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Geometric Characterization of the [ -property for
Step-graphons

Mohamed-Ali Belabbas!' and Xudong Chen?*

Abstract—In a recent paper [1], we have exhibited a set of
conditions that are necessary for the H-property to hold for
the class of step-graphons. In this paper, we prove that these
conditions are essentially sufficient.

I. INTRODUCTION AND MAIN RESULT

In [1], we introduced the so-called H-property for a graphon
W — roughly speaking, it is the property that a graph
G sampled from W admits a Hamiltonian decomposition
asymptotically (as the order of GG goes to infinity) almost
surely (a.a.s.). In [1], we have exhibited a set of conditions
that were necessary for the H-property to hold for the class
of step-graphons. We show in this paper that these conditions
are also essentially (in a sense made precise below) sufficient
and, moreover, that the H-property is a “zero-one” property.

A. Motivation

The line of research addressed in this sequence of papers is
rooted in structural system theory, and investigates structural
properties under random graph models described by graphons.

Structural system theory deals with the problem of un-
derstanding when a given network topology can sustain a
prescribed system property. Typical such properties are control-
lability [2], [3] and stability [4], [5]. In more detail, consider
a network of n agents zj,...,z,, whose communication
topology is described by a directed graph (or simply digraph)
G = (V, E), with the nodes vy, ..., v, representing the agents
and directed edges v;v; indicating the information flow (with
the convention that a directed edge v;v; indicates that agent
x; can access state information from ;). Given the digraph
G, a system dynamics ©(t) = f(x(t)) is said to be compatible
with G if the dynamics of x;(t) depend only on its incoming
neighbors in G:

V;U; ¢ F = 8']01(3:) = O,
8:10 j
where f; describes the dynamics for agent x;. Denote by X
the set of differentiable dynamics compatible with G.
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Given a desired system property S, we say that the digraph
G sustains S if there exists a dynamics f € X satisfying the
property S.

Following our previous work [1], we focus on the existence
of Hamiltonian decompositions in the digraph describing the
communication topology of a network system. A Hamiltonian
decomposition is a set of disjoint cycles that cover all
nodes of the digraph. Their existence underlies a number of
important properties pertinent to structural system theory, such
as structural controllability [3] and structural stability [4], [6].
For example, it was shown in [6] that for G a symmetric
digraph, the set X contains exponentially stable dynamical
systems if and only if G contains a self-loop and a Hamiltonian
decomposition. Hence, Hamiltonian decomposition are the
key enabler of exponential stability for network dynamics.
Hamiltonian decompositions also play an essential role in
structural controllability for continuum ensembles of linear
control systems [3].

Understanding the behavior of systems properties over
random network topologies provides a wealth of insights [7].
For example, given a null random graph model, the probability
that a network structure can sustain a desired system property S
tells us whether the given property is rare or frequent amongst
topologies. The knowledge of whether there is an abundance
or scarcity of network systems displaying the property S is
thus a critical component in the decision of a network manager
to deploy expensive network systems operating in uncertain
and/or adversarial environment (and since the H-property will
be shown to be a zero-one property, abundance or scarcity
can be understood as almost all or almost none under the
graphon model). Furthermore, in cases such as social networks,
having a random model for the topology is actually the natural
option [8], as any estimate of a social network graph is bound
to be affected by random (graph-valued) noise. In selecting a
random graph model, the relevant aspects are: (1) universality
and flexibility of the model (does the model cover a broad range
of generic scenarios?) and (2) analytical and computational
tractability. Graphons, which have emerged in the past decade
as a powerful tool to understand large graphs [9], provide a
fair amount of modeling flexibility while being tractable.

B. On the H-property

We start by recalling the definitions of a graphon and its
sampling procedure. A graphon is a symmetric, measurable
function W : [0, 1]> — [0, 1]. Step-graphons, along with their
partitions, are defined below:
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Fig. 1: (a): An undirected graph G on 4 nodes. (b): The directed graph
G obtained from G by replacing every undirected with two oppositely
oriented edges. The cycle D1 = vivavsvavy forms a Hamiltonian
decomposition of G. The two node disjoint cycles Dy = vivev; and
D3 = v3vavs also form a Hamiltonian decomposition of G.

Definition 1 (Step-graphon and its partition). A graphon W
is a step-graphon if there exists an increasing sequence 0 =
o9 <01 <---<og=1such that W is constant over each
rectangle [0;,0;41) X [0j,0541) forall 0 <i,j < q—1. We
call o = (09, 01,...,04) a partition for W.

Graphons can be used to sample undirected graphs. Other
uses of graphons in system theory as limits of adjacency
matrices can be found in [10]-[12]. In this paper, we denote
by G,, ~ W graphs GG,, on n nodes sampled from a graphon
W. The sampling procedure was introduced in [9], [13] and
is reproduced below: Let Uni[0, 1] be the uniform distribution

n [0, 1]. Given a graphon W, a graph G,, = (V, E) ~ W on
n nodes is obtained as follows:
1) Sample y1,...,yn ~ Unif0,1] independently. We call
y; the coordinate of node v; € V.
2) For any two distinct nodes v; and vj;, place an edge
(vs,v) € E with probability W (y;, y;).
It should be clear that if 0 < p < 1is a constant and W (s,t) =
p for all (s,t) € [0,1]%, then G, ~ W is an Erd6s-Rényi
random graph with parameter p. Consequently, graphons can
be seen as a way to introduce inhomogeneity in the edge
densities between different pairs of nodes.

Let W be a graphon and G,, ~ W. In the sequel, we use
the notation G,, = (V, E) to denote the directed version of
G, defined by the edge set

E = {’Ui’l)j,’l}j’l)i | ('l}i7’l)j) € E} (1)

In words, we replace an undirected edge (v;,v;) with two
directed edges v;v; and v;v;. The directed graph G is said to
have a Hamiltonian decomposition if it contains a subgraph H,
with the same node set of é, such that H is a node disjoint
union of directed cycles. See Fig. 1 for illustration.

We now have the following definition:

Definition 2 (H-property). Let W be a graphon and G,, ~
W. Then, W has the H-property if G, has a Hamiltonian
decomposition a.a.s., i.e.,

2

We will see below that the H-property is essentially a “zero-
one” property in a sense that the probability on the left hand
side of (2) converges to either 0 or 1.

lim P(G,, has a Hamiltonian decomposition) = 1.
n—oo
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Fig. 2: (a): A step-graphon W with the partition o =
(0,0.25,0.5,0.75,1), with the value coded by the gray scale on
the left. (b): The associated skeleton graph S. (c¢) and (d): Graphs
G\, sampled from W for n = 6 and n = 12, respectively.

C. Key objects

We present three key objects associated with a step-graphon,
namely, its concentration vector, its skeleton graph, and its
associated edge polytope, all of which were introduced in [1].

Definition 3 (Concentration vector). Let W be a step-graphon
with partition 0 = (0, . .., 04). The associated concentration
vector 2% = (27, ..., x}) has entries defined as follows: x} :=
o, —0i_1, foralli=1,...,q.

It should be clear from the sampling procedure above that
the concentration vector describes the proportion of sampled
nodes in each interval [0;,0;41) on average.

Given a step-graphon, its support can be described by a
graph, which we call skeleton graph:

Definition 4 (Skeleton graph). To a step-graphon W with a
partition o = (0y,...,04), we assign the undirected graph
S = (U,F) on q nodes, with U = {u, ... ,uq} and edge set
F defined as follows: there is an edge between u; and u; if
and only if W is non-zero over [0;_1,0;) X [0j_1,0;). We
call S the skeleton graph of W for o.

We illustrate the relationship between a step-graphon and
its skeleton graph in Figure 2.

Without loss of generality and for ease of presentation,
we will consider throughout this paper step-graphons W
whose skeleton graphs are connected. Though there is no
unique skeleton graph associated to a step-graphon (since there
are infinitely many different partitions for W), we show in
Proposition 1 that if one such skeleton graph is connected, then
so are all the others. For S not connected, it is not too hard to
see that the corresponding step-graphon is block-diagonal. Our
results apply naturally to every connected component of S.
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We decompose the edge set F' of S as

F=FUF, 3)

where elements of F{, are self-loops, and elements of F} are
edges between distinct nodes. We also introduce the subset
F, C Fy of edges that are not incident to two nodes with
self-loops.

Let Z := {1,...,|F|} be an index set for F' (so that the
edges are now ordered). We decompose Z similarly: let Z, 71,
and 7, index Fy, F}, and F5 respectively.

To introduce the edge-polytope of S, we recall that the
incidence matrix Z = [z;;] of S is an |U| x |F| matrix with
its entries defined as follows:

2, if f; € Fy is a loop on node u;,

Zij =5 1, if node u; is incident to f; € Fy, (4)

0, otherwise.

Owing to the factor % in (4), all columns of Z are probability
vectors, i.e., all entries are nonnegative and sum to one. The
edge polytope of S was introduced in [14] and the definition
is reproduced below (with a slight difference in inclusion of
the factor % of the generators z;):

Definition 5 (Edge polytope). Let S = (U, F') be a skeleton
graph and Z be the associated incidence matrix. Let z;, for
1 < j < |F), be the columns of Z. The edge polytope of S,
denoted by X (S), is the convex hull of the vectors z;:

X(S):=conv{z; | j=1,...,|F|}.

®)

A point z € X(5) is said to be in the relative interior of
X (S), denoted by int X'(S), if there exists an open neighbor-
hood U of z in R? (with ¢ = |U]) such that UNX(S) C X(5).
If = is not an interior point, then it is called a boundary point
and we write z € 0X(5).

D. Main results

Let W be a step-graphon. For a given partition ¢ for W,
let * and S be the associated concentration vector and the
skeleton graph (which is assumed to be connected). We say
that a cycle in S is odd if it contains an odd number of distinct
nodes (or edges); with this definition, self-loops are odd cycles.
Given these, we state the following two conditions:

Condition A: The graph S has an odd cycle.
Condition B: The vector =* belongs to int X' (.5).

The two conditions are stated in terms of a partition o and
its induced skeleton graph and edge-polytope. As mentioned
earlier, there exist infinitely many partitions for a given step-
graphon. However, the following proposition states that the two
above conditions are invariant under changes of a partition.

Proposition 1. Let W be a step-graphon. For any two
partitions o and o' for W, let x*, x'* be the corresponding
concentration vectors and let S, S’ be the corresponding
skeleton graphs. Then, the following hold:

1) S is connected if and only if S’ is;

2) S has an odd cycle if and only if S’ does;

3) x* € X(S) (resp. z* € int X(S)) if and only if '* €
X(S') (resp. ™ € X(S")).

We refer the reader to Appendix A for a proof of the
proposition.
We are now in a position to state the main result:

Main Theorem. Let W be a step-graphon. If it satisfies
Conditions A and B for a given (and, hence, any) partition o,
then it has the H-property.

Remark 1. In our earlier work [1], we have shown that if a
step-graphon W has the H-property, then it is necessary that
Condition A and the following hold:

Condition B’: The vector z* belongs to X'(S).

In fact, we have established there a stronger result, which
states that if either Condition A or B’ does not hold, then the
probability that G, ~ W has a Hamiltonian decomposition
converges to zero.

Note that condition B’ is weaker than Condition B: Specifi-
cally, Condition B leaves out the set of step-graphons for which
x* € 0X(S), which is a set of measure zero. For step-graphons
satisfying Conditions A and B’, but not B, it is possible that

lim P(G, ~ W has a Hamiltonian decomposition) € (0, 1).

n—oo

We have produced explicit examples of such step-graphon
in [1], [15]. ]

Outline of proof. Given a step-graphon W with skeleton
graph S, and G,, ~ W, the sampling procedure induces a
natural graph homomorphism 7 : G,, — S, whereby all nodes
v; of G, whose coordinates y; belong to [0i—1,0;) are mapped
to u;. With a slight abuse of notation, we will use the same
letter 7 to denote the homomorphism 7 : én - 8.

Let n;(G,) = |7 1(u;)| be the number of nodes whose
coordinates belong to [o;_1,0;). We call the following vector
the empirical concentration vector of G,,:

2(G) = %(nl(Gn), e ng(G)). ©)

The proof of the Main Theorem contains three steps, outlined
below, among which step 2 contains the bulk of the proof.

Step 1. The proof starts by showing how conditions A and B
imply that the empirical concentration vector eventually belongs
to the edge polytope. First, it should be clear that the edge
polytope X'(.9) is a subset of the standard simplex A9t in RY;
thus, dim X'(S) < (¢—1). Condition A, owing to [14], is both
necessary and sufficient for the equality dim X'(S) = (¢ — 1)
to hold. Next, note that nz(Gr) = (n1(Gr),...,ng(Gr)) is a
multinomial random variable with n trials and g outcomes with
probabilities z;, for 1 <4 < g. Then, Condition B guarantees,
via Chebyshev’s inequality, that x(G,,) belongs to int X'(.S)
a.a.s. (See the arguments around (34) for detail).

The next two steps are then dedicated to establishing the
following fact:

z(Gy) € int X(5)

= (G, admits a Hamiltonian decomposition a.a.s..

(7
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Step 2. We start by working under the assumption that
W is a binary step-graphon, ie., W(s,t) € {0,1} for
almost all (s,t) € [0,1]%. In this case, we will see that a
sampled graph G,, ~ W is completely determined by its
empirical concentration vector z(G,,). Consequently, our task
(establishing (7)) is reduced to establishing the following:

z(Gy) € int X(S) and n is sufficiently large
= (,, admits a Hamiltonian decomposition surely.

®)

The proof of (8) is constructive.

An important object that will arise therefrom is what we call
the A-matrix assigned to every Hamiltonian decomposition H
for Gy, written as a map p(H) = A.

Specifically, the matrix A is a g-by-¢ matrix whose 7jth
entry tallies the number of edges of H that go from a node
in 77 (u;) to a node in 77! (u;) (A precise definition is in
Subsection II-A and see Figure 3 for an illustration). Any such
matrix is then shown to satisfy a number of enviable properties,
among which we have p(H)1 = z(G,,).

In a nutshell, we have just created the following sequence
of maps:

H v p(H) > p(H)1 = 2(G,),

with the domain being all Hamiltonian decompositions in C_}"n,
for any G,, sampled from a given binary graphon.

Now, the effort in establishing (8) is to create appropriate
right-inverses (at least locally) of the maps in the above
sequence, i.e., we aim to create maps x +— A(xz) and
p: A(z) — H with the property that p - g is the identity map
and A(x)1 = x. The map = — A(x) is created in Proposition 2,
Subsection II-C, and the map p is created in Proposition 3,
Subsection II-D. From these two subsections, it will be clear
that by introducing the A-matrix as an intermediate object, we
can decouple the analytic part of the proof, contained in the
creation of the map = — A(x), from the graph-theoretic part,
contained in the creation of p. This will conclude the proof
of (8).

Step 3. To close gap between binary step-graphons and
general ones, we introduce here an equivalence relation on
the class of step-graphons, namely, two step-graphons W and
Wy are equivalent if their supports are the same. Or, said
otherwise, W7 and W5 are equivalent if they share the same
concentration vector and skeleton graph. Note, in particular, that
each equivalence class [I¥] contains a unique representative
which is a binary step-graphon, denoted by W?°. We then
establish (7) by showing that W has the H-property if and
only if W* does. In essence, we show that the H-property is
decided completely by the concentration vector and the skeleton
graph of a step-graphon W. The proof of this statement builds
upon several classical results from random graph theory, and
is presented in Subsection II-E. ]

E. Notation
We gather here key notations and conventions.

Graph theory. Let G = (V, E) be an undirected graph. Graphs
in this paper do not have multiple edges, but may have self-

loops. We denote edges by (v, v;) € Ej; if v; = vj;, then we
call the edge a self-loop. For a given node v;, let N (v;) :=
{v; € V| (v;,v;) € E} be the neighbor set of v;. The degree
of v;, denoted by deg(v;), is the cardinality of N (v;).

We will also deal with digraphs in this paper. Whether a
graph is directed or undirected will be clear from the context
and/or notation. We denote by v;v; the directed edge from v;
to v;; we call v; an out-neighbor of v; and v; an in-neighbor
of v;. Similarly, we define N, (v;) and N_(v;) the sets of
in-neighbors and out-neighbors of v;, respectively.

Recall that for a given undirected graph G = (V, E), possibly
with self-loops, we let G = (V, E)) be the directed graph defined
as in (1). Self-loops in G are the same as the ones in G, ie.,
they are not duplicated.

A closed walk in a graph (or digraph) is an ordered sequence
of nodes vyvy - - - vy in G (resp. é) so that all consecutive
nodes are ends of some edges (resp. directed edges). A cycle
is a closed walk without repetition of nodes in the sequence
except the starting- and the ending-nodes. For clarity of the
presentation, we use letter C' to denote cycles in undirected
graphs and the letter D for cycles in directed graphs.

Miscellanea. We use 1 to denote a column vector of all 1,
whose dimension will be clear within the context. We write
x <y for vectors x,y € R? if the inequality holds entrywise.
For a given vector x € RY, we denote its /1 normalization by
T, 1.e., T := ﬁ, with the convention that 0 = 0. Further,
given the vector x, we denote by [z] the vector whose entry
[x]; is a closest integer to x; for 1 < ¢ < g where for the
case x; = k + %, with k an integer, we set [z]; := k. We
denote the standard simplex in R? by A9~! ;= {z e R? | z >
0 and "1 = 1}. Finally, given a ¢ x ¢ matrix A, we denote
by supp A its support, i.e., the set of indices corresponding to
its non-zero entries.

II. ANALYSIS AND PROOF OF THE MAIN THEOREM

Throughout the proof, W is a step-graphon, ¢ its associated
partition, and S = (U, F) its skeleton graph on ¢ nodes, which
has an odd cycle. Let Fjy and F} as in (3). We can naturally
associate to them the subgraphs

S() = (U, FQ) and Sl = (U, Fl) (9)

Note that S has an odd cycle if and only if Sy is edgewise
non-empty or S; has an odd cycle. The lemma below states
that we can consider, without loss of generality, only the latter
case of S containing an odd cycle.

Lemma 1. Let W be a step-graphon. If W admits a partition o
with skeleton graph S containing an odd cycle, then W admits
a partition o' with skeleton graph S’ so that the subgraph S
has an odd cycle.

The proof of the lemma can be established by using the
notion of “one-step refinement” introduced in Appendix A for
the partition o: If S7 already has an odd cycle, then there is
nothing to prove. Otherwise, consider a one-step refinement
on a node with self-loop in .S, which will yield a cycle of
length 3 in 5.
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A. On the edge polytope X (S)

Rank of X'(S). Recall that X'(S) is the edge-polytope of S.
Similarly, we let X(S;), for ¢ = 0,1, be the edge polytope
(see Definition 5) of S;, i.e., X(S;) is the convex hull of the
z;’s, with j € Z;, where Z; indexes edges in Fj.

We call x an extremal point of a polytope X if there is no line
segment in X that contains x in its interior. The maximal set
of extremal points is called the set of extremal generators for

X. The following result characterizes the extremal generators
of X(Sp), X(S1), and of X(5):

Lemma 2. The set of extremal generators of X(S;), for i =
0,1, is {z; | j € I;}. The set of extremal generators of X(S)
is {Z,’ ‘ 1 €1y UI2} .

Proof. The statement for X'(Sp) is obvious from the definition
of the corresponding z;. For X'(S1), it suffices to see that the
vectors z;, for i € Z;, have exactly two non-negative entries,
and the supports of these vectors are pairwise distinct. Hence,
if 2; = > ez, ¢izj with ¢; > 0, we necessarily have ¢; = 0
for j # 4 and ¢; = 1. For X(S), we refer the reader to [I,
Proposition 1] for a proof. ]

The rank of a polytope X is the dimension of its relative
interior. It is known [14] that if .S has ¢ nodes, then

(10)

rank () = q—1 if S has an odd cycle,
q — 2 otherwise.

Equivalently, we have the following result [16] on the rank of
the incidence matrix Zg of S:

q if S has an odd cycle,

rank Zg = { (11)

q — 1 otherwise.

The A-matrix. Let G,, ~ W and suppose that én has a
Hamiltonian decomposition, denoted by H.

Recall that 7 : G, — S is the graph homomorphism
introduced above (6). Let n;;(H) be the number of (directed)
edges of H from a node in 7! (u;) to a node in 7 *(u;). It
is not hard to see that (see [1, Lemma 1] for a proof) for all

u; €U,
> ong(H)= Y nu(H).

ni(Gn) = (12)
u; €N (uy) u; €N (u;)

We now assign to the skeleton graph S a convex set that
will be instrumental in establishing the main result:

Definition 6 (A-matrices and their set). Let S = (U, F') be
an undirected graph on q nodes. We define A(S) as the set of
q X q nonnegative matrices A = [a;;| satisfying the following
two conditions:

D) If (u;,u;) ¢ F, then a;; = 0;

2) A1=AT1, and 1T A1 =1.

Because every defining condition for A(.S) is affine, the set
A(S) is a convex set.

Now, to each Hamiltonian decomposition H of én, we
assign the following ¢ X ¢ matrix:

1

p(H) == n [nij(H)]lgi,qu' (13)

0 1
’ 0
us e
[
1 Uq (5
g
(@ (b)
0 1 0
pH) =310 0 1
1 0 2

7" (uz2)

(©) (d)

Fig. 3: (a): A step-graphon W. (b): Its skeleton graph S. (¢): A
digraph G, with G, ~ W, for n = 5. The edges in black form the
Hamiltonian decomposition H. (d): The matrix p(H) defined in (13).

It follows from (12) that p(H) € A(S) and p(H)1 = z(G,,).
Furthermore, we have established in [1, Proposition 4] the
following connection between the set A(S) and the edge
polytope X (S):

X(S)={z eR? |z = A1 for some A € A(S)}. (14)

We refer the reader to Figure 3 for illustration.

B. Local coordinate systems on X(S) and X(S7)

This section establishes the groundwork for the construction
of the map = — A(z) described in the proof outline. To this
end, we first show how to express any point in a neighborhood
U of x* € X(S) as a positive combination of the columns
of the incidence matrix Zg. This amounts to solving the
linear equations Zs¢p(x) = z, for z € U, with ¢(z) being
continuous in x and positive. We will solve a similar problem
for y* € X(S7) and with Zg replaced by Zg,, and we call
the corresponding solution 6(y). These two maps will be put
to use in the next subsection.

Construction of the map ¢. We start with the following
lemma:

Lemma 3. Suppose that S = (U, F') has an odd cycle. Then,
Sor any x* € int X (S), there exist a closed neighborhood U of
x* in the simplex and a continuous map ¢ : U — int AlF1=1
such that Zgp(x) = x for any x € U.

Proof. Because X'(.5) is finitely generated by the columns of
Zg, i.e. the z;’s for i € Z, and because z* € int X'(S), there
exists a positive probability vector ¢ := (ci,...,c|p|) such that
r* = Zgc. Let € := L min;ez{c;}. Because S has at least one

2
odd cycle, we know from (11) that Zg is full rank. Thus, we
can pick ¢ columns, say 21, ..., 24 of Zg, that form a basis of
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RY. Let B € RIF! be a closed ball centered at 0 with radius e,
and let

By:={yc€B|1"y=0and y; =0, forall i > g¢}.
The dimension of By is (¢ — 1). We now define the map
Y:By = RY:y—a*+ Zsy=Zs(y + c).

It should be clear that 1) is a linear bijection between B, and
its image 1 (By). By the construction of B and By, all the
entries of (y + ¢), for y € By, are positive and, moreover,
17 (y +c) = 1. It then follows that the image of 1) is a closed
neighborhood of z* inside X'(S). We now set ¢ := 1. It
remains to show that ¢(x) € AlFI=1, This holds because every
column of Zg belongs to A?1 and so does z. Thus, from
Zs¢(x) = x, we have that z is a convex combination of the
columns of Zg, which implies that ¢(z) € AlFI-1, |

Let 2* € int X(S) and ¢ be the map given in Lemma 3.
For an edge f; of .S, we let ¢; be the corresponding entry of
¢. We next define two functions 7; : U — RY, for : = 0, 1, as

follows:
() iz — Z ¢ (x)z;

JEL;

5)

If S has no self-loops, then 7y is set to be the zero map. We
can thus decompose © € U as

x =7o(x) + T (x).
We record the following simple observation for later use:

Lemma 4. Let U be as in Lemma 3. For every x € U,
the set of indices of nonzero (positive) entries of To(z) is
{i | u; has a self-loop} and, moreover, every entry of T1(x) is
positive.

Proof. The statement for 7o(x) is trivial. The statement for
71(x) follows from the fact that ¢(x) has positive entries and
no row of Zg, is identically 0. ]

Construction of the map 6. For any x € U, let 7;(x), for
i =0, 1, be defined as follows:

_ oy @)/ llmi(@) [
Ti(x) = {0

Since S has odd cycle, recall that we can assume by Lemma 1
that Sy has an odd cycle. Thus, by (10), the rank of X(S;)
is (¢ — 1). In particular, it implies that the relative interior of
X (S1) is open in A9~!, Further, by Lemma 4, if € U, then
’7_'1(1') € int X(Sl)

The map 6 we introduce below is akin to the map ¢
introduced in Lemma 3, but defined on a closed neighborhood
of the following vector

if 7;(x) # 0,

otherwise.

x¥) € int X (S1).

Lemma 5. Suppose that S (and, hence, S1) has an odd
cycle; then, for the given T; € int X(S1), there exist a
closed neighborhood V of ¥ in AY~1 and a continuous map
0:V — int AIF=Y such that Zs,0(y) = y for any y € V.

The proof is entirely similar to the one of Lemma 3, and is

thus omitted.
Because ¢ and 6 are both positive, continuous maps over
closed, bounded domains, there exists an « € (0,1) so that

d(x) > al for all z € U,

16
0(z) > al for all x € V. (16)

On the image of 7. For a given z* € int X'(.5), the domains
of ¢ and 6 are closed neighborhoods ¢/ and V of z* and Z7,
respectively. Later in the analysis, we will pick an arbitrary
x € U and apply 0 to 71(z). For this, we need that 7;(z)
belongs to V. To this end, we will shrink ¢/ so that 71 (U) C V
and thus the composition 07 is well defined. In fact, we have
the stronger statement:

Lemma 6. Let oo > 0 be given as in (16). There exist a closed
neighborhood U' C U of x* and a positive € < ia, such that

m1(z) +1
[71(z) +nll
for any x € U' and for any n € R? with ||n||e < e

T(x)+n= eV,

Proof. Let V' be a closed ball centered at Zj and contained
in the interior of V. Then, it is known [17, Theorem 4.6] that
there exists an ¢ > 0 such that the € -neighborhood of V',
with respect to the infinity norm, is contained in the interior
of V. Let U’ := 7, *(V') and € be sufficiently small so that

=7
< min< € 1oz
’4 .

(8 + 4a)e
qo?
We claim that the above-defined U’ and € are as desired.
Since 7, is continuous and since V' is a closed ball centered
at T3, U’ is a closed neighborhood of *. Now, pick an arbitrary
x € U'. For ease of notation, we set x1 := 71(x) and Z; =
71(z) for the remainder of this proof. Then,

A7)

r1+n Z1
EETITREAT
H lz1lli = llz1 + i)z + llzallin
21+l flz1 ]l

lz1 +n

~71| ‘

oo
1l — [lz1 + 7]l 7] o
21 lloo + T
21+ nll1fle1 1 |21+l
711 — |lz1 + 7l 7]l o (18)
lz1 +nllllz |1+l

where we used the fact that ||21]|o < 1 to obtain the last
inequality. To further evaluate (18), we first note that

izl = llz1 +nll] < llnll < glnlle < ge.
Next, by (4), (15) and (16), every entry of x; is greater than

1o, so |21 > 3ga. Moreover, since € < 1o,

1
—qa.
14

Finally, using (17), we can proceed from (18) and obtain that

1
lz1 +nlls 2 llzafls = lInlls = 590 —ge =

I 8e 4e 8+ 4da)e
21 +7 -2l £ —5 +— = % <€,
qo qo qo
which implies that 1 + 7 belongs to the ¢’-neighborhood of
V' and, hence, to V. [
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Remark 2. From now on, to simplify the notation, we denote
by U the set U’ of Lemma 6. [ |

C. Construction of the map x — A(x)

To construct the map, we first specify its domain, which will
be a subset of Y. If x € R? is an empirical concentration vector
of some G,, ~ W for a step-graphon W, then nx necessarily
has integer entries. Define a subset of ¢/ as follows:

U :={x el |nx €7 for somenecZ,}, (19)

where Z_ is the set of positive integers.

Since the analysis for the H-property will be carried out
in the asymptotic regime n — oo, the relevant empirical
concentration vectors are those of GG, for n large. To this
end, let a € (0, 1) be such that (16) is satisfied and € be as in
Lemma 6. We have the following definition:

Definition 7. Given an x € U*, n € Z is paired with x if
n > i and nx is integer valued.

With the above, we now state the main result of this
subsection:

Proposition 2. Ler S = (U, F) be a connected undirected
graph, with at least one odd cycle, and S = U, F ) be its
directed version. Then, there exist a map A : U* — A(S) and
a positive number a such that for any € U* and for any n
paired with x, the following hold:

1) Az)l =ua;

2) nA(z) is integer-valued and ndiag A(x) has even

entries;

3) nl| diag A(z) —10(2)||ec < 1, where g is defined in (15);

4) nla;j(z) —a;i(z)| <1 forall 1 <i,j<g;

5) For any u;u; € F, a;;(z) > a

Note that item 5 and the fact that A(z) € A(S) imply
supp A(z) = S ie., a;; # 0 if and only if u;u; € F.
The proof of Proposition 2 is constructive. It will rely on
a few technical facts we establish here. Let z € U/* and n be
paired with z. Define
/ 2 n !/ !/
@)=~ [Sn@)] ad 7@ = -n@), @0

where we recall that the operation [-] is the integer-rounding
operation, introduced in the notation of Section I. The vector
n7)(x) is then the vector with even entries closest to the entries
of n1o(x). Next, we define

ng :=n||ro(x)[1 and ny = njjri ()| 2D

Recall that 7) and 7, are the ¢; normalization of 7} and 7,
respectively. It should be clear from the construction that n( +
nj =n and

_ n .
7 = —7,, fori=0,1.
n’

3
For a given x € U*, there obviously exist infinitely many
positive integers n that are paired with x. However, the
ratios n(,/n and n}/n are independent of n and determined
completely by x.
We also need the following lemma:

Lemma 7. The following items hold:

1) Fori=0,1, supp 7/(z) = supp 7 (x) and, moreover, the
nonzero entries of T/ (x) are uniformly bounded below
by (1 —¢/4)a

2) The ratio ny/n is bounded below by (1—¢/8)c|Fy|. The
ratio nl /n is bounded below by 3qa/8.

3) Let V be defined as in Lemma 5. Then, T1(x) € V.

We provide a proof of the lemma in Appendix B.
With the lemma above, we now establish Proposition 2:

Proof of Proposition 2. We start by defining two matrix-
valued functions Ag(z) and A;(x) so that for any x € U*,
A;(z) € A(S) and A4;(x)1 = 7/(x). We will then let A(x) be
the convex combination of these two matrices given by

m@:%%m+%mm. (22)

Since A(S) is convex, it will then follow that A(zx) € A(S).

Construction of Ag. The matrix Ag(x) is simply given by
Ap(z) := diag 7 (). (23)

By Lemma 4, supp 7o(z) is constant over Y. By the first item
of Lemma 7, supp 7o(z) = supp 74 (x) for all x € U*. It then
follows that supp Ao (z) is also constant over {*. By the same
item, the nonzero entries of Ag(z) are uniformly bounded
below by a positive constant.

Construction of A;. The construction is more involved than
the one of Ay, and requires to first define the intermediate
matrix A}. To this end, recall that Zg, is the edge-incidence
matrix of S; = (U, F}), obtained by removing the self-loops of
S, and that ¢ is the map given in Lemma 53, i.e., Zs,0(y) =y
for all y € V. Given an edge f = (u;,u;) € Si, we denote by
¢(y) the corresponding entry of §(y). By item 3 of Lemma 7,
71 () belongs to V, which is the domain of §. Now, we define
the symmetric matrix A} (z) = [a} ;;(7)] € R7*7 as follows:
L) {;emu)) if f = (uiu5) € B,
ay ij(x) = . 24
0 otherwise.

In particular, the diagonal of A} is 0, and so will be the diagonal
of A; as shown below. From the definition of the incidence
matrix Zg, and (24), we have that A ()1 = Zg, 6(7{(x)). By

Lemma 5, Zs,0(7](x)) = 71 (x). It then follows that

Ay (2)1 = 7(2), (25)

and, hence, 17 A} (x)1 = 177 (x) = 1. Furthermore, since
Al (z) is symmetric, Aj(z)1 = Aj(x)"1. We thus have
that A’ (z) € A(S). Since 6y is positive for every f € Fi,
supp A} (x) is constant over U. Moreover, by (16), the nonzero
entries of A (z) are uniformly bounded below by 1a.

Next, we use A} to construct A;. There are two cases; one
is straightforward and the other is more involved:

Case 1: n} A (x) is integer-valued. Set A;(x) := A} (z).

Case 2: n!{ A (x) is not integer-valued. 1In this case, we appeal
to the result [18, Theorem 2]: There, we have shown that there
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exists a matrix A;(z) = [a1,;(z)] in A(S), with
Aj(z)1 = Al(2)1 = 7| (2) (26)

such that A;(x) has the same support as A} (x) and

Lnllallm(x)J or ”llal,ij(l") = [nllall,ij(l’ﬂ-

In particular, n} A;(x) is integer-valued. Because ay ;;(z) =
ay ;i(z), it follows that

niaiij(z) =

nilarij(z) —aygi(2)| <1, V1<ij<q (27
Moreover, if aj ;;(x) > 0, then
1 1 1n
ay,ij(w) > all,z‘j('r) - 771 e 771 > o— E?”Tl

8 1
>a - —— 11— — . (28
=« 3nqa>< 12q)a (28)

where second to the last inequality follow from item 2 of
Lemma 7 and the last inequality follows from the hypothesis
on n (specifically n > %) from the statement and the condition
that € < a/4 from Lemma 6.

Proof that A satisfies the five items of the statement.

1) From (23), Ag(z)1 = 7{(x). For A;, it was shown that
Aq(z)1 = 7{(x) in (25) and (26) for Case 1 and Case 2,
respectively. Since A is the convex combination of Ag
and A; given in (22), it follows that

/ /
— Mo

ny _
A(z)l = - To(x) + ;Tl(x) = z. (29)

2) By the construction of A in (22) and the definitions of
Ap and Ay, the diagonal of nA(z) is
nyAo(x) = ng Diag 7)(z) = n Diag 75(x).
By (20), all the entries of n7(z) are even.
3) Using (20) again, we have that
1 < nlro(a) - (@) < 1,
from which it follows that
n|| diag A(z) — 70(2)||sc = nll75(z) — 7o(z)[| < 1.
4) The off-diagonal entries a;;(z) of A(x) are those of
2L Ay (x), which we denoted by “+ay ;(z). Thus,
nlaij(z) — aji(z)] = nilar,i; (@) —ar ()] < 1,

where the last inequality is (27).

5) Case 1: S does not have a self-loop. In this case, A(z) =
A; (). By construction of Ay, supp Ay (z) = S.If Ay (z)
is obtained via case 1 above, then, as argued after (25),
its nonzero entries are bounded below by «/2. Otherwise,
A; is obtained via case 2 and its nonzero entries are
lower bounded as shown in (28).

Case 2: S has at least one self-loop. In this case,

supp A(r) = supp Ag(z)Usupp 4 ().

(a) (b)

Fig. 4: (a): An undirected graph S on three nodes. (b): A complete
S-multipartite graph M (w, .S) with w = (1,2, 2).

By construction of Ay and item 1 of Lemma 7,

supp Ao (z) = supp Diag 7/(x)
= supp Diag 7o(z) = So,  (30)

where the last equality follows from Lemma 4. Moreover,
the nonzero entries of Ag(z) are bounded below by
1(1 = €/4)a. Also, by construction of A,

3

Thus, by (30) and (31), supp A(z) = S. Finally, we
verify that the nonzero entries of A(z) are uniformly
bounded below by a positive number. By item 2 of
Lemma 7, ng/n and n} /n are uniformly bounded below
by positive numbers (note that |Fy| > 1 in the current
case). Thus, using (22), the nonzero entries of A(x) are
also uniformly lower bounded by a positive number.

supp A1 (x) = S,.

This completes the proof. ]

D. Constructing a Hamiltonian decomposition from A(x)

In this subsection, we construct the map p : A(z) — H
announced in Section I, where A(x) will be taken from
the statement of Proposition 2 and H is a Hamiltonian
decomposition in G, ~ W, with z its empirical concentration
vector. Throughout this subsection, we assume that W is a
binary step-graphon, i.e., W is valued in {0, 1}.

Graphs sampled from a binary step-graphon have rather
rigid structures as we will describe below. We refer to them
as S-multipartite graphs, see also Figure 4:

Definition 8 (S-multipartite graph). Ler S = (U, F) be an
undirected graph, possibly with self-loops. An undirected
graph G is an S-multipartite graph if there exists a graph
homomorphism © : G — S, so that

(Ui,’l}j) eEFE= (W(Ui),ﬂ'(’()j)) e F.

Further, G is a complete S-multipartite graph if
(vi,v) € E < (n(v;),m(v;)) € F.

Let G be an arbitrary complete S-multipartite graph with
S = (U, F) and set n; := |7~ *(u;)| fori = 1,...,q. It should
be clear that G is completely determined by .S and the vector
w = (n1,...,nq) . We will consequently use the notation
M (w, S) to refer to a complete S-multipartite graph. Now,
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returning to the case G, ~ W, where W is a binary step-
graphon with skeleton graph S, the empirical concentration
vector x(G,,) together with S then completely determine G,
as announced above.

If G is a (complete) S-multipartite graph, then G is
(complete) g—multipartite, and we use the same notation 7
to denote the homomorphism. We next introduce a special
class of cycles in G:

Definition 9 (Simple cycle). Let G be an S-multipartite graph,
and 7 : G — S be the associated homomorphism. A directed
cycle D in G is called simple if m(D) is a cycle (rather than
a closed walk) in S.

With the notions above, we state the main result of this
subsection:

Proposition 3. Ler S = (U, F) be an undirected graph,
possibly with self-loops. Let G = M (nz, S) be a complete S-
multipartite graph on n nodes, where x € U* and n is paired
with x (see Definition 7). Let A(x) be as in Proposition 2 and

my;j(x) := nmin{a;;(z),a;;(x)}, forall 1 <i,j <gq. (32)

Then, there exists a Hamiltonian decomposition H of G, with
p(H) = A(z), such that the following hold:
1) There exist exactly %mn(ﬂf) disjoint 2-cycles in H
pairing m;;(x) nodes in 7= (u;) for every i =1,...,¢q;
2) There are at least m;j(x) disjoint 2-cycles in H pair-
ing nodes in w1(u;) to nodes in w'(u;) for each
(Ui,u]‘) € Fi.
3) There are at most [%|FH cycles of length three or more
in H;
4) The length of every cycle of H does not exceed 2|F|;
5) All cycles of length at least 3 of H are simple.

We illustrate the Proposition on an example.

Example 1. Consider a complete S-multipartite graph G for S
shown in Figure 4a. Set n; := |7~ *(u;)], for i = 1,2,3, n:=
Z§=1 n;, and = := 1 (ny,no, n3). In this case, x € int A? if
and only if the n;’s satisfy triangle inequalities n; + n; > ny,
where i, j, and k are pairwise distinct. If these inequalities
are satisfied, then G admits a Hamiltonian decomposition H,
which is comprised primarily (if not entirely) of 2-cycles. We
plot in Figure 5 the corresponding undirected edges of G.
Specifically, there are two cases: (1) If n; — ng + ng is even,
then H is comprised solely of 2-cycles as shown in Figure 5a.
(2) If ny — no + ng is odd, then H is comprised of 2-cycles
and a single triangle as shown in Figure 5b.

The proof of Proposition 3 relies on a reduction argument for
both the graph G,, and the matrix A(x): roughly speaking, we
will first remove out of én a number of 2-cycles, which leads
to a graph G’ of smaller size. With regards to the matrix A, this
reduction leads to another matrix A’ € A(S) with the property
that diag(A’) = 0. Finding a Hamiltonian decomposition H
for G with p(H) = A is then reduced to finding a Hamiltonian
decomposition H' for G’ with p(H') = A’. For the arguments
outlined above, we need a supporting lemma stated below,
whose proof is relegated to Appendix C:

VESTIN

(@) (b)

Fig. 5: Nllustration of Example 1: Two complete S-multipartite graphs
G with S shown in Figure 4a, where the undirected edges plotted
in each subfigure give rise to a Hamiltonian decomposition H of G.
Green nodes belong to 7~ *(u1), blue nodes to 7! (uz), and red
nodes to 7! (u3).

Lemma 8. Let n' be a nonnegative integer. Let A’ € A(S) be
such that n' A is integer-valued, diag(A’) =0, and ' := A’1.
Then, there exists a Hamiltonian decomposition H' of G,
where G’ := M (n'xz’, S) is the complete S-multipartite graph,
such that p(H') = A" and every cycle in H' is simple.

With the lemma above, we now establish Proposition 3:

Proof of Proposition 3. We construct a Hamiltonian decompo-
sition H with the desired properties in two steps. We will fix
z in the proof and, to simplify the notation, we omit writing
the argument z for a;;(x), m;;(z), and A(z).

Step 1. We claim that the following selection of 2-cycles out
of G,, is feasible:

o For every self-loop (u;,u;) € Fy, my; = na;; is an
even integer, and we select m;; pairwise distinct nodes
in 771 (u;) that form m;;/2 disjoint 2-cycles.

o For every (u;,u;) € Fi, we select m;; distinct nodes in
71 (u;) and m;; distinct nodes in 7! (u;), to form m;;
disjoint 2-cycles (so the total number of such 2-cycles is
Z(uivuj)eFl mij)-

The above selection is feasible because (1) G,, is a complete
S-multipartite graph and, thus, there is an edge between any
pair of nodes in 7! (u;), 7! (u;) provided that (u;, u;) € F
and, (2) A1 = 2 which implies that Zg:l m;; < n; and,
hence, we can always pick the required number of distinct
nodes.

Let V' be the set of remaining nodes in G, i.e., V' is obtained
by removing out of V' the Z(ui’uj)eF m;; nodes picked in
step 1. If V' is the empty set, we let H be the union of the
disjoint 2-cycles just exhibited. It should be clear that H is a
Hamiltonian decomposition of G. We claim that H satisfies the
desired properties. To see this, let A’ := p(H) and 2’ := A'l.
Then, A" € A(S) and, by construction of H, na;; = m;;. On
the one hand, since V' is empty, ||nz’||; = ||nz|1 = n and,
hence, the sum of the entries of A’ is equal to the sum of
the entries of A. On the other hand, since m;; < na;;, we
have that A’ = L[m;;];; < A. It then follows that A’ = A
and 2’ = z. Furthermore, items 1 and 2 follow from Step 1,
respectively, and items 3, 4, and 5 hold trivially.

Step 2. We now assume that V' is non-empty. Let G’ be the
subgraph of GG induced by V. We exhibit below a Hamiltonian
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decomposition H’ for G’ such that the cycles in H’, together
with the 2-cycles constructed in Step 1, yield a desired H.
Additionally, we will show that all the cycles of length at least
3 in H' satisfy items 3, 4, and 5.

To construct the above mentioned H’, we will appeal to
Lemma 8. To this end, let n; be the number of nodes in
W_I(Ui) n V/, i.e.,

1
= ;[nll’ ,n;}.
It follows that G’ = M (n'z’, S).

Because H has to satisfy p(H) = A with A1 = z, H
should contain na;; edges from nodes in 7! (u;) to nodes in
7~ (u;). Since m;; such edges have already been accounted
for by the 2-cycles created in Step 1, we need an additional
n’. edges, where

ij
TL/-- — naij — mij
1] O

Note that by (32), n, =0 foralli=1,...
we define a ¢ X ¢ matrix as follows:

7[”;]]

n/

if (ui,uj) c F,

otherwise. 33)

, q. Correspondingly,

A=

Because m;; = my; for all (u;,u;) € F and because Al =
AT1, we obtain that

q

r_ ro_
E nij—g Ny = Ty,
Jj=1

Jj=1

Vi=1,...,q.

Thus, A’ € A(S) and, by construction, diag A’ = 0 and
A'l = 2/, so A’ satisfies the conditions in the statement of
Lemma 8.

By Lemma 8, there exists a Hamiltonian decomposition H’
of G’ such that p(H’) = A/, A'1 = 2/, and all cycles in H’
are simple. Now, let H be the union of H’ and the 2-cycles
obtained in Step 1. Then,

H ! ! ! A
p(H) = ﬁ[mij Jrnij] = E[”aij] = A,
where the second equality follows from (33). Moreover, since
diag A’ = 0, there is no 2-cycle in H’ connecting pairs of nodes
in 77 1(u;) for any i = 1,...,q. Thus, foreach i =1,...,q,
H contains exactly %mii disjoint two-cycles pairing m;; nodes
in 71 (u;).

It now remains to show that all the cycles of length at least
three in H' satisfy items 3 and 4. To do so, we first provide
an upper bound on n}: Using items 3 and 4 of Proposition 2,
we have that na;; —m;; < 1. Thus,

n; < mi— Z (na;; —1) = n; —n; +deg(u;) = deg(u;),
uj; €N (u;)

/. ﬁl
] e
/. ﬁ2
a2 e
e f33
“ .\
® B4
* f5
Fig. 6: A bipartite graph with Vi, = {ai1,...,a4} and Vg =

{B1,...

, B5}. The blue edges form a left-perfect matching.

where deg(u;) is the degree of u; in S. Since

q
S deg(u;) < 2/F.

i=1

there are at most 2|F| nodes in . Consequently, the length
of any cycle in H’ is bounded above by 2|F| and, moreover,
there exist at most {%\F H cycles of length three or more in
H'. This completes the proof. ]

Remark 3. The fact that item 2 of the proposition provides
a lower bound for the number of 2-cycles instead of an
exact number can be understood as follows: The Hamiltonian
decomposition H' of G’, introduced in Step 2 of the above
proof, may contain additional 2-cycles pairing nodes from
7 (u;) to 7 (u ) for (u;,uj) € F. |

E. Proof of the Main Theorem

In Subsection II-D, we dealt with the construction of a
Hamiltonian decomposition in a graph én sampled from a
binary step graphon. We will now extend the result to a general
step-graphon W, for which the existence of an edge between
a pair of nodes is not a sure event. This will then complete
the proof of the Main Theorem.

To do so, we first recall some known facts about bipartite
graphs. An undirected graph B = (V, E) is called bipartite if
its node set can be written as the union of two disjoint sets
V = Vi U Vg so that there does not exist an edge between
two nodes in Vi, or Vi. Equivalently, a bipartite graph can be
viewed as an S-multipartite graph where S is a graph with
two nodes connected by a single edge. We refer to elements of
Vi and Vg as left- and right-nodes, respectively. A left-perfect
matching P in B is a set of edges so that each left-node
is incident to exactly one edge in P, and each right-node
is incident to at most one edge in P. See Figure 6 for an
illustration. Similarly, we define a right-perfect matching by
swapping the roles of left- and right-nodes. One can easily see
that a left-perfect (resp. right-perfect) matching exists only if
VL] < |Vk| (resp. [VL| = [VE]).

Further, we denote by B(n1,ns,p) an Erd6s-Rényi random
bipartite graph, with n; left-nodes, ns right-nodes, and edge
probability p for all edges between left- and right-nodes.

We need the following fact:

Lemma 9. Let nqy and no be positive integers such that % <
Z—“l’ < K, where Kk > 1 is a constant. Let n := nq + ny and

Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on March 28,2024 at 22:58:40 UTC from IEEE Xplore. Restrictions apply.

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TAC.2023.3335252

€ (0,1). Then, it holds a.a.s. that the random bipartite graph
B(ni,n2,p) is connected and contains a left-perfect (resp.
right-perfect) matching if no > nq (resp. n1 > na).

The above lemma is certainly well known. For completeness
of presentation, we present a proof in Appendix D.

We now return to the proof of Main Theorem. For the
given step-graphon W, we fix a partition o, and let * be the
associated concentration vector and S be the skeleton graph.
We now consider a sequence of graphs G,, ~ W, with n — oc.
We show below that the Hamiltonian decomposition H for Gn
described in Proposition 3 exists a.a.s..

Denote by W* the saturation of W: it is the binary step-
graphon defined as

Wé(s,t) =1 <= W(s,t) #0.

We similarly construct a saturated version of G,, = (Vy,, E,) ~
W, denoted by G2 = (V,,, EZ), as follows: There is an edge
(ve,vx) € EZ if and only if (7(ve), w(vi)) € F. Said otherwise,
the node set of GG, and G, are the same, but the edges in
G?, are obtained using the binary step-graphon W*. It should
be clear that G,, C G = M(nz(G,),S), where we recall
that z(G,,) is the empirical concentration vector of G,, defined
in (6).

Let U be the closed neighborhood of z* mentioned in
Remark 2. Let & be the event that the empirical concentration
vector 2(G,,) of G, belongs to U. By Chebyshev’s inequality,
we have that

P(llz(G

which implies that &, is almost sure as n — oco. Thus, we
can assume in the sequel that & is true, i.e., the analysis and
computation carried out below are conditioned upon &.

n) — & >e€) < (34)

b
n2e?

Note that nxz(Gy,) is always integer-valued. Since x(Gy,) €
U by assumption, we let n be sufficiently large so that n is
paired with 2(G,,) (see Definition 7). We can thus appeal to
Proposition 2 to obtain a matrix A(x(G,,)), and to Proposition 3
to obtain a corresponding Hamiltonian decomposition H of
GS We now demonstrate that the same H exists a.a.s. in Gn,
up to re-labeling of the nodes of Gp. The proof comprises two
parts: In part 1, we show that the cycles in H whose lengths
are greater than 2 exist a.a.s. in (_jn and, then, in part 2, we
show that the 2-cycles of H do as well.

Part 1: On cycles of length greater than 2. For clarity
of presentation, we denote by 7° : G — S the graph
homomorphisms associated with G%,. For any path u; - - - uy,
in S, since GG is complete S-multipartite, there surely exists a
path vy - - - vg in G, so that 7°(v;) = u;. The following result
shows that such a path exist in G,, a.a.s..

Lemma 10. Lef uq - - - uy be a path in S. Then, it is a.a.s. that
there exists a path vy - - - vy, in G, with 7(v;) = u;.

Proof. Since the closed set U is in the interior of AL there
exists a K > 1 such that for all x € U,

L <k, forall 1 <i,j<gq.

Thus, by conditioning on &y, we have that
2i(Gn) _ |m 7 (w)]
zj(Gn) 7 (uy)

It then follows that the subgraphs of G, induced by 7~ (u;)U
71 (u;41) are bipartite and satisfy the hypothesis of Lemma 9,
for 1 < i <k — 1. Hence, it is a.a.s. that all of these bipartite
graphs are connected. We now pick an arbitrary node v; €
7~ 1(uy); by the above arguments, we can find vo € ™1 (uz)
so that (v1,v2) € G, a.a.s.. Iterating this procedure, we obtain
the path in G,, sought. ]

IN

1
— <k, forall 1 <i,j5 <gq.
K

Now, let D1, ..., D,, be the cycles in H whose lengths are
greater than 2, and C1, . .., C), be the corresponding undirected
cycles in G. From items 3 and 4 of Proposition 3, the number
m of these cycles, as well as their lengths, are each uniformly
bounded above by constants independent of n.

Let & be the event that the cycles C1, ..., C,, exist in G,;
more precisely, it is the event that there exist disjoint cycles
C!in G,, such that 7(C}) = n*(C;) for all i = 1,...,m. We
have the following lemma:

Lemma 11. The event £ is true a.a.s..

Proof. Let £1; be the event that there exists a cycle C] € G,
with 7(C]) = 7°(Cy). We show that £;; holds a.a.s.. To
start, we write explicitly 7°(Cy) = uq ... upuy. Since C is
simple, wuq ... ugup is a cycle in S. By Lemma 10, there exist
a.a.s. nodes v; € 7 Y(u;), for 1 < i < k — 1, such that
vy Vk_1 18 a path in G,,.

In order to obtain the cycle C1, it remains to exhibit a node
v € ™ 1(uy) that is connected to both v; and vy_; in G,,.
We claim that such a node exists with probability at least

7~ (u)]

1—(1—pigpr—16)" (35)

where p;; > 0 is the value of the step-graphon W over the
rectangle [0;_1,0;) X [0j_1,0;). The claim holds because the
probability that no node of 7~ (uy) connects to both v, and
vg_1 is given by (1—p1kpk,1,k)|”71(“k)‘. Thus, the probability
of the complementary event is given by (35).

Next, recall that @ > 0 is the uniform lower bound for the
nonzero entries of A(x), for all € U*, introduced in item 5
of Proposition 2. Because z(G),) = A(z(G,))1, every entry
of z(G,,) is bounded below by a as well, so

|77 (u;)| > an, foralli=1,...,q. (36)
Thus, the expression (35) can be lower bounded by

_ p2)gn7

where p := min{p;; | (u;,u;) € F} > 0. Note that the right-
hand-side of the above equation converges to 1 as n — o0, so
&1 1s true a.a.s..

1
1—(1—pupr_rp)™ @I >1-(1

Let n’ := n —|C}|. Conditioning on the event &7, we let
G/, be the subgraph of G,, induced by the nodes not in Cj.
Similarly as above, we have that there is a cycle C%, with
©(Cy) = w(Cy), in G, a.a.s. (note that n — oo implies
n' — o00). Iterating this argument for finitely many steps, we
have that &£ is true a.a.s.. [ |
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In the sequel, we condition on the event & and let
Is..., Dl be the directed cycles in G, corresponding to

D,...Dy, in H of G5,

Part 2: On 2-cycles. Let n' :== n — ", |C!|, and G/, be
the subgraph of G,, induced by the nodes that do not belong
to any of the above cycles C/, and G5 be its saturation. By
removing the cycles D; out of H, we obtain a Hamiltonian

decomposition H' for é;f,, which is comprised only of 2-cycles.

It now suffices to show that H' appears, up to relabeling, in
G, a.as..

Let V;; C 7 '(u;) be the set of nodes paired to nodes
in 7= '(u;) by H’ in G'%. Since H' is a Hamiltonian
decomposition, 7! (u;) can be expressed as the disjoint union
of the V;;’s, for u; such that (u;,u;) € F. By items 1 and 2
of Proposition 3, the cardinality of V;;, which is the same
as the cardinality of Vj;, is at least m;; := nmin{a;;,a;;}.
Because the nonzero a;;’s are bounded below by a by item 5
of Proposition 2, we have that m;; > an.

Suppose that u; has a self-loop; then, we let K; be the
subgraph of G/, induced by the nodes V;;. The graph K; is
an Erd6és-Rényi graph with parameter p;; > 0 and, by item 1
of Proposition 3, |V;;| = my; is an even integer. Since n — oo
implies that m;; — oo, K; has a perfect matching a.a.s..
This holds because one can split the node set V;; into two
disjoint subsets of equal cardinality and apply Lemma 9. In
other words, it is a.a.s.. that there are m;; /2, for i =1,...,q,
disjoint 2-cycles in C_JZL, pairing nodes in 71 (u;).

Suppose that (u;, u;) is an edge between two distinct nodes;
then, we let B;; := B(|Vi;|,|Vji|, pi;j) be the bipartite graph in

G, induced by V;; UVj; (recall from above that |V;;| = |V}, ).

Let &;; be the event that B;; has a perfect matching. Since
m;; > an, by Lemma 9, the event Eij holds a.a.s. and, hence,
it is a.a.s. that there are |V;;| disjoint 2-cycles in C;";L, pairing
nodes from V;; to V.

Since there are finitely many edges in S, by the above
arguments, we conclude that H' appears in C_l';b, a.a.s.. This
completes the proof. ]

III. CONCLUSIONS

Hamiltonian decompositions underlie a wide range of
structural properties of control systems, such as stability and
ensemble controllability. We say that a graphon W satisfies
the H-property if graphs G, ~ W have a Hamiltonian
decomposition almost surely. In a series of papers, of which this
is the second, we exhibited necessary and sufficient conditions
for the H-property to hold for the class of step-graphons. These
conditions are geometric and revealed the fact that I -property
depends only on concentration vector and skeleton graph of
W. When these two objects are given, one can reconstruct
a step-graphon modulo the exact value of W on its support,
thus giving rise to an equivalence relation on the space of
step-graphons. We showed that the H-property is essentially
a “zero-one” property of the equivalence classes. The case of
general graphons will be addressed in future work.

REFERENCES

[1] M.-A. Belabbas, X. Chen, and T. Basar, “On the H-property for step-
graphons and edge polytopes,” IEEE Control Systems Letters, vol. 6,
pp- 1766-1771, 2022.

[2] C.-T. Lin, “Structural controllability,” IEEE Transactions on Automatic
Control, vol. 19, no. 3, pp. 201-208, 1974.

[3] X. Chen, “Sparse linear ensemble systems and structural controllability,”
IEEE Transactions on Automatic Control, vol. 67, no. 7, pp. 3337-3348,
2021.

[4] M.-A. Belabbas, “Sparse stable systems,” Systems & Control Letters,

vol. 62, no. 10, pp. 981-987, 2013.

A. Kirkoryan and M.-A. Belabbas, “Decentralized stabilization with

symmetric topologies,” in 53rd IEEE Conference on Decision and Control,

pp. 1347-1352, IEEE, 2014.

[6] M.-A. Belabbas, “Algorithms for sparse stable systems,” in Proceedings
of the 52th IEEE Conference on Decision and Control, 2013.

[71 M.-A. Belabbas and A. Kirkoryan, “On stable systems with random
structure,” SIAM Journal on Control and Optimization, vol. 60, no. 1,
pp- 458-478, 2022.

[8] P.J. Wolfe and S. C. Olhede, “Nonparametric graphon estimation,” arXiv
preprint arXiv:1309.5936, 2013.

[9] L. Lovdsz and B. Szegedy, “Limits of dense graph sequences,” Journal

of Combinatorial Theory, Series B, vol. 96, no. 6, pp. 933-957, 2006.

S. Gao and P. E. Caines, “Graphon control of large-scale networks of

linear systems,” IEEE Transactions on Automatic Control, vol. 65, no. 10,

pp. 40904105, 2019.

S. Gao, R. F. Tchuendom, and P. E. Caines, “Linear quadratic graphon

field games,” Communications in Information and Systems, vol. 21,

pp- 341-369, 2021.

F. Parise and A. Ozdaglar, “Analysis and interventions in large network

games,” Annual Review of Control, Robotics, and Autonomous Systems,

vol. 4, pp. 455486, 2021.

C. Borgs, J. T. Chayes, L. Lovész, V. T. Sés, and K. Vesztergombi,

“Convergent sequences of dense graphs I: Subgraph frequencies, metric

properties and testing,” Advances in Mathematics, vol. 219, no. 6,

pp- 1801-1851, 2008.

H. Ohsugi and T. Hibi, “Normal polytopes arising from finite graphs,”

Journal of Algebra, vol. 207, no. 2, pp. 409426, 1998.

M.-A. Belabbas, X. Chen, and T. Basar, “The H-property for line

graphons,” in Proceedings of the 13th Asian Control Conference, 2021.

C. Van Nuffelen, “On the incidence matrix of a graph,” IEEE Transactions

on Circuits and Systems, vol. 23, no. 9, pp. 572-572, 1976.

J. R. Munkres, Analysis on Manifolds. CRC Press, 2018.

M.-A. Belabbas and X. Chen, “On integer balancing of directed graphs,”

Systems & Control Letters, vol. 154, p. 104980, 2021.

P. ErdGs and A. Rényi, “On random matrices,” Publ. Math. Inst. Hungar.

Acad. Sci., vol. 8, pp. 455-461, 1964.

[20] A. Frieze and M. Karoniski, Introduction to Random Graphs. Cambridge

University Press, 2016.

[5

=

[10]
[11]
[12]

[13]

[14]
[15]
[16]

[17]
(18]

[19]

APPENDIX A
ANALYSIS AND PROOF OF PROPOSITION 1

We first have some preliminaries about refinements of
partitions: given a partition o, a refinement o’ of o, denoted
by o < ¢, is any sequence that has o as a proper subse-
quence. For example, o/ = (0,1/2,3/4,1) is a refinement of
o =(0,1/2,1). Given a step-graphon W, if ¢ is a partition
for W, then so is o’.

We say that o’ is a one-step refinement of o if it is a
refinement with |0’'| = |o| + 1. Any refinement of o can
be obtained by iterating one-step refinements. To fix ideas,
and without loss of generality, we consider the refinement
of 0 = (00,...,04,04) to 0’ = (00,...,04,04+1,0%) With
0q < 0g41 < 0x. If S = (U, F), then 8" = (U', F’), the
skeleton graph of W for ¢’, is given by

U/ = U U {UQ+1}7
F'=FU {(uiﬂuqul) | (uivuq) € F}
U {(ugt1, ugs1) if (ug,uq) € F}.

(37
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(a) Graph S

(b) Graph S’

Fig. 7: The graph S’ on the right is obtained from the left S via a
one-step refinement. The node u4 in S is split into w4 and us. Because
g = (u1,u4) is an edge in S, there exist two edges g’ = (u1,u4)
and b’ = (u1,us) in S’. Because u4 has a self-loop £4 in S, both
u4 and us have self-loops in S’, denoted by £, and £5, respectively.
In addition, we have the edge k' = (ua4,us) in S’

In essence, the node g1 is a copy of the node u,. If there
is a loop (ug,uq) in F, then u, and u,4q are also connected
and each has a self-loop. See Figure 7 for illustration. We say
that a one-step refinement splits a node (here, ug).

We now prove Proposition 1:

Proof of Proposition 1. Let o and ¢’ be as given in the
statement of the proposition. It should be clear that there
exists another partition ¢’/ which is a refinement of both ¢’
and o and that o’ can be obtained via a sequence of one-step
refinements starting with either ¢’ or o. Thus, combining the
arguments at the beginning of the section, we can assume,
without loss of generality, that ¢’ is a one-step refinement of
o obtained by splitting the node u; € U.

Let z* and 2* be the concentration vectors for o and ¢’,
S and S’ be the corresponding skeleton graphs, and Z and
Z' be the corresponding incidence matrices. Note that Z’ has
one more row than Z does due to the addition of the new
node u,41; here, we let the last row of Z " correspond to that
node. It should be clear that Z’ contains Z as a submatrix. For
clarity of presentation, we use f (resp. f’) to denote edges of
S (resp. S’). Since the graph S can be realized as a subgraph
of S in a natural way, we will write on occasion f’ € F if
/' is an edge of S.

We now prove the invariance of each item listed in the
statement of Proposition 1 under one-step refinements. The
proofs of the first two items are direct consequence of the
definition of one-step refinement.

Proof for item 1). If S is connected, then from (37) we obtain
that there exists a path from any node u; € F' to the new node
Ug+1, S0 S’ is also connected. Reciprocally, assume that S
has at least two connected components. Then, the node 441
obtained by splitting u, will only be connected to nodes in
the same component as u, by definition of F”.

Proof for item 2). If S has an odd cycle, then so does S’
by (37). Reciprocally, we assume that S is lacking an odd
cycle. We show that S’ has no odd cycle. Suppose, to the
contrary, that it does. The cycle must then contain the node
Uuqg4+1. Replacing ugy 1 with u, yields a closed walk of odd
length in S. Since a closed walk can be decomposed edge-wise

into a union of cycles and since the length of the walk is the
sum of the lengths of the constituent cycles, there must exist
an odd cycle in S, which is a contradiction.

Proof for item 3). We prove each direction of the statement
separately:

Part 1: © € X(S) = 2’ € X(9') (z € int X(S) = 2’ €
int X(S’)). For ease of presentation, we let z; (resp. z},) be
the edge of Z (resp. Z') corresponding to the element f € F
(resp. f' € F'), and z;; be the ith entry of z;. Because X'(S)
is the convex hull of the columns of Z, there exist coefficients
¢y > 0, for f € F, such that = ZfGF cyzy. If, further,
x € int X(5), then these coefficients can be chosen to be
strictly positive. We will use ¢y to construct c}-, > 0, for

/' € F’, such that
i Z 2y
freF!
and show that 2’ € int X'(S”) if = € int X(5).

To proceed, let F, be the set of edges incident to node u,
in S. Similarly, let Fj and F;, _ be the sets of edges incident
to ug and ug41 in S’, respectively. The coefficients c’f, are
defined as follows:

a) If f' ¢ F, UF, ., then f' € F.Letc} =cy.

b) If f' € Fy and f" # (ug,ug+1), then f" € F. Let

(38)

., = Uq+1_UqC ,
f/ — e—0g f .
c) If f' = (us,uq+1) and u; # ug, then we pick the f € F
such that
f= (ui,uq)  if w; # ugy,
(ug, uq)  if u; = ugq1.
Let ¢, := Z—2ttey,

d) If f/'= (uq,uq+1r§, then let ¢, := 0.

With the coefficients as above, we prove entry-wise that (38)

holds. First, note that because we obtain S’ by splitting the
last node u, of 9, the ith entry of o, for1 <i<qg-—1,is
equal to x;, so =, = x; = (0; — 0;_1). For the ith entry of the
right hand side of (38), we consider two cases:
Case 1: u; is not incident to u, in S. In this case, u; is not
incident to either u, or ugy; in S’. Consequently, F;, = F,
and z})i = zy; for all f € F,,. Furthermore, by item (a),
c} = ¢y for any f € F),,. Thus, the ith entry of the right hand
side of (38) is given by

/ /
E Cf/Zf/,i = E Cfzfi =Ty =05 — 04—1-

ey, fEFy,

Case 2: u; is incident to u, in S. In this case, u; is incident to
both u, and ug11 in S”. Let ¢’ := (u;, uq) and b’ := (u;, ugy1)
be the corresponding edges in S/, see Fig. 7 for an illustration.
Then, the ith entry of the right hand side of (38) is given by

}: Y A o
Cf/zf’,i = Cg/zg/J' + C}L/Z}L/,’L'

frer;,
P

frer, o'}

pzpr i (39)
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By items (b) and (c),

/ Og+1 — 0gq Ox — Og+1

/
¢, =———¢, and ¢, = ——c¢p.
g o —04 h Ox — 0y
Also, note that
/ _ / _ i 1
Zg’,i - Zh',i - Z_l]/ﬂ - 2

Thus, the sum of the first two terms on the right hand side
of (39) is cgr 24 ;. For the last term, note that Fy, —{g',h'} =
Fy, —{9'}. Also, by item (a) and the fact that 2 ; = 2y ; for

any f € Fy,,
> )

Frer], —{g' ') fEF,—{g'}

/ /
cf’zf’,i = Cfzfi-

Combining the above arguments, we have that the right hand
side of (39) is given by

E Cfzfi=T; =07 — 04—1-
f€F.,

Next, the gth entry of ' is (0441 — 04) and the gth entry
of the right hand side of (38) is

g — O,
§ : ro g+1 q E :
cf’Zf’7q 70* Cfo)q

= — Oq F
e, feFu,
(o — 0
_ Yg+1 q _
= Tg = Og41 — Oq,
Ox — Oq

where the first equality follows from the fact that
F/q = Fuq U {(ucpuq-‘rl) if (UQ’uq) € F}7

items (b) and (d), and the last equality follows from the fact
that x4 = 0, — 0y.

The last (i.e., (¢ + 1)th) entry of 2’ is (0, — 0g41). The last
entry of the right hand side of (38) is given by

o _ Ox —0g+1
Cf’Zf’,q-‘rl = Cfo7q

Ox — Oq
f’€F,1q+1 fEFu,
Ox — Og+1
= Xqg = 0x — Og41,
Ox — Oq

where the first equality follows from item (c) above. We
have thus shown that (38) holds. In particular, since ¢/, are
nonnegative by construction, (38) implies that z’ € X'(S").

It now remains to show that if x € int X'(S), then 2’ €
int X(S’). Assuming = € int X'(S), if u, does not have a
self-loop in S, then the edge (ug,uy+1) does not exist in S/,
so by items (a), (b), and (c), all coefficients c’f/ are positive,
which implies that 2’ € int X (S”).

We now assume that u, has a self-loop in S. Then, £’ :=
(ug, uq+1) is an edge in S’ (see Fig. 7 for an illustration), and
thus ¢}, = 0 per item (d) above. In this case, both u, and
ug+1 have self-loops in S’. Denote these two self-loops by
Cy = (ug,uq) and £y = (ugy1,ugy1). By (4), we have that

1

r / /
Zk' = 5(2[; +Z(;+1)'

Since cg/ and c}, are positive, there exists an ¢ > 0 such
q “g+1

that € < c¢j, and € < ¢j, . It then follows that
q q+1

/ A / ! ! / !
Cpr 2 c z = 2¢ez Cp — €)2
0%, T e, kot =€)z

+ (CZZIJrl — 6>Zé;+1. (40)

Plugging in (38) the relation (40) shows that 2’ can be written
as a convex combination of the z},, for f' € F’, with all
positive coefficients, and thus =’ € int X'(S").

Part 2: 2/ € X(S') = 2 € X(S5) (@' € int X(5') = x €
int X(S)). Because 2’ € X(5’) (resp. 2’ € int X(5”)), we
can write ' = Zf’e_F’ c’f/z}/, with c}, > 0 (resp. c’f/ > 0),
for all f” € F’. We will use ¢, to construct cy, for f € F, so

that
Tr = Z Cfo.

feF

(41)

To this end, we define ¢y as follows:

e) If f is not incident to ug in S, then let ¢y := ¢y

f) If f = (ws,uq) and u; # ug, then g’ := (u;, uy) and

b’ := (ui,ug41) are edges in S’, and let ¢ := ¢, + ¢}/

g) If f = (ug,uq), then k' := (ug, ug4+1), /é; = (ug, uq),

a:ld thl = guqﬂ,uqﬂ) are edges in S, and let ¢y :=
Cp t+ Cr + oy
Note that all the coefficients cf, for f € F, defined above
are nonnegative. Further, if all the c}, are positive, i.e., 2’ €
int X(S’), then the ¢; are positive as well, which implies
x € int X(S) provided that (41) holds.

We now show that the coefficients given above are such
that (41) indeed holds. We do so by checking that (41) holds
for each entry.

For the ith entry, with 1 <4 < ¢, the left hand side of (41)
is x; = (0; — 0—1). For the right-hand side, if (u;,u,) is an
edge in S, then ¢’ and &/, as defined item (f), are two edges in
S’ and, consequently, [, = F,,, U {h'}. Note that zf; = 2%,
for all f € F,, and
Zg'i = Z/g’,z' =2, =

)

1
5"
Thus, by items (e) and (f), we have that

i =corgit Y Cr2fi

fGF feFuif{g,}
o o } : ;o
= Cg’zg’,i -+ Ch’zh’,’i -+ Cf”zf’,i

PeF, —{g '}

_ ro A o
= E Cp2p s =x; = (0, —0i-1).
freFy,

Finally, for the last entry, i.e., the gth entry, the left hand
side of (41) is 2, = 0, — 0,. For the right hand side of (41),
we let £, := (uq,uq) be the loop on wu, (if it exists in S) and
thus have that

>

Z Cf2f,q = Ct %tq,q + (42)
fEFuq —{£q}

Cfaf,q-
fEF,

Let k', £, and ( , be the three edges in S’ as defined in
item (g). Note that

_ _ _ / _ / _
Zgq = Zoyq = 20 g4l = 22g = 22 g4 = 1
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For the first term of (42), using item (g) and the above relations,
we obtain
Czq qu ,q

/ / / /
=z cy z
R O P g

/ !/ / /
+ C 2k g+ Cr 2k g1- (43)

For each addend in the second term of (42), the edge g =
(u;, uq) in S, for some u; # w4, has two corresponding edges
in S/, namely ¢’ = (u;,uq) and b’ = (u;, ug41). Note that

o o _ 1
%9:4 = Fg'\g T P+l T 5

Then, by item (f),
(44)

/ /
Cg2g.q = cg,zg, qa T ChZh g41-

Combining (43) and (44), we obtain that

Z Cref1 = Z iy g+ Z iy g

fE€Fu, f'eF], Frerl
/ /
=2q + g1 = (0g+1 — 0g) + (04 — 0g41)
=0, —0g.
This concludes the proof. ]
APPENDIX B

PROOF OF LEMMA 7

Proof of item 1. From the definitions of 7/(z), we have that
—1 < n(r(z) — 7(z)) = n(r(z) —m1(z)) <1. (45)

If T(]’i({L') = 0, then TO/,i(x) = 0, where T(]’i({L') is the ith
entry of the vector 7o(z). Otherwise, by the definition of
the incidence matrix (4) and by (15) and (16), we have that
To,i(x) > «. For the latter case, by (45) and the hypothesis on
n in the statement of Proposition 2, we have that

1
70.4(x) > 70,i(2) — - > (1—-¢€/8)a > 0. (46)
It then follows that
supp 7 (%) = supp 7o(). (47)

Similarly, for 71 (), using (4), (15), and (16), we have that
71(z) > Lal. Then, again, by (45) and the hypothesis on n,

1 1
1 (x) > 1 (2) — 51 > 5(1 —¢/4)al > 0,

from which we conclude that

supp7i(z) = supp7i(z) = {1,...,q}.

This concludes the proof of the first item.

Proof of item 2. By (46), (47), and Lemma 4, the ratio ng/n
is uniformly lower bounded by

ng
o ||7'o

)| =

(1 —¢/8)alsupp 7o(z)]
= (1 —¢/8)alFy|. (48)
To obtain a lower bound for n /n, we let

n:=m7(x) —7i(2).

15
From (45) and the hypothesis on n, we have that
Il < £ < Sqae < Zqa
It then follows that
2 n@)lh Il = o0 - taa = Saa. @)

This concludes the proof of the second item.

Proof of item 3. By (45) and the hypothesis on n, 1 as
introduced above satisfies

nllee < 1/n < ce/8 < e.

Because 7{(z) = 71(z) +n and ||n|lec < €, we have that
71(z) € V by Lemma 6. [

APPENDIX C
PROOF OF LEMMA 8

The proof is carried out by induction on n’. If n’ = 0, then
G’ is the empty graph and there is nothing to prove. For the
inductive step, we set n’ > 0 and assume that the lemma holds
for all n” < n/, and prove it for n’.

To proceed, we use A’ to turn S into a weighted digraph

on ¢ nodes: we assign to edge u;u; the weight a . Then, §
is a balanced graph, i.e.,
Sooay= > dy, Vi=l..,q (50

uj EN_(u;) u; €N (us)

where we recall N_(u;) and Ny (u;) are the sets of out-
nelghbors and in-neighbors of g, respectively, in S.

Let S be the subgraph of S induced by the nodes incident
to the edges with nonzero weights. Then, S has at least
one cycle. To see this, note that if S is acyclic, then by
relabeling the nodes, the matrix A’ is upper-triangular and,
from the hypothesis, diag A’ = 0. It follows that the only
nonnegative solution {a .} to (50) is that all the alj are zero,
which contradicts the fact that A’ is nonzero.

Since ' is a subgraph of S, any cycle of S’ is also a cycle of
S; denote such cycle by Dg := u;, ... u;, Ui, . By construction,
the weights of the edges in the cycle are positive. It thus
follows from A’1 = 2’ that the entries z} , for j =1,...k,
are positive; together with the fact that G’ = M(n/ ,S),
implies that the sets 7~ *(u;,) € G, for j = 1,...,k, are
non-empty. We next pick a node v; from each 7—* (us,). Since
the nodes u;,, ..., u;, are pairwise distinct, so are the nodes
v1,. .., vk Also, since G’ is a complete S-multipartite graph,
D¢ := vy ---vgoy is a cycle in G’ Moreover, by construction,
m(D¢) = Dg and, hence, D¢ is simple.

We let G’ be the graph obtained by removing from G’ the
k nodes vy, ..., vy, and the edges incident to them. Then, G
is a complete S-multipartite graph on n” := n’ — k nodes.

Define
1 k
1 1.0
2" = W(na: - Zeiﬁ)’
i=1
where {e1,...,e,} is the canonical basis of R?. Note that

7 > 0; indeed, n'2’ is integer valued and x;J forj=1,....,k,
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are positive. We can then write G” = M(n"z”,S). Corre-
spondingly, we define a ¢ x ¢ matrix A" as follows:

1 k—1
"o._ 1At T LT
A= W(nA - E €€,y — €iyCiy)-
J=1

In words, to obtain n” A”, we decrease the ijth entry of n’A’,
which is a positive integer, by one when the edge w;u; is used
in the cycle Dg and keep the other entries unchanged.

By construction, we have that A” € A(S), with A”"1 =
2", and n”’ A" is integer-valued. Because n” < n’, we can
appeal to the induction hypothesis and exhibit a Hamiltonian
decomposition H” of G’ such that p(H”) = A” and every
cycle in H” is simple. It is clear that adding the simple cycle
D¢ to H” yields a Hamiltonian decomposition H' of G’ with
desired properties. This completes the proof. ]

APPENDIX D
PROOF OF LEMMA 9

1. Proof that B(ny,ns,p) has a left-perfect matching a.a.s..
The proof of this part relies on the following statement,
which is a consequence of a stronger result of Erdés and
Rényi [19]: For p € (0,1) a constant, the random bipartite
graph B(m,m,p) contains a perfect matching a.a.s.. Now,
without loss of generality, we assume that n; < ny and let
B(ni,n1,p) be a subgraph of B(ni,nsa,p). Since ny/n; is
bounded above by a constant x, n — oo implies that n; — oo.
Since B(n1,n1,p) has a (left-)perfect matching a.a.s., so does
B(ny,na,p).

2. Proof that B(ny,ng,p) is connected a.a.s.. It is well known
(see, e.g., [20, Exercise 4.3.7]) that B(m,m,p) is connected
a.a.s.. We now extend the result to the general case where n
is not necessarily equal to ny. Again, we can assume without
loss of generality that ny < no. Let Vi, = {a1,...,a,, } and
Ve = {B1,...,0n,} be the left- and right-node sets of B.
Because ny/n; < k, we can choose k subsets Vr,i € VR, so
that |Vg ;| =n; and U Vg = Vg.

Denote by &; the event that the subgraph B; of B =
B(n1,n2,p) induced by Vi, and Vg ; is disconnected and by
& the event that B is disconnected. Note that if every B; is
connected, then so is B. Conversely, we have that £ C Uf_, &;.

Note that B; = (n1,n1,p) and, as argued above, n; — oo
as n — oo. Since B; is connected a.a.s., lim, ., P(&;) =0
and, hence, lim,_, o P(€) < lim,_,00 Y iy P(E;) = 0. [ |
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