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CONTROLLABILITY ISSUES OF LINEAR ENSEMBLE SYSTEMS
OVER MULTIDIMENSIONAL PARAMETERIZATION SPACES*

XUDONG CHEN\dagger 

Abstract. We address an open problem in ensemble control: Whether there exist controllable
linear ensemble systems over multidimensional parameterization spaces? We provide a negative
result: Any real-analytic linear ensemble system is not Lp-controllable, for 2\leq p\leq \infty , if its parame-
terization space contains an open set in Rd for d\geq 2.

Key words. ensemble control, infinite-dimensional systems, controllability, functional analysis,
approximation theory, operator theory

MSC codes. 30E10, 46E20, 93B05, 93B25, 93B27, 93C05, 93C20

DOI. 10.1137/21M1418691

1. Introduction and main result. Ensemble control originated from quantum
spin systems [4, 14, 20] and has found many applications across various disciplines in
science and engineering, ranging from neuroscience [9, 23, 33], to emergent behaviors
[5], and to multiagent control [1, 2, 6]. Driven by these emerging applications, there
has been an active development in mathematical control theory for analyzing basic
properties of infinite ensemble systems, among which controllability has been a major
focus. Although significant progress has been made over the last score, a complete
understanding of controllability is still lacking. This is true even for ensembles of linear
control systems. In the paper, we consider ensembles of linear time-invariant systems
whose (A,B) pairs are continuous, matrix-valued functions defined on compact subsets
of multidimensional Euclidean spaces. We call these subsets parameterization spaces.
We address controllability issues of those linear ensemble systems.

1.1. Successes in one dimension. When parameterization spaces are one di-
mensional, it is known that there exist uniformly controllable linear ensemble systems.
We take below a simple but illustrative example: Consider a scalar linear ensemble
system over the closed unit interval [0,1]:

\.x(t, \sigma ) :=
\partial 

\partial t
x(t, \sigma ) = \sigma x(t, \sigma ) + u(t) for all \sigma \in [0,1],(1.1)

where x(t, \sigma ) \in R is the current state of an individual system indexed by \sigma , and
u(t) \in R is the control input common to all individual systems. For a fixed time t,
the collective of x(t, \sigma ), for \sigma \in [0,1], is called a profile, which we denote by \chi (t).
The profile \chi (t) can be viewed as a function \chi (t) : \Sigma \rightarrow R, sending \sigma to x(t, \sigma ).
For this example, we assume that profiles are continuous functions. Then, uniform
controllability of system (1.1) is, roughly speaking, the capability of using the scalar
control input u(t) to steer from an arbitrary initial profile \chi (0) to a profile which is
L\infty -close to a given, but arbitrary, target profile \^\chi .
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2426 XUDONG CHEN

In this setup, the controllable subspace associated with system (1.1) is the uniform
closure of the vector space (over R) spanned by akb, for k \geq 0, where the associated
(a, b) pair is given by a(\sigma ) := \sigma and b(\sigma ) := 1 for all \sigma \in [0,1]. System (1.1) is uniformly
controllable if and only if the controllable subspace comprises continuous functions
from [0,1] to R (see Lemma 1.4 below). Here, akb are simply the monomials \sigma k. By
the Stone--Weierstrass theorem [26, Chapter 7], any continuous function on [0,1] can
be approximated uniformly and arbitrarily well by polynomials. Thus, system (1.1)
is uniformly controllable.

Significant extensions of the above controllability result have been made over the
last decade. Necessary and/or sufficient conditions have been established for control-
lability of general linear ensemble systems over single closed intervals [17, 21, 24, 31],
finite unions of closed intervals [22, 28], and curves in the complex plane [11]. Al-
though the analysis for a general case is much more involved, the Stone--Weierstrass
theorem (or Mergelyan's theorem [27, Chapter 20] for dealing with complex linear
ensemble systems) is the core as was illustrated above. We also refer the reader to
[10, 19, 32] for ensembles of linear time-variant systems, to [8] for ensembles of sparse
linear systems and the associated structural controllability problem, and further to a
book chapter [13, Chapter 12] for more relevant works.

Note that any compact, connected, one-dimensional manifold is homeomorphic to
either a closed interval or a circle [16, Chapter 2]. The literature is relatively sparse for
linear ensemble systems over circles. We reproduce below two controllability results
from [11], one positive and one negative. Let S1 := \{ \sigma \in C | | \sigma | = 1\} be the unit
circle in the complex plane. It is known [11, Remark 9(d)] that if a : S1 \rightarrow C is the
identity function a(\sigma ) := \sigma , then there exists an L2-function b : S1 \rightarrow C such that the
corresponding complex linear ensemble system is L2-controllable (see Definition 1.1
below); this fact directly follows from [25, Corollary 2.8]. However, it is shown [11,
Lemma 5] that if both a : \Sigma \rightarrow C and b : S1 \rightarrow C are continuous, then the corresponding
complex linear ensemble system is not uniformly controllable.

1.2. Problem for multidimensions. Those existing results make us wonder
whether the successes can be repeated if the dimensions of the parameterization spaces
are increased? This is in fact an open problem.

Before we provide a solution to the problem, perhaps it is helpful to gain some
insights by looking into a complex version of system (1.1). Consider a linear ensemble
system with the same dynamics as (1.1), but with \sigma being a complex variable that
belongs to the closed unit disk centered at the origin of the complex plane:

\.x(t, \sigma ) = \sigma x(t, \sigma ) + u(t) for all \sigma \in C and | \sigma | \leq 1.(1.2)

The state x(t, \sigma ) is now complex valued. We allow the scalar control input u(t) to take
complex value as well. Note that we choose to work with complex systems for ease of
presentation: One can obtain a corresponding real ensemble system by realification.
The state space of each individual system after realification will be two dimensional.
We elaborate on the correspondence later in Lemma 2.1, section 2.

The controllable subspace associated with (1.2) is, similarly, given by the uniform
closure of the space (but now, over C) spanned by all the monomials \sigma k for k \geq 0.
However, unlike the previous case, what we obtain after taking the closure is not
the space of continuous functions anymore. It follows from Mergelyan's theorem that
the controllable subspace comprises functions that are holomorphic in the interior of
the closed disk and continuous on the boundary. As a consequence, we lose uniform
controllability of system (1.2). One may wonder at this point whether we could fix the
controllability issue by increasing the dimension of the state space and/or by adding

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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CONTROLLABILITY ISSUES OF LINEAR ENSEMBLE SYSTEMS 2427

more scalar control inputs? The answer is no; in this paper, we show that if the
parameterization space \Sigma contains an open set U in Rd for d\geq 2, and if A and B are
real-analytic at some point in U , then the linear ensemble system described by the
(A,B) pair cannot be uniformly or Lp controllable for p\geq 2.

To the best of the author's knowledge, the negative result is original. Previous
works on the problem have mainly focused on obtaining necessary conditions for con-
trollability. For example, Helmke and Sch\"onlein have provided in [17] conditions about
disjointness of the spectrums of the A-matrix. Later in [28], the authors have shown
that if uniform controllability is concerned, then under some other mild assumptions,
the parameterization space is at most two dimensional and, moreover, the A-matrix
cannot have a branch of real eigenvalues. In a more recent work [11, Corollary 2],
Dirr and Sch\"onlein have shown that if the dimension of the parameterization space
is greater than one and if there is only one single control input (i.e., u(t) is a scalar
and the B-matrix is reduced to a vector), then any continuous linear ensemble system
cannot be uniformly controllable. Numerical studies for linear ensemble systems over
two-dimensional parameterization spaces are also carried out by Zhang and Li in [32].

1.3. Main result. Let \Sigma be a compact subset of Rd, F be the field of either real
or complex numbers (i.e., F = R or F = C), and n, m be arbitrary positive integers.
We consider a continuum ensemble of linear time-invariant control systems over \Sigma :

\.x(t, \sigma ) =A(\sigma )x(t, \sigma ) +B(\sigma )u(t) for all \sigma \in \Sigma ,(1.3)

where x(t, \sigma ) \in Fn, u(t) \in Fm, and A : \Sigma \rightarrow Fn\times n and B : \Sigma \rightarrow Fn\times m are continuous
matrix-valued functions. The control input u(t) is said to be admissible if for any
T > 0, u : [0, T ]\rightarrow Fm is an integrable function.

Let \chi (t) : \Sigma \rightarrow Fn be the profile at time t, defined as the function sending \sigma 
to x(t, \sigma ). In this paper, the profiles \chi (t) are either continuous or Lp-functions for
1\leq p <\infty . Denote by C0(\Sigma ,Fn) the space of continuous functions f : \Sigma \rightarrow Fn, and by
Lp(\Sigma ,Fn), for 1\leq p <\infty , the Banach space of all functions f : \Sigma \rightarrow Fn whose Lp-norm
is finite. The profile space of system (1.3), denoted by Xp

F, is given by

Xp
F :=

\biggl\{ 
Lp(\Sigma ,Fn) if 1\leq p <\infty ,
C0(\Sigma ,Fn) if p=\infty .

We now have the following definition.

Definition 1.1. System (1.3), or simply the pair (A,B), is Lp-controllable,1 for
1\leq p\leq \infty , if for any initial profile \chi (0)\in Xp

F, any target profile \^\chi \in Xp
F, and any error

tolerance \epsilon > 0, there is a time T > 0 and an admissible control input u : [0, T ]\rightarrow Fm

such that the solution \chi (t) generated by (1.3) satisfies \| \chi (T ) - \^\chi \| \mathrm{L}\mathrm{p} < \epsilon .

Let \sigma 0 be a point of \Sigma . A function f : \Sigma \rightarrow R is said to be real-analytic at \sigma 0 if
there exists an open neighborhood U of \sigma 0 in Rd such that f | U can be represented
by a convergent power series with the variables being the entries of (\sigma  - \sigma 0). Note
that if \sigma 0 belongs to the boundary of \Sigma , then real-analyticity of f at \sigma 0 means that
f can be extended to an open neighborhood U of \sigma 0 and the extended function is
real-analytic at \sigma 0. A complex-valued function f : \Sigma \rightarrow C is said to be real-analytic
at \sigma 0 if both real and imaginary parts of f are real-analytic at \sigma 0. A matrix-valued
function is real-analytic at \sigma 0 if all of its entries are real-analytic at \sigma 0.

We now state the main result of the paper.

1For p=\infty , L\infty -controllability is also known as uniform controllability [13].
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2428 XUDONG CHEN

Theorem 1.2. If \Sigma contains an open set U in Rd with d\geq 2, and if the contin-
uous matrix-valued functions A : \Sigma \rightarrow Fn\times n and B : \Sigma \rightarrow Fn\times m with F = R or F = C
are real-analytic at some point in U , then the linear ensemble system (A,B) cannot
be Lp-controllable for 2\leq p\leq \infty .

1.4. Implications of the main result. Theorem 1.2 can be formulated as
a negative result in approximation theory. For that, we first have the following
definition.

Definition 1.3. Let A : \Sigma \rightarrow Fn\times n and B : \Sigma \rightarrow Fn\times m be continuous matrix-
valued functions. The Lp-controllable subspace of system (1.3), denoted by L

p
F(A,B),

is the Lp-closure of the subspace, over F, spanned by the columns of AkB for all k\geq 0.

The above definition is a straightforward generalization of the controllable sub-
space associated with a finite-dimensional linear system. By the Kalman rank condi-
tion, a finite-dimensional linear system is controllable if and only if the controllable
subspace is the entire state space. This is, in fact, true for linear ensemble systems.
We introduce below a necessary and sufficient condition for Lp-controllability adapted
from [30].

Lemma 1.4. System (1.3) is Lp-controllable if and only if Lp
F(A,B) =Xp

F.

With Lemma 1.4, the following result is then equivalent to Theorem 1.2.

Theorem 1.5. If \Sigma contains an open set U in Rd with d\geq 2, and if the contin-
uous matrix-valued functions A : \Sigma \rightarrow Fn\times n and B : \Sigma \rightarrow Fn\times m are real-analytic at
some point in U , then L

p
F(A,B) is a proper subspace of Xp

F, for 2\leq p\leq \infty .

We state below a corollary of Theorem 1.5, which may be of independent interest
in operator theory. To this end, let \Sigma be an arbitrary compact subset of C. Given
an L\infty -function a : \Sigma \rightarrow C, let Ma : Lp(\Sigma ,C) \rightarrow Lp(\Sigma ,C), for 1 \leq p < \infty , be the
multiplication operator, defined as

Ma(b) := ab.(1.4)

We have the following definition adapted from [29].

Definition 1.6. The operator Ma given in (1.4) is cyclic if there exists an
Lp-function b such that Lp

C(a, b) = Lp(\Sigma ,C). Any such b is a cyclic function of Ma.

Denote by \iota : \Sigma \rightarrow C the identity function, i.e., \iota (\sigma ) := \sigma for all \sigma \in \Sigma . It is known
[3, 29] that M\iota is a cyclic operator. However, it remains largely open what types
of b \in Lp(\Sigma ,C) can be cyclic functions of M\iota . A necessary and sufficient condition
has recently been obtained in [11, Proposition 7], which was built upon results in
[25, 29]. Our contribution to this area is formulated in the following result, which is
an immediate consequence of Theorem 1.5.

Corollary 1.7. Let \Sigma be a compact subset of C and \iota : \Sigma \rightarrow C be the identity
function. Suppose that b \in Lp(\Sigma ,C), for 2\leq p <\infty , is a cyclic function of M\iota ; then,
b cannot be real-analytic at any point in the interior of \Sigma .

1.5. Organization of the paper. The remainder of the paper is devoted to
the proof of Theorem 1.2. The proof is divided into three parts:

In section 2, we present preliminary results that can moderately reduce the com-
plexity of controllability analysis for system (1.3). By the end of section 2, we will
be able to focus only on L2-controllability of complex linear ensemble systems over
closed, d-dimensional balls.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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CONTROLLABILITY ISSUES OF LINEAR ENSEMBLE SYSTEMS 2429

In section 3, we introduce a special class of (complex) linear ensemble systems,
termed elementary forms. Each elementary form is a scalar complex linear ensemble
system whose parameterization space is a closed two-dimensional disk. Moreover,
the A-matrix, now being a scalar, is the identity function and the B-matrix, now
being a row vector, is real-analytic. We show that every elementary form is not
L2-controllable.

In section 4, we bridge the gap between L2-controllability of elementary forms
and L2-controllability of general linear ensemble systems (1.3). The analysis will be
carried out by a sequence of reductions on both state spaces of individual systems
and parameterization spaces. After these reductions, we will be able to focus only on
scalar complex linear ensemble systems over two-dimensional disks. These systems
will be further translated into the elementary forms with controllability properties
preserved. All the arguments then form a complete proof of Theorem 1.2.

1.6. Notations. For a complex number z = x+iy, let \=z = x - iy be the complex
conjugate of z. The polar representation of z is given by z = re\mathrm{i}\theta , where r \geq 0 and

\theta \in [ - \pi ,\pi ). If Z is a complex matrix, then Z is entrywise, and we let Z\dagger :=Z
\top 
.

Let S be a subset of Cn. A function f : S\rightarrow Cn is said to be Ck for k \geq 0, real-
analytic, or holomorphic if it can be extended to a Ck, real-analytic, or holomorphic
function on an open set S\prime that contains S (if S is open, then S\prime can simply be S).

Throughout the paper, we use \iota S : S \rightarrow S to denote the identity function, i.e.,
\iota S(x) = x for all x \in S. We let 1S : S \rightarrow R be the constant function that takes
value one everywhere, i.e., 1S(x) = 1 for all x \in S. For ease of notation, we will omit
sometimes the subindex S and simply write \iota and 1.

Let S be a Lebesgue measurable subset of Rn. Let f1 and f2 be two complex,
vector-valued, square-integrable functions defined on S. We define the inner product
of f1 with f2 as \langle f1, f2\rangle S :=

\int 
S
f\dagger 1 (\sigma )f2(\sigma )d\sigma . Note that \langle f1, f2\rangle S = \langle f2, f1\rangle S . We will

omit the subindex S if it does not cause any confusion.

2. Preliminary results. In this section, we will (1) establish equivalence of con-
trollability for real and complex linear ensemble systems; (2) compare Lp-controllability
for different values of p; and (3) introduce ensemble systems obtained by pullbacks
and relate controllability properties of these systems to those of the original ones
(1.3). The results are formulated as Lemmas 2.1--2.4 and presented in the subsequent
subsections.

2.1. Controllability of real and complex ensembles. As indicated at the
beginning of subsection 1.3, the field F can be either R or C. When F = C (resp.,
F = R), we call system (1.3) a complex (resp. real) linear ensemble system. Since
R\subset C, the pair (A,B) associated with a complex linear ensemble system can be real,
matrix-valued functions (but the control input u(t) can be valued in Cm).

We have the following result.

Lemma 2.1. There is a complex Lp-controllable linear ensemble system if and
only if there is a real Lp-controllable one.

Proof. If system (1.3) is real and Lp-controllable, then it is known (see, e.g., [11,
Lemma 1] and [12]) that the same pair (A,B) yields a complex, Lp-controllable linear
ensemble system. We now assume that system (1.3) is complex and Lp-controllable.
We show below that its realification is Lp-controllable. First, decompose A=A1+iA2

and B = B1 + iB2 into real and imaginary parts. The realification of (1.3) is then a
2n-dimensional real linear ensemble system given as follows:
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2430 XUDONG CHEN\biggl[ 
\.x1(t, \sigma )
\.x2(t, \sigma )

\biggr] 
=

\biggl[ 
A1(\sigma )  - A2(\sigma )
A2(\sigma ) A1(\sigma )

\biggr] \biggl[ 
x1(t, \sigma )
x2(t, \sigma )

\biggr] 
+

\biggl[ 
B1(\sigma )  - B2(\sigma )
B2(\sigma ) B1(\sigma )

\biggr] \biggl[ 
u1(t)
u2(t)

\biggr] 
.(2.1)

The correspondence between (1.3) and (2.1) is straightforward: The two n-dimensional
substates x1(t, \sigma ) and x2(t, \sigma ) in (2.1) correspond to the real and imaginary parts, re-
spectively, of x(t, \sigma ) in (1.3). The same holds for u1(t) and u2(t), i.e., they are real
and imaginary parts of u(t) in (1.3). We conclude from Definition 1.1 that if the linear
complex ensemble system (1.3) is Lp-controllable, then so is its realification (2.1).

In the following, we will let F=C, i.e., we will consider complex linear ensemble
systems. The choice is made for ease of analysis. For ease of notation, we will simply
write Lp(A,B) by omitting its subindex C.

2.2. Comparison between different notions of controllability. We have
the following result that compares Lp-controllability for different values of p.

Lemma 2.2. If system (1.3) is Lp-controllable and if 1 \leq q < p \leq \infty , then the
system is also Lq-controllable.

Proof. First, note that Lp(\Sigma ,Cn) is a subset of Lq(\Sigma ,Cn); indeed, by H\"older's

inequality, we have that \| f\| \mathrm{L}q \leq \| f\| \mathrm{L}p vol(\Sigma )
1
q - 

1
p for any f \in Lp(\Sigma ,Cn), where vol(\Sigma )

is the volume of \Sigma . It follows that \| f\| \mathrm{L}q is finite and, hence, f \in Lq(\Sigma ,Cn). By the
same argument, we know that Lq(A,B) contains Lp(A,B) as a subset. Because system
(1.3) is Lp-controllable, by Lemma 1.4, Lp(A,B) (and, hence, Lq(A,B)) contains
C0(\Sigma ,Cn) as a subset. Since \Sigma is compact, C0(\Sigma ,Cn) is dense in Lq(\Sigma ,Cn) with
respect to the Lq-norm. Finally, note that Lq(A,B) is closed, so Lq(A,B) = Lq(\Sigma ,Cn).
By Lemma 1.4, system (1.3) is Lq-controllable.

By Lemma 2.2, if system (1.3) is not L2-controllable, then it cannot be Lp-
controllable for all p \geq 2. Thus, to prove Theorem 1.2, it suffices to prove it for
the case where p = 2. Because of this, we assume, in the following, that p = 2. For
ease of notation, we will write L(A,B) := L2(A,B) by omitting the sup-index. We
will also omit, on occasions, the prefix ``L2-"" for controllability. For example, we will
write controllable subspace instead of L2-controllable subspace.

2.3. Pullbacks by embeddings and subensembles. In this subsection, we
assume that \Sigma contains an open set U in Rd. Let \Sigma \prime be a closed, d-dimensional ball
(or a rectangle) in Rd. Let \varphi : \Sigma \prime \rightarrow U be a C1-embedding, i.e., \varphi is a C1-map, with
C1-extension to an open neighborhood of \Sigma \prime , such that the extended map \varphi has a
C1-inverse. Let A\prime : \Sigma \prime \rightarrow Cn\times n and B\prime : \Sigma \prime \rightarrow Cn\times m be defined as A\prime := A \cdot \varphi and
B\prime :=B \cdot \varphi . We consider the following ensemble system,

\.x\prime (t, \sigma \prime ) =A\prime (\sigma \prime )x\prime (t, \sigma \prime ) +B\prime (\sigma \prime )u\prime (t) for all \sigma \prime \in \Sigma \prime ,(2.2)

and have the following definition.

Definition 2.3. System (2.2) is the pullback of system (1.3) by \varphi . In the case
\varphi : \Sigma \prime \rightarrow U is an inclusion map we call system (2.2) a subensemble or, more explicitly,
subensemble-\Sigma \prime of system (1.3).

The following result relates controllability of system (1.3) to controllability of its
pullback (2.2) (a similar result is obtained in [11, Lemma 1] with \varphi an inclusion map).

Lemma 2.4. If system (2.2) is not controllable, then neither is system (1.3).

Proof. Assuming that system (2.2) is not controllable, we will show that there
exist a function f \in L2(\Sigma ,Cn) and an \epsilon > 0 such that f is at least \epsilon -away from L(A,B).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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CONTROLLABILITY ISSUES OF LINEAR ENSEMBLE SYSTEMS 2431

For any given \sigma \prime \in \Sigma \prime , we let d\varphi \sigma \prime :Rd \rightarrow Rd be the derivative of \varphi at \sigma \prime . Because
\varphi is an embedding, d\varphi \sigma \prime is a linear isomorphism. Thus, det(d\varphi \sigma \prime ) is nonzero. Since
\varphi is C1 and since \Sigma \prime is compact, there exist positive numbers \kappa 0 and \kappa 1 such that
\kappa 0 \leq | det(d\varphi \sigma \prime )| \leq \kappa 1 for all \sigma \prime \in \Sigma \prime .

Since system (2.2) is not controllable, by Lemma 1.4, L(A\prime ,B\prime ) is a proper sub-
space of L2(\Sigma \prime ,Cn). Thus, there exist a function f \prime \in L2(\Sigma \prime ,Cn) and an \epsilon \prime > 0 such
that f \prime is at least \epsilon \prime -away from L(A\prime ,B\prime ). Now, let f : \Sigma \rightarrow Cn be defined as follows:

f(\sigma ) :=

\biggl\{ 
f \prime (\sigma \prime ) if \sigma =\varphi (\sigma \prime ) for some \sigma \prime \in \Sigma \prime ,
0 otherwise.

It follows from computation that \| f\| \mathrm{L}2 \leq \kappa 1\| f \prime \| \mathrm{L}2 , so f \in L2(\Sigma ,Cn).
Given an arbitrary g in L(A,B), let g\prime : \Sigma \prime \rightarrow Cn be defined as g\prime (\sigma \prime ) := g(\varphi (\sigma \prime )).

It should be clear that g\prime \in L(A\prime ,B\prime ). Moreover, we have that

\| g - f\| 2\mathrm{L}2 \geq \| (g - f)| \varphi (\Sigma \prime )\| 2\mathrm{L}2 \geq \kappa 0\| g\prime  - f \prime \| 2\mathrm{L}2 \geq \kappa 0\epsilon 
\prime 2.

Thus, f is at least
\surd 
\kappa 0\epsilon 

\prime -away from L(A,B), which implies that L(A,B) is a proper
subspace of L2(\Sigma ,Cn). Thus, by Lemma 1.4, (A,B) is not controllable.

If A and B are real-analytic at a point \sigma 0 \in U , then they are real-analytic over
an open neighborhood of \sigma 0, and any such open neighborhood contains a closed d-
dimensional ball. Thanks to Lemma 2.4, we can now focus on the case where \Sigma is
itself a closed d-dimensional ball and, moreover, A : \Sigma \rightarrow Cn\times n and B : \Sigma \rightarrow Cn\times m

are real-analytic functions. However, even for such a simplified case, the proof of
Theorem 1.2 is nontrivial.

3. Elementary forms. In this section, we focus on a special class of complex
linear ensemble systems, which we term elementary forms. Each elementary form is
a scalar ensemble system, and its parameterization space is a closed, two-dimensional
disk in R2. In the following, we identify R2 with the complex plane C, so a point
\sigma = (\sigma 1, \sigma 2) \in R2 corresponds to a complex number \sigma = \sigma 1 + i\sigma 2. Define a disk of
radius R as follows:

D0[R] := \{ \sigma \in C | | \sigma | \leq R\} .

The square bracket in D0[R] indicates that it is a closed disk and the subindex 0
indicates that the disk is centered at 0. We now have the following definition.

Definition 3.1. An elementary form is a scalar, complex linear ensemble sys-
tem:

\.x(t, \sigma ) = \sigma x(t, \sigma ) + b(\sigma )u(t) for all \sigma \in D0[R],(3.1)

where b :D0[R]\rightarrow C1\times m is an arbitrary real-analytic, vector-valued function.

The goal of the section is to establish the following result.

Theorem 3.2. Every elementary form (3.1) is not L2-controllable.

3.1. Outline of proof. By Lemma 1.4, Theorem 3.2 will be established if we
can show that L(\iota , b) is a proper subspace of L2(D0[R],C), where \iota denotes the iden-
tity function on D0[R]. In particular, if there exists a nonzero f0 \in L2(D0[R],C)
perpendicular to every subspace L(\iota , bi) for i = 1, . . . ,m, then f0 is perpendicular to
L(\iota , b), which implies that L(\iota , b)( L2(D0[R],C).
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2432 XUDONG CHEN

The above arguments indicate that one can translate the L2-controllability prob-
lem for elementary forms into the following intersection problem: Given finitely, but
arbitrarily, many real-analytic functions bi :D0[R]\rightarrow C for i= 1, . . . ,m, is the intersec-
tion \cap m

i=1L
\bot (\iota , bi) always nontrivial, where L\bot (\iota , bi) is the subspace of L2(D0[R],C)

perpendicular to L(\iota , bi)? We show that the answer is affirmative; we borrow a termi-
nology from topology and call such a property the finite intersection property. This
property will be formulated as a theorem, Theorem 3.9, in subsection 3.4.

The proof of existence of a desired f0 is constructive, and it will take several steps.
First, we use polar coordinates (i.e., \sigma = re\mathrm{i}\theta ) to express each bi as a doubly infinite
series bi(r, \theta ) =

\sum \infty 
k= - \infty \rho i,k(r)e

\mathrm{i}k\theta . Similarly, we write f0(r, \theta ) =
\sum \infty 

k= - \infty \rho 0,k(r)e
\mathrm{i}k\theta .

We call \rho 0,k the radius components of f0 and require that they satisfy certain condi-
tions introduced in Definition 3.5 so that the series f0 is uniformly and exponentially
convergent. Since f0 is uniquely determined by its radius components (and vice versa),
to construct f0, it suffices to construct \rho 0,k. We do so by first establishing a necessary
and sufficient condition on \rho 0,k, termed the null condition, for the resulting series f0
to be perpendicular to every L(\iota , bi) for i = 1, . . . ,m. This is done in subsection 3.5.
Then, in subsection 3.6, we exhibit appropriate \rho 0,k that satisfy the null condition
and render f0(r, \theta ) =

\sum \infty 
k= - \infty \rho 0,k(r)e

\mathrm{i}k\theta a desired convergent series.
It is worth pointing out that the analysis outlined above will be carried out on a

closed annulus A1 inside D0[R], rather than the disk D0[R] itself. Specifically, we re-
strict each bi to A1, and construct a nonzero f0 on A1 perpendicular to every subspace
L(\iota A1

, bi| A1
). One then extends f0 to a nonzero function \~f0 \in L2(D0[R],C) simply by

letting \~f0 be identically 0 on D0[R]\setminus A1; it should be clear that \~f0 is perpendicular to
the subspaces L(\iota , bi). The reason for performing the above-mentioned restriction on
the domain (from D0[R] to A1) is that by our construction, the radius components
\rho 0,k of f0 will take the form \rho 0,k(r) = qk(r)r

 - k, where qk are polynomials with degrees
less than or equal to 2m (their expressions will be given in (3.30), subsection 3.6).
Thus, the functions \rho 0,k(r), for k >m, may diverge as r approaches 0 and, hence, the
series f0(r, \theta ) =

\sum \infty 
k= - \infty \rho 0,k(r)e

\mathrm{i}k\theta may not be convergent for r sufficiently small.

3.2. Regularization condition. In this subsection, we introduce a condition
that regularizes the b-vector in the elementary form (3.1). We show that this condition
can be assumed for free when proving Theorem 3.2 and will be of great use in the
analysis. To state the condition, we first recall that a real-analytic function f :
D0[R]\rightarrow C can be locally represented by a convergent power series (Maclaurin series)
in \sigma and \=\sigma :

f(\sigma ) =

\infty \sum 
k=0

\infty \sum 
\ell =0

c(k, \ell )\sigma k\=\sigma \ell for all \sigma such that | \sigma | < \delta ,(3.2)

where the coefficients c(k, \ell ) are complex numbers with k and \ell indicating the powers
of \sigma and \=\sigma , respectively. The radius of convergence is defined to be the supremum of
\delta such that (3.2) holds. We now introduce the regularization condition.

Definition 3.3. A real-analytic function f : D0[R] \rightarrow C is regularized if f is
nonzero everywhere over D0[R], and the Maclaurin series of f and of f - 1 have radii
of convergence greater than R.

With the definition above, we establish the following result.

Proposition 3.4. When proving Theorem 3.2, one can assume for free that ev-
ery entry bi of the b-vector in system (3.1) is regularized.
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CONTROLLABILITY ISSUES OF LINEAR ENSEMBLE SYSTEMS 2433

Proof. We first show that the following condition can be assumed for free: Every
entry bi satisfies bi(0) \not = 0. We do so by establishing the fact that one can always con-
struct another elementary form (\iota ,\~b) with \~bi(0) \not = 0 for all i, such that uncontrollability
of (\iota ,\~b) implies uncontrollability of (\iota , b).

To this end, we choose an arbitrary real-analytic function b0 : D0[R] \rightarrow C with
b0(0) \not = 0. By concatenating b0 with the row vector b, we obtain an augmented
row vector \^b := [b0, b1, \cdot \cdot \cdot , bm]. It should be clear that L(\iota , b) \subseteq L(\iota ,\^b). Next, for
each i = 1, . . . ,m, let \~bi : D0[R] \rightarrow C be defined such that \~bi := bi + b0 if bi(0) = 0
and \~bi := bi otherwise. By construction, \~bi(0) \not = 0 for all i = 0, . . . ,m. Now, let
\~b := [\~b0, . . . ,\~bm]. Since each \~bi is a linear combination of the bi and vice versa, we
have that L(\iota ,\^b) = L(\iota ,\~b). It then follows that L(\iota , b) \subseteq L(\iota ,\~b). Thus, if (\iota ,\~b) is not
controllable, then neither is (\iota , b).

By the above arguments, we can now assume that bi(0) \not = 0 for all i. Because b
is continuous and because each bi(0) is nonzero, there is a radius R\prime with 0<R\prime \leq R,
such that bi(\sigma ) \not = 0 for all \sigma \in D0[R

\prime ] and for all i = 1, . . . ,m. Thus, bi and b
 - 1
i are

well defined on D0[R
\prime ] and are locally represented by the corresponding Maclaurin

series. By shrinking R\prime , if necessary, we can assume that R\prime is smaller than the radii
of convergence of those series. It follows that the condition given in the statement
of the proposition will be satisfied if R is replaced with R\prime . By Lemma 2.4, to show
that system (3.1) is not controllable, it suffices to show that the subensemble-D0[R

\prime ]
is not controllable. We can thus assume that the regularization condition is satisfied
without passing (3.1) to any of its subensembles. This completes the proof.

3.3. Convergent series on annulus. In this subsection, we introduce the
closed annulus A1 as indicated earlier in the outline of the proof, and a special class of
continuous functions on A1, each of which can be represented by a certain convergent
series. To this end, let R1 and R2 be positive real numbers such that 0<R1 <R2 <R.
Let A[R1,R2] be a closed annulus inside D0[R]:

A[R1,R2] := \{ \sigma \in C | R1 \leq | \sigma | \leq R2\} .(3.3)

For convenience, we use A1 :=A[R1,R2] as a short notation. To introduce the above-
mentioned continuous functions on A1, we use polar coordinates (i.e., \sigma = re\mathrm{i}\theta ).

Definition 3.5. Let \rho k : [R1,R2]\rightarrow C, for k \in Z, be continuous functions. The
following doubly infinite series f :A1 \rightarrow C,

f(r, \theta ) :=

\infty \sum 
k= - \infty 

\rho k(r)e
\mathrm{i}k\theta ,(3.4)

is uniformly and exponentially convergent (uec) if there exists a real number q > 1
such that

\infty \sum 
k= - \infty 

\| \rho k\| \mathrm{L}\infty q| k| <\infty .

We call \rho k the radius components of f .

Note that by the uniform limit theorem, each uec series is a continuous function.
Denote by K the set of all uec series:

K :=
\bigl\{ 
f \in C0(A1,C) | f is represented by a uec series

\bigr\} 
.
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2434 XUDONG CHEN

Next, we define a set of functions \eta k :K\rightarrow C0([R1,R2],C) for k \in Z, by sending
a uec series f to its radius components \rho k. The maps \eta k are explicitly given by

\eta k(f)(r) :=
1

2\pi 

\int \pi 

 - \pi 

f(r, \theta )e - \mathrm{i}k\theta d\theta for r \in [R1,R2].(3.5)

The set C0(A1,C) is an algebra (over C) with identity: Addition and multipli-
cation are pointwise, and the identity element is simply 1A1

. We have the following
result.

Proposition 3.6. The set K is a subalgebra of C0(A1,C) with identity.

Proof. It should be clear that 1A1
belongs to K and that K is a subspace of

C0(A1,C) from Definition 3.5. We show below that K is closed under multiplication.
i.e., for any two f1, f2 \in K, f1f2 \in K. To proceed, we first express f1f2 as follows:

(f1f2)(r, \theta ) =

\Biggl[ \infty \sum 
k= - \infty 

\eta k(f1)(r)e
\mathrm{i}k\theta 

\Biggr] \Biggl[ \infty \sum 
\ell = - \infty 

\eta \ell (f2)(r)e
\mathrm{i}\ell \theta 

\Biggr] 

=
\infty \sum 

k= - \infty 

\Biggl[ \infty \sum 
\ell = - \infty 

\bigl( 
\eta k - \ell (f1)\eta \ell (f2)

\bigr) 
(r)

\Biggr] 
e\mathrm{i}k\theta ,

where the second equality follows from the fact that both series
\sum \infty 

k= - \infty \eta k(f1) and\sum \infty 
\ell = - \infty \eta \ell (f2) are uniformly and absolutely convergent.
Next, for each k \in Z, let \rho k :=

\sum \infty 
\ell = - \infty \eta k - \ell (f1)\eta \ell (f2). We obtain below an

explicit upper bound for \| \rho k\| \mathrm{L}\infty . Since f1, f2 \in K, by Definition 3.5, there exist a
p > 1 and an M > 0 such that \| \eta k(fi)\| \mathrm{L}\infty p| k| <M for all k \in Z and for all i = 1,2.
Then, for any r \in [R1,R2],

\infty \sum 
\ell = - \infty 

\bigm| \bigm| \bigl( \eta k - \ell (f1)\eta \ell (f2)
\bigr) 
(r)
\bigm| \bigm| \leq \infty \sum 

\ell = - \infty 

\| \eta k - \ell (f1)\| \mathrm{L}\infty \| \eta \ell (f2)\| \mathrm{L}\infty 

<

\infty \sum 
\ell = - \infty 

M2

p| k - \ell | +| \ell | =

\biggl( 
| k| + p2 + 1

p2  - 1

\biggr) 
M2

p| k| 
.(3.6)

It now remains to show that there exists a q>1 such that
\sum \infty 

k= - \infty \| \rho k\| \mathrm{L}\infty q| k| <\infty .
By (3.6), we have that for any q \in (1, p),

\infty \sum 
k= - \infty 

\| \rho k\| \mathrm{L}\infty q| k| <
\infty \sum 

k= - \infty 

M2

\biggl( 
| k| + p2 + 1

p2  - 1

\biggr) \biggl( 
q

p

\biggr) | k| 

<\infty .

This completes the proof.

We next introduce a set P, obtained by restricting regularized, real-analytic func-
tions to the annulus A1. Specifically, let

P := \{ f | A1
| f :D0[R]\rightarrow C is real-analytic and regularized\} .(3.7)

The elements of P will be used in the next subsection to index a special class of
subspaces of L2(A1,C). We have the following result.
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CONTROLLABILITY ISSUES OF LINEAR ENSEMBLE SYSTEMS 2435

Proposition 3.7. The set P defined in (3.7) is a subset of K.

Proof. Let f :D0[R]\rightarrow C be a regularized, real-analytic function. Using the polar
coordinates, we rewrite the Maclaurin series (3.2) of f as f(r, \theta ) =

\sum \infty 
k= - \infty \rho k(r)e

\mathrm{i}k\theta ,
where \rho k : [0,R]\rightarrow C are given by the uniformly and absolutely convergent series

\rho k(r) :=
\infty \sum 
\ell =0

c

\biggl( 
\ell +

1

2
(| k| + k), \ell +

1

2
(| k|  - k)

\biggr) 
r2\ell +| k| .(3.8)

Next, let \rho \prime k := \rho k| [R1,R2] and q := R/R2 > 1. Then, using (3.8) and the fact that
r\leq R2, we have that

\infty \sum 
k= - \infty 

\| \rho \prime k\| \mathrm{L}\infty q| k| \leq 
\infty \sum 

k= - \infty 

\infty \sum 
\ell =0

\bigm| \bigm| \bigm| c\Bigl( \ell + (| k| +k)/2, \ell +
(| k|  - k)/2

\Bigr) \bigm| \bigm| \bigm| R2\ell +| k| 
2

\bigl( 
R/R2

\bigr) | k| 
\leq 

\infty \sum 
k= - \infty 

\infty \sum 
\ell =0

\bigm| \bigm| \bigm| c\Bigl( \ell + (| k| +k)/2, \ell +
(| k|  - k)/2

\Bigr) \bigm| \bigm| \bigm| R2\ell +| k| 

=

\infty \sum 
k=0

\infty \sum 
\ell =0

| c(k, \ell )| Rk+\ell .(3.9)

Since f is regularized, the radius of convergence of its Maclaurin series is greater than
R and, hence, the last expression (3.9) is bounded above.

3.4. Finite intersection property. In this subsection, we first introduce and
characterize a special class of Hilbert subspaces of L2(A1,C), indexed by elements
in P. We next formulate a theorem, Theorem 3.9, which states that intersections of
finitely, but arbitrarily, many of these subspaces are always nontrivial. Theorem 3.2
will then follow as an immediate consequence of Theorem 3.9.

Recall that \iota A1
is the identity function on A1. For ease of notation, we will omit

its subindex in the following. Let P be given as in (3.7). For any g \in P, let

Kg :=K\cap L\bot (\iota , g) =
\bigl\{ 
f \in K | \langle f, \iota kg\rangle A1 = 0, for all k\geq 0

\bigr\} 
.(3.10)

Note that the constant function 1 belongs to P (its subindex A1 has been omitted).
We characterize below the subspaces Kg.

Proposition 3.8. The following two items hold:
1. Let \eta k be defined as in (3.5). The set K1 comprises all f \in K such that\int R2

R1

\eta k(f)(r)r
k+1dr= 0 for all k\geq 0.(3.11)

2. Let g be an arbitrary element in P. Then, an f \in K belongs to Kg if and only
if there exists an f \prime \in K1 such that f = f \prime \=g - 1.

Proof. We first establish item 1. Using polar coordinates, we have that

\langle \iota k, f\rangle A1 =

\int \pi 

 - \pi 

\int R2

R1

\infty \sum 
\ell = - \infty 

\eta \ell (f)(r)r
k+1e\mathrm{i}(\ell  - k)\theta drd\theta .(3.12)

Since f \in K, there exists an M > 0 such that
\sum \infty 

\ell = - \infty \| \eta \ell (f)\| \mathrm{L}\infty <M and, hence,

\infty \sum 
\ell = - \infty 

| \eta \ell (f)(r)rk+1e\mathrm{i}(\ell  - k)\theta | <Rk+1
2 M for all r \in [R1,R2].
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2436 XUDONG CHEN

By the dominated convergence theorem, we can switch the order of integrals and sum
in (3.12) and obtain that

\langle \iota k, f\rangle A1
=

\infty \sum 
\ell = - \infty 

\int R2

R1

\int \pi 

 - \pi 

\eta \ell (f)(r)r
k+1e\mathrm{i}(\ell  - k)\theta d\theta dr= 2\pi 

\int R2

R1

\eta k(f)(r)r
k+1dr.

Thus, \langle \iota k, f\rangle A1
= 0 if and only if (3.11) holds. This establishes item 1.

We next establish item 2. First, for any f \in Kg, we let f \prime := f\=g and show that
f \prime \in K1. Since g \in P, its complex conjugation \=g also belongs to P and, hence, to K

by Proposition 3.7. By Proposition 3.6, K is closed under multiplication, so f \prime \in K.
Moreover,

\langle f \prime , \iota k\rangle A1
= \langle f\=g, \iota k\rangle A1

= \langle f, \iota kg\rangle A1
= 0,(3.13)

which implies that f \prime \in K1. Conversely, for any f \prime \in K1, let f := f \prime \=g - 1. Since g \in P,
g is regularized and, hence, g - 1 belongs to P. By the same arguments, f \in K. Using
again (3.13), we conclude that f \in Kg. This establishes item 2.

It should be clear that for any g \in P, Kg is nontrivial, i.e., it contains nonzero
elements. Indeed, for the special case g= 1, the functions \iota k, for k\geq 1, belong to K1.
Then, by item 2 of Proposition 3.8, Kg is nontrivial for all g \in P. The following result
shows that the intersection of finitely, but arbitrarily many, Kg is also nontrivial.

Theorem 3.9. Let A1 = A[R1,R2] be the closed annulus in D0[R] defined in
(3.3) and P be defined in (3.7). For each g \in P, let Kg be defined in (3.10). Suppose
that R1R>R

2
2; then, for any finite set \{ g1, . . . , gm\} out of P, \cap m

i=1Kgi is nontrivial.

We call the property described in the above theorem the finite intersection prop-
erty. Theorem 3.2 then follows as an immediate consequence of Theorem 3.9.

Proof of Theorem 3.2. Let b1, . . . , bm be the m entries of the b-vector of system
(3.1). By Proposition 3.4, we can assume for free that each bi is regularized. Let
gi := bi| A1

for all i = 1, . . . ,m, then, gi \in P. By Theorem 3.9, there is a nonzero
f0 \in \cap m

i=1Kgi . By definition (3.10) of Kgi , f0 is perpendicular to L(\iota , g), where
g := [g1, . . . , gm]. We then extend f0 to a nonzero function \~f0 \in L2(D0[R],C) by
setting \~f(\sigma ) := 0 for all \sigma \in D0[R]\setminus A1. By construction, \~f0 is perpendicular to L(\iota , b).
We then conclude from Lemma 1.4 that the pair (\iota , b) is not L2-controllable.

The remainder of the section is devoted to the proof of Theorem 3.9. We will
show that there exist a nonzero f0 \in K and m functions f1, . . . , fm \in K1 such that

f0\=gi = fi for all i= 1, . . . ,m.(3.14)

Note that if (3.14) holds, then f0 = fi\=g
 - 1
i for all i = 1, . . . ,m. By Proposition 3.8,

f0 \in \cap m
i=1Kgi , i.e., Theorem 3.9 is established.

3.5. Null condition. In this subsection, we establish a necessary and sufficient
condition, termed null condition, for two functions f, g \in K to satisfy fg \in K1. Recall
that R1 and R2 are the inner- and outer-radii of the annulus A1. For convenience, let
s1 :=R2

1 and s2 :=R2
2. Using the functions \eta k defined in (3.5), we introduce another

set of functions \xi k :K\rightarrow C0([s1, s2],C) for k \in Z. For any f \in K, let \xi k(f) : [s1, s2]\rightarrow C
be defined as follows:

\xi k(f)(s) := \eta k(f)(
\surd 
s)s

k
2 =

1

2\pi 

\int \pi 

 - \pi 

f(
\surd 
s, \theta )e - \mathrm{i}k\theta d\theta s

k
2 .(3.15)

To introduce the null condition, we first have the following result.
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CONTROLLABILITY ISSUES OF LINEAR ENSEMBLE SYSTEMS 2437

Proposition 3.10. Let \xi k be defined as in (3.15). Then, for any f, g \in K,\int R2

R1

\eta k(fg)(r)r
k+1dr=

1

2

\infty \sum 
\ell = - \infty 

\bigl\langle 
\=\xi \ell (f), \xi k - \ell (g)

\bigr\rangle 
for all k \in Z.(3.16)

Proof. First, note that \eta k(fg) =
\sum \infty 

\ell = - \infty \eta \ell (f)\eta k - \ell (g); the series is uniformly and
absolutely convergent as shown in the proof of Proposition 3.6. It then follows that\int R2

R1

\eta k(fg)(r)r
k+1dr=

\int R2

R1

\infty \sum 
\ell = - \infty 

\bigl( 
\eta \ell (f)\eta k - \ell (g)

\bigr) 
(r)rk+1dr

=
\infty \sum 

\ell = - \infty 

\int R2

R1

\bigl( 
\eta \ell (f)\eta k - \ell (g)

\bigr) 
(r)rk+1dr,(3.17)

where the last equality follows from the dominated convergence theorem. From (3.15),
we have that

\eta \ell (f)(r) = \xi \ell (f)(r
2)r - \ell and \eta k - \ell (g)(r) = \xi k - \ell (g)(r

2)r\ell  - k.

Using the above two expressions and changing variable s := r2, we obtain that\int R2

R1

\bigl( 
\eta \ell (f)\eta k - \ell (g)

\bigr) 
(r)rk+1dr=

1

2

\int s2

s1

\bigl( 
\xi \ell (f)\xi k - \ell (g)

\bigr) 
(s)ds.(3.18)

By (3.17) and (3.18), we conclude that (3.16) holds.

The next result is then an immediate consequence of Propositions 3.8 and 3.10.

Corollary 3.11. Let f, g \in K. Then, fg belongs to K1 if and only if

\infty \sum 
\ell = - \infty 

\bigl\langle 
\=\xi \ell (f), \xi k - \ell (g)

\bigr\rangle 
= 0 for all k\geq 0.(3.19)

We call (3.19) the null condition.

3.6. Proof of Theorem 3.9. To establish Theorem 3.9, it suffices to show that
for any finite subset \{ g1, . . . , gm\} of P, there exists a nonzero f0 \in K such that the
null condition (3.19) is satisfied, with f replaced by f0 and g replaced by gi, for
all i = 1, . . . ,m. We address this existence problem by formulating and solving a
homogeneous linear equation (see (3.28), Lemma 3.13) over an appropriate ring of
the Laurent series (introduced soon in (3.20)). The relation between the two problem
formulations is that the existence of a nontrivial solution to the homogeneous linear
equation implies the existence of a desired f0. The remainder of this subsection is
thus organized as follows: We will first introduce the ring, denoted by H, and a set of
functions \phi n :H\rightarrow P for n\geq 0, which will enable the formulation of the homogeneous
linear equation. Next, we will demonstrate that there exists a nontrivial solution to
the linear equation and, moreover, use that solution to construct f0. Finally, we will
show in Proposition 3.15 that such an f0, together with the gi, satisfies (3.19).

3.6.1. The associated Laurent series. Let A2 :=A[R
2
2/R,R] be a closed annu-

lus in D0[R], with inner- and outer-radii being R2
2/R and R, respectively. We assume

in the following that RR1 >R
2
2, which is the hypothesis of Theorem 3.9. Define

H := \{ h :A2 \rightarrow C | h is holomorphic on A2\} .(3.20)
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2438 XUDONG CHEN

Let P be defined as in (3.7). We construct below a set of functions \phi n : P \rightarrow H for
all integers n\geq 0. To this end, let \{ pn\} \infty n=0 be an orthonormal basis of L2([s1, s2],C).
We will assume that every pn is a polynomial of degree n with real coefficients. Such
a basis can be obtained, for example, from the monomials \{ sn\} n\geq 0 by applying the
Gram--Schmidt process. Now, for each n \geq 0 and for any given g \in P, we define a
Laurent series \phi n(g) as follows:

\phi n(g)(z) :=
\infty \sum 

k= - \infty 

\langle pn, \xi  - k(g)\rangle zk,(3.21)

where functions \xi k are defined in (3.15). We now show that the images of \phi n, for
n\geq 0, are indeed subsets of H.

Proposition 3.12. For any g \in P and for any n\geq 0, \phi n(g)\in H.

Proof. Since g \in P, there is a regularized, real-analytic function g\prime : D0[R] \rightarrow C
such that g= g\prime | A1

. We express g\prime using its Maclaurin series as follows:

g\prime (\sigma ) =
\infty \sum 
k=0

\infty \sum 
\ell =0

c\prime (k, \ell )\sigma k\=\sigma \ell ,(3.22)

where c\prime (k, \ell ) \in C. By Definition 3.3, the radius of convergence of the above series is
greater than R. Thus, there exists an \epsilon > 0 such that

\infty \sum 
k=0

\infty \sum 
\ell =0

| c\prime (k, \ell )| (R+ \epsilon )k+\ell <\infty .(3.23)

We show below that for the given \epsilon , the Laurent series \phi n(g), for any n \geq 0, con-
verges uniformly and absolutely on the closed annulus A\prime 

2 :=A[R
2
2/(R+\epsilon ),R+\epsilon ], which

contains A2 as a proper subset.
First, note that for any z \in A\prime 

2 and for any k \in Z,

| z| k \leq max

\biggl\{ 
(R+ \epsilon )k,

R2k
2

(R+ \epsilon )k

\biggr\} 
=

(R+ \epsilon )| k| 

R
| k|  - k
2

.(3.24)

Also, note that

| \langle pn, \xi  - k(g)\rangle | \leq (s2  - s1)\| pn\| \mathrm{L}\infty \| \xi  - k(g)\| \mathrm{L}\infty .(3.25)

Since pn is a polynomial and \xi  - k(g) is continuous (both are defined over [s1, s2]), we
have that \| pn\| \mathrm{L}\infty and \| \xi  - k(g)\| \mathrm{L}\infty are finite. Then, using (3.24) and (3.25), we obtain
that for any z \in A\prime 

2,

\infty \sum 
k= - \infty 

| \langle pn, \xi  - k(g)\rangle | | z| k \leq (s2  - s1)\| pn\| \mathrm{L}\infty 

\infty \sum 
k= - \infty 

\| \xi  - k(g)\| \mathrm{L}\infty 
(R+ \epsilon )| k| 

R
| k|  - k
2

.(3.26)

We now show that the infinite sum on the right-hand side of (3.26) is bounded.
To proceed, we first obtain an upper bound for \| \xi  - k(g)\| \mathrm{L}\infty . From (3.15), we have

that \xi  - k(g)(s) = \eta  - k(g)(
\surd 
s)s - 

k/2 . We can express \eta  - k(g) using the coefficients c\prime (\cdot , \cdot )
in the Maclaurin series (3.22) of g\prime as follows:

\eta  - k(g)(r) =

\infty \sum 
\ell =0

c\prime 
\Bigl( 
\ell + (| k|  - k)/2, \ell +

(| k| +k)/2

\Bigr) 
r2\ell +| k| .
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CONTROLLABILITY ISSUES OF LINEAR ENSEMBLE SYSTEMS 2439

It then follows that

\xi  - k(g)(s) =
\infty \sum 
\ell =0

c\prime 
\Bigl( 
\ell + (| k|  - k)/2, \ell +

(| k| +k)/2

\Bigr) 
s\ell +

1
2 (| k|  - k).

Because s\in [R2
1,R

2
2] and R2 <R, we obtain that

\| \xi  - k(g)\| \mathrm{L}\infty \leq 
\infty \sum 
\ell =0

\bigm| \bigm| \bigm| c\prime \Bigl( \ell + (| k|  - k)/2, \ell +
(| k| +k)/2

\Bigr) \bigm| \bigm| \bigm| (R+ \epsilon )2\ell R
| k|  - k
2 .(3.27)

With (3.27), we can now provide an upper bound for the infinite sum on the
right-hand side of (3.26):

\infty \sum 
k= - \infty 

\| \xi  - k(g)\| \mathrm{L}\infty 
(R+ \epsilon )| k| 

R
| k|  - k
2

\leq 
\infty \sum 

k= - \infty 

\infty \sum 
\ell =0

\bigm| \bigm| \bigm| c\prime \Bigl( \ell + (| k|  - k)/2, \ell +
(| k| +k)/2

\Bigr) \bigm| \bigm| \bigm| (R+ \epsilon )2\ell +| k| 

=
\infty \sum 
k=0

\infty \sum 
\ell =0

| c\prime (k, \ell )| (R+ \epsilon )k+\ell <\infty ,

where the last inequality follows from (3.23). This completes the proof.

3.6.2. Construction of \bfitf 0 \in K. We now introduce the aforementioned homo-
geneous linear equation and argue that it has a nontrivial solution.

Lemma 3.13. There exist \psi 0, . . . ,\psi m \in H, with at least one nonzero \psi i, such that
the following holds:

m\sum 
n=0

\phi n(\=gi)\psi n = 0 for all i= 1, . . . ,m.(3.28)

Proof. The m equations in (3.28), indexed by i = 1, . . . ,m, form an underdeter-
mined system, with (m + 1) unknowns \psi 0, . . . ,\psi m. Since H is an integral domain,
such a system has a nonzero solution.

Let the Laurent expansions of \psi n, for n= 0, . . . ,m, be given by

\psi n(z) =
\infty \sum 

k= - \infty 

\alpha n,kz
k.(3.29)

Using the coefficients \alpha n,k in (3.29), we define functions \rho 0,k : [R1,R2]\rightarrow C, for k \in Z,
as follows:

\rho 0,k(r) :=
m\sum 

n=0

\alpha n, - kpn(r
2)r - k,(3.30)

where we recall that each pn is a polynomial of degree n with real coefficients, and
that \{ pn\} n\geq 0 is an orthonormal basis of L2([s1, s2],C). Further, we set

f0(r, \theta ) :=
\infty \sum 

k= - \infty 

\rho 0,k(r)e
\mathrm{i}k\theta .(3.31)

We now establish the following result.

Proposition 3.14. The function f0 defined above is a nonzero element in K.
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2440 XUDONG CHEN

Proof. We first show that f0 \in K and, then, show that f0 is nonzero. Since
r \in [R1,R2], we obtain from (3.30) that

\| \rho 0,k\| \mathrm{L}\infty \leq 
\Bigl( 

m
max
n=0

\| pn\| \mathrm{L}\infty 

\Bigr) \Bigl( 
2

max
i=1

R - k
i

\Bigr) m\sum 
n=0

| \alpha n, - k| for all k \in Z.

It follows that for any q > 1,

\infty \sum 
k= - \infty 

\| \rho 0,k\| \mathrm{L}\infty q| k| (3.32)

\leq 
\Bigl( 

m
max
n=0

\| pn\| \mathrm{L}\infty 

\Bigr) m\sum 
n=0

\infty \sum 
k=0

\Bigl( 
| \alpha n,k| (qR2)

k + | \alpha n, - k| (q/R1
)
k
\Bigr) 
.

We exhibit below a q > 1 such that the right-hand side of (3.32) is bounded.
Since each \psi n(z) =

\sum \infty 
k= - \infty \alpha n,kz

k, for n = 0, . . . ,m, is holomorphic on A2 =

A[R
2
2/R,R], it is absolutely convergent on the inner- and outer-circles of the annulus.

It follows that for all n= 0, . . . ,m and for all k\geq 0,

\infty \sum 
k=0

| \alpha n,k| 
\Bigl( 
R/R2

2

\Bigr) k
<\infty and

\infty \sum 
k=0

| \alpha n, - k| Rk <\infty .(3.33)

Now, set q := RR1/R2
2
. By the hypothesis, RR1 >R

2
2, so q > 1. It follows that

\infty \sum 
k=0

\Bigl( 
| \alpha n,k| (qR2)

k + | \alpha n, - k| (q/R1
)
k
\Bigr) 
=

\infty \sum 
k=0

\biggl( 
| \alpha n,k| 

\bigl( 
RR1/R2

\bigr) k
+ | \alpha n, - k| 

\Bigl( 
R/R2

2

\Bigr) k\biggr) 
\leq 

\infty \sum 
k=0

\biggl( 
| \alpha n,k| Rk + | \alpha n, - k| 

\Bigl( 
R/R2

2

\Bigr) k\biggr) 
<\infty ,

where the first inequality follows from the fact that R1 <R2 (and, hence,
RR1/R2 <R)

and the last inequality follows from (3.33). Because the above holds for all n =
0, . . . ,m, the right-hand side of (3.32) is bounded above.

It now remains to show that f0 is nonzero. Note that

\| f0\| 2\mathrm{L}2 = 2\pi 

\infty \sum 
k= - \infty 

\int R2

R1

| \rho 0,k(r)| 2rdr.

Thus, it suffices to show that there exists at least one nonzero \rho 0,k for some k \in Z.
By Lemma 3.13, there exists an \psi n\prime , for some n\prime \in \{ 0, . . . ,m\} , such that \psi n\prime \not = 0. It
follows from the Laurent expansion (3.29) that there exists an \alpha n\prime ,k\prime , for some k\prime \in Z,
such that \alpha n\prime ,k\prime \not = 0. We claim that \rho 0, - k\prime \not = 0. To see this, note that\int R2

R1

\rho 0, - k\prime (r)pn\prime (r2)r1 - k\prime 
dr=

m\sum 
n=0

\alpha n,k\prime \langle pn, pn\prime \rangle = \alpha n\prime ,k\prime \not = 0.

This completes the proof.

3.6.3. Proof that \bfitf 0\=\bfitg \bfiti \in K1 for all \bfiti = 1, . . . ,\bfitm . By Corollary 3.11, to show
that f0\=gi \in K1, it suffices to establish the following result.
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CONTROLLABILITY ISSUES OF LINEAR ENSEMBLE SYSTEMS 2441

Proposition 3.15. For the given gi and for f0 defined above,
\infty \sum 

\ell = - \infty 

\langle \=\xi \ell (f0), \xi k - \ell (\=gi)\rangle = 0 for all k\geq 0 and for all i= 1, . . . ,m,(3.34)

where \xi k are defined in (3.15).

Proof. It should be clear from Proposition 3.14 that the radius components of
f0 are given by \eta \ell (f0) = \rho 0,\ell , where \rho 0,\ell for \ell \in Z are defined in (3.30). Since
\xi \ell (f0)(s) = \eta \ell (f0)(

\surd 
s)s\ell /2, we obtain that

\xi \ell (f0)(s) =
m\sum 

n=0

\alpha n, - \ell pn(s).(3.35)

Next, for convenience, we introduce for each \=gi the following complex numbers:

\beta n,k(\=gi) := \langle pn, \xi  - k(\=gi)\rangle for all n\geq 0 and for all k \in Z.(3.36)

By (3.21), these numbers are the coefficients in the Laurent expansions of \phi n(\=gi), i.e.,

\phi n(\=gi) =
\infty \sum 

k= - \infty 

\beta n,k(\=gi)z
k.(3.37)

Since \{ pn\} n\geq 0 is an orthonormal basis of L2([s1, s2],C), we can thus express \xi k - \ell (\=gi)
in the L2-sense as follows:

\xi k - \ell (\=gi) =
\infty \sum 

n=0

\beta n,\ell  - k(\=gi)pn.(3.38)

Using the two expressions (3.35) and (3.38) and, again, the fact that \{ pn\} n\geq 0 is an
orthonormal basis, we obtain that

\langle \=\xi \ell (f0), \xi k - \ell (\=gi)\rangle =
m\sum 

n=0

\alpha n, - \ell \beta n,\ell  - k(\=gi).(3.39)

Thus, (3.34) holds if and only if
\infty \sum 

\ell = - \infty 

m\sum 
n=0

\alpha n, - \ell \beta n,\ell  - k(\=gi) = 0 for all k\geq 0.(3.40)

Now, consider the Laurent expansions of \phi n(\=gi)\psi n, for n= 0, . . . ,m,

(\phi n(\=gi)\psi n) (z) =

\infty \sum 
k= - \infty 

\gamma n,k(\=gi)z
k.(3.41)

The Laurent expansions of \psi n and of \phi n(\=gi) are given by (3.29) and (3.37), respec-
tively. It follows that the coefficients \gamma n,k(\=gi) are given by

\gamma n,k(\=gi) =
\infty \sum 

\ell = - \infty 

\alpha n, - \ell \beta n,\ell +k(\=gi) for all k \in Z and for all n= 0, . . . ,m.

Thus, to establish (3.40), it suffices to show that
\sum m

n=0 \gamma n,k(\=gi) = 0 for all k\leq 0. But,
this directly follows from Lemma 3.13; indeed, by (3.28), we obtain that\Biggl( 

m\sum 
n=0

\phi n(\=gi)\psi n

\Biggr) 
(z) =

\infty \sum 
k= - \infty 

\Biggl( 
m\sum 

n=0

\gamma n,k(\=gi)

\Biggr) 
zk = 0.

If a holomorphic function is identically zero, then all of its coefficients in the associated
Laurent expansion vanish. This completes the proof.
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2442 XUDONG CHEN

4. Reductions and translations to elementary forms. In this section, we
assume that \Sigma contains an open set U in Rd with d \geq 2, and prove Theorem 1.2.
Following the results in section 2, we can assume, without loss of generality, that
A : \Sigma \rightarrow Cn\times n and B : \Sigma \rightarrow Cn\times m are real-analytic, matrix-valued functions. We will
show that the following complex linear ensemble system,

\.x(t, \sigma ) =A(\sigma )x(t, \sigma ) +B(\sigma )u(t) for all \sigma \in \Sigma ,(4.1)

is not L2-controllable. The proof relies on the fact that any such system (4.1) can be
turned into an elementary form (3.1) after a sequence of reductions and translations.

4.1. Reduction on state space. In this subsection, we perform reduction on
state spaces of individual systems. The process takes two steps: In the first step, we
find a closed, d-dimensional ball \Sigma \prime as a subset of \Sigma such that a branch of eigenvalues
of the A-matrix and its corresponding eigenspaces are real-analytic over \Sigma \prime . Thanks to
Lemma 2.4, to show that the original system is not controllable, we only need to show
that the subensemble-\Sigma \prime is not. In the second step, we translate the subensemble to a
system whose A-matrix is block upper triangular via a similarity transformation. We
then make use of such a structure and iteratively reduce the dimensions of individual
systems. The iteration terminates in finite steps and we end up with a real-analytic
scalar ensemble over the closed ball \Sigma \prime .

4.1.1. Local real-analyticity of eigenvalues and eigenspaces. Let eig(\sigma )
be the set of eigenvalues of A(\sigma ). For a given \lambda \in eig(\sigma ), let ma(\lambda ) be the algebraic
multiplicity of \lambda . Let U be the open set in Rd inside \Sigma . We then let

\lambda a \in argmin\{ ma(\lambda ) | \lambda \in eig(\sigma ) and \sigma \in U\} .

Let ka :=ma(\lambda a) and \sigma a \in U be such that \lambda a \in eig(\sigma a). Let Ua be an open neighbor-
hood of \sigma a inside U and \lambda :Ua \rightarrow C be a continuous function such that \lambda (\sigma ) \in eig(\sigma )
for all \sigma \in Ua and \lambda (\sigma a) = \lambda a (continuity of \lambda can be established via the use of
Rouch\'e's theorem). Since ma(\lambda (\sigma )) is locally nonincreasing in \sigma and attains the min-
imum value at \sigma a, one can shrink Ua, if necessary, so that ma(\lambda (\sigma )) = ka for all
\sigma \in Ua. We have the following result.

Lemma 4.1. The function \lambda :Ua \rightarrow C is real-analytic.

Proof. Consider the function h :Ua \times C\rightarrow C defined as follows:

h(\sigma , t) :=
\partial ka - 1

\partial tka - 1
det(tIn  - A(\sigma )).

It should be clear that h(\sigma , t) is a polynomial in t for any fixed \sigma . By construction of
ka and Ua, this polynomial has a simple root \lambda (\sigma ) and, hence, \partial 

\partial th(\sigma ,\lambda (\sigma )) \not = 0. The
lemma then follows from the analytic implicit function theorem.

We fix the branch of eigenvalues \lambda :Ua \rightarrow C constructed above. Let mg(\lambda (\sigma )) be
the geometric multiplicity of \lambda (\sigma ). Let

\sigma g \in argmin\{ mg(\lambda (\sigma )) | \sigma \in Ua\} and kg :=mg(\lambda (\sigma g)).

Similarly, since mg(\lambda (\sigma )) is locally nonincreasing and attains the minimum value at
\sigma g, there is an open neighborhood Ug of \sigma g inside Ua such that mg(\lambda (\sigma )) = kg for all
\sigma \in Ug. Let GL(n,C) be the set of n \times n invertible complex-valued matrices. The
following fact is well known (see [15] and references therein).
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CONTROLLABILITY ISSUES OF LINEAR ENSEMBLE SYSTEMS 2443

Lemma 4.2. If Ug is sufficiently small, then there is a real-analytic function
P :Ug \rightarrow GL(n,C) such that

P - 1AP =

\biggl[ 
\lambda Ikg

A\prime 
12

0 A\prime 
22

\biggr] 
,(4.2)

where Ikg
is the kg \times kg identity matrix.

Note that if kg = n, then P - 1AP is simply \lambda In.

4.1.2. Block upper triangular structures. Let \Sigma \prime be a closed d-dimensional
ball inside the open set Ug. For ease of notation, we will now treat A, B, and P
given in Lemma 4.2 as matrix-valued functions on \Sigma \prime . Define A\prime : \Sigma \prime \rightarrow Cn\times n and
B\prime : \Sigma \prime \rightarrow Cn\times m as

A\prime := P - 1AP and B\prime := P - 1B.

Consider the linear ensemble system given by the pair (A\prime ,B\prime ):

\.x\prime (t, \sigma ) =A\prime (\sigma )x\prime (t, \sigma ) +B\prime (\sigma )u\prime (t) for all \sigma \in \Sigma \prime .(4.3)

By construction, this system is obtained by first restricting the original system (A,B)
to \Sigma \prime and, then, applying the similarity transformation via the matrix-valued map P .
It should be clear that if (A\prime ,B\prime ) is not controllable, then neither is (A,B).

By Lemma 4.2, A\prime is block upper triangular. We will now make use of such a
structure to perform reduction on system (A\prime ,B\prime ). Consider two cases.

Case 1: kg = n. In this case, A\prime = \lambda In. It follows that the dynamics of the n
entries x\prime i(t, \sigma ) of system (4.3), for i= 1, . . . , n, are given by

\.x\prime i(t, \sigma ) = \lambda (\sigma )x\prime i(t, \sigma ) + b\prime i(\sigma )u
\prime (t) for all \sigma \in \sigma \prime ,

where b\prime i is the ith row of B\prime . Note that (A\prime ,B\prime ) is controllable only if every (\lambda , b\prime i) is.
Case 2: kg <n. In accordance with (4.2), we partition B\prime = [B\prime 

1;B
\prime 
2] and x

\prime (t, \sigma ) =
[x\prime 1(t, \sigma );x

\prime 
2(t, \sigma )]. Then, the dynamics of x\prime 2(t, \sigma ) are given by

\.x\prime 2(t, \sigma ) =A\prime 
22(\sigma )x

\prime 
2(t, \sigma ) +B\prime 

2(\sigma )u
\prime (t) for all \sigma \in \Sigma \prime .(4.4)

It should be clear that (A\prime ,B\prime ) is controllable only if (A\prime 
22,B

\prime 
2) is. System (4.4) is not

necessarily a scalar ensemble, yet the dimension of the state space of each individual
system has been reduced from n to (n - kg). Iterating this reduction process a finite
number of times, we will end up with Case 1.

The reduction on state space is now complete. It remains to show that scalar
ensemble systems over closed d-dimensional balls are not controllable.

4.2. Reduction on parameterization space. In this subsection, we let \Sigma be
a closed d-dimensional ball in Rd, and consider the following scalar ensemble system:

\.x(t, \sigma ) = a(\sigma )x(t, \sigma ) + b(\sigma )u(t) for all \sigma \in \Sigma ,(4.5)

where a : \Sigma \rightarrow C and b : \Sigma \rightarrow C1\times m are real-analytic functions. Let Rea and Ima be
the real and imaginary parts of a, respectively. Define J : \Sigma \rightarrow R2\times d as follows:

J(\sigma ) :=
\partial 

\partial \sigma 

\biggl[ 
Re a(\sigma )
Im a(\sigma )

\biggr] 
.(4.6)

Further, we let

\sigma J \in argmax\{ rankJ(\sigma ) | \sigma \in \Sigma \} and kJ := rankJ(\sigma J).

We establish below the following fact.
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2444 XUDONG CHEN

Proposition 4.3. If system (4.5) is L2-controllable, then kJ = d.

Note that by construction (4.6), the rank of J(\sigma ) is at most 2. Thus, a consequence
of the result is that system (4.5) is not controllable if d> 2.

We establish below Proposition 4.3. Because rankJ(\sigma ) is locally nondecreasing
in \sigma , there is an open neighborhood UJ of \sigma J in \Sigma such that rankJ(\sigma ) = kJ for all
\sigma \in UJ . We can assume, without loss of generality, that \sigma J and UJ are in the interior
of \Sigma . The following result is a consequence of the rank theorem [18, Theorem 4.12].

Lemma 4.4. There exist a closed neighborhood \=UF of \sigma J in UJ and a C1-
diffeomorphism

\varphi : [ - \epsilon 1, \epsilon 1]d - kJ \times [ - \epsilon 2, \epsilon 2]kJ \rightarrow \=UF

with \epsilon 1, \epsilon 2 > 0, such that for every \mu 2 \in [ - \epsilon 2, \epsilon 2]kJ , the map a \cdot \varphi is constant on the
following set:

S\mu 2
:= [ - \epsilon 1, \epsilon 1]d - kJ \times \{ \mu 2\} .

Each S\mu 2 will be referred to as a slice. For ease of notation, we let \=VF :=
[ - \epsilon 1, \epsilon 1]d - kJ \times [ - \epsilon 2, \epsilon 2]kJ and, for clarification of presentation, we use the letter \mu 
to denote a point in the closed rectangle \=VF . Let a\prime : \=VF \rightarrow C and b\prime : \=VF \rightarrow C1\times m be
defined as follows:

a\prime := a \cdot \varphi and b\prime := b \cdot \varphi .

Then, the pullback of system (4.5) by \varphi is given by

\.x\prime (t, \mu ) = a\prime (\mu )x\prime (t, \mu ) + b\prime (\mu )u\prime (t) for all \mu \in \=VF .(4.7)

With the preliminaries above, we now prove Proposition 4.3.

Proof of Proposition 4.3. By Lemma 2.4, it suffices to show that if kJ < d, then
system (4.7) is not controllable. Since kJ <d, the dimension of each slice S\mu 2

defined
in Lemma 4.4 is positive. Let b\prime i be the ith entry of the row vector b\prime and b\prime i| S\mu 2

be
the restriction of b\prime i to the slice S\mu 2 . Denote by B\mu 2 the finite-dimensional subspace of
L2(S\mu 2 ,C) spanned by b\prime 1| S\mu 2

, . . . , b\prime m| S\mu 2
. Note that dimB\mu 2 is locally nondecreasing

as a function of \mu 2 \in [ - \epsilon 2, \epsilon 2]kJ . We can assume, without loss of generality, that the
maximum value of dimB\mu 2

is achieved at \mu 2 = 0, and let m\prime := dimB0. Furthermore,
by decreasing the value of \epsilon 2, if necessary, we can assume that the first m\prime scalar
functions b\prime 1| \mu 2 , . . . , b

\prime 
m\prime | \mu 2 are linearly independent for all \mu 2 \in [ - \epsilon 2, \epsilon 2]kJ .

Denote by P\mu 2
the orthogonal projection of the Hilbert space L2(S\mu 2

,C) onto
B\bot 

\mu 2
, the subspace perpendicular to B\mu 2

. The operator can be computed explicitly:

For any h\in L2(S\mu 2
,C), we have that

P\mu 2
(h) = h - 

m\prime \sum 
i=1

ci(h)b
\prime 
i| S\mu 2

,

where the coefficients ci(h)\in C are given by\left[   c1(h)...
cm\prime (h)

\right]   :=

\left[   \langle b\prime 1| S\mu 2
, b\prime 1| S\mu 2

\rangle \cdot \cdot \cdot \langle b\prime 1| S\mu 2
, b\prime m\prime | S\mu 2

\rangle 
...

. . .
...

\langle b\prime m\prime | S\mu 2
, b\prime 1| S\mu 2

\rangle \cdot \cdot \cdot \langle b\prime m\prime | S\mu 2
, b\prime m\prime | S\mu 2

\rangle 

\right]   
 - 1\left[   \langle b\prime 1| S\mu 2

, h\rangle 
...

\langle b\prime m\prime | S\mu 2
, h\rangle 

\right]   .
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CONTROLLABILITY ISSUES OF LINEAR ENSEMBLE SYSTEMS 2445

Note that the square matrix in the above expression is Hermitian and, moreover,
positive definite because the b\prime 1| S\mu 2

, . . . , b\prime m\prime | S\mu 2
are linearly independent. Also, note

that the coefficients ci(h) are linear in h and continuous in \mu 2. Thus, P\mu 2
(h) is

continuous in both h and \mu 2.
Next, let f : \=VF \rightarrow C be a continuous function such that there exists at least one

point \mu 2 \in [ - \epsilon 2, \epsilon 2]kJ with f | S\mu 2
/\in B\mu 2 . Further, define g :

\=VF \rightarrow C as follows:

g(\mu 1, \mu 2) := P\mu 2
(f | S\mu 2

)(\mu 1, \mu 2) for all (\mu 1, \mu 2)\in \=VF ,

i.e., each g| S\mu 2
is the orthogonal projection of f | S\mu 2

to B\bot 
\mu 2
. By construction, g is

continuous and nonzero.
We show below that g is orthogonal to the controllable subspace L(a\prime , b\prime ) associ-

ated with system (4.7). By Lemma 4.4, the function a\prime takes a constant value on each
slice S\mu 2

; we denote the value by a\prime \mu 2
. Then, for any i= 1, . . . ,m and for any k\geq 0,

\langle g, a\prime 
k

b\prime i\rangle \=VF
=

\int 
[ - \epsilon 2,\epsilon 2]kJ

a\prime 
k

\mu 2\langle g| S\mu 2
, b\prime i| S\mu 2

\rangle S\mu 2
d\mu 2 = 0,

where the last equality holds because, by construction,

\langle g| S\mu 2
, b\prime i| S\mu 2

\rangle S\mu 2
= 0, for all \mu 2 \in [ - \epsilon 2, \epsilon 2]kJ .

We thus conclude that g is orthogonal to L(a\prime , b\prime ), so L(a\prime , b\prime ) cannot be the entire
L2( \=VF ,C). By Lemma 1.4, system (4.7) is not controllable.

4.3. Translation to elementary form. We establish below Theorem 1.2. By
the arguments in the previous subsections, we only need to consider scalar, complex
linear ensemble systems over closed, two-dimensional disks \Sigma :

\.x(t, \sigma ) = a(\sigma )x(t, \sigma ) + b(\sigma )u(t) for all \sigma \in \Sigma .(4.8)

By Proposition 4.3, we can further assume that there is a point \sigma J in the interior of
\Sigma such that rankJ(\sigma J) = 2 because, otherwise, system (4.8) is not controllable. This
excludes, for example, the case where a is real valued.

Again, we identify R2 with C and treat \Sigma as a subset of C. Since the Jacobian
matrix J(\sigma J) has full rank, it follows from the inverse function theorem that there
is an open neighborhood UJ of \sigma J in the interior of \Sigma such that a : UJ \rightarrow C is a
real-analytic diffeomorphism between UJ and its image, which we denote by VJ . Let
aJ := a(\sigma J) and DaJ

[R] be the closed disk of radius R > 0 in C centered at aJ . We
let R be sufficiently small such that DaJ

[R] is contained in the open set VJ .
Let R be given as above and D0[R] be the closed disk of radius R centered at 0.

Now, consider the following elementary form (for clarity of presentation, we use the
letter \mu to denote a point in D0[R]):

\.x\prime (t, \mu ) = \mu x\prime (t, \mu ) + b(a - 1(\mu + aJ))u
\prime (t) for all \mu \in D0[R].(4.9)

We establish the following result.

Proposition 4.5. If system (4.9) is not controllable, then neither is system (4.8).

Proof. For convenience, we let b\prime (\mu ) := b(a - 1(\mu + aJ)). To establish the result,
we first consider the following ensemble system as a variation of (4.9):

\.x\prime \prime (t, \mu ) = (\mu + aJ)x
\prime \prime (t, \mu ) + b\prime (\mu )u\prime \prime (t) for all \mu \in D0[R],(4.10)
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2446 XUDONG CHEN

where we have replaced the ``A-matrix,"" which is the identity function \iota in (4.9), with
the function (\iota + aJ1) in (4.10). Note that system (4.9) is controllable if and only if
system (4.10) is. This holds because the controllable subspaces associated with the
two systems are the same. Indeed, for any k \geq 0, (\iota + aJ1)

k is a linear combination
of \iota \ell for 0 \leq \ell \leq k. Conversely, each \iota k can be expressed as a linear combination of
(\iota + aJ1)

\ell for 0\leq \ell \leq k. It follows that L(\iota , b\prime ) =L(\iota + aJ1, b
\prime ).

It now suffices to show that if system (4.10) is not controllable, then neither is
system (4.8). We let \mu \prime := \mu + aJ and rewrite system (4.10) as follows:

\.x\prime \prime (t, \mu \prime ) = \mu \prime x\prime \prime (t, \mu \prime ) + b\prime (\mu \prime )u\prime \prime (t) for all \mu \prime \in DaJ
[R].(4.11)

It turns out that system (4.11) is the pullback of system (4.8) via the embedding
a - 1 :DaJ

[R]\rightarrow \Sigma . For this, we recall that DaJ
[R] is contained in VJ , VJ is the image

of UJ under a, and UJ is in the interior of \Sigma . Thus, by Lemma 2.4, if system (4.11)
is not controllable, then neither is system (4.8).

A proof of Theorem 1.2 is now at hand.

Proof of Theorem 1.2. From Theorem 3.2, elementary forms are not L2-controllable.
Thus, by Proposition 4.5, system (4.8) is not L2-controllable. The arguments in sub-
sections 4.1 and 4.2 then imply that system (4.1) is not L2-controllable. Combining
this with the arguments in section 2, we complete the proof.

5. Conclusions. We have established in the paper the following negative result
(Theorem 1.2): For a linear ensemble system (A,B), if its parameterization space \Sigma 
contains an open set U in Rd, for d\geq 2, and if both A : \Sigma \rightarrow Fn\times n and B : \Sigma \rightarrow Fn\times m,
with F being either R or C, are real-analytic at some point in U , then the linear
ensemble system cannot be Lp-controllable for 2\leq p\leq \infty .

We have taken a two-step approach to establish this result: The first step is to
show that every elementary form, introduced in Definition 3.1, is not L2-controllable
and the second step is to show that every linear ensemble system (A,B), which satisfies
the conditions in Theorem 1.2, can be reduced and translated to an elementary form.

Note that the above negative result has several implications for approximation
theory and operator theory, which have been presented in Theorem 1.5 and Corol-
lary 1.7.

Finally, we note that the negative result applies only to linear ensemble systems.
There exist uniformly controllable ensembles of control-affine systems [7], with real-
analytic vector fields, over multidimensional parameterization spaces.
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