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ARTICLE INFO ABSTRACT

Keywords: Biological and crystalline membranes exhibit noticeable fluctuations at room temperature due
Thermal fluctuations to their low bending stiffness. These fluctuations have a significant impact on their overall
Entropic force mechanical behavior and interactions with external objects. When two membranes come into

Solid membranes proximity, they mutually suppress each other’s fluctuations, leading to a repulsive force that

plays a pivotal role in the mechanical behavior of these membranes. From the mechanics
point of view, crystalline membranes are modeled as solid membranes with inherent shear
resistance, whereas biological membranes are commonly described as fluidic entities without
shear resistance. Under this premise, the entropic force between two fluctuating biological
membranes is proposed to scale as p « 1/d?, where d is the intermembrane distance. Yet,
there are numerous instances where these membranes display shear resistance and behave akin
to solid membranes. In this paper, we develop a statistical mechanics model within nonlinear
elasticity to study the entropic force acting on a confined, fluctuating solid membrane. We
demonstrate that, due to the nonlinear elasticity of solid membranes, the entropic force scales
differently compared to that of fluid membranes. Our predictions align well with the results
obtained from molecular dynamics simulations involving graphene, a representative of a solid
membrane, confined between two rigid walls.

1. Introduction

Biological and crystalline membranes fluctuate noticeably at room temperature due to their low bending stiffness. These
fluctuations impact their overall mechanical response and interactions with external objects. In biology, many physiological
processes are intricately linked to these thermal fluctuations. Processes such as exo and endocytosis, membrane fusion, cell adhesion,
binding-unbinding transitions, the structural dynamics of red blood cell membranes, cytoskeletal interactions, and the mechanical
effects induced by actin on membranes, among many others, are profoundly affected by these fluctuations (Lipowsky and Seifert,
1991; Lipowsky and Leibler, 1986; Lee et al., 2010; Weikl and Lipowsky, 2004; Chen et al., 2008; Gao et al., 2005; Ahmadpoor
and Sharma, 2016,b; Gov et al., 2003; Dearnley et al., 2016; Kusters et al., 2019). Consequently, the exploration of entropic factors
in biological phenomena has evolved into a cornerstone of cell mechanics research (Kulkarni, 2023; Fisher, 1993; Lee et al., 2010;
Weikl and Lipowsky, 2004; Chen et al., 2008; Lipowsky and Leibler, 1986; Farago and Santangelo, 2005; Auth et al., 2007; Helfrich,
1986; Ahmadpoor and Sharma, 2016b; Huang et al., 2017; Freund, 2013; Sharma, 2013; Zelisko et al., 2017). The biophysical
processes mentioned above are orchestrated by a sophisticated interplay between a set of attractive and repulsive forces that
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Fig. 1. Solid membranes are ubiquitous. Examples include viral capsid (the left), red blood cell membranes (the middle), and crystalline membranes such as
graphene (the right).

mediate between biological structures. Central to this interplay is a repulsive force known as entropic pressure, originating from
the thermally induced fluctuations in membranes. When an external object approaches a fluctuating membrane, it impedes the
membrane’s out-of-plane fluctuations. This interference results in a reduction of system entropy that varies with the distance between
the membrane and the obstructing object. As a result, a repulsive force is generated, which acts to separate the membrane from
the external object. The same behavior appears when a crystalline membrane is placed on a substrate (Wang et al., 2016) or in
contact with another membrane (Zhu et al., 2022). Such entropic pressure was first addressed in the context of cell-cell interactions
by Helfrich (1978) and subsequently examined by several groups in both physics (Bachmann et al., 2001; Kleinert, 1999) and
mechanics communities (Freund, 2013; Sharma, 2013; Hanlumyuang et al., 2014; Liang and Purohit, 2018; Mozaffari et al., 2021).
From the mechanics point of view, the fluctuating membrane is modeled as a fluid elastic sheet with bending deformations and
no shear resistance. Based on this assumption, Helfrich (1978) proposed that entropic force between two fluctuating membranes in
distance d should scale as p « 1/d>. This power law has been later verified in other theoretical and computational models (Bachmann
et al., 2001; Kleinert, 1999; Hanlumyuang et al., 2014; Ahmadpoor et al., 2019, 2022).

Although biological membranes are commonly modeled as fluid membranes, there are instances where they possess an apparent
shear resistance—some examples are demonstrated in Fig. 1. One such example can be found in the membranes of red blood cells
(RBCs), which endure consistent mechanical stresses within the bloodstream. Despite the continuous exposure to flow and the
substantial deformations they undergo when squeezed through narrow capillaries (Noguchi and Gompper, 2005), the lifespan of
RBCs surpasses that of artificial vesicles designed for drug delivery by several orders of magnitude (Lasic, 1994). A pivotal factor
in maintaining the structural integrity of RBCs is the presence of a network composed of flexible spectrin polymers, forming a
two-dimensional cytoskeleton, which imparts shear resistance to the membrane. The spectrin cytoskeleton is typically modeled as
a solid membrane. Another example is viral capsid shells. The study of the mechanical behavior of capsids is of particular interest
to the biomechanics and mechanobiology community for understanding the morphology of viruses that impact their interactions
with their surrounding bioenvironment. Besides biological examples, crystalline membranes such as graphene, boron nitride, MXene
among many others are also modeled as solid membranes. These membranes may encounter noticeable entropic forces, particularly
when placed on a substrate or interacting with another membrane (Wang et al., 2016; Ahmadpoor et al., 2022). Further, such
entropic forces appeared to have implications for crystalline interfaces as well (Chen and Kulkarni, 2015, 2017, 2013; Zhu et al.,
2022).

The elasticity of solid membranes presents a more challenging scenario when compared to their fluid counterparts. Unlike fluid
membranes, solid membranes can feature not only bending and stretching rigidities but also non-trivial in-plane shear deformations
that nonlinearly interact with the out-of-plane displacement field. To characterize the elasticity of solid membranes, the von Karman
nonlinear plate theory is commonly employed. Studying the statistical mechanics of solid membranes is intricate due to the necessity
for accounting for nonlinear geometric deformations. The majority of approaches in the literature heavily rely on analogies from
the high-energy physics realm and prove challenging to adapt to the common contexts of mechanics. Recently, Ahmadpoor et al.
(2017) presented a mechanics-based approach for dealing with nonlinearities and studied the thermal fluctuations of a free-standing
solid membrane. Specifically, they introduced a variational approximation method that is closely linked to principles well-known
within the mechanics community. Using this approach (Ahmadpoor et al., 2017) explored the size and temperature dependency
of the out-of-plane fluctuations, and demonstrated how an elastic sheet becomes effectively stiffer at larger sizes. Nonetheless, the
influence of these nonlinearities on the entropic forces exerted on a confined solid membrane has yet to be investigated.

In this paper, we formulate the entropic force on a confined fluctuating solid membrane. To deal with geometric nonlinearities,
we rely on the approximate method developed by Ahmadpoor et al. (2017) to establish the scaling law for the entropic force
within nonlinear elasticity. In order to reconcile our analytical results with atomistic considerations, we conduct molecular dynamics
simulations using graphene as a representative solid membrane. In Section 2, we briefly review the nonlinear elasticity of the solid
membranes. Setup of the statistical mechanics problem, for a confined nonlinear elastic sheet is presented in Section 3. Analytical
approximate solutions are derived for the entropic force using the variational perturbation method in Section 4. Detailed descriptions
of the molecular dynamics simulations and their outcomes can be found in Section 5. Finally, our findings will be summarized in
Section 6.
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2. Review of the nonlinear elasticity of the solid membranes

Let us consider a flat, elastic sheet that lies in the x-y plane, with dimensions given by a square domain of size S = (0, L)%
Initially, at zero Kelvin which represents the undeformed ground state the sheet is placed on the z=0 plane. To specify any point
on the surface S, we can use its position vector, denoted as x. We then, introduce a vector field u defined on the surface .S, which
represents the displacement field of the sheet. Consequently, the position of each point on the deformed surface can be expressed
as r = x + u. The displacement field using Monge parametrization can be expressed as:

u = (ug,u,h), )

where u, and u, are displacement fields along x and y directions, respectively and 4 is the out-of-plane displacement field. Then
the in-plane strain field is defined as:

Ju ou

5‘75=1<_y+_5+ﬂﬂ>_ (2)
2 \odxs 0x, 0x, 0x;

The resulting stress tensor, assuming isotropy, can be written as:
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where E and v are the elastic Young modulus and Poisson ratio of the solid sheet, respectively. The in-plane stretching energy can
then be expressed as:
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In addition, the out-of-plane displacement field creates curvature and bending deformations on the surface. Let ¢, and ¢, be the
principal curvatures® at each point on the surface. Then the mean and Gaussian curvatures are obtained as (Abbena et al., 2006):

(5b)

1
H= E(Cl +¢), K =cc,. (6)
Up to quadratic order, the bending energy associated with the curvature field is given as (Zhong-Can and Helfrich, 1989):
1
U, = /5 EK'b(Cl +6)? + Kge ¢y, @

where, «;, and k; are the bending and Gaussian moduli, respectively. Further, due to the Gauss-Bonnet theorem (Abbena et al.,
2006), the integration of Gaussian curvature over a 2D closed area is fixed when the topology of the system does not change in the
deformed configuration. Thus, in what follows, we disregard the second term in Eq. (7). As long as the deviations from the flat state
are small (|Vh| < 1), the linearized mean curvature (H) may be used and is described in terms of the out-of-plane displacement as
follows:

0*h  0*h

+ — =V?h. (8)

2H=C1+62=ﬁ ayz

The total energy can then be described as the summation of the bending and stretching energy terms, U = U, + Uy. This total
energy will be out starting point for setting up the statistical mechanics problem of a confined solid membrane in Section 3.

3. Setup of the statistical mechanics problem

The elastic energy cost to deform a planar solid membrane is given by: U = U, + U;. When the temperature is at absolute
zero (T = 0 Kelvin), and no external forces are present, the membrane naturally tends to maintain its flat shape to minimize its

2 Curvatures at a point can be evaluated in any direction but have a maximum and minimum values along two particular orthogonal directions. The
corresponding maximum and minimum values of the curvature at a given point are referred to as the principal curvatures.
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Fig. 2. Schematic of a fluctuating solid membrane of size L?, confined within two hard walls in distance 2d.

overall elastic energy. However, when the temperature is above zero, the sheet undergoes dynamic fluctuations and experiences non-
flat configurations that involve both in-plane and out-of-plane deformations. Each of these modes is associated with a probability
distribution that is described by Boltzmann factor (Kittel, 2004):

p; x exp(=U;/kgT),

where kT is the thermal energy, p; is the probability of occurrence of mode i and U; is its associated energy. The probability
distribution can be normalized to 1 through the normalizing factor 1/Z, where Z is the so-called partition function and is obtained
by summing over all possible configurations (Kittel, 2004) which in this continuous system are uncountably infinite:

Z = exp(-U,/kgT).

The probability distribution allows the computation of the ensemble average of any physical quantity X that is obtained as (Kittel,
2004):

1
(@)=~ 2 X,exp(=U, [k gT).

Now consider a fluctuating solid membrane confined within two hard walls in distance 2d from one another as shown in Fig. 2,
such that the fluctuations are limited to —d < h < d. We assume periodic boundary conditions in all directions to ensure in-plane
translational and rotational symmetry. For this case the partition function and the free energy are expressed as functions of d:

o rd U, + Ug
Z[d] = exp(————=5)D[u,hl, Fld]=—kzTlogZ. 9)
o J—d kT
The entropic pressure is then calculated by taking the derivative of the free energy with respect to the volume V:
- _9F ___1 JF
P="v =22 ea

The partition function in Eq. (9) cannot be carried out analytically, because:

1. the confinement on the fluctuations leads to the finite integral bounds (—d, d) for the out-of-plane displacement 4; and
2. the energy function in the exponent is anharmonic with respect to the out-of-plane displacement 4.

To remedy the first issue, following the past theoretical models of entropic force on fluctuating membranes (Helfrich, 1978;
Mozaffari et al., 2021; Ahmadpoor et al., 2022), we introduce a potential energy term added to the original elastic energy to mimic
the effects of the entropic pressure on the suppression of fluctuations and instead, carry out the partition function integration within
(=00, 00). We then tune the potential energy in such a way that: (h?) < d*. Now let

U™ =U,+Ug+Up[h] (10)
be the total energy, including the potential energy Up[h]. In general, Up[h] can be expanded in a polynomial form as:
Uplh] = / ah? + agh* + agh® + -

The potential energy Up[h] ensures a lower probability for larger values of A and, eventually, decreases the fluctuations. To
facilitate analytical derivation, we keep only the quadratic term in Up[h]. Thus, the total energy can be written as:

Ut = / [SR6V2RP + Sral? + Uy + Uy + Uy d, an

where v, is a tuning parameter that depends on d and ensures lower probability for larger fluctuations, such that (h?) < d?. The
new partition function is then obtained as:

(S [se]
z=/ / exp —L/[lxb(vzh)2+1ydh2+ul+u,,+u,,,]ds Diuhl. 12)
o) T | 12 2

4
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The partition function in (12) resolves the issue with the integral bounds. We now return our attention to the second issue
associated with geometric nonlinearities and the coupling between in and out-of-plane displacement fields in the last two terms of
the energy (11); U;; +U/,,. The total elastic energy in (11) is anharmonic with respect to 4 but harmonic in terms of u. The partition
function integration cannot be easily handled over 4, but may be evaluated with respect to u. To start, one needs to discretize the
displacement fields in Fourier space:

ux) = ) (e, (13a)
qekl
h(x) = Y h(@e' ™, (13b)
qeL
0h(x) Oh(X) < = ax
ox, ox, q;c Ars (DT (130)

where K := {q =27(v,,v,)/L : v,v, €Z,|q| > 2z/L} and y, 5 denote x, y. The Fourier transforms of the displacement fields are:

u(q) = # /S u(x)e'9%dx, (14a)
g = = / h(x)e™"9*dx, (14b)
1 0h(x) Oh(X) _qx
2 emldX gy 14
ya(q) 7 /S ox, ox, e X (14¢)
Substituting the Fourier expansions in the expression for the total energy in (11) yields the following:
L2 — [ — — —
v == Y (tlal* + i@l + U@+ U@ +U@). (15)
qex

where
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In the expression for U ;;(q), the superscripts “Re” and “Im” stand for the real and imaginary parts of the Fourier transforms. For
details of the derivations, the reader is referred to Appendix A. We now proceed to plug the total energy in Fourier space presented
in (15) into the partition function and carry out the path integral over the in-plane displacement field:

Z= / exp(—U“’t/kBT)D[h,u]

i // exp( st (Clal’ + i@l +U,(q>+U,,(q)+U,,,<q>)>dh(q)du(q)

2wkgT L? 4 —
I -1/« <><EL2| |2> exp( o7 (wlal* + 7)) +Ueff(q>)>dh(q>, a”

where a(v) = 1 +v—v? -3, As a result, the remaining terms in the exponent can be expressed in terms of an effective strain energy,

U 5(q),> which is solely a function of the out-of-plane displacement and can be written as:

(@ = 1 EIPT @7, (@ (s)

3 For details of these derivations the reader is referred to the Appendix B as well as (Ahmadpoor et al., 2017).
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in which
T _ q;4;
i@ =3,- "5 (19)
Up to this point, we have decoupled the in and out-of-plane displacement fields and are left with a new form of energy that is
merely a function of the out-of-plane displacement field. The new energy form is as follows:

U= 3 (il +rolf@l + pEIE @ @) (20)
qe

This new energy form will be used to study the statistical mechanics of a confined fluctuating solid membrane.
4. Entropic force on a fluctuating solid membrane

In this section, we study the fluctuations of the out-of-plane displacement field, the free energy, and the entropic force for a
confined solid membrane. We will use the nonlinear energy function in Eq. (20) as the starting point. As mentioned before, dealing
with nonlinearities in statistical mechanics problems of membranes is quite challenging, and closed-form analytical solutions are
frequently unachievable. Here, we will use the variational perturbation theory (VPT) to get approximate solutions for fluctuations
and free energy. The central idea of the VPT was first introduced by Kleinert (2009) in the context of anharmonic Hamiltonians in
quantum mechanics and later on implemented in a mechanics-based framework by Ahmadpoor and Sharma (2016b), Ahmadpoor
et al. (2017), Mozaffari et al. (2021). The idea is that the effects of nonlinearities can be embedded in a so-called renormalized
quadratic energy, that can be then used in the equipartition theorem. In the past this method has been successfully employed in the
context of nonlinear elasticity of continuum systems (Ahmadpoor et al., 2015; Ahmadpoor and Sharma, 2016b; Ahmadpoor et al.,
2017; Mozaffari et al., 2021).

To apply VPT we start with a trial quadratic energy function as follows:

iy £ 1) (|4 1o
Untar = 51* K00 + )[R0 21)

where x*ff(k) is the unknown effective stiffness in general mode-dependent form. Based on this trial energy, the ensemble average
of the fluctuations can be obtained by equipartition theorem as:

-2 kgT

([no)| ) = ——Ee——. 22)

L2k W) [K[* +7,)
Further, the variational free energy up to the Mth order is expanded in Taylor series as:
5 DY
= F.— (U -U,. )N
Fyp = Fy— kT Ng TV (U =Upia)™¥; (23)
where F, is the free energy associated with the trial energy U,,;,, in (21):
eff, K)|k 4 +

Fo=Cr+ Y ksTlog KWK *7a ) (24)

== 2 kgT

in which Cp, is a constant of no consequences. To get an optimized approximation of the free energy, we proceed to minimize the
sensitivity of the series in (23) to the trial energy function, U,,;,:

JoF
0Keff(k)
We now proceed to expand the variational free energy in (23) up to the first order. Details of the derivations are explained in
Appendix C. Up to the first order, the variational free energy is obtained as:

eff k k4+ k4+
Frr=Crt 3 | SagTiog (K200 ) | Ly g GOl *70)
e |2 kgT 277 (keffR)|K[* + 7y)
£y (kpT)?|K|*(sin 04 )*
et BLA(kfK)[K|* + 7,)(xef(q — ) |q — k|* +7,)

where, 6 is the angle between the vectors q and k. In order to minimize the sensitivity of the variational free energy with respect
to U,,;,, We set:

(26)

aFvar
0Keff(k) =
B kgT|k|* kTG Ikl + 7 IK[*
eIy, 2SRRI+ )2
ey (kg T)2 K| (sin g 0)* ( Ikl lg - kf* L k>> .
der BLA(kT) K| + 7 )k (q - K)lq —k[* +7,)  \ kT®K[* +7, «fq-Klq—K|*+y, xSk

(27)
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Assuming that at long wave-length fluctuations the effective bending stiffness k.g(K), scales as: kg (k) ~ |k|=* (Nelson and Peliti,
1987; Ahmadpoor et al., 2017), we have*:

okfi(g—k) _ oxf(q-K)/ok |q-kI7*'  «fq-k |K|

- - - . 28
oxeff(k) oxeff(k)/ok k|51 ceff(k)  |q—K| (28)
Substituting Eq. (28) into (27), we obtain:
OF, _  kgTIKI kTG k" +7,)IKI*
oxeftk) 2k +7,) 2K K[ +7,)?
(kgT)*|k|*(sin 6, )*
-E Z 2( eff 4B ff, = 4
gex 8LA (kS K)K|" + v, )kt (q - K)|q = k|* +7,)
K|* - k|’k eff(q — k
< k| + lq - k|”|k| r(g )\ _o (29)
k@)K +y,  kfq-K)lq—k[*+y, «(K)

Solving Eq. (29) for «°ff(k), we obtain the following implicit equation:

3

(k) =« +

kyTE k(g — k) (x°F &) [K|* +7,) (sin 0 )" | q-k
K

AL GGl kefi(k) (xeff(q — K)lq — K|* +7,)°

(sin @, )%
+ e . (30)
c*f(q-K)q-Kk|* +7,

The first step to solve the implicit equation in (30) is to carry out the summation in the second and third terms over q. Following
the scaling analysis presented in Ahmadpoor et al. (2017), we set x<ff(q—k) ~ O]q — k| ¢, with © representing an unknown constant.
In order to make analytical progress, we consider two cases:

1. Large intermembrane distance: In this case, the fluctuations, although confined and suppressed by the entropic force, are large
enough to generate in-plane nonlinear strain energy. Thus, y, will be quite small and negligible compared to the nonlinear
effect of the in-plane strain energy.

2. Small intermembrane distance: In this case, the entropic force will suppress both the fluctuations and the resulting nonlinear
in-plane strain. For this case, y; will be indeed dominant and cannot be neglected.

We start with the first case, where the distance d is large and y, is quite small and negligible. The summation in (30) for this
case, scales as:

1 | 2@ =R (kTR + 1) (sin O ) | q-kp’ (sin 0g0*
L2 | eff() (xeff(q - K)lq—k[* +7,)° | K xeff(q —k)|q — k|* +7,
1 (sinfg)* Kk
~ = 1+ | 'k +0(r0)
L? &% kefi(q - k)|q - K| lq -kl

1 (sin Qq’k)4 ( K| >
~L 1+ +0(r,)
L2 qg‘c Olq — k| lq—k| ¢

1
~ ——— 1+ O0(yy). (31)
o>
Note that at long wave-length fluctuations (|k| — 0), the summation in (31) will be the dominant factor in the effective bending
stiffness (30), compared to the constant «,. Thus, at long wave-length fluctuations, k.¢(k) scales as:

kgTE
k() 1= Olk|™* ~ =, (32)
Olk|**
from which we obtain the effective bending stiffness as:
(k) ~ \/EkpT k| (33)

4 In the presence of the nonlinear in-plane strain, the fluctuations can be described more generally as:

1
ay KI5+ (K[ + g KIS+ ay K[+ -

(R0 ~ (Y e lk¥) " =

where ¢ are not necessarily integers. In this case, the dominant modes of the fluctuations are the long wave-length modes, where k — 0. Therefore, the term
with smaller exponents & in the denominator of the above equation will be the leading term in the summation. Accordingly, we can approximately describe the
fluctuations in terms of the leading term as: (h(k)?) ~ 1/k¢, with ¢ being the smallest exponent in the denominator of the above equation. In this manner, the
effective bending stiffness varies with the fluctuation mode as: x°f(k) ~ ké~4. We set { =4 — & > 0 and our goal is to obtain an estimate of ¢.
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The expression for the effective bending stiffness in (33) has been previously derived by Ahmadpoor et al. (2017) for a free
fluctuating solid membrane. Using this effective bending stiffness, the fluctuations spectra are given as:

kT kT

(Ih(0)?) = —~ —, (34)
L2k + 7y L2(VEkgTIK +7,)
from which the fluctuations formula in real space is obtained as:
kT
()= Y (Ih0)*) ~
kgllc kezlc L2(EkpT K| +7,)
2 [ kgT
- (ZL) / b rlkld|K
4 0 L2(\/EkgTIK|’ +7,)
1 5/ (kgT)? (35)

33V Eva
The fluctuations in (35) should be confined within the two hard walls in distance 24 from one another; (h?) < d2. To ensure this
inequality, we set (h?) = £d?, where 0 < ¢ < 1. Solving for y,, we have:

2 2
oy [ E T T

3v3 Y Eva 811/3Eds&3
Substituting Eq. (36) for y, into the free energy (24), and taking its derivative with respect to the volume of the system to obtain
the entropic pressure, we have:
0Fy, 1 0F, 1 0F, dyy

oV T 202 0d 202y, od

_L<Z kgT ><_ 2k 5T)? )
202 \ (&t (e )|k [* + 7,4 27\3EdE3

L 12,2 (kgT) ) 2( (kpT)? >

~ L) | =2 ) v [ 2
L2 ( )<27\/§Ed7§3 27\3Ed1E3

L _UepTy? ( 1 > 37)
217\3E2 \d° )

The entropic force on a confined fluctuating solid membrane scales as p « 1/d° for large values of d. We now return our attention
to the second case; small intermembrane distances, where entropic force is indeed large enough to suppress the nonlinearities. To
start, let us calculate the summation in (30), assuming that y, is not small and cannot be neglected.

(36)

| x¥(q — k) (x*F R K|* +7,) 5in O )" | q -k |? (sin )"
ﬁqelc Keff(K) (keff(q — K)lq — k[* +7,) ‘ k xefi(q - K)lq - k|* +7,
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qun K> (O1g - KI*" +7,)° Olg —k*" +7,

0k|®" NG
. 612| | +62I | 38)
7,6 -n) Ya

which clearly vanishes at long wave-length fluctuations, i.e. |k| — 0. Thus, the effective bending stiffness x°f(k) for this case is
independent of mode k and converges to a constant: (k) ~ C. The fluctuations in each mode are then given by:

kT

(Ih)%) = ————, (39)
LX(CIK|* +74)
from which the fluctuations in real space are obtained as:
kT
(W)=Y (@) ~ Y ————
keZ)C keZIC L2A(CIKk[* +7,)
2 [ kgT
~ (£> / — B orik|d|K|
2z) Jo L2Clk* +7,)
kgT
=B (40)
84/Cyy
Solving (h?) = &d? for y,, we obtain:
kgT (kgT)*
(h?y= —B—_ :=¢d?, > ydz%. (41)
84/Crq 64CE2d



R. Hassan et al. Journal of the Mechanics and Physics of Solids 183 (2024) 105523

Fig. 3. Molecular dynamics simulation of a fluctuating graphene sheet confined between two hard walls.

Substituting Eq. (41) for y, into the free energy (24), and taking its derivative with respect to the volume of the system to obtain

the entropic pressure, we have:
oFy 1 0K 1 0F; dyy

OV T 212ad 2020y, od

1 kT kg 100 <(kBT>2>
2L2<Zc|k|4+yd>< 16Cd5:2) 2 (H0) T

kek
~ e M) L kT (L)
& (16Cd5§2 166 \a3 )" (42)

The entropic pressure for this case scales as p ~ 1/d>. This power law has been previously derived for fluid membranes within linear
elasticity. In the following section, we perform molecular dynamics simulations to verify our theoretical findings.

5. Molecular dynamics simulation

The MD simulation model is schematically shown in Fig. 3, where a graphene membrane is sandwiched between two rigid walls.
The steric pressure acting on the graphene due to geometric confinement is modeled by a repulsive wall potential:

where 6 is the distance between atoms and wall and ¢ and ¢ are constants that control the repulsion magnitude. This potential is
adopted from the repulsive component of the Lennard Jones potential implemented in LAMMPS, however, it does not characterize
the Van der Waals forces acting between the graphene and the wall. To isolate the effects of steric pressure, the model intentionally
disregards the attractive part of the Van der Waals force. The simulation box is periodic in the lateral directions, and its dimension
is determined by the size of the graphene sheet. At finite temperatures, ripples are formed in graphene due to thermal fluctuations.
To restrain free thermal fluctuations within a domain with height d between two walls, a “repulsion zone”, with a height of 0.3 nm,
is positioned adjacent to the top and bottom walls. Inside the zone, the graphene experiences the repulsive potential. Outside the
zone, the graphene is allowed to fluctuate freely.

The parameters in the repulsive potential are chosen to simulate the repulsive forces akin to the elastic collision experienced
when atoms interact with the walls. This is analogous to the elastic collision that occurs when ideal gas atoms interact with the walls
of a container, resulting in a pressure that adheres to the ideal gas law, which can be used to calibrate the repulsive parameters. The
calibration of parameters is performed in a similar simulation model where ideal gas atoms (replacing the graphene) are inserted
between the walls, as shown in Fig. D.6. The gas pressure exerted by the walls is computed by varying the value of ¢ while keeping
¢ constant at 1 eV. As shown in Fig. D.7, it is found that ¢ = 2.5 A results in pressures that align with the ideal gas law. Therefore,
6 =25Aand e = 1 eV are chosen to mimic the elastic collision between the wall and confining atoms in the calculation of the
steric pressure of graphene.

The MD simulations in this study are conducted within the NVT ensemble, employing a Nose-Hoover thermostat for temperature
control with a time step of 0.1 fs. The size of the graphene sheet is chosen to be 40 by 40 nm, and the temperature for the MD
simulation is set at 1000 K. These parameters are selected to intensify the thermal rippling of graphene, which in turn facilitates a
reduction in sampling time during the MD simulation. The steric pressure exerted by the wall is calculated by p = (f) /A, where
(f) is the time-averaged reaction force from the wall and A is the cross-section area.

Fig. 4(a) and (c) displays the pressure obtained from MD simulations for two extreme separations considered in this study. It is
noted that larger separations exhibit increased fluctuations, suggesting the need for extended sampling time to attain a more accurate
ensemble average. The averaged steric pressure values for the top and bottom walls are found to be almost identical. Fig. 4(b) and
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Fig. 4. Steric pressure and probability density of vertical positions of graphene atoms for separation distance 1.3 A (a, b) and 5.3 A (c, d).
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Fig. 5. Steric pressure p, as a function of the distance d between two hard walls.

(d) show the histograms representing the positions of graphene atoms during the MD simulations. The histograms confirm that all
the atoms are effectively confined by the walls within the free fluctuation zone. In the case of the smallest separation 1.3 A, there
is a minimal probability of atoms moving beyond the bounding walls.

The steric pressure is plotted as a function of the separation distance in Fig. 5. At short separation distances, only small out-
of-plane fluctuations are allowed in the graphene. In this case, the in-plane and out-of-plane modes can be decoupled under a
harmonic approximation (Gao and Huang, 2014). Consequently, the pressure follows the scaling law proposed by Helfrich (1978),
where p ~ d—3. At a large separation, the strong anharmonic effect of graphene dominates the thermal fluctuations, resulting in a
different scaling law, that is, p ~ d=>. A transition from harmonic to anharmonic behavior is observed between these two extremities.

10
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6. Summary and conclusion

In this paper, we have presented a statistical mechanics model within a fully nonlinear elasticity framework to study the entropic
force on confined fluctuating solid membranes. To deal with nonlinearity, we used a variational perturbation method to derive
closed-form approximate expressions for the entropic force. Our results indicate a different power law for the entropic pressure,
compared to that of fluid membranes. Specific outcomes of the work are as follows:

» For small values of confining distance d, the entropic pressure is expected to be large enough to suppress the effects of
nonlinearities. In this case, the solid membranes essentially behave as linear elastic sheets. Thus, the resulting power law
for the entropic force is the same as that of a fluid membrane, i.e., p < 1/d>.

« For large values of d, the entropic force will be smaller to a degree that cannot suppress the nonlinearities. In this case, the
power law for the entropic force is derived as p « 1/d> and decays faster, compared to small values of d.

» The entropic force has been studied for fluid membranes in computational models in the past. In this work, we revisited
this problem for solid membranes using molecular dynamics simulations. We have used graphene as a representative of solid
membranes. Our results from simulations are in agreement with the theoretical predictions and show two different regions for
the variations of the scaling laws for the entropic force with a crossover distance of about 3.5A.

Finally, we note that, while we used graphene as a proof of concept, the results are applicable to any other solid membranes in
biology or among crystalline membranes. A detailed physical consequence of our study is beyond the scope of this work, but we
anticipate its implication in numerous biological phenomena as well as applications of crystalline membranes in the design of novel
flexible nanostructures.
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Appendix A. Fourier transformation

Fourier transformation can be expressed in terms of sinusoidal functions as:
u (x) = Z a, cos(gx) + b, sin(gx) (A.1)
qeX

On the other hand, given that 7*%(g) and u™(q) are the real and imaginary parts of the u(q) we can expand the complex Fourier

transform as:

()= ) (g

€K
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= Y @ (q) +iu™(g))(cos(gx) + i sin(gx))

q€L
= X W (@) cos(qx) ~ @ (g)sin(gx) +1 Y @ (q) cos(gx) + 7 (g) sin(gx) (A.2)
q€Kk; g€k
We note that for each mode g, there is a conjugate mode —gq, for which we have: T™(=q) = —@"(q), T"5(—q) = @(q),
cos(—gx) = cos(gx), and sin(—gx) = —sin(¢gx) which causes the imaginary part of the above summation to vanish. Comparing this

summation with the expansion in (A.1), we can readily relate the coefficients as: a, = ERe(q) and b, = —Elm(q).

The derivatives and their corresponding integrations in one-dimensional problem can be expressed in Fourier expansion as below:

a _ ou, ou, \? _
G- T [(Ge)=o [(55) 0 3 dwor (832
q€K,; geK,
62h>2 ) a2 / N o =, 2
L) =12 ¥ gl MY =12 ¥ (A (A.3b)
/<0X2 q§] <0x) q;l
4 2 — 1 . e . —Im —he . —om
[ () =1 %t =1 ¥, 0@+ i7" @0 0+ 17" -0
X X qeER qeER,
=12 Y ig@q) +ia™(@)A (@) -iA (@)
qeER,
=2 Y ¢ (@A @-T"A @) (A30)
qeER,

The superscripts “Re” and “Im” denote the decomposition into real and imaginary parts. Also, note that we have dropped the
imaginary part of the above summation since it vanishes by summing over the conjugate modes.

For the 2D case, the corresponding Fourier transformation has real and imaginary parts; i.e. u(q) = ERe(q) +i ﬁlm(q), in which
the superscripts denote the real and imaginary parts. The corresponding conjugate of each mode is also derived as: u”(q) = u(—q) =
ﬁRe(q) —i ﬁlm(q), where u(q)u’(q) = |ﬁ(q)|2. Further, we remark on the orthogonality property of the Fourier modes:

/ i1, (@it (q)e" X ax = 6, i, (q)i5(q) L2
=1, (Q)us(—q)L? (A4

Similar arguments can be made for Xy(;(q) and w(q). Now we can calculate the integration of each term in Uy, U,. and Uy, in
Fourier space. In the following equations, we demonstrate the details of the Fourier transformation of these terms that were not
shown in the main text of the paper:

ou, 2 ) - 2
/S<a—x5> dx=L7 ) ¢l Q] (A.52)

qexX
2
oh oh O~ 2
——-— ) dx=1L [4,5(@] (A.5b)
/S<6xy 0x5) q;c ré
%y, 9n oh =
_ronon =12 i —
/S < P, 6x,>dx L q;cnqau,mmk,( )
—I ] ] —R
=’y qg{Ak‘I’(q)ui‘e(q) ~ T (@A (@
qek
. [—R -] - —Ii
+i (A @8 @+ 2" @A @) }
—I ] - —R
=) q(;{Ak’,"(qm‘fe(q) —Z™ @A, (q)} (A50)
qex

Note that for each q mode in the summation, there is a conjugate of —q, that makes the imaginary part of the summation in
(A.5¢) vanish:

a5 (A @7 @ + 7" @Ay @) + (-g5) (A (OB (- + A" (-0, (-a)
= 45 (A @@ + T @Ay @) - 45 (A @7 @ + 7@}~ @) )
=0 (A.6)

Since there will not be any contribution from the imaginary parts of the summations to the free energy, we have taken them out
from our calculations.
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Appendix B. Effective strain energy

The effective strain energy, which consists of the remainder terms in the exponent of the partition function integral once the
in-plane terms have been integrated out, can be expressed as:

fr_ 1 .
U= JE Y Y@ @ (B.1)
qeX

in which, for ease of notation, we have defined ¥(q) as:
1 pa— — a—
= {qﬁ%(q) + A, (@) - 2q,quxy<q)} (B.2)

Furthermore, we can more compactly express the strain energy using the so-called transverse projector operator (Nelson et al.,
2004) as below:

() = P} (@A;@ (B.3)
in which
q;4;
Pl@=6;~ q—; (B.4)

Note that ¥(q)¥*(q) = ¥(Q)¥(—q) = |¥(q)|* and is expanded as follows:

P(Q¥(-q) = [P (g
1 —Re —Im —Re —Im
= ———=1 GA, (@ + @A (@ + G A (@ + )4 (@
(g5 +q3)
3—Im —Im > 2—Im —Im 3 —Im —Im
= 44x9, A, (DA, (@) +2q,9,A, (DA, (@) = 4q,9,A,, (@A, (@)
2 2—Im 2 4—Im 2 4—Im 2 3—Re —Re
+ 44,9,A,, (@7 + 4, A (@7 +q, A, (@7 —44,q,A, (DA, (@)

5 o—Re  —Re 3 —Re  —Re ) p—Re 5
+ 24,9, A (DA, (@) — 49,9,A (@A, (@) +49,9,A, (q)

Appendix C. The variational perturbation theory and the ensemble averages

Consider the nonlinear energy in (20). The idea is that the nonlinear part is a small perturbation compared to the quadratic
functional H,,. Let F, be the free energy of the system. In the absence of the nonlinear perturbation term #,, the partition function
Z, and free energy F;, can be easily obtained using standard Gaussian integrations. The effect of the nonlinear term on the total free
energy of the system can be then estimated by a perturbation expansion around F,. We start with expanding the partition function
of the system Z:

Z = /exp(—ﬁ(HO + H)D[w] = Zy{exp(—=fH )y, (C.1

. 1 . . . . .
wherein f = T and the subscript (-),, denotes ensemble average, with respect to H,. The exponential term in the above equation

B . .
can be expanded in a Taylor series as:

1 - (=pH,)"
exp(=fH,) = 1 = fH, + S(FH,)* + - = ZO — €2
Then the free energy of the system is obtained as:
I | & (=fH,) )y,
F:—ElogZ:Fo—Elog(l+zT) (C.3)

n=1
Expanding the logarithm term we have:
> (A (H Yy, S M\ 1 e CHHD

and hence, the free energy expansion can be derived to be:

100 - nyc
F:FO—E;( D GO (C.5)

n!
where the superscript (-)¢ denotes the cumulant averages. The cumulant averages, up to fourth order, are:

(HYse = (Hyh,
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(H)5 = Mgy = (Hp)3
()51, = oy = 3CHD )3y (Hy)yy + 2(H, )3
(H)51, = gy = 3CH) )3y (Hy)yty = 3(H)3, + 12GHD )34, (M), = 6(H,) 3,

Accordingly, the excess free energy can be related to the total average energy of the system up to nth order as:

(H) = (Mo, + Z A7

The infinite series in the above equation gives us the exact average amount of energy that the nonlinear term adds to the system.
In practice, however, we need to truncate the series to some finite order. If the nonlinear term is small (and the series is well-
behaved), we can expect to achieve a reasonable estimate by evaluating the first few terms of perturbation expansion in Eq. (C.5).
Yet, it has been shown that the effect of nonlinearities in solid membranes such as graphene is indeed remarkable and the naive
perturbation method does not provide a reasonable estimate for the free energy and fluctuations (Ahmadpoor et al., 2017).

To improve the results of what can be obtained from the naive perturbation approach, we adopt an alternative version of it that
is rooted in a variational argument. The key idea was first introduced by Kleinert (2009) in the context of anharmonic Hamiltonians
arising in quantum mechanics. We briefly elaborate on the details of the procedure here. We start with adding and subtracting a
trial Hamiltonian to the nonlinear energy formulation in Eq. (20). In order to describe the out-of-plane fluctuations, consider a trial
Hamiltonian as:

1
Unial = 517 X, (10K + )| h(K)[ C.6)
ke

where «°ff is the unknown effective bending stiffness in general mode-dependent form. Then, the total elastic energy can be written
as:

Uy + U = Uy + (U, + U — Uy (C.7)

Then the perturbation expansion of the free energy associated with the Hamiltonian in (C.7) is obtained by the Taylor series in
(C.5):

(= ﬂ)N N
=F—-- 2 ([Uy + U = Uyl Yohesa (C.8)
where F, is the free energy corresponding to the trial Hamiltonian Uy;y:

ff
Fo = kz, o] (10g(—) +log(B (k) [k|* + 7d))>
ex

=C +ZkBT1 °ff (k) | | * c.9

=Cp Tog(K()||+7d) (C.9)

kek

where we called the first term Cp, a coefficient that is independent of the effective stiffness (k). Needless to say the full expansion
in (C.8) as N — oo should be independent of the choice of the trial Hamiltonian. In practice, however, the series is truncated up
to a finite order M to obtain an estimate of the free energy. Unlike the infinite series expansion in Eq. (C.8), the truncated series
F,), does depend on the choice of the trial Hamiltonian H,;,. Accordingly, in order to obtain an optimized estimate, we need to

minimize the sensitivity of the truncated series to the trial Hamiltonian. To this end, we set (Kleinert, 2009):
oF

M ._) (C.10)
aKeff(k)

In a rather good approximation, the result for the truncated series of the variational free energy from this method will converge
i.e. Fy; ~ Fy;,, and achieves its minimal sensitivity to the trial function. Up to the first order, the ensemble averages are calculated
as:

_ 2
()= <—xbL2 YRR + 112 3 iAo > + <%EL2 Z}C%aj.(q)A,-j(qﬂ >
Utrial ae

kek kek Usial

== Z(Keff(knm“ + )R g €11
ke

To calculate the averages in Eq. (C.11), we start by expanding the out-of-plane displacement field in Fourier space:

gh S = X koA e
X X kK ex
= ) —ki(g; — kph(K)h(g — k)9 = Y 4, (q)ed™ (C.122)
k.qex qeX
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Fig. D.6. Computation model of molecular dynamics simulation.

in which:
Ay@ =Y, —k(g; — k)h(K)h(q - K) (C.13)
ke

After substituting the operator IJilT(q), we obtain:

kiqiqj(qj -k
q?

PL@A;(@ = ), (—k,(qi — ki) + - )h(k)h(q—lﬂ

ke
k2 2 _ k- 2 _ - =
=y = i 9V hoh(q - k) = D K[ (sin 044> A(K)A(q - K) (C.14)
kek q kek

where 0, is the angle between the vectors q and k. The magnitude of the above expressions in each mode is then:
— 2 — —
PT @A, @I = (Pl @4,@) x (P -ad, o)
= Z K| (sin 3% K’ I*(sin 0_qi ) h(K)h(q - K)A(k )h(—q — k') (C.15)
Kk ek

Now, we proceed to calculate the ensemble average of the expression in Eq. (C.15). We emphasize that the averaging is carried
out with respect to the trial elastic energy which is presented in Eq. (C.6). We then obtain:

> (BT @A @I,

qexr
= Z |k|(sin quk)2|k’|2(sin 0_qi > (h(K)h(q — K)A(K Yh(-q =Ky, . (C.16)
q.k K ek

From Wick’s theorem (Kleinert, 2009), the above average—with respect to the quadratic trial energy (C.6)—is nonzero only when
the modes k; are decoupled and that is:

(Rl (ko ks Bk D)y, = (RG] Y, (R gy { 8(ky, —k3)d(ky, —ky)

+ 6(k;, —ky)o(k,, —k3)}

T (R g (TR Yy, 5001 —kp)3(Ks, —ky) €17)

Note that the case k = —q + k is true only in zeroth mode when q — 0. The only nonzero case for all modes is when k = —Kk’.
Hence, the summation in (C.16) can be obtained as:

— 2 . -2 — 2
Z;Cﬂ”f?(q)f‘u(q)l Yy = kz Ik[*(sin 0430* (1R g, (1A@ = K] gy
qe q.kek
(kgT)*|k|*(sin 6, ,)*
- . B ak ; (C.18)
ke (KRR + 7kl (k — q)[k — ql* +7,)
sing the above expression 1n e first order of free energy expansion in will result 1n the variational free energy that 1s given
Using the ab: ion in the fi der of fi ion in (23) will It in th iational fi hat is gi
in Eq. (26).

Appendix D. Parameter selection for repulsive potential

Consider the MD simulation model shown in Fig. D.6, which is similar to the model used for graphene (Fig. 3), by replacing
graphene with 100 Ar gas atoms. The lateral dimension of the simulation box is 20 nm by 20 nm. A 6-12 LJ potential is used to
describe the interatomic interactions between Ar atoms

E =4e,, [(";")12_(%>6] r<r, (D.1)

r
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Fig. D.7. Pressure exerted by the walls as a function of the separate distance, d, for different values of ¢ with a constant ¢ = 1 eV.
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Fig. D.8. Steric pressure as a function of wall distance for ¢ =4 A

where ¢,, =0.0104 ¢V, 6,, =34 A and r, = 10 A.

The interaction between Ar atoms and the container walls is governed by the repulsive parameters ¢ and e, as defined in the
potential given by Eq. (43). Fig. D.7 shows the wall pressure (p) from MD simulations as a function of the separation distance (d),
calculated for different ¢ with a constant ¢ at 1 eV. The MD results are compared to the pressure predicted by the ideal gas law.
The agreement is achieved when ¢ is set between 2.5 A and 3.5 A. Therefore, it is concluded that o = 2.5 A can be used to mimic
the elastic collision between the wall and confining atoms, which will be adopted for the study of the steric repulsion of graphene.

Finally, we checked the behavior of the scaling law at a different o value. The p—d curve for ¢ = 4 A is shown in Fig. D.8, which
demonstrates that while the pressure values slightly increase due to stronger reaction forces from the walls, the scaling law remains
unchanged. Therefore, we postulate that the scaling law remains consistent irrespective of the value of ¢ as long as the atoms can
be effectively confined into the free fluctuation zone with minimum escaping probability.
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