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a b s t r a c t

We provide in this paper a sufficient condition for a polynomial dynamical system ẋ(t) = f (x(t)) to
be super-linearizable, i.e., to be such that all its trajectories are linear projections of the trajectories of
a linear dynamical system. The condition is expressed in terms of the hereby introduced weighted
dependency graph G, whose nodes vi correspond to variables xi and edges vivj have weights ∂ fj

∂xi
.

We show that if the product of the edge weights along any cycle in G is a constant, then the
system is super-linearizable. The proof is constructive, and we provide an algorithm to obtain super-
linearizations and illustrate it on an example. Our result also provides a partial answer to an open
question about polyflows.

© 2023 Elsevier B.V. All rights reserved.
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1. Introduction

The idea of linearizing system dynamics via embeddings dates
ack at least to the works of Carleman [1] and Koopman [2,3].
hese embeddings are still actively studied a century later, and
ave found applications in nonlinear control [4,5], and data-
riven methods in control [6,7].
We derive in this paper a sufficient condition under which a

olynomial system can be globally linearized by embedding it
nto a higher, yet finite-dimensional vector space. In particular,
he contribution of this paper is to provide a generalized converse
f the result established in [8]. We elaborate on this below.
To proceed, we consider the following dynamical system:

ẋ = f (x) (1.1)

where x ∈ Rn. This system is said to admit a super-linearization
(see Definition 2.1 below) if there exist m ≥ 0 functions, called
bservables, which when adjoined to the original system would
ermit its linearization. A typical example [9] is the following
wo-dimensional system{
ẋ = −x+ y2

ẏ = −y
(1.2)

∗ Corresponding author.
E-mail addresses: belabbas@illinois.edu (M.-A. Belabbas),

udong.chen@colorado.edu (X. Chen).
1 The two authors M.-A. Belabbas and X. Chen contributed equally to the
anuscript in all categories.
ttps://doi.org/10.1016/j.sysconle.2023.105588
167-6911/© 2023 Elsevier B.V. All rights reserved.
dding the observable w := y2, whose total time derivative is
iven by ẇ = 2yẏ = −2y2 = −2w, we obtain the three-
imensional linear system:⎧⎪⎨⎪⎩
ẋ = −x+ w

ẏ = −y

ẇ = −2w.

(1.3)

bserve that the variables on which the nonlinear part of the
ynamics (1.2) depend (here, the variable y) evolve in a lin-
ar, autonomous (i.e., independent from x) manner. In a recent
aper [8], we showed that if a polynomial system admits a super-
inearization with only one so-called visible observable [10], then
here exists a linear change of variables under which the non-
inear part of the dynamics depends solely on variables evolv-
ng linearly and autonomously. The dynamics resulting from the
hange of variable are termed the canonical form [8] for the
olynomial system (explicitly, the canonical form is given in (3.1)
elow), and its existence provides a necessary condition for the
uper-linearization of that special class of polynomial systems.
Conversely, we exhibit in this paper a sufficient condition for

he super-linearization of general polynomial systems, without
ny restriction on the number of visible observables. In particular,
he result of this paper, combined with the ones of [8], provide
necessary and sufficient condition for the class of polynomial
ystems with a single visible observable to be super-linearizable.
The remainder of the paper is organized as follows: We de-

cribe the relevant terminology and notation at the end of this
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ection. We present the main result in Section 2 and its proof in
Section 3. The paper ends with a summary and outlook.

Terminology and notation used. We let G = (V , E) be a directed
graph (possibly with self-loops), with V the node set and E the
edge set. We use e = vivj to denote a directed edge of G from
node vi to node vj (if vi = vj, then e is a self-loop). A walk is a
sequence of nodes w = vi1vi2 . . . vik such that viℓviℓ+1 is an edge
of G for each ℓ = 1, . . . , k−1. The length of a walk is the number
of edges it traverses. A path is a walk which does not visit a node
more than once. We call the depth of G the length of the longest
path in G.

For a dynamical system ẋ(t) = f (x(t)), we denote by etf x0 the
solution of the system at time t with initial state x0. For a vector
field g : Rn

→ Rn and a differentiable vector-valued function
p : Rn

→ Rk, we denote the Lie derivative of p along g by
gp :=

∂p
∂x g .

2. Statement of the result

We start by defining what it means for system (1.1) to be
super-linearizable. Let m ≥ 0 be an integer, and Π : Rn+m

→ Rn

be the canonical projection onto the first n variables, namely, we
have for z ∈ Rn+m that Π(z) = (z1, . . . , zn). We reproduce the
following definition from [10]:

Definition 2.1 (Super-linearization). The vector field f : Rn
→

Rn is super-linearizable to the system ż = Az + D with A ∈

R(n+m)×(n+m) and D ∈ Rn+m if there exists an injective map p :

Rn
→ Rm so that for all x0 ∈ Rn, the following holds:

Π
(
et(Az+D)z0

)
= etf x0 with z0 = (x0, p(x0)). (2.1)

We call the functions p : Rn
→ Rm the observables.

The data of A,D and p is referred to as a super-linearization of
f . We can express the relation (2.1) as the following commutative
diagram

Rn Rn

Rn+m Rn+m

etf

(id, p)

et(Az+D)

Π

The presentation of our main result is natural in terms of
raph-theoretic notions. To this end, we introduce the following
otion:

efinition 2.2 (Weighted Dependency Graph). Let f : Rn
→ Rn

e a differentiable vector field. The weighted dependency graph
WDG) G = (V , E, γ ) of f is a weighted directed graph (with self-
oop) on n nodes v1, . . . , vn. For every ordered pair (vi, vj), we
efine the scalar function:

ij(x) :=
∂ fj(x)
∂xi

for 1 ≤ i, j ≤ n.

here is an edge vivj in G if γij ̸= 0, and its weight is γij.

We illustrate the definition on the following example:

xample 2.3. Consider the following polynomial system:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = x2
ẋ2 = −x1
ẋ3 = x22
ẋ4 = x3 + x1x22
ẋ5 = −x5 + x23 + x21x2.

(2.2)
ts weighted dependency graph is depicted in Fig. 1. □

2

Fig. 1. The weighted dependency graph of system (2.2).

Next, for each directed walk w = vi1 . . . vik in G, we let

γw :=

k−1∏
j=1

γijij+1 .

In the sequel, we will assume that f is a polynomial vector
field. It should be clear that γw(x), for any walk w, is then a poly-
nomial function in x. Also, we assume, without loss of generality,
that G is weakly connected (otherwise, the original system can be
decoupled into sub-systems of lower dimensions and our result,
stated below, can be applied to each sub-system independently).

Super-linearizable polynomial vector fields are easily seen to
admit polynomial observables. Because their flow maps can be
expressed as ΠeAtz0, with z0 = (x0, p(x0)), we observe that for
each fixed t , the flow map of any such vector field is a polynomial
in the initial state x0. These flows have been studied in the
literature [11,12] under the name of polyflow. In [12, Question 1,
p. 672], the author puts forth the open question of characterizing
polynomial vector fields that generate polyflows. The main result
of the paper, stated below, partially answers this open question
in the form of a sufficient condition:

Theorem 2.4. For a polynomial system ẋ(t) = f (x(t)), let G be the
associated weighted dependency graph. If γc is a constant for every
cycle c of G, then f is super-linearizable.

The sufficient condition stated above implies that
det(∂ f (x)/∂x) is constant. Note that the weighted dependency
graph of system (2.2), depicted in Fig. 1, satisfies the suffi-
ient condition of Theorem 2.4, and thus system (2.2) is super-
linearizable. As an illustration of the proof technique used, we
will provide toward the end a super-linearization of this system.

3. Proof of Theorem 2.4 and an algorithm

3.1. Proof of the theorem

We start with a simple proposition, dealing with systems
where the variables on which the nonlinear part of the dynamics
depend evolve linearly and autonomously, and show that such
systems are super-linearizable. This result provides a converse of
the result of [8], and will be used as a building block to establish

the general case.
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roposition 3.1. Suppose that the system ẋ(t) = f (x(t)) takes the
ollowing form:{
ẋ′(t) = A′x′(t)+ D

ẋ′′(t) = A′′x′′(t)+ g(x′(t)),
(3.1)

here x = (x′; x′′), D is a constant vector, and g is a polynomial;
hen, system (3.1) is super-linearizable.

roof. Let n′ be the dimension of x′ and d be the degree of
. Let Pd be the vector space of all polynomials in x′ with real
oefficients, whose dimension is given by

:= dim Pd =
(
n′ + d

d

)
.

ext, for convenience, we let f ′(x′) := A′x′ + D. Since f ′ is affine,
Lf ′φ ⊆ Pd for any φ ∈ Pd and, hence, Lf ′ : Pd → Pd is a linear
automorphism. Let the minimal polynomial associated with Lf ′

be given by

sN + αN−1sN−1
+ · · · + α0

for some N ≤ r . In particular, for any φ ∈ Pd, we have that

(LN
f ′φ)+ αN−1(LN−1

f ′ φ)+ · · · + α0φ = 0.

Now, define

p(x) =

⎡⎢⎢⎢⎢⎣
p1(x)
p2(x)

...

pN (x)

⎤⎥⎥⎥⎥⎦ :=

⎡⎢⎢⎢⎢⎣
g(x′)

Lf ′g(x′)
...

LN
f ′g(x

′)

⎤⎥⎥⎥⎥⎦ . (3.2)

It then follows that the time derivative of p(x(t)) is

d
dt

⎡⎢⎢⎢⎢⎢⎢⎢⎣

p1
p2
.
.
.

pN−1

pN

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 I 0 · · · 0
0 0 I · · · 0
.
.
.

.

.

.
. . .

. . .
.
.
.

0 0 · · · 0 I
−α0I −α1I · · · −αN−2I −αN−1I

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

p1
p2
.
.
.

pN−1

pN

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

(3.3)

his completes the proof. □

We note here that relations similar to (3.3) have appeared
everal times in the literature. This is no coincidence as it can
e shown that a system ẋ = f (x) is super-linearizable if and
nly if there exists an N < ∞ such that the dynamics of
(x),Lf f (x), . . . ,LN

f f (x) obey an equation such as (3.3). This fact
as been derived several times in the literature under different
uises. We mention here that it appears in [13, Lemma 1] for
bserver design, and in [12, Propositions 2.2 and 2.3] for the
tudy of polyflows. From that point of view, our contribution,
heorem 2.4, can also be restated as exhibiting a condition for
hich such a relation holds.
We next introduce two notions that are necessary for enabling

he recursive use of Proposition 3.1 in the proof of the main the-
rem. The first is the notion of strong component decomposition.

efinition 3.2 (Strong Component Decomposition). Let G be a
eakly connected digraph. The subgraphs Gi = (Vi, Ei), for 1 ≤

≤ q, form a strong component decomposition of G if the following
tems hold:

1. The Vi’s partition the vertex set as V = ⊔
q
i=1Vi;

2. Each Gi is a subgraph induced by Vi and is strongly con-
nected;
 d

3

Fig. 2. The skeleton graph S of the WDG G of system (2.2), depicted in Fig. 1.
ote that π−1(u1) = {v1, v2}, π−1(u2) = {v3}, π−1(u3) = {v4}, and π−1(u4) =
v5}.

Fig. 3. Illustration of GS′ : (a) A weakly connected digraph G = (V , E), with three
trongly connected components highlighted in blue, red, and green, respectively;
b) The skeleton graph S = (U, F ) of G, with U = {u1, u2, u3} and F =

u1u2, u1u3, u2u3}; (c) A subgraph S ′ of S; and (d) The corresponding subgraph
GS′ of G. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

3. Any strongly connected subgraph G′ of G is a subgraph of
some Gi, for i ∈ {1, . . . , q}.

By treating the strongly connected components Gi as single
nodes, we obtain the second notion, namely the one of skeleton
graph S of G:

Definition 3.3. Let G = (V , E) be a weakly connected digraph,
and let G1, . . . ,Gq be the strong component decomposition of G.
The skeleton graph S = (U, F ) is a digraph on q nodes u1, . . . , uq,
corresponding to G1, . . . ,Gq. There is no self-loop in S. There is
an edge uiuj, for ui ̸= uj, only if there exist a node vi′ in Gi and a
node vj′ in Gj such that vi′vj′ is an edge in G. Further, we denote
by π : V → U the map that sends nodes vi′ in Vi to ui.

We illustrate the definition in Fig. 2.
A subgraph S ′ = (U ′, F ′) of S induces a subgraph of G, obtained

by only keeping the nodes of G contained in the strong compo-
nents represented by nodes of S ′; precisely, to S ′, we attach the
subgraph GS′ of G induced by π−1(U ′). See Fig. 3 for an illustration.
Note that the skeleton graph S is acyclic because otherwise, it will
contradict the third item of Definition 3.2.

Let ℓ be the depth of the graph S; we now introduce a node
set decomposition, termed the depth decomposition, of S:

= ⊔
ℓ
m=0Um. (3.4)

tarting with U0, we simply let it be the subset of nodes of U
without incoming edges. Since S is acyclic, U0 is non-empty. Now
to each node uj in U−U0, we assign the set Pj of paths from nodes
n U0 to uj. It should be clear that Pj is non-empty. We define
he depth of the node uj, denoted by depth(uj), to be the maximal
ength of all paths in Pj, i.e.,

epth(u ) := max{length(w) | w ∈ P }.
j j



M.-A. Belabbas and X. Chen Systems & Control Letters 179 (2023) 105588

T

d

a

U

he subset Um is then the collection of all nodes in S of depth m.
The subsets Um, for 0 ≤ m ≤ ℓ, are all nonempty, pairwise
disjoint, and their union is U .

With the preliminaries above, we establish Theorem 2.4.

Proof of Theorem 2.4. Let G = (V , E, γ ) be the weighted
ependency graph of the polynomial vector field f . Let S = (U, F )

be the associated skeleton graph (obtained using Definition 3.3
and ignoring the weights γ of G), and ℓ be the depth of S. Because
G is weakly connected by assumption, so is S. The proof will be
carried out by induction on ℓ.

Base case ℓ = 0: In this case, since S is weakly connected, it is
single node. It follows that G is strongly connected. Next, we

claim that all the weights γij for the edges vivj of G are constant.
To see this, for each edge vivj in G, we let c = vi1vi2 · · · vikvi1 be
a cycle in G that contains this edge, with vi1vi2 = vivj. By the
hypothesis of Theorem 2.4, it holds that γc is constant. We have
that

γvivjγvi2 ···vik vi1
= γc .

Since γc is a constant and since both γvivj and γvi2 ···vik vi1
are

polynomials (over R), it must hold that they are also constants.
This establishes the claim. As a consequence, the vector field f is
an affine function. This completes the proof for the base case.

Inductive step: We assume that the statement holds for ℓ ≥ 0 and
prove it for (ℓ+1). Let ⊔ℓ+1

m=0Um be the node set decomposition of
U introduced in (3.4). Consider the subgraph S ′ of S induced by
the nodes in ⊔

ℓ
m=0Um, and S ′′ the subgraph of S induced by nodes

in Uℓ+1.
It should be clear that S ′ is itself an acyclic digraph whose

depth is ℓ, and that S ′′ is a union of isolated nodes. To see that the
latter statement holds, it suffices to observe that if S ′′ has an edge,
then it necessarily has nodes with different depths. We let x′(t) be
the vector with entries taken from x(t) corresponding to nodes in
GS′ and x′′(t) be the vector corresponding to GS′′ . By construction
of S ′, the dynamics of x′(t) do not depend on x′′(t) and, hence,
we can write the said dynamics as ẋ′(t) = f ′(x′(t)). On the one
hand, by applying the induction hypothesis to each connected
component of S ′, we have that f ′ is super-linearizable. We set p′
to be the associated observables, on which the super-linearization
relies.

On the other hand, the dynamics of x′′(t) may depend on both
x′(t) and x′′(t), i.e., ẋ′′(t) = f ′′(x′(t), x′′(t)) for f ′′ a polynomial
vector field. Since each connected component of GS′′ is strongly
connected, every edge in GS′′ belongs to a cycle in GS′′ . By the
hypothesis of Theorem 2.4 and by the same arguments given in
the base case, we then have that all the edge weights in GS′′ are
constants. This implies that f ′′(x′, x′′) is affine in x′′ (note that
edge weights in GS′′ only take into account differentiation of f ′′
with respect to x′′, i.e., the variables corresponding to nodes GS′′ ).
Combining the above, the dynamics can be expressed as{
ż ′(t) = A′z ′(t)+ D

ẋ′′(t) = A′′x′′(t)+ g(z ′(t)),
(3.5)

where, owing to Proposition 3.1, z ′ := (x′; p′), A′ and A′′ are
constant matrices, D is a constant vector, and g is a polynomial
vector field. By Proposition 3.1, system (3.5) is super-linearizable.
This completes the proof. □

3.2. Algorithm for super-linearization

The steps outlined in the proof of Theorem 2.4 can be formal-
ized as an algorithm, which we will present below. For ease of
presentation, we introduce some notations.
4

Let G be the WDG of a given system ẋ = f (x) and S be the
corresponding skeleton graph. Let U = ⊔

ℓ
m=0Um be the depth

decomposition, Sm be the subgraph of S induced by Um. With a
slight abuse of notation, we will use xm to denote the ‘‘sub-vector’’
of x with entries corresponding to the nodes in GSm , and let fm(x)
be defined such that ẋm(t) = fm(x(t)).

The algorithm for super-linearization is as follows:

Input: A polynomial map f : Rn
→ Rn for the system ẋ(t) =

f (x(t)).

Step 1: Compute the WDG G of the system and terminate if G
does not satisfy the conditions of Theorem 2.4.

Step 2: Compute the skeleton graph S = (U, F ), its depth ℓ, and
the depth decomposition U = ⊔

ℓ
m=0Um.

Step 3: Set ℓ′ := 0 and z0 := x0. While ℓ′ < ℓ, repeat:

3.1: Perform the super-linearization of the following system:{
żℓ′ (t) = Aℓ′zℓ′ (t)+ Dℓ′ ,

ẋℓ′+1(t) = fℓ′+1(x(t)).
(3.6)

and obtain the super-linearized dynamics of (3.6)

żℓ′+1(t) = Aℓ′+1zℓ′+1(t)+ Dℓ′+1 (3.7)

with observables pℓ′+1.
3.2: Increase ℓ′ by 1.

Output: The data (Aℓ,Dℓ, pℓ) as a super-linearization of the
original system.

Remark 3.4. We elaborate below on a few points of Step 3.1 in
the Algorithm:

1. When ℓ′ = 0, (3.6) implies that the dynamics of x0 are
necessarily affine. It is indeed the case, and was argued in
the proof of Theorem 2.4 (the base case).

2. In (3.6), the dynamics of xℓ′+1 depend only on x0, . . . , xℓ′+1
and, moreover, linearly in xℓ′+1 as was argued in the proof
of Theorem 2.4 (the inductive step). Note that zℓ′+1 con-
tains the variables x0, . . . , xℓ′+1 and the observables pℓ′+1.

3. In order to obtain the super-linearized dynamics (3.7), one
can follow, e.g., the steps of the proof of Proposition 3.1.
The fact that (3.6) is in the same form as (3.1) is argued in
the second item of this remark. More specifically, the first
step is then to determine the degree d of the polynomial
vector field fℓ′+1. Next, upon choosing a basis for Pd, deter-
mine the matrix of the linear operator Lf̄ℓ′

: Pd → Pd where
f̄ℓ′ (z) := Aℓ′z+Dℓ′ and compute the minimal polynomial of
this matrix. Finally, introduce the observables p as given
in (3.2); they obey the linear dynamics (3.3).
There exist other ways to obtain a super-linearization of
the system; we will in fact follow a slightly different ap-
proach in the example next.

We illustrate the algorithm on the polynomial system given
in Example 2.3. Recall that the WDG G of the system is given in
Fig. 1, and the corresponding skeleton graph S = (U, F ) is in Fig. 2.

We next compute the depth decomposition of U . The only
node that has no incoming edges is u1, and thus U0 = {u1}. The
longest path joining u1 to u2 is of length 1, and the longest paths
from u1 to either u3 or u4 are of lengths 2; hence U1 = {u2} and
2 = {u3, u4}.
Now, for Step 3, there will be two iterations:

1. The first iteration considers the dynamics of the variables
associated to U (namely x , x ) and U (namely, x ). We
0 1 2 1 3
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have⎧⎪⎨⎪⎩
ẋ1 = x2
ẋ2 = −x1
ẋ3 = x22.

(3.8)

We observe that the dynamics associated to the nodes in
U0 are indeed linear. Following (3.2), we set x = (x′, x′′)
with x′ := (x1, x2) and x′′ := x3, p1(x) := x22, and f ′(x′) :=
(x2,−x1). We obtain that

Lf ′p1 = −2x1x2 =: p2
Lf ′p2 = 2(x21 − x22) =: p3
Lf ′p3 = 8x1x2 = −4p2.

The super-linearized system is thus

ż1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ẋ1
ẋ2
ẋ3
ṗ1
ṗ2
ṗ3

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x2
−x1
p1
p2
p3

−4p2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=: A1z1. (3.9)

2. The second iteration starts with the super-linearized sys-
tem (3.9) with the dynamics of the variables in U2 adjoined.
Namely, with⎧⎪⎨⎪⎩
ż1 = A1z1
ẋ4 = x3 + x1x22
ẋ5 = −x5 + x23 + x21x2

To proceed, we could attempt to super-linearize the vector
(x1x22; x

2
3+x21x2) at once, or handle each entry consecutively.

We choose the latter option, which deviates slightly from
the procedure described in Proposition 3.1 but requires
fewer computations. Also, note that there is some freedom
in how one expresses the nonlinear terms. For example,
x1x22 can also be written as x1p1 or −

1
2x2p2, given the

observables introduced in the first iteration.
We start by setting p4 := x1x22 and f ′(z1) := A1z1. By
computation, we obtain that

Lf ′p4 = x32 − 2x21x2 =: p5
Lf ′p5 = −7x1x22 + 2x31 = −7p4 + 2x31 =: p6
Lf ′p6 = −7p5 + 6x21x2 =: p7
Lf ′p7 = −7p6 + 12x1x22 − 6x31

= −7p6 + 12p4 − 3(p6 + 7p4) = −10p6 − 9p4.

Next, we set p8 := x23 + x21x2 and

Lf ′p8 = 2x3p1 + 2x1x22 − x31

= 2x3p1 −
1
2
(p6 + 3p4) =: p9

Lf ′p9 = 2p21 + 2x3p2 −
1
2
(p7 + 3p5) =: p10

Lf ′p10 = 6p1p2 + 2x3p3 +
1
2
(9p4 + 7p6) =: p11

Lf ′p11 = 6p22 + 8p1p3 − 8x3p2 +
1
2
(9p5 + 7p7) =: p12

Lf ′p12 = 20p2p3 − 40p1p2 − 8x3p3 −
1
2
(63p4 + 61p6) =: p13

Lf ′p13 = 20p23 − 120p22 − 48p1p3 + 32x3p2 −
1
2
(63p5 + 61p7)

=: p
14

5

Lf ′p14 = −448p2p3 + 224p1p2 + 32x3p3 +
1
2
(549p4 + 547p6)

=: p15
Lf ′p15 = 2016p22 − 448p23 + 256p1p3 − 128x3p2

+
1
2
(549p5 + 547p7) =: p16

Lf ′p16 = 7872p2p3 − 1152p1p2 − 128x3p3 −
1
2
(4923p4 + 4921p6)

=
1
2
(1485p4 + 1215p6)− 256p11 − 144p13 − 24p15.

We thus obtain the following super-linearization of the
original system (2.2):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = x2
ẋ2 = −x1
ẋ3 = p1
ẋ4 = x3 + p4
ẋ5 = −x5 + p7
ṗi = pi+1, for i = 1, 2, 4, 5, 6, 8, . . . , 15

ṗ3 = −4p2
ṗ7 = −10p6 − 9p4
ṗ16 = 1485

2 p4 + 1215
2 p6 − 256p11 − 144p13 − 24p15.

. Summary and outlook

We provided in this paper a sufficient condition for a system
˙(t) = f (x(t)), with f a polynomial vector field, to be super-
inearizable. The condition is simply expressed in terms of cycles
n what we called the weighted dependency graph of the system.
he proof of the main result is constructive, and we have sketched
n algorithm based on it that produces a super-linearization of
ector fields meeting the sufficient condition. The algorithm was
lso illustrated on an example.
The main result of this paper provides a generalized converse

f the results in [8]. Indeed, while the canonical form exhibited
here entails that in the original dynamics, the variables on which
he nonlinear terms depend have to evolve linearly, it is easy
o see that this fact does not hold for the system (2.2). The gap
f course lies in the fact that [8] restricts its scope to systems
ith only one visible observable, which precludes the nested
uper-linearizations that arise in the inductive step of the proof.
n terms of the vocabulary introduced in this paper, the results
f [8] only deal with skeleton graphs of depth 1. We will address
he converse of the results presented in this paper, similarly
eneralize the results of [8], in future work.
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