

Journals ▼

Books

Publishing Support

OPEN ACCESS

Mars-Crossing Minor Planet 2018 VL10: a Jupiterfamily Comet Discovery via Citizen Science

Colin Orion Chandler^{1,2,3,4} D, William J. Oldroyd³ D, Chadwick A. Trujillo³ D,

Henry H. Hsieh^{5,6} D, William A. Burris^{3,7} D, Jay K. Kueny^{17,3,8,9} D, Jarod A. DeSpain³ D,

Nima Sedaghat^{1,4} D, Kennedy A. Farrell³ D, Mark Jesus Mendoza Magbanua¹⁰ D

+ Show full author list

Published December 2023 • © 2023. The Author(s). Published by the American Astronomical Society.

Research Notes of the AAS, Volume 7, Number 12

Citation Colin Orion Chandler et al 2023 Res. Notes AAS 7 279

DOI 10.3847/2515-5172/ad1682

coc123@uw.edu

¹ Dept. of Astronomy & the DiRAC Institute, University of Washington, 3910 15th Ave NE, Seattle, WA 98195, USA; coc123@uw.edu

² LSST Interdisciplinary Network for Collaboration and Computing, 933 N. Cherry Avenue, Tucson, AZ 85721, USA

³ Dept. of Astronomy & Planetary Science, Northern Arizona University, PO Box 6010, Flagstaff, AZ 86011. USA

⁴ Raw Data Speaks Initiative

⁵ Planetary Science Institute, 1700 East Fort Lowell Rd., Suite 106, Tucson, AZ 85719, USA

⁶ Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 10617, Taiwan

⁷ Dept. of Physics, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA

⁸ University of Arizona Dept. of Astronomy and Steward Observatory, 933 North Cherry Avenue Rm. N204, Tucson, AZ 85721, USA

⁹ Lowell Observatory, 1400 W Mars Hill Rd, Flagstaff, AZ 86001, USA

¹⁰ Dept. of Laboratory Medicine, University of California San Francisco, 2340 Sutter Street, San Francisco, CA 94143, USA

- ¹¹ Dept. of Terrestrial Magnetism, Carnegie Institution for Science, 5241 Broad Branch Road. NW, Washington, DC 20015, USA
- ¹² Active Asteroids Citizen Scientist
- ¹³ Royal Astronomical Society, Burlington House, Piccadilly, London, W1J 0BQ, UK
- ¹⁴ Physical Sciences Group, Siena Academy of Sciences, Piazzetta Silvio Gigli 2, I-53100 Siena, Italy
- ¹⁵ Delaware Valley Amateur Astronomers, 112 Pebble Beach Drive, Royersford, PA 19468 USA
- ¹⁶ Astronomical Society of Southern Africa, P.O. Box 9 Observatory 7935, Cape Town, South Africa
- ¹⁷ National Science Foundation Graduate Research Fellow.

Colin Orion Chandler (b) https://orcid.org/0000-0001-7335-1715

William J. Oldroyd https://orcid.org/0000-0001-5750-4953

Chadwick A. Trujillo D https://orcid.org/0000-0001-9859-0894

Henry H. Hsieh (D) https://orcid.org/0000-0001-7225-9271

William A. Burris https://orcid.org/0000-0002-6023-7291

Jay K. Kueny https://orcid.org/0000-0001-8531-038X

Jarod A. DeSpain (D) https://orcid.org/0000-0002-7489-5893

Nima Sedaghat https://orcid.org/0000-0003-4734-2019

Kennedy A. Farrell https://orcid.org/0000-0003-2521-848X

Mark Jesus Mendoza Magbanua (D) https://orcid.org/0000-0003-2113-3593

Scott S. Sheppard https://orcid.org/0000-0003-3145-8682

Michele T. Mazzucato https://orcid.org/0000-0002-2204-6064

Milton K. D. Bosch (D) https://orcid.org/0000-0002-9766-2400

Ivan A. Terentev https://orcid.org/0000-0002-0654-4442

- 1. Received December 2023
- 2. Accepted December 2023
- 3. Published December 2023

Asteroids; Comet tails; Comet dynamics; Short period comets

Create or edit your corridor alerts What are corridors?

Abstract

We announce the discovery of cometary activity emitting from minor planet 2018 VL₁₀ in Dark Energy Camera images spanning from UT 2018 December 31 to UT 2019 March 3. The activity was identified by volunteers of our NASA Partner program *Active Asteroids*, a *Zooniverse*-hosted Citizen Science project designed to find previously unknown activity in known minor planets. Notably, 2018 VL₁₀ crosses the orbits of Mars and Jupiter, and experiences close approaches of less than 0.5au with both Earth and Jupiter. We classify 2018 VL₁₀ as a member of the Jupiter-family comets, a group of objects especially important to understand because they hold important clues about the solar system volatile distribution, past and present.

Export citation and abstract

RIS

◆ Previous article in issue

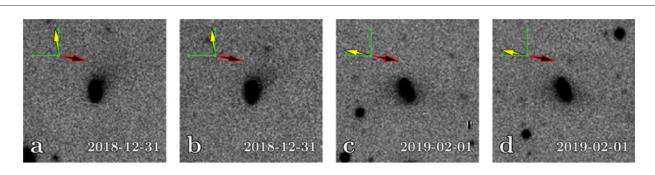
Next article in issue ▶

Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

1. Introduction

Minor planets on orbits typically associated with comets that have not been observed to be active are known as, for example, asteroids on cometary orbits (ACOs; Licandro et al. 2006). While discerning between asteroids and comets has become increasingly challenging (see Jewitt & Hsieh 2022), ACOs may have appeared inactive upon discovery because they were inactive, or observations did not probe faint enough to detect activity. It is unsurprising, then, that ACOs may later be discovered active. Depending on their dynamical characteristics, these bodies may then be classified as belonging to a different dynamical class, e.g., Jupiter Family Comets (JFCs). Active minor planets are important to find because they harbor evidence about, for example, the solar system volatile distribution, and astrophysical processes like the Yarkovsky–O'Keefe–Radzievskii–Paddack effect (Bottke et al. 2006). It is important, then, to both identify activity in

nominally asteroidal objects, as well as subsequently dynamically classifying the objects. Unlike active asteroids, JFCs are thought to originate in the Kuiper Belt and thus contain pristine primordial material that informs us about solar system formation (Levison & Duncan 1997).


2. Methods

With the goal of engaging the public in our search for active minor planets, we created the NASA Partner *Active Asteroids* ¹⁸ Citizen Science program (Chandler 2022; Chandler et al. 2022). We show volunteers images of known minor plants we extracted from publicly available Dark Energy Camera (DECam) data (Chandler et al. 2018) and ask if they see activity evidence (i.e., a tail or coma). Our science team examines activity candidates and searches astronomical image archives to locate more evidence of activity.

To distinguish between active asteroids and other populations we employ a metric describing Jupiter's relative influence over a body's orbit, the Tisserand parameter with respect to Jupiter, T_J (see Oldroyd et al. 2023). Objects with T_J <3 are dynamically cometary (Levison 1996), and JFCs have $3>T_J>2$ (Jewitt 2009).

3. Results

We identified five images of 2018 VL₁₀ showing activity, spanning UT 2018 December 31 (heliocentric distance r_H =1.419au, true anomaly angle f=0°) to 2019 March 3 (r_H =1.598au, f= 43°). Two images each from UT 2018 December 31 and 2019 February 1 (Figure 1) show strong evidence of activity in the form of a diffuse tail. A UT 2019 March 3 image (not shown) shows weak, diffuse signal in the anti-motion direction.

Figure 1. 2018 VL₁₀ (at center) in these 32"× 32"DECam 150s *VR*-band exposures (Prop. ID 2018B-0122, PI Rest), with north up and east left. The anti-motion (red outlined black arrow) and anti-solar (yellow arrow) directions are indicated. (a) and (b): On UT 2018 December 31 (observer A. Zenteno) a diffuse tail spans between 12 and 2 o'clock. (c) and (d): On UT 2019 February 1 (observers A. Rest, A. Zenteno) diffuse comae and/or tail(s) are seen emanating roughly toward the anti-motion and anti-solar directions.

Notably, 2018 VL₁₀ crosses the orbits of Mars and Jupiter and has a history of close approaches with Earth (most recently 0.479au on UT 2019 January 9) and Jupiter (most recently UT 1997 August 18 at 0.233au). (Close approach data retrieved UT 2023 September 24 from JPL). 2018 VL₁₀ (semimajor axis a=4.586au, eccentricity e=0.692, inclination i=18 $^{\circ}$ 555, perihelion distance q=1.413au, aphelion distance Q=7.759 au) has a Tisserand parameter with respect to Jupiter of $T_{\rm J}$ =2.420, so we classify it as a JFC. Over the next thousand years 2018 VL₁₀ undergoes deep close encounters with Jupiter that may significantly alter its orbit.

Acknowledgments

Many thanks to Arthur and Jeanie Chandler for their ongoing support.

We thank Elizabeth Baeten (Belgium) for moderating the *Active Asteroids* forums. We thank our NASA Citizen Scientists who examined 2018 VL₁₀: Alex Niall (Houston, USA), Angelina A. Reese (Sequim, USA), Arttu Sainio (Järvenpää Finland), Dr.Brian Leonard Goodwin (London, UK), C. D'silva (Mumbai, India), C. J. A. Dukes (Oxford, UK), David Stefaniak (Seymour, USA), Gordon Ward (Castleford, UK), @graham_d (Hemel Hempstead, UK), Ivan A. Terentev (Petrozavodsk, Russia), José A. da Silva Campos (Portugal), Marvin W. Huddleston (Mesquite, USA), Michele T. Mazzucato (Florence, Italy), Milton K. D. Bosch MD (Napa, USA), Robert Bankowski (Sanok, Poland), Shalabh Shukla (Seattle, USA), Tiffany Shaw-Diaz (Dayton, USA), Virgilio Gonano (Udine,

Italy), and Washington Kryzanowski (Montevideo, Uruguay). Thank you Superclassifiers: Angelina A. Reese (Sequim, USA), Antonio Pasqua (Catanzaro, Italy), Carl L. King (Ithaca, USA), Dan Crowson (Dardenne Prairie, USA), @EEZuidema (Driezum, Netherlands), Eric Fabrigat (Velaux, France), Henryk Krawczyk (Czeladż Poland), Robert Zach Moseley (Worcester, USA), and Thorsten Eschweiler (Übach-Palenberg, Germany). Thanks to Cliff Johnson (Zooniverse) and Marc Kuchner (NASA) for ongoing Citizen Science guidance.

This material is based upon work supported by the NSF GRFP under grant Nos. 2018258765 and 2020303693. C.O.C., H.H.H., and C.A.T. acknowledge support from NASA grant 80NSSC19K0869. W.J.O. and C.A.T. acknowledge support from NASA grant 80NSSC21K0114. This work was supported in part by NSF award 1950901. This research received support through the generosity of Eric and Wendy Schmidt by recommendation of the Schmidt Futures program. Chandler and Sedaghat acknowledge support from the DIRAC Institute in the Department of Astronomy at the University of Washington. The DIRAC Institute is supported through generous gifts from the Charles and Lisa Simonyi Fund for Arts and Sciences, and the Washington Research Foundation.

This research has made use of data and/or services provided by the International Astronomical Union's Minor Planet Center. This research uses services or data provided by the Astro Data Archive at NSF's NOIRLab and the CADC Solar System Object Information Search (Gwyn et al. 2012).

Facility: CTIO:4m (DECam) - .

Software: astrometry.net (Lang et al. 2010), JPL Horizons (Giorgini et al. 1996), SkyBot (Berthier et al. 2006).

Footnotes

18 http://activeasteroids.net

policy

Accessibility

IOPSCIENCE IOP PUBLISHING PUBLISHING SUPPORT Journals Copyright 2024 IOP **Authors** Publishing **Books** Reviewers Terms and Conditions **IOP Conference Series** Conference Organisers Disclaimer About IOPscience Privacy and Cookie Policy Contact Us Developing countries access IOP Publishing open access

This site uses cookies. By continuing to use this site you agree to our use of cookies.

