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ABSTRACT

Engaging in physical computing activities involving both hard-
ware and software provides a hands-on introduction to computer
science. The move to remote learning for primary and secondary
schools during the 2020-2021 school year due to COVID-19 made
implementing physical computing activities especially challenging.
However, it is important that these activities are not simply elimi-
nated from the curriculum. This paper explores how a unit centered
around students investigating how programmable sensors that can
support data-driven scientific inquiry was collaboratively adapted
for remote instruction. A case study of one teacher’s experience
implementing the unit with a group of middle school students (ages
11 to 14) in her STEM elective class examines how her students
could still engage in computational thinking practices around data
and programming. The discussion includes both the challenges
and unexpected affordances of engaging in physical computing
activities remotely that emerged from her implementation.
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1 INTRODUCTION

Integrating computer science and computational thinking activities
into existing parts of the primary and secondary school curricu-
lum allows students to see how computing is broadly applicable.
Science classes provide an obvious point for integration because
it is a discipline that is increasingly reliant on the power of com-
putational concepts and tools [2, 14]. Some of these computational
tools involve the development of computational models and simula-
tions [26, 36], but others depend on physical devices to collect and
display information [5, 11, 13, 24]. The Next Generation Science
Standards (NGSS) [21] specifically call out computational thinking
as one of the eight science and engineering practices [34]. In addi-
tion, current best practice in science education emphasizes making
science class resemble the work of real scientists [21, 25, 30]. One
strategy for doing this is introducing complex computational tools
into the classroom to support students in conducting meaningful
investigations.

Programmable sensors are an example of physical devices used
by real scientists. They are becoming increasingly accessible to pri-
mary and secondary educators through their decreasing costs and
increasingly friendly user interfaces [1, 6]. Collecting information
about their environment using these sensors can prompt students
to ask questions such as why here? and so what? [8] and relate the
information they are learning to their own local context [1, 20, 35].

Integrating computing into science classes enables the explo-
ration of students’ computational thinking in the context of their
science classes. The Computational Thinking in Mathematics and
Science Practices Taxonomy (CT Practices) [37] provides a frame-
work defining what computational thinking looks like in science
and mathematics classes. The CT Practices describes four categories
of practices that students exhibit when they engage in computa-
tional thinking: Data Practices, Computational Modeling and Simula-
tion Practices, Computational Problem Solving Practices, and Systems
Thinking Practices[37, p. 135]. The term practice illustrates that both
knowledge and skill are required for students to deeply engage in
computational thinking. Each category contains a set of specific
practices.

This paper describes how an in-person physical computing unit
designed to be implemented in science classrooms was adapted for
remote instruction due to the COVID-19 pandemic. Like most units
involving physical computing, this unit was designed assuming
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that students would have access to all the materials they need to
assemble and manipulate the hardware/software system. In this
case, the students were provided with the materials in their homes,
but all instruction took place within a remote learning environment.
This paper examines the teacher’s implementation of an introduc-
tory unit in which students learned to program sensors to collect
and display information about the world around them. This paper
focuses on students’ engagement with four of the computational
thinking practices, Data Practices: Collecting Data and Visualizing
Data, and Computational Problem Solving Practices: Programming
and Troubleshooting and Debugging, which are core practices stu-
dents engage in during the unit. This paper addresses the following
research questions (1) How can students engage in computational
thinking practices around data and programming in a remote physical
computing unit? and (2) What challenges and affordances emerge
from engaging in physical computing activities remotely?

2 BACKGROUND

Physical computing has a long tradition of supporting youth to
engage with computing concepts [6]. Physical computing devices
have evolved over the years through explicitly designing for chil-
dren and the expansion of the hobbyist market into the educational
realm [6]. Examples include robotics like LegoMindstorms [31, 32],
wearable devices such as the LilyPad [7], and kits designed specif-
ically for education such as Dash and Dot . These tools vary in
their design and intended use, with some intentionally including
programming interfaces to expose students to complexities from
working with hardware/software systems. In contrast, others focus
on electronics and assembly.

Working with both hardware and software requires teachers to
support students working in both mediums simultaneously. Dif-
ferent strategies exist to support students to engage with these
hardware/software systems ranging from free play where com-
puter science concepts are introduced as they arise due to explo-
ration and trial and error [27] to direct instruction of computing
topics followed by independent projects [23] to a combination of
both [17, 19]. This paper uses a form of guided inquiry often used to
build science curricula [29, 30]. Units are centered around students
designing investigations to answer their questions through the cre-
ation of a sequence of coherent lessons that support incremental
knowledge building [28, 33].

Sensors are important physical computing tools that allow infor-
mation to be taken in about the world. The increased availability
of low-cost mobile sensors [1] is making it easier to measure and
display information that was previously impossible for students to
see. Microcontrollers such as the micro:bit [3] enable students to
easily collect and respond to information from the environment
through the incorporation of built-in sensors, such as temperature
or light sensors. These sensor technologies provide new and inno-
vative ways to understand and experience the world around us [18].
Collecting and creating data using sensors provides opportunities
for students to reason and think critically about the accuracy and
reliability of such information [22]. Students need to develop the
knowledge and skills to evaluate the benefits and limitations of

Thttps://www.makewonder.com/

277

Gendreau Chakarov, et al.

%§E

Figure 1: The micro:bit is a microcontroller that can be pro-
grammed using MakeCode, a block-based interface to sup-
port programming physical devices. The gator:bit enables al-
ligator clippable sensors to be attached to the micro:bit for
easy prototyping. Sensors include a sound sensor, environ-
mental sensor, and soil moisture sensor. The gator:bit also
includes a speaker and five neopixel LEDs.

sensor technologies [22], especially when selecting tools to use for
their scientific investigations [16].

3 RESEARCH CONTEXT

This study is part of an existing research-practice partnership
(RPP) [9, 10] between a large public university in the southwestern
United States and a large, urban school district near the university.
This RPP focuses on the problem of practice of providing all middle
school students (ages 11 to 14) with equitable exposure to computa-
tional thinking by developing curriculum and professional learning
activities to support inservice teachers to integrate computational
thinking into required science and STEM classes? [4, 15]. These
activities involve using programmable sensors built around the
micro:bit, see Figure 1, that allow students to collect and display
data from their local environment.

A design based implementation research (DBIR) approach [12]
is used to study and iteratively refine the process. Each school year
corresponds to one design cycle, and the project is currently in the
middle of its fourth design cycle. Each design cycle involves teachers
and researchers working together to design and adapt activities that
the teachers implement in the classroom. After implementation,
teachers reflect on their experiences and suggest improvements
and modifications to the curricular materials.

The unit is based on a unit described in [16] that introduces
students to programmable sensors as tools for scientific inquiry.
A group of fifteen middle school science and STEM teachers and
four university researchers modified the unit for remote instruc-
tion during a five-day workshop in the summer of 2020 conducted
over Zoom. Each of the teachers had all of the sensor technology
physically with them. Teachers were first introduced to the unit as
initially designed and then examined each lesson to determine how
best to modify the unit for remote implementation.

2STEM is a required elective class in this school district that explores topics not covered
in traditional science and math classes.
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3.1 Modified Sensor Unit

The unit is built around students’ questions elicited by data displays
their teachers built using the programmable sensor technology.
Anticipated questions include what are the different parts?, what
controls the system?, and how does information move?. The unit
consists of four core lessons plus an assessment designed to take
place over approximately five to ten one-hour class periods. The
large variance in expected time is meant to provide flexibility to
teachers who may want more time for students to explore the
technology and to go through optional supports in the unit, such as
an activity where students learn how to create explanatory models.
Table 1 illustrates the goal of each core lesson, along with suggested
strategies for remote implementation.

4 STUDY DESIGN

Five of the fifteen teachers participating in the research-practice
partnership implemented the sensor unit during Fall 2020. Each
teacher worked closely with one researcher during their implemen-
tation(s)®> who offered ongoing support, responded to questions as
they arose, and collected data. Not all teachers implemented the unit
in Fall 2020 due to the circumstances of their remote instruction
(e.g., several teachers had remote classes of at least 60 students).

This paper describes Dawn’s? third implementation of the unit.
Dawn joined the research-practice partnership in Summer 2020 and
had not taught the unit before. She had over 20 years of teaching
experience and had taught STEM for seven of those years. She
had some experience with programming using Scratch and other
block-based programming environments, but not MakeCode. Her
third implementation of the unit was with a class that consisted
of 36 middle school students, about 20% of whom were nonwhite.
Dawn’s third implementation was chosen to be the focal point of
this paper because all students had the technology in hand. She
refined her remote instruction over the two previous implementa-
tions to streamline many logistical issues, thus allowing the unit’s
content to be the main focus.

During her first two iterations of the sensor immersion unit,
Dawn and the first author met after the majority of her lessons to
discuss how the unit was going and brainstorm additional strategies
and supports. Based on these discussions, Dawn made two signifi-
cant changes for her third implementation. These changes aimed to
streamline the process so time would remain to complete Lesson 4
and the assessment. First, Dawn added whole-class demonstrations
where she assembled the gator:bit and sensors in front of her video
camera while her students followed along with their equipment.
Second, Dawn and the first author collaborated to create a new
student tutorial in MakeCode that was more closely tied to Dawn’s
data display. The original tutorial focused on students building a
display to monitor carbon dioxide, whereas Dawn’s data display
monitored the temperature and humidity. Her students struggled
with the focus on carbon dioxide monitoring since it was unrelated
to Dawn’s display.

3Due to new schedules designed to accommodate remote learning, some teachers
implemented the unit multiple times throughout the semester.
4 All names are pseudonyms.
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4.1 Data Collection

Dawn conducted all of her classes over GoogleMeets, as required by
her school due to the COVID-19 Pandemic. The first author attended
and recorded 10 of the 16 classes from her third implementation
of the sensor immersion unit. Recording classes required Dawn to
email the researcher a new Google Meets link every day, and for six
of her classes, the link either did not arrive in time or was not sent.
Each class lasted approximately 35 minutes, and the first author
debriefed with Dawn after the majority of the classes. The debriefs
were also recorded. After completing the third implementation of
the unit, the first author conducted a 40-minute semi-structured
interview with Dawn about her experience teaching the unit over
time. Questions cover the implementation experience as a whole
(e.g., what do you think your students learned or took away from
the unit?), specific questions about each lesson(e.g., in Lesson 4, how
well were your students able to communicate what they discovered
during the sensor investigation?), and a discussion around the
challenges of remote learning. This interview protocol has been
refined over four design cycles.

4.2 Data Analysis

The four core CT Practices [37] addressed in the unit (Collecting
Data, Visualizing Data, Computer Programming, and Troubleshoot-
ing and Debugging) provide a framework to conduct a qualitative,
deductive analysis of how students engaged in computational think-
ing during the unit. Table 2 describes how each of these practices
is represented in the unit as designed.

All video for the third implementation was timestamped and
content logged based on Dawn’s interactions with her students.
Based on the content log, the first author wrote descriptions of how
students engaged in each of the four CT Practices, see Table 2. Two
other researchers reviewed the content log and descriptions. The
three researchers then met for one hour to refine the descriptions.
The descriptions indicated that Lesson 2 and Lesson 3 were the main
lessons that students engaged in the CT practices and represented
the majority of students’ interactions with the sensor technology.
The focus would be on Lesson 2 and Lesson 3 for the remainder of
the analysis.

All videos from Lesson 2 and Lesson 3 were transcribed using
automated transcription software and cleaned by the first author.
The descriptions were refined to include only data from the second
and third lessons and augmented with quotes from Dawn that
illustrated how she supported her students to engage in the CT
practices. The researchers then met for another hour to review
the descriptions and come to an agreement on their content. In
addition, all three researchers reviewed the transcription of Dawn’s
post-implementation interview and used that to provide context
regarding her instruction.

5 RESULTS

This section describes how Dawn’s students engaged in each of the
four targeted CT Practices during her third implementation of the
sensor immersion unit.
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Table 1: The lesson goals and strategies to support students to achieve these goals during remote instruction

Lesson

Lesson Goal

Remote Implementation and Supports

Lesson 1

Students generate questions about the data display built by
their teacher

Teachers either create a video of the data display or interact
with the data display at the beginning of the lesson. Students
create a virtual representation of all their questions

Lessons 2 & 3

Students figure out how the sensors collect and display
data and create their own data displays. They use the mag-
netometer on the micro:bit to collect magnetic field data
and display it on the micro:bit. They use another sensor to
create a display controlled by sensor values.

To support small group work, students are divided into
breakout rooms and assigned specific roles such as pro-
grammer, wirer, and debugger to go through a series of
tutorials to help them learn about the sensors. Students take
screenshots and pictures of their sensors and programs to
enable teachers to assess progress.

Lesson 4

Students develop a broad conceptual understanding of how
ALL sensors work by sharing their displays and seeing the
similarities in their programs. Students brainstorm other
scientific questions the sensors could help them answer.

Students create videos describing their data displays, in-
cluding both the hardware and the program. Students use
a virtual platform to identify similarities and differences
across sensors. Students add questions the sensors could

help them answer to a virtual board and go into breakout
rooms to discuss the questions.

Table 2: Descriptions of the four CT Practices that students most deeply engage with throughout the unit.

CT Practice Description

Collecting Data

Students figure out how the sensors can be used to gather data and design systematic ways to collect
the data they need for their investigations.

Visualizing Data
collection.

Students explore both numerical and interactive displays to communicate the results of the data

Computer Programming

Students modify and create programs to collect and visualize the data from the sensors using MakeCode.
Students explore computer science concepts such as conditional logic and variables.

Troubleshooting and Debugging

identify and correct the issues.

Students face issues with both the hardware and software not behaving as expected and work to

5.1 Collecting Data

During Lesson 2 of the remote version of Dawn’s sensor immersion
unit, students engaged in an activity where they used a magne-
tometer to explore the magnetic fields of items in their homes
independently. One student discovered that her mother’s wedding
ring measured 3027 microteslas, which led the class to inquire about
the highest possible magnetometer reading. Dawn remarked during
her post-implementation interview that

T'had a lot of kids running around their houses telling
me I got 3295. And they come back and put it up [on
our shared chat]... Some of them who are those timid
ones even were putting stuff in the chat. Like saying,
“Is 75 right? How are they getting those 1000s?” And
then I said, “Well, put it next to something magnetic.”
And then they go, “Oh, I got it” You know, you can
just see the discovery process.

After collecting data using the magnetometer, students moved
on to using a different sensor to collect data about temperature,
humidity, or soil moisture. Unlike the magnetometer, these environ-
mental sensors have to be wired onto the micro:bit. Dawn directed
students to look at a series of wiring diagrams and demonstrated
how to assemble the wires on the environmental sensor by holding
the pieces up to her camera. In return, students showed her their
setups by holding them up to their cameras. Dawn explained what
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the different colored wires meant by telling them, “Green which is
data. It’s collecting data. You will use the green [wire] in both of
the sensors, but you will not use the yellow [wire], which is like a
controller of the data”

Once they had their sensors wired correctly, students collected
data on the temperature, humidity, or soil moisture in their home
or neighborhood environments. Students moved at varying paces
through the activity and did not share their data as much as they
did during the magnetometer activity. Students spent more time
exploring with the soil moisture sensor than with the temperature
and humidity sensors, which Dawn attributed to them asking more
questions about and seeing more variation in the data. She shared,
“Some of them did put it in a plant. And some of them did say
‘What’s the difference between this succulent plant and this ivy?’
or whatever it was.”

5.2 Visualizing Data

About half of Dawn’s students completed an extension activity to
create a metal detector using the magnetometer on the micro:bit.
The metal detector displays a picture on the micro:bit that gets
brighter when it gets closer to magnetic objects. Students use the
battery pack to make their metal detector mobile and go search
for metal. Dawn instructed her students to go outside and use the
micro:bit to search for metal objects.
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When students collected data using the environmental sensor
or the soil moisture sensor, they displayed their data using single
input events at first (e.g., when you press button A, the temperature
value scrolls across the micro:bit LEDs). Next, Dawn encouraged the
students to explore how they could display all the values collected
using just one input event, “So that when you push a button, you
get all the data. One button. Boom. Bam. Done.” She had them think
about how to create labels using the LEDs on the micro:bit to tell
the viewer what type of data they see, “so once it [your program]
has found the number, how would you get to show it in a string,
like T equals and then that number?”

5.3 Programming

Students’ first experience with programming in the unit came when
they followed a tutorial that walked them through how to program
a magnetometer in MakeCode to collect data on magnetic field
strength. Dawn went through the tutorial with the students by shar-
ing her screen and showing the students select aspects of MakeCode.
For example, Dawn explained how different blocks could control
when data is displayed using the simulator.

I'm just going to show number 10. If it’s on start, do
you notice what it did over on my micro:bit? As soon
as I plug it in, as soon as it’s turned on, it’s going to
do that? Right? If I change that, and I put it in forever.
Notice, it’s going to just keep going and going, it’s
going to show that number for as long as it’s on.

After the students programmed the magnetometer, they worked
on a tutorial to replicate the data display that anchored the unit.
They followed a tutorial that walked them through how to col-
lect temperature, humidity, and soil moisture data using different
buttons to collect different data. Dawn introduced the students
to variables by showing a short video. She presented a challenge
where students had to modify their program to collect all the data
using only one button instead of three different buttons like the
tutorial, “then I want you to go back when you’re finished. And
think about this. If I wanted all that data on button A, what would
Ido?”

5.4 Troubleshooting and Debugging

Students engaged in troubleshooting and debugging throughout
the programming and wiring process. The alligator clips that held
the various components together were not particularly sturdy, espe-
cially when students carried the equipment around in their homes
to make measurements. To prevent the alligator clips from coming
unclipped, Dawn demonstrated, by holding the hardware up to her
camera, how to connect the alligator clips using both holes on the
gator:bit to ensure a secure connection. Dawn cautioned, “When
you put it[the alligator clip] in, you want to make sure that it goes
through the two holes”

When students reported data values that did not make sense,
Dawn encouraged them to examine both their program and their
hardware; however, she emphasized the software portion as the first
place to look. For example, in the case of the unusual temperature
value, Dawn told the student, “Go back to your code and see what
possibly could be up. And then also check where your sensor is and
your wiring for sure” She would follow up with the student later
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in the class to confirm they had identified and fixed the bug. If the
student still struggled, she encouraged them attend office hours.

When a student had an issue with their program, Dawn asked
them to share their screen so she and other students could help
them debug the program. First, she asked students if they could
spot the problem. Dawn then helped the whole class understand
the problem by illustrating the consequences of the wrong code.

In one case, a student encountered problems displaying the val-
ues from the temperature sensor. The whole class looked at the
student’s code together, and a classmate responded that the code
is missing the on start block with the initialization. Dawn added
that “Yep, you definitely always have to have that on start. If you
don’t tell it to start that gator:environment, it will never do all
those buttons and code that you’ve started to put on there” Dawn
encouraged the class to read over the student’s code, saying, “So
let’s just read what you have there. If I press A, then it’s going to go
get the temperature” Then she illustrated what will happen if the
student tried to display all sensor values when button A is pressed
“If I press A and it gives me like just four numbers. I won’t know
what any of those are, it might look like it’s 1000s of degrees or
something”

6 DISCUSSION

This section explores the significant themes that emerged from
Dawn’s implementation and situates the challenges and affordances
in the larger context outside of just remote learning and into the
physical computing activities in general.

RQ1) How can students engage in computational thinking practices
around data and programming in a remote physical computing unit?
Dawn’s students successfully engaged in the four CT Practices
most relevant to the sensor immersion unit. The Data Collecting
Practice emerges in two main ways in the unit. First, the process of
assembling the hardware is critical to students being able to collect
data from the additional sensors not built into the micro:bit. Second,
students explored different objects and spaces in their homes and
shared that data to develop a collective understanding of their avail-
able information. For the Visualizing Data Practice, students used
the LEDs on the micro:bit to display the numerical value of the sen-
sor data, added labels to that numerical data so that the visualization
had just one input event, and some students created an interactive
visualization in the form of a metal detector that got brighter the
closer the micro:bit was to a metal object. Students engaged with
the Programming Practice by creating several different programs
in MakeCode throughout the unit. Troubleshooting and Debugging
encompassed not only code that is not performing as expected but
also issues around hardware assembly and sensor accuracy. In addi-
tion, students used strategies such as reading through the program,
screen sharing to solve a problem collaboratively, and the process
of elimination to determine if the problem is hardware or software
related.

However, the extent to which all students engaged in the CT
Practices appears to lack great depth, likely due to the relatively
short time frame of the unit. The examples provided in the analysis
suggest a certain level of sophistication in terms of the Collecting
Data Practice and Troubleshooting and Debugging Practice, but to
truly engage with CT Practices of Visualizing Data and Computer
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Programming as described by Weintrop and colleagues [37], more
in-depth interactions need to be present such as programming
interactive visualizations that involve data analysis.

RQ2) What challenges and affordances emerge from engaging in

physical computing activities remotely?
Implementing physical computing activities remotely is challenging
and not an ideal situation. Four major challenges emerged from
Dawn’s implementation: (1) an increase in the amount of direct
instruction, (2) less opportunity for exploration and student choice,
(3) debugging physical devices remotely, and (4) supporting small
group work.

She had less instructional time than in her regular classes because
of additional hurdles such as the extra time needed for all students
to join the GoogleMeet and technical issues that inevitably arose.
Given the decreased class time, she went through tutorials with
students instead of having them explore them on their own first.
Thus the unit became a more blended instructional unit [17, 19]
instead of being as grounded in student investigations. Debugging
hardware issues required students to hold up the sensors to the
camera, making it challenging to view the system thoroughly. Sim-
ple errors like a flipped power switch that are quickly discovered
when students are in person took minutes to figure out using the
camera. GoogleMeets did not have easily accessible breakout rooms
when Dawn implemented the unit. She had to create individual
GoogleMeets to support small group work. Getting students into
these GoogleMeets and ensuring that all students were participat-
ing presented an insurmountable challenge for Dawn. She felt her
time was better spent creating that whole class collaborative feel
by focusing on full group discussion.

While Dawn encountered various challenges, there were also
some unexpected affordances of the remote environment in her
implementation. All students were provided with the sensor tech-
nology and had to engage in the building and programming them-
selves. They could not depend on other students to do it for them.
This circumstance offered all students a degree of agency in the
process they might not have otherwise had by removing some of
the issues that can arise from collaborative computing projects,
such as one or two students taking control of the entire group.
Students were also able to use the sensors to investigate their home
environment, making the data more meaningful and more varied
compared to data collected within a single classroom. Lastly, during
the troubleshooting debugging process, Dawn or other students
could not immediately step in and physically fix the problem; they
could only guide them to fix their problem through screen sharing:
one piece of remote learning technology that added to the learning
experience.

7 CONCLUSION

This paper describes how students can engage in data and computa-
tional problem solving practices remotely with physical computing
devices. Challenges existed around opportunities for independent
exploration, small group work, and debugging physical devices.
However, students successfully built and used the sensor technol-
ogy at home and collected and visualized data from their local
environment. Teachers and school administrators are often unwill-
ing to send equipment home with students, but Dawn’s experience
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suggests that doing so can afford a positive and productive learning
opportunity. All of Dawn’s technology was returned, and there
have been no issues with any of it breaking. Students were often
compelled to work through complex computational problems them-
selves because no teacher or other student could fix it for them.
While this study only examined one teacher’s experience, these af-
fordances provide an opportunity to reimagine physical computing
activities for both remote and in-person learning.
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8 SELECTION AND PARTICIPATION OF
CHILDREN

Before implementation, Dawn provided parents with a parental
consent form that briefly described the larger project and the kind
of information the research team would be collecting. The consent
form stated that students should still participate as usual in the
class even if they did not consent to have their data used in the
study. Students received a similar form written in student-friendly
language where they could provide their assent to participate. With
this in mind, for parents or students who do not consent, every
effort was made to ensure that the student was not recorded and
no data was collected from them. All student data is anonymized,
names are changed, and videos and images are blurred to protect
student identity.
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