

Journals ▼

Books

Publishing Support

OPEN ACCESS

Al-enhanced Citizen Science Discovery of an Active Asteroid: (410590) 2008 GB140

Colin Orion Chandler^{1,2,3,4} D, Nima Sedaghat^{1,4} D, William J. Oldroyd³ D,

Chadwick A. Trujillo² , William A. Burris³ , Henry H. Hsieh^{5,6} , Jay K. Kueny^{7,8,9}

Kennedy A. Farrell² , Jarod A. DeSpain³ , Mark Jesus Mendoza Magbanua¹⁰

+ Show full author list

Published February 2024 • © 2024. The Author(s). Published by the American Astronomical Society.

Research Notes of the AAS, Volume 8, Number 2

Citation Colin Orion Chandler et al 2024 Res. Notes AAS 8 50

DOI 10.3847/2515-5172/ad2b67

coc123@uw.edu

¹ Dept. of Astronomy & the DiRAC Institute, University of Washington, 3910 15th Ave NE, Seattle, WA 98195, USA; coc123@uw.edu

² LSST Interdisciplinary Network for Collaboration and Computing, 933 N. Cherry Avenue, Tucson, AZ 85721, USA

³ Dept. of Astronomy & Planetary Science, Northern Arizona University, P.O. Box 6010, Flagstaff, AZ 86011, USA

⁴ Raw Data Speaks Initiative

⁵ Planetary Science Institute, 1700 East Fort Lowell Rd., Suite 106, Tucson, AZ 85719, USA

⁶ Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 10617, Taiwan

National Science Foundation Graduate Research Fellow

⁸ University of Arizona, Dept. of Astronomy and Steward Observatory, 933 North Cherry Avenue Rm. N204, Tucson, AZ 85721, USA

⁹ Wyant College of Optical Sciences, University of Arizona, 1630 E. University Blvd., Tucson, AZ 85721, USA

- ¹⁰ Dept. of Laboratory Medicine, University of California San Francisco, 2340 Sutter Street, San Francisco, CA 94143, USA
- ¹¹ Dept. of Terrestrial Magnetism, Carnegie Institution for Science, 5241 Broad Branch Road. NW, Washington, DC 20015, USA
- ¹² Active Asteroids Citizen Scientist
- ¹³ Royal Astronomical Society, Burlington House, Piccadilly, London, W1J 0BQ, UK
- ¹⁴ Physical Sciences Group, Siena Academy of Sciences, Piazzetta Silvio Gigli 2, 53100 Siena, Italy
- ¹⁵ Delaware Valley Amateur Astronomers, 112 Pebble Beach Drive, Royersford, PA 19468, USA
- ¹⁶ Astronomical Society of Southern Africa, P.O. Box 9 Observatory 7935, Cape Town, South Africa
- Colin Orion Chandler https://orcid.org/0000-0001-7335-1715
- Nima Sedaghat https://orcid.org/0000-0003-4734-2019
- William J. Oldroyd https://orcid.org/0000-0001-5750-4953
- Chadwick A. Trujillo https://orcid.org/0000-0001-9859-0894
- William A. Burris https://orcid.org/0000-0002-6023-7291
- Henry H. Hsieh (D) https://orcid.org/0000-0001-7225-9271
- Jay K. Kueny https://orcid.org/0000-0001-8531-038X
- Kennedy A. Farrell https://orcid.org/0000-0003-2521-848X
- Jarod A. DeSpain (D) https://orcid.org/0000-0002-7489-5893
- Mark Jesus Mendoza Magbanua Dhttps://orcid.org/0000-0003-2113-3593
- Scott S. Sheppard https://orcid.org/0000-0003-3145-8682
- Michele T. Mazzucato https://orcid.org/0000-0002-2204-6064
- Milton K. D. Bosch (D) https://orcid.org/0000-0002-9766-2400
- Ivan A. Terentev (D) https://orcid.org/0000-0002-0654-4442
- Charles J. A. Dukes https://orcid.org/0009-0002-9194-2361
 - 1. Received February 2024
 - 2. Accepted February 2024
 - 3. Published February 2024

Asteroids; Comae; Comet tails; Convolutional neural networks

Create or edit your corridor alerts

What are corridors?

Abstract

We report the discovery of cometary activity emanating from Main-belt asteroid 410590 (2008 GB_{140}), a finding facilitated, for the first time, by an artificial intelligence (AI) assistant. The assistant, TailNet, is a prototype we designed to enhance volunteer efforts of our Citizen Science project *Active Asteroids*, a NASA Partner program hosted on the *Zooniverse* platform. Our follow-up investigation revealed eight Dark Energy Camera images showing 2008 GB_{140} with a tail spanning UT 2023 April 23–UT 2023 July 3, when the object was inbound to perihelion. We classify 2008 GB_{140} as an active asteroid and a candidate Main-belt comet (MBC)—a main-belt asteroid that undergoes volatile sublimation-driven activity. Notably, 2008 GB_{140} is presently near perihelion, thus the object is a prime target for follow-up observations to further characterize its activity.

Export citation and abstract

RIS

◆ Previous article in issue

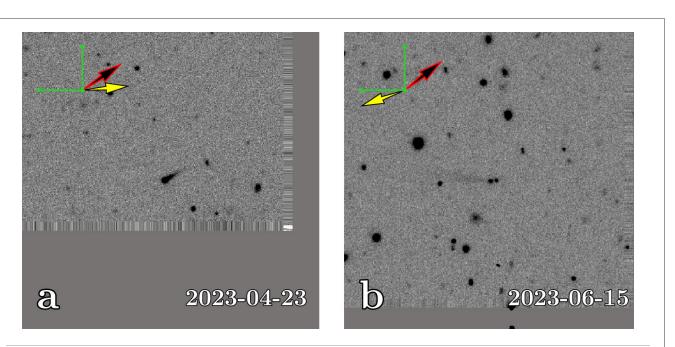
Next article in issue ▶

Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

1. Introduction

Citizen Science is a framework in which scientific goals and public engagement are achieved simultaneously. Typically, volunteers carry out tasks that would be overwhelming in number or complexity for scientists. Notably, tasks usually are not possible to be carried out by automated means (i.e., Al), though the classification data from Citizen Science programs may be employed in training such systems.

Our NASA Partner program *Active Asteroids* ¹⁷ is a Citizen Science project designed to locate rare asteroids that show cometary activity. These objects inform our understanding of the early solar system and how it evolved, and point to where volatiles may be found today (Jewitt & Hsieh 2022). With the help of some 9000 volunteers our project has yielded many results since it launched in 2021, but the volume of data is exceptionally challenging to analyze, even with automated analytic vetting applied (Chandler et al. 2024a, in press). Moreover, upcoming petascale surveys, like the Vera C. Rubin Observatory's Legacy Survey of Space and Time, will increase the volume of images available to scour by orders of magnitude (Ivezić et al. 2019; Vera C. Rubin Observatory LSST Solar System Science Collaboration et al. 2021; Schwamb et al. 2023).


2. Methods

In essence, the *Active Asteroids* program shows images of known asteroids (and comets) to volunteers. These images have already been pre-screened to filter out, for example, images with exposure times insufficient to yield visible activity indicators. Volunteers classify images as either showing cometary activity (a tail or coma), or not. We analyze these classifications and assign likelihood scores to images based on weighted factors like participant experience, Chandler et al. 2024a, in press).

We set out to create an AI assistant to augment our image screening process. To this end, and informed by our past big data AI applications (e.g., Sedaghat & Mahabal 2018; Sedaghat et al. 2021, 2023), we created a binary classifier, "TailNet," that leverages Convolutional Neural Networks (CNNs; Krizhevsky et al. 2017). Notably, CNNs have proven successful with astronomical applications involving both our underlying Dark Energy Camera data source and *Zooniverse*-based Citizen Science (e.g., Walmsley et al. 2022). When training TailNet, the aforementioned likelihood scores served as the input labels.

3. Results

Despite TailNet still being a prototype, it identified images of 2008 GB_{140} (as well as 2016 UU_{121} ; Sedaghat et al. 2024) as highly unlikely to be inactive, which we interpreted as likely to show activity. Our subsequent archival investigation revealed eight images of 2008 GB_{140} showing activity (Figure 1) spanning UT 2023 April 23 to UT 2023 July 3. Then, 2008 GB_{140} was inbound at true anomaly angles $259^{\circ} < f < 273^{\circ}$ and heliocentric distances $2.956 > r_H > 2.852$ au.

Figure 1. 2008 GB₁₄₀ (center) in these *r*-band DECam images. The FOV is 126''×126'', with north up and east left. The anti-motion (yellow arrow) and anti-solar (red-bordered black arrow) directions are marked. (a) UT 2023 April 23, 90s (Prop. ID 2019A-0305, PI Drlica-Wagner, observers A.Drlica-Wagner). (b) UT 2023 June 15, co-added 1×70s and 1×64s exposures (Prop. ID 2014B-0404, PI Schlegel, observers D.Schlegel, S.Tolley).

2008 GB₁₄₀ (semimajor axis a=2.933au, eccentricity e=0.145, inclination i=14.2, perihelion distance q=2.507au, aphelion distance Q=3.360au) is a Main-belt asteroid with a Tisserand Parameter with respect to Jupiter T_J =3.214. Thus, along with the activity we uncovered, we classify 2008 GB₁₄₀ as an active asteroid. Moreover, 2008 GB₁₄₀ is a candidate Main-belt comet as its activity near perihelion is compatible with sublimation-driven activity. 2008 GB₁₄₀ is inbound to perihelion (f=317° on UT 2023 January 14) and thus is likely still active; further observations would help characterize the nature of 2008 GB₁₄₀'s activity and provide other insights into its physical properties.

Acknowledgments

Many thanks to Arthur and Jeanie Chandler for their ongoing support.

We thank Elizabeth Baeten (Belgium) for moderating the Active Asteroids forums. A special thanks to the *Active Asteroids* Superclassifiers: Angelina A. Reese (Sequim, USA), Antonio Pasqua (Catanzaro, Italy), Carl L. King (Ithaca, USA), Dan Crowson (Dardenne Prairie, USA), @EEZuidema

(Driezum, Netherlands), Eric Fabrigat (Velaux, France), @graham_d (Hemel Hempstead, UK), Henryk Krawczyk (Czeladż Poland), Marvin W. Huddleston (Mesquite, USA), Robert Zach Moseley (Worcester, USA), Thorsten Eschweiler (Übach-Palenberg, Germany), and Washington Kryzanowski (Montevideo, Uruguay). Thanks to Cliff Johnson (Zooniverse), Chris Lintott (Oxford), and Marc Kuchner (NASA) for ongoing Citizen Science guidance.

This material is based upon work supported by the NSF Graduate Research Fellowship Program under grant No. 2018258765 and grant No. 2020303693. C.O.C., H.H.H., and C.A.T. acknowledge support from the NASA Solar System Observations program (grant 80NSSC19K0869). W.J.O. acknowledges support from NASA grant 80NSSC21K0114. This work was supported in part by NSF awards 1950901. This research received support through Schmidt Sciences. Chandler and Sedaghat acknowledge support from the DiRAC Institute in the Department of Astronomy at the University of Washington. The DiRAC Institute is supported through generous gifts from the Charles and Lisa Simonyi Fund for Arts and Sciences, and the Washington Research Foundation.

Computational analyses were run on Northern Arizona University's Monsoon computing cluster, funded by Arizona's Technology and Research Initiative Fund.

This project used data obtained with the Dark Energy Camera (DECam), which was constructed by the Dark Energy Survey (DES) collaboration. This research uses services or data provided by the Astro Data Archive at NSF's NOIRLab. Based on observations at Cerro Tololo Inter-American Observatory, NSF's NOIRLab (NOIRLab Prop. ID 2014B-0404, PI: D. Schlegel; Prop. ID 2019A-0305, PI Drlica-Wagner).

Facility: CTIO:4m (DECam) - .

Software: astropy (Robitaille et al. 2013), astrometry.net (Lang et al. 2010), PyTorch (Paszke et al. 2019).

Footnotes

17 https://activeasteroids.net

PUBLISHING SUPPORT

IOPSCIENCE

Accessibility

Journals Copyright 2024 IOP **Authors** Publishing **Books** Reviewers Terms and Conditions **IOP Conference Series** Conference Organisers Disclaimer About IOPscience Privacy and Cookie Policy Contact Us Developing countries access IOP Publishing open access policy

IOP PUBLISHING

This site uses cookies. By continuing to use this site you agree to our use of cookies.

