

OPEN ACCESS

New Active Jupiter Family Comet 2008 QZ44: a Discovery with Citizen Science

Colin Orion Chandler^{1,2,3,4} , William J. Oldroyd³ , Chadwick A. Trujillo³ , Henry H. Hsieh^{5,6} , Nima Sedaghat^{1,4} , Jay K. Kueny^{18,3,7,8,9} , William A. Burris^{3,10} , Jarod A. DeSpain³ , Kennedy A. Farrell³ , Mark Jesus Mendoza Magbanua¹¹

[+ Show full author list](#)

Published December 2023 • © 2023. The Author(s). Published by the American Astronomical Society.

Research Notes of the AAS, Volume 7, Number 12

Citation Colin Orion Chandler *et al* 2023 *Res. Notes AAS* **7** 271

DOI [10.3847/2515-5172/ad14f6](https://doi.org/10.3847/2515-5172/ad14f6)

coc123@uw.edu

¹ Dept. of Astronomy & the DiRAC Institute, University of Washington, 3910 15th Ave NE, Seattle, WA 98195, USA; coc123@uw.edu

² LSST Interdisciplinary Network for Collaboration and Computing, 933 N. Cherry Avenue, Tucson, AZ 85721, USA

³ Dept. of Astronomy & Planetary Science, Northern Arizona University, P.O. Box 6010, Flagstaff, AZ 86011, USA

⁴ Raw Data Speaks Initiative

⁵ Planetary Science Institute, 1700 East Fort Lowell Rd., Suite 106, Tucson, AZ 85719, USA

⁶ Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 10617, Taiwan

⁷ University of Arizona Dept. of Astronomy and Steward Observatory, 933 North Cherry Avenue Rm. N204, Tucson, AZ 85721, USA

⁸ Lowell Observatory, 1400 W Mars Hill Rd, Flagstaff, AZ 86001, USA

⁹ Wyant College of Optical Sciences, University of Arizona, 1630 E. University Blvd., Tucson, AZ 85721, USA

¹⁰ Dept. of Physics, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA

¹¹ Dept. of Laboratory Medicine, University of California San Francisco, 2340 Sutter Street, San Francisco, CA 94143, USA

¹² Dept. of Terrestrial Magnetism, Carnegie Institution for Science, 5241 Broad Branch Road. NW, Washington, DC 20015, USA

¹³ Active Asteroids Citizen Scientist

¹⁴ Royal Astronomical Society, Burlington House, Piccadilly, London, W1J 0BQ, UK

¹⁵ Physical Sciences Group, Siena Academy of Sciences, Piazzetta Silvio Gigli 2, I-53100 Siena, Italy

¹⁶ Delaware Valley Amateur Astronomers, 112 Pebble Beach Drive, Royersford, PA, 19468 USA

¹⁷ Astronomical Society of Southern Africa, P.O. Box 9 Observatory 7935, Cape Town, South Africa

¹⁸ National Science Foundation Graduate Research Fellow.

Colin Orion Chandler <https://orcid.org/0000-0001-7335-1715>

William J. Oldroyd <https://orcid.org/0000-0001-5750-4953>

Chadwick A. Trujillo <https://orcid.org/0000-0001-9859-0894>

Henry H. Hsieh <https://orcid.org/0000-0001-7225-9271>

Nima Sedaghat <https://orcid.org/0000-0003-4734-2019>

Jay K. Kueny <https://orcid.org/0000-0001-8531-038X>

William A. Burris <https://orcid.org/0000-0002-6023-7291>

Jarod A. DeSpain <https://orcid.org/0000-0002-7489-5893>

Kennedy A. Farrell <https://orcid.org/0000-0003-2521-848X>

Mark Jesus Mendoza Magbanua <https://orcid.org/0000-0003-2113-3593>

Scott S. Sheppard <https://orcid.org/0000-0003-3145-8682>

Michele T. Mazzucato <https://orcid.org/0000-0002-2204-6064>

Milton K. D. Bosch <https://orcid.org/0000-0002-9766-2400>

Ivan A. Terentev <https://orcid.org/0000-0002-0654-4442>

1. Received December 2023

2. Accepted December 2023

3. Published December 2023

 Journal RSS

[Create or edit your corridor alerts](#)[What are corridors? !\[\]\(4729e517bc6a7cd81c8025b9646574fb_img.jpg\)](#)

Abstract

We report our discovery of cometary activity in the form of a diffuse tail associated with minor planet 2008 QZ₄₄ during two previous orbits: 2008 and 2017. This finding was prompted in part by *Active Asteroids*, our Zooniverse-hosted NASA Partner Citizen Science program. Participants flagged two UT 2017 July 12 Dark Energy Camera images of 2008 QZ₄₄ as active. Independently, our team identified activity in nine Canada-France-Hawaii Telescope MegaPrime images from UT 2008 November 20. During both apparitions 2008 QZ₄₄ was near its perihelion passage. 2008 QZ₄₄ has a Tisserand parameter with respect to Jupiter of 2.821, placing it in the Jupiter-family comet (JFC) class, and our dynamical integrations confirm this classification. JFCs contain primordial material that informs us about solar system evolution, and help us map the present-day volatile distribution. We note that 2008 QZ₄₄ has previously been classified as a quasi-Hilda comet candidate.

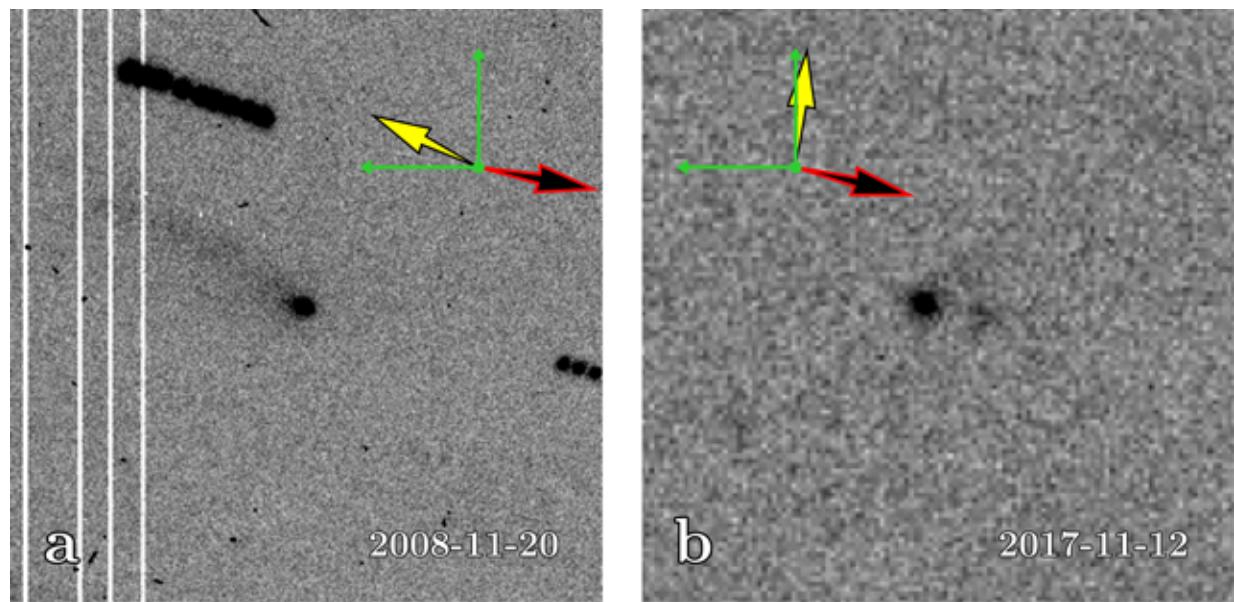
[Export citation and abstract](#)[BibTeX](#)[RIS](#)[!\[\]\(5361750c22c4e047a52f4eac1ec2d4cc_img.jpg\) Previous article in issue](#)[Next article in issue !\[\]\(870f5d5e9c0d57485634be3ecf52f3ca_img.jpg\)](#)

Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

1. Introduction

Asteroids on Cometary Orbits (ACOs; Licandro et al. 2006) are objects that are dynamically similar to the Jupiter Family Comets (JFCs), yet they have not been observed to be active. As discussed in Section 2, our campaign is designed to find active asteroids (asteroids that show cometary activity), but we also discover activity associated with other minor planets, such as the ACOs, not previously known to be active. Broadly, active minor planets of all types (see Jewitt & Hsieh 2022) inform us about the solar system's volatile distribution, and teach us about astrophysical

processes at play in the solar system like the Yarkovsky–O'Keefe–Radzievskii–Paddack effect (Bottke et al. 2006). Originating in the Kuiper belt, the primordial composition of the JFCs helps us understand solar system formation and evolution (Levison & Duncan 1997).


2. Methods

We created the NASA Partner Citizen Science project *Active Asteroids*¹⁹ to get help from the public in searching Dark Energy Camera (DECam) data for previously unknown active minor planets (Chandler 2022). We do this by showing volunteers images we produce of known minor planets (Chandler et al. 2018), and asking whether or not they see activity in the image. Our team investigates objects volunteers flag as active, by searching through archival astronomical image data and, when possible, following up with telescopes (see Chandler et al. 2022).

We dynamically classify the objects by first assessing their orbital parameters then, if further disambiguation is required, we carry out dynamical modeling (see Oldroyd et al. 2023) with the REBOUND dynamical simulator (Rein & Liu 2012). The Tisserand parameter with respect to Jupiter, T_J , is a measure of Jupiter's influence over a body's orbit, and is often a useful tool for distinguishing between dynamical classes, though dynamical simulations (e.g., Chandler et al. 2022) are required to classify some bodies (e.g., Trojan asteroids). $T_J < 3$ are canonically regarded as cometary (Levison 1996). JFCs span $3 > T_J > 2$ (Jewitt 2009).

3. Results

We identified nine images of 2008 QZ₄₄ (Figure 1) showing activity from UT 2008 November 20, when the object was at a heliocentric distance $r_H=2.43\text{au}$ and true anomaly angle $f=29^\circ$. Two images from UT 2017 November 12, and one image from UT 2017 November 13 ($r_H=2.90\text{au}$, $f=67^\circ$), also show faint activity evidence.

Figure 1. 2008 QZ₄₄ is at center, with North up and East left. The anti-solar (yellow arrow) and anti-motion (black outlined red arrow) directions are indicated. (a) UT 2008 November 20: 9 (3 *g*-band, 4 *r*-band) co-added 120s CFHT MegaPrime exposures (PI Hoekstra, observers "QSO Team"). A tail is seen oriented towards the anti-solar direction. The FOV is 126'' \times 126''. (b) UT 2017 November 12: 71s *r*-band DECam exposure (prop. ID 2014B-0404, PI Schlegel, observers C. Stillman, J. Moustakas, M. Poemba). A faint tail is seen oriented towards the 2 o'clock position, between the anti-solar and anti-motion vectors. The FOV is 32'' \times 32''.

2008 QZ₄₄ (semi-major axis $a=4.195\text{au}$, eccentricity $e=0.441$, inclination $i=11^\circ 354$, perihelion distance $q=2.345\text{au}$, aphelion distance $Q=6.045\text{au}$; retrieved UT 2023 September 23 from JPL) has $T_J=2.821$ and, as supported by our dynamical simulations (Section 2), is a member of the JFCs. We note 2008 QZ₄₄ has been reported as a quasi-Hilda comet (QHC) candidate (Correia-Otto et al. 2023), a class of bodies on orbits similar to Hilda asteroids, however, QHCs are not on stable interior 3:2 mean-motion-resonance with Jupiter.

Acknowledgments

Many thanks to Arthur and Jeanie Chandler for their ongoing support.

We thank Elizabeth Baeten (Belgium) for moderating the Active Asteroids forums. We thank our NASA Citizen Scientists who examined 2008 QZ₄₄: Andreas Dether (Bremen, Germany), Dr. Brian Leonard Goodwin (London, UK), Dr. Elisabeth Chaghafi (Tübingen, Germany), @EEZuidema (Driezum, Netherlands), @Estevaolucas (Itaúna, Brazil), Graham Mitchell (Chilliwack, Canada), Joel E. Rosenberg (San Diego, USA), Magdalena Kryczek (Bochum, Germany), Michele T. Mazzucato (Florence, Italy), Milton K. D. Bosch MD (Napa, USA), Nazir Ahmad (Birmingham, UK), Timothy Scott (Baddeck, Canada), and Washington Kryzanowski (Montevideo, Uruguay).

A special thanks to our Superclassifiers: Angelina A. Reese (Sequim, USA), Antonio Pasqua (Catanzaro, Italy), Carl L. King (Ithaca, USA), Dan Crowson (Dardenne Prairie, USA), @EEZuidema (Driezum, Netherlands), Eric Fabrigat (Velaux, France), @graham_d (Hemel Hempstead, UK), Henryk Krawczyk (Czeladź Poland), Marvin W. Huddleston (Mesquite, USA), Robert Zach Moseley (Worcester, USA), and Thorsten Eschweiler (Übach-Palenberg, Germany).

Thanks to Cliff Johnson (Zooniverse), Chris Lintott (Oxford), and Marc Kuchner (NASA) for ongoing Citizen Science guidance.

C.O.C. acknowledges support from NASA grant 80NSSC19K0869. W.J.O. acknowledges support from NASA grant 80NSSC21K0114. This work was supported in part by NSF award 1950901. This research received support through the generosity of Eric and Wendy Schmidt by recommendation of the Schmidt Futures program. Chandler and Sedaghat acknowledge support from the DIRAC Institute in the Department of Astronomy at the University of Washington. The DiRAC Institute is supported through generous gifts from the Charles and Lisa Simonyi Fund for Arts and Sciences, and the Washington Research Foundation. This research has made use of NASA's Astrophysics Data System, data and/or services provided by the International Astronomical Union's Minor Planet Center. This project used data obtained with the Dark Energy Camera, which was constructed by the Dark Energy Survey collaboration. This research uses services or data provided by the Astro Data Archive at NSF's NOIRLab. Based on observations at Cerro Tololo Inter-American Observatory, NSF's NOIRLab (NOIRLab Prop. ID: 2014B-0404; PI: Schlegel). Based on observations obtained with MegaPrime/MegaCam, a joint project of Canada-France-Hawaii Telescope (CFHT) and CEA/DAPNIA, at the CFHT which is operated by the National Research Council (NRC) of Canada, the Institut National des Science de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii. The

observations at the Canada-France-Hawaii Telescope were performed with care and respect from the summit of Maunakea which is a significant cultural and historic site. This work made use of the CADC Solar System Object Information Search (Gwyn et al. 2012).

Facilities: CFHT 3.58m (MegaCam) - , CTIO:4m (DECam). -

Software: astrometry.net (Lang et al. 2010), SkyBot (Berthier et al. 2006).

Footnotes

19 <http://activeasteroids.net>

IOPSCIENCE

Journals

Books

IOP Conference Series

About IOPscience

Contact Us

Developing countries access

IOP Publishing open access policy

Accessibility

IOP PUBLISHING

Copyright 2024 IOP Publishing

Terms and Conditions

Disclaimer

Privacy and Cookie Policy

PUBLISHING SUPPORT

Authors

Reviewers

Conference Organisers

This site uses cookies. By continuing to use this site you agree to our use of cookies.

IOP