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A B S T R A C T

Biological and crystalline membranes exhibit noticeable fluctuations at room temperature due
to their low bending stiffness. These fluctuations have a significant impact on their overall
mechanical behavior and interactions with external objects. When two membranes come into
proximity, they mutually suppress each other’s fluctuations, leading to a repulsive force that
plays a pivotal role in the mechanical behavior of these membranes. From the mechanics
point of view, crystalline membranes are modeled as solid membranes with inherent shear
resistance, whereas biological membranes are commonly described as fluidic entities without
shear resistance. Under this premise, the entropic force between two fluctuating biological
membranes is proposed to scale as 𝑝 ∝ 1∕𝑑3, where 𝑑 is the intermembrane distance. Yet,
there are numerous instances where these membranes display shear resistance and behave akin
to solid membranes. In this paper, we develop a statistical mechanics model within nonlinear
elasticity to study the entropic force acting on a confined, fluctuating solid membrane. We
demonstrate that, due to the nonlinear elasticity of solid membranes, the entropic force scales
differently compared to that of fluid membranes. Our predictions align well with the results
obtained from molecular dynamics simulations involving graphene, a representative of a solid
membrane, confined between two rigid walls.

1. Introduction

Biological and crystalline membranes fluctuate noticeably at room temperature due to their low bending stiffness. These
luctuations impact their overall mechanical response and interactions with external objects. In biology, many physiological
rocesses are intricately linked to these thermal fluctuations. Processes such as exo and endocytosis, membrane fusion, cell adhesion,
inding–unbinding transitions, the structural dynamics of red blood cell membranes, cytoskeletal interactions, and the mechanical
ffects induced by actin on membranes, among many others, are profoundly affected by these fluctuations (Lipowsky and Seifert,
1991; Lipowsky and Leibler, 1986; Lee et al., 2010; Weikl and Lipowsky, 2004; Chen et al., 2008; Gao et al., 2005; Ahmadpoor
nd Sharma, 2016,b; Gov et al., 2003; Dearnley et al., 2016; Kusters et al., 2019). Consequently, the exploration of entropic factors
in biological phenomena has evolved into a cornerstone of cell mechanics research (Kulkarni, 2023; Fisher, 1993; Lee et al., 2010;
Weikl and Lipowsky, 2004; Chen et al., 2008; Lipowsky and Leibler, 1986; Farago and Santangelo, 2005; Auth et al., 2007; Helfrich,
986; Ahmadpoor and Sharma, 2016b; Huang et al., 2017; Freund, 2013; Sharma, 2013; Zelisko et al., 2017). The biophysical
rocesses mentioned above are orchestrated by a sophisticated interplay between a set of attractive and repulsive forces that
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Fig. 1. Solid membranes are ubiquitous. Examples include viral capsid (the left), red blood cell membranes (the middle), and crystalline membranes such as
raphene (the right).

ediate between biological structures. Central to this interplay is a repulsive force known as entropic pressure, originating from
the thermally induced fluctuations in membranes. When an external object approaches a fluctuating membrane, it impedes the
membrane’s out-of-plane fluctuations. This interference results in a reduction of system entropy that varies with the distance between
the membrane and the obstructing object. As a result, a repulsive force is generated, which acts to separate the membrane from
the external object. The same behavior appears when a crystalline membrane is placed on a substrate (Wang et al., 2016) or in
contact with another membrane (Zhu et al., 2022). Such entropic pressure was first addressed in the context of cell–cell interactions
by Helfrich (1978) and subsequently examined by several groups in both physics (Bachmann et al., 2001; Kleinert, 1999) and
mechanics communities (Freund, 2013; Sharma, 2013; Hanlumyuang et al., 2014; Liang and Purohit, 2018; Mozaffari et al., 2021).
From the mechanics point of view, the fluctuating membrane is modeled as a fluid elastic sheet with bending deformations and
no shear resistance. Based on this assumption, Helfrich (1978) proposed that entropic force between two fluctuating membranes in
distance 𝑑 should scale as 𝑝 ∝ 1∕𝑑3. This power law has been later verified in other theoretical and computational models (Bachmann
et al., 2001; Kleinert, 1999; Hanlumyuang et al., 2014; Ahmadpoor et al., 2019, 2022).

Although biological membranes are commonly modeled as fluid membranes, there are instances where they possess an apparent
shear resistance—some examples are demonstrated in Fig. 1. One such example can be found in the membranes of red blood cells
RBCs), which endure consistent mechanical stresses within the bloodstream. Despite the continuous exposure to flow and the
ubstantial deformations they undergo when squeezed through narrow capillaries (Noguchi and Gompper, 2005), the lifespan of
BCs surpasses that of artificial vesicles designed for drug delivery by several orders of magnitude (Lasic, 1994). A pivotal factor
n maintaining the structural integrity of RBCs is the presence of a network composed of flexible spectrin polymers, forming a
wo-dimensional cytoskeleton, which imparts shear resistance to the membrane. The spectrin cytoskeleton is typically modeled as
solid membrane. Another example is viral capsid shells. The study of the mechanical behavior of capsids is of particular interest
o the biomechanics and mechanobiology community for understanding the morphology of viruses that impact their interactions
ith their surrounding bioenvironment. Besides biological examples, crystalline membranes such as graphene, boron nitride, MXene
mong many others are also modeled as solid membranes. These membranes may encounter noticeable entropic forces, particularly
hen placed on a substrate or interacting with another membrane (Wang et al., 2016; Ahmadpoor et al., 2022). Further, such
ntropic forces appeared to have implications for crystalline interfaces as well (Chen and Kulkarni, 2015, 2017, 2013; Zhu et al.,
2022).

The elasticity of solid membranes presents a more challenging scenario when compared to their fluid counterparts. Unlike fluid
membranes, solid membranes can feature not only bending and stretching rigidities but also non-trivial in-plane shear deformations
that nonlinearly interact with the out-of-plane displacement field. To characterize the elasticity of solid membranes, the von Karman
nonlinear plate theory is commonly employed. Studying the statistical mechanics of solid membranes is intricate due to the necessity
for accounting for nonlinear geometric deformations. The majority of approaches in the literature heavily rely on analogies from
the high-energy physics realm and prove challenging to adapt to the common contexts of mechanics. Recently, Ahmadpoor et al.
(2017) presented a mechanics-based approach for dealing with nonlinearities and studied the thermal fluctuations of a free-standing
olid membrane. Specifically, they introduced a variational approximation method that is closely linked to principles well-known
ithin the mechanics community. Using this approach (Ahmadpoor et al., 2017) explored the size and temperature dependency
f the out-of-plane fluctuations, and demonstrated how an elastic sheet becomes effectively stiffer at larger sizes. Nonetheless, the
nfluence of these nonlinearities on the entropic forces exerted on a confined solid membrane has yet to be investigated.
In this paper, we formulate the entropic force on a confined fluctuating solid membrane. To deal with geometric nonlinearities,

e rely on the approximate method developed by Ahmadpoor et al. (2017) to establish the scaling law for the entropic force
ithin nonlinear elasticity. In order to reconcile our analytical results with atomistic considerations, we conduct molecular dynamics
imulations using graphene as a representative solid membrane. In Section 2, we briefly review the nonlinear elasticity of the solid
embranes. Setup of the statistical mechanics problem, for a confined nonlinear elastic sheet is presented in Section 3. Analytical

approximate solutions are derived for the entropic force using the variational perturbation method in Section 4. Detailed descriptions
of the molecular dynamics simulations and their outcomes can be found in Section 5. Finally, our findings will be summarized in
Section 6.
2
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2. Review of the nonlinear elasticity of the solid membranes

Let us consider a flat, elastic sheet that lies in the x–y plane, with dimensions given by a square domain of size 𝑆 = (0, 𝐿)2.
Initially, at zero Kelvin which represents the undeformed ground state the sheet is placed on the z=0 plane. To specify any point
on the surface S, we can use its position vector, denoted as 𝐱. We then, introduce a vector field 𝐮 defined on the surface 𝑆, which
represents the displacement field of the sheet. Consequently, the position of each point on the deformed surface can be expressed
as 𝐫 = 𝐱 + 𝐮. The displacement field using Monge parametrization can be expressed as:

𝐮 = (𝑢𝑥, 𝑢𝑦, ℎ), (1)

where 𝑢𝑥 and 𝑢𝑦 are displacement fields along 𝑥 and 𝑦 directions, respectively and ℎ is the out-of-plane displacement field. Then
the in-plane strain field is defined as:

𝛾𝛿 =
1
2

( 𝜕𝑢𝛾
𝜕𝑥𝛿

+
𝜕𝑢𝛿
𝜕𝑥𝛾

+ 𝜕ℎ
𝜕𝑥𝛾

𝜕ℎ
𝜕𝑥𝛿

)

. (2)

The resulting stress tensor, assuming isotropy, can be written as:

𝜎𝛾𝛿 =
𝐸

1 − 𝜈2
(

𝛾𝛿 +
𝜈

1 − 𝜈
𝑘𝑘𝛿𝛾𝛿

)

, (3)

where 𝐸 and 𝜈 are the elastic Young modulus and Poisson ratio of the solid sheet, respectively. The in-plane stretching energy can
then be expressed as:

𝑈𝑠 = ∫𝑆
1
2
𝜎𝛾𝛿𝛾𝛿 = ∫𝑆

𝑈𝐼 + 𝑈𝐼𝐼 + 𝑈𝐼𝐼𝐼 , (4)

n which,

𝑈𝐼 = 𝐸
2(1 − 𝜈2)

(

(

𝜕𝑢𝑥
𝜕𝑥

)2
+
( 𝜕𝑢𝑦

𝜕𝑦

)2

+ 2𝜈
𝜕𝑢𝑥
𝜕𝑥

𝜕𝑢𝑦
𝜕𝑦

)

+ 𝐸
4(1 + 𝜈)

(

𝜕𝑢𝑥
𝜕𝑦

+
𝜕𝑢𝑦
𝜕𝑥

)2

, (5a)

𝑈𝐼𝐼 = 𝐸
2(1 − 𝜈2)

(

𝜕𝑢𝑥
𝜕𝑥

( 𝜕ℎ
𝜕𝑥

)2
+

𝜕𝑢𝑦
𝜕𝑦

(

𝜕ℎ
𝜕𝑦

)2
+ 𝜈

𝜕𝑢𝑥
𝜕𝑥

(

𝜕ℎ
𝜕𝑦

)2
+ 𝜈

𝜕𝑢𝑦
𝜕𝑦

( 𝜕ℎ
𝜕𝑥

)2
)

+ 𝐸
2(1 − 𝜈2)

𝜕ℎ
𝜕𝑥

𝜕ℎ
𝜕𝑦

(

𝜕𝑢𝑥
𝜕𝑦

+
𝜕𝑢𝑦
𝜕𝑥

)

, (5b)

𝑈𝐼𝐼𝐼 = 𝐸
8(1 + 𝜈)

(

( 𝜕ℎ
𝜕𝑥

)4
+
(

𝜕ℎ
𝜕𝑦

)4
+ 2

(

𝜕ℎ
𝜕𝑥

𝜕ℎ
𝜕𝑦

)2
)

= 𝐸
8(1 − 𝜈2)

|∇ℎ|4. (5c)

In addition, the out-of-plane displacement field creates curvature and bending deformations on the surface. Let 𝑐1 and 𝑐2 be the
principal curvatures2 at each point on the surface. Then the mean and Gaussian curvatures are obtained as (Abbena et al., 2006):

𝐻 = 1
2
(𝑐1 + 𝑐2), 𝐾 = 𝑐1𝑐2. (6)

Up to quadratic order, the bending energy associated with the curvature field is given as (Zhong-Can and Helfrich, 1989):

𝑈𝑏 = ∫
1
2
𝜅𝑏(𝑐1 + 𝑐2)2 + 𝜅𝐺𝑐1𝑐2, (7)

where, 𝜅𝑏 and 𝜅𝐺 are the bending and Gaussian moduli, respectively. Further, due to the Gauss–Bonnet theorem (Abbena et al.,
2006), the integration of Gaussian curvature over a 2D closed area is fixed when the topology of the system does not change in the
deformed configuration. Thus, in what follows, we disregard the second term in Eq. (7). As long as the deviations from the flat state
are small (|∇ℎ| ≪ 1), the linearized mean curvature (𝐻) may be used and is described in terms of the out-of-plane displacement as
follows:

2𝐻 = 𝑐1 + 𝑐2 =
𝜕2ℎ
𝜕𝑥2

+ 𝜕2ℎ
𝜕𝑦2

= ∇2ℎ. (8)

The total energy can then be described as the summation of the bending and stretching energy terms, 𝑈 = 𝑈𝑏 + 𝑈𝑆 . This total
nergy will be out starting point for setting up the statistical mechanics problem of a confined solid membrane in Section 3.

. Setup of the statistical mechanics problem

The elastic energy cost to deform a planar solid membrane is given by: 𝑈 = 𝑈𝑏 + 𝑈𝑠. When the temperature is at absolute
ero (𝑇 = 0 Kelvin), and no external forces are present, the membrane naturally tends to maintain its flat shape to minimize its

2 Curvatures at a point can be evaluated in any direction but have a maximum and minimum values along two particular orthogonal directions. The
3

orresponding maximum and minimum values of the curvature at a given point are referred to as the principal curvatures.
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Fig. 2. Schematic of a fluctuating solid membrane of size 𝐿2, confined within two hard walls in distance 2𝑑.

overall elastic energy. However, when the temperature is above zero, the sheet undergoes dynamic fluctuations and experiences non-
flat configurations that involve both in-plane and out-of-plane deformations. Each of these modes is associated with a probability
distribution that is described by Boltzmann factor (Kittel, 2004):

𝜌𝑖 ∝ exp(−𝑈𝑖∕𝑘𝐵𝑇 ),

where 𝑘𝐵𝑇 is the thermal energy, 𝜌𝑖 is the probability of occurrence of mode 𝑖 and 𝑈𝑖 is its associated energy. The probability
distribution can be normalized to 1 through the normalizing factor 1∕𝑍, where 𝑍 is the so-called partition function and is obtained
by summing over all possible configurations (Kittel, 2004) which in this continuous system are uncountably infinite:

𝑍 =
∑

𝑖
exp(−𝑈𝑖∕𝑘𝐵𝑇 ).

The probability distribution allows the computation of the ensemble average of any physical quantity  that is obtained as (Kittel,
2004):

⟨⟩ = 1
𝑍

∑

𝑖
𝑖exp(−𝑈𝑖∕𝑘𝐵𝑇 ).

Now consider a fluctuating solid membrane confined within two hard walls in distance 2𝑑 from one another as shown in Fig. 2,
such that the fluctuations are limited to −𝑑 < ℎ < 𝑑. We assume periodic boundary conditions in all directions to ensure in-plane
translational and rotational symmetry. For this case the partition function and the free energy are expressed as functions of 𝑑:

𝑍[𝑑] = ∫

∞

−∞ ∫

𝑑

−𝑑
exp

(

−
𝑈𝑏 + 𝑈𝑆
𝑘𝐵𝑇

)

 [𝐮, ℎ] , 𝐹 [𝑑] = −𝑘𝐵𝑇 log𝑍. (9)

The entropic pressure is then calculated by taking the derivative of the free energy with respect to the volume 𝑉 :

𝑝 = − 𝜕𝐹
𝜕𝑉

= − 1
2𝐿2

𝜕𝐹
𝜕𝑑

.

The partition function in Eq. (9) cannot be carried out analytically, because:

1. the confinement on the fluctuations leads to the finite integral bounds (−𝑑, 𝑑) for the out-of-plane displacement ℎ; and
2. the energy function in the exponent is anharmonic with respect to the out-of-plane displacement ℎ.

To remedy the first issue, following the past theoretical models of entropic force on fluctuating membranes (Helfrich, 1978;
Mozaffari et al., 2021; Ahmadpoor et al., 2022), we introduce a potential energy term added to the original elastic energy to mimic
the effects of the entropic pressure on the suppression of fluctuations and instead, carry out the partition function integration within
(−∞,∞). We then tune the potential energy in such a way that: ⟨ℎ2⟩ < 𝑑2. Now let

𝑈 tot = 𝑈𝑏 + 𝑈𝑆 + 𝑈𝑃 [ℎ] (10)

be the total energy, including the potential energy 𝑈𝑃 [ℎ]. In general, 𝑈𝑃 [ℎ] can be expanded in a polynomial form as:

𝑈𝑃 [ℎ] = ∫ 𝛼2ℎ
2 + 𝛼4ℎ

4 + 𝛼6ℎ
6 +⋯

The potential energy 𝑈𝑃 [ℎ] ensures a lower probability for larger values of ℎ and, eventually, decreases the fluctuations. To
facilitate analytical derivation, we keep only the quadratic term in 𝑈𝑃 [ℎ]. Thus, the total energy can be written as:

𝑈 tot = ∫

[ 1
2
𝜅𝑏(∇2ℎ)2 + 1

2
𝛾𝑑ℎ

2 + 𝑈𝐼 + 𝑈𝐼𝐼 + 𝑈𝐼𝐼𝐼

]

𝑑𝑆, (11)

where 𝛾𝑑 is a tuning parameter that depends on 𝑑 and ensures lower probability for larger fluctuations, such that ⟨ℎ2⟩ < 𝑑2. The
new partition function is then obtained as:

𝑍 =
∞ ∞

exp
(

− 1 [1𝜅𝑏(∇2ℎ)2 + 1 𝛾𝑑ℎ2 + 𝑈𝐼 + 𝑈𝐼𝐼 + 𝑈𝐼𝐼𝐼

]

𝑑𝑆
)

 [𝐮, ℎ] . (12)
4

∫−∞ ∫−∞ 𝑘𝐵𝑇 ∫ 2 2
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The partition function in (12) resolves the issue with the integral bounds. We now return our attention to the second issue
ssociated with geometric nonlinearities and the coupling between in and out-of-plane displacement fields in the last two terms of
he energy (11); 𝑈𝐼𝐼+𝑈𝐼𝐼𝐼 . The total elastic energy in (11) is anharmonic with respect to ℎ but harmonic in terms of 𝐮. The partition
function integration cannot be easily handled over ℎ, but may be evaluated with respect to 𝐮. To start, one needs to discretize the
displacement fields in Fourier space:

𝐮(𝐱) =
∑

𝐪∈
𝐮(𝐪)𝐞𝚤𝐪⋅𝐱 , (13a)

ℎ(𝐱) =
∑

𝐪∈
ℎ(𝐪)𝐞𝚤𝐪⋅𝐱 , (13b)

𝜕ℎ(𝐱)
𝜕𝑥𝛾

𝜕ℎ(𝐱)
𝜕𝑥𝛿

=
∑

𝐪∈
𝐴𝛾𝛿(𝐪)𝐞𝚤𝐪⋅𝐱 , (13c)

here  ∶= {𝐪 = 2𝜋(𝜈𝑥, 𝜈𝑦)∕𝐿 ∶ 𝜈𝑥, 𝜈𝑦 ∈ Z, |𝐪| ⩾ 2𝜋∕𝐿} and 𝛾, 𝛿 denote 𝑥, 𝑦. The Fourier transforms of the displacement fields are:

𝐮(𝐪) = 1
𝐿2 ∫S

𝐮(𝐱)𝐞−𝚤𝐪⋅𝐱𝑑𝐱, (14a)

ℎ(𝐪) = 1
𝐿2 ∫S

ℎ(𝐱)𝐞−𝚤𝐪⋅𝐱𝑑𝐱, (14b)

𝐴𝛾𝛿(𝐪) =
1
𝐿2 ∫S

𝜕ℎ(𝐱)
𝜕𝑥𝛾

𝜕ℎ(𝐱)
𝜕𝑥𝛿

𝐞−𝚤𝐪⋅𝐱𝑑𝐱. (14c)

Substituting the Fourier expansions in the expression for the total energy in (11) yields the following:

𝑈 tot = 𝐿2

2
∑

𝐪∈

(

(𝜅𝑏|𝐪|4 + 𝛾𝑑 )|ℎ(𝐪)|
2
+ 𝑈 𝐼 (𝐪) + 𝑈 𝐼𝐼 (𝐪) + 𝑈 𝐼𝐼𝐼 (𝐪)

)

, (15)

where

𝑈 𝐼 (𝐪) =
𝐸

1 − 𝜈2
(

𝐪2|𝐮(𝐪)|2 + 2𝜈𝑞𝑥𝑢𝑥(𝐪)𝑞𝑦𝑢𝑦(𝐪)
)

+ 𝐸
1 + 𝜈

(

𝑞2𝑦 |𝑢𝑥(𝐪)|
2 + 𝑞2𝑥|𝑢𝑦(𝐪)|

2 − 2𝑞𝑥𝑞𝑦𝑢𝑥(𝐪)𝑢𝑦(−𝐪)
)

, (16a)

𝑈 𝐼𝐼 (𝐪) =
𝐸

1 − 𝜈2

{

𝐴
Re
𝑥𝑥(𝐪)(𝑞𝑥𝑢

Im
𝑥 (𝐪) + 𝜈𝑞𝑦𝑢

Im
𝑦 (𝐪)) + 𝐴

Re
𝑦𝑦 (𝐪)(𝑞𝑦𝑢

Im
𝑦 (𝐪) + 𝜈𝑞𝑥𝑢

Im
𝑥 (𝐪))

− 𝐴
Im
𝑥𝑥 (𝐪)(𝑞𝑥𝑢

Re
𝑥 (𝐪) + 𝜈𝑞𝑦𝑢

Re
𝑦 (𝐪)) − 𝐴

Im
𝑦𝑦 (𝐪)(𝑞𝑦𝑢

Re
𝑦 (𝐪) + 𝜈𝑞𝑥𝑢

Re
𝑥 (𝐪))

}

+ 𝐸
1 + 𝜈

{

𝐴
Re
𝑥𝑦 (𝐪)(𝑞𝑦𝑢

Im
𝑥 (𝐪) + 𝑞𝑥𝑢

Im
𝑦 (𝐪)) − 𝐴

Im
𝑥𝑦 (𝐪)(𝑞𝑦𝑢

Re
𝑥 (𝐪) + 𝑞𝑥𝑢

Re
𝑦 (𝐪))

}

, (16b)

𝑈 𝐼𝐼𝐼 (𝐪) =
𝐸

4(1 − 𝜈2)

(

|𝐴𝑥𝑥(𝐪)|
2
+ |𝐴𝑦𝑦(𝐪)|

2
+ 2|𝐴𝑥𝑦(𝐪)|

2)
. (16c)

In the expression for 𝑈 𝐼𝐼 (𝐪), the superscripts ‘‘Re’’ and ‘‘Im’’ stand for the real and imaginary parts of the Fourier transforms. For
etails of the derivations, the reader is referred to Appendix A. We now proceed to plug the total energy in Fourier space presented
n (15) into the partition function and carry out the path integral over the in-plane displacement field:

𝑍 = ∫ exp(−𝑈 tot∕𝑘𝐵𝑇 )[ℎ,𝐮]

=
∏

𝐪∈
∬

∞

−∞
exp

(

− 𝐿2

2𝑘𝐵𝑇

(

(𝜅𝑏|𝐪|4 + 𝛾𝑑 )|ℎ(𝐪)|
2
+ 𝑈 𝐼 (𝐪) + 𝑈 𝐼𝐼 (𝐪) + 𝑈 𝐼𝐼𝐼 (𝐪)

)

)

𝑑ℎ(𝐪)𝑑𝐮(𝐪)

=
∏

𝐪∈
∫ 𝛼(𝜈)

(

2𝜋𝑘𝐵𝑇
𝐸𝐿2

|𝐪|2

)2
exp

(

− 𝐿2

2𝑘𝐵𝑇

(

(𝜅𝑏|𝐪|4 + 𝛾𝑑 )|ℎ(𝐪)|
2
+ 𝑈eff(𝐪)

)

)

𝑑ℎ(𝐪), (17)

where 𝛼(𝜈) = 1+ 𝜈− 𝜈2− 𝜈3. As a result, the remaining terms in the exponent can be expressed in terms of an effective strain energy,
𝑈eff(𝐪),3 which is solely a function of the out-of-plane displacement and can be written as:

𝑈eff(𝐪) =
1
4
𝐸|𝑃 𝑇

𝑖𝑗 (𝐪)𝐴𝑖𝑗 (𝐪)|
2
, (18)

3 For details of these derivations the reader is referred to the Appendix B as well as (Ahmadpoor et al., 2017).
5
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in which

𝑃 𝑇
𝑖𝑗 (𝐪) = 𝛿𝑖𝑗 −

𝑞𝑖𝑞𝑗
𝐪2

. (19)

Up to this point, we have decoupled the in and out-of-plane displacement fields and are left with a new form of energy that is
erely a function of the out-of-plane displacement field. The new energy form is as follows:

𝑈 = 1
2
𝐿2

∑

𝐪∈

(

(𝜅𝑏|𝐪|4 + 𝛾𝑑 )|ℎ(𝐪)|
2
+ 1

4
𝐸|𝑃 𝑇

𝑖𝑗 (𝐪)𝐴𝑖𝑗 (𝐪)|
2)

. (20)

This new energy form will be used to study the statistical mechanics of a confined fluctuating solid membrane.

4. Entropic force on a fluctuating solid membrane

In this section, we study the fluctuations of the out-of-plane displacement field, the free energy, and the entropic force for a
confined solid membrane. We will use the nonlinear energy function in Eq. (20) as the starting point. As mentioned before, dealing
with nonlinearities in statistical mechanics problems of membranes is quite challenging, and closed-form analytical solutions are
frequently unachievable. Here, we will use the variational perturbation theory (VPT) to get approximate solutions for fluctuations
and free energy. The central idea of the VPT was first introduced by Kleinert (2009) in the context of anharmonic Hamiltonians in
quantum mechanics and later on implemented in a mechanics-based framework by Ahmadpoor and Sharma (2016b), Ahmadpoor
et al. (2017), Mozaffari et al. (2021). The idea is that the effects of nonlinearities can be embedded in a so-called renormalized
quadratic energy, that can be then used in the equipartition theorem. In the past this method has been successfully employed in the
context of nonlinear elasticity of continuum systems (Ahmadpoor et al., 2015; Ahmadpoor and Sharma, 2016b; Ahmadpoor et al.,
2017; Mozaffari et al., 2021).

To apply VPT we start with a trial quadratic energy function as follows:

𝑈𝑡𝑟𝑖𝑎𝑙 =
1
2
𝐿2

∑

𝐤∈
[𝜅eff(𝐤)|𝐤|4 + 𝛾𝑑 ]

|

|

|

ℎ(𝐤)||
|

2
, (21)

here 𝜅eff(𝐤) is the unknown effective stiffness in general mode-dependent form. Based on this trial energy, the ensemble average
f the fluctuations can be obtained by equipartition theorem as:

⟨

|

|

|

ℎ(𝐤)||
|

2
⟩ =

𝑘𝐵𝑇

𝐿2(𝜅eff(𝐤)|𝐤|4 + 𝛾𝑑 )
. (22)

Further, the variational free energy up to the 𝑀th order is expanded in Taylor series as:

𝐹𝑀 = 𝐹0 − 𝑘𝐵𝑇
𝑀
∑

𝑁=1

(−1)𝑁

(𝑘𝐵𝑇 )𝑁𝑁!
⟨(𝑈 − 𝑈𝑡𝑟𝑖𝑎𝑙)𝑁 ⟩

𝑐
𝑈𝑡𝑟𝑖𝑎𝑙

, (23)

where 𝐹0 is the free energy associated with the trial energy 𝑈𝑡𝑟𝑖𝑎𝑙 in (21):

𝐹0 = 𝐶𝐹 +
∑

𝐤∈

1
2
𝑘𝐵𝑇 log

(

𝜅eff(𝐤)|𝐤|4 + 𝛾𝑑
𝑘𝐵𝑇

)

, (24)

n which 𝐶𝐹 , is a constant of no consequences. To get an optimized approximation of the free energy, we proceed to minimize the
ensitivity of the series in (23) to the trial energy function, 𝑈𝑡𝑟𝑖𝑎𝑙:

𝜕𝐹𝑀

𝜕𝜅eff(𝐤)
∶= 0. (25)

We now proceed to expand the variational free energy in (23) up to the first order. Details of the derivations are explained in
ppendix C. Up to the first order, the variational free energy is obtained as:

𝐹𝑣𝑎𝑟 = 𝐶𝐹 +
∑

𝐤∈

[

1
2
𝑘𝐵𝑇 log

(

𝜅eff(𝐤)|𝐤|4 + 𝛾𝑑
𝑘𝐵𝑇

)

+ 1
2
𝑘𝐵𝑇

(𝜅𝑏|𝐤|4 + 𝛾𝑑 )

(𝜅eff(𝐤)|𝐤|4 + 𝛾𝑑 )

+𝐸
∑

𝐪∈

(𝑘𝐵𝑇 )2|𝐤|4(sin 𝜃𝐪,𝐤)4

8𝐿2(𝜅eff(𝐤)|𝐤|4 + 𝛾𝑑 )(𝜅eff(𝐪 − 𝐤)|𝐪 − 𝐤|4 + 𝛾𝑑 )

]

,

(26)

here, 𝜃𝐪,𝐤 is the angle between the vectors 𝐪 and 𝐤. In order to minimize the sensitivity of the variational free energy with respect
o 𝑈𝑡𝑟𝑖𝑎𝑙, we set:

𝜕𝐹𝑣𝑎𝑟

𝜕𝜅eff(𝐤)
∶= 0

0 ∶=
𝑘𝐵𝑇 |𝐤|4

2(𝜅eff(𝐤)|𝐤|4 + 𝛾𝑑 )
−

𝑘𝐵𝑇 (𝜅𝑏|𝐤|4 + 𝛾𝑑 )|𝐤|4

2(𝜅eff(𝐤)|𝐤|4 + 𝛾𝑑 )2

− 𝐸
∑

𝐪∈

(𝑘𝐵𝑇 )2|𝐤|4(sin 𝜃𝐪,𝐤)4

8𝐿2(𝜅eff(𝐤)|𝐤|4 + 𝛾𝑑 )(𝜅eff(𝐪 − 𝐤)|𝐪 − 𝐤|4 + 𝛾𝑑 )
×

(

|𝐤|4

𝜅eff(𝐤)|𝐤|4 + 𝛾𝑑
+

|𝐪 − 𝐤|4

𝜅eff(𝐪 − 𝐤)|𝐪 − 𝐤|4 + 𝛾𝑑

𝜕𝜅eff(𝐪 − 𝐤)
𝜕𝜅eff(𝐤)

)

.

6
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Assuming that at long wave-length fluctuations the effective bending stiffness 𝜅eff(𝐤), scales as: 𝜅eff(𝐤) ∼ |𝐤|−𝜁 (Nelson and Peliti,
1987; Ahmadpoor et al., 2017), we have4:

𝜕𝜅eff(𝐪 − 𝐤)
𝜕𝜅eff(𝐤)

=
𝜕𝜅eff(𝐪 − 𝐤)∕𝜕𝐤
𝜕𝜅eff(𝐤)∕𝜕𝐤

=
|𝐪 − 𝐤|−𝜁−1

|𝐤|−𝜁−1
=

𝜅eff(𝐪 − 𝐤)
𝜅eff(𝐤)

|𝐤|
|𝐪 − 𝐤|

. (28)

Substituting Eq. (28) into (27), we obtain:

𝜕𝐹𝑣𝑎𝑟

𝜕𝜅eff(𝐤)
=

𝑘𝐵𝑇 |𝐤|4

2(𝜅eff(𝐤)|𝐤|4 + 𝛾𝑑 )
−

𝑘𝐵𝑇 (𝜅𝑏|𝐤|4 + 𝛾𝑑 )|𝐤|4

2(𝜅eff(𝐤)|𝐤|4 + 𝛾𝑑 )2

−𝐸
∑

𝐪∈

(𝑘𝐵𝑇 )2|𝐤|4(sin 𝜃𝐪,𝐤)4

8𝐿2(𝜅eff(𝐤)|𝐤|4 + 𝛾𝑑 )(𝜅eff(𝐪 − 𝐤)|𝐪 − 𝐤|4 + 𝛾𝑑 )

×

(

|𝐤|4

𝜅eff(𝐤)|𝐤|4 + 𝛾𝑑
+

|𝐪 − 𝐤|3|𝐤|
𝜅eff(𝐪 − 𝐤)|𝐪 − 𝐤|4 + 𝛾𝑑

𝜅eff(𝐪 − 𝐤)
𝜅eff(𝐤)

)

= 0. (29)

Solving Eq. (29) for 𝜅eff(𝐤), we obtain the following implicit equation:

𝜅eff(𝐤) = 𝜅𝑏 +
𝑘𝐵𝑇𝐸
4𝐿2

∑

𝐪∈

⎛

⎜

⎜

⎝

𝜅eff(𝐪 − 𝐤)
(

𝜅eff(𝐤)|𝐤|4 + 𝛾𝑑
)

(sin 𝜃𝐪,𝐤)4

𝜅eff(𝐤)
(

𝜅eff(𝐪 − 𝐤)|𝐪 − 𝐤|4 + 𝛾𝑑
)2

|

|

|

|

𝐪 − 𝐤
𝐤

|

|

|

|

3

+
(sin 𝜃𝐪,𝐤)4

𝜅eff(𝐪 − 𝐤)|𝐪 − 𝐤|4 + 𝛾𝑑

)

. (30)

The first step to solve the implicit equation in (30) is to carry out the summation in the second and third terms over 𝐪. Following
he scaling analysis presented in Ahmadpoor et al. (2017), we set 𝜅eff(𝐪−𝐤) ∼ 𝛩|𝐪 − 𝐤|−𝜁 , with 𝛩 representing an unknown constant.
n order to make analytical progress, we consider two cases:

1. Large intermembrane distance: In this case, the fluctuations, although confined and suppressed by the entropic force, are large
enough to generate in-plane nonlinear strain energy. Thus, 𝛾𝑑 will be quite small and negligible compared to the nonlinear
effect of the in-plane strain energy.

2. Small intermembrane distance: In this case, the entropic force will suppress both the fluctuations and the resulting nonlinear
in-plane strain. For this case, 𝛾𝑑 will be indeed dominant and cannot be neglected.

We start with the first case, where the distance 𝑑 is large and 𝛾𝑑 is quite small and negligible. The summation in (30) for this
ase, scales as:

1
𝐿2

∑

𝐪∈

⎛

⎜

⎜

⎝

𝜅eff(𝐪 − 𝐤)
(

𝜅eff(𝐤)|𝐤|4 + 𝛾𝑑
)

(sin 𝜃𝐪,𝐤)4

𝜅eff(𝐤)
(

𝜅eff(𝐪 − 𝐤)|𝐪 − 𝐤|4 + 𝛾𝑑
)2

|

|

|

|

𝐪 − 𝐤
𝐤

|

|

|

|

3
+

(sin 𝜃𝐪,𝐤)4

𝜅eff(𝐪 − 𝐤)|𝐪 − 𝐤|4 + 𝛾𝑑

⎞

⎟

⎟

⎠

∼ 1
𝐿2

∑

𝐪∈

(sin 𝜃𝐪,𝐤)4

𝜅eff(𝐪 − 𝐤)|𝐪 − 𝐤|4

(

1 +
|𝐤|

|𝐪 − 𝐤|

)

+ 𝑂(𝛾𝑑 )

∼ 1
𝐿2

∑

𝐪∈

(sin 𝜃𝐪,𝐤)4

𝛩|𝐪 − 𝐤|4−𝜂

(

1 +
|𝐤|

|𝐪 − 𝐤|

)

+ 𝑂(𝛾𝑑 )

∼ 1
𝛩|𝐤|2−𝜂

+ 𝑂(𝛾𝑑 ). (31)

Note that at long wave-length fluctuations (|𝐤| → 0), the summation in (31) will be the dominant factor in the effective bending
stiffness (30), compared to the constant 𝜅𝑏. Thus, at long wave-length fluctuations, 𝜅eff(𝐤) scales as:

𝜅eff(𝐤) ∶= 𝛩|𝐤|−𝜁 ∼
𝑘𝐵𝑇𝐸

𝛩|𝐤|2−𝜁
, (32)

from which we obtain the effective bending stiffness as:

𝜅eff(𝐤) ∼
√

𝐸𝑘𝐵𝑇 |𝐤|−1. (33)

4 In the presence of the nonlinear in-plane strain, the fluctuations can be described more generally as:

⟨|ℎ(𝐤)|
2
⟩ ∼ (

∑

𝑖
𝛼𝑖|𝐤|𝜉𝑖 )−1 =

1
𝛼1|𝐤|𝜉1 + 𝛼2|𝐤|𝜉2 + 𝛼3|𝐤|𝜉3 + 𝛼4|𝐤|𝜉4 +⋯

where 𝜉𝑖 are not necessarily integers. In this case, the dominant modes of the fluctuations are the long wave-length modes, where 𝐤 → 0. Therefore, the term
with smaller exponents 𝜉𝑖 in the denominator of the above equation will be the leading term in the summation. Accordingly, we can approximately describe the
fluctuations in terms of the leading term as: ⟨ℎ(𝐤)2⟩ ∼ 1∕𝐤𝜉 , with 𝜉 being the smallest exponent in the denominator of the above equation. In this manner, the
effective bending stiffness varies with the fluctuation mode as: 𝜅eff(𝐤) ∼ 𝐤𝜉−4. We set 𝜁 = 4 − 𝜉 ⩾ 0 and our goal is to obtain an estimate of 𝜁 .
7
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The expression for the effective bending stiffness in (33) has been previously derived by Ahmadpoor et al. (2017) for a free
fluctuating solid membrane. Using this effective bending stiffness, the fluctuations spectra are given as:

⟨|ℎ(𝐤)|2⟩ =
𝑘𝐵𝑇

𝐿2(𝜅eff(𝐤))|𝐤|4 + 𝛾𝑑
∼

𝑘𝐵𝑇

𝐿2(
√

𝐸𝑘𝐵𝑇 |𝐤|3 + 𝛾𝑑 )
, (34)

from which the fluctuations formula in real space is obtained as:

⟨ℎ2⟩ =
∑

𝐤∈
⟨|ℎ(𝐤)|2⟩ ∼

∑

𝐤∈

𝑘𝐵𝑇

𝐿2(
√

𝐸𝑘𝐵𝑇 |𝐤|3 + 𝛾𝑑 )

∼
( 𝐿
2𝜋

)2

∫

∞

0

𝑘𝐵𝑇

𝐿2(
√

𝐸𝑘𝐵𝑇 |𝐤|3 + 𝛾𝑑 )
2𝜋|𝐤|𝑑|𝐤|

∼ 1

3
√

3
3

√

(𝑘𝐵𝑇 )2

𝐸𝛾𝑑
. (35)

The fluctuations in (35) should be confined within the two hard walls in distance 2𝑑 from one another; ⟨ℎ2⟩ < 𝑑2. To ensure this
inequality, we set ⟨ℎ2⟩ = 𝜉𝑑2, where 0 < 𝜉 < 1. Solving for 𝛾𝑑 , we have:

⟨ℎ2⟩ ∼ 1

3
√

3
3

√

(𝑘𝐵𝑇 )2

𝐸𝛾𝑑
∶= 𝜉𝑑2,→ 𝛾𝑑 ∼

(𝑘𝐵𝑇 )2

81
√

3𝐸𝑑6𝜉3
. (36)

Substituting Eq. (36) for 𝛾𝑑 into the free energy (24), and taking its derivative with respect to the volume of the system to obtain
he entropic pressure, we have:

𝑝 = −
𝜕𝐹0
𝜕𝑉

= − 1
2𝐿2

𝜕𝐹0
𝜕𝑑

= − 1
2𝐿2

𝜕𝐹0
𝜕𝛾𝑑

𝜕𝛾𝑑
𝜕𝑑

∼ − 1
2𝐿2

(

∑

𝐤∈

𝑘𝐵𝑇

(𝜅eff(𝐤))|𝐤|4 + 𝛾𝑑

)(

−
2(𝑘𝐵𝑇 )2

27
√

3𝐸𝑑7𝜉3

)

∼ 1
𝐿2

(

𝐿2
⟨ℎ2⟩

)

(

(𝑘𝐵𝑇 )2

27
√

3𝐸𝑑7𝜉3

)

∼ 𝜉𝑑2
(

(𝑘𝐵𝑇 )2

27
√

3𝐸𝑑7𝜉3

)

∼
(𝑘𝐵𝑇 )2

27
√

3𝐸𝜉2

(

1
𝑑5

)

. (37)

The entropic force on a confined fluctuating solid membrane scales as 𝑝 ∝ 1∕𝑑5 for large values of 𝑑. We now return our attention
to the second case; small intermembrane distances, where entropic force is indeed large enough to suppress the nonlinearities. To
start, let us calculate the summation in (30), assuming that 𝛾𝑑 is not small and cannot be neglected.

1
𝐿2

∑

𝐪∈

⎛

⎜

⎜

⎝

𝜅eff(𝐪 − 𝐤)
(

𝜅eff(𝐤)|𝐤|4 + 𝛾𝑑
)

(sin 𝜃𝐪,𝐤)4

𝜅eff(𝐤)
(

𝜅eff(𝐪 − 𝐤)|𝐪 − 𝐤|4 + 𝛾𝑑
)2

|

|

|

|

𝐪 − 𝐤
𝐤

|

|

|

|

3
+

(sin 𝜃𝐪,𝐤)4

𝜅eff(𝐪 − 𝐤)|𝐪 − 𝐤|4 + 𝛾𝑑

⎞

⎟

⎟

⎠

∼ 1
𝐿2

∑

𝐪∈

⎛

⎜

⎜

⎝

|𝐪 − 𝐤|3−𝜂
(

𝛩|𝐤|4−𝜂 + 𝛾𝑑
)

(sin 𝜃𝐪,𝐤)4

|𝐤|3−𝜂
(

𝛩|𝐪 − 𝐤|4−𝜂 + 𝛾𝑑
)2

+
(sin 𝜃𝐪,𝐤)4

𝛩|𝐪 − 𝐤|4−𝜂 + 𝛾𝑑

⎞

⎟

⎟

⎠

∼
𝑐1𝜃|𝐤|6−𝜂

𝛾2𝑑 (5 − 𝜂)
+

𝑐2|𝐤|2

𝛾𝑑
(38)

which clearly vanishes at long wave-length fluctuations, i.e. |𝐤| → 0. Thus, the effective bending stiffness 𝜅eff(𝐤) for this case is
independent of mode 𝐤 and converges to a constant: 𝜅eff(𝐤) ∼ . The fluctuations in each mode are then given by:

⟨|ℎ(𝐤)|2⟩ =
𝑘𝐵𝑇

𝐿2(|𝐤|4 + 𝛾𝑑 )
, (39)

from which the fluctuations in real space are obtained as:

⟨ℎ2⟩ =
∑

𝐤∈
⟨|ℎ(𝐤)|2⟩ ∼

∑

𝐤∈

𝑘𝐵𝑇

𝐿2(|𝐤|4 + 𝛾𝑑 )

∼
( 𝐿
2𝜋

)2

∫

∞

0

𝑘𝐵𝑇

𝐿2(|𝐤|4 + 𝛾𝑑 )
2𝜋|𝐤|𝑑|𝐤|

=
𝑘𝐵𝑇

8
√

𝛾𝑑
. (40)

Solving ⟨ℎ2⟩ = 𝜉𝑑2 for 𝛾𝑑 , we obtain:

⟨ℎ2⟩ =
𝑘𝐵𝑇
√

∶= 𝜉𝑑2, → 𝛾𝑑 =
(𝑘𝐵𝑇 )2

2 4
. (41)
8

8 𝛾𝑑 64𝜉 𝑑
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Fig. 3. Molecular dynamics simulation of a fluctuating graphene sheet confined between two hard walls.

Substituting Eq. (41) for 𝛾𝑑 into the free energy (24), and taking its derivative with respect to the volume of the system to obtain
the entropic pressure, we have:

𝑝 = −
𝜕𝐹0
𝜕𝑉

= − 1
2𝐿2

𝜕𝐹0
𝜕𝑑

= − 1
2𝐿2

𝜕𝐹0
𝜕𝛾𝑑

𝜕𝛾𝑑
𝜕𝑑

∼ − 1
2𝐿2

(

∑

𝐤∈

𝑘𝐵𝑇

|𝐤|4 + 𝛾𝑑

)

(

−
(𝑘𝐵𝑇 )2

16𝑑5𝜉2

)

∼ 1
𝐿2

(

𝐿2
⟨ℎ2⟩

)

(

(𝑘𝐵𝑇 )2

16𝑑5𝜉2

)

∼ 𝜉𝑑2
(

(𝑘𝐵𝑇 )2

16𝑑5𝜉2

)

∼
(𝑘𝐵𝑇 )2

16𝜉

(

1
𝑑3

)

. (42)

The entropic pressure for this case scales as 𝑝 ∼ 1∕𝑑3. This power law has been previously derived for fluid membranes within linear
elasticity. In the following section, we perform molecular dynamics simulations to verify our theoretical findings.

5. Molecular dynamics simulation

The MD simulation model is schematically shown in Fig. 3, where a graphene membrane is sandwiched between two rigid walls.
The steric pressure acting on the graphene due to geometric confinement is modeled by a repulsive wall potential:

𝐸(𝛿) = 2𝜖
15

(𝜎
𝛿

)9
, (43)

where 𝛿 is the distance between atoms and wall and 𝜖 and 𝜎 are constants that control the repulsion magnitude. This potential is
adopted from the repulsive component of the Lennard Jones potential implemented in LAMMPS, however, it does not characterize
the Van der Waals forces acting between the graphene and the wall. To isolate the effects of steric pressure, the model intentionally
disregards the attractive part of the Van der Waals force. The simulation box is periodic in the lateral directions, and its dimension
is determined by the size of the graphene sheet. At finite temperatures, ripples are formed in graphene due to thermal fluctuations.
To restrain free thermal fluctuations within a domain with height 𝑑 between two walls, a ‘‘repulsion zone’’, with a height of 0.3 nm,
is positioned adjacent to the top and bottom walls. Inside the zone, the graphene experiences the repulsive potential. Outside the
zone, the graphene is allowed to fluctuate freely.

The parameters in the repulsive potential are chosen to simulate the repulsive forces akin to the elastic collision experienced
when atoms interact with the walls. This is analogous to the elastic collision that occurs when ideal gas atoms interact with the walls
of a container, resulting in a pressure that adheres to the ideal gas law, which can be used to calibrate the repulsive parameters. The
calibration of parameters is performed in a similar simulation model where ideal gas atoms (replacing the graphene) are inserted
between the walls, as shown in Fig. D.6. The gas pressure exerted by the walls is computed by varying the value of 𝜎 while keeping
𝜖 constant at 1 eV. As shown in Fig. D.7, it is found that 𝜎 = 2.5 Å results in pressures that align with the ideal gas law. Therefore,
𝜎 = 2.5 Å and 𝜖 = 1 eV are chosen to mimic the elastic collision between the wall and confining atoms in the calculation of the
steric pressure of graphene.

The MD simulations in this study are conducted within the NVT ensemble, employing a Nose–Hoover thermostat for temperature
control with a time step of 0.1 fs. The size of the graphene sheet is chosen to be 40 by 40 nm, and the temperature for the MD
simulation is set at 1000 K. These parameters are selected to intensify the thermal rippling of graphene, which in turn facilitates a
reduction in sampling time during the MD simulation. The steric pressure exerted by the wall is calculated by 𝑝 = ⟨𝑓 ⟩ ∕𝐴, where
⟨𝑓 ⟩ is the time-averaged reaction force from the wall and 𝐴 is the cross-section area.

Fig. 4(a) and (c) displays the pressure obtained from MD simulations for two extreme separations considered in this study. It is
noted that larger separations exhibit increased fluctuations, suggesting the need for extended sampling time to attain a more accurate
ensemble average. The averaged steric pressure values for the top and bottom walls are found to be almost identical. Fig. 4(b) and
9
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Fig. 4. Steric pressure and probability density of vertical positions of graphene atoms for separation distance 1.3 Å (a, b) and 5.3 Å (c, d).

Fig. 5. Steric pressure 𝑝, as a function of the distance 𝑑 between two hard walls.

(d) show the histograms representing the positions of graphene atoms during the MD simulations. The histograms confirm that all
the atoms are effectively confined by the walls within the free fluctuation zone. In the case of the smallest separation 1.3 Å, there
is a minimal probability of atoms moving beyond the bounding walls.

The steric pressure is plotted as a function of the separation distance in Fig. 5. At short separation distances, only small out-
of-plane fluctuations are allowed in the graphene. In this case, the in-plane and out-of-plane modes can be decoupled under a
harmonic approximation (Gao and Huang, 2014). Consequently, the pressure follows the scaling law proposed by Helfrich (1978),
where 𝑝 ∼ 𝑑−3. At a large separation, the strong anharmonic effect of graphene dominates the thermal fluctuations, resulting in a
different scaling law, that is, 𝑝 ∼ 𝑑−5. A transition from harmonic to anharmonic behavior is observed between these two extremities.
10
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6. Summary and conclusion

In this paper, we have presented a statistical mechanics model within a fully nonlinear elasticity framework to study the entropic
orce on confined fluctuating solid membranes. To deal with nonlinearity, we used a variational perturbation method to derive
losed-form approximate expressions for the entropic force. Our results indicate a different power law for the entropic pressure,
ompared to that of fluid membranes. Specific outcomes of the work are as follows:

• For small values of confining distance 𝑑, the entropic pressure is expected to be large enough to suppress the effects of
nonlinearities. In this case, the solid membranes essentially behave as linear elastic sheets. Thus, the resulting power law
for the entropic force is the same as that of a fluid membrane, i.e., 𝑝 ∝ 1∕𝑑3.

• For large values of 𝑑, the entropic force will be smaller to a degree that cannot suppress the nonlinearities. In this case, the
power law for the entropic force is derived as 𝑝 ∝ 1∕𝑑5 and decays faster, compared to small values of 𝑑.

• The entropic force has been studied for fluid membranes in computational models in the past. In this work, we revisited
this problem for solid membranes using molecular dynamics simulations. We have used graphene as a representative of solid
membranes. Our results from simulations are in agreement with the theoretical predictions and show two different regions for
the variations of the scaling laws for the entropic force with a crossover distance of about 3.5Å.

Finally, we note that, while we used graphene as a proof of concept, the results are applicable to any other solid membranes in
iology or among crystalline membranes. A detailed physical consequence of our study is beyond the scope of this work, but we
nticipate its implication in numerous biological phenomena as well as applications of crystalline membranes in the design of novel
lexible nanostructures.
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ppendix A. Fourier transformation

Fourier transformation can be expressed in terms of sinusoidal functions as:

𝑢𝑥(𝑥) =
∑

𝑞∈1

𝑎𝑞 cos(𝑞𝑥) + 𝑏𝑞 sin(𝑞𝑥) (A.1)

On the other hand, given that 𝑢Re(𝑞) and 𝑢Im(𝑞) are the real and imaginary parts of the 𝑢(𝑞) we can expand the complex Fourier
ransform as:

𝑢𝑥(𝑥) =
∑

𝑢(𝑞)𝐞𝚤𝑞⋅𝑥
11

𝑞∈1
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F
s

f

=
∑

𝑞∈1

(𝑢Re(𝑞) + i𝑢Im(𝑞))(cos(𝑞𝑥) + i sin(𝑞𝑥))

=
∑

𝑞∈1

𝑢Re(𝑞) cos(𝑞𝑥) − 𝑢Im(𝑞) sin(𝑞𝑥) + i
∑

𝑞∈1

(𝑢Im(𝑞) cos(𝑞𝑥) + 𝑢Re(𝑞) sin(𝑞𝑥)) (A.2)

We note that for each mode 𝑞, there is a conjugate mode −𝑞, for which we have: 𝑢Im(−𝑞) = −𝑢Im(𝑞), 𝑢Re(−𝑞) = 𝑢Re(𝑞),
cos(−𝑞𝑥) = cos(𝑞𝑥), and sin(−𝑞𝑥) = − sin(𝑞𝑥) which causes the imaginary part of the above summation to vanish. Comparing this
summation with the expansion in (A.1), we can readily relate the coefficients as: 𝑎𝑞 = 𝑢Re(𝑞) and 𝑏𝑞 = −𝑢Im(𝑞).

The derivatives and their corresponding integrations in one-dimensional problem can be expressed in Fourier expansion as below:

𝜕𝑢𝑥
𝜕𝑥

=
∑

𝑞∈1

i 𝑞𝑢(𝑞)𝐞𝚤𝑞⋅𝑥, ∫

(

𝜕𝑢𝑥
𝜕𝑥

)

= 0, ∫

(

𝜕𝑢𝑥
𝜕𝑥

)2
= 𝐿2

∑

𝑞∈1

𝑞2|𝑢(𝑞)|2, (A.3a)

∫

(

𝜕2ℎ
𝜕𝑥2

)2
= 𝐿2

∑

𝑞∈1

𝑞4|ℎ(𝑞)|
2
, ∫

( 𝜕ℎ
𝜕𝑥

)4
= 𝐿2

∑

𝑞∈1

|𝐴(𝑞)|
2

(A.3b)

∫
𝜕𝑢𝑥
𝜕𝑥

( 𝜕ℎ
𝜕𝑥

)2
= 𝐿2

∑

𝑞∈1

i 𝑞𝑢(𝑞)𝐴(−𝑞) = 𝐿2
∑

𝑞∈1

i 𝑞(𝑢Re(𝑞) + i 𝑢Im(𝑞))(𝐴
Re
(−𝑞) + i𝐴

Im
(−𝑞))

= 𝐿2
∑

𝑞∈1

i 𝑞(𝑢Re(𝑞) + i 𝑢Im(𝑞))(𝐴
Re
(𝑞) − i𝐴

Im
(𝑞))

= 𝐿2
∑

𝑞∈1

𝑞
(

𝑢Re(𝑞)𝐴
Im
(𝑞) − 𝑢Im(𝑞)𝐴

Re
(𝑞)

)

(A.3c)

The superscripts ‘‘Re’’ and ‘‘Im’’ denote the decomposition into real and imaginary parts. Also, note that we have dropped the
imaginary part of the above summation since it vanishes by summing over the conjugate modes.

For the 2D case, the corresponding Fourier transformation has real and imaginary parts; i.e. 𝐮(𝐪) = 𝐮Re(𝐪) + 𝐢 𝐮Im(𝐪), in which
the superscripts denote the real and imaginary parts. The corresponding conjugate of each mode is also derived as: 𝐮∗(𝐪) = 𝐮(−𝐪) =
𝐮Re(𝐪) − 𝐢 𝐮Im(𝐪), where 𝐮(𝐪)𝐮∗(𝐪) = |𝐮(𝐪)|2. Further, we remark on the orthogonality property of the Fourier modes:

∫ 𝑢𝛾 (𝐪)𝑢𝛿(𝐪′)e𝑖(𝐪+𝐪
′)⋅𝐱𝑑𝐱 = 𝛿𝐪,−𝐪′𝑢𝛾 (𝐪)𝑢𝛿(𝐪′)𝐿2

= 𝑢𝛾 (𝐪)𝑢𝛿(−𝐪)𝐿2 (A.4)

Similar arguments can be made for 𝐴𝛾𝛿(𝐪) and 𝑤(𝐪). Now we can calculate the integration of each term in 𝑈h, 𝑈ac and 𝑈anh in
ourier space. In the following equations, we demonstrate the details of the Fourier transformation of these terms that were not
hown in the main text of the paper:

∫S

( 𝜕𝑢𝛾
𝜕𝑥𝛿

)2

𝑑𝐱 = 𝐿2
∑

𝐪∈
𝑞2𝛿 |𝑢𝛾 (𝐪)|

2 (A.5a)

∫S

(

𝜕ℎ
𝜕𝑥𝛾

𝜕ℎ
𝜕𝑥𝛿

)2
𝑑𝐱 = 𝐿2

∑

𝐪∈
|𝐴𝛾𝛿(𝐪)|

2
(A.5b)

∫S

( 𝜕𝑢𝛾
𝜕𝑥𝛿

𝜕ℎ
𝜕𝑥𝑘

𝜕ℎ
𝜕𝑥𝑙

)

𝑑𝐱 = 𝐿2
∑

𝐪∈
𝐢 𝑞𝛿𝑢𝛾 (𝐪)𝐴𝑘𝑙(−𝐪)

= 𝐿2
∑

𝐪∈
𝑞𝛿

{

𝐴
Im
𝑘𝑙 (𝐪)𝑢

Re
𝛾 (𝐪) − 𝑢Im𝛾 (𝐪)𝐴

Re
𝑘𝑙 (𝐪)

+ 𝐢
(

𝐴
Re
𝑘𝑙 (𝐪)𝑢

Re
𝛾 (𝐪) + 𝑢Im𝛾 (𝐪)𝐴

Im
𝑘𝑙 (𝐪)

)

}

= 𝐿2
∑

𝐪∈
𝑞𝛿

{

𝐴
Im
𝑘𝑙 (𝐪)𝑢

Re
𝛾 (𝐪) − 𝑢Im𝛾 (𝐪)𝐴

Re
𝑘𝑙 (𝐪)

}

(A.5c)

Note that for each 𝐪 mode in the summation, there is a conjugate of −𝐪, that makes the imaginary part of the summation in
(A.5c) vanish:

𝑞𝛿
(

𝐴
Re
𝑘𝑙 (𝐪)𝑢

Re
𝛾 (𝐪) + 𝑢Im𝛾 (𝐪)𝐴

Im
𝑘𝑙 (𝐪)

)

+ (−𝑞𝛿)
(

𝐴
Re
𝑘𝑙 (−𝐪)𝑢

Re
𝛾 (−𝐪) + 𝑢Im𝛾 (−𝐪)𝐴

Im
𝑘𝑙 (−𝐪)

)

= 𝑞𝛿
(

𝐴
Re
𝑘𝑙 (𝐪)𝑢

Re
𝛾 (𝐪) + 𝑢Im𝛾 (𝐪)𝐴

Im
𝑘𝑙 (𝐪)

)

− 𝑞𝛿
(

𝐴
Re
𝑘𝑙 (𝐪)𝑢

Re
𝛾 (𝐪) + (−𝑢Im𝛾 (𝐪))(−𝐴

Im
𝑘𝑙 (𝐪))

)

= 0 (A.6)

Since there will not be any contribution from the imaginary parts of the summations to the free energy, we have taken them out
12

rom our calculations.
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Appendix B. Effective strain energy

The effective strain energy, which consists of the remainder terms in the exponent of the partition function integral once the
n-plane terms have been integrated out, can be expressed as:

𝑈eff
𝑠 = 1

4
𝐸

∑

𝐪∈
𝛹 (𝐪)𝛹∗(𝐪) (B.1)

in which, for ease of notation, we have defined 𝛹 (𝐪) as:

𝛹 (𝐪) = 1
𝐪2

{

𝑞2𝑦𝐴𝑥𝑥(𝐪) + 𝑞2𝑥𝐴𝑦𝑦(𝐪) − 2𝑞𝑥𝑞𝑦𝐴𝑥𝑦(𝐪)
}

(B.2)

Furthermore, we can more compactly express the strain energy using the so-called transverse projector operator (Nelson et al.,
004) as below:

𝛹 (𝐪) = 𝑃 𝑇
𝑖𝑗 (𝐪)𝐴𝑖𝑗 (𝐪) (B.3)

in which

𝑃 𝑇
𝑖𝑗 (𝐪) = 𝛿𝑖𝑗 −

𝑞𝑖𝑞𝑗
𝐪2

(B.4)

Note that 𝛹 (𝐪)𝛹∗(𝐪) = 𝛹 (𝐪)𝛹 (−𝐪) = |𝛹 (𝐪)|2 and is expanded as follows:

𝛹 (𝐪)𝛹 (−𝐪) = |𝛹 (𝐪)|2

= 1
(𝑞2𝑥 + 𝑞2𝑦 )2

{

𝑞4𝑥𝐴
Re
𝑦𝑦 (𝐪)

2 + 𝑞4𝑥𝐴
Im
𝑦𝑦 (𝐪)

2 + 𝑞4𝑦𝐴
Re
𝑥𝑥(𝐪)

2 + 𝑞4𝑦𝐴
Im
𝑥𝑥 (𝐪)

2

− 4𝑞𝑥𝑞3𝑦𝐴
Im
𝑥𝑥 (𝐪)𝐴

Im
𝑥𝑦 (𝐪) + 2𝑞2𝑥𝑞

2
𝑦𝐴

Im
𝑥𝑥 (𝐪)𝐴

Im
𝑦𝑦 (𝐪) − 4𝑞3𝑥𝑞𝑦𝐴

Im
𝑥𝑦 (𝐪)𝐴

Im
𝑦𝑦 (𝐪)

+ 4𝑞2𝑥𝑞
2
𝑦𝐴

Im
𝑥𝑦 (𝐪)

2 + 𝑞4𝑥𝐴
Im
𝑦𝑦 (𝐪)

2 + 𝑞4𝑦𝐴
Im
𝑥𝑥 (𝐪)

2 − 4𝑞𝑥𝑞3𝑦𝐴
Re
𝑥𝑥(𝐪)𝐴

Re
𝑥𝑦 (𝐪)

+ 2𝑞2𝑥𝑞
2
𝑦𝐴

Re
𝑥𝑥(𝐪)𝐴

Re
𝑦𝑦 (𝐪) − 4𝑞3𝑥𝑞𝑦𝐴

Re
𝑥𝑦 (𝐪)𝐴

Re
𝑦𝑦 (𝐪) + 4𝑞2𝑥𝑞

2
𝑦𝐴

Re
𝑥𝑦 (𝐪)

2

}

Appendix C. The variational perturbation theory and the ensemble averages

Consider the nonlinear energy in (20). The idea is that the nonlinear part is a small perturbation compared to the quadratic
unctional 0. Let 𝐹 , be the free energy of the system. In the absence of the nonlinear perturbation term 𝑝, the partition function
0 and free energy 𝐹0 can be easily obtained using standard Gaussian integrations. The effect of the nonlinear term on the total free
nergy of the system can be then estimated by a perturbation expansion around 𝐹0. We start with expanding the partition function
f the system 𝑍:

𝑍 = ∫ exp(−𝛽(0 +𝑝))[𝑤] = 𝑍0⟨exp(−𝛽𝑝)⟩0
(C.1)

herein 𝛽 = 1
𝑘𝐵𝑇

and the subscript ⟨⋅⟩0
denotes ensemble average, with respect to 0. The exponential term in the above equation

an be expanded in a Taylor series as:

exp(−𝛽𝑝) = 1 − 𝛽𝑝 +
1
2
(𝛽𝑝)2 +⋯ =

∞
∑

𝑛=0

(−𝛽𝑝)𝑛

𝑛!
(C.2)

Then the free energy of the system is obtained as:

𝐹 = − 1
𝛽
log𝑍 = 𝐹0 −

1
𝛽
log(1 +

∞
∑

𝑛=1

⟨(−𝛽𝑝)𝑛⟩0

𝑛!
) (C.3)

xpanding the logarithm term we have:

log

( ∞
∑

𝑛=0

(−𝛽)𝑛⟨𝑛
𝑝 ⟩0

𝑛!

)

=

( ∞
∑

𝑛=1

(−𝛽)𝑛⟨𝑛
𝑝 ⟩0

𝑛!

)

− 1
2

(

∑

𝑛=1

(−𝛽)𝑛⟨𝑛
𝑝 ⟩0

𝑛!

)2

+⋯ (C.4)

nd hence, the free energy expansion can be derived to be:

𝐹 = 𝐹0 −
1
𝛽

∞
∑

𝑛=1

(−𝛽)𝑛

𝑛!
⟨𝑛

𝑝 ⟩
𝑐
0

(C.5)

here the superscript ⟨⋅⟩𝑐 denotes the cumulant averages. The cumulant averages, up to fourth order, are:

⟨ ⟩

𝑐 = ⟨ ⟩
13

𝑝 0 𝑝 0
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⟨2
𝑝 ⟩

𝑐
0

= ⟨2
𝑝 ⟩0

− ⟨𝑝⟩
2
0

⟨3
𝑝 ⟩

𝑐
0

= ⟨3
𝑝 ⟩0

− 3⟨2
𝑝 ⟩0

⟨𝑝⟩0
+ 2⟨𝑝⟩

3
0

⟨4
𝑝 ⟩

𝑐
0

= ⟨4
𝑝 ⟩0

− 3⟨3
𝑝 ⟩0

⟨𝑝⟩0
− 3⟨2

𝑝 ⟩
2
0

+ 12⟨2
𝑝 ⟩0

⟨𝑝⟩
2
0

− 6⟨𝑝⟩
4
0

Accordingly, the excess free energy can be related to the total average energy of the system up to 𝑛th order as:

⟨⟩ = ⟨0⟩0
+ 1

𝛽

∞
∑

𝑛=1

(−𝛽)𝑛

𝑛!
⟨𝑛

𝑝 ⟩
𝑐
0

The infinite series in the above equation gives us the exact average amount of energy that the nonlinear term adds to the system.
n practice, however, we need to truncate the series to some finite order. If the nonlinear term is small (and the series is well-
ehaved), we can expect to achieve a reasonable estimate by evaluating the first few terms of perturbation expansion in Eq. (C.5).
et, it has been shown that the effect of nonlinearities in solid membranes such as graphene is indeed remarkable and the naive
erturbation method does not provide a reasonable estimate for the free energy and fluctuations (Ahmadpoor et al., 2017).
To improve the results of what can be obtained from the naive perturbation approach, we adopt an alternative version of it that

s rooted in a variational argument. The key idea was first introduced by Kleinert (2009) in the context of anharmonic Hamiltonians
rising in quantum mechanics. We briefly elaborate on the details of the procedure here. We start with adding and subtracting a
rial Hamiltonian to the nonlinear energy formulation in Eq. (20). In order to describe the out-of-plane fluctuations, consider a trial
amiltonian as:

𝑈trial =
1
2
𝐿2

∑

𝐤∈
(𝜅eff(𝐤)𝐤4 + 𝛾𝑑 )|ℎ(𝐤)|2 (C.6)

here 𝜅eff is the unknown effective bending stiffness in general mode-dependent form. Then, the total elastic energy can be written
s:

𝑈𝑏 + 𝑈eff
𝑠 = 𝑈trial + (𝑈𝑏 + 𝑈eff

𝑠 − 𝑈trial) (C.7)

hen the perturbation expansion of the free energy associated with the Hamiltonian in (C.7) is obtained by the Taylor series in
C.5):

𝐹∞ = 𝐹0 −
1
𝛽

∞
∑

𝑁=1

(−𝛽)𝑁

𝑁!
⟨

[

𝑈𝑏 + 𝑈eff
𝑠 − 𝑈trial

]𝑁
⟩

𝑐
𝑈trial

(C.8)

where 𝐹0 is the free energy corresponding to the trial Hamiltonian 𝑈trial:

𝐹0 =
∑

𝐤∈

1
2𝛽

(

log(𝐿
2

2𝜋
) + log(𝛽(𝜅eff(𝐤)|𝐤|4 + 𝛾𝑑 ))

)

= 𝐶𝐹 +
∑

𝐤∈

𝑘𝐵𝑇
2

log(𝜅eff(𝐤)|𝐤|4 + 𝛾𝑑 ) (C.9)

here we called the first term 𝐶𝐹 , a coefficient that is independent of the effective stiffness 𝜅eff(𝐤). Needless to say the full expansion
n (C.8) as 𝑁 → ∞ should be independent of the choice of the trial Hamiltonian. In practice, however, the series is truncated up
o a finite order 𝑀 to obtain an estimate of the free energy. Unlike the infinite series expansion in Eq. (C.8), the truncated series
𝑀 does depend on the choice of the trial Hamiltonian trial. Accordingly, in order to obtain an optimized estimate, we need to
inimize the sensitivity of the truncated series to the trial Hamiltonian. To this end, we set (Kleinert, 2009):

𝜕𝐹𝑀

𝜕𝜅eff(𝐤)
∶= 0. (C.10)

In a rather good approximation, the result for the truncated series of the variational free energy from this method will converge
i.e. 𝐹𝑀 ≈ 𝐹𝑀+1 and achieves its minimal sensitivity to the trial function. Up to the first order, the ensemble averages are calculated
as:

⟨𝑈⟩ =

⟨

1
2
𝜅𝑏𝐿

2
∑

𝐤∈
𝐤4|ℎ(𝐤)|

2
+ 1

2
𝐿2

∑

𝐤∈
𝛾𝑑 |ℎ(𝐤)|

2
⟩

𝑈trial

+

⟨

1
2
𝐸𝐿2

∑

𝐪∈
|

1
2
𝑃 𝑇
𝑖𝑗 (𝐪)𝐴𝑖𝑗 (𝐪)|

2
⟩

𝑈trial

∶= 𝐿2

2
∑

𝐤∈
(𝜅eff(𝐤)|𝐤|4 + 𝛾𝑑 )⟨|ℎ(𝐤)|

2
⟩𝑈trial (C.11)

To calculate the averages in Eq. (C.11), we start by expanding the out-of-plane displacement field in Fourier space:
𝜕ℎ
𝜕𝑥𝑖

𝜕ℎ
𝜕𝑥𝑗

=
∑

𝐤,𝐤′∈
−𝑘𝑖𝑘′𝑗ℎ(𝐤)ℎ(𝐤

′)ei(𝐤+𝐤′)⋅𝐱

=
∑

𝐤,𝐪∈
−𝑘𝑖(𝑞𝑗 − 𝑘𝑗 )ℎ(𝐤)ℎ(𝐪 − 𝐤)ei𝐪⋅𝐱 =

∑

𝐪∈
𝐴𝑖𝑗 (𝐪)ei𝐪⋅𝐱 (C.12a)
14
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Fig. D.6. Computation model of molecular dynamics simulation.

in which:

𝐴𝑖𝑗 (𝐪) =
∑

𝐤∈
−𝑘𝑖(𝑞𝑗 − 𝑘𝑗 )ℎ(𝐤)ℎ(𝐪 − 𝐤) (C.13)

After substituting the operator 𝑃 𝑇
𝑖𝑗 (𝐪), we obtain:

𝑃 𝑇
𝑖𝑗 (𝐪)𝐴𝑖𝑗 (𝐪) =

∑

𝐤∈

(

−𝑘𝑖(𝑞𝑖 − 𝑘𝑖) +
𝑘𝑖𝑞𝑖𝑞𝑗 (𝑞𝑗 − 𝑘𝑗 )

𝐪2

)

ℎ(𝐤)ℎ(𝐪 − 𝐤)

=
∑

𝐤∈

𝐤2𝐪2 − (𝐤 ⋅ 𝐪)2

𝐪2
ℎ(𝐤)ℎ(𝐪 − 𝐤) =

∑

𝐤∈
|𝐤|2(sin 𝜃𝐪,𝐤)2ℎ(𝐤)ℎ(𝐪 − 𝐤) (C.14)

here 𝜃𝐪,𝐤 is the angle between the vectors 𝐪 and 𝐤. The magnitude of the above expressions in each mode is then:

|𝑃 𝑇
𝑖𝑗 (𝐪)𝐴𝑖𝑗 (𝐪)|

2
=
(

𝑃 𝑇
𝑖𝑗 (𝐪)𝐴𝑖𝑗 (𝐪)

)

×
(

𝑃 𝑇
𝑖𝑗 (−𝐪)𝐴𝑖𝑗 (−𝐪)

)

=
∑

𝐤,𝐤′∈
|𝐤|2(sin 𝜃𝐪,𝐤)2|𝐤′|

2(sin 𝜃−𝐪,𝐤′ )
2ℎ(𝐤)ℎ(𝐪 − 𝐤)ℎ(𝐤′)ℎ(−𝐪 − 𝐤′) (C.15)

Now, we proceed to calculate the ensemble average of the expression in Eq. (C.15). We emphasize that the averaging is carried
out with respect to the trial elastic energy which is presented in Eq. (C.6). We then obtain:

∑

𝐪∈
⟨|𝑃 𝑇

𝑖𝑗 (𝐪)𝐴𝑖𝑗 (𝐪)|
2
⟩

𝑈trial

=
∑

𝐪,𝐤,𝐤′∈
|𝐤|2(sin 𝜃𝐪,𝐤)2|𝐤′|

2(sin 𝜃−𝐪,𝐤′ )
2
⟨ℎ(𝐤)ℎ(𝐪 − 𝐤)ℎ(𝐤′)ℎ(−𝐪 − 𝐤′)⟩𝑈trial (C.16)

From Wick’s theorem (Kleinert, 2009), the above average—with respect to the quadratic trial energy (C.6)—is nonzero only when
the modes 𝐤𝑖 are decoupled and that is:

⟨ℎ(𝐤1)ℎ(𝐤2)ℎ(𝐤3)ℎ(𝐤4)⟩𝑈trial = ⟨|ℎ(𝐤1)|
2
⟩𝑈trial ⟨|ℎ(𝐤2)|

2
⟩𝑈trial

{

𝛿(𝐤1,−𝐤3)𝛿(𝐤2,−𝐤4)

+ 𝛿(𝐤1,−𝐤4)𝛿(𝐤2,−𝐤3)
}

+ ⟨|ℎ(𝐤1)|
2
⟩𝑈trial ⟨|ℎ(𝐤3)|

2
⟩𝑈trial𝛿(𝐤1,−𝐤2)𝛿(𝐤3,−𝐤4) (C.17)

Note that the case 𝐤 = −𝐪 + 𝐤 is true only in zeroth mode when 𝐪 → 0. The only nonzero case for all modes is when 𝐤 = −𝐤′.
Hence, the summation in (C.16) can be obtained as:

∑

𝐪∈
⟨|𝑃 𝑇

𝑖𝑗 (𝐪)𝐴𝑖𝑗 (𝐪)|
2
⟩𝑈trial =

∑

𝐪,𝐤∈
|𝐤|4(sin 𝜃𝐪,𝐤)4⟨|ℎ(𝐤)|

2
⟩𝑈trial ⟨|ℎ(𝐪 − 𝐤)|

2
⟩𝑈trial

=
∑

𝐪,𝐤∈

(𝑘𝐵𝑇 )2|𝐤|4(sin 𝜃𝐪,𝐤)4

(𝜅eff(𝐤)|𝐤|4 + 𝛾𝑑 )(𝜅eff(𝐤 − 𝐪)|𝐤 − 𝐪|4 + 𝛾𝑑 )
(C.18)

sing the above expression in the first order of free energy expansion in (23) will result in the variational free energy that is given
n Eq. (26).

ppendix D. Parameter selection for repulsive potential

Consider the MD simulation model shown in Fig. D.6, which is similar to the model used for graphene (Fig. 3), by replacing
raphene with 100 Ar gas atoms. The lateral dimension of the simulation box is 20 nm by 20 nm. A 6–12 LJ potential is used to
escribe the interatomic interactions between Ar atoms

𝐸 = 4𝜖𝐴𝑟

[

(𝜎𝐴𝑟 )12
−
(𝜎𝐴𝑟 )6

]

𝑟 < 𝑟𝑐 (D.1)
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Fig. D.7. Pressure exerted by the walls as a function of the separate distance, 𝑑, for different values of 𝜎 with a constant 𝜖 = 1 eV.

Fig. D.8. Steric pressure as a function of wall distance for 𝜎 = 4 Å.

where 𝜖𝐴𝑟 = 0.0104 eV, 𝜎𝐴𝑟 = 3.4 Å and 𝑟𝑐 = 10 Å.
The interaction between Ar atoms and the container walls is governed by the repulsive parameters 𝜎 and 𝜖, as defined in the

potential given by Eq. (43). Fig. D.7 shows the wall pressure (𝑝) from MD simulations as a function of the separation distance (𝑑),
calculated for different 𝜎 with a constant 𝜖 at 1 eV. The MD results are compared to the pressure predicted by the ideal gas law.
The agreement is achieved when 𝜎 is set between 2.5 Å and 3.5 Å. Therefore, it is concluded that 𝜎 = 2.5 Å can be used to mimic
the elastic collision between the wall and confining atoms, which will be adopted for the study of the steric repulsion of graphene.

Finally, we checked the behavior of the scaling law at a different 𝜎 value. The 𝑝−𝑑 curve for 𝜎 = 4 Å is shown in Fig. D.8, which
demonstrates that while the pressure values slightly increase due to stronger reaction forces from the walls, the scaling law remains
unchanged. Therefore, we postulate that the scaling law remains consistent irrespective of the value of 𝜎 as long as the atoms can
be effectively confined into the free fluctuation zone with minimum escaping probability.
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