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Abstract Although typically used to measure dynamic strain from seismic and acoustic waves,
Rayleigh-based distributed acoustic sensing (DAS) is also sensitive to temperature, offering longer range

and higher sensitivity to small temperature perturbations than conventional Raman-based distributed
temperature sensing. Here, we demonstrate that ocean-bottom DAS can be employed to study internal wave
and tide dynamics in the bottom boundary layer, a region of enhanced ocean mixing but scarce observations.
First, we show temperature transients up to about 4 K from a power cable in the Strait of Gibraltar south of
Spain, associated with passing trains of internal solitary waves in water depth <200 m. Second, we show the
propagation of thermal fronts associated with the nonlinear internal tide on the near-critical slope of the island
of Gran Canaria, off the coast of West Africa, with perturbations up to about 2 K at 1-km depth and 0.2 K at
2.5-km depth. With spatial averaging, we also recover a signal proportional to the barotropic tidal pressure,
including the lunar fortnightly variation. In addition to applications in observational physical oceanography, our
results suggest that contemporary chirped-pulse DAS possesses sufficient long-period sensitivity for seafloor
geodesy and tsunami monitoring if ocean temperature variations can be separated.

Plain Language Summary Distributed acoustic sensing (DAS) measures changes in the
propagation time of light along finite segments of an optical fiber, which can be caused by both elastic
deformations and temperature variations. We present two case studies of long-period temperature signals
recorded with DAS on submarine cables offshore southern Spain and in the Canary Islands. These temperature
signals are associated with internal waves, gravity waves that propagate on the ocean's density stratification.
We also recover a signal matching the tidal pressure, which likely represents elastic strain, suggesting potential
value of ocean-bottom DAS for seafloor geodesy and tsunami monitoring.

1. Introduction

Internal gravity waves generated by tides, currents, and atmospheric forcing are the dominant source of mixing
in the ocean, with broad implications for circulation, climate, and biogeochemistry. Early work by Munk (1966),
Garrett and Munk (1972), and others proposed that mixing is primarily accomplished through nonlinear inter-
actions and breaking of topographically generated internal waves distributed throughout the ocean interior.
However, over the past three decades, observational campaigns have found that the most vigorous mixing occurs
near the bottom at sloping boundaries and in regions of rough bathymetry, and that rates of turbulent dissipation
vary by at least two orders of magnitude (e.g., Kunze et al., 2012; Ledwell et al., 2000; Moum et al., 2002; van
Haren and Gostiaux, 2012; van Haren et al., 2015; Polzin et al., 1997; Rudnick et al., 2003; Toole et al., 1994;
Waterhouse et al., 2014). Yet, observations of internal wave-driven ocean mixing remain exceedingly sparse,
especially in the bottom boundary layer. Moored and towed thermistor arrays, current meters, and microstruc-
ture profilers can provide high-resolution, local estimates of diapycnal diffusivity and turbulent dissipation rates
(e.g., Toole et al., 1994; van Haren, 2006). Global budgets of internal wave generation and dissipation can be
constructed by compiling many such in-situ measurements (Kunze, 2017; Waterhouse et al., 2014) or through
satellite altimetry (Egbert & Ray, 2000, 2001). Reconciling internal wave and boundary layer dynamics across
the vast gulf in scales from astronomical forcing to turbulent dissipation and understanding the physical processes
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governing the generation and distribution of turbulence are outstanding theoretical and observational challenges,
especially for the parameterization of mixing in ocean circulation models.

Distributed fiber-optic sensing offers a promising new approach to observe internal wave dynamics at the
seafloor by converting a fiber-optic cable into a dense array of high-resolution temperature sensors. Recently,
several authors have demonstrated the value of distributed temperature sensing (DTS) for studying shoaling
internal waves, with insights into nearshore nonlinear wave transformation, turbulent mixing, and temperature/
nutrient flux (Connolly & Kirincich, 2019; Davis et al., 2020; Lucas & Pinkel, 2022; Ramp et al., 2022; Reid
et al., 2019; Sinnett et al., 2020). Most DTS systems use the intensity of Raman scattering from a repeated
laser pulse to estimate temperature along a fiber and are insensitive to other variables like fiber strain. DTS
offers a sensitivity of about 0.01 K with sub-meter sampling up to a range of 10-30 km (Li & Zhang, 2022)
and can be calibrated to absolute temperature (Sinnett et al., 2020). However, DTS suffers from a trade-off
between distance and sensitivity, which limits its application to shallow water environments insomuch as the
DTS laser interrogator must remain onshore. Further, DTS is best suited for multi-mode fiber, which means
that pre-existing ocean-bottom telecommunication “dark™ fiber cannot be easily repurposed as temperature
sensing arrays because it is mostly single-mode. Another fiber-optic sensing technology, distributed acoustic
sensing (DAS) uses the phase of Rayleigh-scattered laser light to estimate changes in the optical path length,
which can be caused by both temperature and elastic deformation with an equivalence of 1 K ~ 10 ue (where
1 ue = 1075 m/m) (Fernandez-Ruiz et al., 2020; Lindsey & Martin, 2021). At short periods (<50-100 s) or
in shallow water (<100-200 m), mechanical strain from ocean surface gravity, acoustic, and seismic waves
always dominates over temperature effects, permitting diverse applications of ocean-bottom DAS from
earthquake detection and structural characterization of the seafloor (Cheng et al., 2021; Sladen et al., 2019;
Williams et al., 2021) to monitoring sea state and tracking coastal currents (Lindsey et al., 2019; Williams
et al., 2019, 2022). However, at long periods or in deep water, temperature transients associated with internal
waves and tides may rise to the fore. Ide et al. (2021) first reported complex temperature signals at tidal peri-
ods in ocean-bottom DAS measurements offshore Cape Muroto in southern Japan. With a field sensitivity of
about 0.001-0.01 ue = 0.1-1 mK, DAS is actually more sensitive to small temperature signals than DTS and
can operate up to 100 km without significant reduction in sensitivity, permitting oceanographic investigations
at abyssal depths where temperature anomalies are small. However, DAS faces several challenges of its own:
temperature and mechanical strain effects cannot be definitively separated in a single measurement, tempera-
ture calibrations for DAS have not yet been standardized, and the instrumental noise increases with period on
most DAS systems.

Here, we present two novel observations of internal wave dynamics from ocean-bottom DAS arrays. In Section 3,
we show temperature perturbations up to about 4 K associated with internal solitary waves crossing a power-cable
in the Strait of Gibraltar, south of Spain. In Section 4, we show temperature perturbations up to about 2 K asso-
ciated with the propagation of nonlinear, internal tidal fronts on the near-critical slope of Gran Canaria, in the
Canary Islands offshore west Africa. Throughout, we assume that these long-period signals solely represent
temperature, an assumption which we then discuss and justify in Section 5.

2. Data

We analyze and compare observations from two DAS data sets acquired on seafloor cables containing optical
fibers. The first was recorded in October 2019 on a 30-km power cable running from Spain to Morocco across
the Strait of Gibraltar, with depths up to about 550 m (Figure 1a). The cable is generally buried on the Spanish
shelf, and emerges at the seafloor at 8.6 km optical distance. The second was recorded in August and September
2020 on a 176-km telecommunication cable connecting Gran Canaria to Tenerife in the Canary Islands, with
depths up to about 4 km (Figure 1b). The cable is entirely unburied beyond the surf zone. Fibers in both cables
were interrogated with a chirped-pulse DAS system built by Aragon Photonics and operated by the University
of Alcala (Fernandez-Ruiz et al., 2018, 2019; Pastor-Graells et al., 2016), using a 10-m gauge length and 10-m
channel spacing. The raw DAS data were first decimated from 1 kHz to 1 Hz by averaging. A five-point median
filter was applied to the 1-Hz data to prevent instrumental noise like spikes and steps from biasing long period
results, and then the data were further decimated to 100 s sampling period. Spectra were computed using a
sine-multitaper algorithm (Prieto et al., 2009). For more information about these data, see Williams et al. (2022)
and Ugalde et al. (2022).
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Figure 1. Map of cable locations. (a) Power cable from Spain to Morocco across the Strait of Gibraltar (black) with section
shown in Figure 2 in red; 200-m bathymetry contours (b) Telecommunications cable from Gran Canaria to Tenerife (black)
with section shown in Figure 3 in red; 1,000-m bathymetry contours.

3. Internal Solitary Waves in the Strait of Gibraltar
3.1. Observations

Four days from the Strait of Gibraltar DAS data set are plotted in Figure 2. Across the buried section of the cable,
there is no evident temperature signal at any period. Emerging abruptly at 8.6 km where the cable is exposed
at the seafloor, a nearly constant background temperature is periodically broken by positive excursions up to
4 K, indicative of internal waves of depression. Each internal wave train lasts 2-8 hr and is composed of 2-6
subsidiary solitary waves, each with a period of 1-2 hr (Figures 2b and 2d). These excursions occur twice daily
immediately following the maximum eastward tidal flow and exhibit an oscillation in amplitude which correlates
with the daily inequality of the diurnal and semidiurnal tides as expressed in the TPXO9 shallow-water solution
for the local barotropic current (Figure 2¢) (Egbert & Erofeeva, 2002). The amplitude is strongest where the cable
emerges at 8.6 km distance (75 m depth) and decays monotonically with distance, disappearing before the 11-km
mark (200 m depth). Similar temperature fluctuations are observed along the southern most cable segment, as the
cable passes onto the Morocco shelf (Figure S1 in Supporting Information S1).

3.2. Interpretation

Hydrodynamics in the Strait of Gibraltar are characterized by a two-layer exchange flow between salty Medi-
terranean water at the bottom and less-salty Atlantic water at the surface, with a strong pycnocline typically
measured at 50-100 m depth near the cable location east of the Camarinal Sill (Bryden et al., 1994; Wesson
& Gregg, 1994). Modulation of the exchange by tidal currents results in partial blocking of the Mediterranean
outflow over the Camarinal Sill and the generation of internal solitary waves, which propagate eastward into
the Alboran Sea and have been widely observed by moorings and in synthetic aperture radar (SAR) imagery
(Brandt et al., 1996; Vazquez et al., 2008; Ziegenbein, 1969, 1970; Watson & Robsinson, 1990). Although no
clear SAR images of internal waves were acquired during the four-day data window, the Sentinel-1A satellite
captured an internal wave train propagating past Gibraltar at 2019-10-26 06:27:44 UTC, shortly after the end of
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Figure 2. Internal solitary wave trains on the Gibraltar cable. (a) Cable bathymetry profile with shading to indicate burial.

(b) Decimated DAS data from 2019-10-22 to 2019-10-25 for the 8—11-km cable section converted into units of temperature.
(c) Tidal predictions for sea surface height (SSH, black) and meridional flow (red) from TPXO. (d) Zoom-in to panel B
showing a train of internal solitons, with dashed black lines schematically indicating the difference in moveout (apparent
speed) between individual solitons. (e) Synthetic data generated using the “dnoidal” model of Apel (2003) for the 8—11-km
cable with a source at the north end of Camarinal Sill on the Spanish shelf. (f) Cross-section of the model after Apel (2003) at
T = 4 hr with absolute temperature, contours of constant isopycnal displacement (white lines), and depth versus distance from
source for the 8—11-km cable segment (red).

DAS acquisition (Figure S2a in Supporting Information S1). This likely corresponds to the wave train shown in
Figure 2d and confirms that this well-studied phenomenon occurred during our experiment.

In order to understand the relationship between internal wave parameters and the temperature signals recorded in
DAS data, we compare our observations with synthetic data generated from the “dnoidal” model of Apel (2003)
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Figure 3. Nonlinear internal tide on the slope of Gran Canaria. (a) Cable bathymetry profile with shading to indicate cable
type: double armored (DA), single armored (SA), light-weight protected (LWP), and light-weight (LW). (b) Slope criticality
along the cable profile, defined as the ratio of the absolute slope angle to the angle of internal wave energy propagation. (c)
Decimated DAS data from 2020-08-16 to 2020-08-18 for the 5-58-km cable section converted to units of temperature. (d)
Tidal predictions for sea surface height (black), meridional flow (blue), and zonal flow (red) from TPXO. (e) Comparison of
DAS observations at 22 km (solid gray) and 28 km (dashed gray) with modeled temperature (black solid) and pressure (black
dashed) perturbations.

(Figures 2e and 2f), which combines an analytical solution of the Korteweg-de Vries equation for weakly-nonlinear
solitary wave propagation with a vertical structure function obtained by numerical solution of the Taylor-Goldstein
equation (see Text S1 in Supporting Information S1). While the observed inter-soliton period and envelope are
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poorly reproduced by this simplistic model, the synthetic data match the amplitude of the temperature anomaly
within a factor of two and mimic its quasi-triangular shape with depth and distance (Figures 2d and 2e). The
DAS temperature observations can consequently be understood as an oblique cross-sectional slice of the internal
wave train along the cable trajectory, where the shape is governed by a combination of the isotherm displacement
with the thermal stratification, and the moveout is determined by the source azimuth and propagation speed
(Figure 2f). Though the moveout along the cable varies slightly from one solitary wave to the next, suggesting a
complex source distribution (see dashed lines in Figure 2d), the apparent speed of propagation along the cable
direction is almost instantaneous, which requires broad-side incidence of the internal wave train and a source at
the northern end of the Camarinal Sill or on the Spanish shelf (Figure S3 in Supporting Information S1). The
ESE-ward propagation perpendicular to the cable azimuth that would result from a dominant source at the north-
ern end of the Camarinal Sill is supported by SAR imagery (Figure S2b in Supporting Information S1, see also
Brandt et al. (1996), Figure 16b) as well as the south-ward propagation direction observed in DAS data from the
southern-most segment of this same cable (Figure S1d in Supporting Information S1). However, given trade-offs
between speed, source time, and source location as well as refraction across the steep bathymetry, it is impossible
to uniquely identify the source without more elaborate modeling.

4. Nonlinear Internal Tides at Gran Canaria
4.1. Observations

Three days from the Gran Canaria DAS data set are plotted in Figure 3, showing semidiurnal temperature oscil-
lations up to 2 K in amplitude which persist along the entire slope spanning a depth range >3 km. The obser-
vations can generally be divided into three domains. On the main slope of Gran Canaria (12-30 km distance,
500-1,500 m depth) three to five sharp cold fronts form every 12 hr (Figures 3¢ and 4b; Movie S1). Here, the
slope is slightly supercritical, with 1 <y < 3, where y = tan(a,)/tan(a, ) is the ratio of the bathymetric slope angle
(a,) to the angle of internal wave energy propagation (a,,, Figure 3b). The latter was calculated for the principal
M, tidal constituent with mean September stratification from the WOA18 database (Boyer et al., 2018). As these
fronts form and accelerate up to an apparent velocity of 0.5 m/s along the cable, they intensify to a temperature
contrast in excess of 1 K over a distance of only a few hundred meters. Then, as the tidal flow reverses direction,
the cold fronts slow, dissipate, and reform into a series of weaker warm fronts that recede down the slope. In
shallow water (7-12 km distance, <500 m depth, y > 3), the shoaling cold fronts slow to an apparent velocity of
0.1 m/s and divide into 5-10 weaker fronts across each semidiurnal cycle (Figure 4a). Beyond a sharp ridge at
30-km distance, the seafloor is much rougher and the flow pattern more complex, but sharp temperature fronts
up to about 0.2 K still persist and are advected horizontally by the tidal current (Figure 4c).

4.2. Interpretation

Steep submarine topography acts as both a source for the conversion of barotropic tidal motions into inter-
nal waves and a sink where the internal tide reflects and breaks, thus mediating the cascade of energy in the
ocean from large to small scales where mixing occurs (Klymak et al., 2011; Rudnick et al., 2003; St. Laurent &
Garrett, 2002). High-resolution thermistor observations and modeling of steep, near-critical slopes have shown
that the generation and shoaling of the internal tide drives the formation and propagation of bore-like fronts in
the bottom boundary layer (van Haren, 2006; Winters, 2015) associated with intensified turbulent mixing and
shear instability (van Haren & Gostiaux, 2010, 2012; van Haren et al., 2015). These observations are broadly
consistent with the temperature oscillations in DAS data from Gran Canaria, including frontal velocities in the
range 0.1-0.5 m/s and temperature perturbations up to 3 K at 500-m depth (van Haren & Gostiaux, 2012), 2 K at
1,400-m depth (van Haren, 2006), and 0.2 K at 2,500-m depth (van Haren et al., 2015). The observed pattern of
the shoaling, weakening, and reversal of thermal fronts is similar to signals observed in very shallow water with
DTS at Dongsha Atoll, which Davis et al. (2020) termed “relaxation.”

We compare the DAS observations to an idealized simulation of near-boundary flow driven by reflection of a
fundamental mode M, internal tide across a slightly supercritical sloping bottom, performed using flow_solve
(Winters & de la Fuente, 2012) and scaled to approximate the conditions at Gran Canaria (see Text S2, Figures S4
and S5 in Supporting Information S1). Figure 3e plots example DAS records from individual channels at 22 and
28 km distance against differential temperature from a near-bottom point in the simulation, showing a consistent
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Figure 4. (a) Zoom-in to the 8—10-km cable segment of the Gran Canaria data set showing many small cold fronts shoaling
on the shallow shelf. (b) Zoom-in to the 16-24-km cable segment showing a cold front propagating up slope, slowing around
18-km, and reversing or breaking. (c) Zoom-in to the 44-50-km cable segment showing complex, sharp temperature fronts
oscillating at tidal periods. (d) Thirty-day power spectral density (PSD) for a representative channel from each panel of a,

b, ¢, with a reference slope of /=2, the canonical Garrett-Munk spectrum for internal waves in the ocean interior away from
generation sites (Garrett & Munk, 1972). Also shown are dashed lines illustrating the effect of burial (light red) or cable
thickness (light blue) on the frequency-dependent temperature response applied to the reference -2 spectrum. (¢) Zoom-in

to D showing the ordinary tidal harmonics (O,, K,, M,) and nonlinear overtones (MK, M,, M) present at all water depths.
Shaded areas represent 1o uncertainties in the spectrum. (f) Spectra for two channels on either side of the single-armored
(SA) to light-weight protected (LWP) cable transition, showing a frequency-dependent difference in response. (g) Transfer
function between the two channels in F (black line) and simple thermal model based on the actual difference in cable diameter
(red line).

pattern over each tidal cycle of a gradual rise in temperature followed by a comparatively rapid decrease, marking
the passage of an up-slope propagating front. Notably, this asymmetry is not evident in the modeled pressure,
which is dominated by vertical displacements of the large-scale, linear internal tide throughout the overlying
water column and nearly independent of the near-bottom flow. The modeled maximum velocity of the thermal
front is 0.65 m/s, consistent with the observed 0.5 m/s (Figure S5 in Supporting Information S1). Although the
modeled temperature perturbations are smaller than those inferred from DAS (0.2 K vs. 0.4-1 K), the modeled
values are sensitive to the unknown tidal amplitude which we have set to 0.2 m/s. Nevertheless the idealized simu-
lation captures the basic ocean phenomena, including the temporal asymmetry, shaping the DAS observations.
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The temperature spectra of individual DAS channels exhibit dominant peaks at semidiurnal (M,) and diurnal (O,,
K)) frequencies (Figures 4d and 4e). At the latitude of Gran Canaria, the inertial frequency is very close to O,, so
the prominence of the diurnal peak could relate to both forcing of the diurnal tide and the presence of near-inertial
waves. Also evident are several tidal overtones (MK, M,, etc.), which persist in relative amplitude across the full
range of observations, indicating nonlinear interactions on the slope associated with local conversion of the baro-
tropic tide or steepening of the internal tide (van Haren et al., 2002). For the deepest cable segment beyond 40-km
distance, the spectrum approximately scales as f~2 (Figure 4d). For the 7-30-km cable segment, the spectrum is
flatter from about 1 to 10 cpd, indicative of stronger nonlinearity, approximately scaling as f~!. At higher frequen-
cies, the spectrum steepens beyond f~3, which may reflect diminished temperature sensitivity due to the finite
thickness of the cable construction or even a few millimeters of sediment drape (Figure 4d, Figure S6 in Support-
ing Information S1). Comparing adjacent cable segments across the transition from single-armored (SA, 26-mm
diameter) to light-weight protected (LWP, 19.6-mm diameter) cable type, there is a frequency-dependent differ-
ence in response, which can be adequately described with a simple thermal transfer-function model (Figures 4f
and 4g). Consequently, the spectral slope at high frequencies should probably not be interpreted. For such a model,
the phase response of the cable to external thermal forcing is also frequency-dependent and non-negligible, which
implies that the sharp temperature fronts observed here may truly be sharper still if observed by a thermistor at
the same location (see Text S3 and Figure S6 in Supporting Information S1).

4.3. Hidden Signature of the Barotropic Tide

While the observation of complex temperature fluctuations with ocean-bottom DAS provides a unique oppor-
tunity for study of internal wave and boundary layer dynamics, the large amplitude of these signals poses a
significant challenge to observing pressure perturbations and solid-Earth deformations, such as associated with
tsunamis and slow earthquakes. Exploiting the fact that the wavelength of the barotropic tide is much greater
than the wavelength of the temperature variations associated with the internal tide on a near-critical slope, we
compute a spatial median across the 15-30 km cable segment, which is plotted in Figure 5 and compared with
the barotropic tidal pressure, estimated from TPXO (Egbert & Erofeeva, 2002). The recovered signal, plotted in
units of pressure for the purpose of interpretation, matches the predicted phase of the barotropic tide including the
fortnightly variation (M), which strongly suggests that this signal represents mechanical strain in the cable due
to pressure. The observed amplitude is 2-8 ue and scales to pressure as Aip ~ 5% 1071 Pa~!, which is a plausible
value of horizontal seafloor compliance (Crawford et al., 1991) though slightly larger than the predicted strain
induced in a cable from hydrostatic pressure perturbations alone (Mecozzi et al., 2021). While we note that this
simple averaging procedure does not guarantee the full recovery of the tidally-induced mechanical strain signal
or complete elimination of temperature residuals, the demonstrated sensitivity is promising for application of
ocean-bottom DAS in seismo-geodesy.

5. Discussion and Conclusions

Thus far we have assumed that the long-period transients observed in DAS data from the Strait of Gibraltar
and Gran Canaria are dominated by temperature. Conventional applications of DAS are, however, as a dynamic
strain sensor, and the extraction of a signal proportional to barotropic tidal pressure indicates that mechanical
strain is non-negligible. A typical DAS system, such as the chirped-pulse instrument used here (Fernandez-Ruiz
etal., 2019), estimates changes in optical path length across each fiber segment by measuring small perturbations
in the phase of backscatter between two consecutive laser pulses. For a finite fiber segment of length L, the
differential phase is given by:

Ag

dznl (6L  6n
T <T+7)

where 7 is the index of refraction and 4 is the laser wavelength. Changes in the optical path length measured by
DAS can therefore result from mechanical strain or a change in temperature. Both mechanisms include a physi-

cal strain ‘SI—L and a change in refractive index 2. Letting ¢ = 4”:'L , for mechanical strain &, 22 = (1 + y)e, where
w ~ —0.22 accounts for the effect of photoelasticity at 2 = 1550 nm (Hartog, 2017; Kuvshinov, 2016). For a
change in temperature AT, % = (ar + &)AT, where the thermal expansion coefficient is a, = 5 X 1077 K~! and

the thermo-optic coefficient is £ ~ 6.8 X 1070 K~!. Therefore the equivalence between temperature and strain is

WILLIAMS ET AL.

8of 13

ASURDIT suowwo)) dAneax) ajqearjdde ayy £q pauraAoS aie sajorIe YO asn Jo sa[ni 1oy AIeIqr auljuQ A3[IA\ UO (SUOIIPUOD-PUE-SULId) W0 K[ 1M  ATeiqiaul[uo//:sdny) suonipuo)) pue swd [, 3y 298 “[#707/c0/87]) uo Areiqry auruQ Laqip ‘ASojouyoa jo isuf eruogije)) £q 0866 10£202/6201°01/10p/wos Kapim KreiqijautjuosqndnSe//:sdny wouy papeoumo( ‘6 ‘€20T ‘162669127



A7oN |
NI
ADVANCING EARTH
AND SPACE SCIENCES

Journal of Geophysical Research: Oceans 10.1029/2023JC019980

Strain (ue)
o

—
—
.
—_—
—
—
—_—
=
-
e
e
T ———
———
e
—
m—
m—
m—
—
m—
—
—

4}

_8 L L
2020-08-17 2020-09-01

:[[B] _

Pressure (kPa)
o

-8
2020-08-17 2020-09-01
8

= f — strain
L 4 (e/56-10 1/Pa)
[0}
5 0
3 —— pressure
S _4
a (SSHx pxg)

|
[o¢]

2020-09-05 2020-09-07 2020-09-09

Figure 5. (a) Long-period DAS signal isolated by spatial averaging, in units of nanostrain. (b) Same as A with low-pass
filter with a corner frequency of 48 hr scaled to units of pressure as p = &/(5 x 107'%) (black), and barotropic tidal pressure
from TPXO (red). (c¢) Zoom-in to the gray shaded window in B showing phase coherence between the observed and modeled
barotropic tide.

AE—T ~ 10° K (e.g., Koyamada et al. (2009)). The uncertainty in these parameters is challenging to quantify, since
no calibration has been performed in situ, but a factor of two deviation in the strain-to-temperature relation is
conceivable. Cable construction and burial can only thermally insulate the fiber, so the conversion used here
should otherwise represent the minimum value of relative temperature (Sidenko et al., 2022).

Based on five key points of observation, we assert that the long-period transients described above are predomi-
nately if not entirely changes in the temperature of the fiber:

1. A 2040 pe strain, equivalent to the 2 K observed at Gran Canaria or 4 K observed in Gibraltar, is simply too
large to be physically plausible as mechanical strain, being comparable to the near-field (<1-km epicentral
distance) peak strain recorded during the 2019 M7.1 Ridgecrest earthquake (Farghal et al., 2020; Pollitz
et al., 2020). Given steel and aluminum elements in the cable construction (Young's modulus 100-200 GPa),
such a strain would require an oscillating 10-40 MPa stress, which is comparable to or greater than the weight
of the entire water column. Further, the signal observed at Gran Canaria is coherent over a >10-km distance,
which would imply an integrated displacement of at least 20 cm every 12 hr across the cable.

2. The sudden disappearance of a 4 K signal at the point of burial of the Gibraltar cable over a distance of one
channel (10 m) (Figure 2) can only be attributed to temperature. Any pressure forcing sufficient to deform a
cable at the seafloor 40 ue must be transmitted at a measurable level to a shallowly buried cable, as evidenced
by much smaller surface gravity wave pressure signals observed on the buried 3—6-km section of this same
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cable (Williams et al., 2022). Conversely, thermal signals may be retarded by as little as a few centime-
ters of sediment, owing to the small thermal diffusivity of geological materials (Figure S6 in Supporting
Information S1).

3. The observed signature of the nonlinear internal tide at Gran Canaria (Figure 3) is 5-10 times larger than the
spatially-averaged signal, the latter of which corresponds with the barotropic tidal pressure (Figure 5). This
amplitude ratio is inconsistent with the expectation for pressure-induced mechanical strain from the baroclinic
tide, as supported by modeling (Figure 3e, Figure S5 in Supporting Information S1). The ocean-bottom pres-
sure perturbation from the barotropic tide (order 1-10 kPa) is larger than that from the baroclinic tide (order
10-100 Pa) because the density contrast at the sea surface is about 1,000 times larger than the density contrast
across the pycnocline, even though isopycnal displacement may be as much as 100 times larger than the sea
surface displacement (e.g., Moum and Smyth (2006)). Conversely, the ocean-bottom temperature perturbation
from the barotropic tide is negligible, whereas the baroclinic tide can induce >1 K temperature changes even
at depths >1 km (e.g., van Haren (2006)).

4. The temporal asymmetry seen in modeled and observed bottom boundary layers over nearly critical slopes,
the consistent velocities of the thermal fronts, together with the lack of asymmetry and much larger wave-
length inferred from the corresponding modeled pressure signal, provides oceanographic supporting evidence
that DAS measurements are principally responsive to small temperature fluctuations associated with nonlin-
ear boundary layer dynamics rather than to the tidally oscillating bottom pressure (Figure 3, Figure S5 in
Supporting Information S1).

5. The change in cable type between single-armored and light-weight protected around 29-km on the Gran
Canaria cable (Figure 3a) manifests a frequency-dependent change in sensitivity which can be adequately
described using a simple thermal model for the difference in cable diameter (Figures 4f and 4g).

We conclude that the observed long-period transients in both data sets are dominated by temperature effects.
However, the relative contributions of strain and temperature may not be simple to identify in most ocean-bottom
DAS data sets. In particular, DAS has potential as a seafloor geodetic method for monitoring offshore fault zones,
but the solid-Earth strains associated with processes like fault creep and slow earthquakes will likely be smaller
than or comparable to oceanic temperature signals from internal tide and boundary layer dynamics along the
slopes of active margins. Concurrent measurement with both DAS and DTS may provide one solution, but is
limited by the short range of DTS. Another possibility is to utilize bespoke cables with fibers of differing thermal
properties so that the temperature signal can be subtracted (Zumberge et al., 2018), but this excludes pre-existing
submarine telecommunication cables. Here, we recovered mechanical strain associated with pressure by naive
spatial averaging, which was successful owing to the difference in wavelength between the internal and barotropic
tides. This suggests that a more general multi-scale approach like principal component analysis might be capable
of separating mechanical and thermal signals, as is commonly performed to remove secular and seasonal trends
from geodetic time-series.

Our study highlights several other outstanding challenges for fiber-optic oceanography. DAS sensitivity to temper-
ature has not been calibrated in a field environment, and the thermal amplitude and phase response of submarine
cables is generally not known. In both the Strait of Gibraltar and Gran Canaria DAS data sets, we observed
differences in amplitude between even adjacent channels (see striping or vertical lines on Figures 2—4) indicating
differences in broadband temperature response, which could result from partial burial of the cable with a few
millimeters of sediment drape or variations in instrumental sensitivity (Figure S6 in Supporting Information S1).
Beyond the instrument itself, the novel observation of a continuous horizontal profile of seafloor temperature
needs to be reconciled with conventional oceanographic measurements. For example, in-situ comparison with
data from current meters and thermistors could help explain whether the dissipation and reversal of temper-
ature fronts on the slope of Gran Canaria is associated with internal wave breaking, and whether the internal
tide is being generated locally or remotely. Importantly, without complementary measurements it is not possi-
ble to directly calculate the diapycnal diffusivity or other key parameters necessary to quantify the intensity of
tidal dissipation and mixing observed here. Until such calibrations and validations are available, the ability of
ocean-bottom DAS to leverage widespread, pre-existing submarine telecommunication infrastructure at relatively
low cost for monitoring near-bottom dynamics from the abyssal ocean to the shallow shelf may prove most useful
for targeted site selection of conventional oceanographic surveys and generalization of local measurements to
larger scales.
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