
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 68, NO. 5, MAY 2023 2667

Multiagent Low-Dimensional Linear Bandits
Ronshee Chawla , Abishek Sankararaman , and Sanjay Shakkottai , Fellow, IEEE

Abstract—We study a multiagent stochastic linear bandit
with side information, parameterized by an unknown vector
θ∗ ∈ Rd. The side information consists of a finite collection
of low-dimensional subspaces, one of which contains θ∗.
In our setting, agents can collaborate to reduce regret by
sending recommendations across a communication graph
connecting them. We present a novel decentralized algo-
rithm, where agents communicate subspace indices with
each other and each agent plays a projected variant of
LinUCB on the corresponding (low dimensional) subspace.
By distributing the search for the optimal subspace across
users and learning of the unknown vector by each agent
in the corresponding low-dimensional subspace, we show
that the per-agent finite-time regret is much smaller than
the case when agents do not communicate. We finally com-
plement these results through simulations.

Index Terms—Decentralized learning, gossip, linear ban-
dits, networks, regret minimization.

I. INTRODUCTION

THE multiarmed bandit (MAB) model features a single
decision maker making sequential decisions under uncer-

tainty. It has found a wide range of applications: advertising [1],
information retrieval [2], and operation of data centers [3] to
name a few. See also the books in [4] and [5]. As the scale of
applications increases, several decision makers (a.k.a. agents)
are involved in making repeated decisions as opposed to just
a single agent. For example, in Internet advertising, multiple
servers are typically deployed to handle the large volume of traf-
fic [6]. Multiagent MAB models have emerged as a framework
to design algorithms accounting for this large scale.

In recent times, there has been a lot of interest in the study
of multiagent unstructured bandits [7]–[10]. However, from a
practical perspective, the linear bandit framework has shown to

Manuscript received 15 May 2021; revised 20 February 2022; ac-
cepted 10 May 2022. Date of publication 1 June 2022; date of current
version 26 April 2023. This work was supported in part by ONR under
Grant N00014-19-1-2566, in part by NSF under Grant SATC 1704778,
in part by ARO under Grant W911NF-17-1-0359, in part by NSA SoS
Lablet under Grant H98230-18-D-0007, and in part by the WNCG In-
dustrial Affiliates Program. Recommended by Senior Editor Tetsuya
Iwasaki and Guest Editors George J. Pappas, Anuradha M. Annaswamy,
Manfred Morari, Claire J. Tomlin, Rene Vidal, and Melanie N. Zeilinger.
(Corresponding author: Ronshee Chawla.)

Ronshee Chawla and Sanjay Shakkottai are with the Depart-
ment of Electrical and Computer Engineering, University of Texas at
Austin, Austin, TX 78712 USA (e-mail: rcronshee@gmail.com; san-
jay.shakkottai@utexas.edu).

Abishek Sankararaman is with the University of California at Berkeley,
Berkeley, CA 94720 USA, and also with the Applied Scientist at Amazon
AWS, Palo Alto, CA 94303 USA (e-mail: abishek@utexas.edu).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TAC.2022.3179521.

Digital Object Identifier 10.1109/TAC.2022.3179521

be more appropriate than unstructured bandits in many instances
(e.g., recommendations [11] and clinical studies [12]). The linear
bandit’s framework allows for a continuum of arms with a shared
reward structure, thereby modeling many complex online learn-
ing scenarios [13], [14]. Despite its applicability, the study of
multiagent linear bandits is limited. The key technical challenge
arises from the “information leakage”: the reward obtained by
playing an arm gives information on the reward obtained by all
other arms. In a multiagent scenario, this is further exacerbated,
making the design of collaborative algorithms nontrivial.

We take a step in this direction by considering a collaborative
multiagent low-dimensional linear bandit problem and propose
a novel decentralized algorithm. Agents in our model have side
information in the form of subspaces. In our algorithm, agents
collaborate by sharing these subspaces as opposed to the linear
reward in our algorithm. Our main result shows that, even with
minimal communications, the regret of all agents are much lower
compared with the case of no collaboration.

Model overview: Our problem consists of a single instance
of a stochastic linear bandit with unknown parameter θ∗ ∈ Rd,
played concurrently by N agents. The common side informa-
tion available to the agents is a collection of K disjoint m-
dimensional subspaces, only one of which contains θ∗. However,
the agents are not aware of the subspace containing θ∗. At each
time t, each agent i ∈ [N]1 chooses a subspace in [K]. Subse-
quently, it plays an action vectora(i)t from the action setAt ⊂ Rd

while satisfying the constraints imposed by the chosen subspace
and receives a reward ⟨a(i)t , θ∗⟩+ η(i)t , where η(i)t is zero mean
sub-Gaussian noise. Thus, the abovementioned problem can be
visualized as a two-tier bandit problem, described as follows.
The first tier corresponds to the K arms of an unstructured
bandit. In the second tier, each arm corresponds to solving the
stochastic linear bandit problem (parameterized by unknown θ∗)
over one of the K known subspaces. The rewards obtained by
the agents are only dependent on their actions and independent
of actions of other agents.

The agents in our model are connected through a communi-
cation graph over which they can exchange messages to collab-
orate. Agents are constrained to communicate by exchanging
messages for a fixed number of times over any given time span.
We seek decentralized algorithms for agents, i.e., the choice
of action vector, communication choices, and messages depend
only on the observed past history (of action vectors, rewards,
and messages) of that agent.

Motivating example: We motivate our model in the context
of personalized news recommendation systems. Suppose that a
user u can be modeled by a (unknown) vector θ∗u ∈ Rd, which

1[N] denotes the set {1, . . . ,N}.

0018-9286 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Texas at Austin. Downloaded on March 20,2024 at 13:08:28 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-1769-2651
https://orcid.org/0000-0002-3309-8652
https://orcid.org/0000-0002-4325-9050
mailto:rcronshee@gmail.com
mailto:sanjay.shakkottai@utexas.edu
mailto:sanjay.shakkottai@utexas.edu
mailto:abishek@utexas.edu
https://doi.org/10.1109/TAC.2022.3179521

2668 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 68, NO. 5, MAY 2023

lies in one of K possible subspaces. These subspaces reflect
information from historical data of other users whose feature
vectors have been learned (for example, users that have been
in the system for a long time) and can be categorized into a
collection of low-dimensional subspaces. Thus, when any new
user enters the system, it needs to 1) identify the subspace that
the user’s vector lies in, and 2) determine the corresponding θ∗u
for that user. At any point of time, each user is handled by a single
server (agent). However, in large-scale applications, a collection
of servers is deployed to handle the large number of users. Even
though a user’s queries are routed to different servers over time;
however, these servers can collaborate by exchanging messages
to speed up learning.

Elaborating on the news recommendation example above-
mentioned, the subspaces could correspond to political leanings
of the user (e.g., social liberal, fiscal conservative, and libertar-
ian). In this model, all users with the same political leanings
would share the same subspace; however, their personal vectors
θ∗u would differ (to capture fine-grained individual differences).
The two-tier bandit, thus, models a coarse dimensionality re-
duction through the subspace choice and a finer characterization
through θ∗u in a specific low-dimensional subspace.

The above-mentioned discussion reflects the two-tier bandit
from a single user’s perspective; the system will run many
parallel instances of this—one for each user. Our model ab-
stracts this setup, and our algorithm demonstrates that agents
(servers) can indeed benefit from collaborations with minimal
communications.

Our main contributions are given as follows.
SubGoss algorithm: We propose SubGoss (see Algorithm 1),

which proceeds in phases, such that agents in any phase
1) explore the subspaces repeatedly to identify the correct

subspace containing θ∗, followed by
2) playing Projected LinUCB on that subspace, and
3) communicating that subspace whenever requested.

Our algorithm constrains agents to search for θ∗ over only
a small set (of cardinality ≤ K

N + 2) of subspaces per agent.
Agents use pairwise communications to recommend subspaces
(not samples), i.e., agents communicate the ID of the estimated
best subspace. This set of subspaces is updated through rec-
ommendations: agents accept new recommendations and drop
subspace(s) unlikely to contain θ∗, ensuring that the total number
of subspaces an agent considers at all times remain small.
Agents can communicate O(log T) times over a span of time
T . Nevertheless, the best one spreads to all the agents through
communications and thus all agents eventually identify the
correct subspace.

Asymptotically matching an oracle’s regret rate in large
systems: Despite playing from a time-varying set of sub-
spaces, every agent incurs a regret of at most O(m

√
T log T) +

O(KN .m
√
T) (see Theorem 1). This scaling does not depend2

on the gossip matrix G, and we show that these communication
constraints only affect the constant term in regret.

Note that an oracle that knew the right subspace will only incur
regret for finding θ∗ in that subspace, while avoiding any regret

2We require G to be connected. See Appendix A.

due to subspace search. We use this fact at the end of Section IV
to informally argue that even if an agent gets the information
about the correct subspace whenever it communicates with other
agents, it cannot do better thanΩ(m

√
T) regret under our model

of information sharing. Consequently, we show in Corollary
3 that for large K and N , SubGoss achieves near-optimal
performance, demonstrating that it uses the side information
effectively.

Finite-time gains due to faster search of subspaces with col-
laboration: We quantify the extent to which collaboration helps
by analyzing the ratio of regret upper bound achieved by Sub-
Goss without collaborations to that achieved with collaboration.
We observe that the benefits occur from the ability of multiple
agents to do a faster search for the right subspace containing θ∗

as compared with a single agent.
In high-dimensional settings (when d is large and m is a

constant) with large number of subspaces and agents (K = N =
O(d)), we show in Corollary 3 (and the remarks following it)
that by time T = Ω(d), the collaborative gain is of the order of
Ω(d

log d). The key reason for the gain lies in the ability of multiple
agents to distribute the search for the right subspace among them,
enabling all agents to identify the subspace faster, compared
with a single agent without collaboration. Finally, these results
are corroborated through simulations (see Fig. 1).

Related work: Our work focuses on collaborative multi-agent
bandits, where agents jointly accomplish the shared objective of
minimizing cumulative regret [6], [9], [10], [15]–[19]. Our work
focuses on a setting where agents only share recommendations
of actions (e.g., to minimize network traffic due to collaboration,
while optimizing for per-agent regret), and do not share the
samples themselves [9], [15], [18]. In each of these studies,
agents play from a small subset of arms at all times and exchange
the arm IDs of what they consider the best arm in their playing set
through pairwise gossip-style communications, which is further
used to update their playing set. Another approach that focuses
on reducing network traffic, while simultaneously optimizing
for total cumulative regret (sum over time and users), is based
on the follow-the-leader approach [19], wherein a leader among
the agents is elected and subsequently becomes the sole player
exploring the arms, while other agents act as its followers.
However, all of the abovementioned works are adapted to the
case of finite-armed unstructured MABs and cannot be applied
to a linear bandit setup such as ours. Nevertheless, we adopt
some of the broader principles from [9] and [15] regarding the
use of the gossiping paradigm for communications to spread the
best subspace into our algorithm design.

The stochastic linear bandit framework and the study of
LinUCB algorithm was initiated in [13] and [14]. From a
practical perspective, the linear bandit framework has been
shown to be effective for various applications: for example, Li
et al. [11] and Agarwal et al. [20] applied this framework in
the context of Internet advertising and [12], [21] apply in the
context of clinical trials. Furthermore, a projected version of Lin-
UCB on low-dimensional subspaces has been recently studied
in [22].

To the best of our knowledge, our model has not been stud-
ied before, even in a single-agent setting. Our model can be

Authorized licensed use limited to: University of Texas at Austin. Downloaded on March 20,2024 at 13:08:28 UTC from IEEE Xplore. Restrictions apply.

CHAWLA et al.: MULTIAGENT LOW-DIMENSIONAL LINEAR BANDITS 2669

Fig. 1. Illustrating benefit of collaboration. (d,m,K) are (24, 2, 12), (48, 3, 16), and (60, 4, 15), respectively.

viewed as a generalization of the well-studied model of sparse
linear bandits [12], [23]–[25]. The sparse linear bandit problem
assumes that the unknown vector θ∗ is s-sparse, for some known
sparsity level s < d. In other words, θ∗ is assumed to lie in one
of the

(d
s

)
subspaces, where each of these subspaces corresponds

to a particular set of s coordinates, i.e., the subspaces are axis
aligned. Our model is a generalization where θ∗ lies in one
of any K given arbitrary disjoint subspaces. The two main
algorithmic ideas in sparse bandits are to either use heavy-tailed
priors for sampling action vectors and the associated posterior
distributions that result in sparse estimates [24], [25], or use a
LASSO-type regularizer in the estimator [12]. We cannot use
the techniques from sparse linear bandits in our model because
even though the unknown θ∗ lies in one of the low-dimensional
subspaces, all of its d coordinates can have nonzero values.
Consequently, the linear bandit suffers from the problem of
“information sharing”: the reward obtained by playing an action
vector in one subspace reveals information about the rewards
of action vectors in other subspaces. Hence, algorithmic ideas
from sparse bandits are not directly applicable in our setting.

The study of multiagent linear bandit framework has attracted
a lot of attention lately [26]. Multiagent linear bandits have
been studied in the context of clustering [27], differentially
private federated learning [28], and safety-critical distributed
learning [29]. However, all of these works involve agents sharing
samples with each other in the absence of side information,
unlike our setting where agents have the side information in
the form of subspaces and communicate only subspace IDs with
each other.

II. PROBLEM SETUP

Our problem setup consists of single instance of stochastic lin-
ear bandit (parameterized by unknown θ∗), concurrently played
by N agents. All agents play from the same set of action vectors
{At}t∈N at any time t, where At ⊂ Rd. The side information
available to all the agents is a collection of K disjoint subspaces
in Rd of dimension m < d. These subspaces are denoted by the
d×m orthonormal matrices {Ui}Ki=1, where span(Ui) defines a
m-dimensional subspace in Rd. One of these subspaces contains
θ∗, but agents are unaware of the subspace containing it. Without
loss of generality, we assume that ∥θ∗∥2 ≤ 1 andK is an integral
multiple of N . Let Pk = UkUT

k denote the projection matrix of
the subspace span(Uk) for all k ∈ [K]. We also assume that
the set of action vectors {At}t∈N contain the orthonormal basis
vectors of all the K subspaces (which are columns of Uk for all
k ∈ [K]) for all t ∈ N.

At any time t, an agent i chooses a subspace in [K]. Sub-
sequently, it plays an action vector a(i)t ∈ At while satisfying
the constraints imposed by the chosen subspace and the re-
ward obtained is given by r(i)t := ⟨a(i)t , θ∗⟩+ η(i)t . Here, η(i)t

is a zero mean sub-Gaussian noise, conditional on the ac-
tions and rewards accumulated only by agent i, i.e., for all
z ∈ R, E[exp(zη(i)t)|F (i)

t−1] ≤ exp(z
2

2) a.s. and F (i)
t−1 = σ(a(i)1 ,

r(i)1 , . . . , a(i)t−1, r
(i)
t−1, a

(i)
t). The noise is independent across

agents. Thus, the abovementioned setup can be abstracted as
a two-tier bandit problem, where 1) the first tier corresponds to
the K arms of an unstructured bandit, and 2) in second tier, each
arm corresponds to solving the stochastic linear bandit problem
over one of the K subspaces.

Collaboration among agents: Our model builds on gossip-
based communication constraints for multiagent finite-armed
unstructured bandits in [9] and [15]. The agents collaborate
by exchanging messages over a communication network. This
matrix is represented through an N ×N gossip matrix G, with
rows in this matrix being probability distributions over [N].
At each time step, after playing an action vector and obtain-
ing a reward, agents can additionally choose to communicate
with each other. Agent i, if it chooses to communicate, will
do so with another agent j ∼ G(i, ·), chosen independently
of everything else. However, for any time horizon T , the to-
tal number of times an agent can communicate is O(log T).
Each time an agent chooses to communicate, it can exchange
at most log2 K + 1 number of bits. Therefore, every agent
communicates O(logK. log T) bits over a time horizon of t,
for all t.

Decentralized Algorithm: Each agent’s decisions (arm play
and communication decisions) in the algorithm depend only
on its own history of plays and observations, along with the
recommendation messages that it has received from others.

Performance metric: Each agent plays action vectors in order
to minimize their individual cumulative regret. At any time
t, the instantaneous regret for an agent i is given by w(i)

t =

⟨θ∗, a∗t⟩ − ⟨θ∗, a
(i)
t ⟩, where a∗t = argmaxa∈At⟨θ∗, a⟩. The ex-

pected cumulative regret for any agent i ∈ [N] is given by
E[R(i)

T] := E[
∑T

t=1 w
(i)
t], where the expectation is with respect

to the σ-field generated by action vectors and rewards of agent
i up to and including time T .

III. SUBGOSS ALGORITHM

Key ideas and intuition: Our setting considers that the un-
known θ∗ lies in one of a large number of (low dimensional)

Authorized licensed use limited to: University of Texas at Austin. Downloaded on March 20,2024 at 13:08:28 UTC from IEEE Xplore. Restrictions apply.

2670 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 68, NO. 5, MAY 2023

subspaces. In our approach, agents at any time instant identify
a small active set of subspaces (cardinality ≤ K/N + 2) and
play actions only within this set of subspaces (however, this set
is time-varying). At each point of time, an agent first identifies
among its current active set of subspaces the one likely to contain
θ∗. It subsequently plays a projected version of LinUCB on this
identified subspace. The communication medium is used for
recommendations; whenever an agent is asked for information,
it sends as message the subspace ID that it thinks most likely
contains θ∗, which is then used to update the active set of
the receiving agent. Thus, an agent’s algorithm has two time-
interleaved parts: 1) updating active sets through collaboration,
which is akin to a distributed best-arm identification problem,
and 2) determining the optimal θ∗ from within its active set of
subspaces, an estimation problem in low dimensions, similar to
the classical linear bandit.

SubGoss algorithm is organized in phases with the active
subspaces for each agent fixed during the phase. Within a phase,
all agents solve two tasks: 1) identify the most likely subspace
among its active subspaces to contain θ∗, and 2) within this
subspace, play actions optimally to minimize regret. The first
point is accomplished by agents through pure exploration. In
pure exploration, agents play the orthonormal basis vectors of
all the subspaces in their respective active sets in a round-robin
fashion. Agents minimize their regret during pure exploration
by considering a small active set of subspaces (of cardinality
≤ K/N + 2) at all times; otherwise, agents play action vectors
within their best estimated subspace containing θ∗ to minimize
regret. This step is achieved by playing a projected version of
the LinUCB algorithm. The second step only incurs regret in the
dimension of the subspace (once the true subspace is correctly
identified) as opposed to the ambient dimension, thereby keeping
regret low. Due to communications, the correct subspace spreads
to all agents, while playing from a small active set of active
subspaces at all times (and thus reducing the regret due to
explorations).

A. Description

SubGoss algorithm builds on some of the ideas developed for
a (noncontextual) collaborative setting for unstructured bandits
in [9]. We fix an agent i ∈ [N] for ease of exposition. SubGoss
proceeds in phases, where phase j ∈ N is from time slots∑j−1

l=1⌈bl−1⌉+ 1 to
∑j

l=1⌈bl−1⌉, both inclusive, where b > 1
is given as an input. During each phase j, agent i only plays
from an active set S(i)

j ⊂ [K] of subspaces such that |S(i)
j | ≤

(K/N) + 2. Agents communicate at the end of the phase to
update their active set. Note that the phase length is ⌈bj−1⌉,
which satisfies the communication constraint of O(log T) com-
munications for any time horizon T .

Initialization: At the beginning of the algorithm, every agent is
assigned a sticky set of subspaces, by partitioning the subspaces
equally across agents

(Ŝ(i))Ni=1 =

{
(i− 1)

K

N
+ 1, . . . , i

K

N

}
. (1)

We set the initial active set S(i)
1 = Ŝ(i).

Action vectors chosen in a phase: We play the following two
subroutines in every phase j ∈ N in the order as described.

1) Explore: In this subroutine, for every k ∈ S(i)
j , we play

the orthonormal basis vectors of the subspace span(Uk)
(which are the columns of Uk) in a round robin fashion
for 8m⌈b j−1

2 ⌉ times.
Let ñ(i)

k,j denote the number of times subspace span(Uk)
has been explored by agent i up to and including
phase j. After executing the explore subroutine in a
phase, agent i calculates the least squares estimates θ̃(i)k,j

for every k ∈ S(i)
j by using only the explore samples

of the subspace span(Uk) up to and including phase
j. Mathematically, θ̃(i)k,j = argminθ∈Rd ∥(Ã(i)

k,ñ(i)
k,j

)T θ −

r̃(i)
k,ñ(i)

k,j

∥2, where Ã(i)

k,ñ(i)
k,j

is a d× ñ(i)
k,j matrix whose

columns are the explore action vectors of the subspace
span(Uk) played up to and including phase j, and r̃(i)

k,ñ(i)
k,j

is a column vector of the corresponding rewards. It is
worth noticing that θ̃(i)k,j is the estimate of the vector Pkθ∗

(details in the proof of Lemma 4), which is the projection
of the unknown vector θ∗ in the subspace span(Uk).
We will describe in the proof sketch (see Section IV-B)
that this observation is crucial to finding the subspace
containing θ∗.

2) Projected LinUCB: Let Ô(i)
j = argmax

k∈S(i)
j
∥θ̃(i)k,j∥2.

For the remainder of the phase j, agent i chooses the
action vector according to the Projected LinUCB [22],
played on the subspace span(UÔ(i)

j
). We set k = Ô(i)

j

for reducing the clutter while describing Projected
LinUCB. For all

∑j−1
l=1⌈bl−1⌉+ 8m|S(i)

j |⌈b j−1
2 ⌉ < t ≤

∑j
l=1⌈bl−1⌉, where t denotes the corresponding time

instants after the end of explore subroutine in phase j,
let n(i)

k,t denote the number of times agent i has played
Projected LinUCB on the subspace span(Uk) up to time
t. The action vector chosen is given according to the
following equations [22]:

a(i)t ∈ argmax
a∈At

max
θ∈C(i)

k,t

⟨θ, Pka⟩,where

C(i)
k,t =

{
θ ∈ Rd : ||θ̂(i)t − θ||V̄k,t(λ)(i) ≤ βt,δ

}

βt,δ =
√

λ +

√

2 log 1
δ +m log(1 +

n(i)
k,t

λm), V̄k,t(λ)(i) =

Pk(A
(i)
k,t−1(A

(i)
k,t−1)

T + λId)Pk, and θ̂(i)k,t−1 =

argminθ∈Rd ||(PkA
(i)
k,t−1)

T θ − r(i)k,t−1||22 + λ||Pkθ||22.

A(i)
k,t−1 is a d× n(i)

k,t matrix whose columns are the
Projected LinUCB action vectors played only on the
subspace span(Uk) up to time t, and r(i)k,t−1 is a column
vector of the corresponding rewards.

Communications and the active subspaces for the next phase:
After phase j gets over, agent i asks for a subspace recommen-
dation from an agent J ∼ G(i, ·) chosen independently. Denote

Authorized licensed use limited to: University of Texas at Austin. Downloaded on March 20,2024 at 13:08:28 UTC from IEEE Xplore. Restrictions apply.

CHAWLA et al.: MULTIAGENT LOW-DIMENSIONAL LINEAR BANDITS 2671

Algorithm 1: SubGoss Algorithm (at Agent i).

1: Input: K disjoint m-dimensional subspaces {Ul}Kl=1,
b > 1, regularization parameter λ > 0, δ ∈ (0, 1).

2: Initialization: Ŝ(i), S(i)
1 [Equation (1)], j ← 1.

3: while phase j ≥ 1 do
4: EXPLORE: For each k ∈ S(i)

j , play the orthonormal
basis vectors of the subspace ID k in a round robin
fashion for 8m⌈b j−1

2 ⌉ times.
5: Calculate the least squares estimate θ̃(i)k,j for each

k ∈ S(i)
j after running the EXPLORE by using only its

explore samples collected thus far.
6: Ô(i)

j ← argmax
k∈S(i)

j
∥θ̃(i)k,j∥2.

7: PROJECTED LINUCB: For the remainder of the phase j,
play the Projected LinUCB [22] on the subspace ID
Ô(i)

j by using only its Projected LinUCB samples
collected thus far.

8: At the end of phase j, sample an agent from the gossip
matrix ag ∼ G(i, ·) for receiving subspace
recommendation.

9: Get the subspace recommendation
O(i)

j ← argmax
k∈S(ag)

j
∥θ̃(ag)k,j ∥2.

10: Active set update for the next phase:
11: if O(i)

j ∈ S(i)
j then

12: S(i)
j+1 ← S(i)

j .
13: else
14: if |S(i)

j | < K
N + 2 then

15: S(i)
j+1 ← S(i)

j ∪O(i)
j .

16: else if |S(i)
j | = K

N + 2 then

17: B(i)
j ← argmax

k∈S(i)
j \Ŝ(i) ∥θ̃

(i)
k,j∥2.

18: S(i)
j+1 ← Ŝ(i) ∪ B(i)

j ∪O(i)
j .

19: end if
20: end if
21: j ← j + 1.
22: end while

byO(i)
j ∈ [K] to be this recommendation. Agent i, if asked for a

recommendation at the end of phase j, recommends the subspace
ID Ô(i)

j , i.e., using only the explore samples. The next active set
is constructed as follows:

1) if O(i)
j ∈ S(i)

j , the active set remains unchanged,

2) if O(i)
j /∈ S(i)

j and |S(i)
j | < K

N + 2, then S(i)
j+1 := S(i)

j ∪
O(i)

j , and

3) if O(i)
j /∈ S(i)

j and |S(i)
j | = K

N + 2, then S(i)
j+1 := Ŝ(i) ∪

B(i)
j ∪O(i)

j , where B(i)
j = argmax

k∈S(i)
j \Ŝ(i) ∥θ̃

(i)
k,j∥2.

Observe that Ŝ(i) ⊆ S(i)
j ∀j ∈ N, and thus, Ŝ(i) is called

sticky. Moreover, the update step along with the initialization
S(i)
1 = Ŝ(i) also ensures that |S(i)

j | ≤ K
N + 2 for all phases

j ∈ N.

Please see Algorithm 1 for the pseudocode of the SubGoss
algorithm.

Remarks:
1) Until phase τ0 (defined in Theorem 1), the duration of

the explore subroutine exceeds ⌈bj−1⌉. In order to make
less noisy subspace recommendations until phase τ0, the
exploration is equally distributed across all the subspaces
in S(i)

j for the entire duration of the phase.

2) Choice of C(i)
k,t while playing Projected LinUCB—The

construction and analysis of the confidence set C(i)
k,t is

formally described in Theorem 7 in the Appendix. The
confidence set is an ellipsoid in the subspace on which
Projected LinUCB is played. It is constructed such that:
a) it contains θ∗ with high probability, and (b) it shrinks
in size as the correct sequence of action vectors is played
with time.

3) Choice of a(i)t and its computational complexity while
playing Projected LinUCB—Analogous to the upper con-
fidence bound (UCB) for classical K-armed bandits,
an agent playing Projected LinUCB calculates an upper
bound for the reward obtained for every a ∈ At and plays
the action vector that maximizes the upper bound. This
can be observed for the case when the action set At is
finite, given as follows, for a fixed a ∈ At

⟨θ, Pka⟩ = ⟨θ − θ̂(i)k,t−1, Pka⟩+ ⟨θ̂(i)k,t−1, Pka⟩

≤ ∥θ − θ̂(i)k,t−1∥V̄k,t(λ)(i) .∥Pka∥(V̄k,t(λ)(i))†

+ ⟨θ̂(i)k,t−1, Pka⟩

≤ βt,δ∥Pka∥(V̄k,t(λ)(i))† + ⟨θ̂
(i)
k,t−1, Pka⟩

where the first inequality is obtained by applying Hölder’s
inequality, and the second inequality follows by using
the definition of C(i)

k,t. Therefore, for finite action sets,
Projected LinUCB plays the action vector

a(i)t = argmax
a∈At

⟨θ̂(i)k,t−1, Pka⟩+ βt,δ∥Pka∥(V̄k,t(λ)(i))† .

(2)

The first term is the empirical estimate of the reward
of the action a, and the second term corresponds to the
deviation around that estimate, similar to the UCB value
inK-armed bandits. The computational complexity of de-
termining a(i)t depends on the computational complexity
of calculating (V̄k,t(λ)(i))†, θ̂

(i)
k,t−1 and the inner products

in (2).

IV. MAIN RESULT

In order to state the result, we assume that the gossip matrix
G is connected (detailed definition in Appendix A). We define
a random variable τ (G)

spr denoting the spreading time of the
following process: node i initially has a rumor; at each time, an
agent without a rumor calls another chosen independently from
the gossip matrixG and learns the rumor if the other agent knows
the rumor. The stopping time τ (G;i)

spr denotes the first time when

Authorized licensed use limited to: University of Texas at Austin. Downloaded on March 20,2024 at 13:08:28 UTC from IEEE Xplore. Restrictions apply.

2672 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 68, NO. 5, MAY 2023

agent i knows the rumor, and τ (G)
spr = maxi∈[N] τ

(G;i)
spr is the time

by which all agents know the rumor. For ease of exposition, we
assume that θ∗ ∈ span(U1), which the agents are unaware of
and ∥a∥2 ≤ 1 for all a ∈ ∪Tt=1At. Let ∆ = mink∈[K]:k ̸=1 ∆k,
where ∆k = ∥P1θ∗ − Pkθ∗∥2.

Theorem 1: Consider a system consisting of N agents con-
nected by a gossip matrix G, all running SubGoss algorithm
with K disjoint m-dimensional subspaces and input parameters
b > 1, λ ≥ 1, δ = 1

T . Then, the expected cumulative regret of
any agent i ∈ [N] after time T ∈ N is bounded by

E[R(i)
T] ≤

√

8mTβ2
T log

(
1 +

T

mλ

)
+ 2

︸ ︷︷ ︸
Projected LinUCB Regret

+ 16 m

(
K

N
+ 2

)
logb(hb,T) + 16 m

(
K

N
+ 2

) √
hb,T − 1
√
b− 1︸ ︷︷ ︸

Cost of subspace exploration

+ 2g(b)

(
⌈b2τ0⌉+ 48b3

log b
.
m4N

∆6
+ bE[b2τ

(G)
spr]

)

︸ ︷︷ ︸
Constant cost of pairwise communications

, (3)

where βT =
√

λ+
√
2 log T+m log(1 + T−1

λm), τ0 = min{j ∈

N : ∀j′ ≥ j, ⌈bj′−1⌉ ≥ 8m(KN + 2)⌈b j′−1
2 ⌉}, g(b) = (1

b−1 +
1

log b), and hb,T = b(1 + (T − 1)(b− 1)).
Remarks:
1) Proposition 5 shows that τ0 ≤ 2 logb(16m(KN + 2)) + 1,

and thus, the term b2τ0 in the constant cost of pairwise
communications scales as O((m.KN)4).

2) Single agent running SubGoss—In the case of no commu-
nication, when a single agent runs Algorithm 1 (without
requiring communication graph G), it incurs a higher
regret due to subspace exploration (which scales as
O(Km

√
T) instead of O((K/N)m

√
T) in the multia-

gent case), because it has to search through all the K
subspaces to find the subspace containing θ∗. We express
this result formally in Theorem 6, which is given in
Appendix C.

3) Setting δ = 1
T in Theorem 1 requires the knowledge

of time horizon in SubGoss algorithm to achieve the
corresponding regret guarantee. However, this is not a
problem, as a fixed value of the confidence parameter
δ ∈ (0, 1) achieves the same regret scaling as in Theorem
1 with high probability, which can be proved in a similar
manner. Thus, the insights that can be obtained from our
results are unaffected by the knowledge of time horizon.

4) Subspace recommendation quality versus network
spread—Observe that b > 1 is an input to the algo-
rithm, where agents communicate for the lth time af-
ter playing ⌈bl−1⌉ number of times since the last com-
munication. Thus, increasing b will decrease the total
number of communications between agents. Theorem
1 shows that there exists an optimal b∗ > 1, such that

b∗ = argminb>1 E[R(i)
T]. This can be seen by observ-

ing that as b decreases toward 1, the time between two
communication instants reduces. However, each commu-
nication is based on fewer samples and, thus, subspace
recommendations are noisy. On the other hand, as b
becomes large, each recommendation is based on large
number of samples and, thus, less noisy. The number of
communications, however, is much lower, leading to a
large time for the best subspace to spread. The optimal b∗

tradeoffs between these two competing effects.

A. Impact of Network Structure on Regret

We can obtain the dependence of regret bound on network-
related parameters by expressing the term E[b2τ

(G)
spr] in terms of

the conductance φ of the gossip matrix (graph) G. In order to
do so, we use a result obtained in [9, Corollary 17], which we
reproduce here.

For a d-regular3 graph with adjacency matrix AG, conduc-
tance φ, and gossip matrix G = d−1AG, E[b2τ

(G)
spr] ≤ b

2 C logN
φ

for all b ≤ exp(φ
C), where C is a universal constant.

Using the previous result, we now consider an illustrative
example in which we assume that the agents are connected
by a complete graph, i.e., G(i, j) = 1

N−1 for j ̸= i, 0, other-
wise. In this case, it is easy to see that for all N and b ≤
exp(N

2(N−1)C) (where C is an universal constant), E[b2τ
(G)
spr] ≤

αN2(log2 b+log b) for some constant α > 0, independent of N
(where we substitute the conductance φ = N

2(N−1) for the com-
plete graph in the result stated in the previous paragraph). This
is because for the complete graph, τ (G)

spr ≤ log2 N + logN with
high probability. Corollary 2 quantifies the impact of underlying
network on regret scaling.

Corollary 2: Suppose the agents are connected by a com-
plete graph and b = min{exp(log 2

1+log 2 .
1
2), exp(

N
2(N−1)C)}, i.e.,

log2 b+ log b ≤ 1
2 . With the same assumptions for λ and δ as in

Theorem 1, the regret scaling of any agent i ∈ [N] after playing
SubGoss algorithm for T time steps is given by

E[R(i)
T] ≤ O(m

√
T log T)︸ ︷︷ ︸

Projected LinUCB Regret

+ O

(
K

N
m
√
T

)

︸ ︷︷ ︸
Cost of subspace exploration

+ O(N)︸ ︷︷ ︸
E[b

2τ
(G)
spr]

+ O

((
m.

K

N

)4
)

+O

(
m4N

∆6

)
(4)

where C > 0 is an universal constant.
In (4), the O(·) notation only hides input constants and uni-

versal constants. It is evident from (4) that the network structure
does not affect the time scaling in regret.

B. Proof Sketch

We provide the proof of Theorem 1 in Appendix B; however,
we summarize its salient ideas here. Similar to the phenomenon

3Standard graph-theoretic notion that has nothing to do with ambient dimen-
sion d in Rd.

Authorized licensed use limited to: University of Texas at Austin. Downloaded on March 20,2024 at 13:08:28 UTC from IEEE Xplore. Restrictions apply.

CHAWLA et al.: MULTIAGENT LOW-DIMENSIONAL LINEAR BANDITS 2673

in unstructured bandits [9], we prove in Proposition 1 that in our
linear bandit setup, after a freezing phase τ , all agents have the
correct subspace containing θ∗. Consequently, for all phases j >
τ , all agents will play Projected LinUCB [22] from the correct
subspace in the exploit time instants and recommend it at the
end of the phase. Therefore, the set of subspaces every agent
has does not change after phase τ , and the regret after phase τ
can be decomposed into regret due to pure exploration and regret
due to Projected LinUCB (see Proposition 2).

The technical novelty of our proof lies in bounding the regret
till phase τ , i.e., E[τ + bτ−1

b−1] (see Proposition 3) and in particular
showing it to be finite. This follows from two key observations
arising from pure exploration in the explore time steps. First,
for any agent i ∈ [N] and subspace ID k ∈ S(i)

j , the estimate

θ̃(i)k,j of θ∗, using only its explore samples up to and including
phase j, concentrates to Pkθ∗ in l2 norm (see Lemma 4). There-
fore, for any subspace ID k, ∥θ̃(i)k,j∥2 concentrates to ∥Pkθ∗∥2,
and eventually, the correct subspace span(U1) will achieve the
largest value of ∥θ̃(i)k,j∥2 among all subspaces, if present in the
active set. Subsequently, we use the previous fact in Lemma 5
to show that if an agent has the correct subspace containing θ∗

in a phase, the probability that it will not be recommended and,
hence, dropped at the end of the phase is small.

Combining these two observations, we establish that after
a random phase denoted by τ̂stab in Appendix B, satisfying
E[τ̂stab] <∞, agents never recommend incorrectly at the end
of a phase and, thus, play the Projected LinUCB on the correct
subspace in the exploit time instants of a phase. To conclude,
after random phase τ̂stab, the spreading time can be coupled with
that of a standard rumor spreading [30], as once an agent learns
the correct subspace, it is not dropped by the agent. This final part
is similar to the one conducted for unstructured bandits in [9],
giving us the desired bound on E[τ + bτ−1

b−1].
Remark (Freezing time): The freezing phase τ is a quantity

only showing up in the analysis, but is not part of the algorithm.
In fact, the algorithm needs all agents to explore and commu-
nicate in all phases indefinitely, because τ is a sample-path de-
pendent quantity. Indeed, any bandit algorithm that can achieve
sublinear cumulative regret in the stochastic setting inherently
has such a freezing time with finite expectation (including in the
classical single-agent K-armed bandit); beyond this time, the
best arm is identified with high probability. This can be shown by
noting that sublinear regret implies that the probability the best
arm is not played at time t, decreases to 0 as t goes to infinity. The
finite freezing time follows from the simple Hoeffding inequality
and Borel–Cantelli lemma. However, this is not useful in the
algorithm but serves only as a proof technique. Formally, this
random time τ is not a stopping time, and cannot be determined
in an online fashion. Moreover, despite the existence of such a
freezing time, the lower bounds for regret increase with the time
horizon, showing that infinite exploration is necessary.

Remark (Technical differences w.r.t. [9]): The algorithms
in [9] and the SubGoss Algorithm appear similar, because of
the correspondence between the subspaces in our setup and
the arms in a K-armed bandit. However, this correspondence
is superficial, because unlike an arm, a subspace represents a
continuum of actions, instead of just being an action. In order

to quantify the reward corresponding to a subspace, one has to
form an estimate of θ∗ in that subspace by playing the sequence
of action vectors spanning that subspace.

Furthermore, any given phase in SubGoss bears a superfi-
cial resemblance to the explore-then-commit (ETC) algorithm,
wherein the explore part of the phase that identifies the subspace
to commit to in the exploit part, analogous to best arm iden-
tification in the standard K-armed bandit. However, the ETC
algorithm requires the knowledge of lower bound of arm mean
gaps as an input. In our model, this translates to agents needing
knowledge of the distance between subspaces (denoted by ∆k

for allk ̸= 1), which requires knowledge of θ∗. We circumvented
this through a phased approach with exponentially increasing
lengths, where each phase has an explore part and a commit
part. The phases with exponentially increasing lengths ensure
that

1) the probability of picking a subspace not containing θ∗

decreases with every phase,
2) the increasing duration of playing Projected LinUCB

within a phase as the phases progress minimizes the
cumulative regret, and

3) does not need knowledge of gap between subspaces.
The consequence of not knowing θ∗ is why agents need to

continually explore in the explore part of every phase, as opposed
to only exploring once in the beginning.

Remark (Discussion on a lower bound): We provide a brief
discussion about the fundamental limits of our model (in terms
of cumulative regret) to evaluate the effectiveness of SubGoss
algorithm. We conjecture that the regret ofΩ(m

√
T) is unavoid-

able.
The above-mentioned claim can be argued as follows. In our

model, an agent can exchange at most log2 K + 1 number of
bits each time it chooses to communicate. One can consider the
scenario in which whenever an agent decides to pull subspace
recommendation (as a subspace ID in {1, . . . ,K} can be per-
fectly described by log2 K + 1 number of bits) from another
agent based on gossip matrix G, suppose it always receives
the ID of the correct subspace containing θ∗. In that case, the
agent does not have to incur any regret in finding the correct
subspace. However, given that there is no sample (action vectors
and corresponding rewards) sharing possible between the agents,
an agent will still have to search for θ∗ in the correct subspace by
itself. From [4, Ch. 24], we know that finding θ∗ in Rd without
any side information results in Ω(d

√
T) regret. Given that the

subspaces are m-dimensional, we can replace d with m in the
previous statement and conclude that finding θ∗ in the correct
subspace incurs a regret of Ω(m

√
T).

However, formalizing this argument requires surmounting
some technical challenges. First, we need to precisely define the
space of allowed communication policies without prescribing
the content of the messages, for example, those that commu-
nicate at most a fixed number of bits at each time instant and
total number of bits that scales as the logarithm of the time
horizon. Once this is done, we need to establish that no commu-
nication policy under this constraint can encode knowledge of
the true underlying θ∗ to small enough precision, and show that
communicating information other than subspace indices does
not yield regret reduction. While the preceding paragraph

Authorized licensed use limited to: University of Texas at Austin. Downloaded on March 20,2024 at 13:08:28 UTC from IEEE Xplore. Restrictions apply.

2674 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 68, NO. 5, MAY 2023

provides a plausible intuition for the Ω(m
√
T) lower bound,

a detailed argument is left to future work.

V. BENEFIT OF COLLABORATION IN HIGH DIMENSIONS

In this section, we illustrate how collaboration aids in re-
ducing regret for each agent in the high-dimensional setting.
We quantify this by computing the ratio of the regret upper
bound achieved by SubGoss Algorithm without collaboration
to that achieved with collaboration for any agent, denoted by
rC(T). The high-dimensional setting corresponds to a large d,
m a constant, and K and N scaling linear in d (system with a
large number of agents).

Corollary 3: Consider a high-dimensional system where N
agents are connected by a complete graph with K = N = d

m ,
where d is a multiple of m and m is a constant. Assume that
d ≥ 3 m. With the choice of b as in Corollary 2,

1) for any agent i ∈ [N], the regret with collaboration scales
as O(m

√
T log T), and

2) rC(T) =
rS(T)
rM (T) , where

rS(T) =

√

8mTβ2
T log

(
1 +

T

mλ

)
+ 2 + 16 d logb(hb,T)

+ 16 d

√
hb,T − 1
√
b− 1

+ 2g(b)

×
(
⌈b(16 d)2⌉+ 8b2

log b
.
m2

∆2

)

rM (T) =

√

8mTβ2
T log

(
1 +

T

mλ

)
+ 2 + 48 m logb(hb,T)

+ 48 m

√
hb,T − 1
√
b− 1

+ 2g(b)

(
⌈b2(48 m)4⌉

+
48b3

log b
.
m3d

∆6
+

αd

m

)
.

Proof: The proof follows by substituting K = N = d
m in

Theorems 1 and 6, along with the bound for spreading time
E[b2τ

(G)
spr] from Corollary 2. !

The following observations can be deduced from point (b) of
Corollary 3:

1) when T = Θ(d1+γ) for all γ ≥ 0, rC(T) = Ω(d
log d);

2) when T = Θ(ed
β
) for all β ∈ (0, 1), rC(T) = Ω(d1−β);

3) when T = Ω(ed), rC(T) = Ω(1).
Two remarks are now in order.
Remarks:
1) Matching an oracle’s regret rate, asymptotically: Corol-

lary 3 shows the power of collaboration in a large multi-
agent system, as the regret scaling for any agent i ∈ [N]
matches that of a genie who is already aware of the
subspace containing θ∗ and can play Projected LinUCB
on that subspace [22]. This demonstrates that the cost
of subspace search can be amortized across agents and

only contributes a lower order term in regret, despite
agents communicating infrequently (a total of O(log T)
number of pairwise communications by every agent) and
exchanging a limited number of bits in each communica-
tion (no sample sharing). Furthermore, the discussion in
Section IV implies that in the absence of sample sharing
between agents, an agent will incur Ω(m

√
T) regret for

finding θ∗ in the correct subspace. Thus, SubGoss Algo-
rithm is near-optimal even in high-dimensional settings
with large number of subspaces and agents.

2) Finite-time gains due to faster search of subspaces with
collaboration: The observations following the Corollary
3 show that even the single agent running SubGoss with-
out communications is able to utilize the side information
and incur lower regret (O(m

√
T log T + d

√
T)), com-

pared with an agent running optimism in the face of uncer-
tainty linear bandit algorithm (OFUL) [14] without any
side information. However, the time taken by the single
agent running SubGoss to reap the benefits of the sub-
space side information is very large in high-dimensional
settings (T = Ω(ed)). In contrast, the ability of a multia-
gent system to learn the right subspace faster is what leads
to large collaborative gain of rC(T) = Ω(d

log d) by time
T = Ω(d). These gains are also observed empirically in
Fig. 1. These gains are more pronounced and are observed
for large duration of time in settings with large d, which
is typical in many modern applications.

VI. NUMERICAL RESULTS

We evaluate the SubGoss algorithm empirically in synthetic
simulations. We show the cumulative regret (after averaging
across all agents) over 30 random runs of the algorithm with
95% confidence intervals. We compare its performance with
two benchmarks: SubGoss algorithm with no collaborations
(i.e., a single agent playing SubGoss algorithm) and a single
agent playing the OFUL (classical LinUCB) algorithm of [14].
In this section, the number of times a subspace span(Uk) (where
k ∈ S(i)

j) is explored during the Explore subroutine in phase j

is set to m⌈b j−2
2 ⌉, as the constants in SubGoss algorithm (see

Algorithm 1) arise from somewhat loose tail bounds.
In our experiments, the agents are connected through a com-

plete graph. Each m-dimensional subspace is the orthogonal
matrix obtained by the singular value decomposition (SVD) of
a random d×m matrix with independent identically distributed
(i.i.d.) standard normal entries. The action set A consists of 5d
i.i.d. Gaussian vectors on surface of the unit l2 ball, along with
orthonormal basis vectors for each of the K subspaces. The
vector θ∗ is the projected version of a standard Gaussian vector
onto subspace 1 (the true subspace). We set b = 2 and λ = 1 in
simulations. Fig. 1 evaluates the performance of SubGoss algo-
rithm for different values of problem parameters (d,m,K,N).

Insights from numerical results: From simulations, we con-
firm several insights predicted by our theory. First, we see that
SubGoss yields lower regret than OFUL for the single agent
case, demonstrating that SubGoss can effectively leverage the

Authorized licensed use limited to: University of Texas at Austin. Downloaded on March 20,2024 at 13:08:28 UTC from IEEE Xplore. Restrictions apply.

CHAWLA et al.: MULTIAGENT LOW-DIMENSIONAL LINEAR BANDITS 2675

side-information provided through the subspaces. Second, we
observe the collaboration gains, where any agent in the multi-
agent setting incurs far smaller regret compared with a single
agent without collaboration. Finally, we also observe that as the
number of agents increases, the regret for every agent decreases.
These collaborative gains follow as each agent has to search
through a smaller set of subspaces to find the true subspace.

VII. CONCLUSION AND OPEN PROBLEMS

We studied a multiagent linear bandit problem with side
information (in the form of disjoint m-dimensional subspaces),
where only one of the subspaces contains the unknown parame-
ter θ∗ ∈ Rd, but agents are unaware of the subspace containing
it. We proposed a novel decentralized algorithm, where agents
collaborate by sending recommendations through pairwise gos-
sip communications across a communication graph connecting
them, to minimize their individual cumulative regret. We demon-
strated that distributing the search for the subspace containing
θ∗ across the agents and learning of the unknown vector in
the corresponding low-dimensional subspace results in a much
smaller per-agent regret, compared with the case when agents do
not communicate. However, this article leaves open, some im-
portant questions. This article assumed that all agents have exact
knowledge of the subspaces. In several practical applications;
however, the subspaces are estimated from historical data and
as such can only be known noisily at best. Developing algorithms
that can leverage benefit from collaboration while being robust
to misspecifications is an interesting direction for future work.
Another open problem is to establish lower bounds on regret
under our model of information sharing. This is nontrivial to
define since the communication budget needs to be accounted
for in regret. To the best of our knowledge, lower bounds
involving both communication and regret minimization have
not been established even for the simple unstructured bandits
case.

APPENDIX A
TECHNICAL ASSUMPTION FOR THEOREM 1

Building on the communication constraints considered in [9],
we make the following mild assumption: The gossip matrix G
is irreducible, i.e., for any i ̸= j ∈ [N], there exists 2 ≤ l ≤ N
and k1, . . . , kl ∈ [N], with k1 = i and kl = j such that the prod-
uctG(k1, k2) . . . G(kl−1, kl) > 0. In words, the communication
graph among the agents is connected [9].

This assumption is needed because if the communication
graph among the agents is not connected, the setup becomes
degenerate, as there exists at least a pair of agents which cannot
participate in information exchange. However, the practical in-
sights that can be obtained from our results are not affected by
this assumption.

APPENDIX B
PROOF OF THEOREM 1

In this section and subsequent sections, we assume agents
know the parameter S such that ∥θ∗∥2 ≤ S. In this article, we

setS = 1 for ease of exposition. Before going through the proof,
we first provide some definitions and notations.

B1 Definitions and Notations

We adapt the proof ideas developed in [9] for the unstruc-
tured bandit case. Recall that for any phase j, agent i ∈ [N],
and subspace k ∈ S(i)

j , ñ(i)
k,j is the number of times agent i

explores the subspace span(Uk) up to and including phase j

and Ô(i)
j = argmax

k∈S(i)
j
∥θ̃(i)k,j∥2. In words, Ô(i)

j is the ID

of the subspace in which every agent i ∈ [N] plays Projected
LinUCB in the exploit time slots of phase j and subsequently,
recommends it at the end of phase j. Let χ(i)

j be the indicator

variable for the event {1 ∈ S(i)
j , Ô(i)

j ̸= 1}, i.e.,

χ(i)
j = 1

(
1 ∈ S(i)

j , Ô(i)
j ̸= 1

)

which indicates whether agent i, if it has the subspace span(U1),
does not recommend it at the end of a phase. Similar to [9], we
provide the definitions of certain random times that will aid in
the analysiss

τ̂ (i)stab = inf{j ′ ≥ τ0 : ∀j ≥ j ′,χ(i)
j = 0}

τ̂stab = max
i∈[N]

τ̂ (i)stab

τ̂ (i)spr = inf{j ≥ τ̂stab : 1 ∈ S(i)
j }− τ̂stab

τ̂spr = max
i∈{1,...,N}

τ̂ (i)spr

τ = τ̂stab + τ̂spr.

Here, τ̂ (i)stab is the earliest phase, such that if agent i has the
subspace span(U1) in the phases following it, it will recommend
the subspace span(U1). The number of phases it takes after τ̂stab

to have the subspace span(U1) in its playing set is denoted by
τ̂ (i)spr . The following proposition shows that the system is frozen
after phase τ , i.e., after phase τ , the set of subspaces of all agents
remain fixed in the future.

Proposition 1: For all agents i ∈ {1, . . . , N}, we have almost
surely

⋂

j≥τ
S(i)
j = S(i)

τ

Ô(i)
l = 1 ∀l ≥ τ,∀i ∈ {1, . . . , N}.

Proof: For any agent i ∈ [N] and any phase j ≥ τ , we have
for all j ≥ τ

χ(i)
j = 0 (5)

as τ ≥ τ̂ (i)stab. However, as τ ≥ τ̂stab + τ̂ (i)spr , we know that

1 ∈ S(i)
j . (6)

Equations (5) and (6) imply that Ô(i)
j = 1. Moreover, Ô(i)

j = 1
is true for all phases j ≥ τ and all agents i ∈ [N], as they are
arbitrarily chosen. Furthermore, the update step of the algorithm

Authorized licensed use limited to: University of Texas at Austin. Downloaded on March 20,2024 at 13:08:28 UTC from IEEE Xplore. Restrictions apply.

2676 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 68, NO. 5, MAY 2023

along with the abovementioned reasoning tells us that none of
the agents will change their subspaces after any phase j ≥ τ , as
the agents already have the correct subspace in their respective
playing sets. Thus,

⋂
j≥τ S

(i)
j = S(i)

τ for all agents i ∈ [N]. !
Proposition 1 also tells us that for all phases j ≥ τ , in the

exploit time slots, all agents will play Projected LinUCB from
the subspace span(U1), because the algorithm picks the subspace
span(UÔ(i)

j
) in the exploit time slots of phase j and Ô(i)

j = 1 for

all j ≥ τ .

B2 Intermediate Results

Before stating and proving the intermediate results, we high-
light the key pieces needed to prove Theorem 1. We already
showed in Proposition 1 that after the freezing phase τ , all
agents have the correct subspace containing θ∗ and recommend
it henceforth. Thus, the expected cumulative regret incurred can
be decomposed into two parts: the regret up to phase τ and the
regret after phase τ .

The expected cumulative regret incurred up to phase τ is a
constant independent of the time horizon (see Proposition 3). It
is a consequence of following important observations resulting
from pure exploration in the explore time steps.

1) For any agent i ∈ [N] and subspace k ∈ S(i)
j , the estimate

θ̃(i)k,j concentrates to Pkθ∗ in l2 norm (Lemma 4).
2) Subsequently, we show that the probability that an agent

will not recommend and, thus, drop the correct subspace
containing θ∗ is small at the end of a phase (see Lemma
5).

The abovementioned observations imply that after a (random)
phase, denoted by τ̂stab ≤ τ , agents always recommend (and
never drop) the correct subspace. After phase τ̂stab, we stochas-
tically dominate (in Proposition 4) the spreading time of the
correct subspace with a standard rumor spreading process [30].
Hence, the expected cumulative regret up to phase τ is bounded
by the total number of time steps taken to reach phase τ̂stab

and the additional number of phases taken to spread the correct
subspace.

Post phase τ , the active set of subspaces maintained by agents
remains unchanged (as deduced in Proposition 1), and thus,
the regret can be decomposed into sum of regret due to pure
exploration and regret due to projected LinUCB. The regret due
to projected LinUCB is adapted from the analysis of a similar
algorithm conducted in [22].

The following intermediate results will precisely characterize
the intuition behind the proof of Theorem 1.

Proposition 2: The regret of any agent i ∈ {1, . . . , N} after
playing for T steps is bounded by

E[R(i)
T] ≤ 2S

(
E

[
τ +

bτ − 1

b− 1

])
+ E[Rproj,T]

+ 16mS

(
K

N
+ 2

)
logb(hb,T)+16mS

(
K

N
+ 2

)

×
√
hb,T − 1
√
b− 1

where hb,T is defined in Theorem 1.

Proof: We will first show that the instantaneous regret w(i)
t ≤

2S for all i ∈ [N]. In order to obtain this bound, note that for
any a ∈ Rd such that ∥a∥2 ≤ 1

|⟨θ∗, a⟩| ≤ ||θ∗||2.||a||2 ≤ S

by Cauchy–Schwarz inequality. Therefore, we have w(i)
t ≤ 2S

for all t.
Let l ∈ N such that SubGoss Algorithm is played for t steps

by the end of phase l. t and l are related as follows:

t =
l∑

p=1

⌈bp−1⌉. (7)

Therefore, bl−1
b−1 ≤ t ≤ l + bl−1

b−1 . Assume that SubGoss algo-
rithm is played for T steps such that T occurs in some phase
E, i.e., bE−1−1

b−1 + 1 ≤ T ≤ E + bE−1
b−1 , and it follows that E ≤

logb(b(1 + (T − 1)(b− 1))) = logb(hb,T).
Let ej =

∑j
l=1⌈bl−1⌉ denote the number of times SubGoss

algorithm has been played by the end of phase j and Reg(i)
j

denote the regret incurred by agent i in phase j, i.e., Reg(i)
j =

∑⌈bj−1⌉
s=1 wej−1+s. From the definition of regret R(i)

T

R(i)
T =

T∑

t=1

w(i)
t

≤
E∑

j=1

Reg(i)
j

=
τ∑

j=1

Reg(i)
j +

E∑

j=τ+1

Reg(i)
j . (8)

We will now bound each of the terms in (8) separately. The first
term

∑τ
j=1 Reg(i)

j can be bounded as follows:

τ∑

j=1

Reg(i)
j =

τ∑

j=1

⌈bj−1⌉∑

s=1

w(i)
ej−1+s

≤ 2S
τ∑

j=1

⌈bj−1⌉∑

s=1

1

= 2S
τ∑

j=1

⌈bj−1⌉ ≤ 2S

(
τ +

bτ − 1

b− 1

)
(9)

where the second step follows from wt ≤ 2S for all t ∈ N
and the last step follows from the fact that ⌈x⌉ ≤ x+ 1 for
all x ∈ R. We bound the second term

∑E
j=τ+1 Reg(i)

j in the

following steps: let d(i)j = 8 m|S(i)
τ |⌈b j−1

2 ⌉, and Rproj,T denote
the regret incurred by playing Projected LinUCB on the sub-
space containing θ∗ after the freezing phase τ , i.e., Rproj,T =
∑E

j=τ+1

∑⌈bj−1⌉
d(i)
j +1

w(i)
ej−1+s. Then, we have

E∑

j=τ+1

Reg(i)
j =

E∑

j=τ+1

⌈bj−1⌉∑

s=1

w(i)
ej−1+s

Authorized licensed use limited to: University of Texas at Austin. Downloaded on March 20,2024 at 13:08:28 UTC from IEEE Xplore. Restrictions apply.

CHAWLA et al.: MULTIAGENT LOW-DIMENSIONAL LINEAR BANDITS 2677

=
E∑

j=τ+1

⎛

⎜⎝
d(i)
j∑

s=1

w(i)
ej−1+s +

⌈bj−1⌉∑

d(i)
j +1

w(i)
ej−1+s

⎞

⎟⎠

(a)
≤ 2S

E∑

j=1

8 m|S(i)
τ |⌈b

j−1
2 ⌉∑

s=1

1 +Rproj,T

(b)
≤ 16mS

(
K

N
+ 2

)
logb(hb,T)

+ 16mS

(
K

N
+ 2

) √
hb,T − 1
√
b− 1

+Rproj,T .

(10)

Recall that for any agent i, SubGoss algorithm explores in the
first d(i)j = 8 m|S(i)

τ |⌈b j−1
2 ⌉ time slots of phase j by playing the

orthonormal basis vectors of each of the subspaces in the playing
set in a round robin fashion. Therefore, in step (a), we bound the
total number of explore steps from phase j > τ (first term) by
the bound on total number of explore steps from t = 1 to T . In
the remaining time slots of phases j ∈ N, agents play Projected
LinUCB in the subspace span(UÔ(i)

j
) and Ô(i)

j = 1 for all j > τ .

Thus, the second term in step (a) is bounded previously by the
regret incurred by playing Projected LinUCB in the subspace
span(U1) for T time steps (as the number of times an agent will
play Projected LinUCB is less than T). Step (b) follows from
the discussion that if time step T occurs in some phase E then
E ≤ logb(hb,T), |S(i)

j | ≤ K
N + 2 for all j ∈ N, and ⌈x⌉ ≤ x+ 1

for all x ∈ R.
Substituting (9) and (10) in (8), followed by taking expectation

on both sides completes the proof of Proposition 2. !
The following lemma bounds the probability that for any

subspace k ∈ S(i)
j , θ̃(i)k,j deviates from Pkθ∗ in l2 norm after

the explore time slots in phase j, which will eventually help us
obtain a bound on probability of picking the wrong subspace.

Lemma 4: For any agent i ∈ [N], phase j ≥ τ0, and k ∈ S(i)
j ,

we have

P
(
∥θ̃(i)k,j − Pkθ

∗||2 > ϵ
)
≤ 2 m exp

(
−4ϵ2

m
b

j−1
2

)

where ϵ > 0.
Proof: We have for any k ∈ S(i)

j

θ̃(i)k,j = arg min
θ∈Rd

∥∥∥∥(Ã
(i)

k,ñ(i)
k,j

)T θ − r̃(i)
k,ñ(i)

k,j

∥∥∥∥
2

= arg min
θ∈Rd

∥∥∥∥(PkÃ
(i)

k,ñ(i)
k,j

)T θ − r̃(i)
k,ñ(i)

k,j

∥∥∥∥
2

where the last step follows from the fact that during the explore
time slots, orthonormal basis vectors for each of the subspaces
in S(i)

j are played in a round robin fashion. By squaring the
objective function in the last step, taking the gradient and setting
it to all zeroes vector, we get

θ̃(i)k,j = (PkÃ
(i)

k,ñ(i)
k,j

Ã(i)T

k,ñ(i)
k,j

Pk)
†(PkÃ

(i)

k,ñ(i)
k,j

Ã(i)T

k,ñ(i)
k,j

Pk)θ
∗

+ (PkÃ
(i)

k,ñ(i)
k,j

Ã(i)T

k,ñ(i)
k,j

Pk)
†PkÃ

(i)

k,ñ(i)
k,j

η(i)
k,ñ(i)

k,j

(11)

where M † denotes the Moore–Penrose pseudoinverse
of the matrix M . By substituting Pk = UkUT

k , we get

PkÃ
(i)

k,ñ(i)
k,j

Ã(i)T

k,ñ(i)
k,j

Pk = UkΣ̃
(i)

k,ñ(i)
k,j

UT
k , where Σ̃(i)

k,ñ(i)
k,j

=

(UT
k Ã(i)

k,ñ(i)
k,j

)(UT
k Ã(i)

k,ñ(i)
k,j

)T . Note that Σ̃(i)

k,ñ(i)
k,j

is a symmetric,

full-rank m×m matrix, as Ã(i)

k,ñ(i)
k,j

is a matrix whose

columns are the orthonormal basis vectors of the subspace
span(Uk) in a round robin fashion and ñ(i)

k,j > m. Therefore,

(PkÃ
(i)

k,ñ(i)
k,j

Ã(i)T

k,ñ(i)
k,j

Pk)† = Uk(Σ̃
(i)

k,ñ(i)
k,j

)−1UT
k , and thus,

(PkÃ
(i)

k,ñ(i)
k,j

Ã(i)T

k,ñ(i)
k,j

Pk)†(PkÃ
(i)

k,ñ(i)
k,j

Ã(i)T

k,ñ(i)
k,j

Pk) = UkUT
k = Pk.

Moreover, as Ã(i)

k,ñ(i)
k,j

= [Uk . . . Uk]d×ñ(i)
k,j

, UT
k Ã(i)

k,ñ(i)
k,j

=

[Im . . . Im]
m×ñ(i)

k,j
(where Im denotes the m×m identity

matrix), and thus, Σ̃(i)

k,ñ(i)
k,j

=
ñ(i)
k,j

m Im. Substituting everything

above-mentioned in (11), we get

θ̃(i)k,j = Pkθ
∗ + Ukv

(i)

ñ(i)
k,j

where v(i)
ñ(i)
k,j

is an m× 1 vector whose entries are v(i)
ñ(i)
k,j ,n

=

m

ñ(i)
k,j

∑ñ(i)
k,j

p=1:a(i)
k,p=uk,n

η(i)p for all n ∈ [m], ak,p denotes the pth

column of Ã(i)

k,ñ(i)
k,j

, and uk,n denotes the nth column of Uk.

Hence,

∥θ̃(i)k,j − Pkθ
∗∥22 = v(i)

T

ñ(i)
k,j

UT
k Ukv

(i)

ñ(i)
k,j

= ∥v(i)
ñ(i)
k,j

∥22

where the abovementioned equality follows from the fact thatUk

is an orthonormal matrix. From the assumption that the additive
noise is conditionally 1-sub-Gaussian, we know that

P

(
|v(i)

ñ(i)
k,j ,n

| > γ

)
≤ 2e−

γ2ñ(i)
k,j

2 m
(12)

for all γ > 0. If |v(i)
ñ(i)
k,j ,n

| ≤ ϵ√
m

for all n ∈ [m] and ϵ > 0, then

∥θ̃(i)k,j − Pkθ∗∥2 ≤ ϵ. Hence,

P
(
∥θ̃(i)k,j − Pkθ

∗∥2 > ϵ
)
≤ P

(
∃n ∈ [m] : |v(i)

ñ(i)
k,j ,n

| > ϵ√
m

)

= P

(
m⋃

n=1

(
|v(i)

ñ(i)
k,j ,n

| > ϵ√
m

))

(a)
≤

m∑

n=1

P

(
|v(i)

ñ(i)
k,j ,n

| > ϵ√
m

)

(b)
≤ 2m exp

(
−
ϵ2ñ(i)

k,j

2m2

)

(c)
≤ 2m exp

(
− ϵ2

2m2
.8m⌈b

j−1
2 ⌉
)

Authorized licensed use limited to: University of Texas at Austin. Downloaded on March 20,2024 at 13:08:28 UTC from IEEE Xplore. Restrictions apply.

2678 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 68, NO. 5, MAY 2023

(d)
≤ 2m exp

(
−4ϵ2

m
b

j−1
2

)
.

Step (a) is a direct application of union bound. Step (b) uses the
result from (12). In step (c), we use the fact that any subspace k ∈
S(i)
j is explored for at least 8m⌈b j−1

2 ⌉ times up to and including
phase j. Step (d) follows from the inequality ⌈x⌉ ≥ x for all
x ∈ R, thus concluding the proof. !

We will now obtain a bound on probability for choosing a
wrong subspace. Since θ∗ ∈ span(U1), any subspace chosen
other than span(U1) will result in an error. Mathematically, it
can be expressed as Ô(i)

j ̸= 1, which implies that at least one of
the events in the following is true:
(
∥θ̃(i)

Ô(i)
j ,j
− PÔ(i)

j
θ∗∥2 >

∆

2

)
,

(
∥θ̃(i)1,j − P1θ

∗∥2 >
∆

2

)
.

(13)

The abovementioned implication follows from the contraposi-
tive argument by showing that the negation of both the events
in (13) must be simultaneously true so that Ô(i)

j = 1 holds.
The contrapositive argument can be proved as follows: observe
that for any k(̸= 1) ∈ S(i)

j , (∥θ̃(i)k,j − Pkθ∗∥2 ≤ ∆
2) ∩ (∥θ̃(i)1,j −

P1θ∗∥2 ≤ ∆
2) implies ∥Pkθ∗∥2 − ∆

2 ≤ ∥θ̃
(i)
k,j∥2 ≤ ∥Pkθ∗∥2 +

∆
2 and ∥P1θ∗∥2 − ∆

2 ≤ ∥θ̃
(i)
1,j∥2 ≤ ∥P1θ∗∥2 + ∆

2 , which fol-

lows from the triangle inequality. Now, suppose that ∥θ̃(i)k,j∥2 ≥
∥θ̃(i)1,j∥2. Using the bounds on ∥θ̃(i)k,j∥2 and ∥θ̃(i)1,j∥2 obtained

from the triangle inequality, ∥θ̃(i)k,j∥2 ≥ ∥θ̃
(i)
1,j∥2 implies that

∥Pkθ∗∥2 − ∆
2 ≥ ∥P1θ∗∥2 + ∆

2 , which after rearranging the
terms results in the following inequality: ∥P1θ∗∥2 − ∥Pkθ∗∥2 ≤
−∆. Note that the left-hand side of this inequality is strictly
positive, as P1θ∗ = θ∗. This is a contradiction, as a strictly
positive number cannot be less than a strictly negative number,
as∆ > 0. Therefore, our initial assertion that ∥θ̃(i)k,j∥2 ≥ ∥θ̃

(i)
1,j∥2

is incorrect and the claim in (13) follows.
The abovementioned discussion results in the following

lemma.
Lemma 5: For any agent i ∈ [N] and phase j ≥ τ0, we have

P
(
1 ∈ S(i)

j , Ô(i)
j ̸= 1

)
≤ 4 m exp

(
−∆2

m
b

j−1
2

)
.

Proof: We have

P
(
1 ∈ S(i)

j , Ô(i)
j ̸= 1

)

= P

(
1 ∈ S(i)

j , ∥θ̃(i)
Ô(i)

j ,j
∥2 ≥ ∥θ̃(i)k,j∥2 for all k ∈ S(i)

j

)

(a) ≤ P

⎛

⎜⎝

(
∥θ̃(i)

Ô(i)
j ,j
− PÔ(i)

j
θ∗∥2 > ∆

2

)

∪
(
∥θ̃(i)1,j − P1θ∗∥2 > ∆

2

)

⎞

⎟⎠

(b)
≤ P

(
∥θ̃(i)

Ô(i)
j ,j
− PÔ(i)

j
θ∗∥2 >

∆

2

)

+ P

(
∥θ̃(i)1,j − P1θ

∗∥2 >
∆

2

)

(c)
≤ 4m exp

(
−∆2

m
b

j−1
2

)

where step (a) follows from the fact that {Ô(i)
j ̸= 1} implies at

least one of the events in (13) must be true, step (b) follows
from union bound, and step (c) follows from Lemma 4. This
concludes the proof of Lemma 5. !

Proposition 3: The freezing time τ + bτ−1
b−1 is bounded by

E

[
τ +

bτ − 1

b− 1

]
≤ g(b)

(
⌈b2τ0⌉+ 48b3

log b
.
m4N

∆6
+ bE[b2τ̂spr]

)

where τ0 and g(b) are defined in Theorem 1.
Proof: We follow similar steps as in the proof for [9, Prop. 3]

for establishing the abovementioned result. As τ is a nonnegative
random variable

E[bτ] ≤ E[⌈bτ⌉]

=
∑

t≥1
P (⌈bτ⌉ ≥ t)

≤ 1 +
∑

t≥2
P (bτ + 1 ≥ t)

≤ 1 +
∑

t≥2
P (τ ≥ ⌊logb(t− 1)⌋)

= 1 +
∑

t≥1
P (τ̂stab + τ̂spr ≥ ⌊logb t⌋) .

Therefore,

E[bτ]− 1

≤
∑

t≥1

(
P

(
τ̂stab ≥

1

2
⌊logb t⌋

)
+ P

(
τ̂spr ≥

1

2
⌊logb t⌋

))

≤
∑

t≥1

(
P

(
τ̂stab ≥

1

2
⌊logb t⌋

)
+ P

(
τ̂spr ≥

1

2
logb t−

1

2

))

=
∑

t≥1
P

(
τ̂stab ≥

1

2
⌊logb t⌋

)
+
∑

t≥1
P
(
b2τ̂spr+1 ≥ t

)

≤ ⌈b2τ0⌉+
∑

t≥⌈b2τ0 ⌉+1

P

(
τ̂stab ≥

1

2
⌊logb t⌋

)
+ bE[b2τ̂spr].

Since the spreading time with the standard rumor model
dominates τ̂spr, we use this to bound the term E[b2τ̂spr] in
Proposition 4 after the proof of Proposition 3. The summation
in the last step is bounded by using Lemma 5, given as follows:
for some fixed x ≥ τ0, we have

P (τ̂stab ≥ x) = P

(
N⋃

i=1

(τ̂ (i)stab ≥ x)

)

≤
N∑

i=1

P (τ̂ (i)stab ≥ x)

=
N∑

i=1

P

(∞⋃

l=x

(χ(i)
l = 1)

)

Authorized licensed use limited to: University of Texas at Austin. Downloaded on March 20,2024 at 13:08:28 UTC from IEEE Xplore. Restrictions apply.

CHAWLA et al.: MULTIAGENT LOW-DIMENSIONAL LINEAR BANDITS 2679

≤
N∑

i=1

∑

l≥x
P
(
χ(i)
l = 1

)

=
N∑

i=1

∑

l≥x
P
(
1 ∈ S(i)

j , Ô(i)
j ̸= 1

)

(a)
≤

N∑

i=1

∑

l≥x
4 m exp

(
−∆2

m
b

l−1
2

)

=
∑

l≥x
4mN exp

(
−∆2

m
b

l−1
2

)
(14)

where we use Lemma 5 in step (a). Thus, we obtain the
following:

∑

t≥22τ0
P

(
τ̂stab ≥

1

2
⌊logb t⌋

)

≤
∑

t≥⌈b2τ0 ⌉+1

∑

l≥ 1
2 ⌊logb t⌋

4mN exp

(
−∆2

m
b

l−1
2

)

≤ 4mN
∑

t≥⌈b2τ0 ⌉+1

∑

l≥ 1
2 ⌊logb t⌋

exp

(
−∆2

m
b

l−1
2

)

(b)
≤ 4mN

∑

l≥τ0

b2l+1∑

t=⌈b2τ0 ⌉+1

exp

(
−∆2

m
b

l−1
2

)

≤ 4mN
∑

l≥τ0

b2l+1 exp

(
−∆2

m
b

l−1
2

)

where step (b) follows by rewriting the range of summations.
The sum

∑
l≥τ0 b

2l+1 exp(−∆2

m b
l−1
2) is bounded as follows:

∑

l≥τ0

b2l+1 exp

(
−∆2

m
b

l−1
2

)

≤
∫ ∞

x=1
b2x+1 exp

(
−∆2

m
b

x−1
2

)
dx

(c)
≤
∫ ∞

u=1
b4 logb u+3 exp

(
−∆2

m
u

)
2

u log b
du

≤ 2b3

log b

∫ ∞

u=0
u3 exp

(
−∆2

m
u

)
du

=
12b3

log b

(m

∆2

)3

where we perform change of variables with x = 2 logb u+ 1 in
step (c). Therefore,

E [bτ − 1] ≤ ⌈b2τ0⌉+ 48b3

log b
.
m4N

∆6
+ bE[b2τ̂spr].

For bounding E[τ], notice that τ ≤ bτ−1
log b , where we use the

fact that for all b > 1, bx − x log b− 1 ≥ 0 for all x ≥ 0. Thus,
E[τ] ≤ 1

log bE[bτ − 1]. Substituting the bound for E[bτ − 1]
obtained previously completes the proof of Proposition 3. !

Proposition 4: The random variable τ̂spr is stochastically
dominated by τ (G)

spr .
Proof: The proof follows in a similar way as the proof for [9,

Prop. 4]. !
Proposition 5: τ0 defined in Theorem 1 is bounded by

τ0 ≤ 2 logb

(
16m

(
K

N
+ 2

))
+ 1.

Proof: From Theorem 1

τ0=min

{
j ∈ N : ∀j ′ ≥ j, ⌈bj′−1⌉ ≥ 8m

(
K

N
+ 2

)
⌈b

j′−1
2 ⌉
}
.

As 8m(KN + 2)⌈b j′−1
2 ⌉ ≤ 8m(KN + 2)b

j′−1
2 + 8m(KN + 2) ≤

16m(KN + 2)b
j′−1
2 , the minimum value of j that satisfies

bj−1 ≥ 16m(KN + 2)b
j−1
2 is an upper bound on τ0. Rearranging

the terms results in j ≥ 2 logb(16m(KN + 2)) + 1 and, thus,
τ0 ≤ 2 logb(16m(KN + 2)) + 1. !

B3 Proof of Theorem 1

From Theorem 8 and δ = 1
T , E[Rproj,T] is bounded as follows:

E[Rproj,T]

= E

[
Rproj,T 1

(
Rproj,T ≤

√

8mTβ2
T,δ log

(
1 +

T

mλ

))]

+E

[
Rproj,T 1

(
Rproj,T >

√

8mTβ2
T,δ log

(
1+

T

mλ

))]

(a)
≤

√

8mTβ2
T,δ log

(
1 +

T

mλ

)

+ 2SE

[
T∑

t=1

1

(
Rproj,T >

√

8mTβ2
T,δ log

(
1 +

T

mλ

))]

=

√

8mTβ2
T,δ log

(
1 +

T

mλ

)

+ 2S
T∑

t=1

E

[
1

(
Rproj,T >

√

8mTβ2
T,δ log

(
1 +

T

mλ

))]

(b)
≤

√

8mTβ2
T log

(
1 +

T

mλ

)
+ 2S.

1

T
.

T∑

t=1

1

=

√

8mTβ2
T log

(
1 +

T

mλ

)
+ 2S. (15)

In step (a), the first sum is trivially bounded by√
8mTβ2

T log(1 + T
mλ

) and the second sum uses the definition
of Rproj,T with wt ≤ 2S for all t ∈ N. Step (b) uses Theorem 8
with δ = 1

T .
Substituting the results of Propositions 3 and 4, along with

(15), into Proposition 2 concludes the proof of Theorem 1.

Authorized licensed use limited to: University of Texas at Austin. Downloaded on March 20,2024 at 13:08:28 UTC from IEEE Xplore. Restrictions apply.

2680 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 68, NO. 5, MAY 2023

APPENDIX C
REGRET UPPER BOUND FOR SINGLE AGENT RUNNING
SUBGOSS ALGORITHM WITHOUT COMMUNICATIONS

Theorem 6: With the same assumptions as in Theorem 1,
when a single agent runs SubGoss algorithm in case of no
communication, the regret after any time T ∈ N is bounded
by

E[RT] ≤

√

8mTβ2
T log

(
1 +

T

mλ

)
+ 2S

︸ ︷︷ ︸
Projected LinUCB Regret

+ 2Sg(b)

(
⌈b(16mK)2⌉+ 8b2

log b
.
m2

∆2

)

︸ ︷︷ ︸
Constant cost of right subspace search

+ 16mKS logb(hb,T) + 16mKS

√
hb,T − 1
√
b− 1︸ ︷︷ ︸

Cost of subspace exploration

.

(16)

Here, βT , g(b), and hb,T are the same as in Theorem 1.
Proof: Before we prove Theorem 6, we set some notation. Let

Ôj = argmaxk∈[K] ∥θ̃
(i)
k,j∥2, i.e., Ôj denotes the ID of subspace

in which the single agent plays Projected LinUCB in the exploit
time slots of phase j. Let τ̄0 = min{j ∈ N : ∀j ′ ≥ j, ⌈bj′−1⌉ ≥
8mK⌈b j′−1

2 ⌉}. Following the proof of Proposition 5, it can be
shown that τ̄0 ≤ 2 logb(16mK) + 1.

We also define a random phase τfreeze as follows:

τfreeze = inf{j ≥ τ̄0 : ∀j ′ ≥ j, Ôj′ = 1}.

Thus, τfreeze is the earliest phase after which the single agent will
play the projected LinUCB from the subspace span(U1) in the
exploit time slots of a phase. Note that the random phase τfreeze

plays the same role as τ̂stab in the multiagent case. This suggests
that the regret analysis in this case must follow the same chain
of argument as for the multiagent case.

Following the same steps as for Proposition 2, the bound on
the regret of the single agent after T time steps is given by

E[RT] ≤ 2S

(
E

[
τfreeze +

bτfreeze − 1

b− 1

])
+ E[Rproj,T]

+ 16mKS logb(hb,T) + 16mKS

√
hb,T − 1
√
b− 1

.

(17)

We have already shown in (15) that

E[Rproj,T] ≤

√

8mTβ2
T log

(
1 +

T

mλ

)
+ 2S.

We will now bound E[τfreeze] and E[bτfreeze] to complete the
proof. We first bound E[bτfreeze]. From the definition of expecta-
tion for positive random variables

E[bτfreeze] ≤ E[⌈bτfreeze⌉]

=
∞∑

t=1

P (⌈bτfreeze⌉ ≥ t)

≤ 1 +
∞∑

t=2

P (bτfreeze + 1 ≥ t)

≤ 1 +
∞∑

t=1

P (τfreeze ≥ ⌊logb t⌋)

≤ 1 + ⌈bτ̄0⌉+
∞∑

t=⌈bτ̄0 ⌉+1

P (τfreeze ≥ ⌊logb t⌋).

We will bound the summation in the last term in the following:
∞∑

t=⌈bτ̄0 ⌉+1

P (τfreeze ≥ ⌊logb t⌋)

(a)
=

∞∑

t=⌈bτ̄0 ⌉+1

P

⎛

⎝
⋃

j≥⌊logb t⌋

(Ôj ̸= 1)

⎞

⎠

≤
∞∑

t=⌈bτ̄0 ⌉+1

∑

j≥⌊logb t⌋

P (Ôj ̸= 1)

(b)
≤

∞∑

t=⌈bτ̄0 ⌉+1

∑

j≥⌊logb t⌋

4 m exp

(
−∆2

m
.b

j−1
2

)

(c)
≤ 4m

∑

j≥τ̄0

bj+1∑

t=⌈bτ̄0 ⌉+1

exp

(
−∆2

m
.b

j−1
2

)

≤ 4m
∑

j≥τ̄0

bj+1 exp

(
−∆2

m
.b

j−1
2

)

≤ 4m
∫ ∞

x=1
bx+1 exp

(
−∆2

m
.b

x−1
2

)
dx

(d)
=

8mb2

log b

∫ ∞

u=1
u exp

(
−∆2

m
.u

)
du

≤ 8mb2

log b

∫ ∞

u=0
u exp

(
−∆2

m
.u

)
du

≤ 8b2

log b
.
m2

∆2
.

We use the definition of τfreeze in step (a). In step (b), we
substitute the bound on probability of choosing the subspace
other than span(U1) from Lemma 5. We interchange the order
of summation in step (c). In step (d), we perform a change of
variables with x = 2 logb u+ 1. Therefore,

E [bτfreeze − 1] ≤ ⌈b(16mK)2⌉+ 8b2

log b
.
m2

∆2
.

For bounding E[τfreeze], note that τfreeze ≤ bτfreeze−1
log b , where

we use the fact that for all b > 1, bx − x log b− 1 ≥ 0 for
all x ≥ 0. Thus, E[τfreeze] ≤ 1

log bE[bτfreeze − 1]. Substituting the

Authorized licensed use limited to: University of Texas at Austin. Downloaded on March 20,2024 at 13:08:28 UTC from IEEE Xplore. Restrictions apply.

CHAWLA et al.: MULTIAGENT LOW-DIMENSIONAL LINEAR BANDITS 2681

bound for E[bτfreeze − 1] obtained previously completes the proof
of Theorem 6. !

APPENDIX D
ANALYSIS OF PROJECTED LINUCB

We now analyze Projected LinUCB as a separate black box,
where every agent plays from the correct subspace contain-
ing θ∗ for T steps. This holds as every agent plays Projected
LinUCB on the subspace span(U1) during the exploit time
slots after the freezing phase τ by only using the Projected
LinUCB actions and rewards for span(U1), which of course
will happen for less than T steps. As this analysis is valid
for all agents, we drop the superscript (i) from all the perti-
nent variables, where i ∈ [N]. Recall that V̄t(λ) = P1(Vt−1 +
λId)P1 = U1ΣtUT

1 , where Σt = UT
1 Vt−1U1 + λIm. Define

Ṽt(λ) = V̄t(λ)− λP1 = P1Vt−1P1 = U1Σ̄tUT
1 , where Σ̄t =

Σt − λIm = UT
1 Vt−1U1.

D1 Confidence Set Construction and Analysis

The construction of the confidence set is done in a similar way
as in [4] and [22].

Theorem 7: Let δ ∈ (0, 1) and βt,δ = S
√

λ +√
2 log 1

δ +m log(1 + t−1
λm). Then,

P
(
∀t ∈ N, θ∗ ∈ C(i)

t

)
≥ 1− δ

where

C(i)
t =

{
θ ∈ Rd : ||θ̂(i)t − θ||V̄t(λ) ≤ βt,δ

}
. (18)

The proof of Theorem 7 is adapted from the proof of [22, Th.
8], which considers a different setting: the subspace in which
θ∗ lies is unknown and needs to be estimated. The error in
estimating the correct subspace appears in the construction of
projected confidence set in [22, Th. 8]. However, in our setting,
agents are aware of the true projection matrices of the subspaces
and, thus, do not need to account for subspace estimation error
while constructing confidence sets. This necessitates a different
definition of the confidence set given in (18).

Thus, when agents play Projected LinUCB on the correct
subspace, they do not have to pay the overhead of recovering
the actual subspace from the perturbed action vectors. Hence,
Theorem 7 is proved by substituting the estimated projection
matrix P̂t equal to the true projection matrix P1 in the proof
of [22, Th. 8] for all t ∈ N.

D2 Regret Analysis

Before bounding the regret, let us set some notation here. We
have

at ∈ argmax
a∈At

max
θ∈C(i)

t

⟨θ, P1a⟩.

Let a∗t = argmaxa∈At⟨θ∗, a⟩ and θ̄t ∈ C(i)
t such that θ̄t =

argmax
θ∈C(i)

t
⟨θ, P1at⟩. The following theorem characterizes

the regret after every agent has the right subspace.
Theorem 8: With probability at least1− δ, the regret incurred

after playing Projected LinUCB on the subspace containing θ∗

for T steps satisfies

Rproj,T ≤

√

8mTβ2
T,δ log

(
1 +

T

mλ

)
.

Proof: The proof of Theorem 8 is contingent on the following
lemma. A similar lemma appears as [4, Lemma 19.4].

Lemma 9: Let a1, . . . , aT be the sequence of action vectors
played up to and including time T . Then,

T∑

t=1

min
{
1, ||at||2V̄t(λ)†

}
≤ 2 log

(
det(ΣT+1)

det(Σ1)

)
.

Proof: The proof is identical to the proof of [4, Lemma 19.4],
except that we use the recursive update of det(Σt) instead of
det(Vt−1). !

We now have the required ingredients to complete the proof of
Theorem 8. Using the fact that θ∗ ∈ C(i)

t and from the algorithm
definitions, the following chain of inequalities is true:

⟨θ∗, a∗t⟩ = ⟨P1θ
∗, a∗t⟩ = ⟨θ∗, P1a

∗
t⟩

≤ max
θ∈C(i)

t

⟨θ, P1a
∗
t⟩ ≤ ⟨θ̄t, P1at⟩. (19)

Thus, for all t ∈ N

w(i)
t ≤ 2βt,δ||at||V̄t(λ)† (20)

which is shown in a similar way as bounding rt in [4, Theorem
19.2]. However, we additionally use the fact that θ∗ = P1θ∗ and
P 2
1 = P1.
While proving Proposition 1, we showed that w(i)

t ≤ 2S for
all t ∈ N. Combining this with (20) and βT,δ ≥ S results in

w(i)
t ≤ 2min

{
S,βt,δ||at||V̄t(λ)†

}

≤ 2βT,δ min
{
1, ||at||V̄t(λ)†

}
. (21)

Therefore, the cumulative regret incurred by playing projected
LinUCB forT can be bounded as follows: let I denote an all-ones
column vector of size T , and R be a column vector containing
the elements w1, . . . , wT . Then,

Rproj,T =
T∑

t=1

w(i)
t

= ITR

(a)
≤
√
T

√√√√
T∑

t=1

(w(i)
t)2

(b)
≤
√
T

√√√√4β2
T,δ

T∑

t=1

min
{
1, ||At||2V̄t(λ)†

}

(c)
≤

√

8Tβ2
T,δ log

(
det(ΣT+1)

det(Σ1)

)

(d)
≤

√

8mTβ2
T,δ log

(
1 +

T

mλ

)
.

Authorized licensed use limited to: University of Texas at Austin. Downloaded on March 20,2024 at 13:08:28 UTC from IEEE Xplore. Restrictions apply.

2682 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 68, NO. 5, MAY 2023

Step (a) follows from Cauchy–Schwarz inequality. In step (b),
we use (21). Step (c) is obtained by the application of Lemma 9.
Step (d) results from the fact that det(Σ1) = det(Λ) = λm and
det(Σt) ≤ (λ + t−1

m)m (which follows from [22, Lemma 11]),
thus completing the proof. !

REFERENCES

[1] D. Chakrabarti, R. Kumar, F. Radlinski, and E. Upfal, “Mortal multi-armed
bandits,” in Proc. Adv. Neural Inf. Process. Syst., 2009, pp. 273–280.

[2] Y. Yue and T. Joachims, “Interactively optimizing information retrieval
systems as a dueling bandits problem,” in Proc. 26th Annu. Int. Conf.
Mach. Learn., 2009, pp. 1201–1208.

[3] E. Hillel, Z. S. Karnin, T. Koren, R. Lempel, and O. Somekh, “Distributed
exploration in multi-armed bandits,” in Proc. Adv. Neural Inf. Process.
Syst., 2013, pp. 854–862.

[4] T. Lattimore and C. Szepesvári, Bandit Algorithms. Cambridge, U.K.:
Cambridge Univ. Press, 2020.

[5] S. Bubeck et al., “Regret analysis of stochastic and nonstochastic multi-
armed bandit problems,” Found. Trends Mach. Learn., vol. 5, no. 1,
pp. 1–122, 2012.

[6] S. Buccapatnam, J. Tan, and L. Zhang, “Information sharing in dis-
tributed stochastic bandits,” in Proc. IEEE Conf. Comput. Commun., 2015,
pp. 2605–2613.

[7] I. Bistritz and A. Leshem, “Distributed multi-player bandits—A Game
of Thrones approach,” in Proc. Adv. Neural Inf. Process. Syst., 2018,
pp. 7222–7232.

[8] E. Boursier and V. Perchet, “SIC-MMAB: Synchronisation involves com-
munication in multiplayer multi-armed bandits,” in Proc. Adv. Neural Inf.
Process. Syst., 2019, pp. 12048–12057.

[9] R. Chawla, A. Sankararaman, A. Ganesh, and S. Shakkottai, “The gossip-
ing insert-eliminate algorithm for multi-agent bandits,” in Proc. 23rd Int.
Conf. Artif. Intell. Statist., 2020, pp. 3471–3481.

[10] D. Martínez-Rubio, V. Kanade, and P. Rebeschini, “Decentralized coop-
erative stochastic bandits,” in Proc. Adv. Neural Inf. Process. Syst., 2019,
pp. 4531–4542.

[11] L. Li, W. Chu, J. Langford, and R. E. Schapire, “A contextual-bandit
approach to personalized news article recommendation,” in Proc. 19th Int.
Conf. World Wide Web. ACM, 2010, pp. 661–670.

[12] H. Bastani and M. Bayati, “Online decision making with high-dimensional
covariates,” Operations Res., vol. 68, no. 1, pp. 276–294, 2020.

[13] V. Dani, T. P. Hayes, and S. M. Kakade, “Stochastic linear optimization
under bandit feedback,” in Proc. 21st Annu. Conf. Learn. Theory, 2008,
pp. 355–366.

[14] Y. Abbasi-Yadkori, D. Pál, and C. Szepesvári, “Improved algorithms for
linear stochastic bandits,” in Proc. Adv. Neural Inf. Process. Syst., 2011,
pp. 2312–2320.

[15] A. Sankararaman, A. Ganesh, and S. Shakkottai, “Social learning in multi
agent multi armed bandits,” Proc. ACM Meas. Anal. Comput. Syst., vol. 3,
no. 3, pp. 1–35, 2019.

[16] M. Chakraborty, K. Y. P. Chua, S. Das, and B. Juba, “Coordinated versus
decentralized exploration in multi-agent multi-armed bandits,” in Proc.
Int. Joint Conf. Artif. Intell., 2017, pp. 164–170.

[17] R. K. Kolla, K. Jagannathan, and A. Gopalan, “Collaborative learning of
stochastic bandits over a social network,” IEEE/ACM Trans. Netw., vol. 26,
no. 4, pp. 1782–1795, Aug. 2018.

[18] D. Vial, S. Shakkottai, and R. Srikant, “Robust multi-agent multi-armed
bandits,” in Proc. 22nd Int. Symp. Theory Algorithmic Found. Protocol
Des. Mobile Netw. Mobile Comput., 2021, pp. 161–170.

[19] P.-A. Wang, A. Proutiere, K. Ariu, Y. Jedra, and A. Russo, “Optimal
algorithms for multiplayer multi-armed bandits,” in Proc. Int. Conf. Artif.
Intell. Statist., 2020, pp. 4120–4129.

[20] A. Agarwal et al., “Making contextual decisions with low technical debt,”
2016, arXiv:1606.03966.

[21] A. Tewari and S. A. Murphy, “From ads to interventions: Contextual
bandits in mobile health,” in Mobile Health, Berlin, Germany: Springer,
2017, pp. 495–517.

[22] S. Lale, K. Azizzadenesheli, A. Anandkumar, and B. Hassibi, “Stochastic
linear bandits with hidden low rank structure,” 2019, arXiv:1901.09490.

[23] A. Carpentier and R. Munos, “Bandit theory meets compressed sensing for
high dimensional stochastic linear bandit,” in Proc. Artif. Intell. Statist.,
2012, pp. 190–198.

[24] S. Gerchinovitz, “Sparsity regret bounds for individual sequences in on-
line linear regression,” in Proc. 24th Annu. Conf. Learn. Theory. JMLR
Workshop Conf., 2011, pp. 377–396.

[25] Y. Abbasi-Yadkori, D. Pal, and C. Szepesvari, “Online-to-confidence-set
conversions and application to sparse stochastic bandits,” in Proc. Artif.
Intell. Statist., 2012, pp. 1–9.

[26] Y. Wang, J. Hu, X. Chen, and L. Wang, “Distributed bandit learning: Near-
optimal regret with efficient communication,” in Proc. Int. Conf. Learn.
Representations, 2020.

[27] N. Korda, B. Szorenyi, and S. Li, “Distributed clustering of linear bandits
in peer to peer networks,” in Proc. 33rd Int. Conf. Mach. Learn., 2016,
pp. 1301–1309.

[28] A. Dubey and A. Pentland, “Differentially-private federated linear ban-
dits,” Adv. Neural Inf. Process. Syst., vol. 33, pp. 6003–6014, 2020.

[29] S. Amani and C. Thrampoulidis, “Decentralized multi-agent linear ban-
dits with safety constraints,” in Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 35, no. 8, 2021, pp. 6627–6635.

[30] F. Chierichetti, S. Lattanzi, and A. Panconesi, “Almost tight bounds for
rumour spreading with conductance,” in Proc. 42nd ACM Symp. Theory
Comput., 2010, pp. 399–408.

Ronshee Chawla received the B.Tech. degree
in electrical engineering from the Indian Institute
of Technology (IIT) Indore, India, in 2015, and
the M.S. degree in 2019 in electrical and com-
puter engineering from The University of Texas
at Austin, Austin, TX, USA, where he is currently
working toward the Ph.D. degree in electrical
and computer engineering.

From 2015 to 2016, he was a Scientist with
the Defence Research and Development Or-
ganisation (DRDO), Ministry of Defence, Gov-

ernment of India. His research focuses on development and analysis of
decentralized algorithms for multiagent machine learning.

Mr. Chawla was the recipient of the President of India Gold Medal at
IIT Indore in 2015 and DAAD-WISE scholarship for working toward the
summer internship with RWTH Aachen University, Aachen, Germany, in
2014.

Abishek Sankararaman received the Ph.D. de-
gree from the Department of Electrical and
Computer Engineering, University of Texas at
Austin, Austin, TX, USA, in 2019.

Until August 2020, he was a Postdoc with the
University of California Berkeley, Berkeley, CA,
USA. He is currently a Scientist with Amazon,
Seattle, WA, USA. His research interests in-
clude the design and analysis of algorithms for a
variety of networked systems, including wireless
networks, social networks, online platforms, and

distributed computing/cloud networks.

Sanjay Shakkottai (Fellow, IEEE) received the
Ph.D. degree in ECE from the University of
Illinois at Urbana-Champaign, Champaign, IL,
USA, in 2002.

He is currently with The University of Texas at
Austin, Austin, TX, USA, where he is currently
the Temple Foundation Endowed Professor No.
4, and a Professor with the Department of Elec-
trical and Computer Engineering. His research
interests include the intersection of algorithms
for resource allocation, statistical learning, and

networks, with applications to wireless communication networks and
online platforms.

Dr. Shakkottai was the recipient of the NSF CAREER Award in 2004.
He was elected as an IEEE Fellow in 2014.

Authorized licensed use limited to: University of Texas at Austin. Downloaded on March 20,2024 at 13:08:28 UTC from IEEE Xplore. Restrictions apply.

