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Geometric Characterization of the H-property for
Step-graphons

Mohamed-Ali Belabbas1 and Xudong Chen2,∗

Abstract—In a recent paper [1], we have exhibited a set of
conditions that are necessary for the H-property to hold for
the class of step-graphons. In this paper, we prove that these
conditions are essentially sufficient.

I. INTRODUCTION AND MAIN RESULT

In [1], we introduced the so-called H-property for a graphon
W — roughly speaking, it is the property that a graph
G sampled from W admits a Hamiltonian decomposition
asymptotically (as the order of G goes to infinity) almost
surely (a.a.s.). In [1], we have exhibited a set of conditions
that were necessary for the H-property to hold for the class
of step-graphons. We show in this paper that these conditions
are also essentially (in a sense made precise below) sufficient
and, moreover, that the H-property is a “zero-one” property.

A. Motivation

The line of research addressed in this sequence of papers is
rooted in structural system theory, and investigates structural
properties under random graph models described by graphons.

Structural system theory deals with the problem of un-
derstanding when a given network topology can sustain a
prescribed system property. Typical such properties are control-
lability [2], [3] and stability [4], [5]. In more detail, consider
a network of n agents x1, . . . , xn, whose communication
topology is described by a directed graph (or simply digraph)
G = (V,E), with the nodes v1, . . . , vn representing the agents
and directed edges vivj indicating the information flow (with
the convention that a directed edge vivj indicates that agent
xj can access state information from xi). Given the digraph
G, a system dynamics ẋ(t) = f(x(t)) is said to be compatible
with G if the dynamics of xi(t) depend only on its incoming
neighbors in G:

vjvi 6∈ E =⇒ ∂fi(x)

∂xj
= 0,

where fi describes the dynamics for agent xi. Denote by ΣG
the set of differentiable dynamics compatible with G.
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Given a desired system property S , we say that the digraph
G sustains S if there exists a dynamics f ∈ ΣG satisfying the
property S .

Following our previous work [1], we focus on the existence
of Hamiltonian decompositions in the digraph describing the
communication topology of a network system. A Hamiltonian
decomposition is a set of disjoint cycles that cover all
nodes of the digraph. Their existence underlies a number of
important properties pertinent to structural system theory, such
as structural controllability [3] and structural stability [4], [6].
For example, it was shown in [6] that for G a symmetric
digraph, the set ΣG contains exponentially stable dynamical
systems if and only if G contains a self-loop and a Hamiltonian
decomposition. Hence, Hamiltonian decomposition are the
key enabler of exponential stability for network dynamics.
Hamiltonian decompositions also play an essential role in
structural controllability for continuum ensembles of linear
control systems [3].

Understanding the behavior of systems properties over
random network topologies provides a wealth of insights [7].
For example, given a null random graph model, the probability
that a network structure can sustain a desired system property S
tells us whether the given property is rare or frequent amongst
topologies. The knowledge of whether there is an abundance
or scarcity of network systems displaying the property S is
thus a critical component in the decision of a network manager
to deploy expensive network systems operating in uncertain
and/or adversarial environment (and since the H-property will
be shown to be a zero-one property, abundance or scarcity
can be understood as almost all or almost none under the
graphon model). Furthermore, in cases such as social networks,
having a random model for the topology is actually the natural
option [8], as any estimate of a social network graph is bound
to be affected by random (graph-valued) noise. In selecting a
random graph model, the relevant aspects are: (1) universality
and flexibility of the model (does the model cover a broad range
of generic scenarios?) and (2) analytical and computational
tractability. Graphons, which have emerged in the past decade
as a powerful tool to understand large graphs [9], provide a
fair amount of modeling flexibility while being tractable.

B. On the H-property

We start by recalling the definitions of a graphon and its
sampling procedure. A graphon is a symmetric, measurable
function W : [0, 1]2 → [0, 1]. Step-graphons, along with their
partitions, are defined below:
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Fig. 1: (a): An undirected graph G on 4 nodes. (b): The directed graph
~G obtained from G by replacing every undirected with two oppositely
oriented edges. The cycle D1 = v1v2v3v4v1 forms a Hamiltonian
decomposition of ~G. The two node disjoint cycles D2 = v1v2v1 and
D3 = v3v4v3 also form a Hamiltonian decomposition of ~G.

Definition 1 (Step-graphon and its partition). A graphon W
is a step-graphon if there exists an increasing sequence 0 =
σ0 < σ1 < · · · < σq = 1 such that W is constant over each
rectangle [σi, σi+1)× [σj , σj+1) for all 0 ≤ i, j ≤ q − 1. We
call σ = (σ0, σ1, . . . , σq) a partition for W .

Graphons can be used to sample undirected graphs. Other
uses of graphons in system theory as limits of adjacency
matrices can be found in [10]–[12]. In this paper, we denote
by Gn ∼W graphs Gn on n nodes sampled from a graphon
W . The sampling procedure was introduced in [9], [13] and
is reproduced below: Let Uni[0, 1] be the uniform distribution
on [0, 1]. Given a graphon W , a graph Gn = (V,E) ∼W on
n nodes is obtained as follows:

1) Sample y1, . . . , yn ∼ Uni[0, 1] independently. We call
yi the coordinate of node vi ∈ V .

2) For any two distinct nodes vi and vj , place an edge
(vi, vj) ∈ E with probability W (yi, yj).

It should be clear that if 0 ≤ p ≤ 1 is a constant and W (s, t) =
p for all (s, t) ∈ [0, 1]2, then Gn ∼ W is an Erdős-Rényi
random graph with parameter p. Consequently, graphons can
be seen as a way to introduce inhomogeneity in the edge
densities between different pairs of nodes.

Let W be a graphon and Gn ∼ W . In the sequel, we use
the notation ~Gn = (V, ~E) to denote the directed version of
Gn, defined by the edge set

~E := {vivj , vjvi | (vi, vj) ∈ E}. (1)

In words, we replace an undirected edge (vi, vj) with two
directed edges vivj and vjvi. The directed graph ~Gn is said to
have a Hamiltonian decomposition if it contains a subgraph H ,
with the same node set of ~G, such that H is a node disjoint
union of directed cycles. See Fig. 1 for illustration.

We now have the following definition:

Definition 2 (H-property). Let W be a graphon and Gn ∼
W . Then, W has the H-property if ~Gn has a Hamiltonian
decomposition a.a.s., i.e.,

lim
n→∞

P( ~Gn has a Hamiltonian decomposition) = 1. (2)

We will see below that the H-property is essentially a “zero-
one” property in a sense that the probability on the left hand
side of (2) converges to either 0 or 1.
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Fig. 2: (a): A step-graphon W with the partition σ =
(0, 0.25, 0.5, 0.75, 1), with the value coded by the gray scale on
the left. (b): The associated skeleton graph S. (c) and (d): Graphs
Gn sampled from W for n = 6 and n = 12, respectively.

C. Key objects

We present three key objects associated with a step-graphon,
namely, its concentration vector, its skeleton graph, and its
associated edge polytope, all of which were introduced in [1].

Definition 3 (Concentration vector). Let W be a step-graphon
with partition σ = (σ0, . . . , σq). The associated concentration
vector x∗ = (x∗1, . . . , x

∗
q) has entries defined as follows: x∗i :=

σi − σi−1, for all i = 1, . . . , q.

It should be clear from the sampling procedure above that
the concentration vector describes the proportion of sampled
nodes in each interval [σi, σi+1) on average.

Given a step-graphon, its support can be described by a
graph, which we call skeleton graph:

Definition 4 (Skeleton graph). To a step-graphon W with a
partition σ = (σ0, . . . , σq), we assign the undirected graph
S = (U,F ) on q nodes, with U = {u1, . . . , uq} and edge set
F defined as follows: there is an edge between ui and uj if
and only if W is non-zero over [σi−1, σi) × [σj−1, σj). We
call S the skeleton graph of W for σ.

We illustrate the relationship between a step-graphon and
its skeleton graph in Figure 2.

Without loss of generality and for ease of presentation,
we will consider throughout this paper step-graphons W
whose skeleton graphs are connected. Though there is no
unique skeleton graph associated to a step-graphon (since there
are infinitely many different partitions for W ), we show in
Proposition 1 that if one such skeleton graph is connected, then
so are all the others. For S not connected, it is not too hard to
see that the corresponding step-graphon is block-diagonal. Our
results apply naturally to every connected component of S.
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We decompose the edge set F of S as

F = F0 ∪ F1, (3)

where elements of F0 are self-loops, and elements of F1 are
edges between distinct nodes. We also introduce the subset
F2 ⊆ F1 of edges that are not incident to two nodes with
self-loops.

Let I := {1, . . . , |F |} be an index set for F (so that the
edges are now ordered). We decompose I similarly: let I0, I1,
and I2 index F0, F1, and F2 respectively.

To introduce the edge-polytope of S, we recall that the
incidence matrix Z = [zij ] of S is an |U | × |F | matrix with
its entries defined as follows:

zij :=
1

2


2, if fj ∈ F0 is a loop on node ui,
1, if node ui is incident to fj ∈ F1,

0, otherwise.
(4)

Owing to the factor 1
2 in (4), all columns of Z are probability

vectors, i.e., all entries are nonnegative and sum to one. The
edge polytope of S was introduced in [14] and the definition
is reproduced below (with a slight difference in inclusion of
the factor 1

2 of the generators zj):

Definition 5 (Edge polytope). Let S = (U,F ) be a skeleton
graph and Z be the associated incidence matrix. Let zj , for
1 ≤ j ≤ |F |, be the columns of Z. The edge polytope of S,
denoted by X (S), is the convex hull of the vectors zj:

X (S) := conv{zj | j = 1, . . . , |F |}. (5)

A point x ∈ X (S) is said to be in the relative interior of
X (S), denoted by intX (S), if there exists an open neighbor-
hood U of x in Rq (with q = |U |) such that U∩X (S) ⊆ X (S).
If x is not an interior point, then it is called a boundary point
and we write x ∈ ∂X (S).

D. Main results

Let W be a step-graphon. For a given partition σ for W ,
let x∗ and S be the associated concentration vector and the
skeleton graph (which is assumed to be connected). We say
that a cycle in S is odd if it contains an odd number of distinct
nodes (or edges); with this definition, self-loops are odd cycles.
Given these, we state the following two conditions:

Condition A: The graph S has an odd cycle.

Condition B: The vector x∗ belongs to intX (S).

The two conditions are stated in terms of a partition σ and
its induced skeleton graph and edge-polytope. As mentioned
earlier, there exist infinitely many partitions for a given step-
graphon. However, the following proposition states that the two
above conditions are invariant under changes of a partition.

Proposition 1. Let W be a step-graphon. For any two
partitions σ and σ′ for W , let x∗, x′∗ be the corresponding
concentration vectors and let S, S′ be the corresponding
skeleton graphs. Then, the following hold:

1) S is connected if and only if S′ is;
2) S has an odd cycle if and only if S′ does;

3) x∗ ∈ X (S) (resp. x∗ ∈ intX (S)) if and only if x′∗ ∈
X (S′) (resp. x′∗ ∈ X (S′)).

We refer the reader to Appendix A for a proof of the
proposition.

We are now in a position to state the main result:

Main Theorem. Let W be a step-graphon. If it satisfies
Conditions A and B for a given (and, hence, any) partition σ,
then it has the H-property.

Remark 1. In our earlier work [1], we have shown that if a
step-graphon W has the H-property, then it is necessary that
Condition A and the following hold:

Condition B’: The vector x∗ belongs to X (S).

In fact, we have established there a stronger result, which
states that if either Condition A or B’ does not hold, then the
probability that Gn ∼ W has a Hamiltonian decomposition
converges to zero.

Note that condition B’ is weaker than Condition B: Specifi-
cally, Condition B leaves out the set of step-graphons for which
x∗ ∈ ∂X (S), which is a set of measure zero. For step-graphons
satisfying Conditions A and B’, but not B, it is possible that

lim
n→∞

P( ~Gn ∼W has a Hamiltonian decomposition) ∈ (0, 1).

We have produced explicit examples of such step-graphon
in [1], [15].

Outline of proof. Given a step-graphon W with skeleton
graph S, and Gn ∼ W , the sampling procedure induces a
natural graph homomorphism π : Gn → S, whereby all nodes
vj of Gn whose coordinates yj belong to [σi−1, σi) are mapped
to ui. With a slight abuse of notation, we will use the same
letter π to denote the homomorphism π : ~Gn → ~S.

Let ni(Gn) := |π−1(ui)| be the number of nodes whose
coordinates belong to [σi−1, σi). We call the following vector
the empirical concentration vector of Gn:

x(Gn) :=
1

n
(n1(Gn), . . . , nq(Gn)). (6)

The proof of the Main Theorem contains three steps, outlined
below, among which step 2 contains the bulk of the proof.

Step 1. The proof starts by showing how conditions A and B
imply that the empirical concentration vector eventually belongs
to the edge polytope. First, it should be clear that the edge
polytope X (S) is a subset of the standard simplex ∆q−1 in Rq;
thus, dimX (S) ≤ (q−1). Condition A, owing to [14], is both
necessary and sufficient for the equality dimX (S) = (q − 1)
to hold. Next, note that nx(Gn) = (n1(Gn), . . . , nq(Gn)) is a
multinomial random variable with n trials and q outcomes with
probabilities x∗i , for 1 ≤ i ≤ q. Then, Condition B guarantees,
via Chebyshev’s inequality, that x(Gn) belongs to intX (S)
a.a.s. (See the arguments around (34) for detail).

The next two steps are then dedicated to establishing the
following fact:

x(Gn) ∈ intX (S)

⇒ Gn admits a Hamiltonian decomposition a.a.s.. (7)
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Step 2. We start by working under the assumption that
W is a binary step-graphon, i.e., W (s, t) ∈ {0, 1} for
almost all (s, t) ∈ [0, 1]2. In this case, we will see that a
sampled graph Gn ∼ W is completely determined by its
empirical concentration vector x(Gn). Consequently, our task
(establishing (7)) is reduced to establishing the following:

x(Gn) ∈ intX (S) and n is sufficiently large
⇒ Gn admits a Hamiltonian decomposition surely. (8)

The proof of (8) is constructive.
An important object that will arise therefrom is what we call

the A-matrix assigned to every Hamiltonian decomposition H
for ~Gn, written as a map ρ(H) = A.

Specifically, the matrix A is a q-by-q matrix whose ijth
entry tallies the number of edges of H that go from a node
in π−1(ui) to a node in π−1(uj) (A precise definition is in
Subsection II-A and see Figure 3 for an illustration). Any such
matrix is then shown to satisfy a number of enviable properties,
among which we have ρ(H)1 = x(Gn).

In a nutshell, we have just created the following sequence
of maps:

H 7−→ ρ(H) 7−→ ρ(H)1 = x(Gn),

with the domain being all Hamiltonian decompositions in ~Gn,
for any Gn sampled from a given binary graphon.

Now, the effort in establishing (8) is to create appropriate
right-inverses (at least locally) of the maps in the above
sequence, i.e., we aim to create maps x 7→ A(x) and
ρ̃ : A(x) 7→ H with the property that ρ · ρ̃ is the identity map
and A(x)1 = x. The map x 7→ A(x) is created in Proposition 2,
Subsection II-C, and the map ρ̃ is created in Proposition 3,
Subsection II-D. From these two subsections, it will be clear
that by introducing the A-matrix as an intermediate object, we
can decouple the analytic part of the proof, contained in the
creation of the map x 7→ A(x), from the graph-theoretic part,
contained in the creation of ρ̃. This will conclude the proof
of (8).

Step 3. To close gap between binary step-graphons and
general ones, we introduce here an equivalence relation on
the class of step-graphons, namely, two step-graphons W1 and
W2 are equivalent if their supports are the same. Or, said
otherwise, W1 and W2 are equivalent if they share the same
concentration vector and skeleton graph. Note, in particular, that
each equivalence class [W ] contains a unique representative
which is a binary step-graphon, denoted by W s. We then
establish (7) by showing that W has the H-property if and
only if W s does. In essence, we show that the H-property is
decided completely by the concentration vector and the skeleton
graph of a step-graphon W . The proof of this statement builds
upon several classical results from random graph theory, and
is presented in Subsection II-E.

E. Notation

We gather here key notations and conventions.
Graph theory. Let G = (V,E) be an undirected graph. Graphs
in this paper do not have multiple edges, but may have self-

loops. We denote edges by (vi, vj) ∈ E; if vi = vj , then we
call the edge a self-loop. For a given node vi, let N(vi) :=
{vj ∈ V | (vi, vj) ∈ E} be the neighbor set of vi. The degree
of vi, denoted by deg(vi), is the cardinality of N(vi).

We will also deal with digraphs in this paper. Whether a
graph is directed or undirected will be clear from the context
and/or notation. We denote by vivj the directed edge from vi
to vj ; we call vj an out-neighbor of vi and vi an in-neighbor
of vj . Similarly, we define N+(vi) and N−(vi) the sets of
in-neighbors and out-neighbors of vi, respectively.

Recall that for a given undirected graph G = (V,E), possibly
with self-loops, we let ~G = (V, ~E) be the directed graph defined
as in (1). Self-loops in ~G are the same as the ones in G, i.e.,
they are not duplicated.

A closed walk in a graph (or digraph) is an ordered sequence
of nodes v1v2 · · · vkv1 in G (resp. ~G) so that all consecutive
nodes are ends of some edges (resp. directed edges). A cycle
is a closed walk without repetition of nodes in the sequence
except the starting- and the ending-nodes. For clarity of the
presentation, we use letter C to denote cycles in undirected
graphs and the letter D for cycles in directed graphs.

Miscellanea. We use 1 to denote a column vector of all 1,
whose dimension will be clear within the context. We write
x ≤ y for vectors x, y ∈ Rq if the inequality holds entrywise.
For a given vector x ∈ Rq , we denote its `1 normalization by
x̄, i.e., x̄ := x

‖x‖1 , with the convention that 0̄ = 0. Further,
given the vector x, we denote by [x] the vector whose entry
[x]i is a closest integer to xi for 1 ≤ i ≤ q where for the
case xi = k + 1

2 , with k an integer, we set [x]i := k. We
denote the standard simplex in Rq by ∆q−1 := {x ∈ Rq | x ≥
0 and x>1 = 1}. Finally, given a q × q matrix A, we denote
by suppA its support, i.e., the set of indices corresponding to
its non-zero entries.

II. ANALYSIS AND PROOF OF THE MAIN THEOREM

Throughout the proof, W is a step-graphon, σ its associated
partition, and S = (U,F ) its skeleton graph on q nodes, which
has an odd cycle. Let F0 and F1 as in (3). We can naturally
associate to them the subgraphs

S0 := (U,F0) and S1 := (U,F1). (9)

Note that S has an odd cycle if and only if S0 is edgewise
non-empty or S1 has an odd cycle. The lemma below states
that we can consider, without loss of generality, only the latter
case of S1 containing an odd cycle.

Lemma 1. Let W be a step-graphon. If W admits a partition σ
with skeleton graph S containing an odd cycle, then W admits
a partition σ′ with skeleton graph S′ so that the subgraph S′1
has an odd cycle.

The proof of the lemma can be established by using the
notion of “one-step refinement” introduced in Appendix A for
the partition σ: If S1 already has an odd cycle, then there is
nothing to prove. Otherwise, consider a one-step refinement
on a node with self-loop in S, which will yield a cycle of
length 3 in S′.
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A. On the edge polytope X (S)

Rank of X (S). Recall that X (S) is the edge-polytope of S.
Similarly, we let X (Si), for i = 0, 1, be the edge polytope
(see Definition 5) of Si, i.e., X (Si) is the convex hull of the
zj’s, with j ∈ Ii, where Ii indexes edges in Fi.

We call x an extremal point of a polytope X if there is no line
segment in X that contains x in its interior. The maximal set
of extremal points is called the set of extremal generators for
X . The following result characterizes the extremal generators
of X (S0), X (S1), and of X (S):

Lemma 2. The set of extremal generators of X (Si), for i =
0, 1, is {zj | j ∈ Ii}. The set of extremal generators of X (S)
is {zi | i ∈ I0 ∪ I2}. .

Proof. The statement for X (S0) is obvious from the definition
of the corresponding zi. For X (S1), it suffices to see that the
vectors zi, for i ∈ I1, have exactly two non-negative entries,
and the supports of these vectors are pairwise distinct. Hence,
if zi =

∑
j∈I1 cizj with cj ≥ 0, we necessarily have cj = 0

for j 6= i and ci = 1. For X (S), we refer the reader to [1,
Proposition 1] for a proof.

The rank of a polytope X is the dimension of its relative
interior. It is known [14] that if S has q nodes, then

rankX (S) =

{
q − 1 if S has an odd cycle,
q − 2 otherwise.

(10)

Equivalently, we have the following result [16] on the rank of
the incidence matrix ZS of S:

rankZS =

{
q if S has an odd cycle,
q − 1 otherwise.

(11)

The A-matrix. Let Gn ∼ W and suppose that ~Gn has a
Hamiltonian decomposition, denoted by H .

Recall that π : ~Gn → ~S is the graph homomorphism
introduced above (6). Let nij(H) be the number of (directed)
edges of H from a node in π−1(ui) to a node in π−1(uj). It
is not hard to see that (see [1, Lemma 1] for a proof) for all
ui ∈ U ,

ni(Gn) =
∑

uj∈N(ui)

nij(H) =
∑

uj∈N(ui)

nji(H). (12)

We now assign to the skeleton graph S a convex set that
will be instrumental in establishing the main result:

Definition 6 (A-matrices and their set). Let S = (U,F ) be
an undirected graph on q nodes. We define A(S) as the set of
q × q nonnegative matrices A = [aij ] satisfying the following
two conditions:

1) If (ui, uj) /∈ F , then aij = 0;
2) A1 = A>1, and 1>A1 = 1.

Because every defining condition for A(S) is affine, the set
A(S) is a convex set.

Now, to each Hamiltonian decomposition H of ~Gn, we
assign the following q × q matrix:

ρ(H) :=
1

n
[nij(H)]1≤i,j≤q . (13)

s

t0

1

1

(a)

u3

u1 u2

(b)

π−1(u3)

π−1(u2)π−1(u1)

(c)

ρ(H) = 1
5

0 1 0

0 0 1

1 0 2




(d)

Fig. 3: (a): A step-graphon W . (b): Its skeleton graph S. (c): A
digraph ~Gn, with Gn ∼W , for n = 5. The edges in black form the
Hamiltonian decomposition H . (d): The matrix ρ(H) defined in (13).

It follows from (12) that ρ(H) ∈ A(S) and ρ(H)1 = x(Gn).
Furthermore, we have established in [1, Proposition 4] the
following connection between the set A(S) and the edge
polytope X (S):

X (S) = {x ∈ Rq | x = A1 for some A ∈ A(S)}. (14)

We refer the reader to Figure 3 for illustration.

B. Local coordinate systems on X (S) and X (S1)

This section establishes the groundwork for the construction
of the map x 7→ A(x) described in the proof outline. To this
end, we first show how to express any point in a neighborhood
U of x∗ ∈ X (S) as a positive combination of the columns
of the incidence matrix ZS . This amounts to solving the
linear equations ZSφ(x) = x, for x ∈ U , with φ(x) being
continuous in x and positive. We will solve a similar problem
for y∗ ∈ X (S1) and with ZS replaced by ZS1 , and we call
the corresponding solution θ(y). These two maps will be put
to use in the next subsection.

Construction of the map φ. We start with the following
lemma:

Lemma 3. Suppose that S = (U,F ) has an odd cycle. Then,
for any x∗ ∈ intX (S), there exist a closed neighborhood U of
x∗ in the simplex and a continuous map φ : U → int ∆|F |−1

such that ZSφ(x) = x for any x ∈ U .

Proof. Because X (S) is finitely generated by the columns of
ZS , i.e. the zi’s for i ∈ I, and because x∗ ∈ intX (S), there
exists a positive probability vector c := (c1, . . . , c|F |) such that
x∗ = ZSc. Let ε := 1

2 mini∈I{ci}. Because S has at least one
odd cycle, we know from (11) that ZS is full rank. Thus, we
can pick q columns, say z1, . . . , zq of ZS , that form a basis of
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Rq . Let B ⊂ R|F | be a closed ball centered at 0 with radius ε,
and let

B0 := {y ∈ B | 1>y = 0 and yi = 0, for all i > q}.

The dimension of B0 is (q − 1). We now define the map

ψ : B0 → Rq : y 7→ x∗ + ZSy = ZS(y + c).

It should be clear that ψ is a linear bijection between B0 and
its image ψ(B0). By the construction of B and B0, all the
entries of (y + c), for y ∈ B0, are positive and, moreover,
1>(y+ c) = 1. It then follows that the image of ψ is a closed
neighborhood of x∗ inside X (S). We now set φ := ψ−1. It
remains to show that φ(x) ∈ ∆|F |−1. This holds because every
column of ZS belongs to ∆q−1 and so does x. Thus, from
ZSφ(x) = x, we have that x is a convex combination of the
columns of ZS , which implies that φ(x) ∈ ∆|F |−1.

Let x∗ ∈ intX (S) and φ be the map given in Lemma 3.
For an edge fi of S, we let φi be the corresponding entry of
φ. We next define two functions τi : U → Rq , for i = 0, 1, as
follows:

τi(x) : x 7→
∑
j∈Ii

φj(x)zj . (15)

If S has no self-loops, then τ0 is set to be the zero map. We
can thus decompose x ∈ U as

x = τ0(x) + τ1(x).

We record the following simple observation for later use:

Lemma 4. Let U be as in Lemma 3. For every x ∈ U ,
the set of indices of nonzero (positive) entries of τ0(x) is
{i | ui has a self-loop} and, moreover, every entry of τ1(x) is
positive.

Proof. The statement for τ0(x) is trivial. The statement for
τ1(x) follows from the fact that φ(x) has positive entries and
no row of ZS1

is identically 0.

Construction of the map θ. For any x ∈ U , let τ̄i(x), for
i = 0, 1, be defined as follows:

τ̄i(x) :=

{
τi(x)/‖τi(x)‖1 if τi(x) 6= 0,

0 otherwise.

Since S has odd cycle, recall that we can assume by Lemma 1
that S1 has an odd cycle. Thus, by (10), the rank of X (S1)
is (q − 1). In particular, it implies that the relative interior of
X (S1) is open in ∆q−1. Further, by Lemma 4, if x ∈ U , then
τ̄1(x) ∈ intX (S1).

The map θ we introduce below is akin to the map φ
introduced in Lemma 3, but defined on a closed neighborhood
of the following vector

x̄∗1 := τ̄1(x∗) ∈ intX (S1).

Lemma 5. Suppose that S (and, hence, S1) has an odd
cycle; then, for the given x̄∗1 ∈ intX (S1), there exist a
closed neighborhood V of x̄∗1 in ∆q−1 and a continuous map
θ : V → int ∆|F1|−1 such that ZS1

θ(y) = y for any y ∈ V .

The proof is entirely similar to the one of Lemma 3, and is

thus omitted.
Because φ and θ are both positive, continuous maps over

closed, bounded domains, there exists an α ∈ (0, 1) so that

φ(x) ≥ α1 for all x ∈ U ,
θ(x) ≥ α1 for all x ∈ V .

(16)

On the image of τ̄1. For a given x∗ ∈ intX (S), the domains
of φ and θ are closed neighborhoods U and V of x∗ and x̄∗1,
respectively. Later in the analysis, we will pick an arbitrary
x ∈ U and apply θ to τ̄1(x). For this, we need that τ̄1(x)
belongs to V . To this end, we will shrink U so that τ̄1(U) ⊆ V
and thus the composition θτ̄1 is well defined. In fact, we have
the stronger statement:

Lemma 6. Let α > 0 be given as in (16). There exist a closed
neighborhood U ′ ⊆ U of x∗ and a positive ε < 1

4α, such that

τ1(x) + η =
τ1(x) + η

‖τ1(x) + η‖1
∈ V ,

for any x ∈ U ′ and for any η ∈ Rq with ‖η‖∞ ≤ ε.

Proof. Let V ′ be a closed ball centered at x̄∗1 and contained
in the interior of V . Then, it is known [17, Theorem 4.6] that
there exists an ε′ > 0 such that the ε′-neighborhood of V ′,
with respect to the infinity norm, is contained in the interior
of V . Let U ′ := τ̄−11 (V ′) and ε be sufficiently small so that

(8 + 4α)ε

qα2
< min

{
ε′,

1

4
α

}
. (17)

We claim that the above-defined U ′ and ε are as desired.
Since τ̄1 is continuous and since V ′ is a closed ball centered

at x̄∗1, U ′ is a closed neighborhood of x∗. Now, pick an arbitrary
x ∈ U ′. For ease of notation, we set x1 := τ1(x) and x̄1 =
τ̄1(x) for the remainder of this proof. Then,

‖x1 + η −x̄1‖∞ =

∥∥∥∥ x1 + η

‖x1 + η‖1
− x1
‖x1‖1

∥∥∥∥
∞

=

∥∥∥∥ (‖x1‖1 − ‖x1 + η‖1)x1 + ‖x1‖1η
‖x1 + η‖1‖x1‖1

∥∥∥∥
∞

≤ |‖x1‖1 − ‖x1 + η‖1|
‖x1 + η‖1‖x1‖1

‖x1‖∞ +
‖η‖∞
‖x1 + η‖1

≤ |‖x1‖1 − ‖x1 + η‖1|
‖x1 + η‖1‖x1‖1

+
‖η‖∞
‖x1 + η‖1

(18)

where we used the fact that ‖x1‖∞ ≤ 1 to obtain the last
inequality. To further evaluate (18), we first note that

|‖x‖1 − ‖x1 + η‖1| ≤ ‖η‖1 ≤ q‖η‖∞ ≤ qε.

Next, by (4), (15) and (16), every entry of x1 is greater than
1
2α, so ‖x1‖1 ≥ 1

2qα. Moreover, since ε < 1
4α,

‖x1 + η‖1 ≥ ‖x1‖1 − ‖η‖1 ≥
1

2
qα− qε ≥ 1

4
qα.

Finally, using (17), we can proceed from (18) and obtain that

‖x1 + η − x̄1‖∞ ≤
8ε

qα2
+

4ε

qα
=

(8 + 4α)ε

qα2
< ε′,

which implies that x1 + η belongs to the ε′-neighborhood of
V ′ and, hence, to V .
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Remark 2. From now on, to simplify the notation, we denote
by U the set U ′ of Lemma 6.

C. Construction of the map x 7→ A(x)

To construct the map, we first specify its domain, which will
be a subset of U . If x ∈ Rq is an empirical concentration vector
of some Gn ∼W for a step-graphon W , then nx necessarily
has integer entries. Define a subset of U as follows:

U∗ :=
{
x ∈ U | nx ∈ Zq+ for some n ∈ Z+

}
, (19)

where Z+ is the set of positive integers.
Since the analysis for the H-property will be carried out

in the asymptotic regime n → ∞, the relevant empirical
concentration vectors are those of Gn for n large. To this
end, let α ∈ (0, 1) be such that (16) is satisfied and ε be as in
Lemma 6. We have the following definition:

Definition 7. Given an x ∈ U∗, n ∈ Z+ is paired with x if
n > 8

αε and nx is integer valued.

With the above, we now state the main result of this
subsection:

Proposition 2. Let S = (U,F ) be a connected undirected
graph, with at least one odd cycle, and ~S = (U, ~F ) be its
directed version. Then, there exist a map A : U∗ 7→ A(S) and
a positive number a such that for any x ∈ U∗ and for any n
paired with x, the following hold:

1) A(x)1 = x;
2) nA(x) is integer-valued and n diagA(x) has even

entries;
3) n‖ diagA(x)−τ0(x)‖∞ ≤ 1, where τ0 is defined in (15);
4) n|aij(x)− aji(x)| ≤ 1 for all 1 ≤ i, j ≤ q;
5) For any uiuj ∈ ~F , aij(x) > a.

Note that item 5 and the fact that A(x) ∈ A(S) imply
suppA(x) = ~S, i.e., aij 6= 0 if and only if uiuj ∈ ~F .

The proof of Proposition 2 is constructive. It will rely on
a few technical facts we establish here. Let x ∈ U∗ and n be
paired with x. Define

τ ′0(x) :=
2

n

[n
2
τ0(x)

]
and τ ′1(x) := x− τ ′0(x), (20)

where we recall that the operation [ · ] is the integer-rounding
operation, introduced in the notation of Section I. The vector
nτ ′0(x) is then the vector with even entries closest to the entries
of nτ0(x). Next, we define

n′0 := n‖τ ′0(x)‖1 and n′1 := n‖τ ′1(x)‖1 (21)

Recall that τ̄ ′0 and τ̄ ′1 are the `1 normalization of τ ′0 and τ ′1,
respectively. It should be clear from the construction that n′0 +
n′1 = n and

τ̄ ′i =
n

n′i
τ ′i , for i = 0, 1.

For a given x ∈ U∗, there obviously exist infinitely many
positive integers n that are paired with x. However, the
ratios n′0/n and n′1/n are independent of n and determined
completely by x.

We also need the following lemma:

Lemma 7. The following items hold:
1) For i = 0, 1, supp τ ′i(x) = supp τi(x) and, moreover, the

nonzero entries of τ ′i(x) are uniformly bounded below
by 1

2 (1− ε/4)α.
2) The ratio n′0/n is bounded below by (1−ε/8)α|F0|. The

ratio n′1/n is bounded below by 3qα/8.
3) Let V be defined as in Lemma 5. Then, τ̄1(x) ∈ V .

We provide a proof of the lemma in Appendix B.
With the lemma above, we now establish Proposition 2:

Proof of Proposition 2. We start by defining two matrix-
valued functions A0(x) and A1(x) so that for any x ∈ U∗,
Ai(x) ∈ A(S) and Ai(x)1 = τ̄ ′i(x). We will then let A(x) be
the convex combination of these two matrices given by

A(x) =
n′0
n
A0(x) +

n′1
n
A1(x). (22)

Since A(S) is convex, it will then follow that A(x) ∈ A(S).

Construction of A0. The matrix A0(x) is simply given by

A0(x) := diag τ̄ ′0(x). (23)

By Lemma 4, supp τ0(x) is constant over U . By the first item
of Lemma 7, supp τ0(x) = supp τ ′0(x) for all x ∈ U∗. It then
follows that suppA0(x) is also constant over U∗. By the same
item, the nonzero entries of A0(x) are uniformly bounded
below by a positive constant.

Construction of A1. The construction is more involved than
the one of A0, and requires to first define the intermediate
matrix A′1. To this end, recall that ZS1

is the edge-incidence
matrix of S1 = (U,F1), obtained by removing the self-loops of
S, and that θ is the map given in Lemma 5, i.e., ZS1θ(y) = y
for all y ∈ V . Given an edge f = (ui, uj) ∈ S1, we denote by
θf (y) the corresponding entry of θ(y). By item 3 of Lemma 7,
τ̄ ′1(x) belongs to V , which is the domain of θ. Now, we define
the symmetric matrix A′1(x) = [a′1,ij(x)] ∈ Rq×q as follows:

a′1,ij(x) :=

{
1
2θf (τ̄ ′1(x)) if f = (ui, uj) ∈ F1,

0 otherwise.
(24)

In particular, the diagonal of A′1 is 0, and so will be the diagonal
of A1 as shown below. From the definition of the incidence
matrix ZS1

and (24), we have that A′1(x)1 = ZS1
θ(τ̄ ′1(x)). By

Lemma 5, ZS1θ(τ̄
′
1(x)) = τ̄ ′1(x). It then follows that

A′1(x)1 = τ̄ ′1(x), (25)

and, hence, 1>A′1(x)1 = 1>τ̄ ′1(x) = 1. Furthermore, since
A′1(x) is symmetric, A′1(x)1 = A′1(x)>1. We thus have
that A′1(x) ∈ A(S). Since θf is positive for every f ∈ F1,
suppA′1(x) is constant over U . Moreover, by (16), the nonzero
entries of A′1(x) are uniformly bounded below by 1

2α.
Next, we use A′1 to construct A1. There are two cases; one

is straightforward and the other is more involved:

Case 1: n′1A
′
1(x) is integer-valued. Set A1(x) := A′1(x).

Case 2: n′1A
′
1(x) is not integer-valued. In this case, we appeal

to the result [18, Theorem 2]: There, we have shown that there
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exists a matrix A1(x) = [a1,ij(x)] in A(S), with

A1(x)1 = A′1(x)1 = τ̄ ′1(x) (26)

such that A1(x) has the same support as A′1(x) and

n′1a1,ij(x) = bn′1a′1,ij(x)c or n′1a1,ij(x) = dn′1a′1,ij(x)e.

In particular, n′1A1(x) is integer-valued. Because a′1,ij(x) =
a′1,ji(x), it follows that

n′1|a1,ij(x)− a1,ji(x)| ≤ 1, ∀1 ≤ i, j ≤ q. (27)

Moreover, if a′1,ij(x) > 0, then

a1,ij(x) > a′1,ij(x)− 1

n′1
≥ α− 1

n′1
≥ α− 1

n

n

n′1

≥ α− 8

3nqα
>

(
1− 1

12q

)
α. (28)

where second to the last inequality follow from item 2 of
Lemma 7 and the last inequality follows from the hypothesis
on n (specifically n > 8

αε ) from the statement and the condition
that ε < α/4 from Lemma 6.

Proof that A satisfies the five items of the statement.

1) From (23), A0(x)1 = τ̄ ′0(x). For A1, it was shown that
A1(x)1 = τ̄ ′1(x) in (25) and (26) for Case 1 and Case 2,
respectively. Since A is the convex combination of A0

and A1 given in (22), it follows that

A(x)1 =
n′0
n
τ̄ ′0(x) +

n′1
n
τ̄ ′1(x) = x. (29)

2) By the construction of A in (22) and the definitions of
A0 and A1, the diagonal of nA(x) is

n′0A0(x) = n′0 Diag τ̄ ′0(x) = nDiag τ ′0(x).

By (20), all the entries of nτ ′0(x) are even.
3) Using (20) again, we have that

−1 ≤ n(τ0(x)− τ ′0(x)) ≤ 1,

from which it follows that

n‖ diagA(x)− τ0(x)‖∞ = n‖τ ′0(x)− τ0(x)‖ ≤ 1.

4) The off-diagonal entries aij(x) of A(x) are those of
n′1
n A1(x), which we denoted by n′1

n a1,ij(x). Thus,

n|aij(x)− aji(x)| = n′1|a1,ij(x)− a1,ji(x)| ≤ 1,

where the last inequality is (27).
5) Case 1: S does not have a self-loop. In this case, A(x) =

A1(x). By construction of A1, suppA1(x) = ~S. If A1(x)
is obtained via case 1 above, then, as argued after (25),
its nonzero entries are bounded below by α/2. Otherwise,
A1 is obtained via case 2 and its nonzero entries are
lower bounded as shown in (28).
Case 2: S has at least one self-loop. In this case,

suppA(x) = suppA0(x)∪ suppA1(x).

u3

u1 u2

(a)

π−1(u3)

π−1(u2)
π−1(u1)

(b)

Fig. 4: (a): An undirected graph S on three nodes. (b): A complete
S-multipartite graph M(ω, S) with ω = (1, 2, 2).

By construction of A0 and item 1 of Lemma 7,

suppA0(x) = supp Diag τ ′0(x)

= supp Diag τ0(x) = ~S0, (30)

where the last equality follows from Lemma 4. Moreover,
the nonzero entries of A0(x) are bounded below by
1
2 (1− ε/4)α. Also, by construction of A1,

suppA1(x) = ~S1. (31)

Thus, by (30) and (31), suppA(x) = ~S. Finally, we
verify that the nonzero entries of A(x) are uniformly
bounded below by a positive number. By item 2 of
Lemma 7, n′0/n and n′1/n are uniformly bounded below
by positive numbers (note that |F0| ≥ 1 in the current
case). Thus, using (22), the nonzero entries of A(x) are
also uniformly lower bounded by a positive number.

This completes the proof.

D. Constructing a Hamiltonian decomposition from A(x)

In this subsection, we construct the map ρ̃ : A(x) 7→ H
announced in Section I, where A(x) will be taken from
the statement of Proposition 2 and H is a Hamiltonian
decomposition in Gn ∼W , with x its empirical concentration
vector. Throughout this subsection, we assume that W is a
binary step-graphon, i.e., W is valued in {0, 1}.

Graphs sampled from a binary step-graphon have rather
rigid structures as we will describe below. We refer to them
as S-multipartite graphs, see also Figure 4:

Definition 8 (S-multipartite graph). Let S = (U,F ) be an
undirected graph, possibly with self-loops. An undirected
graph G is an S-multipartite graph if there exists a graph
homomorphism π : G→ S, so that

(vi, vj) ∈ E ⇒ (π(vi), π(vj)) ∈ F.

Further, G is a complete S-multipartite graph if

(vi, vj) ∈ E ⇔ (π(vi), π(vj)) ∈ F.

Let G be an arbitrary complete S-multipartite graph with
S = (U,F ) and set ni := |π−1(ui)| for i = 1, . . . , q. It should
be clear that G is completely determined by S and the vector
w := (n1, . . . , nq) . We will consequently use the notation
M(w, S) to refer to a complete S-multipartite graph. Now,
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returning to the case Gn ∼ W , where W is a binary step-
graphon with skeleton graph S, the empirical concentration
vector x(Gn) together with S then completely determine Gn
as announced above.

If G is a (complete) S-multipartite graph, then ~G is
(complete) ~S-multipartite, and we use the same notation π
to denote the homomorphism. We next introduce a special
class of cycles in ~G:

Definition 9 (Simple cycle). Let G be an S-multipartite graph,
and π : ~G→ ~S be the associated homomorphism. A directed
cycle D in ~G is called simple if π(D) is a cycle (rather than
a closed walk) in ~S.

With the notions above, we state the main result of this
subsection:

Proposition 3. Let S = (U,F ) be an undirected graph,
possibly with self-loops. Let G = M(nx, S) be a complete S-
multipartite graph on n nodes, where x ∈ U∗ and n is paired
with x (see Definition 7). Let A(x) be as in Proposition 2 and

mij(x) := nmin{aij(x), aji(x)}, for all 1 ≤ i, j ≤ q. (32)

Then, there exists a Hamiltonian decomposition H of ~G, with
ρ(H) = A(x), such that the following hold:

1) There exist exactly 1
2mii(x) disjoint 2-cycles in H

pairing mii(x) nodes in π−1(ui) for every i = 1, . . . , q;
2) There are at least mij(x) disjoint 2-cycles in H pair-

ing nodes in π−1(ui) to nodes in π−1(uj) for each
(ui, uj) ∈ F1.

3) There are at most
⌈
2
3 |F |

⌉
cycles of length three or more

in H;
4) The length of every cycle of H does not exceed 2|F |;
5) All cycles of length at least 3 of H are simple.

We illustrate the Proposition on an example.

Example 1. Consider a complete S-multipartite graph G for S
shown in Figure 4a. Set ni := |π−1(ui)|, for i = 1, 2, 3, n :=∑3
i=1 ni, and x := 1

n (n1, n2, n3). In this case, x ∈ int ∆2 if
and only if the ni’s satisfy triangle inequalities ni + nj > nk,
where i, j, and k are pairwise distinct. If these inequalities
are satisfied, then ~G admits a Hamiltonian decomposition H ,
which is comprised primarily (if not entirely) of 2-cycles. We
plot in Figure 5 the corresponding undirected edges of G.
Specifically, there are two cases: (1) If n1 − n2 + n3 is even,
then H is comprised solely of 2-cycles as shown in Figure 5a.
(2) If n1 − n2 + n3 is odd, then H is comprised of 2-cycles
and a single triangle as shown in Figure 5b.

The proof of Proposition 3 relies on a reduction argument for
both the graph Gn and the matrix A(x): roughly speaking, we
will first remove out of ~Gn a number of 2-cycles, which leads
to a graph ~G′ of smaller size. With regards to the matrix A, this
reduction leads to another matrix A′ ∈ A(S) with the property
that diag(A′) = 0. Finding a Hamiltonian decomposition H
for ~G with ρ(H) = A is then reduced to finding a Hamiltonian
decomposition H ′ for ~G′ with ρ(H ′) = A′. For the arguments
outlined above, we need a supporting lemma stated below,
whose proof is relegated to Appendix C:

(a) (b)

Fig. 5: Illustration of Example 1: Two complete S-multipartite graphs
G with S shown in Figure 4a, where the undirected edges plotted
in each subfigure give rise to a Hamiltonian decomposition H of ~G.
Green nodes belong to π−1(u1), blue nodes to π−1(u2), and red
nodes to π−1(u3).

Lemma 8. Let n′ be a nonnegative integer. Let A′ ∈ A(S) be
such that n′A′ is integer-valued, diag(A′) = 0, and x′ := A′1.
Then, there exists a Hamiltonian decomposition H ′ of ~G′,
where G′ := M(n′x′, S) is the complete S-multipartite graph,
such that ρ(H ′) = A′ and every cycle in H ′ is simple.

With the lemma above, we now establish Proposition 3:

Proof of Proposition 3. We construct a Hamiltonian decompo-
sition H with the desired properties in two steps. We will fix
x in the proof and, to simplify the notation, we omit writing
the argument x for aij(x), mij(x), and A(x).

Step 1. We claim that the following selection of 2-cycles out
of ~Gn is feasible:
• For every self-loop (ui, ui) ∈ F0, mii = naii is an

even integer, and we select mii pairwise distinct nodes
in π−1(ui) that form mii/2 disjoint 2-cycles.

• For every (ui, uj) ∈ F1, we select mij distinct nodes in
π−1(ui) and mij distinct nodes in π−1(uj), to form mij

disjoint 2-cycles (so the total number of such 2-cycles is∑
(ui,uj)∈F1

mij).
The above selection is feasible because (1) Gn is a complete
S-multipartite graph and, thus, there is an edge between any
pair of nodes in π−1(ui), π−1(uj) provided that (ui, uj) ∈ F1

and, (2) A1 = x which implies that
∑q
j=1mij ≤ ni and,

hence, we can always pick the required number of distinct
nodes.

Let V ′ be the set of remaining nodes in G, i.e., V ′ is obtained
by removing out of V the

∑
(ui,uj)∈F mij nodes picked in

step 1. If V ′ is the empty set, we let H be the union of the
disjoint 2-cycles just exhibited. It should be clear that H is a
Hamiltonian decomposition of ~G. We claim that H satisfies the
desired properties. To see this, let A′ := ρ(H) and x′ := A′1.
Then, A′ ∈ A(S) and, by construction of H , na′ij = mij . On
the one hand, since V ′ is empty, ‖nx′‖1 = ‖nx‖1 = n and,
hence, the sum of the entries of A′ is equal to the sum of
the entries of A. On the other hand, since mij ≤ naij , we
have that A′ = 1

n [mij ]ij ≤ A. It then follows that A′ = A
and x′ = x. Furthermore, items 1 and 2 follow from Step 1,
respectively, and items 3, 4, and 5 hold trivially.

Step 2. We now assume that V ′ is non-empty. Let G′ be the
subgraph of G induced by V ′. We exhibit below a Hamiltonian
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decomposition H ′ for ~G′ such that the cycles in H ′, together
with the 2-cycles constructed in Step 1, yield a desired H .
Additionally, we will show that all the cycles of length at least
3 in H ′ satisfy items 3, 4, and 5.

To construct the above mentioned H ′, we will appeal to
Lemma 8. To this end, let n′i be the number of nodes in
π−1(ui) ∩ V ′, i.e.,

n′i = ni −
∑

uj∈N(ui)

mij .

Let n′ :=
∑q
i=1 n

′
i be the total number of nodes in G′, and

x′ :=
1

n′
[n′1; · · · ;n′q].

It follows that G′ = M(n′x′, S).

Because H has to satisfy ρ(H) = A with A1 = x, H
should contain naij edges from nodes in π−1(ui) to nodes in
π−1(uj). Since mij such edges have already been accounted
for by the 2-cycles created in Step 1, we need an additional
n′ij edges, where

n′ij :=

{
naij −mij if (ui, uj) ∈ F ,
0 otherwise. (33)

Note that by (32), n′ii = 0 for all i = 1, . . . , q. Correspondingly,
we define a q × q matrix as follows:

A′ :=
1

n′
[n′ij ].

Because mij = mji for all (ui, uj) ∈ F and because A1 =
A>1, we obtain that

q∑
j=1

n′ij =

q∑
j=1

n′ji = n′i, ∀i = 1, . . . , q.

Thus, A′ ∈ A(S) and, by construction, diagA′ = 0 and
A′1 = x′, so A′ satisfies the conditions in the statement of
Lemma 8.

By Lemma 8, there exists a Hamiltonian decomposition H ′

of ~G′ such that ρ(H ′) = A′, A′1 = x′, and all cycles in H ′

are simple. Now, let H be the union of H ′ and the 2-cycles
obtained in Step 1. Then,

ρ(H) =
1

n
[mij + n′ij ] =

1

n
[naij ] = A,

where the second equality follows from (33). Moreover, since
diagA′ = 0, there is no 2-cycle in H ′ connecting pairs of nodes
in π−1(ui) for any i = 1, . . . , q. Thus, for each i = 1, . . . , q,
H contains exactly 1

2mii disjoint two-cycles pairing mii nodes
in π−1(ui).

It now remains to show that all the cycles of length at least
three in H ′ satisfy items 3 and 4. To do so, we first provide
an upper bound on n′i: Using items 3 and 4 of Proposition 2,
we have that naij −mij ≤ 1. Thus,

n′i ≤ ni−
∑

uj∈N(ui)

(naij−1) = ni−ni+deg(ui) = deg(ui),

α1

α2

α3

α4

β1

β2

β3

β4

β5

Fig. 6: A bipartite graph with VL = {α1, . . . , α4} and VR =
{β1, . . . , β5}. The blue edges form a left-perfect matching.

where deg(ui) is the degree of ui in S. Since
q∑
i=1

deg(ui) ≤ 2|F |,

there are at most 2|F | nodes in ~G′. Consequently, the length
of any cycle in H ′ is bounded above by 2|F | and, moreover,
there exist at most

⌈
2
3 |F |

⌉
cycles of length three or more in

H ′. This completes the proof.

Remark 3. The fact that item 2 of the proposition provides
a lower bound for the number of 2-cycles instead of an
exact number can be understood as follows: The Hamiltonian
decomposition H ′ of ~G′, introduced in Step 2 of the above
proof, may contain additional 2-cycles pairing nodes from
π−1(ui) to π−1(uj) for (ui, uj) ∈ F .

E. Proof of the Main Theorem
In Subsection II-D, we dealt with the construction of a

Hamiltonian decomposition in a graph ~Gn sampled from a
binary step graphon. We will now extend the result to a general
step-graphon W , for which the existence of an edge between
a pair of nodes is not a sure event. This will then complete
the proof of the Main Theorem.

To do so, we first recall some known facts about bipartite
graphs. An undirected graph B = (V,E) is called bipartite if
its node set can be written as the union of two disjoint sets
V = VL ∪ VR so that there does not exist an edge between
two nodes in VL or VR. Equivalently, a bipartite graph can be
viewed as an S-multipartite graph where S is a graph with
two nodes connected by a single edge. We refer to elements of
VL and VR as left- and right-nodes, respectively. A left-perfect
matching P in B is a set of edges so that each left-node
is incident to exactly one edge in P , and each right-node
is incident to at most one edge in P . See Figure 6 for an
illustration. Similarly, we define a right-perfect matching by
swapping the roles of left- and right-nodes. One can easily see
that a left-perfect (resp. right-perfect) matching exists only if
|VL| ≤ |VR| (resp. |VL| ≥ |VR|).

Further, we denote by B(n1, n2, p) an Erdős-Rényi random
bipartite graph, with n1 left-nodes, n2 right-nodes, and edge
probability p for all edges between left- and right-nodes.

We need the following fact:

Lemma 9. Let n1 and n2 be positive integers such that 1
κ ≤

n2

n1
≤ κ, where κ ≥ 1 is a constant. Let n := n1 + n2 and
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p ∈ (0, 1). Then, it holds a.a.s. that the random bipartite graph
B(n1, n2, p) is connected and contains a left-perfect (resp.
right-perfect) matching if n2 ≥ n1 (resp. n1 ≥ n2).

The above lemma is certainly well known. For completeness
of presentation, we present a proof in Appendix D.

We now return to the proof of Main Theorem. For the
given step-graphon W , we fix a partition σ, and let x∗ be the
associated concentration vector and S be the skeleton graph.
We now consider a sequence of graphs Gn ∼W , with n→∞.
We show below that the Hamiltonian decomposition H for ~Gn
described in Proposition 3 exists a.a.s..

Denote by W s the saturation of W : it is the binary step-
graphon defined as

W s(s, t) = 1⇐⇒W (s, t) 6= 0.

We similarly construct a saturated version of Gn = (Vn, En) ∼
W , denoted by Gsn = (Vn, E

s
n), as follows: There is an edge

(v`, vk) ∈ Esn if and only if (π(v`), π(vk)) ∈ F . Said otherwise,
the node set of Gn and Gsn are the same, but the edges in
Gsn are obtained using the binary step-graphon W s. It should
be clear that Gn ⊆ Gsn = M(nx(Gn), S), where we recall
that x(Gn) is the empirical concentration vector of Gn defined
in (6).

Let U be the closed neighborhood of x∗ mentioned in
Remark 2. Let E0 be the event that the empirical concentration
vector x(Gn) of Gn belongs to U . By Chebyshev’s inequality,
we have that

P(‖x(Gn)− x∗‖ > ε) ≤ c

n2ε2
, (34)

which implies that E0 is almost sure as n → ∞. Thus, we
can assume in the sequel that E0 is true, i.e., the analysis and
computation carried out below are conditioned upon E0.

Note that nx(Gn) is always integer-valued. Since x(Gn) ∈
U by assumption, we let n be sufficiently large so that n is
paired with x(Gn) (see Definition 7). We can thus appeal to
Proposition 2 to obtain a matrix A(x(Gn)), and to Proposition 3
to obtain a corresponding Hamiltonian decomposition H of
~Gsn. We now demonstrate that the same H exists a.a.s. in ~Gn,
up to re-labeling of the nodes of ~Gn. The proof comprises two
parts: In part 1, we show that the cycles in H whose lengths
are greater than 2 exist a.a.s. in ~Gn and, then, in part 2, we
show that the 2-cycles of H do as well.

Part 1: On cycles of length greater than 2. For clarity
of presentation, we denote by πs : Gsn → S the graph
homomorphisms associated with Gsn. For any path u1 · · ·uk
in S, since Gsn is complete S-multipartite, there surely exists a
path v1 · · · vk in Gsn so that πs(vi) = ui. The following result
shows that such a path exist in Gn a.a.s..

Lemma 10. Let u1 · · ·uk be a path in S. Then, it is a.a.s. that
there exists a path v1 · · · vk in Gn, with π(vi) = ui.

Proof. Since the closed set U is in the interior of ∆q−1, there
exists a κ ≥ 1 such that for all x ∈ U ,

1

κ
≤ xi
xj
≤ κ, for all 1 ≤ i, j ≤ q.

Thus, by conditioning on E0, we have that

1

κ
≤ xi(Gn)

xj(Gn)
=
|π−1(ui)|
|π−1(uj)|

≤ κ, for all 1 ≤ i, j ≤ q.

It then follows that the subgraphs of Gn induced by π−1(ui)∪
π−1(ui+1) are bipartite and satisfy the hypothesis of Lemma 9,
for 1 ≤ i ≤ k − 1. Hence, it is a.a.s. that all of these bipartite
graphs are connected. We now pick an arbitrary node v1 ∈
π−1(u1); by the above arguments, we can find v2 ∈ π−1(u2)
so that (v1, v2) ∈ Gn a.a.s.. Iterating this procedure, we obtain
the path in Gn sought.

Now, let D1, . . . , Dm be the cycles in H whose lengths are
greater than 2, and C1, . . . , Cm be the corresponding undirected
cycles in Gsn. From items 3 and 4 of Proposition 3, the number
m of these cycles, as well as their lengths, are each uniformly
bounded above by constants independent of n.

Let E1 be the event that the cycles C1, . . . , Cm exist in Gn;
more precisely, it is the event that there exist disjoint cycles
C ′i in Gn such that π(C ′i) = πs(Ci) for all i = 1, . . . ,m. We
have the following lemma:

Lemma 11. The event E1 is true a.a.s..

Proof. Let E11 be the event that there exists a cycle C ′1 ∈ Gn
with π(C ′1) = πs(C1). We show that E11 holds a.a.s.. To
start, we write explicitly πs(C1) = u1 . . . uku1. Since C1 is
simple, u1 . . . uku1 is a cycle in S. By Lemma 10, there exist
a.a.s. nodes vi ∈ π−1(ui), for 1 ≤ i ≤ k − 1, such that
v1 · · · vk−1 is a path in Gn.

In order to obtain the cycle C ′1, it remains to exhibit a node
vk ∈ π−1(uk) that is connected to both v1 and vk−1 in Gn.
We claim that such a node exists with probability at least

1− (1− p1kpk−1,k)|π
−1(uk)| (35)

where pij > 0 is the value of the step-graphon W over the
rectangle [σi−1, σi)× [σj−1, σj). The claim holds because the
probability that no node of π−1(uk) connects to both v1 and
vk−1 is given by (1−p1kpk−1,k)|π

−1(uk)|. Thus, the probability
of the complementary event is given by (35).

Next, recall that a > 0 is the uniform lower bound for the
nonzero entries of A(x), for all x ∈ U∗, introduced in item 5
of Proposition 2. Because x(Gn) = A(x(Gn))1, every entry
of x(Gn) is bounded below by a as well, so

|π−1(ui)| ≥ an, for all i = 1, . . . , q. (36)

Thus, the expression (35) can be lower bounded by

1− (1− p1kpk−1,k)|π
−1(uk)| ≥ 1− (1− p2)an,

where p := min{pij | (ui, uj) ∈ F} > 0. Note that the right-
hand-side of the above equation converges to 1 as n→∞, so
E11 is true a.a.s..

Let n′ := n− |C1|. Conditioning on the event E11, we let
G′n′ be the subgraph of Gn induced by the nodes not in C ′1.
Similarly as above, we have that there is a cycle C ′2, with
π(C ′2) = π(C2), in G′n′ a.a.s. (note that n → ∞ implies
n′ →∞). Iterating this argument for finitely many steps, we
have that E1 is true a.a.s..
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In the sequel, we condition on the event E1 and let
D′1, . . . , D

′
m be the directed cycles in ~Gn corresponding to

D1, . . . Dm in H of ~Gsn.

Part 2: On 2-cycles. Let n′ := n −
∑m
i=1 |C ′i|, and G′n′ be

the subgraph of Gn induced by the nodes that do not belong
to any of the above cycles C ′i, and G′sn′ be its saturation. By
removing the cycles Di out of H , we obtain a Hamiltonian
decomposition H ′ for ~G′sn′ , which is comprised only of 2-cycles.
It now suffices to show that H ′ appears, up to relabeling, in
~G′n′ a.a.s..

Let Vij ⊂ π−1(ui) be the set of nodes paired to nodes
in π−1(uj) by H ′ in ~G′sn′ . Since H ′ is a Hamiltonian
decomposition, π−1(ui) can be expressed as the disjoint union
of the Vij’s, for uj such that (ui, uj) ∈ F . By items 1 and 2
of Proposition 3, the cardinality of Vij , which is the same
as the cardinality of Vji, is at least mij := nmin{aij , aji}.
Because the nonzero aij’s are bounded below by a by item 5
of Proposition 2, we have that mij ≥ an.

Suppose that ui has a self-loop; then, we let Ki be the
subgraph of G′n′ induced by the nodes Vii. The graph Ki is
an Erdős-Rényi graph with parameter pii > 0 and, by item 1
of Proposition 3, |Vii| = mii is an even integer. Since n→∞
implies that mii → ∞, Ki has a perfect matching a.a.s..
This holds because one can split the node set Vii into two
disjoint subsets of equal cardinality and apply Lemma 9. In
other words, it is a.a.s.. that there are mii/2, for i = 1, . . . , q,
disjoint 2-cycles in ~G′n′ pairing nodes in π−1(ui).

Suppose that (ui, uj) is an edge between two distinct nodes;
then, we let Bij := B(|Vij |, |Vji|, pij) be the bipartite graph in
G′n′ induced by Vij ∪Vji (recall from above that |Vij | = |Vji|).
Let Eij be the event that Bij has a perfect matching. Since
mij ≥ an, by Lemma 9, the event Eij holds a.a.s. and, hence,
it is a.a.s. that there are |Vij | disjoint 2-cycles in ~G′n′ pairing
nodes from Vij to Vji.

Since there are finitely many edges in S, by the above
arguments, we conclude that H ′ appears in ~G′n′ a.a.s.. This
completes the proof.

III. CONCLUSIONS

Hamiltonian decompositions underlie a wide range of
structural properties of control systems, such as stability and
ensemble controllability. We say that a graphon W satisfies
the H-property if graphs Gn ∼ W have a Hamiltonian
decomposition almost surely. In a series of papers, of which this
is the second, we exhibited necessary and sufficient conditions
for the H-property to hold for the class of step-graphons. These
conditions are geometric and revealed the fact that H-property
depends only on concentration vector and skeleton graph of
W . When these two objects are given, one can reconstruct
a step-graphon modulo the exact value of W on its support,
thus giving rise to an equivalence relation on the space of
step-graphons. We showed that the H-property is essentially
a “zero-one” property of the equivalence classes. The case of
general graphons will be addressed in future work.
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APPENDIX A
ANALYSIS AND PROOF OF PROPOSITION 1

We first have some preliminaries about refinements of
partitions: given a partition σ, a refinement σ′ of σ, denoted
by σ ≺ σ′, is any sequence that has σ as a proper subse-
quence. For example, σ′ = (0, 1/2, 3/4, 1) is a refinement of
σ = (0, 1/2, 1). Given a step-graphon W , if σ is a partition
for W , then so is σ′.

We say that σ′ is a one-step refinement of σ if it is a
refinement with |σ′| = |σ| + 1. Any refinement of σ can
be obtained by iterating one-step refinements. To fix ideas,
and without loss of generality, we consider the refinement
of σ = (σ0, . . . , σq, σ∗) to σ′ = (σ0, . . . , σq, σq+1, σ∗) with
σq < σq+1 < σ∗. If S = (U,F ), then S′ = (U ′, F ′), the
skeleton graph of W for σ′, is given by

U ′ = U ∪ {uq+1},
F ′ = F ∪ {(ui, uq+1) | (ui, uq) ∈ F}

∪ {(uq+1, uq+1) if (uq, uq) ∈ F}.
(37)
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u1

u2

u3

u4

`4

g

(a) Graph S

u1
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u4u5

`′4`′5

g′
h′

k′

(b) Graph S′

Fig. 7: The graph S′ on the right is obtained from the left S via a
one-step refinement. The node u4 in S is split into u4 and u5. Because
g = (u1, u4) is an edge in S, there exist two edges g′ = (u1, u4)
and h′ = (u1, u5) in S′. Because u4 has a self-loop `4 in S, both
u4 and u5 have self-loops in S′, denoted by `′4 and `′5, respectively.
In addition, we have the edge k′ = (u4, u5) in S′.

In essence, the node uq+1 is a copy of the node uq. If there
is a loop (uq, uq) in F , then uq and uq+1 are also connected
and each has a self-loop. See Figure 7 for illustration. We say
that a one-step refinement splits a node (here, uq).

We now prove Proposition 1:

Proof of Proposition 1. Let σ and σ′ be as given in the
statement of the proposition. It should be clear that there
exists another partition σ′′ which is a refinement of both σ′

and σ and that σ′′ can be obtained via a sequence of one-step
refinements starting with either σ′ or σ. Thus, combining the
arguments at the beginning of the section, we can assume,
without loss of generality, that σ′ is a one-step refinement of
σ obtained by splitting the node u1 ∈ U .

Let x∗ and x′∗ be the concentration vectors for σ and σ′,
S and S′ be the corresponding skeleton graphs, and Z and
Z ′ be the corresponding incidence matrices. Note that Z ′ has
one more row than Z does due to the addition of the new
node uq+1; here, we let the last row of Z ′ correspond to that
node. It should be clear that Z ′ contains Z as a submatrix. For
clarity of presentation, we use f (resp. f ′) to denote edges of
S (resp. S′). Since the graph S can be realized as a subgraph
of S′ in a natural way, we will write on occasion f ′ ∈ F if
f ′ is an edge of S.

We now prove the invariance of each item listed in the
statement of Proposition 1 under one-step refinements. The
proofs of the first two items are direct consequence of the
definition of one-step refinement.

Proof for item 1). If S is connected, then from (37) we obtain
that there exists a path from any node ui ∈ F to the new node
uq+1, so S′ is also connected. Reciprocally, assume that S
has at least two connected components. Then, the node uq+1

obtained by splitting uq will only be connected to nodes in
the same component as uq by definition of F ′.

Proof for item 2). If S has an odd cycle, then so does S′

by (37). Reciprocally, we assume that S is lacking an odd
cycle. We show that S′ has no odd cycle. Suppose, to the
contrary, that it does. The cycle must then contain the node
uq+1. Replacing uq+1 with uq yields a closed walk of odd
length in S. Since a closed walk can be decomposed edge-wise

into a union of cycles and since the length of the walk is the
sum of the lengths of the constituent cycles, there must exist
an odd cycle in S, which is a contradiction.
Proof for item 3). We prove each direction of the statement
separately:

Part 1: x ∈ X (S) ⇒ x′ ∈ X (S′) (x ∈ intX (S) ⇒ x′ ∈
intX (S′)). For ease of presentation, we let zf (resp. z′f ′ ) be
the edge of Z (resp. Z ′) corresponding to the element f ∈ F
(resp. f ′ ∈ F ′), and zf,i be the ith entry of zf . Because X (S)
is the convex hull of the columns of Z, there exist coefficients
cf ≥ 0, for f ∈ F , such that x =

∑
f∈F cfzf . If, further,

x ∈ intX (S), then these coefficients can be chosen to be
strictly positive. We will use cf to construct c′f ′ ≥ 0, for
f ′ ∈ F ′, such that

x′ =
∑
f ′∈F ′

c′f ′z
′
f ′ (38)

and show that x′ ∈ intX (S′) if x ∈ intX (S).
To proceed, let Fuq be the set of edges incident to node uq

in S. Similarly, let F ′uq
and F ′uq+1

be the sets of edges incident
to uq and uq+1 in S′, respectively. The coefficients c′f ′ are
defined as follows:

a) If f ′ /∈ F ′uq
∪ F ′uq+1

, then f ′ ∈ F . Let c′f ′ := cf ′ .
b) If f ′ ∈ F ′uq

and f ′ 6= (uq, uq+1), then f ′ ∈ F . Let
c′f ′ :=

σq+1−σq

σ∗−σq
cf ′ .

c) If f ′ = (ui, uq+1) and ui 6= uq , then we pick the f ∈ F
such that

f =

{
(ui, uq) if ui 6= uq+1,

(uq, uq) if ui = uq+1.

Let c′f ′ :=
σ∗−σq+1

σ∗−σq
cf .

d) If f ′ = (uq, uq+1), then let c′f ′ := 0.
With the coefficients as above, we prove entry-wise that (38)

holds. First, note that because we obtain S′ by splitting the
last node uq of S, the ith entry of x′, for 1 ≤ i ≤ q − 1, is
equal to xi, so x′i = xi = (σi−σi−1). For the ith entry of the
right hand side of (38), we consider two cases:
Case 1: ui is not incident to uq in S. In this case, ui is not
incident to either uq or uq+1 in S′. Consequently, F ′ui

= Fui

and z′f,i = zf,i for all f ∈ Fui
. Furthermore, by item (a),

c′f = cf for any f ∈ Fui
. Thus, the ith entry of the right hand

side of (38) is given by∑
f ′∈F ′ui

c′f ′z
′
f ′,i =

∑
f∈Fui

cfzf,i = xi = σi − σi−1.

Case 2: ui is incident to uq in S. In this case, ui is incident to
both uq and uq+1 in S′. Let g′ := (ui, uq) and h′ := (ui, uq+1)
be the corresponding edges in S′, see Fig. 7 for an illustration.
Then, the ith entry of the right hand side of (38) is given by∑

f ′∈F ′ui

c′f ′z
′
f ′,i = c′g′z

′
g′,i + c′h′z

′
h′,i

+
∑

f ′∈F ′ui
−{g′,h′}

c′f ′z
′
f ′,i. (39)
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By items (b) and (c),

c′g′ =
σq+1 − σq
σ∗ − σq

cg′ and c′h′ =
σ∗ − σq+1

σ∗ − σq
ch′ .

Also, note that

z′g′,i = z′h′,i = zg′,i =
1

2
.

Thus, the sum of the first two terms on the right hand side
of (39) is cg′zg′,i. For the last term, note that F ′ui

−{g′, h′} =
Fui − {g′}. Also, by item (a) and the fact that z′f,i = zf,i for
any f ∈ Fui , ∑

f ′∈F ′ui
−{g′,h′}

c′f ′z
′
f ′,i =

∑
f∈Fui

−{g′}

cfzf,i.

Combining the above arguments, we have that the right hand
side of (39) is given by∑

f∈Fui

cfzf,i = xi = σi − σi−1.

Next, the qth entry of x′ is (σq+1 − σq) and the qth entry
of the right hand side of (38) is∑

f ′∈F ′uq

c′f ′z
′
f ′,q =

σq+1 − σq
σ∗ − σq

∑
f∈Fuq

cfzf,q

=
σq+1 − σq
σ∗ − σq

xq = σq+1 − σq,

where the first equality follows from the fact that

F ′uq
= Fuq

∪ {(uq, uq+1) if (uq, uq) ∈ F},

items (b) and (d), and the last equality follows from the fact
that xq = σ∗ − σq .

The last (i.e., (q+ 1)th) entry of x′ is (σ∗−σq+1). The last
entry of the right hand side of (38) is given by∑

f ′∈F ′uq+1

c′f ′z
′
f ′,q+1 =

σ∗ − σq+1

σ∗ − σq

∑
f∈Fuq

cfzf,q

=
σ∗ − σq+1

σ∗ − σq
xq = σ∗ − σq+1,

where the first equality follows from item (c) above. We
have thus shown that (38) holds. In particular, since c′f ′ are
nonnegative by construction, (38) implies that x′ ∈ X (S′).

It now remains to show that if x ∈ intX (S), then x′ ∈
intX (S′). Assuming x ∈ intX (S), if uq does not have a
self-loop in S, then the edge (uq, uq+1) does not exist in S′,
so by items (a), (b), and (c), all coefficients c′f ′ are positive,
which implies that x′ ∈ intX (S′).

We now assume that uq has a self-loop in S. Then, k′ :=
(uq, uq+1) is an edge in S′ (see Fig. 7 for an illustration), and
thus c′k′ = 0 per item (d) above. In this case, both uq and
uq+1 have self-loops in S′. Denote these two self-loops by
`′q := (uq, uq) and `′q+1 := (uq+1, uq+1). By (4), we have that

z′k′ =
1

2
(z′`′q + z′`′q+1

).

Since c′`′q and c′`′q+1
are positive, there exists an ε > 0 such

that ε < c′`′q and ε < c′`′q+1
. It then follows that

c′`′qz
′
`′q

+ c′`′q+1
z′`′q+1

= 2εz′k′ + (c′`′q − ε)z
′
`′q

+ (c′`′q+1
− ε)z′`′q+1

. (40)

Plugging in (38) the relation (40) shows that x′ can be written
as a convex combination of the z′f ′ , for f ′ ∈ F ′, with all
positive coefficients, and thus x′ ∈ intX (S′).

Part 2: x′ ∈ X (S′) ⇒ x ∈ X (S) (x′ ∈ intX (S′) ⇒ x ∈
intX (S)). Because x′ ∈ X (S′) (resp. x′ ∈ intX (S′)), we
can write x′ =

∑
f ′∈F ′ c

′
f ′z
′
f ′ , with c′f ′ ≥ 0 (resp. c′f ′ > 0),

for all f ′ ∈ F ′. We will use c′f ′ to construct cf , for f ∈ F , so
that

x =
∑
f∈F

cfzf . (41)

To this end, we define cf as follows:
e) If f is not incident to uq in S, then let cf := c′f .
f) If f = (ui, uq) and ui 6= uq, then g′ := (ui, uq) and
h′ := (ui, uq+1) are edges in S′, and let cf := c′g′ + c′h′ .

g) If f = (uq, uq), then k′ := (uq, uq+1), `′q := (uq, uq),
and `′q+1 := (uq+1, uq+1) are edges in S′, and let cf :=
c′k′ + c′`′q + c′`′q+1

.

Note that all the coefficients cf , for f ∈ F , defined above
are nonnegative. Further, if all the c′f ′ are positive, i.e., x′ ∈
intX (S′), then the cf are positive as well, which implies
x ∈ intX (S) provided that (41) holds.

We now show that the coefficients given above are such
that (41) indeed holds. We do so by checking that (41) holds
for each entry.

For the ith entry, with 1 ≤ i < q, the left hand side of (41)
is xi = (σi − σi−1). For the right-hand side, if (ui, uq) is an
edge in S, then g′ and h′, as defined item (f), are two edges in
S′ and, consequently, F ′ui

= Fui
∪ {h′}. Note that zf,i = z′f,i

for all f ∈ Fui and

zg′,i = z′g′,i = z′h′,i =
1

2
.

Thus, by items (e) and (f), we have that∑
f∈F

cfzf,i = cg′zg′,i +
∑

f∈Fui
−{g′}

cfzf,i

= c′g′z
′
g′,i + c′h′z

′
h′,i +

∑
f ′∈F ′ui

−{g′,h′}

c′f ′z
′
f ′,i

=
∑

f ′∈F ′ui

c′f ′z
′
f ′,i = x′i = (σi − σi−1).

Finally, for the last entry, i.e., the qth entry, the left hand
side of (41) is xq = σ∗ − σq . For the right hand side of (41),
we let `q := (uq, uq) be the loop on uq (if it exists in S) and
thus have that∑

f∈Fuq

cfzf,q = c`qz`q,q +
∑

f∈Fuq−{`q}

cfzf,q. (42)

Let k′, `′q, and `′q+1 be the three edges in S′ as defined in
item (g). Note that

z`q,q = z′`′q,q = z′`′q+1,q+1 = 2z′k′,q = 2z′k′,q+1 = 1.
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For the first term of (42), using item (g) and the above relations,
we obtain

c`qz`q,q = c′`′qz
′
`′q,q

+ c′`′q+1
z′`′q+1,q+1

+ c′k′z
′
k′,q + c′k′z

′
k′,q+1. (43)

For each addend in the second term of (42), the edge g =
(ui, uq) in S, for some ui 6= uq , has two corresponding edges
in S′, namely g′ = (ui, uq) and h′ = (ui, uq+1). Note that

zg,q = z′g′,q = z′h′,q+1 =
1

2
.

Then, by item (f),

cgzg,q = c′g′z
′
g′,q + c′h′z

′
h′,q+1. (44)

Combining (43) and (44), we obtain that∑
f∈Fuq

cfzf,1 =
∑

f ′∈F ′uq

c′f ′z
′
f ′,q +

∑
f ′∈F ′uq+1

c′f ′z
′
f ′,q+1

= x′q + x′q+1 = (σq+1 − σq) + (σ∗ − σq+1)

= σ∗ − σq.

This concludes the proof.

APPENDIX B
PROOF OF LEMMA 7

Proof of item 1. From the definitions of τ ′i(x), we have that

−1 ≤ n(τ0(x)− τ ′0(x)) = n(τ ′1(x)− τ1(x)) ≤ 1. (45)

If τ0,i(x) = 0, then τ ′0,i(x) = 0, where τ0,i(x) is the ith
entry of the vector τ0(x). Otherwise, by the definition of
the incidence matrix (4) and by (15) and (16), we have that
τ0,i(x) ≥ α. For the latter case, by (45) and the hypothesis on
n in the statement of Proposition 2, we have that

τ ′0,i(x) ≥ τ0,i(x)− 1

n
≥ (1− ε/8)α > 0. (46)

It then follows that

supp τ ′0(x) = supp τ0(x). (47)

Similarly, for τ1(x), using (4), (15), and (16), we have that
τ1(x) ≥ 1

2α1. Then, again, by (45) and the hypothesis on n,

τ ′1(x) ≥ τ1(x)− 1

n
1 ≥ 1

2
(1− ε/4)α1 > 0,

from which we conclude that

supp τ ′1(x) = supp τ1(x) = {1, . . . , q}.

This concludes the proof of the first item.

Proof of item 2. By (46), (47), and Lemma 4, the ratio n′0/n
is uniformly lower bounded by

n′0
n

= ‖τ ′0(x)‖1 ≥ (1− ε/8)α| supp τ ′0(x)|

= (1− ε/8)α|F0|. (48)

To obtain a lower bound for n′1/n, we let

η := τ1(x)− τ ′1(x).

From (45) and the hypothesis on n, we have that

‖η‖1 ≤
q

n
≤ 1

8
qαε ≤ 1

8
qα.

It then follows that
n′1
n
≥ ‖τ1(x)‖1 − ‖η‖1 ≥

1

2
qα− 1

8
qα =

3

8
qα. (49)

This concludes the proof of the second item.

Proof of item 3. By (45) and the hypothesis on n, η as
introduced above satisfies

‖η‖∞ ≤ 1/n < αε/8 < ε.

Because τ̄ ′1(x) = τ1(x) + η and ‖η‖∞ < ε, we have that
τ̄ ′1(x) ∈ V by Lemma 6.

APPENDIX C
PROOF OF LEMMA 8

The proof is carried out by induction on n′. If n′ = 0, then
G′ is the empty graph and there is nothing to prove. For the
inductive step, we set n′ > 0 and assume that the lemma holds
for all n′′ < n′, and prove it for n′.

To proceed, we use A′ to turn ~S into a weighted digraph
on q nodes: we assign to edge uiuj the weight a′ij . Then, ~S
is a balanced graph, i.e.,∑

uj∈N−(ui)

a′ij =
∑

uj∈N+(ui)

a′ji, ∀i = 1, . . . , q, (50)

where we recall N−(ui) and N+(ui) are the sets of out-
neighbors and in-neighbors of ui, respectively, in ~S.

Let ~S′ be the subgraph of ~S induced by the nodes incident
to the edges with nonzero weights. Then, ~S′ has at least
one cycle. To see this, note that if ~S′ is acyclic, then by
relabeling the nodes, the matrix A′ is upper-triangular and,
from the hypothesis, diagA′ = 0. It follows that the only
nonnegative solution {a′ij} to (50) is that all the a′ij are zero,
which contradicts the fact that A′ is nonzero.

Since ~S′ is a subgraph of ~S, any cycle of ~S′ is also a cycle of
~S; denote such cycle by DS := ui1 . . . uikui1 . By construction,
the weights of the edges in the cycle are positive. It thus
follows from A′1 = x′ that the entries x′ij , for j = 1, . . . , k,
are positive; together with the fact that G′ = M(n′x′, S), it
implies that the sets π−1(uij ) ∈ G′, for j = 1, . . . , k, are
non-empty. We next pick a node vj from each π−1(uij ). Since
the nodes ui1 , . . . , uik are pairwise distinct, so are the nodes
v1, . . . , vk. Also, since G′ is a complete S-multipartite graph,
DG := v1 · · · vkv1 is a cycle in ~G′. Moreover, by construction,
π(DG) = DS and, hence, DG is simple.

We let G′′ be the graph obtained by removing from G′ the
k nodes v1, . . . , vk, and the edges incident to them. Then, G′′

is a complete S-multipartite graph on n′′ := n′ − k nodes.
Define

x′′ :=
1

n′′
(n′x′ −

k∑
j=1

eij ),

where {e1, . . . , eq} is the canonical basis of Rq. Note that
x′′ ≥ 0; indeed, n′x′ is integer valued and x′ij , for j = 1, . . . , k,
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are positive. We can then write G′′ = M(n′′x′′, S). Corre-
spondingly, we define a q × q matrix A′′ as follows:

A′′ :=
1

n′′
(n′A′ −

k−1∑
j=1

eije
>
ij+1
− eike>i1).

In words, to obtain n′′A′′, we decrease the ijth entry of n′A′,
which is a positive integer, by one when the edge uiuj is used
in the cycle DS and keep the other entries unchanged.

By construction, we have that A′′ ∈ A(S), with A′′1 =
x′′, and n′′A′′ is integer-valued. Because n′′ < n′, we can
appeal to the induction hypothesis and exhibit a Hamiltonian
decomposition H ′′ of ~G′′ such that ρ(H ′′) = A′′ and every
cycle in H ′′ is simple. It is clear that adding the simple cycle
DG to H ′′ yields a Hamiltonian decomposition H ′ of ~G′ with
desired properties. This completes the proof.

APPENDIX D
PROOF OF LEMMA 9

1. Proof that B(n1, n2, p) has a left-perfect matching a.a.s..
The proof of this part relies on the following statement,
which is a consequence of a stronger result of Erdős and
Rényi [19]: For p ∈ (0, 1) a constant, the random bipartite
graph B(m,m, p) contains a perfect matching a.a.s.. Now,
without loss of generality, we assume that n1 ≤ n2 and let
B(n1, n1, p) be a subgraph of B(n1, n2, p). Since n2/n1 is
bounded above by a constant κ, n→∞ implies that n1 →∞.
Since B(n1, n1, p) has a (left-)perfect matching a.a.s., so does
B(n1, n2, p).

2. Proof that B(n1, n2, p) is connected a.a.s.. It is well known
(see, e.g., [20, Exercise 4.3.7]) that B(m,m, p) is connected
a.a.s.. We now extend the result to the general case where n1
is not necessarily equal to n2. Again, we can assume without
loss of generality that n1 ≤ n2. Let VL = {α1, . . . , αn1

} and
VR = {β1, . . . , βn2

} be the left- and right-node sets of B.
Because n2/n1 ≤ κ, we can choose κ subsets VR,i ⊆ VR, so
that |VR,i| = n1 and ∪κi=1VR,i = VR.

Denote by Ei the event that the subgraph Bi of B :=
B(n1, n2, p) induced by VL and VR,i is disconnected and by
E the event that B is disconnected. Note that if every Bi is
connected, then so is B. Conversely, we have that E ⊆ ∪κi=1Ei.

Note that Bi = (n1, n1, p) and, as argued above, n1 →∞
as n→∞. Since Bi is connected a.a.s., limn→∞ P(Ei) = 0
and, hence, limn→∞ P(E) ≤ limn→∞

∑κ
i=1 P(Ei) = 0.
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