neuropeptides by sensory 309 neurons**

310 The above results provide information about how the functional outputs of HSN map
311 onto the different anatomical and molecular features of this neuron. We also wanted to examine
312 how sensory inputs are transmitted to HSN, given its unique anatomy and function. Egg-laying
313 behavior is impacted by many aspects of the sensory environment, including food availability,
314 aversive cues, and more⁵³⁻⁵⁶. Here, we focused on the effects of osmolarity, as it has been shown
315 that a mild upshift in osmolarity (< 1 Osm) triggers reduced egg-laying^{33,57} and reduced HSN
316 activity³³, suggesting that this may be a good system for studying sensory control over HSN
317 activity and behavior.

318 To examine how high osmolarity inhibits HSN and egg-laying, we used an assay where
319 animals were transferred to a high osmolarity plate for one hour and the number of eggs laid was
320 counted (Fig. 6A). Osmolarity was increased beyond the normal 150 mOsm level by addition of
321 sorbitol. This revealed a dose-dependent effect where higher levels of osmolarity in the plate

322 inhibited egg-laying (Fig. 6B; baseline egg-laying rates in Fig. S6A). To determine the sensory
323 mechanisms that link osmolarity to egg-laying, we examined behavioral responses of animals
324 lacking either *tax-2* or *ocr-2*, which encode ion channels required for sensory transduction in
325 different sensory neurons⁵⁸. While *ocr-2* mutants still responded to the osmotic stimulus, *tax-2*
326 mutants had an attenuated response at 300 mOsm (Fig. 6B-C). Higher concentrations still
327 inhibited egg-laying in *tax-2*, suggesting that additional mechanisms may inhibit egg-laying
328 under those conditions. We observed the same behavioral phenotype in animals lacking *tax-4*,
329 which encodes ion channel subunits that function together with TAX-2 (Fig. 6C)⁵⁸.

330 We asked whether these mild 300 mOsm conditions that reduced egg-laying were
331 sufficient to impact HSN activity using GCaMP imaging in moving animals. Indeed, HSN
332 calcium peak frequency was significantly reduced in the animals on 300 mOsm agar, compared
333 to standard 150 mOsm conditions (Fig. S6B).

334 To map out which exact sensory neurons are required for osmolarity-induced egg-laying
335 inhibition, we performed two sets of experiments. First, we examined behavioral responses in a
336 panel of transgenic and mutant strains with specific sensory neurons ablated. Second, we
337 examined behavioral responses in animals that had *tax-4* rescued in different sensory neurons to
338 recover their sensory transduction. We examined the effects of cell ablation for >10 sensory cell
339 types and only observed an attenuated behavioral response in animals with the sensory neuron
340 BAG ablated (Fig. 6D; Fig. S6C). We examined the effects of restoring *tax-4* expression in seven
341 neuron classes and observed the most robust rescue when *tax-4* was rescued in BAG (Fig. 6E;
342 Fig. S6D). Consistent with the *tax-2* mutant results above, BAG ablation did not prevent the
343 reduction in egg-laying caused by higher osmolarity levels (Fig. S6E). This suggest that sensory
344 transduction in BAG sensory neurons is important for osmolarity-induced inhibition of egg-
345 laying.

346 BAG senses gases through its ciliated sensory ending^{59,60}. To test whether BAG responds
347 to changes in osmolarity, we performed BAG GCaMP imaging in freely-moving animals as they
348 moved from a 150 mOsm agar environment to a 300 mOsm environment (generated by fusing
349 agar; see Methods). Indeed, BAG calcium levels increased as animals moved to the higher
350 osmolarity environment (Fig. 6F). This suggests that BAG either directly senses osmolarity
351 upshifts or receives inputs from other osmo-sensitive cells.

352 We attempted to characterize the BAG signal that is required for osmolarity-induced
353 inhibition of egg-laying behavior. BAG is the main source of FLP-17 and one of the sources of
354 FLP-10⁶¹. Both of these neuropeptides inhibit HSN, so we examined osmolarity-induced
355 behavioral responses in mutants lacking these neuropeptides²⁶. *flp-17* mutants, as well as animals
356 lacking the FLP-17 receptor *egl-6*, showed an attenuated egg-laying response to osmolarity
357 upshift, matching BAG-ablated animals (Fig. 6G; Fig. S6F). This suggests that FLP-17/EGL-6
358 signaling is important for osmolarity-induced egg-laying inhibition. Related to this, we also
359 found that HSN axotomy (in the position described above) did not attenuate the effects of
360 osmolarity on egg-laying (Fig. 6H). This suggests that a humoral signal is relayed from sensory
361 neurons to HSN to inhibit egg-laying, rather than local synaptic signaling in the head. Overall,
362 these results suggest that increased osmolarity activates a BAG-FLP-17 signal to inhibit egg-

363 laying. Given the known role of FLP-17/EGL-6 signaling in inhibiting HSN and our observation
364 that exposure to 300 mOsm conditions activates BAG and inhibits HSN, this effect may be
365 mediated by HSN inhibition. In addition, we have not ruled out the presence of other osmolarity-
366 induced changes that may impact egg-laying in parallel.

367

368 DISCUSSION

369 Animals coordinate many distinct motor outputs as they execute purposeful behaviors.
370 Here, we show how specific multi-functional properties of the HSN neuron endow it with the
371 ability to orchestrate a suite of behavioral changes. HSN promotes an acute increase in egg-
372 laying and locomotion, followed by low-speed dwelling behavior. The acute effects on egg-
373 laying and speeding are mediated by distinct sets of HSN transmitters and different subcellular
374 compartments. The longer lasting effect on dwelling is mediated by HSN release of serotonin,
375 which is taken up and re-released by serotonergic NSM neurons that directly evoke dwelling.
376 Our results illustrate how cellular morphology, multiple transmitter systems, and non-canonical
377 modes of transmission like neurotransmitter “borrowing” endow a single neuron with the ability
378 to orchestrate multiple features of a behavioral program.

379 While the role of HSN in egg-laying is well-established^{23,56}, we used optical tools to
380 reveal additional behavioral functions of HSN. We found that HSN releases multiple
381 neuropeptides to acutely increase locomotion speed prior to egg-laying. Our axotomy data
382 suggest that the speed-evoking effect of HSN requires its axon in the head. Given that the
383 locomotion circuit is located in the head and that HSN calcium peaks are reliably transmitted
384 along the HSN axon, these peptides may be well positioned to exert fast, direct action on
385 locomotion circuits during HSN calcium peaks. We also found that HSN serotonin can induce
386 dwelling behavior that lasts for minutes after HSN activity ends. Interestingly, HSN-released
387 serotonin is taken up and re-released by NSM in the head, which directly drives dwelling. After
388 serotonin is released, it can be absorbed by different cell types via the serotonin transporter,
389 MOD-5/SERT^{46,62,63}. In *C. elegans*, the neurons NSM, AIM, and RIH neurons have been shown
390 to absorb endogenous and exogenous serotonin in a *mod-5*-dependent manner^{46,47,64}. However, it
391 has remained unclear whether this absorption is for serotonin turnover/degradation or,
392 alternatively, whether this serotonin is re-released to impact behavior. Our work here provides
393 evidence that serotonin can be transferred between serotonergic neurons and re-released to
394 control behavior. Recent expression studies suggest that similar mechanisms could potentially
395 occur for GABA as well⁶⁵. This mechanism of neurotransmitter “borrowing” may be
396 functionally important. NSM is activated by feeding and its release of serotonin evokes
397 dwelling^{49,66}. Our results here suggest that serotonin levels in NSM are influenced by HSN
398 activity. This might allow HSN activity to have a priming-like effect, where its recent activity
399 could increase NSM serotonin levels so that subsequent food-driven NSM activation could lead
400 to more robust slowing. Future studies could make use of fluorescent serotonin sensors^{67,68} to
401 define the spatiotemporal dynamics of this extra-synaptic serotonin more precisely.

402 The behavioral coordination that HSN facilitates during egg-laying could be
403 evolutionarily adaptive. One possible reason that animals may increase locomotion during egg-
404 laying may be to depolarize muscle cells adjacent to vulval muscles, facilitating egg-laying. In
405 addition, high-speed movement during egg-laying may allow animals to distribute their eggs
406 rather than depositing them all in one location. Coupled with HSN's ability to bias animals
407 towards dwelling, this could allow animals to distribute their eggs within a high-quality
408 environment and dwell in the overall vicinity as well. *C. elegans* egg-laying is impacted by many
409 aspects of the sensory environment – food, aversive cues, and more²³. We found that high
410 osmolarity, an aversive stimulus, signals through a humoral factor to inhibit egg-laying.
411 Together, HSN's sensory inputs and its outputs that couple egg-laying to locomotion may allow
412 animals to distribute their eggs across favorable sensory environments.

413

414 ACKNOWLEDGMENTS

415 We thank Mark Alkema, Cori Bargmann, and members of the Flavell lab for critical
416 reading of the manuscript; Cori Bargmann for guidance during mosSCI strain generation; the
417 Caenorhabditis Genetics Center (supported by P40 OD010440), Bob Horvitz, Piali Sengupta,
418 and Cori Bargmann for strains; and Yun Zhang and Nuria Flames for sharing plasmids and DNA
419 sequences. A.B.B. acknowledges funding from NIH (NS124338). Y-C.H. was supported by a
420 Picower Fellowship. S.W.F. acknowledges funding from NIH (GM135413); NSF (Award
421 #1845663); McKnight Foundation; Alfred P. Sloan Foundation; The Picower Institute for
422 Learning and Memory; and The JPB Foundation.

423

424 AUTHOR CONTRIBUTIONS

425 Conceptualization, Y-C.H. and S.W.F. Methodology, Y-C.H., J.L., W.H., C.M.B.,
426 M.A.G., A.B.B., and S.W.F. Software, Y-C.H., C.M.B., and S.W.F. Formal analysis, Y-C.H. and
427 S.W.F. Investigation, Y-C.H., J.L., W.H., C.M.B., M.A.G., B.M., A.B.B., and S.W.F. Writing –
428 Original Draft, Y-C.H. and S.W.F Writing – Review & Editing, Y-C.H. and S.W.F. Funding
429 Acquisition, A.B.B. and S.W.F.

430

431 DECLARATION OF INTERESTS

432 The authors have no competing interests to declare.

433

434 FIGURE LEGENDS

435 **Figure 1. The HSN neuron evokes egg-laying, acute speeding, and long-term slowing**

436 (A) Cartoon showing HSN neuron (red) in *C. elegans*. Pharyngeal and vulval muscles are light
437 gray; eggs are dark gray.

438 (B) Intersectional promoter strategy for HSN-specific expression of CoChR. An inverted
439 CoChR-sl2-GFP cassette is expressed under the *cat-4* promoter. The *egl-6* promoter drives
440 expression of Cre recombinase, which acts on the lox sites to invert CoChR-sl2-GFP.

441 (C) Behavioral responses to HSN::CoChR activation, shown as averages of velocity (top) or egg-
442 laying (bottom) aligned to optogenetic stimuli. Blue boxes indicate the light illumination period.
443 For velocity, statistics examined whether the change in velocity during lights-on was different
444 between the two groups (see Methods). For egg-laying, statistics examined whether the egg-
445 laying rate during lights-on was different between the two groups. Because egg-laying events are
446 transient, the mean for the egg-laying rate over time is a jagged line. n = 37 animals (470
447 stimulation events) for +ATR and 12 animals (120 stimulation events) for -ATR. ***p<0.0001,
448 Mann-Whitney U test.

449 (D) HSN::CoChR activation in *egl-1(n487gf)* mutants. n = 10 animals (144 stimulation events)
450 for *egl-1*. WT data is same as (C). ***p<0.0001, Mann-Whitney U test, as in (C).

451 (E) HSN::CoChR activation in animals treated with FUDR. n = 20 animals (250 stimulation
452 events) for FUDR-treated animals. WT data is same as (C). ***p<0.0001, Mann-Whitney U
453 test, as in (C).

454 (F) Effect of HSN::CoChR activation on speed in animals travelling at high baseline speeds,
455 shown as average speed aligned to optogenetic stimuli. n = 100-112 animals. Statistics examined
456 whether the change in speed (minute before stimulation versus minute after stimulation) was
457 different between groups. ***p<0.0001, Mann-Whitney U test.

458 (G) Change in animal velocity surrounding native, spontaneous egg-laying events. Lines show
459 change in velocity relative to baseline (-5 to -3 min). n = 21 animals for wild-type (518 egg
460 events) and 20 animals for *egl-1* (169 egg events). Statistics examined whether the change in
461 velocity preceding egg-laying was different between groups (see Methods). ***p<0.0001,
462 Mann-Whitney U test.

463 (H) **Top:** Behavioral assay for exploration. **Bottom:** Exploratory behavior of the indicated
464 genotypes. Dots are individual animals. n = 20 animals for each genotype ***p<0.001, Mann-
465 Whitney U test.

466 Data are shown as means \pm standard error of the mean (SEM).

467 See also Figure S1.

468

469 **Figure 2. HSN activity is correlated with egg-laying and locomotion**

470 (A) Example of HSN GCaMP and speed in a freely-moving animal.

471 (B) Average HSN GCaMP aligned to egg-laying events. n = 16 egg-laying events. **p<0.01,
472 empirical p-value, comparing to shuffle controls in Fig. S2A.

473 (C) **Left:** Average speed (black) and HSN GCaMP (green) aligned to HSN calcium peaks.
474 **Right:** zoomed-on plot of derivative of HSN GCaMP and speed. n = 104 peaks across 15
475 animals. **p<0.01, empirical p-value, comparing to shuffle controls in Fig. S2B.

476 (D) Number of HSN peaks in the minute before HSN peaks that either result in egg-laying or
477 not. Dots are individual peaks. †p=0.0544, Wilcoxon rank-sum test.

478 (E) Event-triggered averages displayed as in (C), splitting data based on how many HSN calcium
479 peaks occurred before the HSN calcium peak being examined. n = 22-47 peaks per plot.
480 **p<0.01, empirical p-value, determined as in (C).

481 For (B)-(E), data are shown as mean \pm SEM.

482 See also Figure S2.

483

484 **Figure 3. HSN evokes acute speeding through its neuropeptidergic outputs**

485 (A-B) HSN::CoChR-induced behavioral changes. Alleles: *tph-1*(mg280) and *nlp-3*(n4897). n = 7
486 animals (140 stimulation events) for *tph-1* and 11 animals (180 stimulation events) for *tph-1;nlp-3*
487 animals. WT data is same as Fig. 1C. *p<0.05, ****p<0.0001, Mann-Whitney U test, as in
488 Fig. 1C.

489 (C) Cartoon of *unc-17*/VACHT conditional knockout allele.

490 (D) HSN::CoChR activation in floxed *unc-17* animals expressing *pegl-6::Cre*. n = 12 animals
491 (120 stimulation events) for *unc-17* HSN knockout. WT data is same as Fig. 1C. *p<0.05,
492 Mann-Whitney U test, as in Fig. 1C.

493 (E) HSN::CoChR activation in *egl-21*(n476) animals. n = 14 animals (205 stimulation events) for
494 *egl-21*. WT data is same as Fig. 1C. ****p<0.0001, Mann-Whitney U test, as in Fig. 1C.

495 (F) Cartoon of strain where a single-copy, floxed *egl-21* rescue was introduced into *egl-21*(n476)
496 null animals.

497 (G) HSN::CoChR activation in HSN-specific *egl-21* knockouts (*egl-21*(n476); floxed *egl-21*
498 genomic (*kySi61*); plus *pegl-6::Cre*). n = 15 animals (150 stimulation events) for *egl-21* strain.
499 WT data is same as Fig. 1C. ****p<0.0001, Mann-Whitney U test, as in Fig. 1C.

500 (H-K) HSN::CoChR activation in neuropeptide mutants. Alleles: *flp-2*(gk1039), *fip-28*(flv11),
501 *fip-26*(gk3015), and *fip-2*(flv15);*fip-28*(flv11). For mutants, n=16-26 animals (160-255
502 stimulation events). WT data is same as Fig. 1C. *p<0.05, **p<0.01, ***p<0.001,
503 ****p<0.0001, Mann-Whitney U test, as in Fig. 1C, Bonferroni-corrected for single mutants.

504 (L) Average changes in velocity surrounding native egg-laying events, shown as in Fig. 1G. n =
505 17 animals for *fip-2*; *fip-28* (432 egg laying events). WT is the same as in Fig. 1G. *p<0.05,
506 Mann-Whitney U test, determined as in Fig. 1G.

507 (M) HSN::CoChR-induced behavioral changes. HSN rescue promoter was *Pcat-4prom68*. These
508 datasets are different from those in (K). WT: n = 17 animals (170 stimulation events); *flp-2;flp-*
509 28: n = 22 animals (220 stimulation events); and rescue: n = 10 animals (100 stimulation events).
510 *p<0.05, Mann-Whitney U test, as in Fig. 1C.

511 Data are shown as means ± SEM.

512 See also Figure S3.

513

514 **Figure 4. HSN serotonin promotes slow locomotion and contributes to NSM-induced**
515 **slowing**

516 (A) Exploratory behavior of indicated genotypes. Alleles: *tph-1(mg280)* and *nlp-3(n4897)*. Dots
517 are individual animals. n = 19–24 animals. ***p<0.0001, Mann-Whitney U test.

518 (B-C) HSN::CoChR-induced speed changes for indicated genotypes, shown as in Fig. 1F. n =
519 85-182 animals. Asterisk is based on quantification in (D).

520 (D) Quantification of data in (B-C), showing speed decrease 1 min or 2-5 min after HSN
521 stimulation (relative to pre-stimulus baseline). *p<0.01, Mann-Whitney U test.

522 (E) Exploratory behavior of indicated genotypes. Promoters used: *tph-1* (3kb) for all serotonergic
523 neurons; *egl-6* for HSN. Dots are individual animals. n = 11 – 30 animals. ***p<0.01,
524 ***p<0.0001, Mann-Whitney U test.

525 (F) Average speed over time during HSN chemogenetic silencing. HSN::HisCl is *Pegl-6::HisCl*.
526 **Left:** instantaneous speed. **Right:** same data, binning into 10 min intervals. n = 202-208 animals.
527 *p<0.05, ***p<0.0001. Bonferroni-corrected t-test.

528 (G) Cartoon illustrating serotonin release and re-uptake by NSM and HSN neurons. HSN does
529 not appear to express *mod-5* (Taylor et al., 2021; Duerr et al., 1999).

530 (H) Change in animal speed upon NSM::Chrimson stimulation in the indicated genotypes.
531 Animals were starved for 3 hours before the assays. n = 253-351 animals. ***p<0.0001, Mann-
532 Whitney U test examining speed during light illumination.

533 (I) NSM::Chrimson stimulation in wild-type and *egl-1* animals. n = 85-202 animals.
534 ***p<0.0001, Mann-Whitney U test, as in (H).

535 (J) NSM::Chrimson stimulation in indicated genotypes. n = 56-209 animals. ***p<0.0001,
536 Mann-Whitney U test. **Asterisks between panels (I) and (J) indicate a significance difference
537 in the effect of the *egl-1* mutation in an otherwise wild-type background, compared to the effect
538 of *egl-1* in a *mod-5* background, empirical p-value based on computing bootstrap differences.

539 Data are shown as means ± SEM.

540 See also Figure S4.

541

542 **Figure 5. The distinct outputs of HSN map onto different sub-cellular compartments**

543 (A) HSN neuron: soma, vulval presynaptic region and distal axon are labeled with shades of
544 green that match colors in (B-C).

545 (B) Example of simultaneous calcium imaging of three subcellular compartments of HSN in an
546 immobilized animal.

547 (C) Average GCaMP signal in each HSN compartment, aligned to HSN calcium peaks in the
548 vulval presynaptic region.

549 (D) Cartoon depicting split GFP knock-in strain that can be used for cell-specific labeling of *cat-*
550 *1/VMAT*.

551 (E) Representative images HSN::CAT-1 in the head (left) and mid-body (right) regions. Images
552 were collected and are displayed using identical settings. Red asterisks indicate gut
553 autofluorescence. Scale bar, 25 um.

554 (F) **Left:** Cartoon of HSN neuron (red) in a *C. elegans* animal. **Right:** Site of the HSN axotomy:
555 after cutting in this location, the soma is still connected to the vulval presynaptic region, but not
556 the distal axon.

557 (G) Egg-laying behavior of mock and HSN-axotomized animals. Dots show individual animals.
558 n = 14-15 animals.

559 (H) Average velocity surrounding native egg-laying events in mock and HSN-axotomized
560 animals. Data display and statistics are similar to Fig. 1G. n = 14-15 animals (126-161 egg laying
561 events). *p<0.05, Mann-Whitney U test.

562 (I) Baseline velocity of indicated conditions and genotypes. Dots show individual animals. n =
563 14-18 animals. *p<0.05, Mann-Whitney U test.

564 Data are shown as means \pm SEM.

565 See also Figure S5.

566

567 **Figure 6. Aversive sensory inputs reduce egg-laying via BAG sensory neurons and FLP-**
568 **17/EGL-6 neuropeptide signaling**

569 (A) Behavioral assay used to measure the effect of high osmolarity on egg-laying behavior. The
570 metric at the bottom is the y-axis in subsequent plots.

571 (B) Percent eggs laid on indicated osmolarity, compared to control (150 mOsm). Alleles: *tax-*
572 *2(p691)* and *ocr-2(ak47)*. n = 3 – 4 plates with 10 animals per plate. ***p<0.0001, two-factor
573 ANOVA across conditions, with genotype and osmolarity as the two factors; both factors were

574 significant. In addition, the indicated groups were statistically different with $p=0.057$, Mann-
575 Whitney U test followed by Benjamini-Hochberg correction for multiple concentrations.

576 (C) Percent eggs laid on high osmolarity for the indicated genotypes. Alleles: *tax-2(p691)* and
577 *tax-4 (p678)*. Dots show ratios of eggs laid on plates with high osm divided by eggs laid on
578 plates with control osm (measured on paired plates; see Methods). $n = 8-13$ plates per genotype.
579 *** $p<0.0001$, Mann-Whitney U tests.

580 (D) Percent eggs laid on high osmolarity for cell ablation lines. Exact genotypes used are in the
581 key resource table. $n = 4-13$ plates for each genotype. Statistics were performed as in (C).
582 ** $p<0.01$, Mann-Whitney U tests followed by Bonferroni correction.

583 (E) Percent eggs laid on high osmolarity for *tax-4* cell-specific rescue lines. Promoters used are
584 listed in key resource table. $n = 6-20$ plates per genotypes. Statistics were performed as in (C).
585 ** $p<0.01$, Mann-Whitney U tests followed by Bonferroni correction.

586 (F) Top: Average BAG GCaMP activity, aligned to animals crossing from 150 mOsm agar to
587 300 mOsm. $n=63$ animals. ** $p<0.01$, Wilcoxon signed rank test. Bottom: Individual BAG
588 GCaMP traces over the same time frame. Recording gaps (blue) are periods when animals' heads
589 were out of view, but the body was in view such that animal identity could be maintained.

590 (G) Percent eggs laid on high osmolarity for the indicated genotypes. Alleles: *flp-17(n4894)*, *flp-*
591 *10(ok2624)*, and *egl-6(n4537f)*. $n = 4-8$ plates per genotype. Statistics were performed as in (C).
592 * $p<0.05$ and ** $p<0.01$, Mann-Whitney U tests.

593 (H) Percent eggs laid on high osmolarity for mock and HSN-axotomized animals (same site of
594 HSN axotomy as shown in Fig. 5F). $n = 16-21$ animals.

595 For all panels, statistics were comparing the indicated day-matched groups.

596 Data are shown as means \pm SEM.

597 See also Figure S6.

598

599 **STAR METHODS**

600 **KEY RESOURCES TABLE**

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Antibodies		
Bacterial and Virus Strains		
<i>E. coli</i> : Strain OP50	<i>Caenorhabditis</i> Genetics Center	OP50

Chemicals, Peptides, and Recombinant Proteins		
D-(-)-Sorbitol	VWR	Catalog #97062-204
All-trans-retinal	Sigma-Aldrich	Catalog # R2500
Histamine dihydrochloride	Sigma-Aldrich	Catalog # H7250
5-Fluoro-2'-deoxyuridine (FUDR)	Sigma-Aldrich	Catalog # F0503
Critical Commercial Assays		
Deposited Data		
Original data and code related to neural and behavioral data	This paper	https://doi.org/10.5061/dryad.1vhbmgr01
Experimental Models: Organisms/Strains		
<i>C. elegans</i> : wild-type Bristol N2	<i>Caenorhabditis</i> Genetics Center	N2
<i>C. elegans</i> : <i>egl-1(n487)</i>	CGC	MT1082
<i>C. elegans</i> : <i>flvEx196(cat-4::invertedCochr,myo-2::mcherry); flvEx197(egl-6::Cre,myo-3::mcherry)</i>	This Paper	SWF502
<i>C. elegans</i> : <i>egl-1(n487); flvEx196(cat-4::invertedCochr,myo-2::mcherry); flvEx197(egl-6::Cre,myo-3::mcherry)</i>	This Paper	SWF632
<i>C. elegans</i> : <i>flvEx288[nlp-3::Gcamp5A (80ng/ul); nlp-3::mscarlet(20ng/ul)]; lite-1(ce314)</i>	This Paper	SWF640
<i>C. elegans</i> : <i>flvEx304[sto-3::nlsGcamp7f(8ng/ul),tdc-1::nlsGcamp7f(10ng/ul), cat4prom68::GCAMP7b(50ng/ul), nlp-3::mscarlet(10ng/ul)]; lite-1(ce314); gur-3(ok2245)</i>	This Paper	SWF691
<i>C. elegans</i> : <i>tph-1(mg280); flvEx196(cat-4::invertedCochr,myo-2::mcherry); flvEx197(egl-6::Cre,myo-3::mcherry)</i>	This Paper	SWF641
<i>C. elegans</i> : <i>nlp-3(n4897); flvEx196(cat-4::invertedCochr,myo-2::mcherry); flvEx197(egl-6::Cre,myo-3::mcherry)</i>	This Paper	SWF915
<i>C. elegans</i> : <i>tph-1(mg280); nlp-3(n4897); flvEx196(cat-4::invertedCochr,myo-2::mcherry); flvEx197(egl-6::Cre,myo-3::mcherry)</i>	This Paper	SWF873

<i>C. elegans</i> : <i>flvEx196(cat-4::invertedCochr,myo-2::mcherry); flvEx197(egl-6::Cre,myo-3::mcherry); unc-17(syb5779 syb5987)</i>	This Paper	SWF1012
<i>C. elegans</i> : <i>egl-21(n476); flvEx196(cat-4::invertedCochr,myo-2::mcherry); flvEx197(egl-6::Cre,myo-3::mcherry)</i>	This Paper	SWF680
<i>C. elegans</i> : <i>HSN::CoChR; HSN specific egl-21 KO: egl-21(n476); kySi61[loxP-egl-21genomic-loxP]; flvEx196(cat-4::invertedCochr,myo-2::mcherry); flvEx197(egl-6::Cre,myo-3::mcherry)</i>	This Paper	SWF717
<i>C. elegans</i> : <i>flp-2(gk1039); flvEx196(cat-4::invertedCochr,myo-2::mcherry); flvEx197(egl-6::Cre,myo-3::mcherry)</i>	This Paper	SWF986
<i>C. elegans</i> : <i>flp-26(gk3015; flvEx196(cat-4::invertedCochr,myo-2::mcherry); flvEx197(egl-6::Cre,myo-3::mcherry)</i>	This Paper	SWF838
<i>C. elegans</i> : <i>flp28(flv11); flvEx196(cat-4::invertedCochr,myo-2::mcherry); flvEx197(egl-6::Cre,myo-3::mcherry)</i>	This Paper	SWF984
<i>C. elegans</i> : <i>flp-2(flv15); flp28(flv11); flvEx196(cat-4::invertedCochr,myo-2::mcherry); flvEx197(egl-6::Cre,myo-3::mcherry)</i>	This Paper	SWF985
<i>C. elegans</i> : <i>flvIs2[tph-1(NSM-specific fragment)::Chrimson, elt-2::mCherry]</i>	Dag et al. (2023)	SWF117
<i>C. elegans</i> : <i>tph-1 (mg280); flvIs2[Ptph-1(NSM-specific fragment)::Chrimson, Pelt-2::mCherry]</i>	Dag et al. (2023)	SWF149
<i>C. elegans</i> : <i>tph-1(mg280); flvIs2[tph-1(NSM-specific fragment)::Chrimson, elt-2::mCherry]; flvEx401[pegl-6::tph-1 cDNA, pmyo-2::mcherry]</i>	This Paper	SWF855
<i>C. elegans</i> : <i>tph-1(mg280); flvIs2[tph-1(NSM-specific fragment)::Chrimson, elt-2::mCherry]; flvEx495[ptph-1::tph-1 cDNA, pmyo-2::mcherry]</i>	This Paper	SWF1011
<i>C. elegans</i> : <i>flvIs2[tph-1(NSM-specific fragment)::Chrimson, elt-2::mCherry]; egl-1(n487)</i>	This Paper	SWF831
<i>C. elegans</i> : <i>flvIs2[tph-1(NSM-specific fragment)::Chrimson, elt-2::mCherry]; mod-5(n822)</i>	This Paper	SWF854

<i>C. elegans</i> : <i>flvIs2[tph-1(NSM-specific fragment)::Chrimson, elt-2::mCherry]; egl-1(n487); mod-5(n822)</i>	This Paper	SWF853
<i>C. elegans</i> : <i>cat-1(syb7239); flvEx478[pegl-6::gfp1-10;pmyo-2::mcherry]</i>	This Paper	SWF991
<i>C. elegans</i> : <i>flvEx201[tag168::mscarlet(5ng/ul); cat4prom68::gfp PCR (10ng/ul)]</i>	This Paper	SWF506
<i>C. elegans</i> : <i>tax-2(p691)</i>	CGC	PR691
<i>C. elegans</i> : <i>ocr-2(ak47)</i>	CGC	CX4535
<i>C. elegans</i> : <i>tax-4 (p678)</i>	CGC	CX13078
<i>C. elegans</i> : <i>-AWB: pels1715 [str-1p::mCasp-1 + unc-122p::GFP]</i>	CGC	JN1715
<i>C. elegans</i> : <i>-AQR/PQR/URX: qals2241[gcy-36::egl-1; gcy-35::GFP; lin-15(+)]</i>	CGC	CX7102
<i>C. elegans</i> : <i>-BAG: kyIs536 (flp-17p::p17 domain of human Caspase3::sl2::gfp; elt-2::GFP); kyIs538 (glb-5p::p12 domain of human Caspase3::sl2::gfp; elt-2::mcherry)</i>	CGC	CX11697
<i>C. elegans</i> : <i>-ASI: oyIs84(gpa-4p::TU#813+gcy-27p::TU#814+gcy-27p::GFP+unc-122p::DsRed) TU#813 and TU#814 are split caspase vectors</i>	CGC	PY7505
<i>C. elegans</i> : <i>-ASJ: mgIs40([daf-28p::nls-GFP]; jxEx100[trx-1::ICE + ofm-1::gfp])</i>	CGC	ZD762
<i>C. elegans</i> : <i>-ASK: qrIs2[sra-9::mCasp1]</i>	CGC	PS6025
<i>C. elegans</i> : <i>-AFD: ttx-1(p767)</i>	CGC	PR767
<i>C. elegans</i> : <i>-AIA: kyEX4745[gcy-28dp::unc-103(gf)::sl2::mCherry, elt-2::mCherry]</i>	CGC	CX14597
<i>C. elegans</i> : <i>-AWC, ASE: ceh-36(ky640); kyIs140 I[Pstr-2::GFP, lin-15(+)]</i>	CGC	CX5922
<i>C. elegans</i> : <i>-AIB: flvEx356[inx-1::unc-103::sl2GFP(30ng/uL); myo-2::mCherry (5ng/uL)]</i>	This Paper	SWF763
<i>C. elegans</i> : <i>-ASK, ASI: oyIs84(gpa-4p::TU#813+gcy-27p::TU#814+gcy-27p::GFP+unc-122p::DsRed); qrIs2[sra-9::mCasp1]</i>	This Paper	SWF455
<i>C. elegans</i> : <i>flvEx243[tax-4::tax-4 (50ng/ul), elt-2::gfp (5ng/ul)] ;tax-4 (p678)</i>	This Paper	SWF566

<i>C. elegans</i> : <i>flvEx275</i> [<i>gcy-33</i> :: <i>tax-4</i> (20ng/ <i>ul</i>), <i>elt-2</i> :: <i>gfp</i> (5ng/ <i>ul</i>)] ; <i>tax-4</i> (<i>p678</i>)	This Paper	SWF615
<i>C. elegans</i> : <i>flvEx497</i> [<i>sra-9</i> :: <i>tax-4</i> (50ng/ <i>ul</i>), <i>elt-2</i> :: <i>gfp</i> (5ng/ <i>ul</i>)] ; <i>tax-4</i> (<i>p678</i>)	This Paper	SWF1014
<i>C. elegans</i> : <i>flvEx496</i> [<i>srg-47</i> :: <i>tax-4</i> (50ng/ <i>ul</i>), <i>elt-2</i> :: <i>gfp</i> (5ng/ <i>ul</i>)] ; <i>tax-4</i> (<i>p678</i>)	This Paper	SWF1013
<i>C. elegans</i> : <i>flvEx298</i> [<i>srh-11</i> :: <i>tax-4</i> (50ng/ <i>ul</i>), <i>elt-2</i> :: <i>gfp</i> (5ng/ <i>ul</i>)] ; <i>tax-4</i> (<i>p678</i>)	This Paper	SWF674
<i>C. elegans</i> : <i>flvEx285</i> [<i>srg-47</i> :: <i>tax-4</i> (30ng/ <i>ul</i>), <i>sra-9</i> :: <i>tax-4</i> (30ng/ <i>ul</i>), <i>srh-11</i> :: <i>tax-4</i> (30ng/ <i>ul</i>), <i>elt-2</i> :: <i>gfp</i> (5ng/ <i>ul</i>)] ; <i>tax-4</i> (<i>p678</i>)	This Paper	SWF634
<i>C. elegans</i> : <i>flp-17</i> (<i>n4894</i>)	CGC	MT15933
<i>C. elegans</i> : <i>flp-10</i> (<i>ok2624</i>)	CGC	RB1989
<i>C. elegans</i> : <i>egl-6</i> (<i>n4537lf</i>)	CGC	MT14666
<i>C. elegans</i> : <i>flvEx204</i> (<i>gcy-33</i> :: <i>GCamp7b</i> (50ng/ <i>ul</i>); <i>myo-3</i> :: <i>mcherry</i> (5 ng/ <i>ul</i>))	This Paper	SWF509
<i>C. elegans</i> : <i>nlp-3</i> (<i>n4897</i>); <i>flvIs2</i> [<i>tph-1</i> (<i>short</i>):: <i>Chrimson</i> , <i>elt-2</i> :: <i>mCherry</i>]	This Paper	SWF1051
<i>C. elegans</i> : <i>flp-2</i> (<i>flv15</i>); <i>flp28</i> (<i>flv11</i>); <i>flvEx196</i> (<i>cat-4</i> :: <i>invertedCochr</i> , <i>myo-2</i> :: <i>mcherry</i>); <i>flvEx197</i> (<i>egl-6</i> :: <i>Cre</i> , <i>myo-3</i> :: <i>mcherry</i>); <i>flvEx529</i> [<i>pcat-4</i> <i>prom68</i> :: <i>flp2</i> (<i>genomic</i>):: <i>venus</i> (5ng/ <i>ul</i> <i>PCR</i>); <i>pcat-4</i> <i>prom68</i> :: <i>FLP-28</i> <i>cDNA</i> :: <i>venus</i> (5ng/ <i>ul</i> <i>PCR</i>); <i>elt-2</i> :: <i>gfp</i> (5ng/ <i>ul</i>)]	This Paper	SWF1056
Software and Algorithms		
MATLAB (2021)	Mathworks	https://www.mathworks.com
GraphPad Prism (v10)	GraphPad Software	https://www.graphpad.com
R Studio	RStudio	https://rstudio.com
Fiji (v1.52)	NIH	https://fiji.sc/
Streampix (v7.0)	Norpix	https://www.norpix.com
Adobe Illustrator	Adobe	https://www.adobe.com
Tracking Scope image analysis	Cermak et al. (2020)	https://bitbucket.org/natecermak/wormimageanalysisr/src/master/

Other		
SP-20000M-USB3 CMOS camera	JAI	N/A
Micro-NIKKOR 55mm f/2.8 lens	Nikon	N/A
10x25 White Panel LED backlight, 24VDC	Metaphase Technologies	Cat#MS-BL10X25-W-24-ILD-PS
Precision LED Spot Light, 625nm, 40W, Type H	Mightex	Cat#BLS-PLS-0625-030-40-S
BioLED Light Source Control Module	Mightex	Cat#BLS-13000-1
Zyla 4.2 Plus sCMOS camera	Andor	N/A
Ti-E Inverted Microscope	Nikon	N/A

601

602 **RESOURCE AVAILABILITY**

603 **Lead Contact**

604 Further information and requests for resources and reagents should be directed to and will be
 605 fulfilled by the lead contact, Steven Flavell (flavell@mit.edu).

606

607 **Materials Availability**

608 All plasmids, strains, and other reagents generated in this study are freely available upon request.

609

610 **Data and Code Availability**

- 611 • Data: Behavioral and neural data related to Figures 2 and Figure 6 have been deposited at
 612 Dryad. DOIs are listed in the key resources table. All other data reported in this paper are
 613 freely available upon request.
- 614 • Code: Original code for neuron tracking has been deposited at Dryad. DOIs are listed in the
 615 key resources table.
- 616 • Any additional information required to reanalyze the data reported in this paper is available
 617 from the Lead Contact upon request.

618

619 **EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS**

620 ***C. elegans***

621 *C. elegans* Bristol strain N2 was used as wild-type. All wild-type, mutant and transgenic strains
 622 used are listed in the key resources table. Animals were maintained on NGM agar plates seeded
 623 with *E. coli* OP50 bacteria strain and kept at 22°C, 40% humidity. One day-old adults were used

624 for all experiments. For genetic crosses, genotypes were confirmed by PCR and/or sequencing.
625 Transgenic animals were generated either by injecting DNA with fluorescent co-injection
626 markers into the gonads of young adult hermaphrodites, CRISPR/Cas9 genome editing or
627 mosSCI insertion.

628

629 **METHOD DETAILS**

630 **Plasmids and Promoters**

631 Plasmid backbones: *C. elegans* codon-optimized GCaMP7b and GCaMP7f open reading frames
632 were synthesized and inserted into the pSM vector. The intersectional promoters, consisting of
633 the inverted/floxed vector and the Cre vector were previously described (Flavell et al., 2013).
634 The HisC11 plasmid was previously described (Pokala et al., 2014). For *tax-4* rescue, we used
635 the previously described *tax-4* cDNA⁶⁹, but moved it into a pSM-t2a-GFP vector backbone for
636 expression. For *tph-1* rescue, we used the KZ1290.21.1 cDNA, which we subcloned into the
637 pSM vector.

638 Promoters used in this study: *egl-6* (Flavell et al., 2013), *cat-4* (full length, 4kB immediately
639 upstream of *cat-4* start codon), *cat-4prom68*⁷⁰, *sto-3* (Ji et al., 2021). The NSM-specific
640 promoter was a 158 bp fragment of *tph-1* promoter, validated to be NSM-specific in our previous
641 work through GFP expression and Ribotagging analysis (Rhoades et al., 2019). In addition, we
642 showed that the resulting NSM::Chrimson line used here has no light-induced egg-laying even at
643 maximum light intensities tested (Dag et al., 2023), further confirming that it confers no HSN-
644 specific expression.

645

646 **New alleles generated in this study**

647 The *egl-21* cell-specific deletion strain was constructed in an *egl-21(n476)* mutant background.
648 For the mosSCI insertion, the *egl-21* genomic region (spanning entire genomic region up to
649 adjacent genes in both directions) was inserted into the mosSCI insertion site on chromosome IV
650⁷¹. LoxP sites that we inserted into the *egl-21* single-copy rescue allow for Cre-dependent
651 deletion of exons 2 through 5 of the *egl-21* gene, which is the majority of the coding sequence.

652 The conditional knockout allele of *unc-17* was constructed via iterative rounds of CRISPR/Cas9
653 genome editing. One loxP site was inserted ~250bp after the end of the *unc-17* 3'UTR. Another
654 loxP site was inserted in the intron before the last coding exon (which encodes the majority of
655 the UNC-17 protein). We found that pan-neuronal Cre expression in this strain gave rise to
656 animals with an Unc phenotype, validating that the loxP sites work effectively.

657 The cell-specific fluorescent labeling strain for *cat-1* was generated via CRISPR/Cas9 genome
658 editing. Three tandem repeats of the GFP11 sequence separated by short linker sequences (gly-
659 gly-ser-gly-gly) were inserted immediately before the *cat-1* stop codon.

660

661 **Multi-animal behavioral recordings**

662 Multi-animal recordings of *C. elegans* locomotion were conducted as previously described
663 (Rhoades et al., 2019). One day old adult animals of the indicated genotypes were transferred to
664 NGM plates with or without OP50 bacteria. For animals that were fasted, animals were
665 transferred to NGM plates without OP50 for three hours prior to recording. All animals were
666 recorded using Streampix software at 3 fps. JAI SP-20000M-USB3 CMOS cameras (5120x3840,
667 mono) with Nikon Micro-NIKKOR 55mm f/2.8 were used. White-panel LEDs (Metaphase)
668 provided backlighting. Videos were analyzed using previously-described custom MATLAB
669 scripts (Rhoades et al., 2019). For optogenetic stimulation, light was supplied from a 470nm (for
670 CoChR; 0.5 mW/mm²) or 625nm (for Chrimson; 0.6 mW/mm² unless otherwise specified)
671 Mightex LED at defined times in the video.

672

673 **Single-animal behavioral recordings**

674 For joint recordings of egg-laying and locomotion, we used previously described custom-built
675 single worm tracking microscopes (Cermak et al., 2020). These custom microscopes have a live-
676 tracking function that permits long-term recording of single moving animals. L4s animals were
677 picked 16-20 hours before the recording day. On the day of the recording, animals were
678 transferred to NGM plates seeded with OP50 (1:20 dilution of saturated culture) the day before
679 the recording (thin bacterial lawns are a requirement for the live-tracking function on the
680 microscopes). LabView software controlled the microscope and acquired the images. Data were
681 then analyzed in R Studio and MATLAB. For optogenetic stimulation, 532nm laser light was
682 supplied at defined times at an intensity of 250 uW/mm².

683

684 **HSN Axotomy**

685 Laser axotomy was performed as previously described ⁷² with a few modifications. L4 stage
686 transgenic animals were transferred to a 3% agarose pad and immobilized with 2.5mM
687 levamisole in M9 buffer. Animals were visualized with a Nikon Eclipse 80i microscope, 100x
688 Plan Apo VC lens (1.4 NA), Andor Zyla sCMOS camera and a Leica EL6000 light source. HSN
689 axons were severed anterior to the vulval presynaptic region and before they extend to the
690 ventral nerve cord using a 435nm nitrogen pulsed MicroPoint laser fired at 20 Hz. Both HSNL
691 and HSNR axons were sequentially severed by gently rolling the animal from one side to the
692 other after the first axotomy. To facilitate rolling, grooved agarose pads were stamped with a
693 portion of a vinyl record ⁷³. ‘mock’ control animals underwent the same immobilization and
694 rolling protocol but were not axotomized. Both mock and axotomized animals were immediately
695 recovered in M9 buffer and transferred to OP50 seeded NGM plates for behavioral analyses 20
696 hours later. For control axotomies, the laser was fired using the same settings that were used for
697 the real axotomy, but it was targeted adjacent to the HSN neurite and confirmed to not visibly
698 damage HSN, based on HSN fluorescence.

699

700 **Freely-moving HSN and BAG Calcium Imaging**

701 HSN calcium imaging in freely-moving animals was conducted as previously described
702 (Rhoades et al., 2019) with a few small modifications. Animals were mounted on flat agar, with
703 freshly seeded OP50 bacterial food. They were enclosed in a small chamber with a rubber gasket
704 and cover glass and GCaMP/mCherry data was recorded at 10 fps (with 10ms exposure times).
705 Agar was either normal 150 mOsm or 300 mOsm (due to addition of sorbitol), as described in
706 the text and figure legends. Imaging was performed with a 4x/0.2NA objective and data was
707 acquired on two Andor Zyla 4.2 Plus sCMOS cameras. A Cairn TwinCam beam splitter was
708 used to separate GCaMP and mCherry signals. The GCaMP/mCherry imaging at 10 fps was
709 interleaved with 5 fps brightfield imaging, achieved via NI-DAQ triggering of different light
710 sources using the NIS Elements Illumination Sequence module. For data analysis, the HSN soma
711 was tracked (using the bright mCherry signal) using custom ImageJ macros. After cell positions
712 were determined by ImageJ tracking, the GCaMP and mCherry signals were extracted from each
713 ROI at each time point. Background was subtracted from each signal and then the ratio of the
714 two background-subtracted fluorescence measurements was taken. Time points of egg-laying
715 were manually determined from the brightfield images.

716 For BAG calcium imaging, animals were placed on agar that was fused. This was done by first
717 pouring a normal osmolarity NGM pad on a microscope slide, then slicing it to make a flat edge
718 on one side. 300 mOsm agar (adjusted with sorbitol) was then poured next to the first NGM pad
719 and allowed to dry. Animals were picked to this flat agar surface and imaged as described above.
720 GCaMP data was recorded at 10 fps (with 10ms exposure times). Custom ImageJ tracking scripts
721 were used to track and quantify BAG GCaMP fluorescence.

722

723 **Immobilized Calcium Imaging**

724 Calcium imaging of HSN and RIB, as well as different HSN compartments, in immobilized
725 animals was conducted on a previously described spinning disk confocal microscope (Ji et al.,
726 2021). Animals were mounted on 5% agar with 0.05um beads for immobilization⁷⁴. They were
727 imaged using a 20X/0.95 objective coupled to a 5000 rpm Yokogawa CSU-X1 spinning disk unit
728 with a Borealis upgrade. Z-stacks were collected with NIS Elements software. For data analysis,
729 data were converted to maximum intensity projections (RIB and HSN were typically in different
730 z-planes), ROIs were manually drawn around the somas of RIB and HSN, and then background-
731 subtracted intensities within the ROIs were calculated.

732

733 **Imaging of CAT-1::GFP puncta**

734 CAT-1::GFP puncta in HSN were imaged on a spinning disk confocal microscope that has been
735 previously described⁶. Imaging of the head and vulval regions was conducted using identical
736 camera settings and entire z-stacks were collected spanning the depth of the animal's body, with
737 exposure times set such that there were no saturated pixels. In addition, a longer exposure z-stack
738 was collected for the head region to provide a higher SNR image of dim signals in the head.

739

740 **Egg Counting Assays and Osmolarity Exposure**

741 NGM plates with varying osmolarities were used for egg-laying assays. Sorbitol was used to
742 increase the osmolarity in the NGM plates to desired osmolarity (300-450 mOSm), and added
743 together with CaCl_2 and KPO_4 buffer to the NGM agar. The day before the assay, assay plates
744 were seeded with 200 μl OP50 per plate, and lids were left open for 20 minutes in the biosafety
745 hood to allow them to dry. L4s animals were picked to OP50-seeded NGM plates the day before
746 the assays and grown for 20-24 hours to become gravid adults. On the day of the experiment,
747 adult animals were transferred onto seeded control or high osmolarity plates (10 animals per
748 plate), and were left to lay eggs for an hour. After an hour, animals were removed from assay
749 plates and the number of eggs laid was counted. The percentage of egg laid was calculated by the
750 number of eggs laid on high osmolarity plates divided by the number of eggs laid on control
751 plates.

752

753 **Exploration assays**

754 Exploration assays that provide a reliable measure of roaming versus dwelling behavior were
755 performed as previously described (Flavell et al., 2013) with minor modifications. Single L4
756 animals were picked to NGM plates with OP50 bacteria seeded 1 day prior. They were then left
757 to explore the plates for 16 hours, after which the plate was superimposed on a transparent grid
758 and the number grid squares that the animal tracks traversed was quantified. In some
759 experiments (as indicated in the text), animals were mounted as adults on plates and allowed to
760 explore for 3 hours, and then the number of squares was counted.

761

762 **QUANTIFICATION AND STATISTICAL ANALYSES**

763 Descriptions of statistical tests and group sizes are provided in figure legends. In
764 addition, definitions of center and dispersion and precision measures are also in the figure
765 legends. Here, we provide an overview of statistical methods that were used in multiple places
766 in the paper, providing additional information not in the figure legends.

767 For all HSN optogenetics experiments conducted using single-worm recordings (i.e.
768 those that include both velocity and egg-laying quantification), we used the following statistical
769 procedure. First, for each individual optogenetic trial we determined the increase in velocity
770 during optogenetic stimulation, compared to pre-light baseline (-2 to 0 min before each
771 stimulus). We then averaged this for all trials in a given animal to get that animal's average
772 increase in velocity caused by optogenetic stimulation. This n (# of animals) was the n used in
773 statistical analyses. To compare across genotypes, we performed a Mann-Whitney U test
774 comparing the velocity increase in the group of control animals to the velocity increase in the
775 treatment (e.g. mutant) group. For statistical tests on the egg-laying effects, we performed a
776 similar analysis, but just on the mean egg-laying rate during optogenetic stimulation (since the

777 baseline is essentially zero). In many analyses, the appropriate control group was HSN::CoChR
778 +ATR animals. The single worm tracker is low throughput (one animal is recorded over 3 or 6
779 hours), so we tested whether it was appropriate to pool animals of this control group across days.
780 We did this by taking all of our recordings and performing a one-factor ANOVA where
781 ‘recording date’ was the factor (i.e. testing whether animals’ HSN-induced velocity increase was
782 dependent on recording date). We found that there was no significant effect of recording date
783 (Fig. S1B; $F=1.162$; $p=0.3738$), so we pooled these animals and used them as the comparison
784 group for several treatment groups recorded over the same overall time period.

785 For HSN optogenetics experiments conducted using multi-worm tracking, we only
786 analyzed data over one single optogenetics trial per animal. We computed the change in speed
787 (compared to baseline) for each animal and then compared the magnitude of the speed change in
788 mutant animals to day-matched controls (using an ‘n’ that is equal to the number of animals
789 assayed) with a Mann-Whitney U test.

790 For analyses of velocity surrounding spontaneous egg-laying events, data were recorded
791 on single-worm trackers. Analysis was conducted very similarly to the HSN optogenetics single
792 worm tracker analysis. For each egg-laying event, we determined the velocity increase right
793 before the egg-laying event by computing the difference between velocity during egg-laying
794 (from -15s to 0s before egg-laying event) and a preceding baseline period (-5 to -3 min before
795 egg-laying event). We then averaged this value across all observations in each animal to obtain
796 per-animal averages. To compare treatment groups, we performed a Mann-Whitney U test to
797 compare the two respective groups of animals. In many cases, the appropriate control group was
798 wild-type (N2). Again based on the low-throughput nature of this single-worm recording assay,
799 we asked whether it was possible to pool wild-type animals’ data across days. We again used a
800 one-factor ANOVA where the factor was ‘recording date’ and found no effect. This suggested
801 that it was valid to pool wild-type animals and compare them to treatment groups recorded over
802 the same overall time period.

803 For egg-laying assays where we examined the influence of osmolarity on egg-laying,
804 statistics were performed as follows: To obtain a single biological replicate (shown as individual
805 dots in Fig. 6), animals were staged as L4s the day before the assay on a single OP50 growth
806 plate. Then, the next day animals from a single growth plate were split onto one normal
807 osmolarity plate and one high osmolarity plate (10 animals per plate). Egg-laying over one hour
808 was counted for each plate. Therefore, from each staged L4 plate, we had paired measurements
809 of egg-laying at each osmolarity level. We then took the ratio of these values (this is what is
810 shown as dots in Fig. 6). We obtained distributions of these ratio values for each genotype based
811 on multiple replicates and ran a Mann-Whitney U test, comparing day-matched wild-type
812 controls to the mutant/transgenic of interest. For Fig. 6B, which was an initial trial that tested
813 multiple osmolarity concentrations, we instead ran a two-factor ANOVA (with genotype and
814 osmolarity level as the two factors) on raw egg-laying rates in each condition, as well as
815 Bonferroni-corrected Mann-Whitney U tests comparing WT versus mutants at each of the four
816 osmolarity levels. For the genotype of interest from Fig. 6B (*tax-2*), additional experiments were

817 run and statistics for those experiments were performed using the above approach (Fig. 6C
818 shows independent data for *tax-2*, not overlapping with the data in Fig. 6B).

819 When running parametric tests, including the ANOVAs described in this section and all t-
820 tests in the manuscript, the D'Agostino-Pearson test for normality was used to test that the
821 distributions were normally distributed. In addition, multiple comparison corrections were
822 conducted where appropriate, as stated in figure legends. Statistics were computed using
823 MATLAB and Graphpad Prism.

824

825 REFERENCES

- 826 1. Bucher, D., Taylor, A.L., and Marder, E. (2006). Central pattern generating neurons simultaneously
827 express fast and slow rhythmic activities in the stomatogastric ganglion. *J. Neurophysiol.* **95**, 3617–
828 3632. 10.1152/jn.00004.2006.
- 829 2. Weimann, J.M., and Marder, E. (1994). Switching neurons are integral members of multiple
830 oscillatory networks. *Curr. Biol. CB* **4**, 896–902. 10.1016/s0960-9822(00)00199-8.
- 831 3. Atanas, A.A., Kim, J., Wang, Z., Bueno, E., Becker, M., Kang, D., Park, J., Estrem, C., Kramer, T.S.,
832 Baskoylu, S., et al. (2022). Brain-wide representations of behavior spanning multiple timescales and
833 states in *C. elegans*. 2022.11.11.516186. 10.1101/2022.11.11.516186.
- 834 4. Fisher, Y.E. (2022). Flexible navigational computations in the *Drosophila* central complex. *Curr. Opin.*
835 *Neurobiol.* **73**, 102514. 10.1016/j.conb.2021.12.001.
- 836 5. Fusi, S., Miller, E.K., and Rigotti, M. (2016). Why neurons mix: high dimensionality for higher
837 cognition. *Curr. Opin. Neurobiol.* **37**, 66–74. 10.1016/j.conb.2016.01.010.
- 838 6. Ji, N., Madan, G.K., Fabre, G.I., Dayan, A., Baker, C.M., Kramer, T.S., Nwabudike, I., and Flavell, S.W.
839 (2021). A neural circuit for flexible control of persistent behavioral states. *eLife* **10**, e62889.
840 10.7554/eLife.62889.
- 841 7. Svensson, E., Apergis-Schoute, J., Burnstock, G., Nusbaum, M.P., Parker, D., and Schiöth, H.B. (2018).
842 General Principles of Neuronal Co-transmission: Insights From Multiple Model Systems. *Front.*
843 *Neural Circuits* **12**, 117. 10.3389/fncir.2018.00117.
- 844 8. Florman, J.T., and Alkema, M.J. (2022). Co-transmission of neuropeptides and monoamines
845 choreograph the *C. elegans* escape response. *PLoS Genet.* **18**, e1010091.
846 10.1371/journal.pgen.1010091.
- 847 9. Huo, J., Xu, T., Polat, M., Zhang, X., and Wen, Q. (2023). Hierarchical behavior control by a single
848 class of interneurons. 2023.03.13.532397. 10.1101/2023.03.13.532397.
- 849 10. Sordillo, A., and Bargmann, C.I. (2021). Behavioral control by depolarized and hyperpolarized states
850 of an integrating neuron. *eLife* **10**, e67723. 10.7554/eLife.67723.

851 11. Tritsch, N.X., Ding, J.B., and Sabatini, B.L. (2012). Dopaminergic neurons inhibit striatal output
852 through non-canonical release of GABA. *Nature* **490**, 262–266. 10.1038/nature11466.

853 12. Hendricks, M., Ha, H., Maffey, N., and Zhang, Y. (2012). Compartmentalized calcium dynamics in a *C.*
854 *elegans* interneuron encode head movement. *Nature* **487**, 99–103. 10.1038/nature11081.

855 13. Stuyt, G., Godenzini, L., and Palmer, L.M. (2022). Local and Global Dynamics of Dendritic Activity in
856 the Pyramidal Neuron. *Neuroscience* **489**, 176–184. 10.1016/j.neuroscience.2021.07.008.

857 14. Cook, S.J., Jarrell, T.A., Brittin, C.A., Wang, Y., Bloniarz, A.E., Yakovlev, M.A., Nguyen, K.C.Q., Tang,
858 L.T.-H., Bayer, E.A., Duerr, J.S., et al. (2019). Whole-animal connectomes of both *Caenorhabditis*
859 *elegans* sexes. *Nature* **571**, 63–71. 10.1038/s41586-019-1352-7.

860 15. White, J.G., Southgate, E., Thomson, J.N., and Brenner, S. (1986). The structure of the nervous
861 system of the nematode *Caenorhabditis elegans*. *Philos. Trans. R. Soc. Lond. B. Biol. Sci.* **314**, 1–340.

862 16. Witvliet, D., Mulcahy, B., Mitchell, J.K., Meirovitch, Y., Berger, D.R., Wu, Y., Liu, Y., Koh, W.X.,
863 Parvathala, R., Holmyard, D., et al. (2021). Connectomes across development reveal principles of
864 brain maturation. *Nature* **596**, 257–261. 10.1038/s41586-021-03778-8.

865 17. de Bono, M., and Maricq, A.V. (2005). Neuronal substrates of complex behaviors in *C. elegans*.
866 *Annu. Rev. Neurosci.* **28**, 451–501. 10.1146/annurev.neuro.27.070203.144259.

867 18. Cermak, N., Yu, S.K., Clark, R., Huang, Y.-C., Baskoylu, S.N., and Flavell, S.W. (2020). Whole-organism
868 behavioral profiling reveals a role for dopamine in state-dependent motor program coupling in *C.*
869 *elegans*. *eLife* **9**. 10.7554/eLife.57093.

870 19. Collins, K.M., Bode, A., Fernandez, R.W., Tanis, J.E., Brewer, J.C., Creamer, M.S., and Koelle, M.R.
871 (2016). Activity of the *C. elegans* egg-laying behavior circuit is controlled by competing activation
872 and feedback inhibition. *eLife* **5**. 10.7554/eLife.21126.

873 20. Hardaker, L.A., Singer, E., Kerr, R., Zhou, G., and Schafer, W.R. (2001). Serotonin modulates
874 locomotory behavior and coordinates egg-laying and movement in *Caenorhabditis elegans*. *J.*
875 *Neurobiol.* **49**, 303–313. 10.1002/neu.10014.

876 21. Nagy, S., Huang, Y.-C., Alkema, M.J., and Biron, D. (2015). *Caenorhabditis elegans* exhibit a coupling
877 between the defecation motor program and directed locomotion. *Sci. Rep.* **5**, 17174.
878 10.1038/srep17174.

879 22. Flavell, S.W., and Gordus, A. (2022). Dynamic functional connectivity in the static connectome of
880 *Caenorhabditis elegans*. *Curr. Opin. Neurobiol.* **73**, 102515. 10.1016/j.conb.2021.12.002.

881 23. Schafer, W.F. (2006). Genetics of egg-laying in worms. *Annu. Rev. Genet.* **40**, 487–509.
882 10.1146/annurev.genet.40.110405.090527.

883 24. Taylor, S.R., Santpere, G., Weinreb, A., Barrett, A., Reilly, M.B., Xu, C., Varol, E., Oikonomou, P.,
884 Glenwinkel, L., McWhirter, R., et al. (2021). Molecular topography of an entire nervous system. *Cell*
885 **184**, 4329–4347.e23. 10.1016/j.cell.2021.06.023.

886 25. Emtage, L., Aziz-Zaman, S., Padovan-Merhar, O., Horvitz, H.R., Fang-Yen, C., and Ringstad, N. (2012).
887 IRK-1 potassium channels mediate peptidergic inhibition of *Caenorhabditis elegans* serotonin
888 neurons via a G(o) signaling pathway. *J. Neurosci. Off. J. Soc. Neurosci.* **32**, 16285–16295.
889 10.1523/JNEUROSCI.2667-12.2012.

890 26. Ringstad, N., and Horvitz, H.R. (2008). FMRFamide neuropeptides and acetylcholine synergistically
891 inhibit egg-laying by *C. elegans*. *Nat. Neurosci.* **11**, 1168–1176. 10.1038/nn.2186.

892 27. Ravi, B., Garcia, J., and Collins, K.M. (2018). Homeostatic Feedback Modulates the Development of
893 Two-State Patterned Activity in a Model Serotonin Motor Circuit in *Caenorhabditis elegans*. *J.*
894 *Neurosci. Off. J. Soc. Neurosci.* **38**, 6283–6298. 10.1523/JNEUROSCI.3658-17.2018.

895 28. Brewer, J.C., Olson, A.C., Collins, K.M., and Koelle, M.R. (2019). Serotonin and neuropeptides are
896 both released by the HSN command neuron to initiate *Caenorhabditis elegans* egg laying. *PLoS*
897 *Genet.* **15**, e1007896. 10.1371/journal.pgen.1007896.

898 29. Aprison, E.Z., and Ruvinsky, I. (2019). Dynamic Regulation of Adult-Specific Functions of the Nervous
899 System by Signaling from the Reproductive System. *Curr. Biol. CB* **29**, 4116-4123.e3.
900 10.1016/j.cub.2019.10.011.

901 30. Flavell, S.W., Pokala, N., Macosko, E.Z., Albrecht, D.R., Larsch, J., and Bargmann, C.I. (2013).
902 Serotonin and the neuropeptide PDF initiate and extend opposing behavioral states in *C. elegans*.
903 *Cell* **154**, 1023–1035. 10.1016/j.cell.2013.08.001.

904 31. Klapoetke, N.C., Murata, Y., Kim, S.S., Pulver, S.R., Birdsey-Benson, A., Cho, Y.K., Morimoto, T.K.,
905 Chuong, A.S., Carpenter, E.J., Tian, Z., et al. (2014). Independent optical excitation of distinct neural
906 populations. *Nat. Methods* **11**, 338–346. 10.1038/nmeth.2836.

907 32. Conradt, B., and Horvitz, H.R. (1999). The TRA-1A sex determination protein of *C. elegans* regulates
908 sexually dimorphic cell deaths by repressing the egl-1 cell death activator gene. *Cell* **98**, 317–327.
909 10.1016/s0092-8674(00)81961-3.

910 33. Zhang, M., Chung, S.H., Fang-Yen, C., Craig, C., Kerr, R.A., Suzuki, H., Samuel, A.D.T., Mazur, E., and
911 Schafer, W.R. (2008). A self-regulating feed-forward circuit controlling *C. elegans* egg-laying
912 behavior. *Curr. Biol. CB* **18**, 1445–1455. 10.1016/j.cub.2008.08.047.

913 34. Zang, K.E., Ho, E., and Ringstad, N. (2017). Inhibitory peptidergic modulation of *C. elegans* serotonin
914 neurons is gated by T-type calcium channels. *eLife* **6**, e22771. 10.7554/eLife.22771.

915 35. Gordus, A., Pokala, N., Levy, S., Flavell, S.W., and Bargmann, C.I. (2015). Feedback from network
916 states generates variability in a probabilistic olfactory circuit. *Cell* **161**, 215–227.
917 10.1016/j.cell.2015.02.018.

918 36. Kato, S., Kaplan, H.S., Schrödel, T., Skora, S., Lindsay, T.H., Yemini, E., Lockery, S., and Zimmer, M.
919 (2015). Global brain dynamics embed the motor command sequence of *Caenorhabditis elegans*. *Cell*
920 **163**, 656–669. 10.1016/j.cell.2015.09.034.

921 37. Uzel, K., Kato, S., and Zimmer, M. (2022). A set of hub neurons and non-local connectivity features
922 support global brain dynamics in *C. elegans*. *Curr. Biol.* **32**, 3443–3459.e8.
923 10.1016/j.cub.2022.06.039.

924 38. Pereira, L., Kratsios, P., Serrano-Saiz, E., Sheftel, H., Mayo, A.E., Hall, D.H., White, J.G., LeBoeuf, B.,
925 Garcia, L.R., Alon, U., et al. (2015). A cellular and regulatory map of the cholinergic nervous system
926 of *C. elegans*. *eLife* **4**, e12432. 10.7554/eLife.12432.

927 39. Rand, J.B., and Russell, R.L. (1984). Choline acetyltransferase-deficient mutants of the nematode
928 *Caenorhabditis elegans*. *Genetics* **106**, 227–248. 10.1093/genetics/106.2.227.

929 40. Alfonso, A., Grundahl, K., Duerr, J.S., Han, H.P., and Rand, J.B. (1993). The *Caenorhabditis elegans*
930 unc-17 gene: a putative vesicular acetylcholine transporter. *Science* **261**, 617–619.
931 10.1126/science.8342028.

932 41. Beets, I., Zels, S., Vandewyer, E., Demeulemeester, J., Caers, J., Baytemur, E., Schafer, W.R., Vértes,
933 P.E., Mirabeau, O., and Schoofs, L. (2022). System-wide mapping of neuropeptide-GPCR interactions
934 in *C. elegans*. 2022.10.30.514428. 10.1101/2022.10.30.514428.

935 42. Ripoll-Sánchez, L., Watteyne, J., Sun, H., Fernandez, R., Taylor, S.R., Weinreb, A., Hammarlund, M.,
936 Miller, D.M., Hobert, O., Beets, I., et al. (2022). The neuropeptidergic connectome of *C. elegans*.
937 2022.10.30.514396. 10.1101/2022.10.30.514396.

938 43. Jacob, T.C., and Kaplan, J.M. (2003). The EGL-21 carboxypeptidase E facilitates acetylcholine release
939 at *Caenorhabditis elegans* neuromuscular junctions. *J. Neurosci. Off. J. Soc. Neurosci.* **23**, 2122–
940 2130. 10.1523/JNEUROSCI.23-06-02122.2003.

941 44. Chen, D., Taylor, K.P., Hall, Q., and Kaplan, J.M. (2016). The Neuropeptides FLP-2 and PDF-1 Act in
942 Concert To Arouse *Caenorhabditis elegans* Locomotion. *Genetics* **204**, 1151–1159.
943 10.1534/genetics.116.192898.

944 45. Pokala, N., Liu, Q., Gordus, A., and Bargmann, C.I. (2014). Inducible and titratable silencing of
945 *Caenorhabditis elegans* neurons in vivo with histamine-gated chloride channels. *Proc. Natl. Acad.*
946 *Sci. U. S. A.* **111**, 2770–2775. 10.1073/pnas.1400615111.

947 46. Jafari, G., Xie, Y., Kullyev, A., Liang, B., and Sze, J.Y. (2011). Regulation of extrasynaptic 5-HT by
948 serotonin reuptake transporter function in 5-HT-absorbing neurons underscores adaptation
949 behavior in *Caenorhabditis elegans*. *J. Neurosci. Off. J. Soc. Neurosci.* **31**, 8948–8957.
950 10.1523/JNEUROSCI.1692-11.2011.

951 47. Ranganathan, R., Sawin, E.R., Trent, C., and Horvitz, H.R. (2001). Mutations in the *Caenorhabditis*
952 *elegans* serotonin reuptake transporter MOD-5 reveal serotonin-dependent and -independent
953 activities of fluoxetine. *J. Neurosci. Off. J. Soc. Neurosci.* **21**, 5871–5884. 10.1523/JNEUROSCI.21-16-
954 05871.2001.

955 48. Sawin, E.R., Ranganathan, R., and Horvitz, H.R. (2000). *C. elegans* locomotory rate is modulated by
956 the environment through a dopaminergic pathway and by experience through a serotonergic
957 pathway. *Neuron* **26**, 619–631.

958 49. Rhoades, J.L., Nelson, J.C., Nwabudike, I., Yu, S.K., McLachlan, I.G., Madan, G.K., Abebe, E., Powers,
959 J.R., Colón-Ramos, D.A., and Flavell, S.W. (2019). ASICs Mediate Food Responses in an Enteric
960 Serotonergic Neuron that Controls Foraging Behaviors. *Cell* 176, 85-97.e14.
961 10.1016/j.cell.2018.11.023.

962 50. Dag, U., Nwabudike, I., Kang, D., Gomes, M.A., Kim, J., Atanas, A.A., Bueno, E., Estrem, C., Pugliese,
963 S., Wang, Z., et al. (2023). Dissecting the functional organization of the *C. elegans* serotonergic
964 system at whole-brain scale. *Cell* 186, 2574-2592.e20. 10.1016/j.cell.2023.04.023.

965 51. Gürel, G., Gustafson, M.A., Pepper, J.S., Horvitz, H.R., and Koelle, M.R. (2012). Receptors and other
966 signaling proteins required for serotonin control of locomotion in *Caenorhabditis elegans*. *Genetics*
967 192, 1359–1371. 10.1534/genetics.112.142125.

968 52. Duerr, J.S., Frisby, D.L., Gaskin, J., Duke, A., Asermely, K., Huddleston, D., Eiden, L.E., and Rand, J.B.
969 (1999). The cat-1 gene of *Caenorhabditis elegans* encodes a vesicular monoamine transporter
970 required for specific monoamine-dependent behaviors. *J. Neurosci. Off. J. Soc. Neurosci.* 19, 72–84.

971 53. Fenk, L.A., and de Bono, M. (2015). Environmental CO₂ inhibits *Caenorhabditis elegans* egg-laying
972 by modulating olfactory neurons and evokes widespread changes in neural activity. *Proc. Natl. Acad.*
973 *Sci. U. S. A.* 112, E3525-3534. 10.1073/pnas.1423808112.

974 54. Liu, Z., Kariya, M.J., Chute, C.D., Pribadi, A.K., Leinwand, S.G., Tong, A., Curran, K.P., Bose, N.,
975 Schroeder, F.C., Srinivasan, J., et al. (2018). Predator-secreted sulfolipids induce defensive responses
976 in *C. elegans*. *Nat. Commun.* 9, 1128. 10.1038/s41467-018-03333-6.

977 55. Teshiba, E., Miyahara, K., and Takeya, H. (2016). Glucose-induced abnormal egg-laying rate in
978 *Caenorhabditis elegans*. *Biosci. Biotechnol. Biochem.* 80, 1436–1439.
979 10.1080/09168451.2016.1158634.

980 56. Trent, C., Tsuing, N., and Horvitz, H.R. (1983). Egg-laying defective mutants of the nematode
981 *Caenorhabditis elegans*. *Genetics* 104, 619–647. 10.1093/genetics/104.4.619.

982 57. Yu, J., Yang, W., Liu, H., Hao, Y., and Zhang, Y. (2017). An Aversive Response to Osmotic Upshift in
983 *Caenorhabditis elegans*. *eNeuro* 4, ENEURO.0282-16.2017. 10.1523/ENEURO.0282-16.2017.

984 58. Ferkey, D.M., Sengupta, P., and L'Etoile, N.D. (2021). Chemosensory signal transduction in
985 *Caenorhabditis elegans*. *Genetics* 217, iyab004. 10.1093/genetics/iyab004.

986 59. Hallem, E.A., and Sternberg, P.W. (2008). Acute carbon dioxide avoidance in *Caenorhabditis elegans*.
987 *Proc. Natl. Acad. Sci. U. S. A.* 105, 8038–8043. 10.1073/pnas.0707469105.

988 60. Zimmer, M., Gray, J.M., Pokala, N., Chang, A.J., Karow, D.S., Marletta, M.A., Hudson, M.L., Morton,
989 D.B., Chronis, N., and Bargmann, C.I. (2009). Neurons detect increases and decreases in oxygen
990 levels using distinct guanylate cyclases. *Neuron* 61, 865–879. 10.1016/j.neuron.2009.02.013.

991 61. Ringstad, N., and Horvitz, H.R. (2008). FMRFamide neuropeptides and acetylcholine synergistically
992 inhibit egg-laying by *C. elegans*. *Nat. Neurosci.* 11, 1168–1176. 10.1038/nn.2186.

993 62. Ghai, K., Zelinka, C., and Fischer, A.J. (2009). Serotonin released from amacrine neurons is
994 scavenged and degraded in bipolar neurons in the retina. *J. Neurochem.* **111**, 1–14. 10.1111/j.1471-
995 4159.2009.06270.x.

996 63. Lebrand, C., Cases, O., Adelbrecht, C., Doye, A., Alvarez, C., El Mestikawy, S., Seif, I., and Gaspar, P.
997 (1996). Transient uptake and storage of serotonin in developing thalamic neurons. *Neuron* **17**, 823–
998 835. 10.1016/s0896-6273(00)80215-9.

999 64. Zhang, Y., Lu, H., and Bargmann, C.I. (2005). Pathogenic bacteria induce aversive olfactory learning
1000 in *Caenorhabditis elegans*. *Nature* **438**, 179–184. 10.1038/nature04216.

1001 65. Gendrel, M., Atlas, E.G., and Hobert, O. (2016). A cellular and regulatory map of the GABAergic
1002 nervous system of *C. elegans*. *eLife* **5**, e17686. 10.7554/eLife.17686.

1003 66. Dag, U., Nwabudike, I., Kang, D., Gomes, M.A., Kim, J., Atanas, A.A., Bueno, E., Estrem, C., Pugliese,
1004 S., Wang, Z., et al. (2023). Dissecting the Functional Organization of the *C. elegans* Serotonergic
1005 System at Whole-Brain Scale. *BioRxiv Prepr. Serv. Biol.*, 2023.01.15.524132.
1006 10.1101/2023.01.15.524132.

1007 67. Unger, E.K., Keller, J.P., Altermatt, M., Liang, R., Matsui, A., Dong, C., Hon, O.J., Yao, Z., Sun, J.,
1008 Banala, S., et al. (2020). Directed Evolution of a Selective and Sensitive Serotonin Sensor via
1009 Machine Learning. *Cell* **183**, 1986–2002.e26. 10.1016/j.cell.2020.11.040.

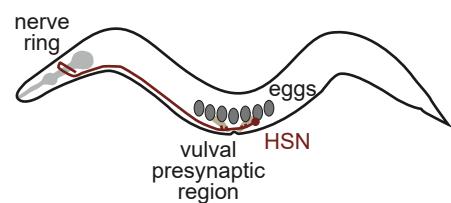
1010 68. Wan, J., Peng, W., Li, X., Qian, T., Song, K., Zeng, J., Deng, F., Hao, S., Feng, J., Zhang, P., et al. (2021).
1011 A genetically encoded sensor for measuring serotonin dynamics. *Nat. Neurosci.* **24**, 746–752.
1012 10.1038/s41593-021-00823-7.

1013 69. Macosko, E.Z., Pokala, N., Feinberg, E.H., Chalasani, S.H., Butcher, R.A., Clardy, J., and Bargmann, C.I.
1014 (2009). A hub-and-spoke circuit drives pheromone attraction and social behaviour in *C. elegans*.
1015 *Nature* **458**, 1171–1175. 10.1038/nature07886.

1016 70. Lloret-Fernández, C., Maicas, M., Mora-Martínez, C., Artacho, A., Jimeno-Martín, Á., Chirivella, L.,
1017 Weinberg, P., and Flames, N. (2018). A transcription factor collective defines the HSN serotonergic
1018 neuron regulatory landscape. *eLife* **7**, e32785. 10.7554/eLife.32785.

1019 71. Frøkjaer-Jensen, C., Davis, M.W., Hopkins, C.E., Newman, B.J., Thummel, J.M., Olesen, S.-P.,
1020 Grunnet, M., and Jorgensen, E.M. (2008). Single-copy insertion of transgenes in *Caenorhabditis*
1021 *elegans*. *Nat. Genet.* **40**, 1375–1383. 10.1038/ng.248.

1022 72. Byrne, A.B., Edwards, T.J., and Hammarlund, M. (2011). In vivo laser axotomy in *C. elegans*. *J. Vis.*
1023 *Exp. JoVE*, 2707. 10.3791/2707.


1024 73. Rivera Gomez, K., and Schwarzstein, M. (2018). Immobilization of nematodes for live imaging using
1025 an agarose pad produced with a Vinyl Record. *MicroPublication Biol.* **2018**. 10.17912/QG0J-VT85.

1026 74. Kim, E., Sun, L., Gabel, C.V., and Fang-Yen, C. (2013). Long-term imaging of *Caenorhabditis elegans*
1027 using nanoparticle-mediated immobilization. *PloS One* **8**, e53419. 10.1371/journal.pone.0053419.

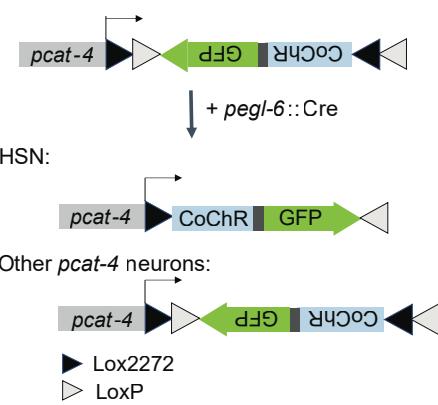
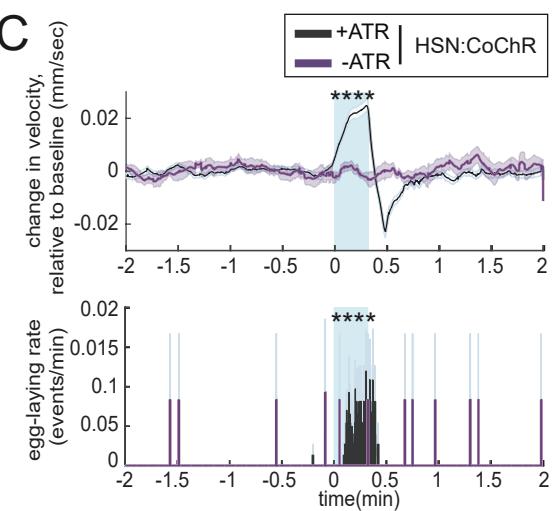
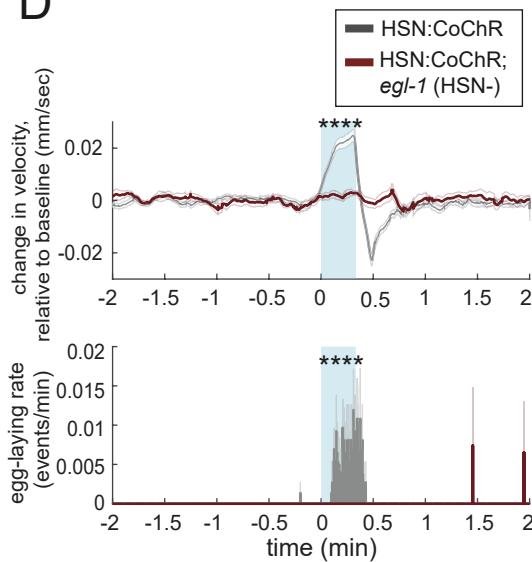
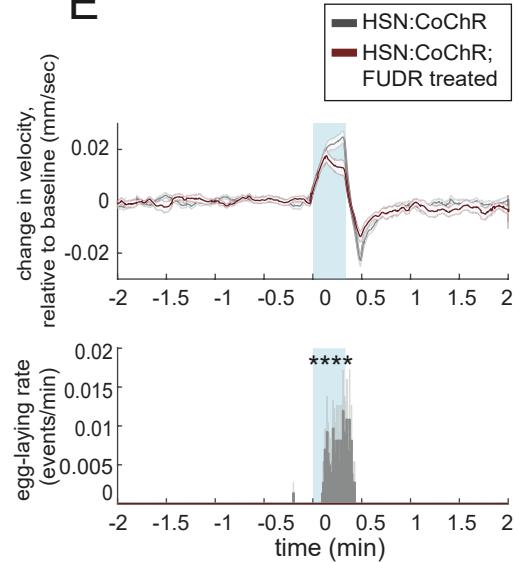
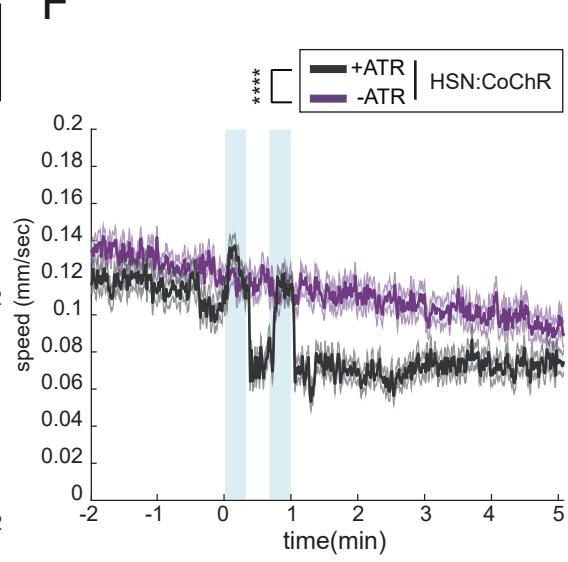

1028

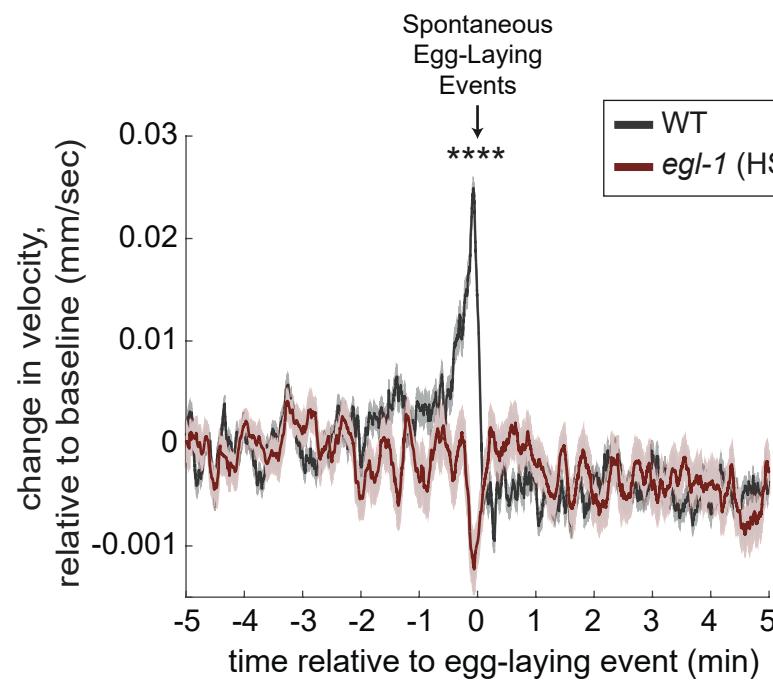
Figure 1


A


B


C


D


E

F

G

H

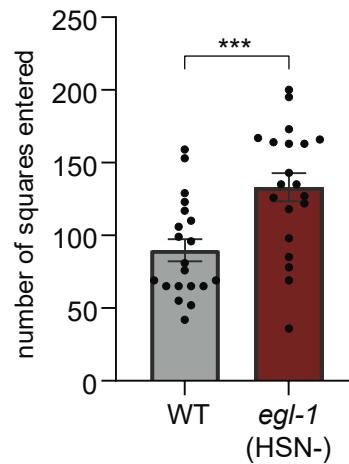
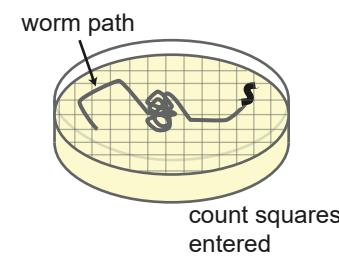



Figure 2

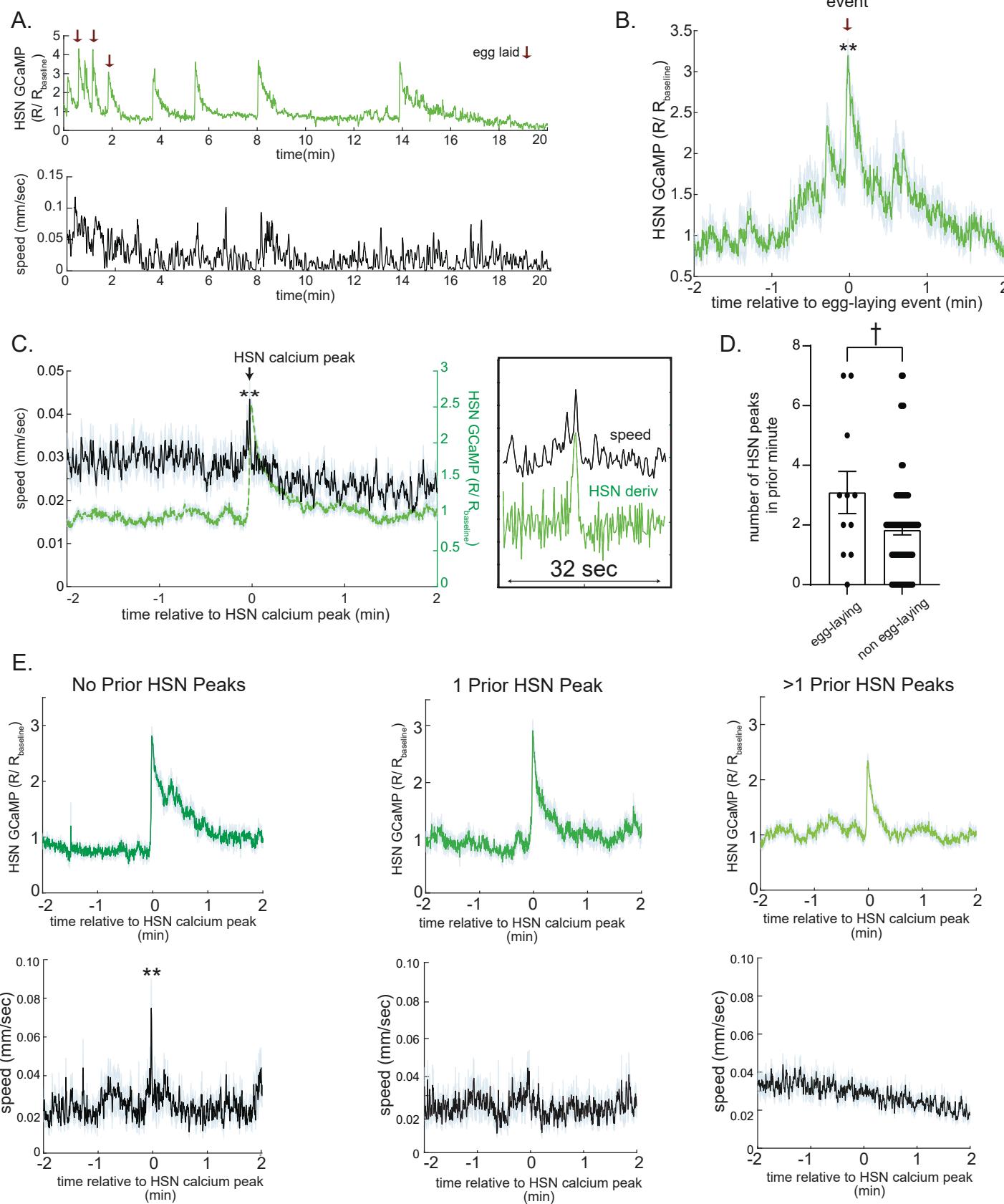


Figure 3

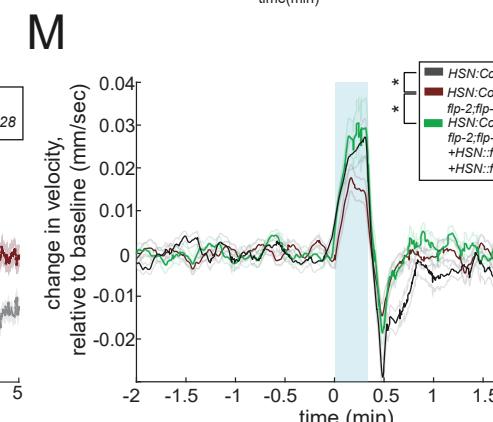
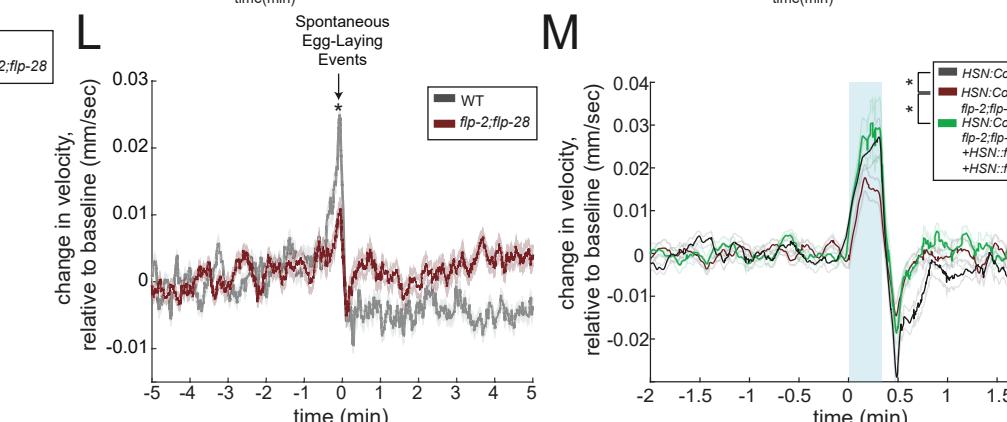
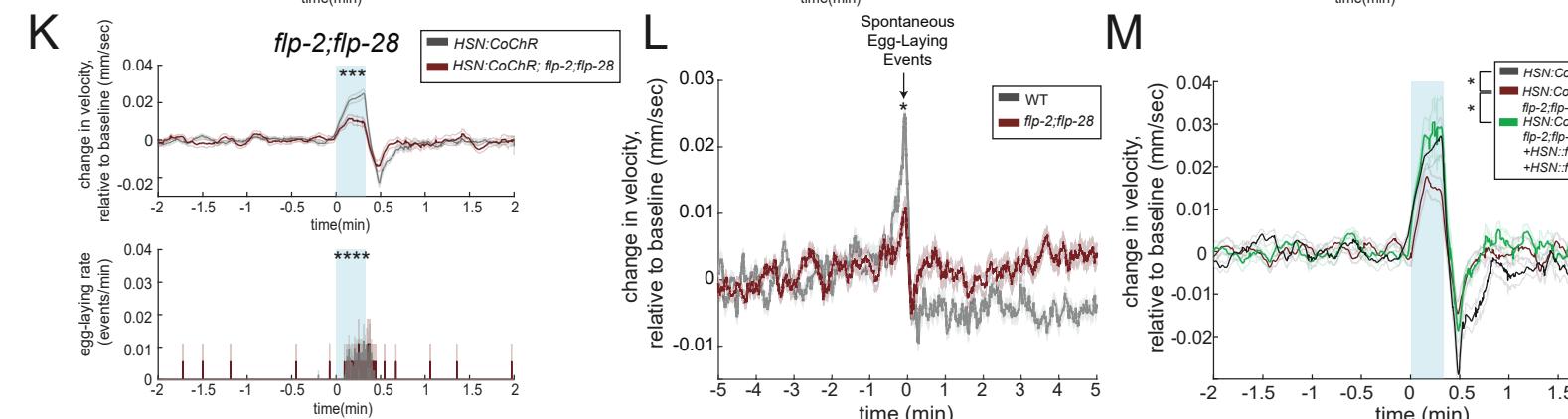
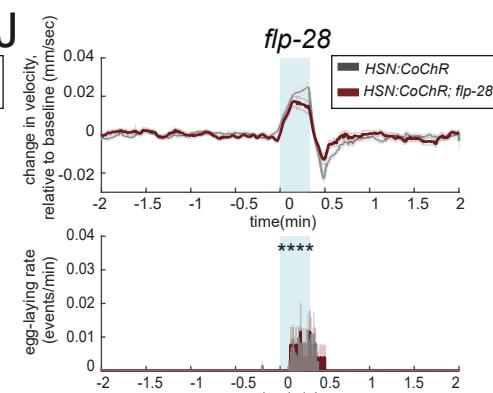
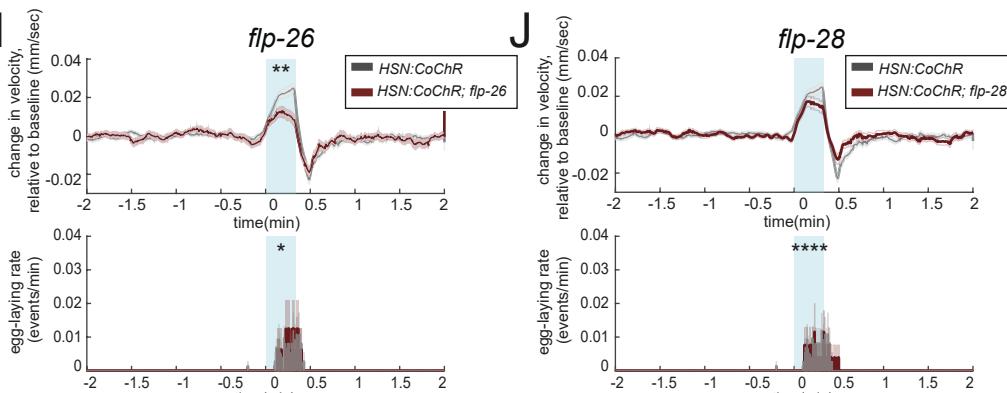
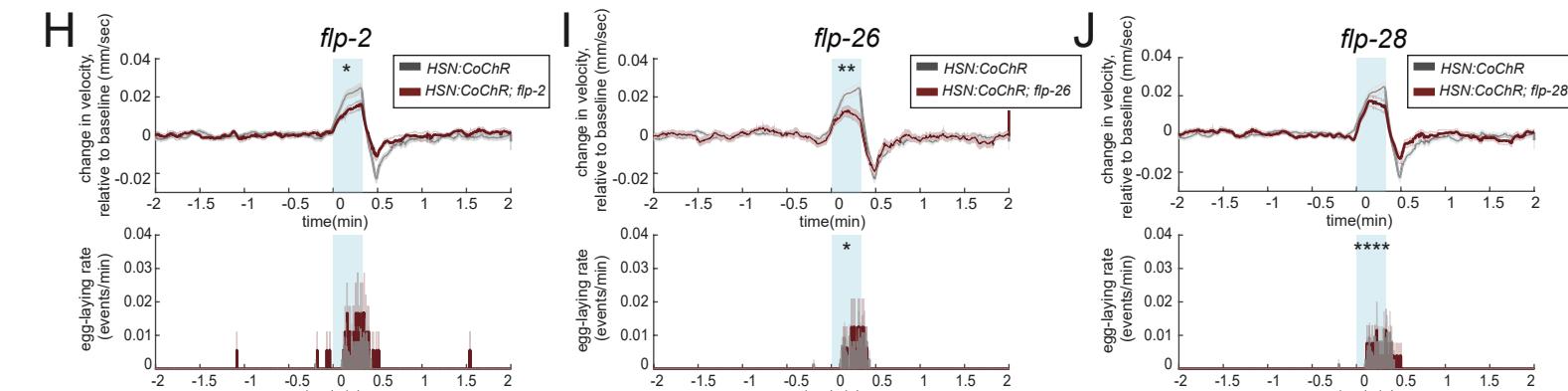
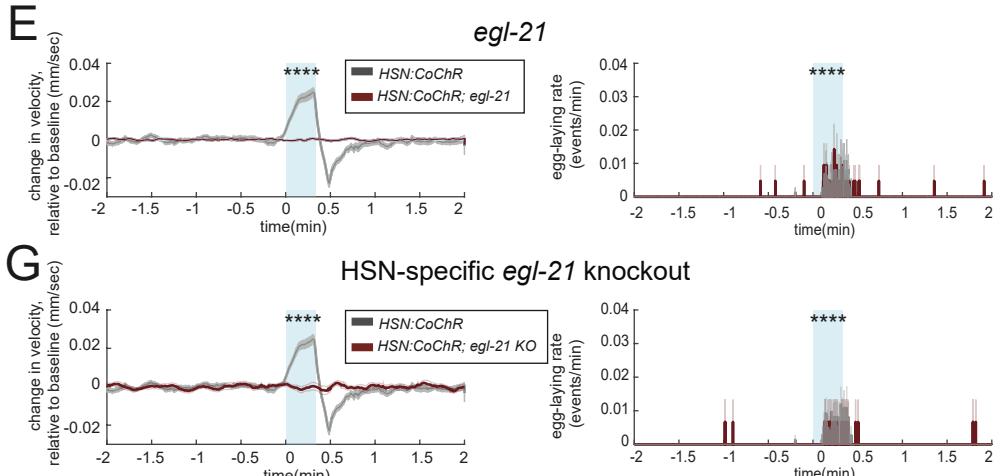
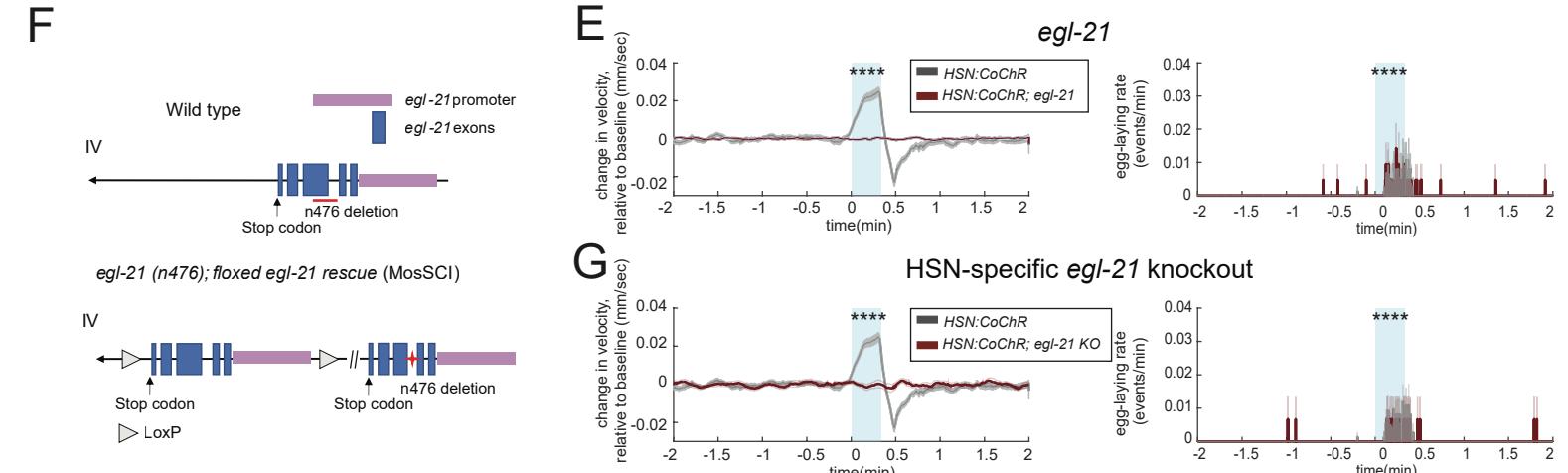
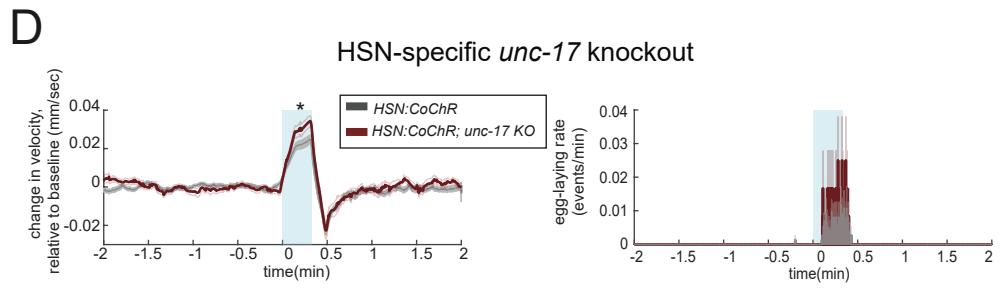
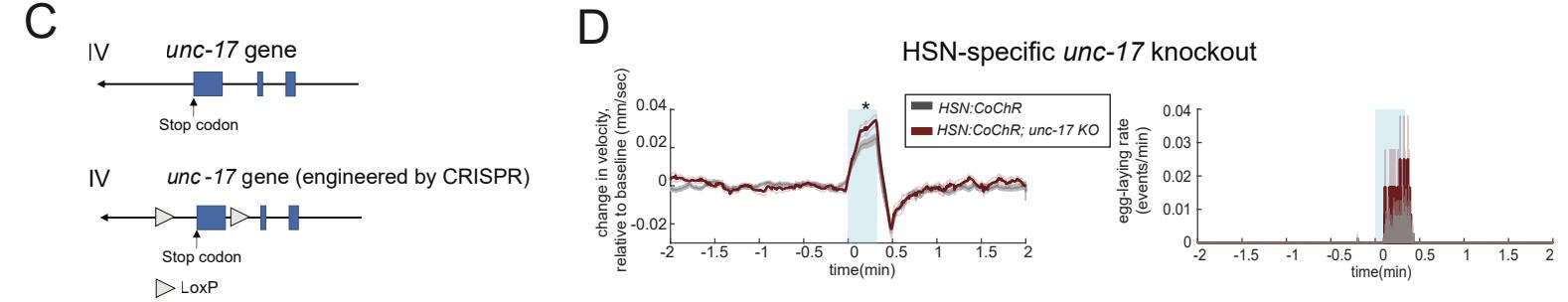
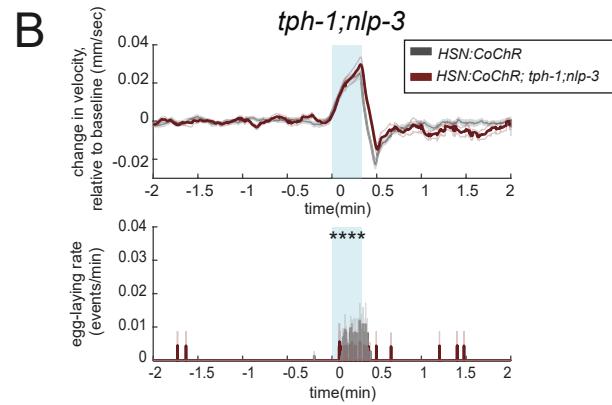
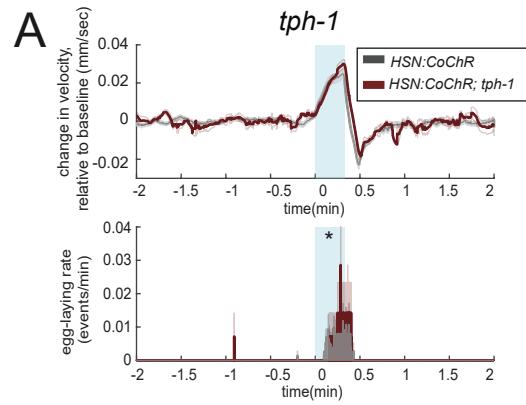













Figure 4

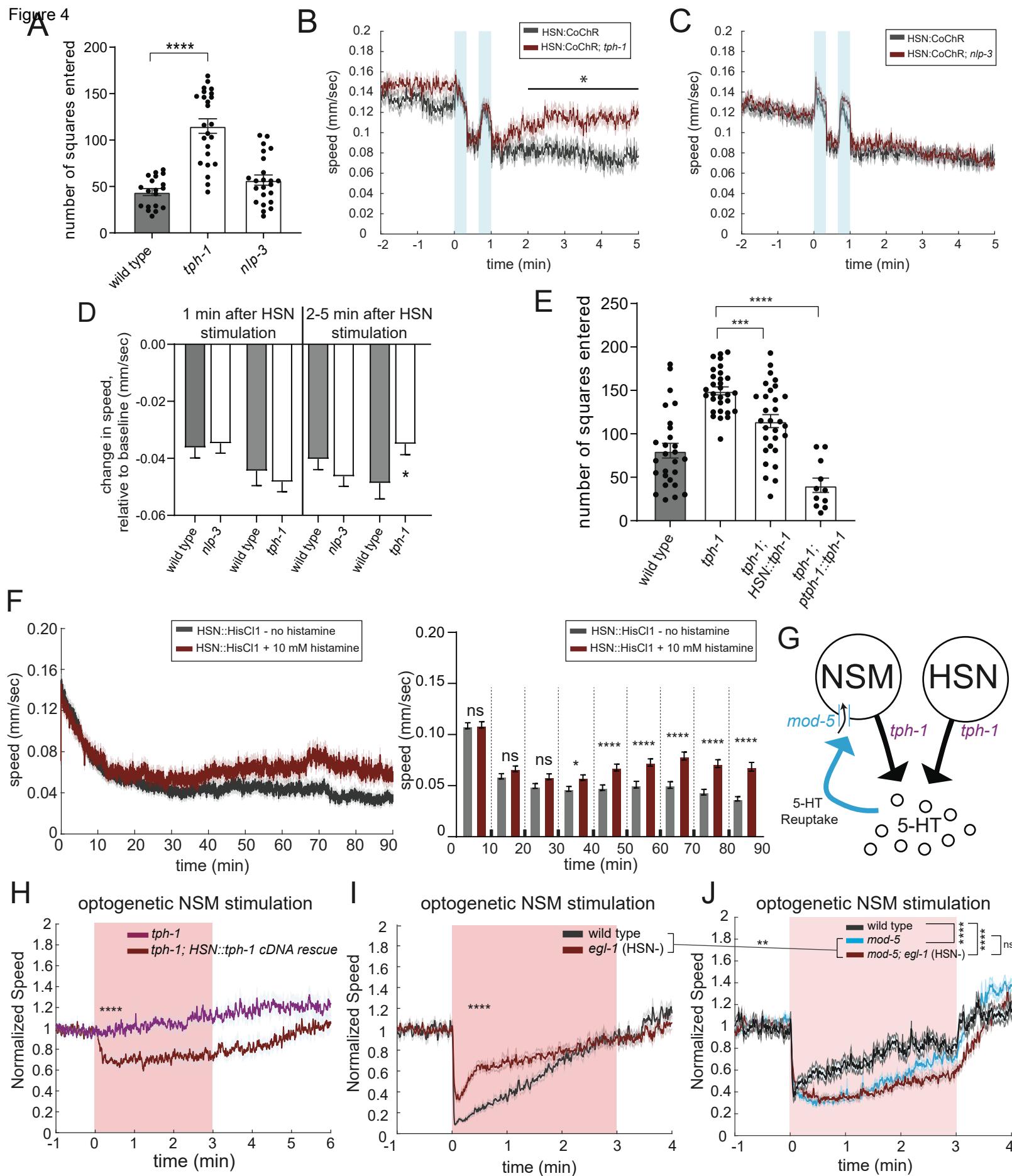
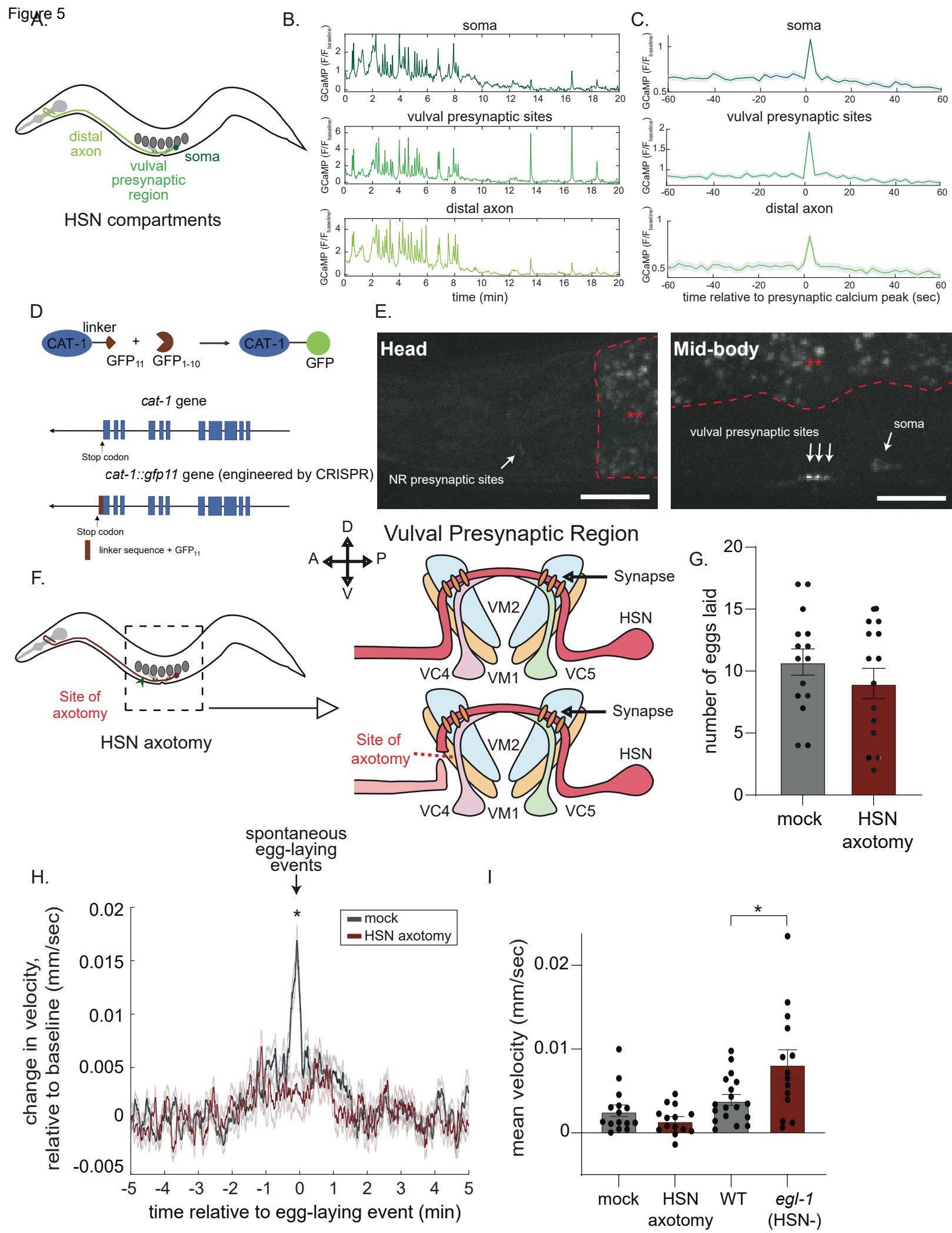
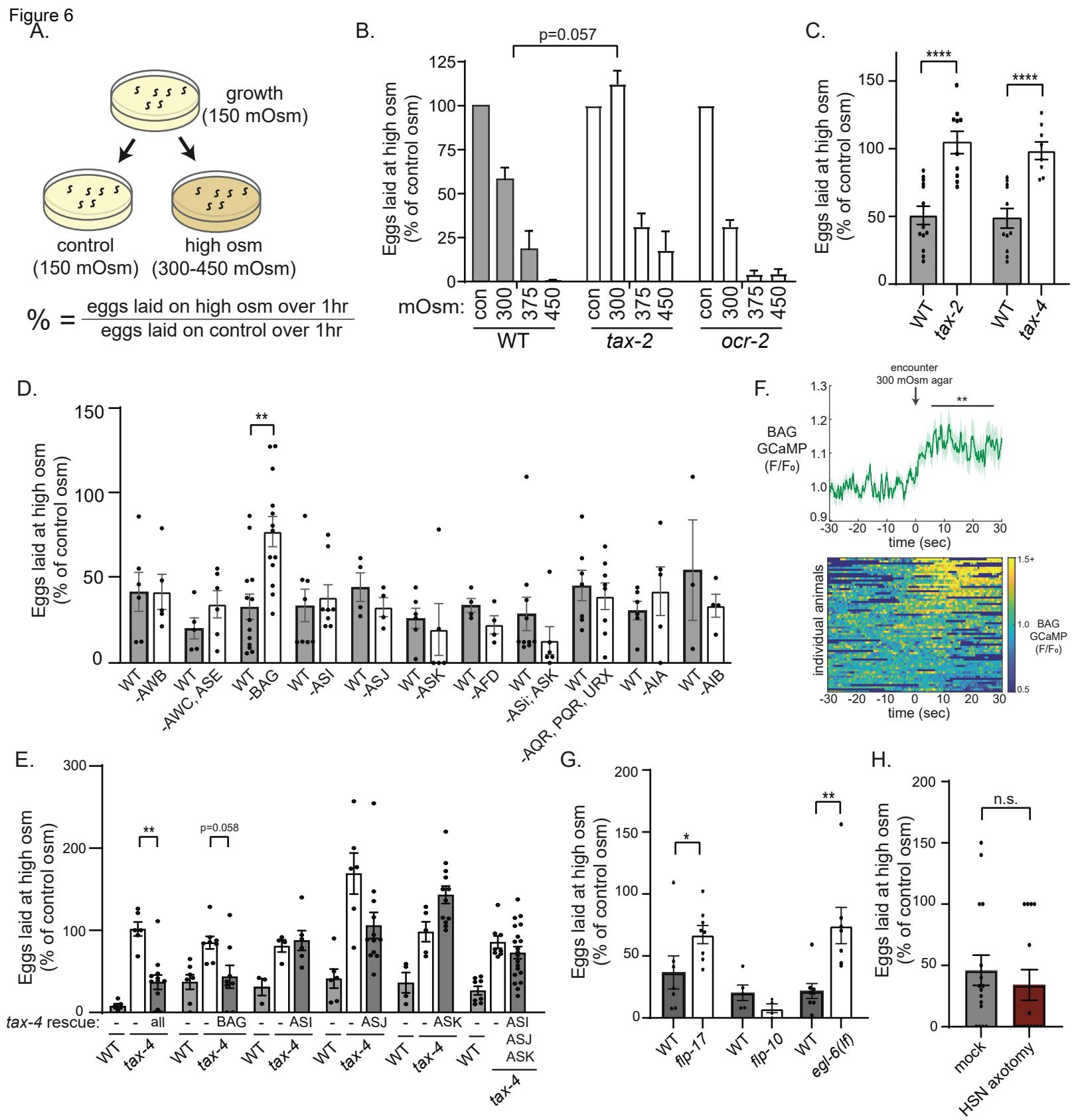
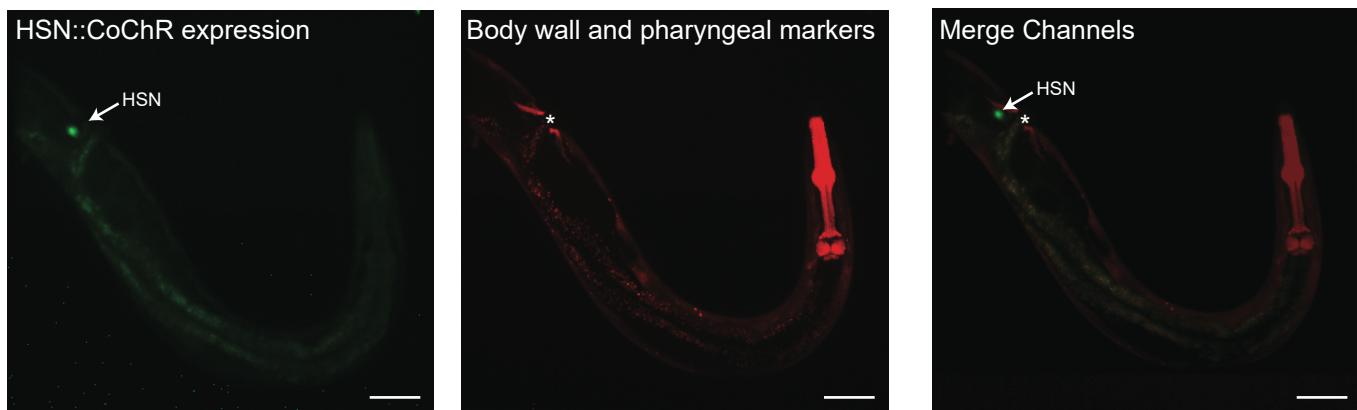
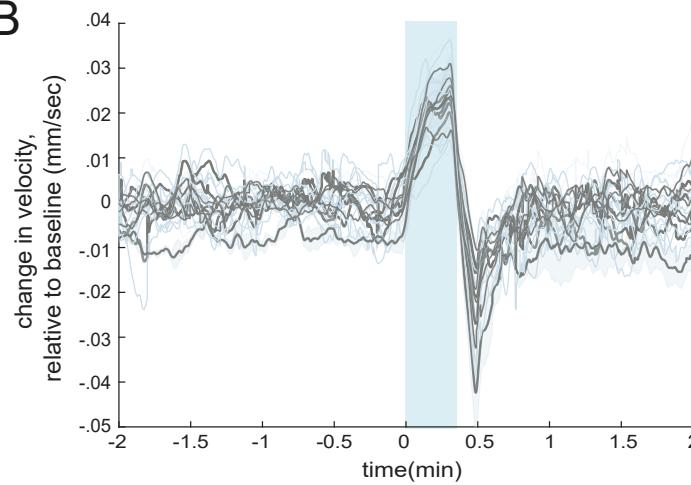
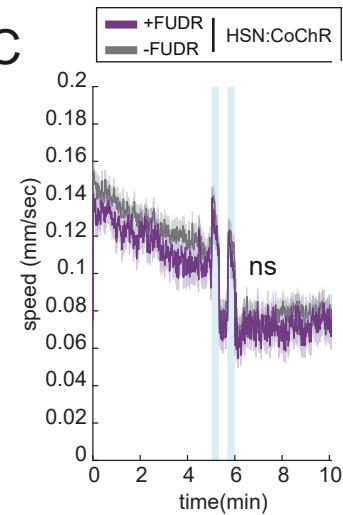


Figure 5

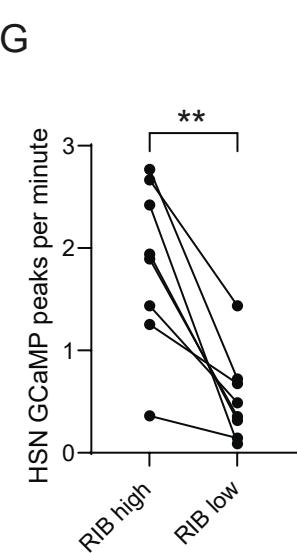
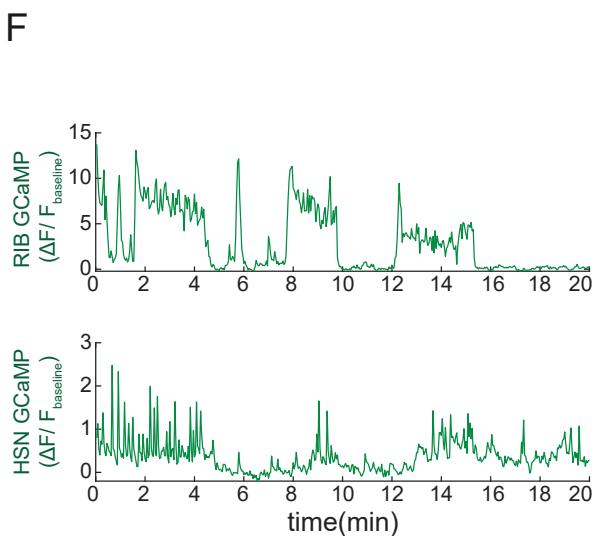
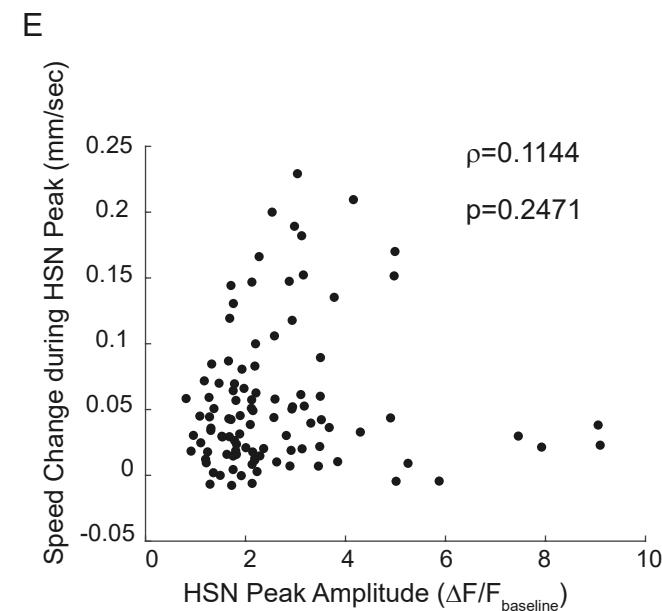
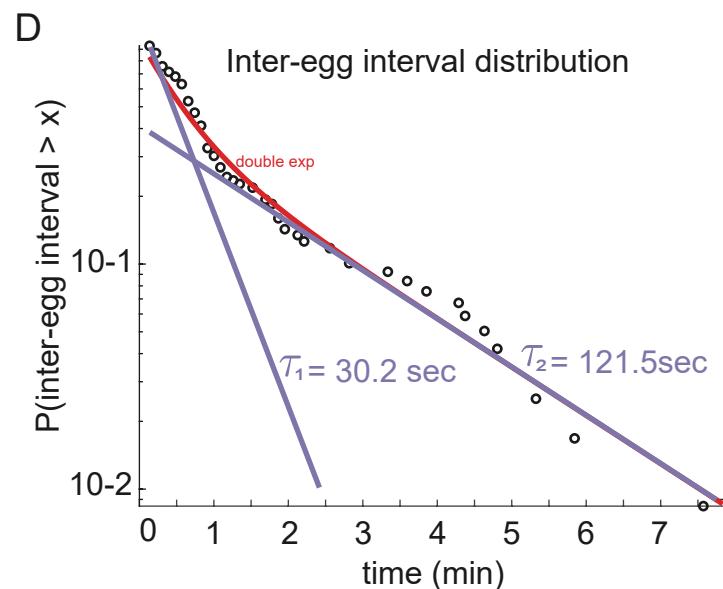
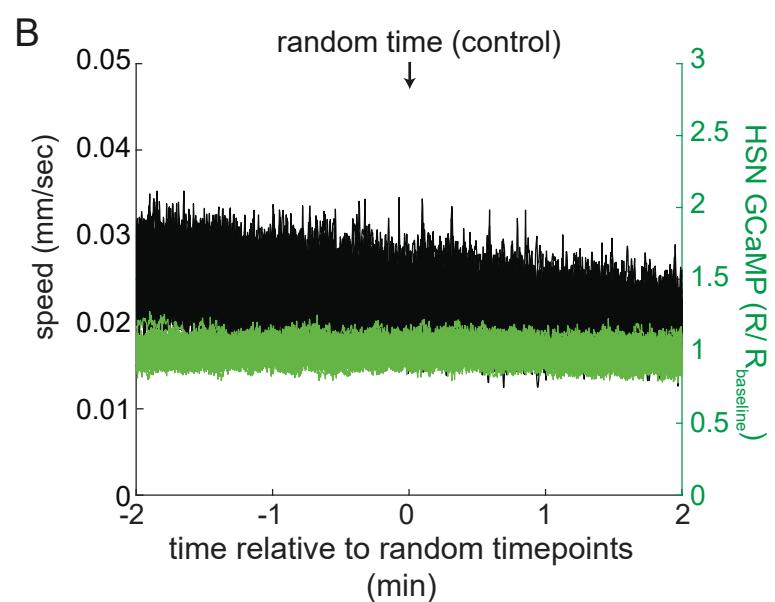
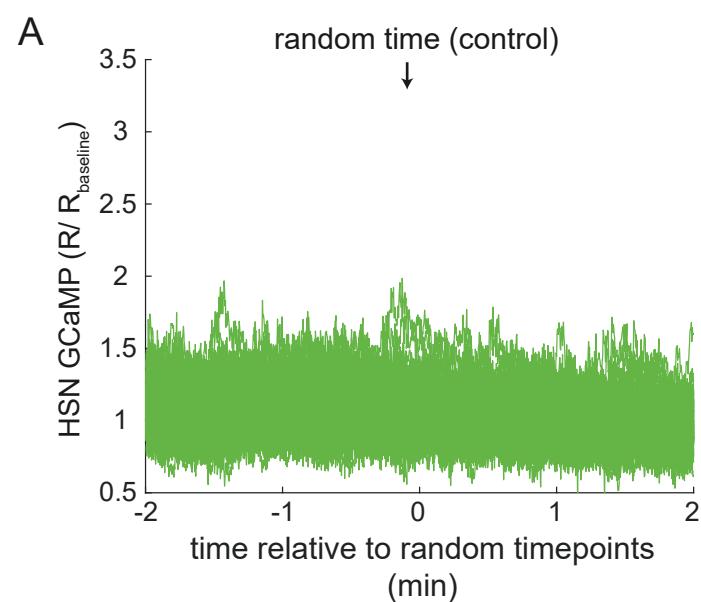





Figure 6


A

B

C

Supplemental Figure 1. HSN::CoChR expression and activation, related to Figure 1.

(A) Representative images of HSN::CoChR-sl2-GFP expression (left), along with body wall and pharyngeal markers (middle), and a composite image (right). Arrows indicate HSN soma. Asterisks indicate vulva position. Scale bar, 50 μ m.

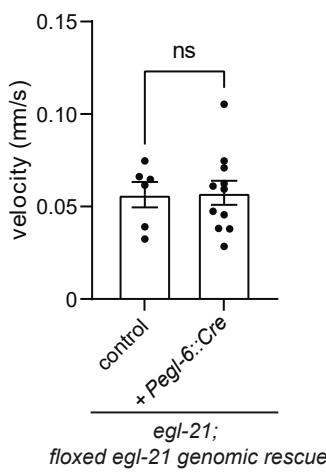
(B) Average wild-type HSN::CoChR effects on velocity, shown for different recording days. Each line represents the average change in velocity elicited by HSN::CoChR stimulation across wild-type animals recorded on a given day. A one-factor ANOVA on the velocity change (where the factor was recording date) did not reveal any significant effect of recording date ($F=1.162$, $p=0.3738$).

(C) Animal speed during several bouts of HSN::CoChR stimulation for animals recently transferred to food plates. Data are shown for HSN::CoChR animals either treated with FUDR or not. Data are displayed as in Fig. 1F and statistics were performed as in Fig 1F. $n = 69$ animals for the FUDR-treated group, and 195 animals for the no-FUDR control.

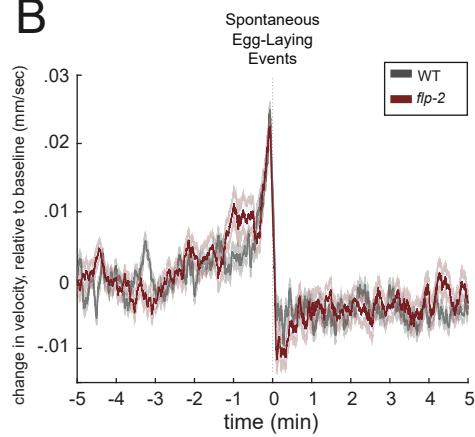
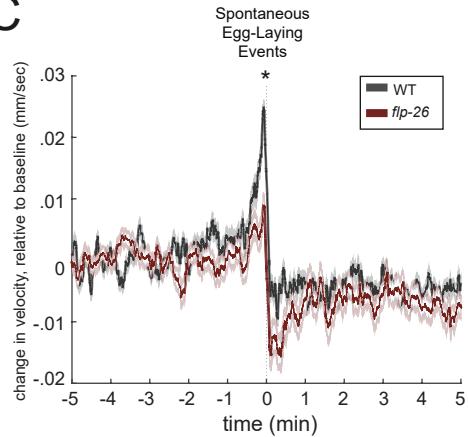
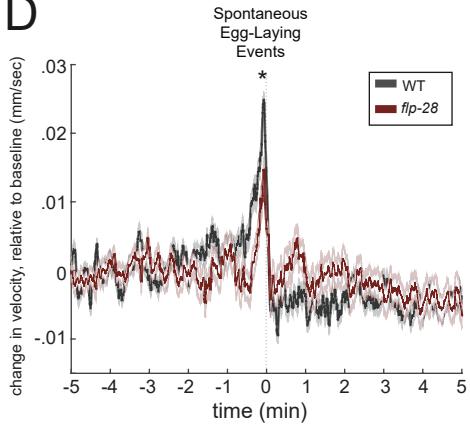
Supplemental Figure 2. HSN GCaMP analyses, and the correlation between HSN and RIB activity, related to Figure 2.

(A) Event-triggered averages showing average HSN GCaMP signal surrounding randomly chosen timepoints, as a control for Fig. 2B. Each line is the mean of 16 timepoints (matching the n in Fig. 2B), and this control was run 100 times, resulting in 100 lines.

(B) Event-triggered averages showing average speed (black) and HSN GCaMP (green) surrounding randomly chosen timepoints, as a control for Fig. 2C. Each line is the mean of 104 timepoints (matching the n in Fig. 2C), and this control was run 100 times, resulting in 100 lines.


(C) Event-triggered average showing average animal speed surrounding HSN calcium peaks. This plot only includes HSN calcium peaks that were not accompanied by egg-laying. Note that speeding still occurs during these peaks.

(D) Complementary cumulative distribution function (ccdf) showing distribution of intervals between HSN calcium peaks. This distribution was best fit by a double exponential (red). The slopes of each exponential are shown in blue and the tau values are also displayed. The shorter distribution is characterized by a tau of ~30s, whereas the longer distribution is characterized by a tau of ~2min.




(E) Scatterplot showing the per-peak relationship between HSN calcium peak amplitude and speeding amplitude during that HSN peak. n = 104 peaks across 15 animals. There is no significant relationship (see inset correlation coefficient and p-values).

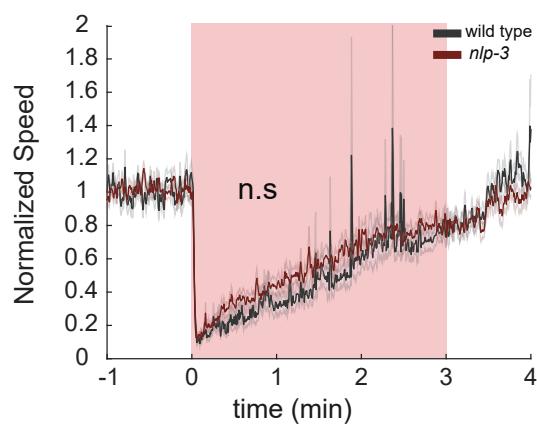
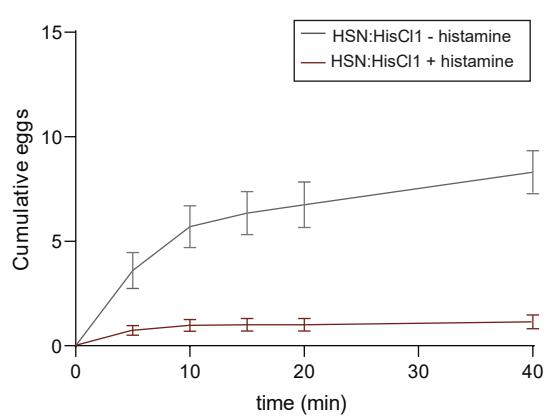
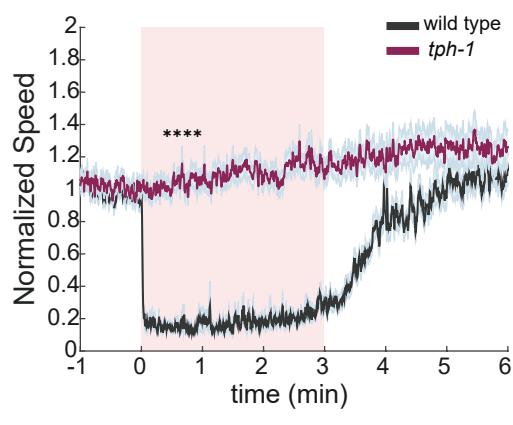
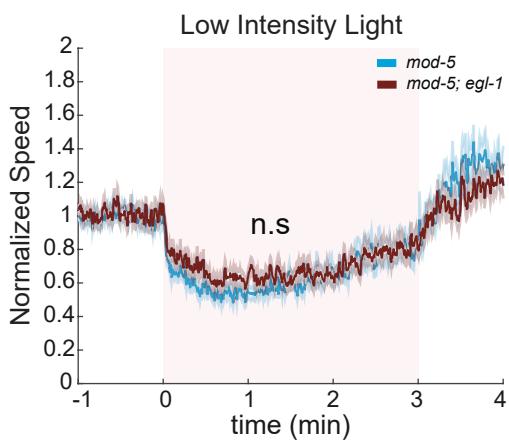
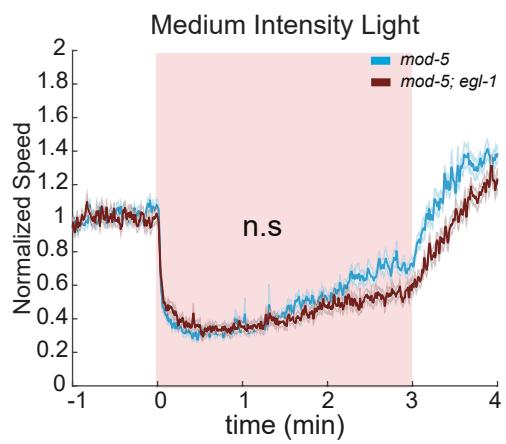
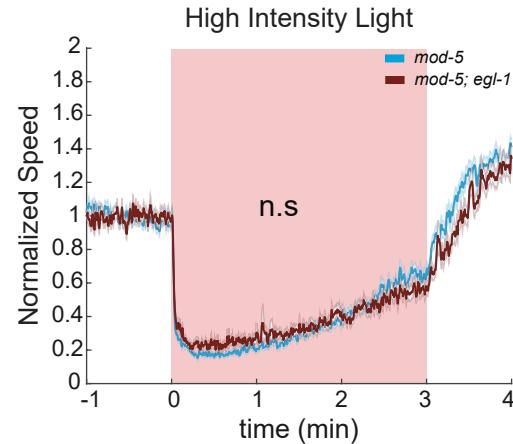
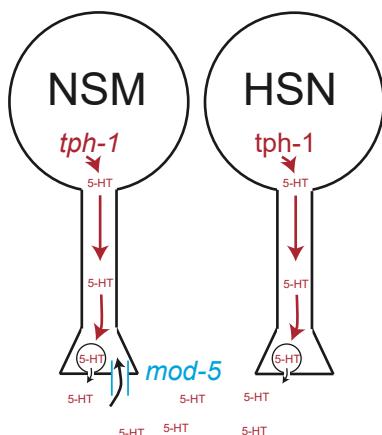
(F) Example calcium traces of RIB and HSN from a joint calcium recording of both neurons in immobilized animals.

(G) Frequency of HSN calcium peaks that occurred while RIB was high (i.e. network was in a ‘forward’ state) or low (i.e. network was in a ‘reverse’ state). Dots are individual animals. Connected dots represent the same animals. n = 8 animals. **p<0.01, Wilcoxon signed rank test.

A

egl-21;
flocked *egl-21* genomic rescue

B**C****D**








Supplemental Figure 3. Baseline locomotion of *egl-21*; floxed *egl-21* genomic rescue animals and native egg-laying events in peptide mutants, related to Figure 3.

(A) Baseline mean velocity of *egl-21*; floxed *egl-21* genomic rescue animals without (control) or with *pegl-6::Cre* expression in the absence of food. Dots show individual animals; bars are means and error bars are SEM. n = 6 animals for control and 11 animals for *pegl-6::Cre* expressing animals.

(B) Event-triggered averages for time periods surrounding native egg-laying events in *flp-2(gk1039)* animals. Data are shown as in Fig. 1G and statistics were performed as in Fig. 1G. n = 21 animals for wild-type (518 egg events) (same data as Fig. 1G) and n = 6 animals for *flp-2* (194 egg-laying events).

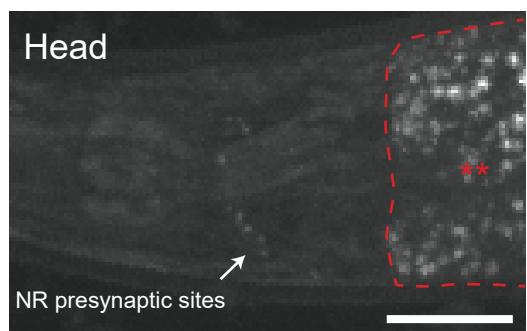
(C) Event-triggered averages for time periods surrounding native egg-laying events in *flp-26(gk3015)* animals. Data are shown as in Fig. 1G and statistics were performed as in Fig. 1G. n = 21 animals for wild-type (518 egg events) (same data as Fig. 1G) and n = 6 animals for *flp-26* (162 egg-laying events). *p<0.05, Mann-Whitney U test, Bonferroni-corrected for *flp-2*, *flp-26* and *flp-28* single mutants.

(D) Event-triggered averages for time periods surrounding native egg-laying events in *flp-28(flv11)* animals. Data are shown as in Fig. 1G and statistics were performed as in Fig. 1G. n = 21 animals for wild-type (518 egg events) (same data as Fig. 1G) and n = 6 animals (159 egg-laying events) for *flp-28*. *p<0.05, Mann-Whitney U test, Bonferroni-corrected for *flp-2*, *flp-26* and *flp-28* single mutants.

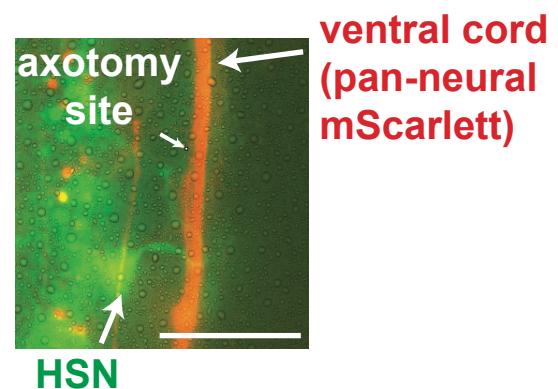
A**B****C****D****E****F****G**

Supplemental Figure 4. Egg-laying of HSN::HisCl animals and NSM::Chrimson responses, related to Figure 4.

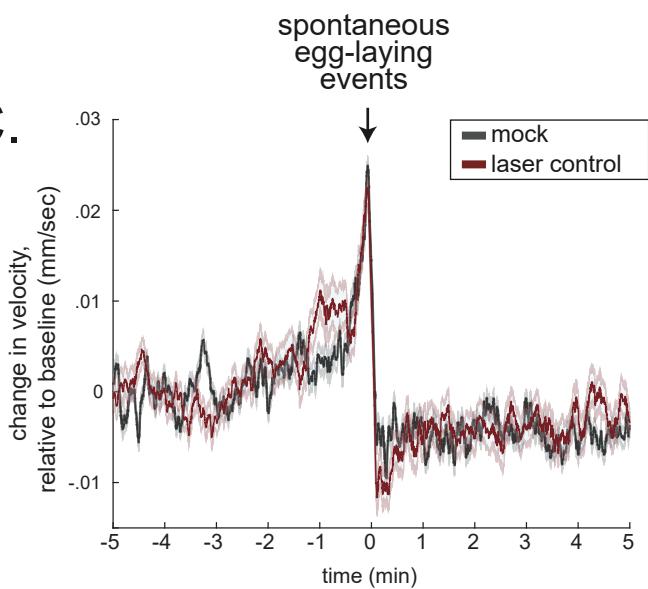
(A) Event-triggered averages depicting the average change in animal speed upon NSM::Chrimson stimulation with red light illumination in wild-type and *nlp-3(n4897)* animals. Lines show means; and error shading shows SEM. n = 59 for wild-type animals and 73 for *nlp-3(n4897)* animals.


(B) Egg-laying of HSN::HisCl animals either exposed to histamine or not. Animals for this experiment were transferred to +his or -his plates immediately before this assay (i.e. at t = 0 min), and eggs laid were counted at different time points, up to 40min after transfer. Note that egg-laying is reduced even at the first time point, indicating the HSN::HisCl inhibits egg-laying within minutes of first exposure to histamine. n = 35 plates for HSN::HisCl with histamine and 20 plates for no histamine control group, with 3 animals on each plate.

(C) Event-triggered averages depicting the average change in animal speed upon NSM::Chrimson stimulation with red light illumination in wild-type and *tph-1(mg280)* animals. Animals were starved for 3 hours before the assays. Lines show means; and error shading shows SEM. n = 77-390 animals. ***p<0.0001, unpaired t-test.

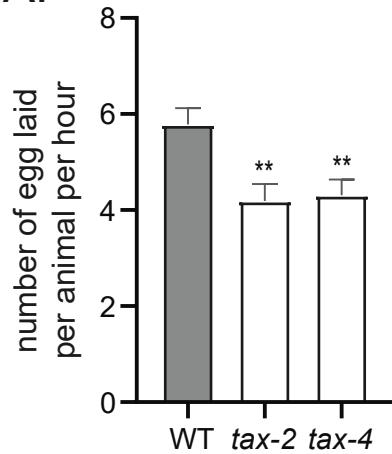
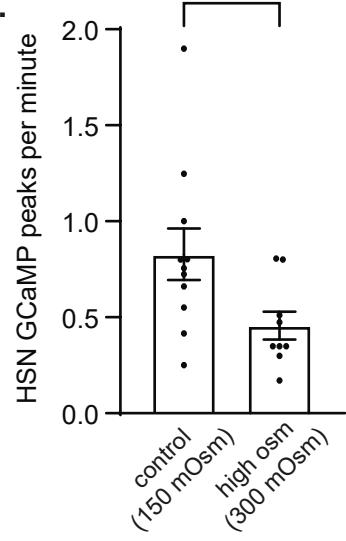
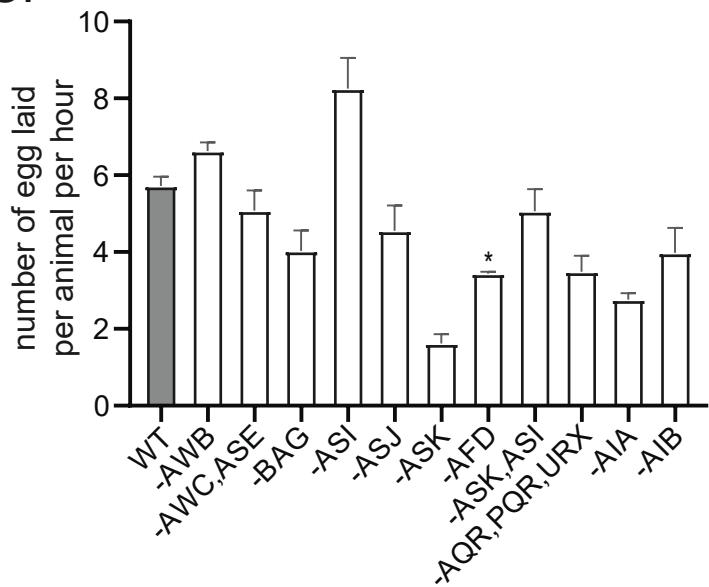
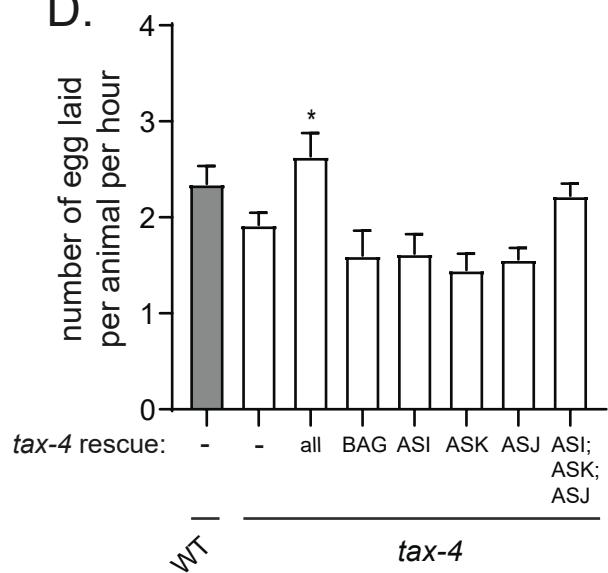
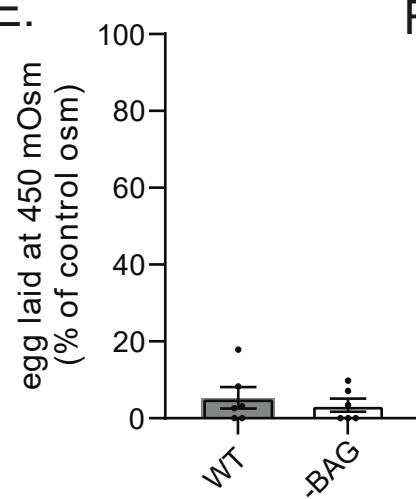
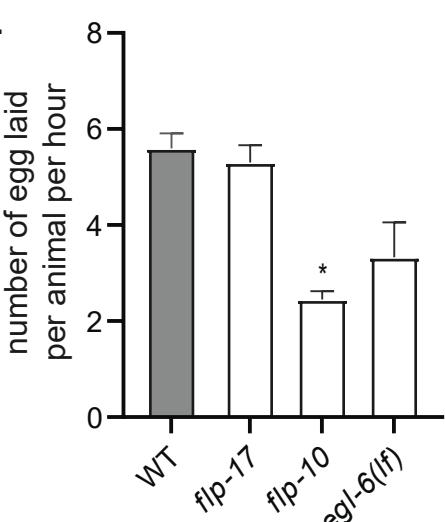

(D to F) Event-triggered averages depicting the average change in animal speed upon NSM::Chrimson stimulation with different light intensities in *mod-5(n822)* and *mod-5(n822);egl-1(n487gf)* animals, with panel C being the lowest intensity and panel E the highest. n = 51-248 animals.

(G) Cartoon illustrating serotonin release and re-uptake by NSM and HSN neurons.


A.

B.

C.

Supplemental Figure 5. Representative image of HSN axotomy and native egg-laying events of the laser control group, related to Figure 5.

(A) Longer exposure image of HSN CAT-1::GFP puncta in the head region, of the same animal displayed in Fig. 5E. These puncta are very faint relative to the CAT-1::GFP puncta that HSN displays in the vulval presynaptic region. Scale bar, 25 um.

(B) Fluorescent image of the vulval region of an example animal from the transgenic line that was used for laser axotomy. This strain has HSN::GFP and pan-neural::mScarlett, as indicated. The image is being used to illustrate the site of HSN laser axotomy (note the small dot at the tip of the white arrow for axotomy site, which is the exact cut site). Scale bar, 20 um

(C) Event-triggered average showing average animal velocity surrounding native, spontaneous egg-laying events. Data are shown for mock and laser control animals, in which a laser was fired adjacent to the HSN axon, at the same settings used for the actual axotomy in Fig. 5H. Data are shown as in Fig. 1G and statistics were designed in the same manner as in Fig. 1G. Lines show means and error shading shows SEM. n = 17 animals for mock (118 egg events); n = 17 animals for laser control (108 egg events). Note that the mock group was specifically paired to these laser controls (i.e. run side-by-side in same experiment) and are different animals from the mock animals in the actual axotomy (Fig. 5H).

A.**B.****C.****D.****E.****F.**

Supplemental Figure 6. HSN activity in high osmolarity and baseline egg-laying rates for indicated genotypes, related to Figure 6.

(A) Baseline egg-laying rates on normal osmolarity (150 mOsm) plates for the indicated genotypes that are also displayed in Fig. 6C. Note that these are the raw values for control data displayed in Fig. 6C. **p<0.01, Mann-Whitney tests comparing day-matched groups. (WT data are shown aggregated across all relevant days for simplicity, but statistics were performed comparing animals to their day-matched wild-type animals)

(B) Frequency of HSN GCaMP peaks in freely-moving animals exploring agar pads with either 150 mOsm environment or 300 mOsm environment (via sorbitol addition). n = 9-11 animals. *p<0.05, unpaired t-test.

(C) Baseline egg-laying rates on normal osmolarity (150 mOsm) plates for the indicated genotypes that are also displayed in Fig. 6D. Note that these are the raw values for control data displayed in Fig. 6D. For display purpose, data points of wild-type animals were pooled together. Statistics were done by only comparing day-matched groups. *p<0.05, Bonferroni corrected Mann-Whitney tests comparing day-matched groups. (WT data are shown aggregated across all relevant days for simplicity, but statistics were performed comparing animals to their day-matched wild-type animals)

(D) Baseline egg-laying rates on normal osmolarity (150 mOsm) plates for the indicated genotypes that are also displayed in Fig. 6E. Note that these are the raw values for control data displayed in Fig. 6E. *p<0.05, Bonferroni corrected Mann-Whitney tests comparing the indicated day-matched groups. (WT data are shown aggregated across all relevant days for simplicity, but statistics were performed comparing animals to their day-matched wild-type animals)

(E) Egg-laying inhibition induced by exposure to 450 mOsm agar, compared to standard 150 mOsm conditions, shown for wild-type animals and BAG-ablated animals. n = 6 plates (with 10 animals each) per condition.

(F) Baseline egg-laying rates on normal osmolarity (150 mOsm) plates for the indicated genotypes that are also displayed in Fig. 6G. Note that these are the raw values for control data displayed in Fig. 6G. *p<0.05, Mann-Whitney tests comparing the indicated day-matched groups. (WT data are shown aggregated across all relevant days for simplicity, but statistics were performed by comparing animals to their day-matched wild-type animals)

CELL PRESS DECLARATION OF INTERESTS POLICY

Transparency is essential for a reader's trust in the scientific process and for the credibility of published articles. At Cell Press, we feel that disclosure of competing interests is a critical aspect of transparency. Therefore, we require a "declaration of interests" section in which all authors disclose any financial or other interests related to the submitted work that (1) could affect or have the perception of affecting the author's objectivity or (2) could influence or have the perception of influencing the content of the article.

What types of articles does this apply to?

We require that you disclose competing interests for all submitted content by completing and submitting the form below. We also require that you include a "declaration of interests" section in the text of all articles even if there are no interests to declare.

What should I disclose?

We require that you and all authors disclose any personal financial interests (e.g., stocks or shares in companies with interests related to the submitted work or consulting fees from companies that could have interests related to the work), professional affiliations, advisory positions, board memberships (including membership on a journal's advisory board when publishing in that journal), or patent holdings that are related to the subject matter of the contribution. As a guideline, you need to declare an interest for (1) any affiliation associated with a payment or financial benefit exceeding \$10,000 p.a. or 5% ownership of a company or (2) research funding by a company with related interests. You do not need to disclose diversified mutual funds, 401ks, or investment trusts.

Authors should also disclose relevant financial interests of immediate family members. Cell Press uses the Public Health Service definition of "immediate family member," which includes spouse and dependent children.

Where do I declare competing interests?

Competing interests should be disclosed on this form as well as in a "declaration of interests" section in the manuscript. This section should include financial or other competing interests as well as affiliations that are not included in the author list. Examples of "declaration of interests" language include:

"AUTHOR is an employee and shareholder of COMPANY."

"AUTHOR is a founder of COMPANY and a member of its scientific advisory board."

NOTE: Primary affiliations should be included with the author list and do not need to be included in the "declaration of interests" section. Funding sources should be included in the "acknowledgments" section and also do not need to be included in the "declaration of interests" section. (A small number of front-matter article types do not include an "acknowledgments" section. For these articles, reporting of funding sources is not required.)

What if there are no competing interests to declare?

If you have no competing interests to declare, please note that in the "declaration of interests" section with the following wording:

"The authors declare no competing interests."

CELL PRESS DECLARATION OF INTERESTS FORM

If submitting materials via Editorial Manager, please complete this form and upload with your initial submission. Otherwise, please email as an attachment to the editor handling your manuscript.

Please complete each section of the form and insert any necessary “declaration of interests” statement in the text box at the end of the form. A matching statement should be included in a “declaration of interests” section in the manuscript.

Institutional affiliations

We require that you list the current institutional affiliations of all authors, including academic, corporate, and industrial, on the title page of the manuscript. ***Please select one of the following:***

- All affiliations are listed on the title page of the manuscript.
- I or other authors have additional affiliations that we have noted in the “declaration of interests” section of the manuscript and on this form below.

Funding sources

We require that you disclose all funding sources for the research described in this work. ***Please confirm the following:***

- All funding sources for this study are listed in the “acknowledgments” section of the manuscript.*

*A small number of front-matter article types do not include an “acknowledgments” section. For these, reporting funding sources is not required.

Competing financial interests

We require that authors disclose any financial interests and any such interests of immediate family members, including financial holdings, professional affiliations, advisory positions, board memberships, receipt of consulting fees, etc., that:

- (1) could affect or have the perception of affecting the author’s objectivity, or
- (2) could influence or have the perception of influencing the content of the article.

Please select one of the following:

- We, the authors and our immediate family members, have no financial interests to declare.
- We, the authors, have noted any financial interests in the “declaration of interests” section of the manuscript and on this form below, and we have noted interests of our immediate family members.

Advisory/management and consulting positions

We require that authors disclose any position, be it a member of a board or advisory committee or a paid consultant, that they have been involved with that is related to this study. We also require that members of our journal advisory boards disclose their position when publishing in that journal. ***Please select one of the following:***

- We, the authors and our immediate family members, have no positions to declare and are not members of the journal's advisory board.
- The authors and/or their immediate family members have management/advisory or consulting relationships noted in the "declaration of interests" section of the manuscript and on this form below.

Patents

We require that you disclose any patents related to this work by any of the authors or their institutions. ***Please select one of the following:***

- We, the authors and our immediate family members, have no related patents to declare.
- We, the authors, have a patent related to this work, which is noted in the "declaration of interests" section of the manuscript and on this form below, and we have noted the patents of immediate family members.

Please insert any "declaration of interests" statements in this space. This exact text should also be included in the "declaration of interests" section of the manuscript. If no authors have a competing interest, please insert the text, "The authors declare no competing interests."

The authors declare no competing interests.

- On behalf of all authors, I declare that I have disclosed all competing interests related to this work. If any exist, they have been included in the "declaration of interests" section of the manuscript.**