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1. Introduction

The idea of linearizing system dynamics via embeddings dates
back at least to the works of Carleman [1] and Koopman [2,3].
These embeddings are still actively studied a century later, and
have found applications in nonlinear control [4,5], and data-
driven methods in control [6,7].

We derive in this paper a sufficient condition under which a
polynomial system can be globally linearized by embedding it
into a higher, yet finite-dimensional vector space. In particular,
the contribution of this paper is to provide a generalized converse
of the result established in [8]. We elaborate on this below.

To proceed, we consider the following dynamical system:

x=f(x) (1.1)

where x € R". This system is said to admit a super-linearization
(see Definition 2.1 below) if there exist m > 0 functions, called
observables, which when adjoined to the original system would
permit its linearization. A typical example [9] is the following
two-dimensional system

x=—x+y?
. Y (12)
y=-y
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Adding the observable w := y?, whose total time derivative is
given by w = 2yy = —2y> = —2w, we obtain the three-
dimensional linear system:

X=—X+w
w = —2w.

Observe that the variables on which the nonlinear part of the
dynamics (1.2) depend (here, the variable y) evolve in a lin-
ear, autonomous (i.e., independent from x) manner. In a recent
paper [8], we showed that if a polynomial system admits a super-
linearization with only one so-called visible observable [10], then
there exists a linear change of variables under which the non-
linear part of the dynamics depends solely on variables evolv-
ing linearly and autonomously. The dynamics resulting from the
change of variable are termed the canonical form [8] for the
polynomial system (explicitly, the canonical form is given in (3.1)
below), and its existence provides a necessary condition for the
super-linearization of that special class of polynomial systems.
Conversely, we exhibit in this paper a sufficient condition for
the super-linearization of general polynomial systems, without
any restriction on the number of visible observables. In particular,
the result of this paper, combined with the ones of [8], provide
a necessary and sufficient condition for the class of polynomial
systems with a single visible observable to be super-linearizable.
The remainder of the paper is organized as follows: We de-
scribe the relevant terminology and notation at the end of this
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section. We present the main result in Section 2 and its proof in
Section 3. The paper ends with a summary and outlook.

Terminology and notation used. We let G = (V, E) be a directed
graph (possibly with self-loops), with V the node set and E the
edge set. We use e = v;v; to denote a directed edge of G from
node v; to node v; (if v; = vj, then e is a self-loop). A walk is a
sequence of nodes w = v, vj, ... vy, such that v;v;,,, is an edge
of Gforeach¢ = 1,..., k— 1. The length of a walk is the number
of edges it traverses. A path is a walk which does not visit a node
more than once. We call the depth of G the length of the longest
path in G.

For a dynamical system x(t) = f(x(t)), we denote by e¥x, the
solution of the system at time ¢ with initial state x,. For a vector
field g : R" — R" and a differentiable vector-valued function
p: R — R¥, we denote the Lie derivative of p along g by

)
Lgp = g
2. Statement of the result

We start by defining what it means for system (1.1) to be
super-linearizable. Let m > 0 be an integer, and 7 : R"™ — R"
be the canonical projection onto the first n variables, namely, we
have for z € R"™™ that I1(z) = (z4, ..., z,). We reproduce the
following definition from [10]:

Definition 2.1 (Super-linearization). The vector field f : R" —
R" is super-linearizable to the system z = Az + D with A €
RMFMx(+m) and D e R™™ if there exists an injective map p :
R"™ — R™ so that for all xo € R", the following holds:

1T (e P)z5) = exo with zo = (xo, P(Xo)). (2.1)
We call the functions p : R" — R™ the observables.

The data of A, D and p is referred to as a super-linearization of
f. We can express the relation (2.1) as the following commutative
diagram

RHE—J>RH

(id, P)J 1\17

Rn+m s Rn+m
e.[(AerD)

The presentation of our main result is natural in terms of
graph-theoretic notions. To this end, we introduce the following
notion:

Definition 2.2 (Weighted Dependency Graph). Let f : R" — R"
be a differentiable vector field. The weighted dependency graph
(WDG) G = (V,E, y) of f is a weighted directed graph (with self-
loop) on n nodes vy, ..., v,. For every ordered pair (v;, vj), we
define the scalar function:

afi(x
) i= 20

There is an edge v;v; in G if y; # 0, and its weight is y;.

for 1<i,j<n.

We illustrate the definition on the following example:

Example 2.3. Consider the following polynomial system:

)21 =X
).(2 = —Xq
X3 = X3 (2.2)

X4 = X3+ X1X%

X5 = —X5 + X3 + X2x,.

Its weighted dependency graph is depicted in Fig. 1. O
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Fig. 1. The weighted dependency graph of system (2.2).

Next, for each directed walk w = vy, ...

k-1
Yw = 1_[ Vijiz-
j=1

In the sequel, we will assume that f is a polynomial vector
field. It should be clear that y,,(x), for any walk w, is then a poly-
nomial function in x. Also, we assume, without loss of generality,
that G is weakly connected (otherwise, the original system can be
decoupled into sub-systems of lower dimensions and our result,
stated below, can be applied to each sub-system independently).

Super-linearizable polynomial vector fields are easily seen to
admit polynomial observables. Because their flow maps can be
expressed as ITe?'zy, with zg = (X0, p(Xg)), we observe that for
each fixed t, the flow map of any such vector field is a polynomial
in the initial state xo. These flows have been studied in the
literature [11,12] under the name of polyflow. In [12, Question 1,
p. 672], the author puts forth the open question of characterizing
polynomial vector fields that generate polyflows. The main result
of the paper, stated below, partially answers this open question
in the form of a sufficient condition:

v, in G, we let

Theorem 2.4. For a polynomial system x(t) = f(x(t)), let G be the
associated weighted dependency graph. If y. is a constant for every
cycle ¢ of G, then f is super-linearizable.

The sufficient condition stated above implies that
det(df(x)/0x) is constant. Note that the weighted dependency
graph of system (2.2), depicted in Fig. 1, satisfies the suffi-
cient condition of Theorem 2.4, and thus system (2.2) is super-
linearizable. As an illustration of the proof technique used, we
will provide toward the end a super-linearization of this system.

3. Proof of Theorem 2.4 and an algorithm
3.1. Proof of the theorem

We start with a simple proposition, dealing with systems
where the variables on which the nonlinear part of the dynamics
depend evolve linearly and autonomously, and show that such
systems are super-linearizable. This result provides a converse of
the result of [8], and will be used as a building block to establish
the general case.
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Proposition 3.1. Suppose that the system x(t) = f(x(t)) takes the
following form:

X(t)=AX({t)+D
X'(t) = A"X'(t) + g(x'(t)),

where x = (X';X”), D is a constant vector, and g is a polynomial;
then, system (3.1) is super-linearizable.

(3.1)

Proof. Let n’ be the dimension of X' and d be the degree of
g. Let Py be the vector space of all polynomials in X' with real
coefficients, whose dimension is given by

"+d
r:=dimP; = (n ‘—; )

Next, for convenience, we let f/(x') := A’X' + D. Since f’ is affine,
Ly¢ < Py for any ¢ € Py and, hence, £y : Py — Pq is a linear
automorphism. Let the minimal polynomial associated with £
be given by

sV +ay s+ 4
for some N < r. In particular, for any ¢ € Py, we have that

(Lp) +an—1(L 7' @) + -+ + aod = 0.

Now, define
p1(x) gx)
pa(x) Lpg(x)

p(x) = : = : . (3.2)
PN (X) Lrg)

It then follows that the time derivative of p(x(t)) is

p1 0 1 0 e 0 p1
D2 0 0 I e 0 D2
d
xl =] : :
PN-1 0 0 e 0 I Pn-1
PN —aol  —oql —an—2]  —an-1l PN
(33)

This completes the proof. O

We note here that relations similar to (3.3) have appeared
several times in the literature. This is no coincidence as it can
be shown that a system x = f(x) is super-linearizable if and
only if there exists an N < oo such that the dynamics of
fx), cef(x), ..., [;}\’f(x) obey an equation such as (3.3). This fact
has been derived several times in the literature under different
guises. We mention here that it appears in [13, Lemma 1] for
observer design, and in [12, Propositions 2.2 and 2.3] for the
study of polyflows. From that point of view, our contribution,
Theorem 2.4, can also be restated as exhibiting a condition for
which such a relation holds.

We next introduce two notions that are necessary for enabling
the recursive use of Proposition 3.1 in the proof of the main the-
orem. The first is the notion of strong component decomposition.

Definition 3.2 (Strong Component Decomposition). Let G be a
weakly connected digraph. The subgraphs G; = (V;, E;), for 1 <
i < q, form a strong component decomposition of G if the following
items hold:

1. The Vj’s partition the vertex set as V = u?ﬂv,-;

2. Each G; is a subgraph induced by V; and is strongly con-
nected;
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Fig. 2. The skeleton graph S of the WDG G of system (2.2), depicted in Fig. 1.
Note that 7~ '(uq) = {vy, vz}, 7 '(u2) = {w3}, 7~ Y(u3) = {v4}, and 7 '(uy) =

{vs}.
e SR S
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Fig. 3. Illustration of Gs: (a) A weakly connected digraph G = (V, E), with three
strongly connected components highlighted in blue, red, and green, respectively;
(b) The skeleton graph S = (U,F) of G, with U = {u;,uy,us} and F =
{uquy, uyus, upus}; (c) A subgraph S’ of S; and (d) The corresponding subgraph
Gs of G. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

3. Any strongly connected subgraph G’ of G is a subgraph of
some G;, forie {1,...,q}.

By treating the strongly connected components G; as single
nodes, we obtain the second notion, namely the one of skeleton
graph S of G:

Definition 3.3. Let G = (V, E) be a weakly connected digraph,
and let Gy, ..., Gq be the strong component decomposition of G.
The skeleton graph S = (U, F) is a digraph on g nodes uy, ..., ug,
corresponding to Gy, ..., Gq. There is no self-loop in S. There is
an edge u;u;, for u; # u;, only if there exist a node vy in G; and a
node vy in G; such that vyvy is an edge in G. Further, we denote
by 7 : V — U the map that sends nodes vy in V; to u;.

We illustrate the definition in Fig. 2.

A subgraph S’ = (U’, F’) of S induces a subgraph of G, obtained
by only keeping the nodes of G contained in the strong compo-
nents represented by nodes of S’; precisely, to S, we attach the
subgraph Gy of G induced by 7 ~'(U"). See Fig. 3 for an illustration.
Note that the skeleton graph S is acyclic because otherwise, it will
contradict the third item of Definition 3.2.

Let ¢ be the depth of the graph S; we now introduce a node
set decomposition, termed the depth decomposition, of S:

U=0_oUn. (3.4)

Starting with Uy, we simply let it be the subset of nodes of U
without incoming edges. Since S is acyclic, Up is non-empty. Now
to each node u; in U — Uy, we assign the set P; of paths from nodes
in Up to u;. It should be clear that P; is non-empty. We define
the depth of the node u;, denoted by depth(u;), to be the maximal
length of all paths in P, i.e,

depth(y;) := max{length(w) | w € P;}.
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The subset Uy, is then the collection of all nodes in S of depth m.
The subsets Uy, for 0 < m < ¢, are all nonempty, pairwise
disjoint, and their union is U.

With the preliminaries above, we establish Theorem 2.4.

Proof of Theorem 2.4. Let G = (V,E,y) be the weighted
dependency graph of the polynomial vector field f. Let S = (U, F)
be the associated skeleton graph (obtained using Definition 3.3
and ignoring the weights y of G), and £ be the depth of S. Because
G is weakly connected by assumption, so is S. The proof will be
carried out by induction on £.

Base case ¢ = 0: In this case, since S is weakly connected, it is
a single node. It follows that G is strongly connected. Next, we
claim that all the weights y; for the edges v;v; of G are constant.
To see this, for each edge vjv; in G, we let ¢ = v; v;, - - - v;, v, be
a cycle in G that contains this edge, with v; v;, = vv;. By the
hypothesis of Theorem 2.4, it holds that y. is constant. We have
that

inUj )’v,-z Vi, Viy = Vc .

Since y. is a constant and since both Yo and Voiy-viui, are
polynomials (over R), it must hold that they are also constants.
This establishes the claim. As a consequence, the vector field f is
an affine function. This completes the proof for the base case.

Inductive step: We assume that the statement holds for £ > 0 and
prove it for (£ + 1). Let uﬁ:;]OUm be the node set decomposition of
U introduced in (3.4). Consider the subgraph S’ of S induced by
the nodes in uﬁﬁoum, and S” the subgraph of S induced by nodes
in Ug+1.

It should be clear that S’ is itself an acyclic digraph whose
depth is ¢, and that S” is a union of isolated nodes. To see that the
latter statement holds, it suffices to observe that if S” has an edge,
then it necessarily has nodes with different depths. We let x/(t) be
the vector with entries taken from x(t) corresponding to nodes in
Gs and x”(t) be the vector corresponding to Gs». By construction
of §’, the dynamics of x'(t) do not depend on x”(t) and, hence,
we can write the said dynamics as X'(t) = f’(x'(t)). On the one
hand, by applying the induction hypothesis to each connected
component of S, we have that f’ is super-linearizable. We set p’
to be the associated observables, on which the super-linearization
relies.

On the other hand, the dynamics of x”(t) may depend on both
X'(t) and x"(t), i.e., X'(t) = f'(X(t),x"(t)) for f” a polynomial
vector field. Since each connected component of G is strongly
connected, every edge in Gs» belongs to a cycle in Gs». By the
hypothesis of Theorem 2.4 and by the same arguments given in
the base case, we then have that all the edge weights in Gs» are
constants. This implies that f”(x’, x”) is affine in x” (note that
edge weights in Gs» only take into account differentiation of f”
with respect to x”, i.e., the variables corresponding to nodes Gs).
Combining the above, the dynamics can be expressed as

Z(t)=AZ(t)+ D
X'(t) = A"X'(t) + g(Z'(1)),

where, owing to Proposition 3.1, z/ .= (x’;p’), A’ and A" are
constant matrices, D is a constant vector, and g is a polynomial
vector field. By Proposition 3.1, system (3.5) is super-linearizable.
This completes the proof. O

(3.5)

3.2, Algorithm for super-linearization

The steps outlined in the proof of Theorem 2.4 can be formal-
ized as an algorithm, which we will present below. For ease of
presentation, we introduce some notations.
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Let G be the WDG of a given system x = f(x) and S be the
corresponding skeleton graph. Let U = ufnZOUm be the depth
decomposition, S, be the subgraph of S induced by U,,. With a
slight abuse of notation, we will use x,,, to denote the “sub-vector”
of x with entries corresponding to the nodes in Gs,, and let f(x)
be defined such that x,,(t) = fi(x(t)).

The algorithm for super-linearization is as follows:

Input: A polynomial map f : R" — R" for the system x(t) =
Fx(0)).

Step 1: Compute the WDG G of the system and terminate if G
does not satisfy the conditions of Theorem 2.4.

Step 2: Compute the skeleton graph S = (U, F), its depth ¢, and
the depth decomposition U = L, _oUp.

Step 3: Set £’ := 0 and zy := xo. While £’ < ¢, repeat:
3.1: Perform the super-linearization of the following system:

zp(t) = Apzyp(t) + Dy,

. (3.6)
Xe41(8) = fo1(x(2)).

and obtain the super-linearized dynamics of (3.6)

Zp 41(8) = Apg1ze1(6) + Der 4 (3.7)

with observables py/ 1.
3.2: Increase ¢’ by 1.

Output: The data (A¢, D¢, p¢) as a super-linearization of the
original system.

Remark 3.4. We elaborate below on a few points of Step 3.1 in
the Algorithm:

1. When ¢/ = 0, (3.6) implies that the dynamics of x, are
necessarily affine. It is indeed the case, and was argued in
the proof of Theorem 2.4 (the base case).

2. In (3.6), the dynamics of x, 1 depend only on xo, ..., X¢r41
and, moreover, linearly in x,/,; as was argued in the proof
of Theorem 2.4 (the inductive step). Note that z,,{ con-
tains the variables xo, ..., X, and the observables p,, 1.

3. In order to obtain the super-linearized dynamics (3.7), one
can follow, e.g., the steps of the proof of Proposition 3.1.
The fact that (3.6) is in the same form as (3.1) is argued in
the second item of this remark. More specifically, the first
step is then to determine the degree d of the polynomial
vector field fyr,1. Next, upon choosing a basis for Py, deter-
mine the matrix of the linear operator 'ny : Py — P4 where
fo(z) :== Apz+ Dy and compute the minimal polynomial of
this matrix. Finally, introduce the observables p as given
n (3.2); they obey the linear dynamics (3.3).

There exist other ways to obtain a super-linearization of
the system; we will in fact follow a slightly different ap-
proach in the example next.

We illustrate the algorithm on the polynomial system given
in Example 2.3. Recall that the WDG G of the system is given in
Fig. 1, and the corresponding skeleton graph S = (U, F) is in Fig. 2.

We next compute the depth decomposition of U. The only
node that has no incoming edges is uq, and thus Uy = {u;}. The
longest path joining u; to u; is of length 1, and the longest paths
from u; to either us or uy are of lengths 2; hence U; = {u,} and
Uy = {us, ug}.

Now, for Step 3, there will be two iterations:

1. The first iteration considers the dynamics of the variables
associated to Up (namely xq, xp) and U; (namely, x3). We
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have
5(1 = X3
X = —X; (3.8)
X3 = x2.

We observe that the dynamics associated to the nodes in
Up are indeed linear. Following (3.2), we set x = (x/, X")
with X' := (x1,x) and x” = x3, p1(x) = x%, and f'(x') ==
(x2, —x1). We obtain that

Lypr = —2X1X2 =: P2

Lppa =2(x5 —X3) =1 p3

Ly p3 = 8x1Xy = —4p3.

The super-linearized system is thus

(%17 X2
X2 —X1
n=1=| P | =4z (39)
P1 D2
P2 D3
Lps]  L—4p:

2. The second iteration starts with the super-linearized sys-
tem (3.9) with the dynamics of the variables in U, adjoined.
Namely, with

21 = A1z;

)'(4 = X3+ xlx%

X5 = —X5 + X5 + X3x;
To proceed, we could attempt to super-linearize the vector
(x1x3; x3+x%x;) at once, or handle each entry consecutively.
We choose the latter option, which deviates slightly from
the procedure described in Proposition 3.1 but requires
fewer computations. Also, note that there is some freedom
in how one expresses the nonlinear terms. For example,
x1x§ can also be written as x;p; or —%xzpz, given the
observables introduced in the first iteration.
We start by setting py = x1x§ and f'(z;) := Ai;z;. By
computation, we obtain that
Lppa = X3 — 2X7X; = Ps
Lyps = —7X1X% + ZX? = —7ps + ZX? =: D¢
Lpps = —Tps + 6x1x2 =: ps
Lpp7 = —7ps + 120125 — 63

= —7pe + 12p4 — 3(ps + 7ps) = —10ps — 9pa.

Next, we set pg := X3 + x3x, and

Lppg = 2x3p1 + 2x1%5 — X3
= 2x3p1 — %(Ps + 3p4) = po
Lyipg = 2p] + 2X3py — %(P7 + 3ps) =t P1o
Lypro = 6p1p2 + 2x3p3 + %(9174 + 7pe) =t P11
Lyip11 = 6p5 + 8p1ps — 8x3py + %(9175 +7p7) = p12
Lyp1z = 20p2p3 — 40p1p2 — 8x3p3 — %(53174 +61ps) =: p13

1
Lpp13 = 20p3 — 120p5 — 48p1ps + 32x3p; — - (635 +61py)

=: D14

Systems & Control Letters 179 (2023) 105588

1
Lyp1a = —448pap3 + 224p1pa + 32x3p3 + 5(549134 + 547ps)

=D

Lpp1s = 2016p3 — 448p2 + 256p;p; — 128x3p;
1
+ 5(549})5 + 547[77) = P16
1
[,ffp]g = 7872p2p3 — 1152p]p2 — ]28X3p3 — 5(4923})4 + 492]p6)

1
= (1485p, + 1215p5) — 256p1 — 144p15 — 24ps.

We thus obtain the following super-linearization of the
original system (2.2):

X1 =Xy

Xy = —X

X3 =Dpi

X4 = X3+ P4

Xs = —X5 + p7

pi = piy1, fori=1,2,4,5,6,8,...,15

b3 = —4p,

p7 = —10ps — 9p4

P16 = 122ps + 2Bps — 256p11 — 144p;13 — 24pss.

4. Summary and outlook

We provided in this paper a sufficient condition for a system
x(t) = f(x(t)), with f a polynomial vector field, to be super-
linearizable. The condition is simply expressed in terms of cycles
in what we called the weighted dependency graph of the system.
The proof of the main result is constructive, and we have sketched
an algorithm based on it that produces a super-linearization of
vector fields meeting the sufficient condition. The algorithm was
also illustrated on an example.

The main result of this paper provides a generalized converse
of the results in [8]. Indeed, while the canonical form exhibited
there entails that in the original dynamics, the variables on which
the nonlinear terms depend have to evolve linearly, it is easy
to see that this fact does not hold for the system (2.2). The gap
of course lies in the fact that [8] restricts its scope to systems
with only one visible observable, which precludes the nested
super-linearizations that arise in the inductive step of the proof.
In terms of the vocabulary introduced in this paper, the results
of [8] only deal with skeleton graphs of depth 1. We will address
the converse of the results presented in this paper, similarly
generalize the results of [8], in future work.
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