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ABSTRACT

The goal of this work is to detect flaw formation in wire arc
additive manufacturing (WAAM). This process uses an electric
arc as the energy source in order to melt metallic wire and
deposit the new material, similar to metal inert gas (MIG)
welding. Industry has been slow to adopt WAAM due to the lack
of process consistency and reliability. The WAAM process is
susceptible to a multitude of stochastic disturbances that cause
instability in the electric arc. These arc instabilities eventually
lead to flaw formation such as porosity, spatter, and excessive
deviations in the desired geometry. Therefore, the objective of
this work is to detect flaw formation using in-situ acoustic
(sound) data from a microphone installed near the electric arc.
This data was processed using a novel wavelet integrated graph
theory approach. This approach detected the onset of multiple
types of flaw formations with a false alarm rate of less than 2%.
Using this method, this work demonstrates the potential for in-
situ monitoring and flaw detection of the WAAM process in a
computationally tractable manner.

Keywords: Rapid Prototyping and Solid Freeform Fabrication,
Welding and Joining, Control and Automation.

1. INTRODUCTION

The objective of this work is to detect the onset of flaw
formation during the wire arc additive manufacturing (WAAM)
process using sensor data acquired in-situ. This is a first vital step
towards quality control in the WAAM process to ensure
functionality and minimize the amount of post process
characterization that is needed to be done.

The WAAM process is classified under the directed energy
deposition (DED) family of additive manufacturing (AM)
process. In DED material is fed into the path of a energy source
to fuse the new material to a previously existing layer [1].
Material being fed into the process can take the form of powder
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(P-DED) or wire (W-DED). The WAAM process used in this
work falls under the W-DED processes since it uses a wire feed
stock (Figure 1) [2]. WAAM can also be compared to metal
inert/active gas (MIG/MAG) welding, in which there is an
electric arc, protected by a shielding gas, that melts and deposits
the wire feedstock material [3].

In WAAM, the welding torch is translated in three
dimensions to produce a free-form geometry. The shielding gas
is an inert gas (e.g., Argon, Nitrogen) that protects the electric
arc from atmospheric oxygen and disturbances. If the electric arc
is disturbed, the arc can become unstable and lead to flaw
formation. Popular materials for WAAM include aluminum,
titanium, mild steel, and stainless steel (this work) [4].
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FIGURE 1: SCHEMATIC OF THE WIRE ARC ADDITIVE
MANUFACTURING (WAAM) PROCESS. A WELDING HEAD
DEPOSITS MATERIAL VIA THE USE OF A CONSUMABLE
ELECTRODE BEING MELTED WITH AN ELECTRIC ARC.

A reason for the extensive interest in WAAM is its distinct
cost advantages. The cost of welding wire is traditionally cheap,
approximately $10/kg for mild steel. This is significantly less
than the P-DED processes in which the metallic powder can cost
over $100/kg. There is also a distinct volumetric throughput
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advantage of the WAAM process over the other AM processes.
WAAM can deposit material at a rate of ~50 mm?-s’!, which is
over 10 times faster than P-DED processes which has an average
deposition rate of 4 mm3-s™! [4, 5]. This is a magnitude increase
in volumetric deposition rate, as laser powder bed fusion (LPBF)
generally fuses material ~10 times slower than P-DED.

The high volumetric deposition rate of WAAM is apt for
manufacture of volumetrically large parts. The WAAM process
has been integrated with one or more robots working together to
produce these volumetrically large parts. This enables the
additive manufacturing of parts such as wind turbines,
excavators, oil drilling equipment, and even rocket bodies within
hours as opposed to the weeks it would require with P-DED [6].

Industry has been slow to fully adopt the WAAM process
due to its tendency to generate flaws such as porosity, warpage,
and poor geometric accuracy [7]. These flaws are generally
generated from either: poor selection of processing parameters,
improper design of the part, sub-standard materials, or disruption
of the arc (arc instability). Arc instabilities can be caused due to
machine faults and stochastic disturbance from the environment,
such as interference from contaminants. Since WAAM is being
implemented in non-controlled environments, contaminants are
a unique challenge that WAAM must address. This work will
focus on the detection of arc instability. We note that even if there
are no contaminants in the environment, a flaw formation will
generally be accompanied by an unstable arc.

To illustrate the types of flaw generated in the WAAM
process, Figure 2 shows X-ray computed tomography (XCT)
slices of various layers in the samples produced in this work
using stainless steel 316L. By observing these example slices
porosity, line width deviations (geometric deviations), and
contamination-based voids can be found. The voids in Figure 2
are correlated to disruption of the arc due to the presence of
contaminants, as previously shown by Ramalho et al. [8].
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FIGURE 2: EXAMPLE OF THE THREE MAJOR FLAWS
OBSERVED IN THIS WORK: POROSITY, DEVIATION IN
GEOMETRY OF AN INDIVIDUAL TRACKS (LINE WIDTH
VARIATION), AND VOIDS DUE TO CONTAMINATION FROM
THE SURROUNDING ENVIRONMENT.

2. MATERIALS AND METHODS

2.1 Experimental Setup

This work used 1 mm diameter AISI 316L stainless steel
feedstock welding wire to produce three thin wall geometries.
Each thin wall sample is 120 mm long and consists of 11 layers
(1.3mm-layer!), producing a part that is 14.5 mm tall and 4 mm
wide. Material is deposited using a Kempi Pro MIG 3200
welding torch with Argon shielding gas. The process was
controlled with the Kempi Pro MIG 401 wielding unit integrated
into a custom-build CNC setup. To produce the parts, the
welding torch moved at a rate of 300 mm-min™' with a standoff
distance of 8 mm in a bi-directional manner. The voltage of the
electric arc was set at 20 V and the feedstock wire was extruded
at a rate of 4 m'min’'.

Each thin wall sample had a different type of contaminant
placed on layer 7 and 11 at 40 mm intervals, visualized in Figure
3 with red circles. Sample 1 used powdered chalk, sample 2 used
oil, and sample 3 used sand as their respective contaminant.
These contaminants were added by drilling a flat-bottom hole of
$¢2.5 mm x 1 mm. In this work, three types of common shop floor
contaminants (chalk, oil, and sand) were placed in controlled,
and systematic, locations so that the subsequent arc instability
can be monitored using in-situ acoustic data. Since the WAAM
process is generally performed in a shop floor environment,
various contaminants can enter and destabilize the electric arc.

To monitor this process in-situ, a Shure SM57 acoustic
microphone was attached to the welding torch to maintain a
distance of 20 cm from the welding torch, at a nominal angle of
20°, shown in Figure 3. This allowed for the microphone to
always be a constant distance from the electric arc, i.e. the
meltpool (material deposition point). Data was collected at a rate
of 25.6 kHz.

After the parts were produced, post process non-destructive
testing in the form of XCT was performed on all three samples.
A Nikon XTH 255 ST system was used to collect data at a
resolution of 17 pum/voxel. The data was subsequently processed
using the native volume graphics software.
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FIGURE 3:

PICTURE AND
EXPERIMENTAL SET-UP. A SHURE SM57 ACOUSTIC SENSOR IS
ATTACHED TO THE WELDING TORCH MAINTAINING A
CONSTANT DISTANCE TO THE ELECTRIC ARC.

SCHEMATIC OF THE
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2.2 Effect of Contaminants on the Electric Arc

In this work, arc instability conditions caused by three
different types of contaminants, viz., chalk, oil, and sand, were
analyzed and detected. These contaminants are commonly found
on the shop floor. The following phenomena are observed based
on the sensor signal and the physical part produced.

In the example XCT slice of sample 1 shown in Figure 4(a2)
there are prominent line width variations at the point where the
chalk contamination was placed (purple). Due to the relatively
low packing density of chalk (910-960 kg-m [9]), the chalk was
blown out of its hole by the argon shielding gas. The aerosolized
powder then disrupted the shielding gas, causing the electric arc
to dissipate, thus leading to less material deposition at these
points. The phenomena is visualized in Figure 4(al).
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FIGURE 4: (A) EFFECT OF CHALK CONTAMINATION, (B)
EFFECT OF THE OIL CONTAMINATION, (C) EFFECT OF THE
SAND CONTAMINATION. CONTAMINATION ZONES ARE
MARKED IN GREEN.

In the example XCT slice of sample 2, Figure 4(b2), there
are large pores, classified as voids, at the locations where the oil
contamination was introduced (red). These voids were likely
generated due to the electric arc, generating temperatures in
excess of 1450 °C, vaporizing the oil which has a relatively low
boiling temperature (300 °C) [10]. The vaporized oil disrupts the
shielding gas, thus suppressing the continuity of the electric arc
and interrupting material deposition, depicted in Figure 4(b1).
This explanation is supported by the excessive amount of spatter
particles found on sample 2 (Figure 9).

In the XCT slice of sample 3, Figure 4(c2), there are
minimal flaws observed. Due to the lack of physical defects in
this sample, the electric arc was not disrupted, as observed in
sample 1 and 2. This would imply that the electric arc was able
to transition across the hole in which the sand contaminant was
placed in and not generate excessive defects, depicted in Figure
4(cl). This is supported by the high packing density of sand of
approximately 1,300 kg'm™ compared to chalk [11].

Another insight from this work is that flaws generated in the
WAAM process are not isolated incidents. Flaws generated on a
layer, if significant enough, can force an arc instability on
subsequent layers, thus generating new flaws, depicted in Figure
5. For example, if there is a void on layer », then on layer n+/
the standoff distance will change. This change in the standoff
distance can propagate flaws in two ways; (1) weakening the
electric arc, thereby, affecting material deposition, and (2)
requiring more material to be deposited to fill the excess gap in
the layer.
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FIGURE 5: FLOW CHART DIAGRAM DEPICTING HOW ARC
INSTABILITIES CAN CREATE FLAWS, AND THOSE FLAWS CAN
SUBSEQUENTLY PRODUCE NEW ARC INSTABILITIES.
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2.3 Signal Processing using Wavelets & Graph Theory

In this work, the signal analysis approach consists of
three basic steps visualized in Figure 6. The following three steps
discussed in detail herewith were performed:

(1) Signal Filtering: The raw data acquired by the acoustic
sensor is filtered using wavelet analysis to remove background
process noise [12].

(2) Signal Processing (Analysis): The filtered sensor data is
analyzed using spectral graph theory approach to extract the
Laplacian Fiedler number (A2) [13].

(3) Process Monitoring: The Fiedler number (1,) is tracked in
an exponentially weighted moving average (EWMA) control
chart [14].

Step 1: Filtering
Wavelet Based

Raw Acoustic Signal Signal De-naisin

15 15
— Deconstruction —
a 10 o 10
© Al‘ ©
5 5 5 °
w — 0
20 £ 0
5 Reconstruction §
=
g5 J\/\ 85
< <
-10 -10
5 40 80 115 5 40 80 115
Length [mm] Length [mm]
Step 2: Analysis Step 3: Tracking

Extract Graph Laplacian
Fiedler Number

EWMA Control Chart
Based Monitoring
T -I =

Y
o
(=]

50

Acoustic EWMA (M)

5 40 80 115
Length [mm]

FIGURE 6: OVERVIEW OF THE APPROACH USED FOR FLAW
DETECTION. (1) THE FIRST STEP IS FILTERING OUT THE
NOISE USING WAVELET ANALYSIS. (2) NEXT GRAPH THEORY
ANALYSIS IS USED TO EXTRACT PROCESS SIGNATURES
(FIEDLER NUMBER). (3) THE FIEDLER NUMBER IS THEN
TRACKED USING AN EWMA CONTROL CHART.

Step 1 — Wavelet Filtering

Wavelet transform decomposition is used to remove the
background noise from the machine and the environment [12].
The wavelet transform can be compared to the Fourier transform
where the signal is decomposed into its base frequencies.
However, unlike the Fourier transform the wavelet transform
allows the data to be analyzed in both the frequency and time
domains simultaneously. Using this method, the exact location
of undesired signal frequencies can be identified, which then can
be correlated to arc instability-based flaw formation.

Another difference between the Fourier and wavelet
transforms is that the wavelet transform has many functional
bases to perform the decomposition, as opposed to only

sinusoidal bases. The basis for the wavelet transform are called
wavelets. If needed, custom wavelets can be made and used to
decompose the signal. Another distinct advantage over the
Fourier transform is that the wavelet transform accommodates
non-stationary data sets with sharp discontinuities in the original
signal [15]. Because the acoustic data in this work is replete with
sharp discontinuities corresponding to arc instabilities, the use of
wavelet transforms is vital for this work.

To ease data processing, the discrete wavelet transforms
(DWT) is used to decompose the raw acoustic signal (S). This
formulation shown in Eqn.(1) and is derived from the continuous
wavelet transform (CWT) [15].

W', 2m) = 3N (G- n) S@ (1)

In this equation the analyzing wavelet function is denoted
with 1. The variable d is the discrete data point in the signal (S),
containing N total data points. The function 2! indicates the
discrete values of the time dilation and translation at the
frequency level (octave) i. For this work, n=1 so that both the
time translation and dilation are changed at the same interval,
this is standard for basic wavelet analysis [16]. The DWT is used
to deconstruct the signal into its base frequencies (octaves). To
successfully decompose the acoustic data in this work, a
biorthogonal 3.3 wavelet is used to decompose the raw signal
into eight discrete octaves (i=1,2,3,4,5,6,7,8).

Once the signal is decomposed into discrete octaves, hard
limit thresholding is used to remove the background noise at each
octave. The threshold limit for each octave is found heuristically
by comparing each octave to layer 7 of sample 1. This allows for
each octave to be compared to a training condition of chalk
contamination and its effect on the acoustic signal. Once the
thresholds are determined, they are not changed under the
different parts and layers.

Once each octave has been de-noised, the discrete inverse
wavelet transforms (DIWT) is performed to convolve each
octave together into a reconstructed de-noised signal (Sq). This
process uses the biorthogonal 3.3 reconstruction wavelet. The
result of de-noising an example layer of acoustic data can be seen
in step 1 of Figure 6. Notice that at the 40- and 80- mm points
(where chalk contamination is placed; highlighted in green) in
the de-noised signal, the signal dissipates indicating a weaker
arc. This is not noticed in the raw acoustic signal.

Step 2 — Signal Analysis

In this step, the de-noised acoustic signal (Sq) is processed
using spectral graph theory. This allows for the acoustic data to
be analyzed in the graph space to extract the Fiedler number (A>),
which is used as the monitoring statistic. The Fidler number is
chosen as the monitoring statistic as it is a singular number that
expresses the overall connectivity of the inputted data. Since the
de-noised acoustic signal depicts changes in signal strength at
arc instabilities, the Fielder number is able to detect this change
in connectivity.
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After wavelet filtering, the de-noised acoustic signal (Sq) is
analyzed in the graph domain, and a single number called the
Fiedler number (,) is obtained. The Fiedler number is then used
as the monitoring statistic for detecting flaw formation. This
approach circumvents the extraction of several statistical
features from the sensor data for process monitoring, and is
therefore computationally efficient. The mathematical properties
of the Fiedler number are described in depth in Ref. [14].

To extract multiple Fiedler number per layer of acoustic
data, the de-noised signal is divided into 1200 windows per layer,
where each window contains 512 discrete data points. For a
physical representation of this process, each window represents
0.1 mm of welding torch travel, over 0.02 seconds. This results
in 10 windows per mm of travel.

For each window, the Fiedler number (A», the monitoring
statistic) is extracted, resulting in a total of 1200 Fiedler numbers
per layer. The specific process of obtaining the Fiedler number
is detailed Tootooni et. al. [13]. A brief description of the process
used in this work is detailed in the following steps.

First, for each window, the 512 data points are used to create
a weighted adjacency matrix (w) to determine the Euclidean
distance of each data point to every other data point. For the 1-D
de-noised acoustic signal, this formulation can be shown as:

w(i,j) = 1Sa (1) = Sa ()| 2

The next step is to generate a normalized Laplacian matrix
to extract the Fiedler number. Accordingly, the calculated
weighted adjacency matrix is converted into binary form (0’s and
1’s) using ¢ as the thresholding value. Values larger than ¢ are
converted to a one, and the rest are converted to zeros. This
binary form of the weighted adjacency matrix is called the sparse
adjacency matrix (H).

Since each window is not a purely isolated data set, meaning
that in the physical system the acoustic signal from the previous
window can be correlated to the current window, and therefore,
affect the current window, the thresholding value € is not a
constant value in this work. The calculated value ¢ is the average
value of the weighted adjacency matrix from the current window
and the previous 5 windows. This allows for the acoustic data
from the previous 0.5 mm to be considered when determining
the thresholding value .

From the sparse adjacency matrix (H) the normalized
Laplacian matrix £ can be calculated for the window [17]:

L=D—-H 3)
In this formulation, D is the degree matrix, viz., the diagonal
sum of the sparse adjacency matrix. From this Laplacian matrix,

the eigenvalues (A) and eigenvectors (v) are extracted for each
window k using the following equation [17]:

Lv = Av 4)

The second eigenvalue () and eigenvector (v2) are called
the Fiedler number (A») and Fiedler vector (v2) respectively. As

stated previously, the Fiedler number is a singular value that
expresses the overall connectivity of the inputted data.
Essentially, the Fiedler number monitoring statistic tracks the
change in connectivity over the 1200 windows in a given layer.
To monitor and detect the change in this Fiedler number between
each window k, an exponentially weighted average (EWMA)
control chart is used [18].

Step 3 — Process Monitoring (Tracking)

An EWMA chart detects anomalies by tracking a
monitoring statistic, if this statistic exceeds a certain threshold it
is deemed out of control (anomaly). For this work the EWMA
monitoring statistic Zy for a window k is a function of the Fiedler
number A, ;. for window k.

Zy = aldyp + (1 —a)Zy_, )

This EWMA statistic weights the incoming data point (4, ,
Fiedler number of window k) to the previous EWMA statistic,
by using a weight (). In traditional works, the weight (@) is
between 0.1-0.3, thus weighing (trusting) the latest incoming
data point less than the previous [18]. This makes the EWMA
statistic (Z) slow to change, it changes significantly if there are
multiple. consecutive data points changing in a similar manner.
This minimizes the effect of noise from outlier data points. In
this work, @ = 0.1 to account for the high degree of stochastic
fluctuation in the data.

To find the control limits in this work, the flaw free
condition found in layers 8 and 9 of sample 3 are used. The
threshold of the upper control limit (UCL) and lower control
limit (LCL) should be placed just above the nominal fluctuations
of the nominal (flaw free) data used to calibrate. To find these
limits the following equation is used where y, and o, are the
average and standard deviation of the data set respectively [14]:

UCL,LCL = py + 70, /ﬁ (6)

The value of 1 represents the number of standard deviations
needed to account for where the outliers occur. In traditional
control charts T = 3, however, due to the stochastic, non-
stationary, and non-linear nature of the acoustic data used in this
work the value T =10 [19]. This resulted with an UCL and LCL
of 44 and 1.5 respectively. An example of these setting in
practice can be found in step 3 of Figure 6. Notice that near the
40- and 80- mm points there are clear spikes above the control
limit where the chalk contamination is placed.

These setting resulted in an average run length (ARLy) of 62
and a false alarm rate of 1.6% [20]. Evaluation metrics were
extracted from the flaw free conditions on layer 8 and 9 of
sample 3. This result is on par with the false alarm rates in both
DED [21] and LPBF [22, 23] flaw detection research.
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3. RESULTS AND DISCUSSION

3.1 Flaw Detection at the Layer Level

Shown in Figure 7, is an example of the proposed method in
practice on layer 11 of sample 1 which had 2 chalk
contaminations in green. In the XCT slice (Figure 7(a)) there is
a line width variation at the start of the layer (purple), then
another line width variation at the contamination points (green),
and a pore at the end of the layer (red). All four of these defects
are noted in EWMA control chart shown in Figure 7(b), where
all the flaw-prone regions show a clear spike above the upper
control limit. These spikes above the control limit indicate an arc
instability that generated the respective flaw.
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FIGURE 7: (A) LINE WIDTH VARIATIONS ARE APPARENT IN
THE XCT SLICE OF THIS LAYER. (B) LINE WIDTH VARIATION
CAUSED BY CONTAMINATION (GREEN) CROSSES THE UPPER
CONTROL LIMIT IN THE EWMA CONTROL CHART.

Another example of the proposed method is seen in Figure
8, which shows data from layer 11 of sample 2, which contains
two oil contamination zones. In Figure 8(a) there is a line width
variation at the start of the layer and two pinch points later on in
the build demarcated in purple. There are also 2 large voids in
the sample at the 40- and 80-mm point where the oil
contamination was placed (red), and a final pore at the end of the
layer. All of these flaws show a clear spike above the control
limit in Figure 8(b).
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FIGURE 8: (A) TWO VOIDS CAUSED BY CONTAMINATION
(RED), LINE WIDTH VARIATION (PURPLE), AND POROSITY
(RED) ARE SEEN IN THE XCT SLICE OF THIS LAYER. (B) ALL
OF THESE FLAWS ARE ACCURATELY DETECTED IN THE
CONTROL CHART.

This indicates that the method accurately detects arc
instability-based flaws across multiple samples with appreciable
spatial resolution. The model is able to detect the location of arc
instabilities that can lead to flaw formation, however, it is
currently unable to determine what type of flaw if generated as a
result of the arc instability.

3.2 Part Level Detection

To obtain a holistic view of the porosity on a part level, the
total number of arc instabilities found in each sample is summed
and compared to the other samples. Sample 1 which contained
the chalk contaminant, shown in Figure 9, has 1,001 total arc
instability detections throughout the sample. Layers 7 and 11,
which contained contaminations are demarcated in green,
porosity is demarcated in red, and line width variations are
demarcated in purple. This sample contains five large pores and
a significant number of line width, including a phenomenon
called walk off at the edges of the sample.

In comparison, sample 2 contained six large pores, line
width variations, and a large amount of spatter (satellite)
particles on the side of the sample. Sample 2 had a total of 1,991
arc instability detections throughout the sample that correlate to
the unstable meltpool generating spatter and large pores.

Finally, sample 3 only had three small pores and minimal
line width variations. The total number of arc instability in this
sample is 343 which correlates to the more stable meltpool
generating the higher quality part.

This indicates that this method is able to determine the
overall quality of WAAM produced parts by counting the total
number or arc instability detections in the sample.
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FIGURE 9: COMPARISON BETWEEN ALL THREE SAMPLES
AND THE NUMBER OF ARC INSTABILITY DETECTIONS IN
EACH LAYER. SAMPLE 3 HAD BOTH THE FEWEST NUMBER
OF ARC DETECTIONS AND THE FEWEST FLAWS. IN
COMPARISON TO SAMPLE 1 AND SAMPLE 2 WHICH HAD
OVER 1,000 DETECTIONS AND SIGNIFICANT NUMBERS OF
FLAWS OBSERVED.

4, CONCLUSION

This work developed and applied a wavelet-based graph
theory signal analysis approach for flaw detection in the
WAAM process. In-situ acoustic microphone signals were de-
noised using a wavelet transform, and analyzed using spectral
graph theory to extract a statistic called the Fiedler number.
This Fiedler number was then tracked in an exponentially
weighted moving average (EWMA) control chart to monitor
and detect when an unstable arc occurred that will lead to flaw
formations. The effectiveness of the approach was
demonstrated in the context of detecting various arc instabilities
in the WAAM process. The approach is evaluated to have a
false alarm rate of less than 2%.

This work is an important first step to the in-situ part
qualification of WAAM parts and for future closed-loop control
algorithms. Future work will entail not only detecting arc
instability but also type of flaw formation via the use of
machine learning algorithms. Additionally, closed-loop control
algorithms will be developed to detect when an excessive
amount of flaw formation exists and remove the layer using
CNC milling. This layer can then be re-deposited under
different settings. Finally, this method will be tuned to work
with other materials on various WAAM machines.
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