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Abstract: Numerically generating synthetic surface topography that closely resembles the features and
characteristics of experimental surface topography measurements reduces the need to perform these intricate
and costly measurements. However, existing algorithms to numerically generated surface topography are not
well-suited to create the specific characteristics and geometric features of as-built surfaces that result from laser
powder bed fusion (LPBF), such as partially melted metal particles, porosity, laser scan lines, and balling. Thus,
we present a method to generate synthetic as-built LPBF surface topography maps using a progressively growing
generative adversarial network. We qualitatively and quantitatively demonstrate good agreement between
synthetic and experimental as-built LPBF surface topography maps using areal and deterministic surface
topography parameters, radially averaged power spectral density, and material ratio curves. The ability to
accurately generate synthetic as-built LPBF surface topography maps reduces the experimental burden of
performing a large number of surface topography measurements. Furthermore, it facilitates combining
experimental measurements with synthetic surface topography maps to create large data-sets that facilitate, e.g.
relating as-built surface topography to LPBF process parameters, or implementing digital surface twins to
monitor complex end-use LPBF parts, amongst other applications.

Keywords: additive manufacturing; surface topography; synthetic surface topography; generative adversarial
networks

1 Introduction

Laser powder bed fusion (LPBF) is a metal additive
manufacturing (AM) technology that uses a laser to
selectively melt and fuse metal powder particles to
manufacture three-dimensional (3D) free-form metal
parts in a layer-by-layer fashion [1]. The process
enables manufacturing parts with complex internal
and external geometry that are difficult, if not
impossible to make with traditional subtractive and
formative manufacturing processes. The ability to
transcend design and processing barriers, introduce
novel alloys, reduce waste, shorten lead times, and

the potential for mass customization are attractive for,
e.g. aerospace [2—4], automotive [5, 6], and biomedical
[7-9] applications. However, surface topography is a
critical determinant of functional properties, and thus
LPBF parts often require post-processing to modify
their structure and as-built surface topography prior
to use in engineering applications. Post-processing
techniques such as machining and superfinishing
modify the surface topography of the as-built LPBF
parts by removing material [10]. Additionally, heat
treatments such as hot isostatic pressing [11, 12] and
annealing [13] reduce porosity [14] and surface
roughness [15]. Chemical treatment [16, 17] removes
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partially melted metal powder particles from the
as-built surfaces, and mechanical treatment such as
shot peening modifies surface topography through
mechanical impact [18, 19]. However, post-processing
is time-consuming and costly. Moreover, limited
accessibility of intricate internal or fine part geometry
features, such as lattices, restricts post-processing of
the as-built surfaces.

Hence, the ability to manufacture LPBF parts with
a specific surface topography, without post-processing,
could reduce manufacturing time and cost, and thus
drive the adoption of LPBF as a viable production
process for large quantities of parts with complex
geometry. Consequently, researchers have attempted
to relate the surface topography measurements of
as-built surfaces to the LPBF process parameters.
For instance, Ozel et al. [20] used an artificial neural
network (ANN) to derive the relationship between
the LPBF laser power and the resulting as-built surface
topography parameters, including areal surface
topography parameters S,, S, Sq, and Sy, [21, 22].
Similarly, Detwiler et al. [23] employed multivariate
regression, and Detwiler and Raeymaekers [24] used
several interpretable and non-interpretable machine
learning (ML) algorithms to derive data-driven models
that relate the as-built surface topography to the
corresponding LPBF process parameters. They showed
that deterministic surface topography parameters,
including asperity density, standard deviation of
asperity heights, and mean asperity radius, correlate
more closely with the LPBF process parameters
than the commonly used areal surface topography
parameters [21, 22].

Furthermore, the mechanical properties of LPBF
parts, including fatigue life, also depend on the
surface topography, because fatigue failure typically
originates from a (sub)surface defect [25-27]. Thus,
creating a digital twin of the as-built surface topography
of the LPBF part would enable simulating the
propagation of surface defects, voids, and cracks, to
ultimately predict fatigue failure, and subsequently
inform preventive maintenance or part replacement.
Such digital condition monitoring is particularly
useful for costly LPBF parts in critical engineering
applications or assemblies.

These examples illustrate that obtaining accurate
surface topography data is paramount to both deriving
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data-driven models that relate the surface topography
parameters of the as-built surface to the LPBF process
parameters, and to implement digital twins of
the as-built surface topography for, e.g. condition
monitoring of high-value parts. Yet, performing these
intricate surface topography measurements is time-
consuming and requires trained personnel to operate
sophisticated equipment and instrumentation [28, 29].
Thus, to reduce the need for costly surface topography
measurements, one may supplement experimental
surface topography data with numerically generated,
synthetic data that comprises the same geometric
features and statistical properties as the experimental
data.

Accordingly, several mathematical techniques exist
to numerically generate surface topography [30]. The
random surface approach involves creating a surface
topography map with random surface heights based
on fractal or non-fractal methods and is often used to
simulate engineering surfaces that result from specific
machining operations [31-34]. The deterministic surface
approach uses an algorithm that replicates specific
surface characteristics, such as a topography pattern
or texture feature [35-37]. Finally, the mixed surface
approach combines elements of both techniques to
generate surface topography with both random and
deterministic features [38]. However, these existing
approaches to numerically create surface topography
are not well-suited to include the specific characteristics
and geometric features of as-built LPBF surfaces, such
as partially melted metal particles, porosity, laser scan
lines, and balling that result from melt pool dynamics
during the LPBF process [39, 40].

As a result, numerically generating surface
topography that accurately represents as-built LPBF
surfaces remains a significant challenge. Thus, the
objective of this work is to derive a numerical model
to generate synthetic surface topography that accurately
replicates the specific geometric features and
characteristics of as-built LPBF surfaces. We address
this problem by using deep-learning ML algorithms,
including the generative adversarial network (GAN)
[41] and, specifically, the progressive growing GAN
(PGGAN) [42].

A GAN comprises two neural networks: a generator
network that creates synthetic surface topography
maps, and a discriminator network that evaluates the
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authenticity of the synthetic surface topography maps
by comparing it to experimental surface topography
measurements. These two networks are trained
simultaneously, with the generator network trying to
create increasingly realistic data that can mislead the
discriminator network, and the discriminator network
trying to accurately distinguish between the synthetic
and authentic surface topography maps. Once trained,
the generator network can accurately generate synthetic
surface topography maps similar to the experimental
surface topography maps.

We quantitatively evaluate the similarity between
synthetic and experimental surface topography maps
using areal and deterministic surface topography
parameters, power spectral density, and material ratio
curves [23]. We note that Eastwood et al. [43] recently
also documented using a PGGAN to create synthetic
surface topography maps that result from electron
beam powder bed fusion (EBPBF). However, they
only used areal surface topography parameters
to characterize their surface topography, and even
concluded that hybrid surface topography parameters
could be more appropriate.

The ability to generate synthetic surface topography
maps with the same geometric features and
characteristics as experimental surface topography
maps reduces the need for resource-intensive
experimental data collection, and it simultaneously
augments data volume and diversity. Hence, the
outcomes of this work support the creation of data-
driven models and digital twin models, including the
process—structure—surface topography relationship,
a topic of importance that remains inadequately
understood for developing LPBF parts as functional
end-use components.

2 Materials and methods
2.1 Additive manufacturing of specimens

We use a 3D Systems ProX SMP 320 LPBF printer to
manufacture dogbone specimens with recycled 40 pm
Inconel 718 (IN718) powder. The six specimens used
in this work are a sub-set of the specimens we have
used in previous studies [23, 24, 26, 44]; we include
a summary of the LPBF process parameters in
Appendix A. Figure 1 schematically shows the layout

Build
direction (z)

Gas flow (y)

Recoater

direction (x) Build plate

Fig. 1
relative to LPBF process directions.

Layout of the dogbone specimens on the build plate,

of the dogbone specimens on the build plate, and
illustrates their geometry and build orientation relative
to the build, re-coater, and gas flow directions. The
re-coater distributes a uniform layer of metal powder
prior to selectively fusing the contours and geometric
features of each layer of the LPBF part, whereas the
gas flow evacuates smoke from the build volume to
maintain a clear optical path between the laser and
the build plate.

2.2 Measurement of as-built surface topography

We measure the as-built surface topography of each
specimen using an Olympus LEXT OLS 5000 confocal
laser scanning microscope (CLSM) with a 20x lens,
which results in a 1.8 mm x 1.8 mm field-of-view,
with a lateral and vertical resolution of 0.625 um
and 0.006 um, respectively. These parameters result
from a convergence study to ensure that the surface
topography parameters derived from the surface
topography measurements are almost independent
of the field-of-view and resolution. Surface topography
measurements quantify the surface height z as a
function of discrete coordinate locations on the
surface, i.e., z = f(x, y), from which we derive surface
topography parameters to describe the surface
characteristics. We correct the surface topography
measurements for specimen tilt and set the centerline
average to zero. Figure 2 shows a schematic of a
dogbone specimen geometry, and identifies the six
surface topography measurement locations (three on
each side of the specimen). We show a typical surface
topography measurement, with several magnified
inset images A, B, and C, to illustrate common
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Fig.2 Dogbone specimen geometry and typical as-built surface topography map with magnified inset images that illustrate distinct LPBF

surface features, showing pores, “balling”, partially melted powder particles, and laser scan lines.

characteristics and geometric features of the as-built
LPBF surface topography [39, 40]. Pores result from
incomplete fusion of the metal powder particles,
which impacts the mechanical properties of the
part [45-48]. Furthermore, in thin walls and edges of
unsupported overhangs, such as the specimens used
in this work, onset of melt pool instability often occurs.
The melt pool length increases relative to its diameter
and segregates into discrete chunks, which is often
called “balling”. In turn, it impedes consolidation of
the material, which results in a rough surface finish,
and causes geometric inaccuracy [49]. Also, in parts
with steep overhang features, partially melted powder
particles adhere to the surface as a result of excessive
heating [49]. Additionally, we observe laser scan
lines in the surface topography map, which are
an artifact of the LPBF process [50]. Finally, the
layer-by-layer LPBF process relies on discrete steps
in the build direction to create oblique or curved
surfaces, which gives rise to the so-called “staircase
effect”. However, the staircase effect is minimal in
this work since we only consider side surfaces of
vertically-oriented dogbone specimens [51, 52].

2.3 Generating synthetic surface topography

Figure 3 schematically illustrates the process of
generating synthetic surface topography maps using
the PGGAN model. It schematically shows sampling
of the experimental surface topography maps to create
an experimental dataset to train the PGGAN model
(Fig. 3(a)), the architecture of the GAN (Fig. 3(b)) and
PGGAN models (Fig. 3(c)), in addition to generating
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synthetic surface topography maps using the optimized
generator network that results from the trained
PGGAN model (Fig. 3(d)). We employ the original
PGGAN model without modifying its architecture.
Hence, we refer the reader to Ref. [42] for a com-
prehensive mathematical description of the PGGAN
model and its architecture, including the organization
of convolutional layers, activation functions, and the
number of hyperparameters. However, we briefly
explain the concepts here, specifically in the context
of generating synthetic surface topography maps.
We also clarify that the PGGAN model in this
work comprises more than 20 million hyperparameters,
mainly due to the extensive set of large-sized
convolutional layers and the convolutional process.
Thus, it is not practical to present all hyperparameters
here; instead, we make the trained models available
via GitHub.

First, we create a dataset of experimental (authentic)
surface topography maps to train the PGGAN model.
We randomly sample m = 500, 512 pixels x 512 pixels
sub-sections of each experimental surface topography
map (see Fig. 3(a)), which is a common image size
in computer vision applications, and corresponds to
a 320 pm x 320 um sub-area of the 1.8 mm x 1.8 mm
field-of-view of the experimental surface topography
measurement. Thus, based on 6 specimens, 6
measurement locations per specimen, and m = 500
samples per measurement location, the training
dataset comprises 6 x 6 x 500 = 18,000 experimental
surface topography maps. The maximum peak height
S, and valley depth S, of the 512 pixels x 512 pixels
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Fig. 3 Methodology to generate synthetic surface topography, similar to an experimental as-built LPBF surface topography measurement,
showing (a) sampling the experimental dataset to train the PGGAN model, (b) architecture of the GAN model, (c) architecture of the
PGGAN model that illustrates progressively increasing the resolution of the surface topography, and (d) using the optimized generator

network to create synthetic surface topography maps.

experimental surface topography maps exhibit
significant variability, as a result of the distinct
geometric features of the as-built LPBF surface (see
Fig. 2). Hence, we normalize the experimental surface
topography maps z(x, y) to z'(x, y) using the L2 norm
(see Fig. 3(a)), because it is well-known that scale
differences may lead to divergence and sub-optimal
results when training the PGGAN model.

Figure 3(b) schematically depicts the architecture
of the GAN model, which comprises a generator G
and a discriminator D convolutional neural network
(CNN) [42]. The generator converts a latent vector [,
which contains random input values that follow a

standard normal distribution (mean 0 and standard
deviation 1), into a normalized synthetic surface
topography map z (x, y). The generator gradually
up-samples the input values using transposed
convolutions to increase both the spatial dimensions
and the complexity of the synthetic surface topography
maps. To differentiate between synthetic and
experimental surface topography maps, the discriminator
uses convolution to first extract hierarchical,
characteristic features of both the synthetic and all
experimental surface topography maps it aims to
replicate. Convolution involves applying filters to

the surface topography to extract spatial patterns and
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capture local relationships. Then, the discriminator
estimates the probability of authenticity of the
synthetic surface topography map by comparing the
characteristics and geometric features to those of the
experimental surface topography maps, ultimately
producing a binary classification of authentic versus
synthetic [41].

A feedback loop between the generator and
discriminator establishes adversarial training, in which
the discriminator provides feedback to the generator
by evaluating the authenticity of its generated
synthetic surface topography maps. Thus, it enables
iterative refinement by fine-tuning the parameters
(weights and biases) of the convolutional layers of
both networks to minimize the GAN'’s loss function
[41]. The loss function includes the generator loss Lg
and the discriminator loss Lp. Here,

L =—-1log(D(G(1)) @

where G(I) = z, is the output of the generator based
on the latent vector I, i.e., the normalized synthetic
surface topography map. The output of the generator
serves as input to the discriminator, which produces
D[G(I)] to determine whether G(I) = z, is authentic or
synthetic. The discriminator loss is given as [41]:

Lp =-1log(D(G(z))) +log(1 - D(G(z))) 2

We note that increasing the size of the latent vector
increases the diversity of the synthetic surface
topography maps that result from the generator, but
also increases its computational cost. Hence, throughout
this work, we use latent vectors of size 1 x 512 [42].
Figure 3(c) schematically illustrates the PGGAN
model, which is an extension of the GAN model,
specifically intended for high-resolution image
data, such as surface topography maps. It uses the
adversarial training concept of GANs (Fig. 3(b)), but
in addition, it gradually increases the resolution of
the generator and discriminator networks to avoid
discontinuities in the synthetic surface topography
maps that may occur when training a GAN directly
on high-resolution data. Initially, the generator G,
and discriminator Ds, operate on surface topography
maps of 32 pixels x 32 pixels to capture fundamental
features of the experimental surface topography maps.

&2
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We obtain the experimental surface topography
maps used in the adversarial training with gradually
increasing resolution by down-sampling the 512
pixels x 512 pixels experimental surface topography
samples of Fig. 3(a). When the adversarial training of
Gs, and Ds, reaches convergence, the model doubles
the resolution of the surface topography maps to 64
pixels x 64 pixels by adding convolutional layers to
the generator G¢ and discriminator Dg, that match
the new resolution of the surface topography maps.
Here, convergence is defined as completing a minimum
of 50 epochs (computer system time) in combination
with reducing the change of the loss functions
between successive iterations AL; and ALp < 10%.
The adversarial training of G and Dg, minimizes Lg
and Lp, prior to doubling the resolution of the surface
topography maps again. This process repeats until
we reach Gs;, and Ds;p, which results in an optimized
generator G,,,, capable of generating high-resolution
synthetic surface topography maps of 512 pixels x
512 pixels. The optimized generator is defined by the
minimum L and Lp.

Note that to evaluate the convergence of the GAN
model we only track and visualize L, because it
directly addresses the quality of the synthetic surface
topography maps, which is the primary objective of
the PGGAN model in this work. Thus, focusing solely
on the generator loss offers a concise depiction of
the training process of the model in alignment with
the foundational principles of the Nash equilibrium,
which serves as the basis of the GAN'’s adversarial
training process [41].

The computationally intensive nature of the PGGAN
model necessitates GPU calculations for efficient
training [42]. We use a high-performance computing
(HPC) system based on an Nvidia A100 GPU 80 GB
in the Advanced Research Computing (ARC) center
at Virginia Tech, USA.

Finally, the optimized generator G,,, uses a latent

2
vector | with random input values to create normalized
synthetic surface topography maps z, (x, y) that are
equivalent to the L2 normalized experimental surface
topography maps (Fig. 3(d)). Different latent vectors
generate multiple synthetic surface topography
maps. Since we normalize the experimental surface

topography maps, we must also linearly re-scale the
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normalized synthetic surface topography maps z, (x, )
to dimensional synthetic surface topography maps
zi(x, y). Hence,

z.(x,y)-S,
+=-—=7 YV (§ -§ 3
R (5,-5,) 3)

P v

Zs(x/y) :Sv

where S, and S, are randomly selected maximum
peak height and valley depth values from the 18,000
experimental surface topography maps we use to
train the PGGAN model. S, and S, are the normalized
maximum peak height and valley depth values of
the normalized synthetic surface topography map,
which represent the maximum and minimum values
of z,(x, y).

2.4 Similarity between the experimental and
synthetic surface topography maps

We generate 1,000 synthetic surface topography maps
z((x, y) using each of the optimized generators, G,,,,
G, , and G, , trained with the PGGAN model. We
do not generate synthetic surface topography maps
with a resolution of less than 128 pixels x 128 pixels
since they do not capture the distinct characteristics
and geometric features of the LPBF surface topography
(see Section 3). We compare areal and deterministic
surface topography parameters of the synthetic surface
topography maps z(x, y) to those of 1,000 randomly
selected experimental surface topography maps z(x, y),
and we quantify their similarity. For each surface
topography parameter, we determine the minimum,
maximum, mean, median, and the 25th and 75th
percentiles.

Specifically, areal surface topography parameters
include the average surface roughness S, the skewness
Sq and the kurtosis Sy, [22], and deterministic surface
topography parameters include the asperity density
7, mean asperity radius R, and standard deviation of
asperity heights o,. To determine the deterministic
surface topography parameters, we first identify
each peak i of the surface topography map using an
8-nearest neighbor scheme [53, 54]. The standard
deviation of asperity heights o, derives directly from
the peak heights, whereas the asperity density 7 results
from the number of peaks and the nominal surface
area of the surface topography measurement. The

curvature of each peak i in two orthogonal directions
x and y is x,; = d’z/dx* and «,; = d’z/dy’, and the
radius of curvature p; of that peak is the inverse of
the average of its «k, and «,, i.e., p; = — [(k.; + x,:)/2] ™.
The mean asperity radius R, is the arithmetic mean of
all individual peak radii. We use a central finite
difference scheme to calculate the derivatives of the
surface heights dz/dx and d’z/dx’.

Additionally, to identify the differences between
areal and deterministic topography parameters of the
experimental and synthetic surface topography maps,
we determine the radially averaged power spectral
density (PSD) [55] and the material ratio curve M,
of selected surface topography maps, which offer a
qualitative comparison between the experimental
and synthetic surface topography [22].

3 Results and discussion
3.1 Adversarial training of the PGGAN model

Figure 4 illustrates the adversarial training process
of the PGGAN model, depicting the generator loss
Ls versus the computer system time (Epoch), and
indicating the gradually increasing resolution from
32 pixels x 32 pixels to 512 pixels x 512 pixels with
different colors. From Fig. 4, we observe that the
number of epochs required to achieve convergence
(at least 50 epochs, and ALg < 10% and ALp < 10%
between successive iterations) increases with increasing
resolution because the data volume increases, which
adds complexity to the model and computation.
We also observe from Fig. 4 that the variation of Lg
increases with increasing resolution because it requires
adding convolutional layers with increased resolution
to the generator and discriminator networks in the
PGGAN model (see Fig. 3(c)), which introduces new,
unknown hyperparameters, such as weights and
biases. As a result, Lg and Lp become arithmetically
unstable, often necessitating further tuning to converge
to a steady loss value. The magnified inset image in
the convergence plot of Fig. 4 visualizes Lg for the
GAN training at the highest resolution (512 pixels x
512 pixels), spanning epochs 300 to 450. We perform
Gaussian smoothing (red dashed line in the inset
image) to emphasize the descending trend of Lg,

www.Springer.com/journal/40544 | Friction



Friction

10 10
8 ___ Gaussian
5 smoothing
6
&}
AT
2]
2
§ 2
5 W
§ 0
-2
-4 > > >i<
" 32 x32 64 x 64 128 > 128 256 x 256 512 x 512 [pixels x pixels]
o 50 100 150 200 250 300 350 400 450
Epoch
Experimental Synthetic Experimental Synthetic
= - 104 ——rr
< 0.1 mm 0.1 = 0.1 ‘ =
3 [ Y [0 o fo g [Pr==is B
B EEIEY - - 3
cl 5] 10 &%) 5
= —14 2 L
e ‘2 -37 = : r
- Qo s . 9
o » -61 & : e £
o ‘' ®_108 T— —
Laser s
£ 124 ~ T TR [ —_
0.1 mm 0. OImm_ 96 g 0.1 mm g
J T~ 68 ‘:" S po =
= : e~ 140 || = V. o
g : : 12 5|7 @
i % S -16 2| & S . =
= Sl el s g
Bt ' -2 €| R # £
. -1003 Ly z &
M NI _128 {1~ %
Y L [
Pores Partially melted particles Balling  Partially melted particles

Fig. 4 Adversarial training of the PGGAN model showing the loss function versus the computer system time (Epoch) for gradually
increasing resolution, with typical examples of experimental and synthetic surfaces for 64, 128, 256, and 512 pixels.

which also indicates the interaction between the
generator and discriminator, and illustrates the
inherent equilibrium convergence in GAN training.

Additionally, Fig. 4 shows typical examples of
experimental (left) and synthetic (right) surface
topography maps for each resolution (64, 128, 256,
and 512 pixels). The synthetic surface topography
maps replicate distinct as-built LPBF surface features
and characteristics, including pores and un-melted
particles, when the resolution reaches 128 pixels x
128 pixels. Further increasing the resolution to 512
pixels x 512 pixels, reveals additional features in the
synthetic surface topography maps, such as laser
scan patterns and balling.

it % £ 2wt
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3.2 Comparing the experimental and synthetic
as-built surface topography maps

Figure 5 shows a comparison between the surface
that the
experimental and synthetic surface topography maps

topography parameters characterize
(see Section 2.4), as a function of surface topography
map resolution, including the minimum and
maximum (black error bars), mean (blue diamond),
median (red line), 25th and 75th percentile (blue box),
and outliers (red markers), for (a) S,, (b) Sy, (€) S
and deterministic topography parameters (d) 1, (e) Ry,
and (f) o,. We only show the results for surface
topography maps with resolution of 128, 256, and
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512 pixels x 512 pixels, since surface topography maps
with a resolution smaller than 128 pixels x 128 pixels
did not capture the distinct as-built LPBF surface
topography characteristics and geometric features
(see Fig. 2).

From Fig. 5(a), we observe that the synthetic
compared to the experimental surface topography
maps consistently show a lower S, value, independent
of the resolution. For instance, the median value
of S, is 34.7% lower for the synthetic than for the
experimental surface topography maps with a resolution
of 512 pixels x 512 pixels. However, comparing the
radially averaged PSD (see Fig. 6(a)) and material
ratio curve M, (see Fig. 6(b)) of selected synthetic and
experimental surface topography maps shows that
the synthetic surface topography maps underestimate
the surface heights of the low-frequency components,
and overestimate the surface heights of the high-

frequency components (Fig. 6(a)) compared to the
experimental surface topography maps. The magnitudes
of the low-frequency surface height variations
dominate those of the high-frequency ones, which
explains the difference between the median S, value
of synthetic and experimental surface topography
maps. Additionally, the synthetic surface topography
height of the peaks and
overestimates the depth of the valleys (Fig. 6(b)),
which further contributes to a lower median S, for

underestimates the

the synthetic compared to the experimental surface
topography maps.

From Figs. 5(b) and 5(c), we observe that the
skewness Sy and the kurtosis Sy, of the synthetic and
experimental surface topography maps are in good
agreement. Sy = 0, which indicates that there is almost
no bias between peaks and valleys. However, Sy, >>3
implies a “spikey” surface topography, which is also
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Fig. 6 Characteristics of experimental and synthetic surface topography maps, showing (a) radially averaged PSD, (b) material ratio
curve, (c) for selected experimental and synthetic surface topography maps.

evident from the deterministic surface topography
parameters o, >> R,. The recognition of “spikey”
geometric features within the synthetic surface
topography maps indicates that the PGGAN model
replicates specific surface characteristics indicative of
partially melted metal particles and laser scan lines,
which are common sources of Sy, >> 3. We also note
that the kurtosis of the experimental surface topography
maps is consistently lower than that of the synthetic
surface topography maps, independent of the
resolution, which we again explain based on the
radially averaged PSD data (see Fig. 6(a)).

From Figs. 5(d), 5(e), and 5(f), we observe that the
deterministic surface topography parameters calculated
from the experimental and synthetic surface topography
maps show fair agreement. Specifically, we determine
a difference of 17%, 36%, and 29%, respectively,
between the median values of the asperity density 7,
mean asperity radius R,, and standard deviation of
asperity heights o, of the synthetic and experimental
512 pixels x 512 pixels surface topography maps. We

also observe that 1 increases and R, decreases with
increasing resolution, because the increased resolution
enables resolving additional detail and features of
the surface topography. Similar to the S, values, o is
consistently lower for the synthetic compared to the
authentic surface topography maps, independent of
resolution, because the synthetic surface topography
underestimates the magnitudes of the low-frequency
variations of the surface topography.

Figure 6 shows (a) the radially averaged PSD [56]
and (b) the material ratio M, curves [22] of typical
experimental and synthetic surface topography maps
depicted in Fig. 6(c), which are representative of the
dataset. From Fig. 6(a), we observe that the synthetic
surface topography maps underestimate the magnitudes
of the low-frequency (k < 5) variations, and overestimate
the magnitudes of the high-frequency (k = 5) variations
of the surface topography, as highlighted in the
discussion of the results of S,, S, and o.. Note that
k=2m/A is the wave number and A is the spatial
wavelength of the surface topography. The material
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ratio curves M, (Fig. 6(b)) qualitatively show a high
degree of similarity between the surface height
distributions of the synthetic and experimental surface
topography maps.

Figures 5 and 6 illustrate that on average, the
synthetic and experimental surface topography maps
show good agreement, based on the comparison of
areal and deterministic surface topography parameters.
However, substantial variation may exist between
specific surface topography parameters of selected
synthetic surfaces. This results from re-scaling the
surface topography maps from its normalized z, (x, y)
to its dimensional z,(x, y) form (see Section 2), using
S, and S, values randomly selected from the 18,000
experimental surface topography maps. Even though
randomly selecting S, and S, contributes to enhancing
the diversity of synthetic surface topography maps, it
falls short in creating the desired surface topography
parameter values.

Thus, to illustrate creating synthetic surface
topography maps with surface topography parameter
values similar to those of the experimental surface
topography maps, we randomly select four synthetic
surface topography maps that visually represent
the distinct characteristics and geometric features of
the as-built LPBF surfaces, including partially melted

Table 1 Qualitative and quantitative comparison between selected
distinct LPBF surface topography features.

particles, pores, and laser scan lines, and we compare
it to a randomly selected experimental surface. We
re-scale the synthetic surface topography maps with
S, and S, values identical to the experimental surface
topography map. Table 1 presents a visual comparison
of the four selected synthetic surface topography
maps, typical of the entire dataset, and the corresponding
experimental surface topography map, in addition
to their areal and deterministic surface topography
parameters. We indicate the percent difference between
the parameters derived from the synthetic and
experimental surface topography between parentheses.

From Table 1, we qualitatively observe close
resemblance between the selected synthetic and
experimental surface topography maps. Additionally,
their S, and S, values are remarkably close and Sy = 0,
which indicates no bias between peaks and valleys.
However, the Sy, values and deterministic parameters
show substantially greater differences. Regardless,
Fig. 5 shows that the 25th and 75th percentile boxes
of the Sy and deterministic surface topography
parameters of both experimental and synthetic surface
topography maps almost entirely overlap. Hence, the
synthetic surfaces replicate the characteristics of the
as-built LPBF surface topography even though they
exhibit variations within a specific range.

synthetic and experimental surface topography maps that show

Parameters Experimental Synthetic
Surface 1 Surface 2 Surface 3 Surface 4
Cralty, a T oo bl |
: : = ; AN T
Surface M pT 2 : 2 5 ¥ _
contour : Ky 3 < < 2 \ ‘ - i iy . ;h,%
S, (um) 16.379 17.318 (5.74 %) 15.667 (—4.34 %) 15.655 (—4.41 %) 18.391 (12.29 %)
Sy (um) 22.529 21.690 (-3.72 %) 20.404 (—9.43 %) 21.778 (-3.33 %) 23.035 (2.25 %)
Sek 0.187 0.224 (19.78 %) 0.283 (51.33 %) —0.262 (40.11 %) 0.122 (-34.76 %)
Sku 5.356 4.447 (-16.95 %) 4.288 (—19.93 %) 4.558 (—14.88 %) 3.386 (—-36.76 %)
n (l/pmz) 0.066 0.081 (22.83 %) 0.081 (23.04 %) 0.091 (38.31 %) 0.089 (35.72 %)
Ry (um) 0.085 0.108 (22.76 %) 0.099 (16.91 %) 0.075 (-11.21 %) 0.094 (11.75 %)
o (Lm) 23.724 19.977 (-15.79 %) 18.772 (-20.87 %) 23.613 (-0.47 %) 19.792 (-16.57 %)
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Consequently, the trained generator creates synthetic
as-built LPBF surface topography maps that closely
resemble the characteristics of the experimental
data, while also introducing diversity and variability.
Thus, the model generates new data points that have
the same essential features as the original data but
exhibit subtle variations, which effectively augments
the dataset. Furthermore, by re-scaling the surface
heights, we ensure that the synthetic surface
topography maps maintain similar surface topography
parameters than the experimental surface topography
maps.

Previous work (e.g. Refs. [31, 35, 38]) has documented
mathematical or statistical approaches to numerically
generate surface topography maps that replicate those
of machined surfaces. For instance, fractal methods
[31] can generate isotropic surface topography patterns
of engineering surfaces by utilizing power functions
and fractal dimension coefficients. Other mathematical
approaches [35, 38] can create simple asperities or
combinations of regular machining patterns and
asperities at arbitrary locations on the surface. These
patterns can be formulated using mathematical
functions such as exponential or trigonometric
functions. However, generating synthetic LPBF surface
topography presents additional challenges compared
to numerically generating surface topography that
results from machining operations, due to the presence
of complex geometric features that occur randomly
across the entire surface, including partially melted
particles, balling, pores, and laser scan lines.

The nonlinearity and randomness of these geometric
patterns and features require highly complicated
mathematical equations, which have proven difficult
to develop [42]. In contrast, GAN models offer a
promising solution to this problem because they
identify and generate any complex surface topography
map, thus providing a powerful tool to numerically
generate synthetic surface topography maps, and
reduce the experimental burden to perform intricate
surface topography measurements. The results
documented by Eastwood et al. [43] primarily focus
on augmenting large-scale surface topography maps
that result from EBPBEF, including top, up-, and
down-skin surfaces. In contrast, this work delves into
the specific local geometric features present on as-built

LPBF surfaces, and are crucial to the functionality of
the LPBF part.

3.3 Limitations

Despite substantial improvement compared to the
state-of-the-art, limitations still exist. First, the method
and model are data-oriented, and thus it needs
experimental training data as input, which one
must obtain through intricate surface topography
measurements that require trained personnel. The
accuracy of the surface topography measurements also
affects the accuracy of the synthetic surface topography
maps. Furthermore, it limits the ability to achieve
results beyond the scope of the input data, i.e., the
model can only recreate features and characteristics
that are explicitly part of the experimental surface
topography maps that serve as training data for the
model.

Second, the optimized generators resulting from the
PGGAN model generate synthetic surface topography
maps that mostly mimic the experimental surface
topography maps and its distinct characteristics and
geometric features. Variation exists between individual
synthetic surfaces, and some outliers do not show
the distinct LPBF surface topography characteristics,
which must be considered when using the synthetic
surface topography. Moreover, these variations and
outliers can lead to statistical differences [56] when
comparing surface topography parameters of synthetic
and experimental surfaces. Appendix B presents
instances of normalized synthetic surface topography
maps that successfully capture, and fail to capture
the geometric features of the experimental surfaces.
Another important limitation is the significant amount
of time required to train the PGGAN model, which
in this study with a dataset of 18,000 experimental
samples took nearly 70 hours.

We also emphasize that we evaluated synthetic
surface topography maps using surface topography
parameters. However, in computer vision, metrics
such as inception score (IS) [57] and Fréchet inception
distance (FID) [58] are commonly used to evaluate
the quality of generated synthetic images, as they
provide a more general evaluation based on feature
distance algorithms. Incorporating these metrics could
further enhance the generality and accuracy of the
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evaluation of synthetic surfaces generated using the
GAN model.

4 Conclusions

We present a method to synthetically generate surface
topography maps that mimic the surface topography
of as-built LPBF surfaces.

1) This work introduces a novel approach to
generate synthetic surface topography maps using
the PGGAN model. In contrast to previous techniques
that rely on mathematical methods such as random
surface generation, deterministic surface modeling,
or mixed surface approaches, the PGGAN model
represents a data-driven approach. It offers advantages
in capturing complex surface characteristics and
patterns by learning from existing experimental
surface topography maps.

2) The
as-built LPBF surface topography maps that include

PGGAN model successfully generates

its typical characteristics and geometric features, such
as partially melted particles, pores, laser scan lines,
and the balling effect, as evidenced by qualitative
comparison of the synthetic and experimental surface
topography maps, in addition to a quantitative
comparison of areal and deterministic surface
topography parameters, radially averaged PSD, and
materials ratio curve M..

3) Generating synthetic surface topography maps
to augment experimental datasets reduces the
cost associated with traditional surface topography
measurements. The increased data availability
also facilitates an improved understanding of the
relationship between as-built surface topography and
LPBF process parameters, and enables the development
of digital twins or data-driven models for complex
end-use LPBF parts.

Acknowledgements

Junhyeon SEO and Bart RAEYMAEKERS acknowledge
support from the United States Department of Defense,
Office of Local Defense Community Cooperation, under
award ST1605-21-04. Prahalada RAO acknowledges
funding from the United States National Science
Foundation (NSF) via Grant numbers: CMMI-2309483

and PFI-TT 2322322. The authors acknowledge
Advanced Research Computing at Virginia Tech, USA,
for providing computational resources and technical
support that have contributed to the results reported
within this paper. URL: https:// arc.vt.edu/

Appendix A

LPBF process parameters for each LPBF specimen.

Contour Bulk Laser

Specimen  laser laser scan Layer Energy
thickness ~density

number  power power speed (um) 3
W) (W) (mms) W (/mm)

1 115 115 620 30 61.83

2 115 115 620 30 61.83

3 115 168 1,180 30 47.46

4 115 200 800 30 83.33

5 115 220 1,180 30 62.15

6 165 200 1,000 60 50.00

Appendix B

512 pixels x 512 pixels examples of normalized
experimental and synthetic surface topography maps
with and without (outliers) geometric features of

as-built LPBF experimental surfaces.
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