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ABSTRACT 
The goal of this work is to detect flaw formation in wire arc 
additive manufacturing (WAAM). This process uses an electric 
arc as the energy source in order to melt metallic wire and 
deposit the new material, similar to metal inert gas (MIG) 
welding. Industry has been slow to adopt WAAM due to the lack 
of process consistency and reliability. The WAAM process is 
susceptible to a multitude of stochastic disturbances that cause 
instability in the electric arc. These arc instabilities eventually 
lead to flaw formation such as porosity, spatter, and excessive 
deviations in the desired geometry. Therefore, the objective of 
this work is to detect flaw formation using in-situ acoustic 
(sound) data from a microphone installed near the electric arc. 
This data was processed using a novel wavelet integrated graph 
theory approach. This approach detected the onset of multiple 
types of flaw formations with a false alarm rate of less than 2%. 
Using this method, this work demonstrates the potential for in-
situ monitoring and flaw detection of the WAAM process in a 
computationally tractable manner.  
Keywords: Rapid Prototyping and Solid Freeform Fabrication, 
Welding and Joining, Control and Automation.  
 
 
1. INTRODUCTION 

 The objective of this work is to detect the onset of flaw 
formation during the wire arc additive manufacturing (WAAM) 
process using sensor data acquired in-situ. This is a first vital step 
towards quality control in the WAAM process to ensure 
functionality and minimize the amount of post process 
characterization that is needed to be done.  
 The WAAM process is classified under the directed energy 
deposition (DED) family of additive manufacturing (AM) 
process. In DED material is fed into the path of a energy source 
to fuse the new material to a previously existing layer [1]. 
Material being fed into the process can take the form of powder 

(P-DED) or wire (W-DED). The WAAM process used in this 
work falls under the W-DED processes since it uses a wire feed 
stock (Figure 1) [2]. WAAM can also be compared to metal 
inert/active gas (MIG/MAG) welding, in which there is an 
electric arc, protected by a shielding gas, that melts and deposits 
the wire feedstock material  [3].  

In WAAM, the welding torch is translated in three 
dimensions to produce a free-form geometry. The shielding gas 
is an inert gas (e.g., Argon, Nitrogen) that protects the electric 
arc from atmospheric oxygen and disturbances. If the electric arc 
is disturbed, the arc can become unstable and lead to flaw 
formation. Popular materials for WAAM include aluminum, 
titanium,  mild steel, and stainless steel (this work) [4].  

  
FIGURE 1: SCHEMATIC OF THE WIRE ARC ADDITIVE 
MANUFACTURING (WAAM) PROCESS. A WELDING HEAD 
DEPOSITS MATERIAL VIA THE USE OF A CONSUMABLE 
ELECTRODE BEING MELTED WITH AN ELECTRIC ARC. 
 
 A reason for the extensive interest in WAAM is its distinct 
cost advantages. The cost of welding wire is traditionally cheap, 
approximately $10/kg for mild steel. This is significantly less 
than the P-DED processes in which the metallic powder can cost 
over $100/kg. There is also a distinct volumetric throughput 
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advantage of the WAAM process over the other AM processes. 
WAAM can deposit material at a rate of ~50 mm3·s-1, which is 
over 10 times faster than P-DED processes which has an average 
deposition rate of 4 mm3·s-1 [4, 5]. This is a magnitude increase 
in volumetric deposition rate, as laser powder bed fusion (LPBF) 
generally fuses material ~10 times slower than P-DED.  
 The high volumetric deposition rate of WAAM is apt for 
manufacture of volumetrically large parts. The WAAM process 
has been integrated with one or more robots working together to 
produce these volumetrically large parts. This enables the 
additive manufacturing of parts such as wind turbines, 
excavators, oil drilling equipment, and even rocket bodies within 
hours as opposed to the weeks it would require with P-DED [6].  
 Industry has been slow to fully adopt the WAAM process 
due to its tendency to generate flaws such as porosity, warpage, 
and poor geometric accuracy [7]. These flaws are generally 
generated from either: poor selection of processing parameters, 
improper design of the part, sub-standard materials, or disruption 
of the arc (arc instability). Arc instabilities can be caused due to 
machine faults and stochastic disturbance from the environment, 
such as interference from contaminants. Since WAAM is being 
implemented in non-controlled environments, contaminants are 
a unique challenge that WAAM must address. This work will 
focus on the detection of arc instability. We note that even if there 
are no contaminants in the environment, a flaw formation will 
generally be accompanied by an unstable arc.  
 To illustrate the types of flaw generated in the WAAM 
process,  Figure 2 shows X-ray computed tomography (XCT) 
slices of various layers in the samples produced in this work 
using stainless steel 316L. By observing these example slices 
porosity, line width deviations (geometric deviations), and 
contamination-based voids can be found.  The voids in Figure 2 
are correlated to disruption of the arc due to the presence of 
contaminants, as previously shown by Ramalho et al. [8]. 

 
FIGURE 2: EXAMPLE OF THE THREE MAJOR FLAWS 
OBSERVED IN THIS WORK: POROSITY, DEVIATION IN 
GEOMETRY OF AN INDIVIDUAL TRACKS (LINE WIDTH 
VARIATION), AND VOIDS DUE TO CONTAMINATION FROM 
THE SURROUNDING ENVIRONMENT. 

 
 
 
 
 
 

2. MATERIALS AND METHODS 
 

2.1 Experimental Setup 
This work used 1 mm diameter AISI 316L stainless steel 

feedstock welding wire to produce three thin wall geometries. 
Each thin wall sample is 120 mm long and consists of 11 layers 
(1.3mm·layer-1), producing a part that is 14.5 mm tall and 4 mm 
wide. Material is deposited using a Kempi Pro MIG 3200 
welding torch with Argon shielding gas. The process was 
controlled with the Kempi Pro MIG 401 wielding unit integrated 
into a custom-build CNC setup. To produce the parts, the 
welding torch moved at a rate of 300 mm·min-1 with a standoff 
distance of 8 mm in a bi-directional manner. The voltage of the 
electric arc was set at 20 V and the feedstock wire was extruded 
at a rate of 4 m·min-1. 

Each thin wall sample had a different type of contaminant 
placed on layer 7 and 11 at 40 mm intervals, visualized in Figure 
3 with red circles. Sample 1 used powdered chalk, sample 2 used 
oil, and sample 3 used sand as their respective contaminant. 
These contaminants were added by drilling a flat-bottom hole of 
ϕ2.5 mm × 1 mm. In this work, three types of common shop floor 
contaminants (chalk, oil, and sand) were placed in controlled, 
and systematic, locations so that the subsequent arc instability 
can be monitored using in-situ acoustic data. Since the WAAM 
process is generally performed in a shop floor environment, 
various contaminants can enter and destabilize the electric arc.  

To monitor this process in-situ, a Shure SM57 acoustic 
microphone was attached to the welding torch to maintain a 
distance of 20 cm from the welding torch, at a nominal angle of 
20°, shown in Figure 3. This allowed for the microphone to 
always be a constant distance from the electric arc, i.e. the 
meltpool (material deposition point). Data was collected at a rate 
of 25.6 kHz. 

After the parts were produced, post process non-destructive 
testing in the form of XCT was performed on all three samples. 
A Nikon XTH 255 ST system was used to collect data at a 
resolution of 17 μm/voxel. The data was subsequently processed 
using the native volume graphics software. 

 

  
FIGURE 3: PICTURE AND SCHEMATIC OF THE 
EXPERIMENTAL SET-UP. A SHURE SM57 ACOUSTIC SENSOR IS 
ATTACHED TO THE WELDING TORCH MAINTAINING A 
CONSTANT DISTANCE TO THE ELECTRIC ARC.    
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2.2 Effect of Contaminants on the Electric Arc 
In this work, arc instability conditions caused by three 

different types of contaminants, viz., chalk, oil, and sand, were 
analyzed and detected. These contaminants are commonly found 
on the shop floor. The following phenomena are observed based 
on the sensor signal and the physical part produced.  

In the example XCT slice of sample 1 shown in Figure 4(a2) 
there are prominent line width variations at the point where the 
chalk contamination was placed (purple). Due to the relatively 
low packing density of chalk (910-960 kg·m-3 [9]), the chalk was 
blown out of its hole by the argon shielding gas. The aerosolized 
powder then disrupted the shielding gas, causing the electric arc 
to dissipate, thus leading to less material deposition at these 
points. The phenomena is visualized in Figure 4(a1).  

 

FIGURE 4: (A) EFFECT OF CHALK CONTAMINATION, (B) 
EFFECT OF THE OIL CONTAMINATION, (C) EFFECT OF THE 
SAND CONTAMINATION. CONTAMINATION ZONES ARE 
MARKED IN GREEN.  

In the example XCT slice of sample 2, Figure 4(b2), there 
are large pores, classified as voids, at the locations where the oil 
contamination was introduced (red). These voids were likely 
generated due to the electric arc, generating temperatures in 
excess of 1450 °C, vaporizing the oil which has a relatively low 
boiling temperature (300 °C) [10]. The vaporized oil disrupts the 
shielding gas, thus suppressing the continuity of the electric arc 
and interrupting material deposition, depicted in Figure 4(b1). 
This explanation is supported by the excessive amount of spatter 
particles found on sample 2 (Figure 9).  

In the XCT slice of sample 3, Figure 4(c2), there are 
minimal flaws observed. Due to the lack of physical defects in 
this sample, the electric arc was not disrupted, as observed in 
sample 1 and 2. This would imply that the electric arc was able 
to transition across the hole in which the sand contaminant was 
placed in and not generate excessive defects, depicted in Figure 
4(c1). This is supported by the high packing density of sand of 
approximately 1,300 kg·m-3 compared to chalk [11].  

Another insight from this work is that flaws generated in the 
WAAM process are not isolated incidents. Flaws generated on a 
layer, if significant enough, can force an arc instability on 
subsequent layers, thus generating new flaws, depicted in Figure 
5. For example, if there is a void on layer n, then on layer n+1 
the standoff distance will change. This change in the standoff 
distance can propagate flaws in two ways; (1) weakening the 
electric arc, thereby, affecting material deposition, and (2) 
requiring more material to be deposited to fill the excess gap in 
the layer.  

 
FIGURE 5: FLOW CHART DIAGRAM DEPICTING HOW ARC 
INSTABILITIES CAN CREATE FLAWS, AND THOSE FLAWS CAN 
SUBSEQUENTLY PRODUCE NEW ARC INSTABILITIES. 

 
 
 
 
 
 
 
 
 
 
 



 4 © 2023 by ASME 

2.3 Signal Processing using Wavelets & Graph Theory 
In this work, the signal analysis approach consists of 

three basic steps visualized in Figure 6. The following three steps 
discussed in detail herewith were performed: 

 
(1)  Signal Filtering: The raw data acquired by the acoustic 
sensor is filtered using wavelet analysis to remove background 
process noise [12]. 
(2)  Signal Processing (Analysis): The filtered sensor data is 
analyzed using spectral graph theory approach to extract the 
Laplacian Fiedler number (λ2) [13].  
(3)  Process Monitoring: The Fiedler number (λ2) is tracked in 
an exponentially weighted moving average (EWMA) control 
chart [14].  

 

FIGURE 6: OVERVIEW OF THE APPROACH USED FOR FLAW 
DETECTION. (1) THE FIRST STEP IS FILTERING OUT THE 
NOISE USING WAVELET ANALYSIS. (2) NEXT GRAPH THEORY 
ANALYSIS IS USED TO EXTRACT PROCESS SIGNATURES 
(FIEDLER NUMBER). (3) THE FIEDLER NUMBER IS THEN 
TRACKED USING AN EWMA CONTROL CHART. 

Step 1 – Wavelet Filtering 
Wavelet transform decomposition is used to remove the 

background noise from the machine and the environment [12]. 
The wavelet transform can be compared to the Fourier transform 
where the signal is decomposed into its base frequencies. 
However, unlike the Fourier transform the wavelet transform 
allows the data to be analyzed in both the frequency and time 
domains simultaneously. Using this method, the exact location 
of undesired signal frequencies can be identified, which then can 
be correlated to arc instability-based flaw formation.  

Another difference between the Fourier and wavelet 
transforms is that the wavelet transform has many functional 
bases to perform the decomposition, as opposed to only 

sinusoidal bases. The basis for the wavelet transform are called 
wavelets. If needed, custom wavelets can be made and used to 
decompose the signal. Another distinct advantage over the 
Fourier transform is that the wavelet transform accommodates 
non-stationary data sets with sharp discontinuities in the original 
signal [15]. Because the acoustic data in this work is replete with 
sharp discontinuities corresponding to arc instabilities, the use of 
wavelet transforms is vital for this work.  

To ease data processing, the discrete wavelet transforms 
(DWT) is used to decompose the raw acoustic signal (S). This 
formulation shown in Eqn.(1) and is derived from the continuous 
wavelet transform (CWT) [15]. 

 𝑊(2𝑖 , 2𝑖𝑛) ≜
1

√2𝑖
∑ 𝜓̅ (

𝑑

2𝑖 − 𝑛) 𝑆(𝑑)𝑑=𝑁
𝑑=1              (1) 

In this equation the analyzing wavelet function is denoted 
with 𝜓̅. The variable d is the discrete data point in the signal (S), 
containing N total data points. The function 2𝑖 indicates the 
discrete values of the time dilation and translation at the 
frequency level (octave) i. For this work, n=1 so that both the 
time translation and dilation are changed at the same interval, 
this is standard for basic wavelet analysis  [16]. The DWT is used 
to deconstruct the signal into its base frequencies (octaves). To 
successfully decompose the acoustic data in this work, a 
biorthogonal 3.3 wavelet is used to decompose the raw signal 
into eight discrete octaves (i=1,2,3,4,5,6,7,8).  

Once the signal is decomposed into discrete octaves, hard 
limit thresholding is used to remove the background noise at each 
octave. The threshold limit for each octave is found heuristically 
by comparing each octave to layer 7 of sample 1. This allows for 
each octave to be compared to a training condition of chalk 
contamination and its effect on the acoustic signal. Once the 
thresholds are determined, they are not changed under the 
different parts and layers. 

Once each octave has been de-noised, the discrete inverse 
wavelet transforms (DIWT) is performed to convolve each 
octave together into a reconstructed de-noised signal (Sd). This 
process uses the biorthogonal 3.3 reconstruction wavelet. The 
result of de-noising an example layer of acoustic data can be seen 
in step 1 of Figure 6. Notice that at the 40- and 80- mm points 
(where chalk contamination is placed; highlighted in green) in 
the de-noised signal, the signal dissipates indicating a weaker 
arc. This is not noticed in the raw acoustic signal. 

Step 2 – Signal Analysis 
In this step, the de-noised acoustic signal (Sd) is processed 

using spectral graph theory. This allows for the acoustic data to 
be analyzed in the graph space to extract the Fiedler number (λ2), 
which is used as the monitoring statistic. The Fidler number is 
chosen as the monitoring statistic as it is a singular number that 
expresses the overall connectivity of the inputted data. Since the 
de-noised acoustic signal depicts changes in signal strength at 
arc instabilities, the Fielder number is able to detect this change 
in connectivity.  
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After wavelet filtering, the de-noised acoustic signal (Sd) is 
analyzed in the graph domain, and a single number called the 
Fiedler number (λ2) is obtained. The Fiedler number is then used 
as the monitoring statistic for detecting flaw formation. This 
approach circumvents the extraction of several statistical 
features from the sensor data for process monitoring, and is 
therefore computationally efficient. The mathematical properties 
of the Fiedler number are described in depth in Ref. [14]. 

To extract multiple Fiedler number per layer of acoustic 
data, the de-noised signal is divided into 1200 windows per layer, 
where each window contains 512 discrete data points. For a 
physical representation of this process, each window represents 
0.1 mm of welding torch travel, over 0.02 seconds. This results 
in 10 windows per mm of travel.  

For each window, the Fiedler number (λ2, the monitoring 
statistic) is extracted, resulting in a total of 1200 Fiedler numbers 
per layer. The specific process of obtaining the Fiedler number 
is detailed Tootooni et. al. [13]. A brief description of the process 
used in this work is detailed in the following steps.  

First, for each window, the 512 data points are used to create 
a weighted adjacency matrix (w) to determine the Euclidean 
distance of each data point to every other data point. For the 1-D 
de-noised acoustic signal, this formulation can be shown as:  

𝑤(𝑖, 𝑗) = |𝑆𝑑(𝑖) − 𝑆𝑑(𝑗)|                       (2) 

The next step is to generate a normalized Laplacian matrix 
to extract the Fiedler number. Accordingly, the calculated 
weighted adjacency matrix is converted into binary form (0’s and 
1’s) using ε as the thresholding value. Values larger than ε are 
converted to a one, and the rest are converted to zeros. This 
binary form of the weighted adjacency matrix is called the sparse 
adjacency matrix (H). 

Since each window is not a purely isolated data set, meaning 
that in the physical system the acoustic signal from the previous 
window can be correlated to the current window, and therefore, 
affect the current window, the thresholding value ε is not a 
constant value in this work. The calculated value ε is the average 
value of the weighted adjacency matrix from the current window 
and the previous 5 windows. This allows for the acoustic data 
from the previous 0.5 mm to be considered when determining 
the thresholding value ε.  

From the sparse adjacency matrix (H) the normalized 
Laplacian matrix ℒ can be calculated for the window [17]: 

ℒ = 𝐷 − 𝐻                               (3) 

In this formulation, D is the degree matrix, viz., the diagonal 
sum of the sparse adjacency matrix. From this Laplacian matrix, 
the eigenvalues (λ) and eigenvectors (ν) are extracted for each 
window k using the following equation [17]: 

ℒν = λν                                  (4) 

The second eigenvalue (λ2) and eigenvector (ν2) are called 
the Fiedler number (λ2) and Fiedler vector (ν2) respectively. As 

stated previously, the Fiedler number is a singular value that 
expresses the overall connectivity of the inputted data. 
Essentially, the Fiedler number monitoring statistic tracks the 
change in connectivity over the 1200 windows in a given layer. 
To monitor and detect the change in this Fiedler number between 
each window k, an exponentially weighted average (EWMA) 
control chart is used [18]. 

Step 3 – Process Monitoring (Tracking) 
An EWMA chart detects anomalies by tracking a 

monitoring statistic, if this statistic exceeds a certain threshold it 
is deemed out of control (anomaly). For this work the EWMA 
monitoring statistic Zk for a window k is a function of the Fiedler 
number 𝜆2,𝑘 for window k. 

Ζ𝑘 = 𝛼𝜆2,𝑘 + (1 − 𝛼)𝑍𝑘−1                     (5) 

This EWMA statistic weights the incoming data point (𝜆2,𝑘, 
Fiedler number of window k) to the previous EWMA statistic, 
by using a weight (𝛼). In traditional works, the weight (𝛼) is 
between 0.1-0.3, thus weighing (trusting) the latest incoming 
data point less than the previous [18]. This makes the EWMA 
statistic (Z) slow to change, it changes significantly if there are 
multiple. consecutive data points changing in a similar manner. 
This minimizes the effect of noise from outlier data points. In 
this work, 𝛼 = 0.1 to account for the high degree of stochastic 
fluctuation in the data.  

To find the control limits in this work, the flaw free 
condition found in layers 8 and 9 of sample 3 are used. The 
threshold of the upper control limit (UCL) and lower control 
limit (LCL) should be placed just above the nominal fluctuations 
of the nominal (flaw free) data used to calibrate. To find these 
limits the following equation is used where 𝜇0 and 𝜎0 are the 
average and standard deviation of the data set respectively [14]:  

UCL, LCL = 𝜇0  ±  𝜏 ∗ 𝜎0√
𝛼

2−𝛼
                  (6) 

The value of τ represents the number of standard deviations 
needed to account for where the outliers occur. In traditional 
control charts τ = 3, however, due to the stochastic, non-
stationary, and non-linear nature of the acoustic data used in this 
work the value τ =10 [19]. This resulted with an UCL and LCL 
of 44 and 1.5 respectively. An example of these setting in 
practice can be found in step 3 of  Figure 6. Notice that near the 
40- and 80- mm points there are clear spikes above the control 
limit where the chalk contamination is placed.  

These setting resulted in an average run length (ARL0) of 62 
and a false alarm rate of 1.6% [20]. Evaluation metrics were 
extracted from the flaw free conditions on layer 8 and 9 of 
sample 3. This result is on par with the false alarm rates in both 
DED [21]  and LPBF [22, 23] flaw detection research. 
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3. RESULTS AND DISCUSSION 
 

3.1 Flaw Detection at the Layer Level 
Shown in Figure 7, is an example of the proposed method in 

practice on layer 11 of sample 1 which had 2 chalk 
contaminations in green. In the XCT slice (Figure 7(a)) there is 
a line width variation at the start of the layer (purple), then 
another line width variation at the contamination points (green), 
and a pore at the end of the layer (red). All four of these defects 
are noted in EWMA control chart shown in Figure 7(b), where 
all the flaw-prone regions show a clear spike above the upper 
control limit. These spikes above the control limit indicate an arc 
instability that generated the respective flaw.   

 
FIGURE 7: (A) LINE WIDTH VARIATIONS ARE APPARENT IN 
THE XCT SLICE OF THIS LAYER. (B) LINE WIDTH VARIATION 
CAUSED BY CONTAMINATION (GREEN) CROSSES THE UPPER 
CONTROL LIMIT IN THE EWMA CONTROL CHART. 

Another example of the proposed method is seen in Figure 
8, which shows data from layer 11 of sample 2, which contains 
two oil contamination zones. In Figure 8(a) there is a line width 
variation at the start of the layer and two pinch points later on in 
the build demarcated in purple. There are also 2 large voids in 
the sample at the 40- and 80-mm point where the oil 
contamination was placed (red), and a final pore at the end of the 
layer. All of these flaws show a clear spike above the control 
limit in Figure 8(b).  

 

 
FIGURE 8: (A) TWO VOIDS CAUSED BY CONTAMINATION 
(RED), LINE WIDTH VARIATION (PURPLE), AND POROSITY 
(RED) ARE SEEN IN THE XCT SLICE OF THIS LAYER. (B) ALL 
OF THESE FLAWS ARE ACCURATELY DETECTED IN THE 
CONTROL CHART.   

This indicates that the method accurately detects arc 
instability-based flaws across multiple samples with appreciable 
spatial resolution. The model is able to detect the location of arc 
instabilities that can lead to flaw formation, however, it is 
currently unable to determine what type of flaw if generated as a 
result of the arc instability.  

 
3.2 Part Level Detection 

To obtain a holistic view of the porosity on a part level, the 
total number of arc instabilities found in each sample is summed 
and compared to the other samples. Sample 1 which contained 
the chalk contaminant, shown in Figure 9, has 1,001 total arc 
instability detections throughout the sample. Layers 7 and 11, 
which contained contaminations are demarcated in green, 
porosity is demarcated in red, and line width variations are 
demarcated in purple. This sample contains five large pores and 
a significant number of line width, including a phenomenon 
called walk off at the edges of the sample.  

In comparison, sample 2 contained six large pores, line 
width variations, and a large amount of spatter (satellite) 
particles on the side of the sample. Sample 2 had a total of 1,991 
arc instability detections throughout the sample that correlate to 
the unstable meltpool generating spatter and large pores.  

Finally, sample 3 only had three small pores and minimal 
line width variations. The total number of arc instability in this 
sample is 343 which correlates to the more stable meltpool 
generating the higher quality part.  

This indicates that this method is able to determine the 
overall quality of WAAM produced parts by counting the total 
number or arc instability detections in the sample.  
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FIGURE 9: COMPARISON BETWEEN ALL THREE SAMPLES 
AND THE NUMBER OF ARC INSTABILITY DETECTIONS IN 
EACH LAYER. SAMPLE 3 HAD BOTH THE FEWEST NUMBER 
OF ARC DETECTIONS AND THE FEWEST FLAWS. IN 
COMPARISON TO SAMPLE 1 AND SAMPLE 2 WHICH HAD 
OVER 1,000 DETECTIONS AND SIGNIFICANT NUMBERS OF 
FLAWS OBSERVED. 

 
4. CONCLUSION 

This work developed and applied a wavelet-based graph 
theory signal analysis approach for flaw detection in the 
WAAM process. In-situ acoustic microphone signals were de-
noised using a wavelet transform, and analyzed using spectral 
graph theory to extract a statistic called the Fiedler number. 
This Fiedler number was then tracked in an exponentially 
weighted moving average (EWMA) control chart to monitor 
and detect when an unstable arc occurred that will lead to flaw 
formations. The effectiveness of the approach was 
demonstrated in the context of detecting various arc instabilities 
in the WAAM process. The approach is evaluated to have a 
false alarm rate of less than 2%. 

This work is an important first step to the in-situ part 
qualification of WAAM parts and for future closed-loop control 
algorithms. Future work will entail not only detecting arc 
instability but also type of flaw formation via the use of 
machine learning algorithms. Additionally, closed-loop control 
algorithms will be developed to detect when an excessive 
amount of flaw formation exists and remove the layer using 
CNC milling. This layer can then be re-deposited under 
different settings. Finally, this method will be tuned to work 
with other materials on various WAAM machines.  
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