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ABSTRACT
In collaborative problem solving (CPS), people’s actions are
interactive, interdependent, and temporal. However, it is
unclear how actions temporally relate to each other and
what are the temporal similarities and differences between
successful vs. unsuccessful CPS processes. As such, we ap-
ply a temporal analysis approach, Multilevel Vector Autore-
gression (mlVAR) to investigate CPS processes. Our data
were collected from college students who collaborated in tri-
ads via a video-conferencing tool (Zoom) to collaborately
engage a physics learning game. Video recordings of their
verbal interactions were transcribed, coded using a validated
CPS framework, and organized into sequences of 10-second
windows. Then, mlVAR was applied to the successful vs.
unsuccessful CPS sequences to build temporal models for
each. A comparison of the models together with a quali-
tative analysis of the transcripts revealed six temporal re-
lationships common to both, six unique to successful level
attempts, and another eight unique to unsuccessful level at-
tempts only. Generally, for successful outcomes, people were
likely to answer clarification questions with reasons and to
ask for suggestions according to the current game situation,
while for unsuccessful CPS level attempts, people were more
likely to struggle with unclear instructions and to respond
to inappropriate ideas. Overall, our results suggest that ml-
VAR is an effective approach for temporal analyses of CPS
processes by identifying relationships that go beyond a cod-
ing and counting approach.
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1. INTRODUCTION
Collaborative problem solving (CPS) is a process where mul-
tiple people pool knowledge, skills, and efforts to solve com-
plex problems [1, 26], and can be an effective approach com-
pared to working individually [27, 28]. For example, in one
study, pairs of people performed better than single individu-
als in discovering scientific laws [27]. In recent decades, CPS
has appeared in more and more contexts such as schools [26,
36], online learning [34] and military tasks [41], and is rec-
ognized as an essential 21st century skill [1, 26].

But what exactly does CPS ential? Swiecki et al. argued
that CPS is an interactive, interdependent, and temporal
process [41]. Specifically, a typical CPS process involves two
types of interactions: 1) people-task interactions where peo-
ple interact with the environment or tools to solve problems
[3] and 2) people-people interactions where team members
interact with each other (e.g. exchanging information or
coordinating behavior) to facilitate taskwork [23]. Interde-
pendence refers to the fact that people rely on other people’s
contributions to complete tasks, such as incorporating other
people’s work/ideas into the solution and getting help from
other people [25, 21]. Temporality refers to the fact that ac-
tions are produced as a series of inter-connected steps, and
the strength of these connections relates to the temporal dis-
tance of the actions (the larger the distance, the weaker the
connection) [8]. Thus, actions taken by the team at a certain
time have an impact on the actions that the team will take
in the near future, but this impact diminishes as time goes
on. For example, when a question is asked, there is an im-
mediate increase in the likelihood that the question will be
answered, but this likelihood decreases as time progresses.

Since CPS is interactive, interdependent, and temporal, peo-
ple’s behaviors ostensibly affect how tasks will be explored
and whether tasks will be completed successfully or unsuc-
cessfully. Emerging research has focused on discovering rela-
tionships between team behaviors and problem solving suc-
cess [42, 1, 17, 6, 39]. However, as reviewed below, most ex-
isting work has investigated CPS behaviors independently,
without effectively considering the interaction and interde-
pendence between them [42, 1, 17]. This raises the following
questions that motivate our work: how do teammates’ be-
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haviors temporally relate to each other and what are the
temporal similarities and differences between successful vs.
unsuccessful CPS processes?

Further, with rapid development of remote collaboration
tools and the high risk imposed by COVID-19 for holding
face-to-face meetings, more and more collaborations are car-
ried out remotely. Although remote collaboration has many
advantages, it also narrows the communicative bandwidth
[29]. For example, gesturing to physical objects is much
more complex than in face-to-face communication [40] and
certain patterns of social-visual attention (e.g., mutual gaze)
are disrupted [43]. Given the necessity and challenges of re-
mote collaboration, we focus on investigating the temporal
dynamics of behaviors in remote CPS contexts.

2. RELATED WORK
Our literature review mainly focuses on two aspects of CPS
processes related to our study: 1) successful vs. unsuccessful
CPS and 2) temporal analysis of CPS behaviors.

2.1 Successful vs. Unsuccessful CPS Processes
Prior research has applied several methods to investigate
CPS processes, such as qualitative analysis [2], coding-and-
counting [1, 17, 6], and temporal analysis [6, 39]. For qual-
itative analysis, Barron studied face-to-face collaboration
while solving math problems [2] using data from two three-
people teams whose verbal interactions during collaboration
were coded with three distinct functions: 1) articulation of
solutions, 2) repetitions of proposals, and 3) responses to
proposals. A qualitative analysis on the conversations re-
vealed that successful CPS exhibited more effective mutual
exchanges, better joint engagement, and shared goals.

Coding-and-counting analyses mainly count the occurrence
of particular behaviors/actions and relate them to a desired
outcome [42, 1, 17, 6, 39]. For example, Tausczik et al. an-
alyzed data from an online mathematical problem solving
community (MathOverflow) [42]. They first human-coded
the discussion data with five distinct behavioral indicators
and then built regression models to discover the association
between indicator occurrences and solution quality [42]. Re-
sults showed that clarifying questions, critiquing answers, re-
vising an answer and extending an answer significantly pre-
dicted solution quality. Similarly, Andrews-Todd et al. ap-
plied coding-and-counting to analyze college students’ chat
texts generated while collaboratively solving simulated elec-
tronics problems [1]. Based on the coded behaviors, they
categorized students into four groups by a 2 × 2 median
split - social (high vs. low) × cognitive (high vs. low).
Analysis results showed that the low social - low cognitive
group performed worse than the other three groups. Ad-
ditionally, having at least one high social - high cognitive
student in the team could increase performance.

A few studies applied basic temporal analyses of CPS be-
haviors in addition to coding-and-counting methods. For
example, Hao et al. analyzed CPS skills at the unigram and
bigram levels [17]. They manually coded participants’ col-
laboration chat texts generated while completing simulation-
based tasks with four skills: sharing ideas (Share), negoti-
ating ideas (Negotiation), regulating problem solving (Reg-
ulation), and maintaining communication (Maintain). Re-

sults indicated that at the unigram level (i.e., individual
skills), effective CPS processes contained more negotiation
than ineffective processes. At the bigram level (e.g., Share-
Negotation), effective processes had more share → negoti-
ate, negotiate → share, regulate → share, and negotiate →
negotiate patterns.

In another study, Chang et al. applied coding-and-counting
and lag sequential analysis to examine students’ interactions
in simulated CPS scenarios [6]. Participants collaborated as
triads (teams of three) via a chat box to solve physics prob-
lems. The chat texts were coded based on the Programme
for International Student Assessment (PISA) CPS frame-
work [26]. A counting based analysis indicated that success-
ful groups had a high percentage (out of the total number
of actions taken by the group) of two actions: 1) monitoring
and reflecting on what they have done and 2) discussing the
actions to take. Temporal lag sequential analysis showed
that some students who engaged in trial-and-error failed to
solve the problem in the end, while those demonstrating ef-
fective reasoning were more likely to solve the problem suc-
cessfully. Similarly, Sun et al. applied coding-and-counting
together with a pattern analysis approach to examine re-
mote collaboration while students played a physics learning
game [39]. Audio recordings of their verbal communications
were transcribed and coded based on a validated CPS frame-
work [38]. A coding-and-counting analysis showed that cer-
tain actions (e.g. discussing appropriate ideas, confirming
understanding) were predictive of success in the game. Pat-
tern analysis examining the co-occurrence of actions within
short temporal windows revealed the importance of forming
interactive communications among team members to estab-
lish common ground and support each other.

In sum, results from prior research suggested that CPS suc-
cess is associated with both the occurrences of individual
actions [2, 42, 1, 17] and connections between actions [17,
6, 39]. However these studies mainly utilized coding-and-
counting to examine CPS success [42, 1, 17], and the tem-
poral analyses were limited [17, 6, 39]. Next, we review
studies that go beyond basic counts of individual behaviors
by investigating temporal relationships of CPS behaviors.

2.2 Temporal Analysis of CPS
Prior work on temporal analyses of CPS has mainly fo-
cused on detecting the connections between individual ac-
tions from team interaction sequences [19, 7, 41, 9, 30,
22]. For example, Kapur applied lag sequential analysis
to discover the most frequent communication patterns that
emerged in CPS discussions [19]. Participants in the study
coordinated in triads via online text chat to solve physics
problems. Two experimental conditions (well-structured vs.
ill-structured problems) were compared. The resultant chat
texts were coded based on the Functional Category System
framework [31]. Then, lag sequential analysis was sepa-
rately applied to each condition to compute the transition
frequency between indicators in consecutive utterance pairs.
A comparison of the two resulting models showed that the
ill-structured condition had several temporal between-action
connections that occurred at least twice as frequently as
those in the well-structured condition, whereas the well-
structured condition had no such connections. This is a
finding that coding-and-counting approaches did not reveal.



Csanadi et al. applied epistemic network analysis to investi-
gate collaboration and thought processes of problem solving
[7] and compared it with a coding-and-counting analysis. In
that study, pre-service teachers were asked to reason about
a pedagogical problem either in pairs or individually (fol-
lowing a think aloud protocol). Audio recordings of the dis-
cussions were segmented into propositional units, and coded
with eight distinct indicators. Then epistemic network anal-
ysis was applied by sliding a window of two utterances on
the coded sequences to discover co-occurrences of indica-
tors. Based on the co-occurrence frequencies, a weighted,
undirected graph was generated to represent the connections
between indicators. A comparison of the networks for dyads
and individuals showed that these two conditions had dif-
ferent indicator co-occurrence patterns. Again, the coding-
and-counting analysis did not reveal such a finding.

Similarly, Swiecki et al. also applied epistemic network
analysis to investigate the verbal interactions between team
members in simulated military training scenarios [41]. In
that study, 16 Navy air defense warfare teams performed
the detect-to-engage sequence, which detects and identifies
vessels or tracks, assesses whether tracks are threats, and
decides what actions to take. Each team consisted of six
roles and the analysis focused on the interactions between
the tactical action officer and the other five members. Audio
recordings of the verbal interactions were transcribed and
coded via an automated coding scheme (nCodeR) [24]. Two
conditions using a standard system (control) vs. a decision
support system (experimental) were compared. In the epis-
temic network analysis, a sliding window of 5 utterances was
applied to discover the temporal co-occurrence of indicators.
Results showed that in the control condition, the tactical ac-
tion officers frequently sought out information, while in the
experimental condition, they mainly contributed informa-
tion about the tactical situation. Again, the coding-and-
counting analysis did not reveal such a finding.

Besides examining coded sequences, researchers have also
investigated other types of sequences such as transcripts [9]
and log traces [30, 22]. For transcripts, Dowell et al. applied
group communication analysis to detect roles that emerged
during group collaboration [9]. The analysis relied on com-
putational linguistic techniques to map utterances into a
latent semantic space (a n-dimension numerical space) upon
which six measures were defined to describe the profile of
each individuals’ verbal contributions (e.g. social impact,
overall responsivity, newness). Then, k-means clustering
was applied to the profiles to detect emerging roles, result-
ing in six clusters with unique characteristics (e.g. “high so-
cial impact, responsiveness, and internal cohesion”). For log
trace analysis, Perera et al. used sequential pattern mining
to examine the process of competing a group course project
for software development [30]. In that study, students col-
laborated in an online learning environment which logged
events of group wiki editing, ticket management, and version
changes. The event sequence of each group was then seg-
mented into shorter sequences and sequential pattern mining
was used to count the frequency of consecutive events (pat-
terns) for each team. The analyses identified patterns (e.g.,
“1 version activity by 1 author” followed by “1 ticket activ-
ity by 1 author”) that can distinguish the well-performing
teams from the ill-performing ones.

2.3 Research Questions and Contributions
As reviewed above, researchers are beginning to uncover the
specific behaviors - both individually as well as behavioral
sequences - that predict CPS outcomes. Prior studies indi-
cate that there are meaningful and detectable temporal con-
nections between people’s verbal actions (or problem solv-
ing actions) in CPS processes [19, 7, 41, 9]. Further, tem-
poral analyses are sometimes more effective than coding-
and-counting analyses for understanding collaborations [19,
7]. In the current study, we continue this line of research
by utilizing multi-level vector autoregression (mlVAR) for
a temporal analysis of CPS behaviors. mlVAR is a net-
work analysis approach that examines temporal connections
between actions in consecutive windows via linear mixed-
effects models, thereby accounting for clustered/nested data.
Specifically, for each variable in window t, mlVAR builds a
linear model that uses all the variables in the t− 1 window
to predict its value. mlVAR has been successfully applied
in many domains, such as patient-physician interactions [16]
and symptom-psychopathology interplays [10]. However, to
our knowledge, it has yet to be utilized to investigate col-
laborative problem solving behaviors.

Towards this goal, we analyzed data from a study where stu-
dents collaborated in triads via video conferencing to play
a physics learning game. Next, we transcribed and seg-
mented recordings of students’ verbal communication into
utterances, human-coded each utterance based on a vali-
dated CPS framework [39] and aggregated the occurrence of
indicators with 10-second windows. We then applied mlVAR
to the resultant multivariate time series to generate tempo-
ral graphs depicting relationships among indicators. Our
primary research question is what are the temporal similari-
ties and differences between successful vs. unsuccessful CPS
interactions. We investigate this question by building sep-
arate mlVAR models for multivariate behavioral sequences
associated with successful vs. unsuccessful CPS outcomes
(i.e., solving a game level vs. failing to solve a level). Then,
we compare the two resultant networks to discover the simi-
larities and differences and conduct a qualitative analysis to
further examine what interactions may facilitate CPS and
what are the challenges people may face during CPS.

Our work extends existing CPS research in several ways.
Whereas temporal approaches have been applied to ana-
lyze CPS data, some previous studies only focused on logged
system actions rather than verbal communications [30, 22],
which provides limited insights into how the collaboration
unfolds (e.g. how students share information and negoti-
ate). Of the studies that applied temporal analysis on coded
sequences, some only considered the co-occurrence of indi-
cators in a sliding window (e.g. epistemic network analysis),
without specifying the direction of the relations [7, 41, 39].
Others only focused on the 1-to-1 temporal connections be-
tween variable pairs at time t− 1 and t (e.g. lag sequential
analysis) [17, 6, 19], rather than n-to-1 connections as an
action can be predicted by multiple prior actions [8, 9].

The approach we use in this work, mlVAR, has a number of
desirable statistical properties over other approaches. First,
unlike lag sequential analysis, which examines the 1-to-1
temporal connections between variables, mlVAR uses a set
of variables at time t − 1 to predict a variable at time t,



resulting in n-to-1 temporal connections. This allows it to
discover temporal connections fully in context. Second, as
a statistical procedure, mlVAR allows for uncertainty quan-
tification of findings through the use of p-values and stan-
dard errors. Finally, mlVAR analysis is inherently multi-
level, thereby statistically accounting for the fact that CPS
data is generally clustered within teams. Failure to take
such clustering into account may yield untrustworthy results
due to phenomena such as the Simpson’s Paradox [20]. The
multilevel nature of mlVAR also allows for the estimation
of both team-specific networks and general networks repre-
senting the dynamics of the average team. Another novelty
is that we employed a quasi-experimental matching proce-
dure to balance the number of successful vs. unsuccessful
instances across multiple factors (e.g. school, experimental
block, time duration) to factor out their possible impacts.
Finally, rather than emphasizing short-term temporal rela-
tionships between actions (i.e., using the previous utterance
to predict the next), we combined behaviors across short
windows spanning an average of three utterances to better
capture aspects of the unfolding trialogue (conversations in-
volving three participants).

3. DATA SET
The data were collected as part of a larger study [11] involv-
ing collaborative problem solving. Only aspects germane to
the present work are reported here.

3.1 Participants
A total of 303 Students (56% female, average age = 22 years)
from two large public universities participated in the study.
Self-reported race/ethnicity information indicated that 47%
of participants were Caucasian, 28% Hispanic/Latino, 18%
Asian, 2% Black or African American, 1% American Indian
or Alaska Native, and 4% “other”. Students were assigned
to 101 triads based on their scheduling availability. Thirty
participants from 18 teams indicated they knew at least one
person in their team prior to study. Participants were com-
pensated with a $50 Amazon gift card (96%) or course credit
(4%) after completing the study.

Figure 1: A screenshot of the collaboration scenario

3.2 CPS Task
Participants were tasked with collaboratively solving levels
in a learning game “Physics Playground” [37], which is de-
signed for young adults to learn Newtonian physics (e.g.,
Newton’s laws of force and motion). The goal for each level
is to create objects and use physics laws to move a ball to a

designated target (a red balloon) as shown in Figure 1. Ev-
erything in the game obeys basic physics laws (e.g., there is
gravity, each object has its own mass). As such, to move the
ball in a desired way, students need to use simple machines
such as levers and springboards. These, along with other ob-
jects (e.g., weights) are drawn using the mouse, upon which
the new object becomes “alive” in the game and interacts
with other existing objects following basic physics laws. Stu-
dents can restart (clearing objects) or quit a game level at
any time. They receive a gold coin if they solve a level with
an optimal solution (i.e., with minimal objects), and they
receive a silver coin for a sub-optimal solution (i.e., with
more objects). No coin is rewarded for unsolved levels.

The game includes 17 levels covering two physics concepts:
“energy can transfer”(EcT, 9 levels) and“properties of torque”
(PoT, 8 levels). Each concept contains several subconcepts.
For example, kinetic energy and gravitational potential en-
ergy belongs to EcT. The 17 levels varied in difficulty (as
rated by two physics experts) and the levels were organized
into three “playgrounds”, one per block in the study (de-
tailed below). In the navigation page, students can choose a
level to enter from the “playground” they are in or view the
tutorials that introduce the game mechanics.

3.3 Procedure
The study involved an individual “at-home” part and a col-
laborative “in-lab” part. Materials (Qualtrics surveys) for
the“at-home”part were emailed to students at least 24 hours
prior to the lab session. It included several individual differ-
ence measures (e.g., prior knowledge, personality), a short
tutorial on how to use Physics Playground, a short (around
15-mins) individual practice with the game, and other as-
pects unrelated to this study.

Students completed the “in-lab” part of the study in triads,
using computer-enabled workstations equipped with a we-
bcam and headset microphone. All collaborations occurred
via the Zoom video-conferencing tool (as shown in Figure 1),
and participants in the same group sat away from each other
to avoid in-person interactions. The study involved three
15-min CPS blocks. (There was a fourth block for a dif-
ferent task not analyzed here.) In each block, one person
was randomly assigned the role of a controller and the other
two were tasked with being contributors. Assignment of
the controller role rotated across blocks, so each teammate
served as the controller for one of the three blocks. The
game was loaded on the controller’s computer, so only the
controller could directly interact with the game. The con-
troller’s screen was shared with the contributors using the
screen sharing feature of Zoom. Contributors participated in
the problem solving process through verbal communications
(e.g., proposing ideas, giving instructions).

The first block included five easy-to-medium levels involv-
ing a mix of EcT and PoT concepts. After that, all teams
completed two 15-min experimental blocks, on either EcT
or PoT levels (counterbalanced across teams) and with a
specific CPS goal (delivered via verbal and on-screen mes-
sages): “solve as many levels as possible” or “get as many
gold coins as possible”. The CPS goal and physics concept
for the two experimental blocks were within-subjects factors,
counter-balanced across teams.



Table 1: Facets and Indicators

Facet Indicator

1) Talks about challenge situations (Situations)

Constructing 2) Suggests appropriate ideas (ApporIdeas)

Shared 3) Suggests inappropriate ideas (InapporIdeas) [N]

Knowledge 4) Confirms understanding (Confirms)

5) Interrupts others (Interrupts) [N]

6) Provides reasons to support a solution (Reasons)

7) Questions/Corrects others’ mistakes (Questions)

8) Responds to other’s questions/ideas (Responds)

Negotiation 9) Criticizes, makes fun of, or being rude

and to other (Criticizes) [N]

Coordination 10) Discusses the results (DiscuResults)

11) Brings up giving up the challenge (GivingUp) [N]

12) Strategizes to accomplish task goals (Strategizes)

13) Tries to quickly save an almost successful

attempt (Saves)

14) Asks others for suggestions (AskSuggest)

Maintaining 15) Compliments or encourages others (Compliments)

Team 16) Initiates off-topic conversation (InitOffTopic)

Function 17 ) Joins in off-topic conversation (JoinOffTopic) [N]

18) Provides instructional support (Instructions)

19) Apologizes for one’s mistakes (Apologizes)

3.4 Coding Collaboration Behaviors
We adopted the validated coding scheme developed by Sun
et al. [39] to code student’s verbal communications, which
includes three main CPS facets: constructing shared knowl-
edge, negotiation/coordination, and maintaining team func-
tion. Within each facet, there are several indicators that
specify the concrete function(s) of each utterance as shown
in Table 1 (see coding examples in Section 5.2). Construct-
ing shared knowledge contains two aspects: a) disseminat-
ing knowledge, ideas, and resources among team members
and b) establishing common ground for understanding the
task and solutions [1, 26, 32]. Negotiation and coordination
pertains to reaching a consensus on a solution plan to be
carried out, such as dividing labor, resolving conflicts, inte-
grating different perspectives, and monitoring execution [1,
18, 35]. Maintaining team function reflects efforts to main-
tain a functional team via assuming individual responsibili-
ties, taking initiative, and co-regulation [5, 18, 33]. Most of
the indicators in Table 1 describe positive (beneficial) CPS
behaviors, and the negative behaviors were marked with N.

Coding was done on machine generated transcripts of stu-
dents’ verbal communications using IBM Watson’s auto-
matic speech recognition software [14]. IBM Watson both
segments the audio into individual utterances and provides
transcriptions of the utterances along with word timings.
Utterances spoken by the same person within two seconds
were merged to address segmentation errors (a 2-sec thresh-
old was selected after considering a range of thresholds).
The coders also viewed the video recordings of gameplay
during coding to understand the context of students’ inter-
actions, nonverbal behaviors of the group dynamics, and to
address speech recognition errors. An utterance was coded
with an indicator if it contained evidence of the function
described by the indicator. The coders marked the number
of occurrences of each indicator per utterance, and multiple

indicators could occur for a given utterance (see Table 7 in
Section 5.2 for an example). Three trained human coders
coded the data. Each received two rounds of training be-
fore performing individual coding. After the second round
of training, they all reached a high percentage of agreement
(89% – 100%) and a high Gwet’s AC1 value (0.91 to 1.00),
a measure of interrater reliability specifically designed for
cases of high agreement where more traditional metrics like
Cohen’s kappa yield unexpected results (sometimes called
the paradoxes of kappa [15]).

3.5 Level Matching
Considering that besides collaboration behaviors, other fac-
tors such as level difficulty, the physics concept involved,
and the problem solving goal (originally designed for other
studies and not involved in our analysis) could also affect
the problem solving outcome, we used a quasi-experimental
matching procedure to factor out their possible impacts on
level attempt success in our analysis. Specifically, an ini-
tial processing of the game logs yielded 1,164 level attempts
(27% gold, 29% silver, and 44% no coin). Then, level at-
tempts shorter than 60s were excluded, resulting in 808
level attempts. We removed short attempts because they
are likely to be cases that students were exploring a level to
decide whether to attempt it or not.

A preliminary analysis indicated that Energy can Transfer
(EcT) levels (18% attempts succeeded, 7% earned a gold
coin) were more difficult than Properties of Torque (PoT)
levels (63% attempts succeeded, 40% earned a goal coin).
To ensure a sufficient number of matches, matches for EcT
levels focused on a coin (gold or silver) vs. a no coin com-
parison, whereas matches for PoT levels focused on gold vs.
silver vs. no coin outcomes (i.e., a triplet). Matching was
based on the following covariates: 1) school, 2) level iden-
tifier, 3) manipulation (i.e., gold coins vs. solve many lev-
els), 4) block number (first or second) for the experimental
blocks, and 5) duration of the level attempt. Level attempt
duration was constrained to be at most 0.25 standard devi-
ations of the mean duration of all the level attempts. An
initial matching (using the “bmatch” function in the R pack-
age “designmatch” [46]) yielded 131 level attempt matches
(33 Warmup, 69 EcT, and 29 PoT). Given the labor inten-
sive nature of coding, 81 matches were randomly selected
from the 131 candidates for analyses. The resulting data
set included 209 level attempts: 66 (22 × 3) Warmup at-
tempts from 47 unique teams, 68 (34 × 2) EcT attempts
from 49 unique teams, and 75 (25 × 3) PoT attempts from
54 unique teams. A preliminary analysis on the resulting
matches revealed that the matching indeed balanced school,
manipulation, and block across the outcome groups (coins
in this case). These data were coded for the CPS indica-
tors as noted above. In our analysis, the level attempts that
resulted in a coin (either gold or silver) were considered as
successful attempts, whereas those resulted in no coin were
treated as unsuccessful ones.

4. ANALYTICAL METHODS
4.1 Data Organization
Since students collaborated in triads in our studies, we ag-
gregated the utterances into windows spanning an average
of three utterances to investigate how their CPS interactions



Table 2: Average speaker changes and utterances with differ-
ent window sizes

Size (Seconds) Speaker changes Utterances

8 1.604 (1.531) 2.559 (1.721)

9 1.850 (1.672) 2.849 (1.853)

10 2.087 (1.793) 3.150 (1.979)

11 2.340 (1.940) 3.457 (2.112)

12 2.587 (2.064) 3.741 (2.240)

unfolds. We used windows instead of utterance batches for
the aggregation because the utterances varied in length and
the windows can better balance the amount of information
across units in the sequences. To find an appropriate window
size, we tested 11 different sizes from 5 seconds to 15 sec-
onds (sample shown in Table 2). As expected, the number of
speaker changes (i.e., when the speaker changes between ut-
terance t+1 and t) and number of utterances in each window
increased for larger window sizes. We selected the window
size of 10 seconds because it has an average of two speaker
changes and three utterances in each window, which would
accommodate one utterance for each of the three speakers,
though windows ranging from 9 to 11 seconds would also
have been suitable.

The aggregation sums up the occurrences of each indicator
in each window, resulting in sequences of integer vectors.
An utterance was assigned to a window if: 1) the center
(midpoint) of the utterance lies in the window or 2) it over-
laps with the window for more than one second (since the
mean utterance duration was 2.08 seconds). Of the 19 indi-
cators, 9 were exceedingly rare, occurring in less that 1 per-
cent of the utterances. Accordingly, we merged these into a
miscellaneous other indicator category (OtherIndi). We also
grouped the utterances that were not coded with any indica-
tors into a no indicator category (NoIndi). Finally, to reflect
changes in the game, we applied a validated motion tracker
tool [45] to capture changes in the game area. We used
screen motion instead of logs to reflect game state because
the logs only recorded the addition/deletion of objects, but
not their interactions, and are generally limited for open-
ended games where players can draw objects of any shape.
The use of screen motion is also more generalizable and has
been used in other studies investigating CPS [44]. In sum,
our models contained 13 variables (12 indicator-related vari-
ables as shown in Table 3 + Screen Motion).

We conducted a few additional data processing steps prior
to constructing the models. First, sequences shorter than
150s were excluded to ensure that each sequence has at least
13 transitions for our 13-variable models (detailed below).
Second, windows shorter than 5 seconds (50% of normal
window length) at the end of the sequences were removed
because they were too short to be considered as a complete
window, and then the last window of each sequence was re-
moved. The second step removed the last 5 - 15 seconds
of each level attempt to alleviate the concern that the lan-
guage/indicators might have focused on the success or failure
of the outcome rather than the problem solving process.

The final data set contains 133 level attempts (82 successful
[silver or gold coin] and 51 unsuccessful [no coin]) from 74

Table 3: Average number of each indicator per window

Facet Variable Successful Unsuccessful

Constructing Confirms 0.30 (0.60) 0.33 (0.60)

Shared ApporIdeas 0.23 (0.51) 0.14 (0.41)

Knowledge InapporIdeas 0.15 (0.43) 0.21 (0.49)

Situation 0.17 (0.49) 0.16 (0.49)

Negotiation Responds 0.33 (0.63) 0.31 (0.60)

and Reasons 0.14 (0.38) 0.11 (0.34)

Coordination DiscuResults 0.09 (0.33) 0.08 (0.30)

Maintaining Instructions 0.27 (0.60) 0.33 (0.65)

Team Compliments 0.20 (0.48) 0.16 (0.42)

Function AskSuggest 0.03 (0.17) 0.04 (0.21)

Other OtherIndi 0.21 (0.50) 0.24 (0.54)

Variables NoIndi 1.22 (1.31) 1.31 (1.30)

matches (detailed in section 3.5). For successful attempts,
sequence length ranges from 14 to 85, with an average of
30.82 (SD = 15.93). Each window has 2.03 (SD = 1.79)
speaker changes on average, 3.03 (1.89) utterances, and 17.08
(11.78) words. For unsuccessful attempts, sequence length
ranges from 15 to 87, with an average of 36.92 (SD = 21.00).
Each window has 2.12 (SD = 1.73) speaker changes on av-
erage, 3.14 (1.80) utterances, and 18.02 (11.42) words. In
both data sets, each sequence has at least 13 transitions
(minimal sequence length (14) - 1) for our 13-variable mod-
els. Table 3 shows the average number of each indicator per
window, showing mean (SD).

4.2 Multilevel Vector Autoregression
Multilevel vector autoregression (mlVAR) is a network anal-
ysis method for understanding temporal dynamics between
multiple variables nested within multiple higher order clus-
ters (e.g., individuals or teams) [4, 13]. It is multilevel in
that linear mixed-effects models are built to examine tem-
poral connections at the individual level while accounting
for group differences. Vector autoregression is the process
of predicting a vector of variables at time t using the same
vector at time t−n (n is known as the lag). We utilized the
R package “mlVAR” (version 0.5) for all analyses [12].

mlVAR analyzes the relations between temporal vectors by
building a series of linear mixed-effects models, each of which
uses the vector at time t−n [y(t−n)i1, y(t−n)i2, ..., y(t−n)iJ ]
to predict an element of the vector at time t, denoted as
y(t)ij , where i is subject id (in our case, level attempt id), j
is variable id, and J is the length of the vectors (in our case,
J = 13 as we have 13 variables). The mixed-effects models
can be described by the following equations:

y(t)i1 = yi(t− n)b1 + yi(t− n)ui
1 + e1,

y(t)i2 = yi(t− n)b2 + yi(t− n)ui
2 + e2,

...

y(t)iJ = yi(t− n)bJ + yi(t− n)ui
J + eJ ,

(1)

where yi(t− n) is the 1× J vector at time t−n for subject
i, (y(t− n)i1, y(t− n)i2, ..., y(t− n)iJ); each of b1, . . . ,bJ is a
J×1 coefficient vector for the fixed-effects, which associates
yi(t− n) to y(t)ij ; each of ui

j, . . . ,u
i
j is a J × 1 random-



Figure 2: In the graphs, nodes were colored based on their facet, blue for constructing shared knowledge, orange for maintaining
team function, purple for negotiation and coordination, and gray for other variables. Nodes with the same facet were grouped
together to make within and between facet connections more obvious. Green lines in the graphs represent positive temporal
relations and red lines represent negative relations. Dashed lines represent the relations that exist in both models, while solid
lines represent the relations that exist only in one model. Arrows show the direction of the temporal relations and line thickness
indicates the strength of the relationship (magnitude of the coefficient). Full names of the indicator labels are shown in Table 1.

effects vector, describing the deviation of individual i from
the fixed-effects b1, . . . ,bJ; each of e1, . . . , eJ is a resid-
ual variable, describing the difference (error) between the
model’s prediction and the actual value. Before estimating
parameters for the linear mixed-effects models, all the vari-
ables are standardized using a z-transformation to ensure
that the coefficient values are in the same range and com-
parable. We set the lag to be 1 as we were interested in
fine-grained temporal effects (i.e., between 10-second con-
secutive windows). We also explored lag 2, but the resulting
models had very few connections in them.

In mlVAR, a temporal connection exists between two vari-
ables if the “earlier” one y(t−n)ij is a significant predictor of

the“later”one y(t)ij in the corresponding linear mixed-effects
model. We used a p-value of .05 to denote a significant effect
as other studies did [16, 10]. The temporal connections be-
tween variables can be represented by a directed, weighted
graph (network), as shown in Figure 2.

5. RESULTS
Our temporal analysis of CPS processes consists of a quan-
titative analysis comparing the mlVAR models built on suc-
cessful vs. unsuccessful level attempts and a qualitative
analysis to interpret the patterns in the data.

5.1 mlVAR Analysis
For the successful and unsuccessful outcomes, the linear
mixed-effects sub-models in the mlVAR model reached an
average root mean squared error of 0.887 (SD = 0.062) and
0.906 (0.045) respectively in our standardized data. Fig-
ure 2 shows a comparison of the network for the successful
vs. unsuccessful model. Since we are interested in whether
there exist temporal connections between indicators rather
than how strong the connections are, we treated all the sig-

nificant connections equally (indicated by the lines in the
networks) and did not account for their strength (indicated
by line thickness). As we can see, the graphs contain several
kinds of relations, including self-loops, positive relations and
negative relations. A positive self-loop suggests that the ap-
pearance of an action in window t−1 informs the appearance
of the same kind of actions in window t. Generally, positive
self-loops indicate that the indicator occurs across multiple
consecutive windows. By contrast, a negative self-loop indi-
cates that if an action appears in a window, it is less likely
that the same kind of actions will appear in the next win-
dow. Given that the self-loops are easy to understand, we
do not discuss them further.

Regarding between-indicator relations, most of the negative
relations only exist in one of the two models. This is not
surprising because actions can be absent for many reasons,
such as being replaced by other actions or simply not be-
ing appropriate with respect to collaborative discourse (e.g.,
discussing the challenge situation after receiving a comple-
ment) or the stage in the problem solving process. As such,
we mainly focus on the positive between-action relations.

Table 4 shows a summary of the positive between-action re-
lations, where they were grouped into three categories based
on whether they occurred in 1) both models (Common), 2)
the successful model only (Successful), and 3) the unsuccess-
ful models only (Unsuccessful). The “Common” category
had 6 relations, 4 of which involved “confirms understand-
ing”. Among them, “proposes appropriate ideas” and “pro-
poses inappropriate ideas” were likely to influence “confirms
understanding” questions, while “provides instructional sup-
port” and “responds to others’ ideas/questions” were likely
reactions to “confirms understanding” questions. The other
two relations “asks others for suggestions”→ “proposes ap-
propriate ideas” and “provides instructional support”→ “re-



Table 4: Positive between-action connections
Common

Proposes appropriate ideas → Confirms understanding

Proposes inappropriate ideas → Confirms understanding

Confirms understanding → Provides instructional support

Confirms understanding → Responds to other’s questions/ideas

Asks others for suggestions → Proposes appropriate ideas

Provides instructional support → Responds to other’s

questions/ideas

Successful
Confirms understanding → Provides reasons to support a solution

Provides reasons to support a solution → Confirms understanding

Screen motion → Asks others for suggestions

Screen motion → Talks about challenge situations

Screen motion → No indicators

Proposes appropriate ideas → Responds to other’s questions/ideas

Unsuccessful
Provides instructional support → Confirms understanding

Proposes appropriate ideas → Provides instructional support

Proposes appropriate ideas → Provides reasons to support a

solution

Proposes inappropriate ideas → Responds to other’s questions/

ideas

No indicators → Proposes appropriate ideas

No indicators → Asks others for suggestions

Talks about challenge situations → No indicators

Asks others for suggestions → Responds to other’s questions/ideas

sponds to others’ ideas/ questions”are ordinary interactions.
The common relations suggest that the process of establish-
ing shared understanding via asking and reacting to “con-
firms understanding” (clarification) questions was common
to both successful and unsuccessful level attempts and likely
underlies basic collaborative discourse.

Successful model: For the successful level attempts, there
was a bidirectional temporal relation between “confirms un-
derstanding” questions and “provides reasons to support a
solution”. Both reflect efforts to enhance shared understand-
ing and thus the interactions between them may facilitate
successful CPS. Importantly, we found that the degree of
screen activity (“screen motion”) was a significant temporal
predictor for three variables: “asks others for suggestions”,
“talks about challenge situations”, and “no indicator utter-
ances”. This suggests that people in successful CPS pro-
cesses reflected on the current game situation. Among the
three relations, “screen motion”→“talks about challenge sit-
uations” reflects that successful teams were linking what oc-
curred in the game with the underlying challenge situation,
which can be considered a form of metacognitive processing.
The “screen motion”→ “no indicator utterances” indicates
that people were likely to talk following screen change but
the language was not captured by the coding scheme since
it might not have been CPS-related discourse. The “screen
motion”→“asks others for suggestions”suggests that people
were likely to ask for suggestions according to the current
game state. Ostensibly, this relation connects people to the
game and thus may facilitate CPS. The “proposes appropri-
ate ideas”→ “responds to others’ ideas/questions” reflects
that people were likely to express their thoughts towards
appropriate ideas, suggesting a form of affirming dialogue.

Unsuccessful model: In the “unsuccessful” model, “confirm
understanding”questions were likely to appear following“pro-
vides instructional support”. This relation together with
the“confirms understanding”→“provides instructional sup-
port” in the “common” category forms a bidirectional rela-
tion, which indicates that people were looping between giv-
ing instructions and confirming understanding. This loop
suggests that people had difficulty with conveying and un-
derstanding instructions accurately.

There were three relations involving proposing ideas, both
appropriate and inappropriate. The“proposes inappropriate
ideas”→“responds to others’ ideas/questions” suggests that
people were likely to discuss inappropriate ideas, which is
different from the “proposes appropriate ideas”→ “responds
to others’ ideas/questions” in the “successful” model. This
contrast suggests that devoting efforts to appropriate ideas
rather than inappropriate ideas may help solve the problem.
Additionally, “proposes appropriate ideas” was a significant
temporal predictor of “provides instructional support” and
“provides reasons to support a solution”. Given that pro-
viding instructions and reasons both give details to support
an idea, these two relations suggest that the proposed ideas,
though appropriate, needed further illustration or justifica-
tion. The “no indicator utterances” (NoInd) were involved
in three relations. Since these relations involved communi-
cation functions that were not described by the CPS coding
scheme, we do not discuss them further. Finally, “asks oth-
ers for suggestions” was a significant predictor of “responds
to others’ ideas/questions”. We noticed that there was a
common relation “asks others for suggestions”→ “proposes
appropriate ideas” in both the “successful” and “unsuccess-
ful” models. This suggests that the most common reaction
to suggestion requests is directly proposing an idea. Thus,
reacting to suggestion requests by simply responding to oth-
ers, rather than proposing new and task appropriate ideas,
reflects that people were unsure about what to say, or how
to proceed with solving the problem.

Figure 3: Screenshot for qualitative analysis examples

5.2 Qualitative Analysis
To further interpret the temporal patterns revealed by ml-
VAR analysis, we conducted a qualitative analysis to ex-
amine what actually happened behind the patterns. Given
the page limit, we focused on two important CPS factors:
1) establishing shared understanding, and 2) linking peo-
ple to the game. As discussed above, shared understanding
was often established via asking and reacting to “confirms
understanding” (clarification) questions. Thus, we exam-



Table 5: “Screen motion”→ “Asks others for suggestions” examples from successful level attempts

Example 1: Asking for suggestions after starting a level
Time Window Speech/Actions
40-50 1 [controller actions]: Entered the game and made a few objects, but did not figure out how to

solve the level. [Screen motion] value: 0.117 (> 99.32% instances)
54-58 2 Controller: Do you guys have any suggestions? [AskSuggest]

Example 2: Asking for suggestions after an attempt
490-500 46 [controller actions]: Created a heavy weight and deleted it to spring the ball up, but it did not go

high enough. [Screen motion] value: 0.010 (> 78.62% instances)
502-504 47 Controller: Should I try it again with, like Bigger? [AskSuggest]

Table 6: “Confirms understanding”←→ “Provides reasons to support a solution” examples from successful level attempts

Example 1: “Confirms understanding”→ “Provides reasons to support a solution”
Time Window Speech/Actions

[Scenario]: The ball is dropping repeatedly and the team is trying to figure out how to capture and move it, as shown
in Figure 3.a. (The key to solve this level is to catch the right timing.)
317-319 17 Contributor1: When you see the ball start to drop, let go. [Instructions ]
319-323 17 Controller: To drop and let go? [Confirms]
323-325 18 Contributor1: So when the ball begins falling on the screen-
325-325 18 Controller: Uh-huh.
325-328 18 Contributor1: Then stop drawing, [Instructions ] ’cause that’s when it’ll start to fall. [Reasons]
328-329 18 Controller: Okay. (silence) [Responds] [in-game action: the controller then solved the level]

Example 2: “Provides reasons to support a solution”→ “Confirms understanding”
[Scenario]: The team is trying to rotate an object.
392-410 18-19 Contributor1: Oh. I would maybe try to put... now, um, get rid of those dots and um, put a new

dot where um, the tip is. [ApporIdeas ] So it could like move more forward. [Reasons]
410-411 19 Controller: Like here? [Confirms] [in-game action: pointed to a position using mouse]
411-417 19 Contributor1: Um, yeah. Like how you connected them. Connect them again at like, the bottom

of the thing. [Instructions ]

Table 7: “Confirms understanding”←→ “Provides instructional support” example from an unsuccessful level attempt

Time Window Speech/Actions
[Scenario]: One contributor is trying to convey the idea of using a springboard to bounce the ball up (see Figure 3.b).
281-291 26-27 Contributor1: Like, put it like under. Actually no, I feel like that’s too...No like, you have to like

connect and like, and like, put it underneath. [Instructions] Like you feel-
291-292 27 Contributor2: What? (laughs). [Confirms]
292-307 27-28 Contributor1: Like, connect the two dots, then like put it under the ball. [Instructions] Because like,

you’re going to delete that black line [Instructions] and then it’s going to fall on the...i-it’s going to
end up falling on the bouncy board and hopefully go up. [Reasons]

307-308 28 Controller: Oh, wait. So go like this? [Confirms] [in-game action: drew a short line that connected
two dots, but still did not make a springboard]

308-312 29 Contributor1: Yeah, and then make it go under, don’t hit that...um black. [Instructions]
312-313 29 Controller: Huh? [Confirms]
313-313 29 Contributor2: What? [Confirms]
313-318 29 Contributor1: Yeah, make it just, make it go under, like the black and under the ball. [Instructions]

... ...

ined the temporal differences that involved “confirms under-
standing”: 1) “confirms understanding”←→ “provides rea-
sons to support a solution” in the “successful” model and 2)
“confirms understanding” ←→ “provides instructional sup-
port” in the “unsuccessful” model. The link between people
and game was reflected by “screen motion” involved connec-
tions. Among the three such relations (all in the“successful”
model), the “screen motion”→ “talks about challenge situ-
ations” was easy to understand and “screen motion”→ “no
indicator utterances” involved language that was not cap-
tured by our coding scheme. Thus, we examined only the
“screen motion”→ “asks others for suggestions”.

Table 5 shows two typical scenarios for the “screen motion”

→ “asks others for suggestions”, showing the time in the
block in seconds (Time), order of the window in the level
attempt sequence (Window), and the speech/actions that
occurred in the window. In example 1, the controller asked
for suggestions right after a level started, where a screen
refresh resulted in a large screen motion. In example 2, the
controller asked for suggestions after a failed attempt that
contains a series of large in-game motions. These examples
revealed that in successful level attempts, controllers were
likely to ask for suggestions according to the current game
situation.

Next, we investigate the bidirectional relation “confirms un-
derstanding”←→ “provides reasons to support a solution”.



An examination of the coded sequences showed that in most
cases, these two relations exist independent of each other,
rather than form a semantically connected loop. So, we in-
vestigate each of them independently as shown in Table 6.
In the“confirms understanding”→“provides reasons to sup-
port a solution” example, a contributor answered the con-
troller’s clarification question with an instruction and a rea-
son to clarify its purpose (to catch the right timing, which
is the key to solve the level). This suggests that in success-
ful CPS processes, people were likely to answer clarification
questions with reasons. In the “provides reasons to support
a solution”→ “confirms understanding” example, a contrib-
utor proposed an idea to move the object, and gave a reason
to clarify the goal, but the controller did not fully under-
stand the idea and asked a clarification question. This rela-
tion does not align with our intuition that providing reasons
increases clarity and reduces confusion. A potential expla-
nation is that reasons were used conditionally on unclear
or complex ideas, rather than unconditionally or randomly
on all ideas. However, more investigations are needed to
understand how reasons were provided.

An examination of the coded sequences for the bidirectional
relation“confirms understanding”←→“provides instructional
support” showed that there exist many cases where these
two relations were semantically connected, forming a loop.
Table 7 shows an example of it, where we can clearly see
that Contributor1’s unclear instructions repeatedly confused
both the other two people and raised clarification questions.
Note that the examples in Table 6 and Table 7 indicated
that semantic connections do exist between utterances that
are not in consecutive order. This suggests that aggregat-
ing utterances with windows is a valid way to examine the
temporal relations between actions.

6. DISCUSSION
This work applied multilevel vector autoregression (mlVAR)
to investigate the temporal similarities and differences in
verbal behaviors between successful vs. unsuccessful collab-
orative problem solving (CPS) outcomes. The remainder of
this section discusses the main findings, applications, limi-
tations and future work.

Main findings Our comparison of the“successful”vs. “unsuc-
cessful” model together with a qualitative analysis revealed
six between-action temporal relationships common to both,
six unique to successful level attempts, and another eight
unique to unsuccessful level attempts. The common rela-
tions suggest that the process of establishing shared under-
standing via asking and reacting to “confirms understand-
ing” (clarification) questions was common to both success-
ful and unsuccessful level attempts. For successful level at-
tempts, people were likely to answer “confirms understand-
ing” questions with reasons and to ask for suggestions ac-
cording to the current game situation, while for unsuccess-
ful level attempts, teams were more likely to struggle with
unclear instructions and to respond to inappropriate ideas.
Next, we discuss why certain behaviors in successful level
attempts may facilitate CPS processes and what makes it
hard to convey instructions.

Our analysis revealed that controllers in successful level at-
tempts were likely to ask for suggestions according to the

current game situation (typically when they got stuck). This
behavior may facilitate productive CPS because asking for
suggestions can increase other people’s participation. Fur-
ther, other people’s contributions are more helpful when the
controller has no idea about how to solve the level. Addi-
tionally, in successful level attempts, people were more likely
to answer clarification questions with reasons. As discussed
above, this behavior may facilitate CPS because providing
reasons enhances the clarity of the ideas/instructions being
conveyed.

For unsuccessful level attempts, people were likely to strug-
gle with unclear instructions. From the example in Table 7,
we noticed at least two potential reasons for that. First, the
team does not have a shared concept of a springboard, and
thus Contributor1 had to describe how to make it (“connect
the two dots, then like put it under the ball”) and how it
works (“it’s going to end up falling on the bouncy board and
hopefully go up”). Second, Contributor1 had to describe ev-
erything via words, rather than point to the screen directly,
which largely reduced the clarity of her descriptions.

Future applications: A potential application of this work is
to support the provision of timely CPS feedback in computer
supported collaboration environments. For example, when
a“confirms understanding”←→ “provides instructional sup-
port” loop is detected, the system could send an interactive
message to the team asking whether people are struggling
with conveying clear instructions. If so, the system can pro-
vide suggestions such as describing the high level idea rather
than low level actions. Another potential application is to
provide CPS analytics for people to inspect their collabora-
tion behaviors and improve CPS skills.

Limitations and future work: A limitation of our work is that
we aggregated the data with 10-second windows, and thus
the mlVAR analysis only effectively captures the connec-
tions between two consecutive windows. Connections with
a short or longer temporal distance cannot be effectively
discovered. Future studies could aggregate the data with
different window sizes and see what other temporal patterns
can be found. The second limitation is our data were col-
lected in a specific lab setting where triads collaborated via
video conferencing to play a physics learning game. Thus, it
is unclear whether our findings can be generalized to other
collaboration scenarios (e.g. real-world activities, face-to-
face coordination). Third, we did not account for people’s
roles in our analysis (due to limited sample size). Roles
can largely influence people’s actions (e.g. only contribu-
tors “provide instructional support”), and therefore taking
roles into account may provide more insights into the CPS
processes. Finally, we did not compare mlVAR with other
temporal analysis approaches (e.g. lag sequential analysis)
to see whether they would generate similar or different in-
sights. This is a potential future research direction.
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