

OPEN ACCESS

Cometary Activity on Quasi-Hilda Object 2018 CZ16

Chadwick A. Trujillo¹ , Colin Orion Chandler^{1,2,3} , William J. Oldroyd¹ , William A. Burris^{1,4} , Henry H. Hsieh^{5,6} , Jay K. Kueny^{11,1,7,8} , Michele T. Mazzucato^{12,9,10} , Milton K. D. Bosch^{12,1} , Tiffany Shaw-Diaz^{12,1}, and Virgilio Gonano^{12,1}

Published May 2023 • © 2023. The Author(s). Published by the American Astronomical Society.

Research Notes of the AAS, Volume 7, Number 5

Citation Chadwick A. Trujillo *et al* 2023 *Res. Notes AAS* **7** 106

DOI 10.3847/2515-5172/acd7f0

chad.trujillo@nau.edu

¹ Dept. of Astronomy & Planetary Science, Northern Arizona University, P.O. Box 6010, Flagstaff, AZ 86011, USA; chad.trujillo@nau.edu

² Dept. of Astronomy & the DiRAC Institute, University of Washington, 3910 15th Ave NE, Seattle, WA 98195, USA

³ LSST Interdisciplinary Network for Collaboration and Computing, 933 N. Cherry Avenue, Tucson, AZ 85721, USA

⁴ Dept. of Physics, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA

⁵ Planetary Science Institute, 1700 East Fort Lowell Rd., Suite 106, Tucson, AZ 85719, USA

⁶ Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 10617, Taiwan

⁷ Lowell Observatory, 1400 W Mars Hill Rd, Flagstaff, AZ 86001, USA

⁸ University of Arizona Dept. of Astronomy and Steward Observatory, 933 North Cherry Avenue Rm. N204, Tucson, AZ 85721, USA

⁹ Royal Astronomical Society, Burlington House, Piccadilly, London, W1J 0BQ, UK

¹⁰ 11 Physical Sciences Group, Siena Academy of Sciences, Piazzetta Silvio Gigli 2, I-53100 Siena, Italy

¹¹ National Science Foundation Graduate Research Fellow.

¹² Active Asteroids Citizen Scientist.

Chadwick A. Trujillo <https://orcid.org/0000-0001-9859-0894>

Colin Orion Chandler <https://orcid.org/0000-0001-7335-1715>

William J. Oldroyd <https://orcid.org/0000-0001-5750-4953>

William A. Burris <https://orcid.org/0000-0002-6023-7291>

Henry H. Hsieh <https://orcid.org/0000-0001-7225-9271>

Jay K. Kueny <https://orcid.org/0000-0001-8531-038X>

Michele T. Mazzucato <https://orcid.org/0000-0002-2204-6064>

Milton K. D. Bosch <https://orcid.org/0000-0002-9766-2400>

1. Received May 2023

2. Accepted May 2023

3. Published May 2023

Asteroids; Hilda group; Comae; Comet tails

 [Journal RSS](#)

[Create or edit your corridor alerts](#)

[What are corridors?](#)

Abstract

We present the discovery of activity originating from quasi-Hilda Object 2018 CZ₁₆, a finding stemming from the Citizen Science project *Active Asteroids*. For 2018 CZ₁₆ we identified a broad (~60°) but short (~5'') tail in archival Blanco 4m data from Cerro Tololo Inter-American Observatory, Chile, (CTIO) Dark Energy Camera images from UT 2018 May 15, 17 and 18. Activity occurred 2 months prior to perihelion, consistent with sublimation-driven activity.

[Export citation and abstract](#)

[BibTeX](#)

[RIS](#)

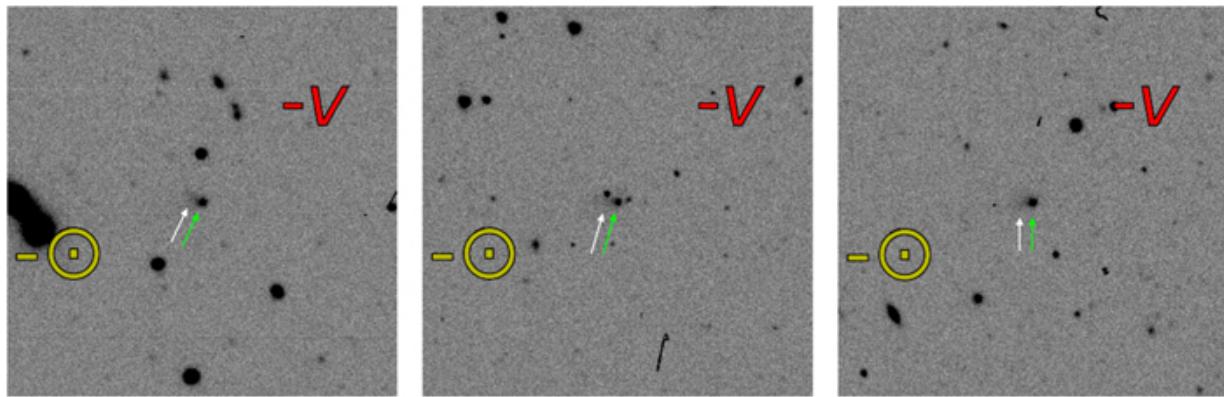
 [Previous article in issue](#)

[Next article in issue](#)

Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

1. Introduction

Active asteroids are rare (~50) bodies that are found in orbits not normally associated with comets, yet they display comet-like activity such as a tails or comae (Jewitt et al. 2015). A subset (~20) of the known active asteroids display comet-like activity indicative of volatile sublimation, such as recurrent activity near perihelion (Hsieh et al. 2015). Such bodies in the main asteroid belt are often referred to as Main Belt Comets but other related and more dynamically unstable classes such as the quasi-Hilda objects (QHOs) have also shown similar activity (Oldroyd et al. 2023). Objects with recurrent activity associated with perihelion are plausibly driven by water ice and unveil the present-day volatile distribution in the solar system, potentially yielding clues to the primordial origins of terrestrial water. To date, we have found only one epoch of activity for 2018 CZ₁₆ near perihelion, but we encourage future observations of the object in 2024 to identify whether the activity is recurrent.


2. Methods

Our main thesis is that there are many more known asteroids with heretofore unrecognized tails in public image databases. To find more active objects, we created the Citizen Science project *Active Asteroids*¹³ (Chandler et al. 2018, 2019, 2020, 2021, 2022; Chandler 2022) where volunteers examine images of known minor planets we extract from publicly available Dark Energy Camera (DECam) data and classify these images as either active or inactive. To date, about ~7500 volunteers have made ≥ 5 million classifications from our project. Volunteers classified images of 2018 CZ₁₆ as active, and we subsequently carried out a more detailed archival investigation to further study this object.

3. Results

We identified three archival images of 2018 CZ₁₆ (semimajor axis $a=3.54\text{au}$, eccentricity $e=0.34$, inclination $i=13^\circ 7$, perihelion distance $q=2.27\text{au}$, aphelion distance $Q=4.64\text{au}$; JPL Horizons Solution date 2021 April 15 20:22:55, Giorgini et al. 1996) with unambiguous indications of emission activity in the form of a broad tail ($\sim 60^\circ$) about $5''$ in length. This tail does not appear to be clearly aligned with either the anti-motion or anti-solar directions (Figure 1). The orbital

parameters of 2018 CZ₁₆ suggest that it is a member of the QHO class, which is a dynamical class of minor planet near, but not in, the Hilda asteroid family. We compute that 2018 CZ₁₆ has Jovian Tisserand parameter $T_J=2.994$ and an orbital excitation parameter , similar to, but somewhat outside of the QHO definition found in Toth (2006).

Figure 1. 2018 CZ₁₆ (green arrow) displays a broad tail (white arrow) which is not aligned with either the anti-motion ($-v$) direction nor the anti-solar ($-○$) direction in these images from DECam. The field of view is about 126'' \times 126'' and North is up and East is left. Left: 103s *r*-band, UT 2018 May 15 (Program 2014B-0404, PI Schlegel, Observers E. Savary, A Prakash). Middle: 90s *g*-band, UT 2018 May 17 (Program 2014B-0404, PI Schlegel, Observers E. Savary, A Prakash). Right: 200s *g*-band, UT 2018 May 18 (Program 2014B-0404, PI Schlegel, Observer E. Savary).

We identified other archival images from 2014 and 2018 showing hints of activity, but these were considerably poorer than the images in Figure 1, so were considered inconclusive. We encourage observers to explore this object in 2024 when it approaches opposition (late February) and as it once again approaches perihelion (late November) to determine if activity is indeed correlated with perihelion. Repeated perihelion activity, especially with a quiescent state near aphelion, would suggest that 2018 CZ₁₆ has thermally driven activity indicative of water-ice sublimation, a mechanism of significant scientific interest (Hsieh & Jewitt 2006).

We thank Dr. Mark Jesus Mendoza Magbanua (UCSF) for feedback. We thank Elizabeth Baeten (Belgium) for moderating the Active Asteroids forums. We thank our NASA Citizen Scientists that examined 2018 CZ₁₆: Dawn Boles (Bakersfield, USA), Milton K.D. Bosch MD (Napa, USA), I. Carley (Gold Coast, Australia), Eric Fabrigat (Velaux, France), Ashok Ghosh (Howrah, India), Virgilio

Gonano (Udine, Italy), Al Lamperti (Royersford, USA), Michele T. Mazzucato (Florence, Italy), Angelina A. Reese (Sequim, USA), Adrian Runnicles (London, UK), Tiffany Shaw-Diaz (Dayton, USA), Ivan A. Terentev (Petrozavodsk, Russia), and John M. Trofimuk (South Elgin, USA). We thank super-classifiers C.J.A. Dukes (Oxford, UK) and Marvin W. Huddleston (Mesquite, USA) . Many thanks to Cliff Johnson (Zooniverse) and Marc Kuchner (NASA) for guidance.

This work was supported by the NSF Graduate Research Fellowship Program (grants 2018258765 and 2020303693). C.O.C., H.H.H., and C.A.T. acknowledge support from NASA (grant 80NSSC19K0869). W.J.O. acknowledges support from NASA grant 80NSSC21K0114. This work was supported in part by NSF award 1950901 (NAU REU program). Computational analyses were run on Northern Arizona University's Monsoon computing cluster, funded by Arizona's Technology and Research Initiative Fund.

Astrometry facilitated by *Astrometry.net* (Lang et al. 2010). This research has made use of NASA's ADS, the Institut de Mécanique Céleste et de Calcul des Éphémérides SkyBoT Virtual Observatory tool (Berthier et al. 2006), and data services provided by the International Astronomical Union's Minor Planet Center, and SAOImageDS9, developed by Smithsonian Astrophysical Observatory (Joye 2006).

This project used data obtained with DECam, which was constructed by the Dark Energy Survey collaboration. This research used the Astro Data Archive at NSF's NOIRLab and is based on observations from CTIO (NOIRLab Prop. ID 2014B-0404; PI Schlegel).

Facility: CTIO:4 m (DECam). -

Software: astropy (Robitaille et al. 2013), Matplotlib (Hunter 2007), NumPy (Harris et al. 2020), pandas (Reback et al. 2022), SAOImageDS9 (Joye 2006), SciPy (Virtanen et al. 2020).

Footnotes

13 <http://www.activeasteroids.net>

[Journals](#)[Copyright 2024 IOP Publishing](#)[Authors](#)[Books](#)[Terms and Conditions](#)[Reviewers](#)[IOP Conference Series](#)[Disclaimer](#)[Conference Organisers](#)[About IOPscience](#)[Privacy and Cookie Policy](#)[Contact Us](#)[Developing countries access](#)[IOP Publishing open access policy](#)[Accessibility](#)

This site uses cookies. By continuing to use this site you agree to our use of cookies.

The logo consists of the letters 'IOP' in a bold, red, sans-serif font.