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Abstract.

1. The main results

In this section we introduce the basic notation and state our main results. We assume
throughout that q is a non–zero complex number and not a root of unity. As usual C (resp.
Z, Z+, N) will denote the set of complex numbers (integers, non-negative integers, positive
integers). Let C× be the set of non–zero complex numbers.

1.1. The essential notation.

1.1.1. The algebra Ûn. Given n ∈ N let [1, n] be the set of integers {1, · · · , n}. Let Ûn be the

quantum loop algebra over C of type A
(1)
n ; we refer the reader to [5] for precise definitions. For

our purposes, it is enough to recall that Ûn is a Hopf algebra and is generated as an algebra
by elements x±i,s, k

±1
i , ϕ±

i,r i ∈ [1, n] and s ∈ Z, r ∈ Z \ {0}. The algebra generated by the

elements k±1
i , ϕ±

i,r, i ∈ [1, n], r ∈ Z\{0} is denoted Û0
n and is a commutative subalgebra of Ûn.

Given a ∈ C× let τa : Ûn → Ûn be the Hopf algebra homomorphism given by

x±i,s → asx±i,s, τa(k
±1
i ) = k±1

i , τa(ϕ
±
i,r) = arϕ±

i,r,

where i ∈ [1, n], s ∈ Z and 0 ̸= r ∈ Z.

1.1.2. The group Pn. Let Pn (resp. P+
n ) be the (multiplicative) free abelian group (resp.

monoid) generated by elements of the set {ωi,a : i ∈ [1, n], a ∈ Z}. The elements of Pn are
called ℓ–weights and those of P+

n the dominant ℓ–weights. Let P be the free (additive) abelian
group on generators {ωi : i ∈ [1, n]} and P+ the corresponding monoid. Define a morphism of
groups by extending the assignment

wt : P → P, wtωi,a = ωi, i ∈ [1, n], a ∈ Z.

It is also convenient to identify P+
n with the monoid consisting of n-tuple of polynomials by

extending the assignment

ωi,a 7→ (1− δi,jq
au)j∈[1,n]

to a multiplicative homomorphism.

V.C. was partially supported by DMS-1719357, the Max Planck Institute, Bonn and by the Infosys Visiting
Chair position at the Indian Institute of Science.
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1.1.3. The category Fn. type 1? also mention that q is not a root of unity? Let Fn be the
category of finite–dimensional representations of Ûn. The Hopf algebra structure on Ûn makes
Fn a monoidal rigid tensor category. For a ∈ C× and V ∈ Fn, let τaV be the corresponding
object of Fn. Clearly

τa(V ⊗W ) ∼= τaV ⊗ τaW.

Let K0(Fn) be the corresponding Grothendieck ring of Fn and let [V ] denote the class of an
object V of Fn.

1.1.4. The modules W (ω) and V (ω) and the category Fn,Z. For ω ∈ P+
n let W (ω) be the

Ûn–module generated by an element vω satisfying the relations

x+i,svω = 0 = (x−i,0)
deg πi(u)+1vω, kivω = qdeg π(u)vω, ϕ±

i,rvω = γ±i,rvω, s, r ∈ Z, r ̸= 0,

where γ±i,r ∈ C(q) are defined by

∞
∑

r=0

γ±i,±ru
±r = qdeg πi

πi(q
−1u)

πi(qu)
, ω = (πi(u))i∈I .

Any quotient of W (ω) is called an ℓ–highest weight module with highest ℓ–weight ω and we
will continue to denote by vω the image of the generator of W (ω) in any quotient. The module
W (ω) is finite–dimensional and has an unique irreducible quotient which we denote as V (ω).
Finally, any irreducible module in Fn is isomorphic to a tensor product of objects of the form
τbV (ω) for some b ∈ C× and ω ∈ P+

n .

Let Fn,Z be the full subcategory of Fn whose Jordan–Holder constituents are of the form
V (ω), ω ∈ P+

n . It is well–known that Fn,Z is a rigid tensor subcategory of Fn and we let
K0(Fn,Z) be the corresponding Grothendieck ring.

1.2. Higher order KR–modules and the first main theorem.

1.2.1. The set Si,n and (i, n)–segments. For i ∈ [1, n], let

Si,n = {2j : 1 ≤ j ≤ min{i, n+ 1− i}} = Sn+1−i,n. (1.1)

Definition. We shall say that an element a = (a1, · · · , ar) ∈ Zr is an (i, n)-segment of length
r if ap − ap−1 ∈ Si,n for all 2 ≤ p ≤ r. □

Since 0 /∈ Si,n the entries of a are all distinct and so in what follows we will also think of
segments as sets.

Example. If n = 3 we have

S1,3 = {2} = S3,3, S2,3 = {2, 4}.

Moreover, the element a = (0, 4, 6, 10) is the union of three (1, 3)-segments (and also (3, 3)–
segments): (0), (4, 6) and (10). However a is a (2, 3)–segment of length 4.
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1.2.2. General and special position of segments.

Definition. Say that two (i, n)-segments a = (a1, · · · , ar) and b = (b1, · · · , bs) are in general
position if their union does not contain an (i, n)–segment of length greater than max{r, s}.
Otherwise we say that they are in special position. □

Examples.

(i) An (i, n)-segment is in general position with itself.
(ii) Suppose that n = 3 and consider the (2, 3)–segments

a = (0, 2, 6, 10), b = (4, 10), c = (16, 18).

Then a and b are in special position since their union contains the (2, 3)-segment
(0, 2, 4, 6, 10) while a, c (and also b, c) are in general position.

1.2.3. The KR–modules of type (i, n). Given i ∈ [1, n] let P+
i,n be the submonoid of P+

n

generated by the elements ωi,a, a ∈ Z. For a = (a1, · · · , ar) ∈ Zr set

ωi,a = ωi,a1 · · ·ωi,ar ∈ P+
i,n.

Definition. Given ω ∈ P+
i,n we say that V (ω) is a KR–module of type (i, n) if there exists an

(i, n)–segment a such that ω = ωi,a. □

We note that the usual KR–module for Ûn is of the form ωi,a where a = (a, a+2, · · · a+2r−2)
for some a ∈ Z and r ≥ 1. We refer to the KR–modules associated with more general segments
as the higher order KR–modules since they encode the reducibility data of V (ωi,a)⊗ V (ωi,b)
in higher rank.

Remark. The modules V (ωi,a) where a is an (i, n)–segment are a special family of snake
modules studied in [20, 21].

1.2.4. A prime factorization result. We can now state our first main theorem, which gener-
alizes the result of [4] in the rank one case.

Theorem 1. Given ω ∈ P+
i,n there exists a unique integer k ≥ 1 and unique (upto permuta-

tion) (i, n)-segments a1, · · · ,ak which are in pairwise general position such that

V (ω) ∼= V (ωi,a1)⊗ · · · ⊗ V (ωi,ak
).

In particular V (ω) ⊗ V (ω) is irreducible for all ω ∈ P+
i,n. Moreover V (ω) is prime iff there

exists an (i, n) segment a with ω = ωi,a.

1.3. The second main theorem: an inflation of Grothendieck rings.

1.3.1. The ℓ–weight space decomposition and q–characters. Given any object V of Fn we can
regard it as a module for the commutative subalgebra Û0

n. It follows that we can write V
as a direct sum of generalized eigenspaces for the action of this subalgebra. The generalized
eigenspaces are called ℓ–weight spaces and it was proved in [10] that if V is an object of Fn,Z

then the ℓ–weight spaces are indexed by elements of Pn in a natural way and so,

V =
⊕

ω∈Pn

Vω, wtℓ V = {ω ∈ Pn : Vω ̸= 0}.
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The q–character of V is the element χq,n(V ) of the group ring of Z[Pn] given by

χq,n(V ) =
∑

ω∈Pn

dimVωe(ω).

One also has the usual weight space decomposition of V in terms of the generators K±1
i ;

namely

V =
⊕

λ∈P

Vλ, Vλ =
⊕

ω∈P

wtω=λ

Vω.

Given any subgroup G of Pn the corresponding truncated q–character is given as follows:

χG
q,n(V ) =

∑

ω∈G

dimVωe(ω) ∈ Z[G].

1.3.2. The subgroups Gn and the category C−
n . Given n ∈ N let Gn be the subgroup of Pn

generated by the elements

{ωp,r : r − p ∈ 2Z, p ∈ [1, n], r ∈ (−∞, 0]},

and let G+
n be the corresponding monoid.

The category C−
n is defined to be the full subcategory of Fn whose simple factors are of

the form V (ω), ω ∈ G+
n . For V ∈ C−

n , set

χ−
q,n(V ) = χGn

q,n(V ).

The following was proved in [15].

Proposition. The category C−
n is a monoidal tensor category and the assignment

[V (ω)] 7→ χ−
q,n(V (ω)), ω ∈ G+

n ,

defines an injective homomorphism of rings χ−
q,n : K0(C

−
n ) → Z[Gn]. In particular the image

of χ−
q,n is a polynomial subalgebra of Z[Gn]. □

1.3.3. The homomorphism Φī,n, the category C−
i,n and the second main result. Assume that

n ∈ N and i ∈ [1, n] are such that n+ 1 = i(̄i+ 1) for some ī.

Define a homomorphism Φī,n : P+
ī

→ P+
n by

ω = ωj1,a1 · · ·ωjk,ak ∈ P+
ī

7→ Φī,n(ω) = ωij1,ia1 · · ·ωijk,iak ∈ P+
n .

Let C
−
i,n be the full subcategory of Fn consisting of objects whose Jordan–Holder components

are of the form V (ϕ(ω)), ω ∈ G+
ī
.

Our second main result is the following.

Theorem 2. The category C
−
i,n is a monoidal tensor category and we have an isomorphism

of Grothendieck rings

Φī,n : K0(C
−
ī
) → K0(C

−
i,n) such that Φī,n[V (ω)] = [V (Φī,n(ω))], ω ∈ G+

ī
.

In particular, we have a geometric q–character formula for V (Φī,n(ω)).
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1.3.4. Monoidal Categorification. Recall from [14] the category Cr which consists of objects V
in Fn whose Jordan–Holder constituents lie in the submonoid of Gn generated by the elements
{ωj,a : j ∈ [1, n], −2r− 1 ≤ a ≤ 0}. It was proved in [14] for r = 1 and in [23] in general that
the Grothendieck ring K0(Cr) is the monoidal categorification of a cluster algebra. In other
words, there exists a cluster algebra A and an injective homomorphism A → K0(Cr) which
maps a cluster variable to the class of a prime representation and a cluster monomial to the
class of irreducible tensor product of representations. Define Ci,r in the obvious way. The
following is now an immediate consequence of Theorem 2.

Proposition. The category Ci,r is a monoidal tensor category and hence the ring K0(Ci,r) is
a monoidal categorification of a cluster algebra.

1.4. Imaginary Modules. Recall that a module V (ω) for Ûn is said to be real if its
tensor square is irreducible. Otherwise, we call the module imaginary.

The first example of imaginary modules was given by Leclerc in [19] where he showed that if

ω = ω2,6ω1,3ω3,3ω2,0

then the module V (ω) for Û4 is imaginary. In [18] further examples of real and imaginary
modules can be found. In both cases the examples come from representations of affine Hecke
algebras by using Schur–Weyl duality.

As an illustration of the possible applications of our main results we construct new exam-
ples (which do not fit into the framework of [18]) of imaginary irreducible modules and we
work entirely inside Fn.

Proposition. Suppose that i ∈ [1, n] and b = (b1, · · · , br) with r ≥ i is an (i, 2i− 3)–segment
and let a = (b1 − 2i, · · · , br − 2i). Then one of the factors of Jordan–Holder series of the
module V (ωi,b)⊗ V (ωi,a) is an imaginary irreducible module.

Remark. We shall see that Leclerc’s example corresponds to the case i = 2 and n = 3 and
b = (6, 4).

We have the following general conjecture.

Conjecture. Retain the assumptions of the proposition set

sj =
1

2
(bj−1 − bj + 2i), 2 ≤ j ≤ r,

ω = ωi,br

(

ωi−sr,bk−1−srωi+sr,bk−1−sr

)

· · · (ωi−s2,b1−s2ωi+s2,b1−s2)ωi,b1−n−1.

Then V (ω) is an imaginary module occurring in the Jordan–Holder series of V (ωi,b)⊗V (ωi,a).

We shall prove the conjecture in certain special cases which will show that this family of
examples are very rarely of the type given in [18].

Note that Proposition ??(i) proves the conjecture for i ≥ 2 and b = (2k, · · · , 2i) while part
(ii) proves it in the case when i = 3 and b = (12, 10, 6). Comments to be made for arbitrary
n and the inflation maps
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We prove these results in the subsequent sections. Sections 5 and Section 6 are devoted to
the proof of Theorem 1. Theorem 2 and Proposition 1.3.4 are proved in Section 2. The proof
of Proposition ?? can be found in Section 3.

1.5. Further known facts on the structure of Fn. We conclude this section by stating
known results on the category Fn, the ℓ–highest weight modules and their q-characters which
will be needed for our study.

1.5.1. Duals and the Cartan involution. Let V be an object of Fn. Then V has a left and
right dual denoted by V ∗ and ∗V respectively, and we have Ûn–maps

C ↪→ V ∗ ⊗ V, V ⊗ ∗V → C → 0.

Moreover if we set

ω∗
i,a = ωn+1−i,a+n+1,

∗ωi,a = ωn+1−i,a−n−1,

we get corresponding endomorphisms ω 7→ ω∗ and ω 7→ ∗ω of P and

V (ω)∗ ∼= V (ω∗), ∗V (ω) ∼= V (∗ω).

We shall freely use properties of duals, in particular, the isomorphisms

(U ⊗ V )∗ ∼= V ∗ ⊗ U∗, ∗(U ⊗ V ) ∼= ∗V ⊗ ∗U,

Hom
Ûn

(V ⊗ U,W ) ∼= Hom
Ûn

(U, V ∗ ⊗W ), Hom
Ûn

(U ⊗ V,W ) ∼= Hom
Ûn

(U,W ⊗ ∗V ).

Motivated by this, we have the following definition.

Definition. Given an (i, n)–segment a = (a1, · · · , ak) we define the (n + 1 − i, n)–segments
a∗ = (a1 + n+ 1, · · · , ak + n+ 1) and ∗a = (a1 − n− 1, · · · , ak − n− 1). □

The quantum affine analog of the Cartan involution of An is the algebra homomorphism
and coalgebra anti automorphism Ω : Ûn → Ûn given by

Ω(x±i,s) = −x∓i,−s, Ω(ϕ±
i,r) = ϕ∓

i,−r, Ω(k±1
i ) = k∓1

i ,

for i ∈ [1, n], s ∈ Z and 0 ̸= r ∈ Z. If U, V are objects of Fn and ω ∈ P+
n , we have

isomorphisms

Ω(U ⊗ V ) ∼= Ω(V )⊗ Ω(U), Ω(V (ω)) ∼= V (Ω(ω)), Ω(ωi,a) = ωn+1−i,−a.

1.5.2. Tensor products. Part (i) of the next proposition was proved in [5, 6]. Part (ii) was
proved independently in [1] and [2] and part (iii) in [2].

Proposition. Suppose that ω = ωi1,a1 · · ·ωik,ak ∈ P+
n with a1 ≤ · · · ≤ ak.

(i) Let ω′ ∈ P+
n . The module V (ωω′) occurs with multiplicity one in the Jordan–Holder series

of V (ω) ⊗ V (ω′). Moreover, V (ωω′) is isomorphic to V (ω) ⊗ V (ω′) iff V (ω) ⊗ V (ω′)
and its left (or right) dual are ℓ–highest weight modules.

(ii) We have,

W (ω) ∼= V (ωik,ak)⊗ · · · ⊗ V (ωi1,a1)

and hence for all ω,ω′ ∈ P+
n the following holds in K0(Fn):

[W (ωω′)] = [W (ω)][W (ω′)].
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(iii) The module V (ωi1,a1)⊗ V (ωi2,a2) is ℓ–highest weight iff

a2 − a1 /∈ {2p+ 2− i1 − i2 : max{i1, i2} ≤ p < min{i1 + i2 − 1, n}}.

□

1.5.3. q–characters and a result of Frenkel–Reshetikhin. Recall from Section 1.3.1 the defini-
tion of the q–character of an object of Fn,Z. The following was proved in [10].

Theorem 3. The assignment [V ] 7→ χq(V ) defines an injective homomorphism of rings

χq : K0(Fn,Z) → Z[Pn].

Moreover, K0(Fn,Z) is a polynomial ring in the generators [V (ωi,a)] with i ∈ [1, n] and a ∈ Z.
In particular if V and V ′ are objects of Fn,Z we have,

wtℓ(V ⊗ V ′) = wtℓ V wtℓ V
′.

□

1.5.4. ℓ–lowest weight modules. An ℓ–lowest weight module is defined in the obvious way; it
is generated by an element v which is an eigenvector for the elements ϕ±

i,r and x−i,rv = 0.

Proposition. (i) Any ℓ–highest weight module with ℓ–highest weight ω in Fn is also a lowest
ℓ–weight module with lowest weight (ω∗)−1.

(ii) Let V, V ′ be ℓ–highest weight modules with ℓ–highest weight ω,ω′ ∈ P+
n respectively. Let

v− and v+ be non–zero lowest and highest ℓ–weights of V and V ′. Then v− ⊗ v+ is an
ℓ–weight vector with ℓ–weight (ω∗)−1ω′ and

V ⊗ V ′ = Ûn(v
− ⊗ v+).

In particular if U is a proper quotient of V ⊗ V ′ then dimU(ω∗)−1ω′ ̸= 0.

Proof. We sketch a proof. Let λ = wtω. Since V is an ℓ–highest weight module we have
wtV ⊂ λ−Q+ and dimVλ = 1. Since V is a finite–dimensional module for Ûn and hence also
for Un Un hasnt been defined it follows that dimVw◦λ = 1 where w◦ is the longest element of
the Weyl group Sn+1 of An; in particular any non–zero element of Vw◦λ is an ℓ–weight vector.
It was shown in [2] that if V = V (ω) then Vw◦λ was an ℓ–weight space with ℓ–weight (ω∗)−1.
Since V (ω) is a quotient of any ℓ–highest weight module with ℓ–weight ω, part (i) follows.
Part (ii) is immediate from the formulae for the comultiplication [7] (see also [2]). □

1.5.5. The ℓ–root lattice and diagram subalgebras. For i ∈ [1, n] and r ∈ Z let αi,r ∈ Pn be
defined by

αi,a = ω−1
i−1,aωi,r−1ωi,a+1ω

−1
i+1,a,

and let Qn be the subgroup of Pn generated by these elements and let Q+
n be defined in the

obvious way. define Q and Q+.Then it is known (see for instance, [3]) that

wtℓW (ω) ⊂ ω(Q+
n )

−1.

Given J ⊂ [1, n] let Ûn,J be the subalgebra of Ûn generated by the elements x±j,r, k
±1
j , ϕ±

j,s

with j ∈ J . Let Pn,J be the subgroup of Pn generated by the elements ωj,c with j ∈ J and

c ∈ Z and define P+
n,J ,Qn,J and Q+

n,J in the obvious way. Define a homomorphism Pn → Pn,J

sending ω 7→ ωJ by extending the assignment

ωi,c 7→ ωi,c, i ∈ J, ωi,c 7→ 1, i /∈ J.
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Let V (ωJ) be an irreducible ℓ–highest weight module for Ûn,J with ℓ–highest weight ωJ .

The following well–known lemma is immediate from the results of [9].

Lemma. Suppose that V is an object of Fn,Z and let J ⊂ [1, n]. Suppose ω ∈ Pn and

0 ̸= v ∈ Vω are such that Ûn,Jv is an ℓ-highest weight module for Ûn,J . Then

α ∈ Q+
n,J , ωJα

−1
J ∈ wtℓ V (ωJ) =⇒ ωα−1 ∈ wtℓ Ûnv.

□

1.5.6. Tensor products and diagram subalgebras. Given J ⊂ [1, n] and ω,ω′ ∈ P+
n we have

an isomorphism of Ûn,J–modules V (ωJ) ∼= Ûn,Jvω ⊂ V (ω).

V (ωJ)⊗ V (ω′
J)

∼= Ûn,Jvω ⊗ Ûn,Jvω′ .

In particular if v ∈ V (ωJ) ⊗ V (ω′
J) is an ℓ–highest weight vector with ℓ–highest ωJω

′
Jα

−1
J

with α ∈ Q+
n,J then V (ω)⊗ V (ω′) has an ℓ–highest weight vector with ℓ–highest ωω′α−1,

1.6. Some results of Mukhin and Young. We recall special cases of the results of
Mukhin and Young established in [20, 21] which will play an important role in the paper.

1.6.1. The sets Pi,a and Pi,a. For i ∈ [1, n] and a ∈ Z, let Pi,a be the set of all functions
p : [0, n+ 1] → Z satisfying the following:

p(0) = i+ a, p(r + 1)− p(r) ∈ {−1, 1}, 0 ≤ r ≤ n, p(n+ 1) = n+ 1− i+ a.

For p ∈ Pi,a set

c±p = {r ∈ [1, n] : p(r − 1) = p(r)± 1 = p(r + 1)},

ω(p) =
∏

r∈c+p

ωr,p(r)

∏

r∈c−p

ω−1
r,p(r) ∈ Pn.

In particular ω(p) is in the subgroup of Pn generated by the elements {ωj,p(j) : j ∈ c+p ∪ c−p }.

Let pi,a and p∗i,a be the elements of Pi,a given as follows:

pi,a(j) =

{

i− j + a, 0 ≤ j ≤ i,

j − i+ a, i < j ≤ n+ 1,
p∗i,a(j) =

{

a+ i+ j, 0 ≤ j ≤ n+ 1− i,

a+ 2n+ 2− i− j, n+ 2− i ≤ j ≤ n+ 1.

Then
ω(pi,a) = ωi,a, ω(p∗i,a) = ω−1

n+1−i,a+n+1.

The following is a simple calculation.

Lemma. Let a, b, c be integers b− a = 2m1 and c− b = 2m2 for some m1,m2 ∈ N. Then, for
all j ∈ [0, n+ 1] we have

pi,a(j) < p(j) < p∗i,c(j), p ∈ Pi,b.

□
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Given a = (a1, · · · , ar) ∈ Zr of length r ≥ 1, set

Pi,a = {(p1, · · · , pr) : pj ∈ Pi,aj , pj(k) < ps(k) for all k ∈ [0, n+ 1], 1 ≤ j < s ≤ r}, (1.2)

ω(p) = ω(p1) · · ·ω(pr), p = (p1, · · · , pr) ∈ Pi,a. (1.3)

Remark. The condition that p ∈ Pi,a guarantees that the expression on the right hand side

of (1.3) is a reduced word in P+
n .

1.6.2. Given a = (a1, · · · , ar) ∈ Zr and b = (b1, · · · , bs) ∈ Zs set

a ∨ b = (a1, · · · , ar, b1, · · · , bs).

The next proposition is a special case of the main result of [20, 21]. We remark that those
papers do not use the language of (i, n)–segments. However it is not hard to see that the
module V (ωi,a) associated to a (i, n)–segment a satisfies the restrictions of that paper.

Proposition. Let a = (a1, · · · , ar) be an (i, n)-segment.

(i) Suppose that c is an (i, n)–segment such that either a∨c or c∨a is also an (i, n)–segment.
Then V (ωi,a)⊗ V (ωi,c) is reducible.

(ii) We have

wtℓ V (ωi,a) = {ω(p) : p ∈ Pi,a}, dimV (ωi,a) = #wtℓ V (ωi,a),

and
P+ ∩ wtℓ V (ωi,a) = {ωi,a1 · · ·ωi,ar}.

(iii) Let 1 ≤ mr ≤ min{i, n + 1 − i} and take b = (a2, · · · , ar, ar + 2mr). Then b is an
(i, n)–segment and the following equality holds in K0(Fn):

[V (ωi,a)⊗ V (ωi,b)] = [V (ωi,aωi,ar+2mr)][V (ωi,bω
−1
i,ar+2mr

)] + [V (ω+)][V (ω−)]

where

ω± = ωi±m1,a1+m1 · · ·ωi±mr,ar+mr , 2mj = aj+1 − aj , 1 ≤ j ≤ r − 1.

Moreover,
ω+ω− /∈ wtℓ(V (ωi,aωi,ar+2mr)⊗ V (ωi,bω

−1
i,ar+2mr

)).

□

1.6.3. We note some consequences of Lemma 1.6.1 and Proposition 1.6.2 for later use.

Proposition. Suppose that a = (a1, · · · , ar) is an (i, n)-segment and for 1 ≤ j ≤ s ≤ r let
aj,s = (aj , · · · , as).

(i) We have
(p1, · · · , pr) ∈ Pi,a =⇒ (pj , · · · , ps) ∈ Pi,aj,s

.

(ii) Suppose that

ω′ = ωi,a1 · · ·ωi,aj−1ωω−1
n+1−i,as+1+n+1 · · ·ω

−1
n+1−i,ar+n+1,

where ω is in the subgroup of Pn generated by ωm,b, m ∈ [1, n] and aj ≤ b ≤ as + n+ 1.
Then

ω ∈ wtℓ V (ωi,aj,s
) ⇐⇒ ω′ ∈ wtℓ V (ωi,a).
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Proof. Part (i) is immediate from Proposition 1.6.2(ii). If ω ∈ wtℓ V (ωi,aj,s
) let p

j,s
=

(pj , · · · , ps) ∈ Pi,aj,s
be such that ω(p

j,s
) = ω. It is immediate from Lemma 1.6.1(i) that

p = (pa1i,0, · · · p
aj−1

i,0 , pj , · · · , ps, p
as+1

i,∗ , · · · pari,∗) ∈ Pi,a,

and hence by Proposition 1.6.2(ii) again, we have ω′ = ω(p) ∈ wtℓ V (ωi,a). To prove the

converse let p = (p1, · · · , pr) be such that ω(p) = ω′. Note that by our assumption on ω

we have that ωi,a1 · · ·ωi,aj−1 must occur in ω(p). This can only happen if (p1, · · · , pj) =

(pa1i,0, · · · , p
aj−1

i,0 ). Similarly, ω−1
n+1−i,as+1+n+1−i · · ·ω

−1
n+1−i,ar+n+1−i must occur in ω(p) and this

can only happen if (ps+1, · · · , pr) = (p
as+1

i,∗ , · · · , pari,∗). Therefore, by item (i) of this proposition

we have p′ = (pj , · · · , ps) ∈ Pi,aj,s
and hence ω = ω(p′). Proposition 1.6.2(ii) implies that

ω ∈ V (ωi,aj,s
) which completes the proof. □

2. Proof of Theorem 2

Throughout this section we fix i ∈ [1, n] with n+ 1 = 0 mod i and write n+ 1 = i(̄i+ 1).
Let Hī (resp. H

+
ī
) be the subgroup (resp. submonoid) of Pī generated by the elements of the

set

{ωj,a : j ∈ [1, ī], j − a ∈ 2Z, a ∈ (−∞, 0]}.

2.1. The map Φī,n. Let Φī,n : Pī → Pn (resp. ϕī,n : Pī → Pn) be the group homomorphism
defined by extending the assignment

Φī,n(ωj,a) = ωij,ia, (resp. ϕī,n(ωj) = ωij), j ∈ [1, ī], a ∈ Z

Clearly wt ◦ Φī,n = ϕī,n ◦ wt .

Lemma. We have Φī,n(Q
+
ī
) ⊂ Q+

n and ϕī,n(Q
+
ī
) ⊂ Q+

n . Moreover for π,ω ∈ Pī,

wtω − wtπ ∈ Q+
ī

⇐⇒ ϕī,n(wtω)− ϕī,n(wtπ) ∈ Q+
n .

Proof. It is easily checked that

ϕī,n(αj) =
i
∑

p=1

i−p
∑

s=p−i

αij+s.

formulate the ℓ–root version similarly.
For the second assertion of the lemma, the forward direction is now immediate. For the
converse assume that ω − π =

∑n
j=1 sjαj with sj < 0 for some j. The assertion follows once

we notice that the coefficient of αij in (ϕī,n(wtω)− ϕī,n(wtπ)) is isj .
□

More generally, one computes that for j ∈ [1, ī] and a ∈ Z we that Φī,n(αj,a) is equal to




i−1
∏

k=1

k
∏

p=1

αi(j−1)+k, i(a+1)−k+2p−2αi(j+1)−k, i(a+1)−k+2p−2





i
∏

p=1

αij, i(a+1)−i+2p−2.

In the rest of the section we shall, for ease of notation, set Φ = Φī,n and ϕ = ϕī,n.
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2.2. The set Φ(wtℓ V (ωk,a)). Given p ∈ Pk,a with 1 ≤ k ≤ ī, define Φ(p) : [0, n+ 1] → Z
as follows: for 0 ≤ j < ī+ 1 and 0 ≤ j′ < i we have

Φ(p)(n+ 1) = n+ 1− ik + ia, Φ(p)(ij + j′) =

{

ip(j) + j′, p(j + 1)− p(j) = 1,

ip(j)− j′, p(j + 1)− p(j) = −1.

A straightforward checking hows that

Φ(p) ∈ Pik,ia, and ω(Φ(p)) = Φ(ω(p)).

Conversely, suppose that g ∈ Pik,ia is such that ω(g) ∈ Φ(Pī). We claim that g(ir) is a mul-
tiple of i for all r ∈ [0, ī]. This follows from the assumption on ω(g) if g(ir − 1) = g(ir + 1);
otherwise there exists m1,m2 ∈ [1, n] with m1 < ir < m2 and g(ms − 1) = g(ms + 1) for
s = 1, 2. Since g(ir) = g(m1)± (ir −m1) the result again follows from our assumptions.

Hence we can define

Φ−1(g) : [0, ī+ 1] → Z, Φ−1(r) = g(ir)/i, r ∈ [0, ī+ 1].

It is straightforward to see that Φ−1(g) ∈ Pk,a and that

ω(g) = Φ(ω(Φ−1(g))).

The following is now a trivial checking using Proposition 1.6.2.

Proposition. Let k ∈ [1, ī] and assume that a = (a1, · · · , ar) is a (k, ī)–segment and assume
that π ∈ Pī. Then

π ∈ wtℓ V (ωk,a) ⇐⇒ Φ(π) ∈ wtℓ V (ωik,ia).

□

The following corollary is immediate by using Proposition 1.5.2.

Corollary. For all ω ∈ P+
ī
, we have

π ∈ wtℓW (ω) =⇒ Φ(π) ∈ wtℓW (Φ(ω)).

Remark. In fact Proposition 2.2 holds for all the modules studied in [21] and the proof is
identical to the one given above for segments.

2.3. We prove a partial converse to Corollary 2.2.

2.3.1. The set wtℓ V (Φ(ωk,a)) \ Φ(wtℓ V (ωk,a).

Lemma. Let ωk,a ∈ Hī and suppose that ω ∈ wtℓ V (ωik,ia) and ω /∈ Φ(Hī) with reduced
expression

ω = ωϵ1
j1,c1

· · ·ωϵr
jr,cr

, cs ∈ Z, 1 ≤ j1 < · · · < jr ≤ n, ϵs ∈ {−1, 1}, 1 ≤ s ≤ r.

Let s ∈ [1, r] be such that cs is maximal with the property that ωjs,cs /∈ Φ(Hī). Then ϵs = −1.

Proof. Let p ∈ Pik,ia be such that ω(p) = ω, in particular this means that if p(j−1) = p(j+1)
then j = jk for some k ∈ [1, r] and p(jk) = ck and also that ck − ck−1 = ϵk(jk−1 − jk) for
2 ≤ k ≤ r.
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Assume that there exists m such that ϵm = 1 and ωjm,cm /∈ Φ(Hī) (otherwise there is noth-
ing to prove). This means immediately that there existsm′ ∈ [1, n] with ϵm′ = −1 and so r ≥ 2.

Setting (j0, c0, ϵ0) = (0, ik+ ia, 0) and (jr+1, cr+1, ϵr+1) = (n+1, n+1− ik+ ia, 0) we see that

ϵm−1 = −1 + δm,1 + δm,r = ϵm+1, cm−1 − cm = jm − jm−1, cm+1 − cm = jm+1 − jm

and so

cm−1 + jm−1 = cm + jm = cm+1 − jm+1 + 2jm.

It is now simple to see that at least one of ωm±1,cm±1 /∈ Φ(Hī) and the Lemma follows since
cm±1 > cm. □

2.3.2. The next proposition gives the partial converse to Proposition 2.2.

Proposition. Suppose that

ω = ωj1,a1 · · ·ωjk,ak ∈ H+
ī
, π̃ = ω(p1) · · ·ω(pk) ∈ wtℓW (Φ(ω)), ps ∈ Pijs,ias , 1 ≤ s ≤ k.

Then

π̃ ∈ Φ(Hī) =⇒ ω(ps) = Φ(ω(gs)), gs ∈ Pjs,as , 1 ≤ s ≤ k. (2.1)

π̃ ∈ P+
n =⇒ π̃ ∈ Φ(Hī). (2.2)

Proof. We proceed by induction on k with Proposition 2.2 showing that induction begins at
k = 1.

For the inductive step, suppose for a contradiction that ω(p1) /∈ Φ(Hī). Choose s1 as in
Lemma 2.3.1, i.e., ω−1

s1,p1(s1)
occurs in ω(p1) and if p1(j + 1) = p1(j − 1) and ωj,p(j) /∈ Φ(Hī)

then p1(s1) > p1(j). Then we must have that ωs1,p1(s1) occurs in ω(pm) for some 2 ≤ m ≤ k
and assume without loss of generality thatm = 2. In particular this means that ω(p2) /∈ Φ(Hī).
Repeating we find that this process can never stop which is clearly absurd.

Hence ω(p1) ∈ Φ(Hī) and so by Proposition 2.2 ω(p1) = Φ(ω(g1)) for some g1 ∈ Pj1,a1 .
It follows that

ω(p2) · · ·ω(pk) = Φ(πω(g1)
−1) ∈ wtℓW (Φ(ωω−1

j1,a1
)).

The inductive hypothesis applies and the proposition follows. □

Corollary. Suppose that

ω1,ω2 ∈ Hī, π̃ = π̃1π̃2, π̃s ∈ wtℓ(V (Φ(ωs)), s = 1, 2.

Then,

π̃ ∈ P+
n =⇒ π̃ ∈ Φ(Hī),

π̃ ∈ Φ(Hī) ⇐⇒ π̃s ∈ Φ(Hī), s = 1, 2.

Proof. Recall from Section 1.5.2 that V (ω) is the unique irreducible quotient of W (ω) and
that

wtℓ V (ω) ⊂ wtℓW (ω), wtℓW (ω1) wtℓW (ω2) = wtℓW (ω1ω2).

The corollary is now an immediate consequence of the proposition. □
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2.4. Let Hi,n = Φī,n(Hī). In what follows we shall continue to denote by Φī,n the in-
duced map from Z[Hī] → Z[Hi,n]. Let Cī (resp. Ci,n) be the full subcategory of Fī,Z (resp.
Fn,Z) consisting of objects whose Jordan–Holder constituents are of the form V (ω) (resp.

V (Φī,n(ω))) with ω ∈ H+
ī
.

2.5. For m ≥ 1 and a subgroup G of Pm and an object V of Fm,Z set

χG(V ) =
∑

ω∈G

dimVωe(ω) ∈ Z[G].

It was proved in [10] that if G = Pm then one has an injective homomorphism

χPm : K0(Fm,Z) → Z[Pm].

Moreover the image of χPm is a polynomial algebra generated by the elements χPm(V (ωj,b))
with j ∈ [1,m] and b ∈ Z.

An analogous result was proved in [16] for Cī with G = Hī. In fact one has the following
more general statement.

2.6. We now prove the following proposition.

Proposition. Retain the notation established so far.

(i) The category Ci,n is a monoidal tensor category.
(ii) The assignment

χHi,n : K0(Ci,n) → Z[Hi,n],

is an injective homomorphism and the image is the polynomial algebra generated by the
elements χHi,n(V (Φī,n(ωj,a))), ωj,a ∈ H+

ī
. Moreover, we have

Φī,n ◦ χHī(V (ωj,a)) = χHi,n(V (Φī,n(ωj,a)), ωj,a ∈ H+
ī
.

Corollary. We have an isomorphism K0(Ci) → K0(Ci,n) defined by [V (ωj,a)] 7→ [V (Φī,n(ωj,a))].
Moreover this map takes snake modules to snake modules.

Proof. The isomorphism is clear from the proposition. Suppose that V (ω) is a snake module
in Ci. Then it is clear that Φī,n(ω) also defines a snake. Using Remark 2.2 we have

Φī,n(wtℓ V (ω)) = wtℓ(V (Φī,n(ω))) ∩ Φī,n(Hī).

Since ℓ–weight spaces are one–dimensional in snake modules we have that dimV (ω)π =
dimV (Φī,n(ω))Φī,n(π) and so we get

Φī,n ◦ χHīV (ω) = χHi,nV (Φ(ω)).

Using injectivity we get the corollary.
□

The proposition is established in several steps. Since i, n are fixed from now on for ease of
notation we set

Φ = Φī,n, H = Hi,n, H+ = H+
i,n, H̄ = Hī, H̄+ = H+

ī
.
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2.6.1. Proof of Proposition 2.6. To prove that Ci,n is a monodial tensor category it suffices to
prove that the Jordan–Holder constituents of V (Φ(ω1))⊗ V (Φ(ω2)) are of the form V (Φ(π))
with π ∈ H+

ī
. But this is immediate from the second assertion of Corollary 2.3.2.

To prove that χH is a homomorphism of rings we must show that
(

∑

ω∈H

dimV (ω1)ωe(ω)

)(

∑

ω∈H

dimV (ω2)ωe(ω)

)

=
∑

ω∈H

dim (V (ω1)⊗ V (ω2))ω e(ω).

But this is immediate from the first assertion of Corollary 2.3.2 and the fact that χPn is a
homomorphism.

To prove that χH is injective we use the following elementary fact. Suppose that V1 and
V2 are two objects of Fn such that (dimV1)ω = (dimV2)ω for all ω ∈ P+

n . Then [V1] = [V2].
Since any ℓ–dominant weight of an object of Ci,n is in H+ by Corollary 2.3.2 we see that χH

is injective.

Part (i) of this proposition shows that K0(Ci,n) is generated by the classes of V (Φ(ωj,a))
with ωj,a. Since Φ(ωj,a) are part of the generators of K0(Fn,Z) it follows that K0(Ci,n) and

hence also the image of χH are polynomial algebras. The final statement of (ii) is obvious
from (2.1).

2.7.

Proposition. We have an isomorphism of algebras K0(Ci) → K0(Ci,n) which maps V (ω) to
V (Φī,n(ω)).

Proof. It is clear from the proposition and the results of [16] that the assignment

[V (ωj,a)] → [V (Φī,n(ω))]

defines an isomorphism of rings Ψ : K0(Ci) → K0(Ci,n). Writing ω = ωj1,a1 · · ·ωjk,ak we
prove by induction on wtω that this isomorphism maps V (ω) to V (Φī,n(ω)). The definition
of the isomorphism shows that induction begins and we prove the inductive step. Let ω′ =
ωi2,a2 · · ·ωik,ak and write

[V (ωik,ak)⊗ V (ω′)] = [V (ω)] +
∑

π∈H+
ī

aπ[V (π)], aπ ∈ Z+, aπ = 0 if wtπ ≰ wtω.

Using Corollary 2.3.2 we can also write,

[V (Φī,n(ωik,ak))⊗V (Φī,n(ω
′))] = [V (Φī,n(ω))]+

∑

π∈H+
ī

bπ[V (Φī,n(π))], bπ ∈ Z+, bπ = 0 if wtπ ≰ wtω.

Using Proposition 2.2 and using the induction hypothesis we get

Φī,n ◦ χHī [V (ωik,ak)⊗ V (ω′)] = χHi,n [V (Φī,n(ωik,ak))⊗ V (Φī,n(ω
′))]

□
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3. Imaginary modules

In this section we study tensor products of pairs of modules defined by dual (i, n)–segments.
We first state a general conjecture that such tensor products always have an imaginary module
in its Jordan–Holder series. We then give an approach to proving this conjecture. Finally,
we show that the conjecture is always true if we work with Kirillov–Reshetikhin modules and
we give examples involving higher order Kirillov–Reshetikhin modules as well. Finally, we
show that the methods of this section can be used to construct a rather simple example of an
imaginary module in D4.

3.1. A conjecture. Let i ≥ 2 and assume that b = (b1, · · · , br) with r ≥ 2 is a (i, p)–
segment for some p ≤ 2i− 3. Define integers 2sj = bj−1 − bj + 2i and set

ω = ωi,br(ωi−sr,br−1−srωi+sr,br−1−sr) · · · (ωi−s2,b1−s2ωi+s2,b1−s2)ωi,b1−2i. (3.1)

Conjecture. The Ûn–module V (ω) is imaginary for all n ≥ 2i− 1.

Remark.

(i) It suffices to prove the conjecture for n = 2i− 1 by Proposition 1.5.6.
(ii) Taking b = (0, 2, 4, 6) as a (2, 1)–segment we see that ω = ω2,6ω1,3ω3,3ω2,0 and this is

the original example of Leclerc.
(iii) If b = (0, 4, 6, 10) and i = 3 then ω = ω3,0ω2,5ω3,5ω3,10. This example shows up in the

work of [18] but in general the examples considered in this section are not part of their
theory.

3.2. The following is the main result of this section.

Theorem 4. Let i, r ≥ 2 and assume that p divides i for some 1 ≤ p < i. Let b = (b1, · · · , br) ∈
Zr. Conjecture 3.1 is true if bs − bs−1 = 2p for all 2 ≤ s ≤ r.

Remark. In Section 3.9 we show that the conjecture holds if i = 3 and the (3, 2)–segment
b = (12, 10, 6). Notice that this case is not covered by the theorem.

3.3. Let i ∈ [1, n], b = (b1, · · · , br) be an (i, 2i− 1) segment and set

a = (b1 − 2i, · · · , br − 2i), V = V (ωi,b)⊗ V (ωi,a).

Lemma. We have.
dim(V ⊗ V )1 = 1 = dimV1.

Proof. It suffices to prove that for ϵ = 0, 1,

ω ∈ wtℓ V (ωi,b)
⊗(1+ϵ) and ω−1 ∈ wtℓ V (ωi,a)

⊗(1+ϵ) =⇒ ω = ω1+ϵ
i,b .

If ϵ = 0 write
ω = ω(p1) · · ·ω(pr), ω−1 = ω(p′1) · · ·ω(p′r),

and if ϵ = 1

ω = ω(p1) · · ·ω(pr)ω(g1) · · ·ω(gr), ω−1 = ω(p′1) · · ·ω(p′r)ω(g′1) · · ·ω(g′r),

with (p1, · · · , pr), (g1, · · · , gr) ∈ Pi,b, (p′1, · · · , p
′
r), (g

′
1, · · · , g

′
r) ∈ Pi,a.
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Since ω(p′j) and ω(g′j) are in the subgroup of P+
n generated generated by the elements ωk,c

with c < br if j < r and c ≤ br if j = r it follows that

ϵ = 0 =⇒ ω(pr) = ωi,br = ω(p′r)
−1.

In the case ϵ = 1 we claim that

ω(pr)ω(gr) = ω2
i,br

= ω(p′r)ω(g′r).

If not, assume that ω−1
j1,c1

appears in ω(pr) with c1 > br maximal. Then ωj1,c1 must occur in

ω(gs) for some s ≤ r and hence ω(gs) has ω
−1
k1,d1

with d1 > c1. Again this means that ωk1,d1

must occur in ω(pk) for some k < r. Repeating we see that this process never stops which is
absurd and the claim follows. In particular the result holds for r = 1 and if r > 1 we have
proved that

ω1 = ωω−1−ϵ
i,br

∈ wtℓ V (ωi,b1)
⊗(1+ϵ), ω−1−ϵ

1 ∈ wtℓ V (ωi,a1)
⊗(1+ϵ),

where b1 = (b1, · · · , br−1), a1 = (a1, · · · , ar−1). An obvious induction gives the result.

□

3.4. We shall need the following result.

Lemma. Suppose that π ∈ P and π2 ∈ wtℓ V . Then π = 1.

Proof. Suppose that π2 ∈ wtℓ V . Write

ω2ϵ1
j1,d1

· · ·ω2ϵm
jm,dm

= π2 = ω(p)ω(p′), p ∈ Pi,b, p′ ∈ Pi,a, ϵ1, · · · , ϵm ∈ {−1, 1}. (3.2)

By Proposition 1.6.2 we know that ω(p) is a weight of the form ωϵ1
i1,c1

· · ·ωϵk
ir,cr

with ϵ ∈

{−1, 0, 1} and a similar assertion for ω(p′). Suppose that ω(pr) ̸= ωi,br . Since wtℓ V (ωi,a) is
in the subgroup of P generated by elements ωj,c with c ≤ br we would get a contradiction to

(3.2). Hence ω(pr) = ωi,br . Again to avoid a contradiction we must have ω(p′r) = ω−1
i,br

. But

this means that π2 ∈ V (ωi,b1) ⊗ V (ωi,a1) with a1 = (a1, · · · , ar−1) and b1 = (b1, · · · , br−1)
and an obvious induction proves the Lemma.

□

3.5.

Proposition. Suppose that ω = ωi1,c1 · · ·ωik,ck ∈ P+
n with c1 ≤ c2 ≤ · · · ≤ ck and assume

that (ij , cj) ̸= (i1 + n+ 1, c1 + n+ 1) for all 1 ≤ j ≤ k Then

(ω∗)−1ω /∈ wtℓW (ω)

In particular if M is any ℓ–highest weight module with ℓ–highest weight ω, we have

Hom
Û2i−1

(M ⊗M,V (ω)) = 0.

Proof. Let m ≤ k be maximal such that cm < c1 + n + 1. The assumptions of the Lemma
mean that ωi1,c1 · · ·ωim,cmω

−1
n+1−i1,c1+n+1 occur in any reduced expression for (ω∗)−1ω. This

means that if we choose pj ∈ Pij ,cj , 1 ≤ j ≤ k such that

ω(p1) · · ·ω(pk) = ω−1
n+1−i1,c1+n+1 · · ·ω

−1
n+1−ik,ck+n+1ωi1,c1 · · ·ωik,ck ,
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we can assume without loss of generality that ω(pj) = ωij ,cj for all 1 ≤ j ≤ m. On the other

hand there must exist 1 ≤ s ≤ k so that n+ 1− i ∈ c−ps and ps(n+ 1− i) = c1 + n+ 1. This
means that cs < c1 + n+ 1 and hence cs ≤ cm. But this is a contradiction since we saw that
we must also have ω(ps) = ωis,cs if s ≤ m. □

The following is immediate.

Corollary. Let n = 2i− 1 and b = (b1, · · · , br) be an (i, 2i− 3) segment with r ≥ 2i− 1 and
let

2sj = bj−1 + 2i− bj , 2 ≤ j ≤ r.

Setting

ω = ωi,br(ωi−sr,br−1−srωi+sr, br−1−sr) · · · (ωi−s2,b1−s2ωi+s2,b1−s2)ωi,b1−2i, (3.3)

we have

(ω∗)−1ω /∈ wtℓW (ω).

□

3.6.

Proposition. Let n = 2i− 1. Retain the notation established so far and assume that b is an
(i, 2i − 3)–segment and let ω be as in (3.3). Suppose that V (ω) occurs in the Jordan–Holder
series of V . Suppose also that if V (π) with π ∈ P+ occurs in the Jordan-Holder series of V
then wtπ < wtω if and only if π = 1. Then V (ω) is imaginary.

Proof. Set V ′ = V (ωi,a)⊗ V (ωi,b). By Section 1.5.1 we have maps of Ûn–modules

C ↪→ V, < , >: V ′ → C → 0.

Since V (ωi,a) ⊗ V (ωi,a) is irreducible (in other words real) by Theorem 1 (see [8, Theorem
3.4]) we can use [17, Corollary 3.16] to conclude that C is the socle (resp. head) of V (resp. V ′).

Since V (ω) occurs in the Jordan–Holder series for V , we can choose M ⊂ V si that there
exists a surjective map M → V (ω) → 0. Since V has simple socle the assumptions on ω

guarantee that we have a non–split short exact sequence

0 → C → M → V (ω) → 0

and that M is an ℓ–highest weight module with ω as its ℓ-highest weight.

Let Φ : V ⊗ V → V be the map idb⊗ < ,> ⊗ ida . Clearly Φ is surjective and Lemma
3.3 gives

Φ(V ⊗ V )1 = V1 ̸= 0 and so Φ(M ⊗M) ̸= 0.

Using Lemma 3.4 and Lemma 3.5 and Proposition 1.5.4 we see Φ(M ⊗ M) must have an
irreducible quotient V (π) with π /∈ {1,ω,ω2}. It follows that

Φ (M ⊗ C+ C⊗M) = 0,

and hence we have an induced map V (ω)⊗ V (ω) → V (π) → 0 and the proof is complete .

□
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3.7. We prove Theorem 4 by showing that ω satisfies the conditions of Proposition 3.6.

For 1 ≤ m ≤ i and a ∈ Z let gai,m ∈ Pi,a be defined by requiring

ω(gai,m) = ωi−m,a+mω−1
i,a+2mωi+m,a+m.

Equivalently

{gai,m : 1 ≤ m ≤ i} = {g ∈ Pi,a : c−g = {i}}. (3.4)

It is easy to check that g = (ga1i,0, g
a2
i,i−1, · · · , g

ar
i,i−1) ∈ Pi,a and hence ω = ωi,bω(g) ∈ wtℓ V .

We first prove that V (ω) occurs in the Jordan–Holder series of V . Proposition 1.5.2(iii)

gives the following sequence of inclusions of Û2i−2p−1–modules,

C ↪→ V (ωi−p,{b1−2p}∨b)⊗ V (ωi−p,a∨{br−2i+2p})

↪→ V (ωi−p,b1−2p)⊗ V (ωi−p,b)⊗ V (ωi−p,a)⊗ V (ωi−p,br−2i+2p),

and so

Hom
Û2i−2p−1

(V (ωi−p,b1−2i)⊗ V (ωi−p,br), V (ωi−p,b)⊗ V (ωi−p,a)) ̸= 0.

By Proposition 1.5.2 the Û2i−2p−1–module V (ωi−p,b1−2i) ⊗ V (ωi−p,br) is irreducible and so
V (ωi−p,b)⊗ V (ωi−p,a) contains an ℓ–highest weight vector of ℓ-weight ωi−p,brωi−p,b1−2i and

ωi−p,b1−2iωi−p,br = ωi−p,bω(pari−p,i−p) · · ·ω(pa2i−p,i−p)ωi−p,b1−2i.

It follows from Section 1.5.6 that V contains an ℓ–highest vector of weight

ωi,bω(pari,i−p) · · ·ω(pa2i,i−p)ωi,b1−2i

and it is trivial to check that this is precisely ω.

We now show that if 1 ̸= π ∈ wtℓ V ∩P+
2i−1 is such that wtω−wtπ ∈ Q+

2i−1 then π ∈ wtℓ V (ω).
For this we set

ck = (b1 − i+ p, · · · bk−1 − i+ p), 1 ≤ k ≤ r

and first show that π is in the following set:

{ωi,b1ωi,b1−2i} ∪ {ωi,bkωp,ckω2i−p,ckωi,b1−2i : 1 < k ≤ r} (3.5)

We first reduce the problem to the case when p = 1. Assume that i− br ∈ 2Z, br ≤ 0 and that
p divides br. Set

i = i⋄p, i⋄ ≥ 2, b⋄s = bs/p, b⋄ = (b⋄1, · · · , b
⋄
s), Φ = Φ2i⋄−1,2i−1,

a⋄ = (b⋄1 − 2i⋄, · · · , b⋄r − 2i⋄), V ⋄ = V (ωi,b⋄)⊗ V (ωi,a⋄).

Let ω⋄ be the element defined in (3.1) associated with i⋄ and b⋄. It is obvious that

Φ(ωi⋄,b⋄) = ωi,b, Φ(ω⋄) = ω.

Since π ∈ P+
2i−1 we can use Corollary 2.3.2 and write

π = Φ(π1)Φ(π2), πs ∈ H2i⋄−1, Φ(π1) ∈ wtℓ V (ωi,b), Φ(π2) ∈ wtℓ V (ωi,a).

Proposition 2.2 now shows that

π1 ∈ wtℓ V (ωi⋄,b⋄), π2 ∈ wtℓ V (ωi⋄,a⋄) =⇒ π⋄ = π1π2 ∈ wtℓ V
⋄.
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By Lemma 2.1 we have

wtω − wtπ ∈ Q+
2i−1 ⇐⇒ wtω⋄ − wtπ⋄ ∈ Q+

i⋄

and hence we have shown that

{π ∈ P+
2i−1 : wtπ < wtω} ∩ wtℓ V = Φ{π ∈ P+

2i⋄−1 : wtπ
⋄ < wtω⋄} ∩ wtℓ V

⋄. (3.6)

It remains to prove (3.5) for p = 1. This is done as follows. Write

π = ω(p′)ω(p), p′ = (p′1, · · · , p
′
r) ∈ Pi,b, p = (p1, · · · , pr) ∈ Pi,a.

By Proposition 1.6.2 we see that wtℓ V (ωi,a) is contained in the subgroup generated by the
elements ωj,c with c ≤ br. Since π ∈ P+

2i−1 we have ω(p′r) = ωi,br . Proposition 1.6.2 implies
that ω(p′) = ωi,b and hence we get

c−ps = {i}, i.e. ps = pasi,ms
, for some 0 ≤ m1 ≤ · · · ≤ ms ≤ i, 1 ≤ s ≤ r.

Since wtπ < wtω we see that ifm2 < i−1 then a2+2m2 = b2−2i+2m2 = b1+2−2i+2m2 < b1
and hence ω−1

i,a2+2m2
would occur in a reduced expression for π contradicting π ∈ P+. It fol-

lows from Proposition 1.6.2 that mj ≥ i − 1 for all 2 ≤ j ≤ r. Equation 3.5 is now a simple
calculation.

We prove that any π in the set in (3.5) is in wtℓ V (ω). Let J = {1, · · · , 2p − 1} and let
Uq,J–submodule VJ(ω) of V (ω) generated by vω. Since ωJ = ωp,cr ∈ P+

i−1 we have

VJ(ω) ∼=Uq,J
V (ωp,cr).

The module on the right has the following ℓ–weight:

ωp,ckω
−1
p,c̃k

, c̃k = (bk + i+ p, · · · , br−1 + i+ p)

and hence the module V (ω) has an ℓ–weight vector v of ℓ–weight

ωi,b1−2iωp,ckω
−1
p,c̃k

ω2p,?ω2i−p,crωi,br .

The element v is an ℓ–highest weight vector for J ′ = {2i−2p+1, · · · , 2i−1} with corresponding
ℓ–highest weight ω2i−p,cr . A similar argument now proves that V (ω) contains an ℓ–highest
weight vector of ℓ-weight given buy

ωi,b1−2iωp,ckω
−1
p,c̃k

ω2p,?ω2i−2p,?ω
−1
2i−p,c̃k

ω2i−p,ckωi,br .

Now one has to drop i in the subalgebra (2p, · · · , 2i− p) to get the result.

3.8. The case i > p > 1.

Let vω be the ℓ-highest weight of V (ω) and J = [1, i − 1]. Using the discussion in Section
1.5.6 we have

ÛJvω ∼= VJ(ωJ) = VJ(ωp,cr).
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Using Proposition 1.6.2 it is easy to check that

ωp,ckω
−1
i−p,c̃k

∈ wtℓ VJ(ωp,cr), c̃k = (bk + p, · · · , br−1 + p).

In particular, there exists βk ∈ Q+
J such that ωp,ckω

−1
i−p,c̃k

= (ωβ−1
k )J and hence Lemma 1.5.5

implies that

ω′ = ωβ−1
k ∈ wtℓ V (ω), dimV (ω)ω′ = 1.

Working similarly as before, with vω′ ∈ V (ω)ω′ non–zero and J ′ = [i+1, 2i−1], we have that

vω′ is ℓ-highest weight vector for the subalgebra ÛJ ′ and (ω′)J ′ = ω2i−p,cr . Then there exists
β′
k ∈ Q+

J ′ such that

ω2i−p,ckω
−1
i+p,c̃k

= (ω′β′−1
k )J ′ ∈ wtℓ ÛJ ′vω′ =⇒ ω(βkβ

′
k)

−1 ∈ wtℓ V (ω).

One checks that put in more details

ω(βkβ
′
k)

−1 = ωi,brωp,ckω
2
i,c̃k−pω2i−p,ckωi,b1−2i(ωi+p,c̃kωi−p,c̃k)

−1.

3.8.1. For each 1 ≤ k ≤ r let

Vk = V (ωi,brωp,dk
ω2i−p,dk

)⊗ V (ωi,b1−2iωp,ckω2i−p,ck),

where dk is such that cr = ck ∨ dk. It follows from Proposition 1.5.2 that Vk is ℓ-highest
weight and hence V (ω) is its irreducible quotient. From now on we fix such k and for easy of
notation we write

π1 = ωi,brωp,dk
ω2i−p,dk

, π2 = ωi,b1−2iωp,ckω2i−p,ck .

For K ⊂ [1, n] let w◦,K be the longest element of the subgroup of W generated by the simple
reflections {sj : j ∈ K}. Let w = w◦,Jw◦,J ′ ∈ W, where J and J ′ are as before. The discussion
in the previous section gives

Tw(π1) = π1(βkβ
′
k)

−1 ∈ wtℓ V (π1),

x+j,sV (π1)Tw(π1) = 0, j ̸= i− p, i+ p, s ∈ Z. (3.7)

In particular, since dimV (π1)Twπ1 = 1 it follows that

dim(Vk)ω(βkβ
′

k)
−1 = 1 = dimV (ω)ω(βkβ

′

k)
−1 .

Therefore, if v ∈ V (ω)ω(βkβ
′

k)
−1 is non zero, by (3.7) v is an ℓ-highest weight vector for the

action of ÛK , K = [i− p+1, i+ p− 1] and hence, using Section 1.5.6 and Theorem 1 we have

Ûkv ∼= VK(ωi,brω
2
i,c̃k−pωi,b1−2i) ∼= VK(ωi,brωi,c̃k−pωi,b1−2i)⊗ VK(ωi,c̃k−p).

Since ω−1
i,c̃k+p ∈ wtℓ VK(ωi,c̃k−p), using Lemma 1.5.6 it follows that ωk ∈ V (ω) as desired.
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3.9. We give an example where the conjecture holds for the higher rank KR–modules. The
simplest example is when i = 3 and we work with the (3, 5)–segments b = (10, 6) anda = (4, 0)
when once can prove that the module ω3,10ω2,5ω4,5ω3,0. But this is an example which appears
in the work of Lapid. So instead, we give an example which does not appear in their work and
comes from the (3, 5)–segments

b = (12, 10, 6), a = (6, 4, 0), ω = ω3,12ω1,8ω2,5ω4,5ω5,8ω3,0.

We consider Û5–module V = V (ω3,b)⊗ V (ω3,a) and prove that V (ω) satisfies the conditions
of Proposition 3.6.

Suppose that π = ω(p′)ω(p) is an ℓ–dominant weight of V , with p′ = (p′1, p
′
2, p

′
3) ∈ P3,b

and p = (p1, p2, p3) ∈ P3,a. Since ω(p) is in the subgroup of P+
5 generated by ωj,c with c ≤ 12

it follows that ω(p′3) = ω3,12 and hence also, by using Proposition 1.6.2 that ω(p′2) = ω3,10.
Suppose that ω(p′1) ̸= ω3,6; then there exists j ∈ c−

p′3
with p′3(j) ≥ 8. It follows that j ∈ c+ps

for some s = 2, 3 and ps(j) = p′3(j). If s = 2 then the only possibility is ω(p2) = ω−1
2,9ω3,8ω

−1
4,9

and so j = 3 and p′3(j) = 8. This means ω(p′3) = ω2,7ω
−1
3,8ω4,7 and now we see that ω−1

2,9ω
−1
4,9

occurs in the reduced word for π which is a contradiction. Hence we have

π = ωi,bω(p), c−ps ⊂ {3}, s = 1, 2, 3.

In particular we have proved that all ℓ–dominant weights in V occur with multiplicity 1.

Assume that π ̸= ωi,bωi,a. Then

c−p1 = {3} =⇒ p1(3) = 6 =⇒ p2(3) = 8, 10.

If p2(3) = 8 then c−p2 = ∅ which is impossible. Hence we must have p2(3) = 10 and c−p2 = {3}.

It follows that ω(p3) = ω−1
3,12 and so π = 1. If c−p1 = ∅ then

c−p2 = {3} =⇒ p2(3) = 6, 10.

If p2(3) = 10 then we must have p3(3) = 12 and so we get the weight ω3,6ω3,0. If p2(3) = 6
then p3(3) ∈ {10, 12} and

π ∈ {ω = ω3,12ω1,8ω5,8ω2,5ω4,5ω3,0, ω3,10ω2,5ω4,5ω3,0}.

Finally if c−p1 = c−p2 = ∅ and c−p3 = {3} then we must have p3(3) = 10, 12 and we get

π ∈ {ω3,12ω3,6ω1,8ω5,8ω3,4ω3,0, ω3,10ω3,6ω3,4ω3,0}.

The usual application of Proposition 1.5.2 and Theorem 5 shows that V is ℓ–highest weight.
Theorem 1 shows that the irreducible quotient of V is V̄ := V (ω3,(0,4)∨b)⊗V (ω3,6). It follows

from Proposition 1.6.2 that if π is such that c−p1 = c−p2 = ∅ then π ∈ wtℓ V̄ . Moreover

it also follows that ω /∈ wtℓ V̄ . Therefore if v is an ℓ–weight vector of weight ω then v
generates a proper submodule, say M of V . We claim that v is an ℓ–highest weight vector.
Otherwise M contains an ℓ–highest weight vector ω′ with wtω′ > wtω. But the preceding
analysis shows that the only possibility is ωi,aωi,b which would mean M = V and gives a
contradiction. Hence V (ω) is the unique irreducible quotient of M . It remains to prove that
M has Jordan–Holder series of length two. If not it has a Jordan-Holder consitiuent V (π)
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with π ∈ {ω3,10ω2,5ω4,5ω3,0, ω3,6ω3,0} and in that case π /∈ wtℓ V (ω). By Lemma 1.5.5 we
get

ω3,10ω2,5ω4,5ω3,0 = ωα−1
1,9α

−1
5,9α

−1
2,10α

−1
4,10α

−1
3,11 ∈ wtℓ V (ω).

Hence the only possibility is that π = ω3,6ω3,0. If π /∈ wtℓ V (ω) let v′ ∈ M be an ℓ–weight
vector of weight π. Then v′ generates a proper submodule of M . This means that v′ must
be an ℓ–highest weight vector since otherwise the submodule that it generates would be M .
Hence we have a non–zero map

V (ω3,6)⊗ V (ω3,0) → M ↪→ V.

This means that there exists a non–zero map

V (ω3,0)⊗ V (ω3,b) → V (ω3,12)⊗ V (ω3,b).

The module on the right is irreducible by Theorem 1 and hence the map is surjective and an
isomorhpism. But this is absurd since they have different ℓ–weights.

3.10. An example in D4. Using the methods of this section we give the first example
outside quantum affine sln of an imaginary module. In D4 it is known that the left dual of
V (ωj,a) is V (ωj,a+6) and we assume that 2 is the trivalent node. We take

b = (10, 8, 6), a = (4, 2, 0), ω = ω1,10ω1,8ω2,5ω1,2ω1,0,

V = V (ω1,b)⊗ V (ω1,a), V̄ = V (ωi,bωi,a),

and prove that the module V (ω) is imaginary.

We first discuss the analogs of the results of Sections 3.3–3.5. The arguments are all much
easier in this case but we include the details since this is the first example of an imaginary
module in type different from A. It is convenient to recall that wtℓ V (ω1,0) is the set with
elements

ω1,0, ω2,1ω
−1
1,2, ω−1

2,3ω3,2ω4,2, ω−1
3,4ω4,2, ω−1

4,4ω3,2,

ω2,3ω
−1
3,4ω

−1
4,2, ω1,4ω

−1
2,5, ω−1

1,6.

In particular we see that wtℓ V (ω1,0) are in the subgroup generated by ωj,c with c ≤ 5 and
ω1,6. It follows from this and [11, Lemma 4.4] that if π ∈ wtℓ V and π ∈ P+ then π = ωi,bω1

with ω1 ∈ wtℓ V (ωi,a). We shall use this freely in what follows.

Suppose that π = ω1ω2 ∈ wtℓ V (ωi,b)
⊗2 and assume that π ̸= ω2

i,b. Then without loss

of generality we have ω1 ̸= ωi,b and hence it follows from [11] that a reduced expression for

ω must contain ω−1
j,c for some j, c with c ≥ 12 and c maximal with this property. It is then

immediate that ω2 ̸= ωi,b either and a reduced expression for it must have ωj,c and so also

ω−1
k,d with d ≥ 13. Since the wtℓ V (ω1,a) with a = 6, 8 does not contain a term of the form

ωk,d with d ≥ 13 we see that π /∈ P+. In other words ω2
i,b is the unique ℓ dominant weight of

V (ωi,b)
⊗2.

Suppose that ω1ω2 = 1 with ω1 ∈ wtℓ V (ωi,b) and ω2 ∈ wtℓ V (ωi,a). Since ω1 = ωi,b it fol-
lows that dimV1 = 1. Similarly if ω1ω2 = 1 with ω1 ∈ wtℓ V (ωi,b)

⊗2 and ω2 ∈ wtℓ V (ωi,a)
⊗2

one proves that ω1 = ω2
i,b and hence dim(V ⊗ V )1 = 1.
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Next we prove that π ∈ P+ is such that π2 ∈ wtℓ V then π = 1. But this is clear by
inspection since π2 = ωi,bω1 with ω1 ∈ wtℓ V (ωi,a).

We prove that (ω∗)−1ω /∈ wtℓW (ω). But this follows since if we write (ω∗)−1ω as a product of
ℓ–weights from each fundamental module, then we must take ω1,a ∈ wtℓ V (ω1,a) for a = 0, 2.

But then ω−1
1,6 does not occur as part of an ℓ–weight of the other modules.

The final thing to prove is that ω satisfies the conditions of Proposition 3.6. Once that is
done the proof that V (ω) is imaginary is identical to the one given in the An case. For this
we proceed as follows.

Note that we have a map C ↪→ V . Moreover, it was proved in [2] that V is ℓ–highest weight.
Using [22] we know that the irreducible quotient V̄ of V has a unique ℓ–dominant weight. Since
ω = ω1,10ω1,8ω2,5ω1,2ω1,0 is an ℓ–dominant weight in V and if π is any other ℓ–weight in V
then wtπ < wtω = 6ω1−α1 it follows that V (ω) must occur in the Jordan–Holder series of V .

For this, it suffices to prove that π /∈ {ω1,bω1,a,ω,1} is an ℓ–dominant weight of V then
π ∈ wtℓ V (ω). Writing π = ωi,bω1 a simple computation shows that the following are the
only possibilities for π:

ω1,8ω1,6ω1,2ω1,0, ω1,10ω2,5ω1,0 ω1,6ω1,0.

By the appropriate analog of Lemma 1.5.5 we see that

ω1,8ω1,6ω1,2ω1,0 = ωα−1
2,6α

−1
3,7α

−1
4,7ω

−1
2,8ω

−1
1,9ω

−1
1,7 ∈ wtℓ V (ω).

Next we prove that ω1,10ω2,5ω1,0 /∈ wtℓ V ; equivalently that ω−1
1,8ω

−1
1,6ω2,5ω1,0 is not an ℓ–

weight of V (ω1,a). In turn this is equivalent to proving that ω−1
1,8ω

−1
1,6ω2,5 is not an ℓ–weight

of V (ω1,4ω1,2). Since

[V (ω1,4)⊗ V (ω1,2)] = [V (ω1,4ω1,2)] + [V (ω2,3)],

and ω−1
1,8ω

−1
1,6ω2,5 ∈ wtℓ V (ω2,3) and it occurs in V (ω1,4) ⊗ V (ω1,2) with multiplicity one it

follows that ω−1
1,8ω

−1
1,6ω2,5 is not an ℓ–weight of V (ω1,4ω1,2).

Finally we prove that ω1,6ω1,0 ∈ wtℓ V (ω). Using Lemma 1.5.5 and the corresponding re-

sult for ÛJ with J = {1} and then with J = {2, 3, 4} we see that

π = ω1,10ω
2
1,8ω

2
1,6ω

−1
2,7ω

−1
2,9ω1,0 = ω(α1,3α2,6α2,4α3,7α3,5α4,7α4,5α2,8α2,6)

−1.

Notice that wtπ + α1 = 8ω1 − 3ω2. This is W–conjugate to 2ω1 + 3ω2 ≰ 4ω1 + ω2 = wtω.

It follows that any element in V (ω)π is an ℓ–highest weight vector for ÛJ with J = {1} and
hence by Lemma 1.5.5 again we get

ω = ω1,6ω1,0 = πα−1
1,9α

−1
1,7 ∈ wtℓ V (ω)

and the proof is complete.
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4. Combinatorics of (i, n)–segments

In this section we shall give an alternate formulation for a pair of segments to be in special
or general position. We then use this to prove that any element of P+

i,n can be written uniquely,
upto a renumbering as a product of elements associated to segments in general position.

4.1. Given a = (a1, · · · , ar) ∈ Zr and b = (b1, · · · , bs) ∈ Zs recall the notation a ∨ b

established in Section 1.6.2. In the rest of this section we shall prove the following proposition.

Proposition. Suppose that a = (a1, · · · , ar) ∈ Zr. There exists a unique integer k ≥ 1 and
(i, n)–segments a1, · · · ,ak which are pairwise in general position and a permutation σ ∈ Sr

such that
(aσ(1), · · · , aσ(r)) = a1 ∨ a2 · · · ∨ ak.

Moreover k is unique and the (i, n)–segments are also unique up to a permutation by an element
of Sk.

Example. Let a = (0, 6, 4, 2, 10, 16, 10) ∈ Z7, then the associated (2, 3)-segments are

a1 = (0, 2, 4, 6, 10), a2 = {10}, a3 = {16},

or any permutation of these by an element of S3. The following corollary is immediate.

Corollary. Suppose that ω = ωi,a ∈ P+
i,n for some a ∈ Zr. Then ω can be written uniquely

(upto a permutation) as a product ω = ωi,a1 · · ·ωi,ak
where a1, · · · ,ak are (i, n)–segments in

general position.

4.2. To prove Proposition 4.1 it is useful to have a more explicit formulation of segments
in general or special position.

Proposition. Let a = (a1, · · · , ar) and b = (b1, · · · , bm) with r ≥ m be (i, n)–segments.

(i) The segments a and b are in general position if and only if one of the following holds:
(a) b1 − ar > 2i,
(b) a1 − bm > 2i
(c) b1 − a1 /∈ 2Z,
(d) {b1, · · · , bm} ⊂ {a1, · · · , ar}.

(ii) The segments a and b are in special position if and only there exists 1 ≤ j ≤ m such that
one of the following hold:
(a) bj − ar ∈ Si,n or a1 − bj ∈ Si,n,
(b) there exists 1 ≤ k < r such that ak < bj < ak+1.

Proof. For part (i) note that it is clear that if one of conditions (a)-(d) hold then a and b are
are in general position. For the converse we suppose that none of the conditions (a)− (d) are
satisfied and show that a∪b contains a segment of length r+1. If b1 > ar then b1 − ar ∈ Si,n

which means that (a1, · · · , ar, b1) is an (i, n)-segment. The case bm < a1 is similar. Hence to
complete the proof of (i) we must consider the case when all of the following hold:

b1 ≤ ar, bm ≥ a1, b1 − a1 ∈ 2Z.

If ar < bk or bk < a1 for some 1 ≤ k ≤ m then (a1, · · · , ar, bk) or (b1, a1, · · · ar) is an (i, n)-
segment. Otherwise, we have a1 ≤ b1 < b2 < · · · < bm ≤ ar. Since condition (d) does not
hold, it follows that bp /∈ {a1, · · · , ar} for some 1 ≤ p ≤ m; in other words, there exists
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2 ≤ k ≤ r such that ak−1 < bp < ak. This means that bp − ak−1 and ak − bp are elements
of Si,n and so (a1, · · · , ak−1, bk, ak, · · · ar) is an (i, n)-segment. The proof of part (i) is complete.

If either of the conditions in part (ii) hold then {a1, · · · ar, bj} is an (i, n)–segment after apply-
ing a suitable permutation and hence a and b are in special position. Suppose that a and b

are in special position and assume that there does not exist 1 ≤ j ≤ m and 1 ≤ k < r with
ak < bj < ak+1. By part (i) we see that we cannot have {b1, · · · , bm} ⊂ {a1, · · · , ar}. Hence
we are forced to have either j maximal such that bj < a1 or k minimal with bk > ar. In the
first case either j = m or j < m and bj < a1 ≤ bj+1. If j = m then the segments can be in
special position only if a1 − bm ∈ Si,n. If j < m then bj+1 − bj ∈ Si,n and so a1 − bj ∈ Si,n.
The proof in the second case is identical. □

Corollary. Suppose that a = (a1, · · · , ar) and b = (b1, · · · , bm) are (i, n)–segments in general
position with r ≥ m. Then,

{a1, · · · , ar} ∩ {b1 · · · , bm} ≠ ∅ =⇒ {b1 · · · , bm} ⊂ {a1, · · · , ar}.

□

4.3. Proof of Proposition 4.1. Let a = (a1, · · · , ar) ∈ Zr. We proceed by induction on r
with induction beginning trivially at r = 1. After applying an element of Sr if needed, we may
assume without loss of generality that a1 ≤ as for all 1 ≤ s ≤ r and that r1 ≤ r is maximal
so that a1 = (a1, a2 · · · , ar1) is an (i, n)-segment. If r1 = r we are done and otherwise we let
b = (ar1+1, · · · , ar). The inductive hypothesis applies to b and we write b = a2 ∨ · · · ∨ ak as
in the proposition.

We prove that a1 and as are in general position for 2 ≤ s ≤ k. Suppose that as = (b1, · · · , bm)
and recall that a1 ≤ b1. Assume for a contradiction that as and a1 are in special position.
By Proposition 4.2(ii) there exists 1 ≤ p ≤ m such that either ak−1 < bp < ak for some
2 ≤ k ≤ r1 or ar1 < bp with bp − ar1 ∈ Si,n. In either case after applying a suitable permu-
tation if needed we see that {a1, · · · , ar1 , bp} is an (i, n)–segment contradicting our choice of r1.

It remains to prove that k is unique and the segments are unique up to an element of Sk.
For this, suppose that c1, · · · , cℓ is another set of (i, n)–segments in general position with
a = c1 ∨ · · · ∨ cℓ. Since a1 is minimal it must occur as the first term in some segment. Assume
without loss of generality that a1 is the first term in c1 and also that c1 has maximal length say
s1 amongst those cs with first term a1. Since r1 is the maximum length of an (i, n)-segment
starting at a1 we have s1 ≤ r1. We claim that c1 = a1. Otherwise, there exists 1 < p ≤ r1
minimal such that ap does not occur in c1. All the other segments cs whose initial term is
a1 have length at most s1 and hence by Corollary 4.2 must be contained in c1. Hence none
of these segments contain ap and so there must exist an (i, n)–segment cj of length sj whose
minimal term is am for some 1 < m ≤ p and contains ap. Consider c1 ∪ cj . If s1 ≥ sj then
since ap−1 ∈ c1 it follows that c1 ∪ {ap} is a longer (i, n)-segment in the union while if sj > s1
then {am−1}∪cj is a longer segment in the union. In both cases we have a contradiction to the
fact that c1 and cj are in general position. It follows that a1 = c1 and that b = c2 ∨ · · · ∨ cℓ.
The uniqueness is now immediate by the inductive hypothesis.
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5. Proof of Theorem 1: Reducibility

In this section we assume that a = (a1, · · · , ar) and b = (b1, · · · , bs) are (i, n)–segments in
special position and assume that r ≥ s.

5.1. The following elementary Lemma is helpful.

Lemma. Suppose that ω,ω′ ∈ Pn are in the subgroup of Pn generated by elements ωj,c with
c1 ≤ c ≤ c2. Suppose that ω1,ω

′
1 and ω2,ω

′
2 are elements of the subgroup generated by ωj,c

with c < c1 and c > c2 respectively. Then

ω1ωω2 = ω′
1ω

′ω′
2 ⇐⇒ ω1 = ω′

1, ω = ω′, ω2 = ω′
2.

□

5.2. We prove that V (ωi,a)⊗ V (ωi,b) is reducible. We shall do this by showing that

wtℓ V (ωi,a)⊗ V (ωi,b) ̸= wtℓ V (ωi,aωi,b). (5.1)

Recall from Proposition 1.6.2 that this statement is true in the special case when

r = s, aj = bj−1, 1 < j ≤ r. (5.2)

We shall prove the general case by showing that we can always find (i, n)–segments

a1 = (aj , · · · , aj+p) ⊂ a, b1 = (bm, · · · , bm+p) ⊂ b

which satisfy the conditions in (5.2) and also

max{aj−1, bm−1} < min{aj , bm}, min{aj+p+1, bm+p+1} > max{aj+p, bm+p}. (5.3)

Once this is done the proof is completed as follows. Choose

π ∈ wtℓ V (ωi,a1)⊗ V (ωi,b1) \ wtℓ V (ωi,a1ωi,b1)

and set

ω = ωi,a0ωi,b0πω
−1
i∗a∗

2
ω−1

i∗,b∗
2

where a0 = (a1, · · · , aj−1), a2 = (aj+p+1, · · · , ar) and b0, b2 defined similarly, where under-
stand that these segments can be empty. Writing π = ω1ω2 with ω1 ∈ wtℓ V (ωi,a1) and
ω2 ∈ V (ωi,b1) we see by using Proposition 1.6.3 that

ωi,a0πω
−1
i∗,a∗

2
ωi,b0ω

−1
i∗,b∗

2
= ω = (ωi,a0ω1ω

−1
i∗,a∗

2
)(ωi,b0ω2ω

−1
i∗,b∗

2
) ∈ wtℓ V (ωi,a)⊗ V (ωi,b).

To prove (5.1) it is enough to show that

ω /∈ wtℓ (V (ωi,a0ωi,b0)⊗ V (ωi,a1ωi,b1)⊗ V (ωi,a2ωi,b2)) ,

since the module V (ωi,aωi,b) occurs in the Jordan–Holder series of the triple tensor product.
Suppose for a contradiction that

ω = π1π2π3

where π1, π2, π3 are ℓ–weights of the corresponding modules in the tensor product. Since π

and π2 are in the subgroup of Pn generated by elements ωp,c with p ∈ [1, n] and

max{bm+p + n+ 1, aj+p + n+ 1} ≥ c ≥ min{bm, aj+m} > aj−1
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we see that together with (5.3) and Lemma 5.1 that π = π2 which contradicts our choice.

We prove the existence of a1 and b1 by induction on s. Suppose that s = 1. If r = 1
the result is immediate from (5.2). If r > 1 then by Proposition 4.2 we have to consider the
case aj < b1 < aj+1 for some 0 ≤ j ≤ r, where we understand that the first or last inequality
holds vacuously if j = 0 or j = r and we take

a1 = (aj+δj,0), b1 = (b1).

For the inductive step we assume that the existence of the appropriate segments for all s′ < s
and for all r ≥ s′. Suppose that either b2 < a1 or b1 = a1 or b1 < a1 and there exists j ≥ 2
and k with ak < bj < ak+1. Set b′ = (b2, · · · , bs). The inductive hypothesis applies to a and
b′ in the first case and to a′ = (a2, · · · , ar) and b′ in the other cases. It follows that we can
take a1 = a′1 and b1 = b′

1 .

Next let b1 < a1 ≤ b2 and assume that there does not exist j ≥ 2 with ak < bj < ak+1. Since
r ≥ s there exists p ∈ [2, s + 1] maximal so that am−1 = bm if 2 ≤ m ≤ p − 1 and ap−1 ̸= bp
where we understand bs+1 = 0. This time we take b1 = (b1, · · · , bp−1) and a1 = (a1, · · · , ap−1).

Finally, it remains to consider the case when b1 > a1. Working from the other side we
see that we can further reduce to the case when bs < ar as well. Choose p maximal and p′

minimal so that ap < b1 < bs < ap′ . Since a and b are in special position there exists j ∈ [1, s]
minimal such that ak < bj < ak+1 for some k ∈ [p, p′]. Define an integer m as follows: if either
j = 1 or j > 1 and bj−1 < ak we take m = 0; otherwise we take m so that ak−m′ = bj−m′−1

for all 0 ≤ m′ < m and ak−m > bj−m−1. Notice that m must exist since ap < b1 and j was
chosen minimal. This time we take

a1 = (ak−m, · · · , ak), b1 = (bj−m, · · · , bj),

and the proof of the inductive step is complete.

6. Proof of Theorem 1: Irreducibility

We complete the proof of Theorem 1.

6.1. We recall the main results of [12] and [13].

Theorem 5. Let ω1, · · · ,ωr ∈ P+
n . The module V (ω1)⊗ · · · ⊗ V (ωr) is an ℓ–highest weight

module (resp. irreducible) if the modules V (ωj) ⊗ V (ωk) are ℓ–highest weight (resp. irre-
ducible) for all 1 ≤ j < k ≤ r. □

6.2. We shall use the following consequence of Proposition 1.5.2 and Theorem 5 repeatedly.

Lemma. Suppose that c = (c1, · · · , ck) and d = (d1, · · · , dp) are (i, n) segments with cj−dm /∈
Si,n (resp. ±(cj − dm) /∈ Si,n) for all 1 ≤ j ≤ k and 1 ≤ m ≤ p. Then V (ωi,d) ⊗ V (ωi,c) is
ℓ–highest weight (resp. irreducible). □

Proof. Using Proposition 1.5.2(ii), (iii) and Theorem 5 we see that W (ωi,d) ⊗ W (ωi,c) is ℓ–
highest weight and hence so is the quotient V (ωi,d) ⊗ V (ωi,c). If in addition we also have
dm − cj /∈ Si,n for 1 ≤ j ≤ k and 1 ≤ m ≤ p, then it follows that W (ωi∗,c∗) ⊗W (ωi∗,d∗) and
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hence V (ωi∗,c∗)⊗ V (ωi∗,d∗) are also ℓ–highest weight. The irreducibility of V (ωi,d)⊗ V (ωi,c)
then follows from Proposition 1.5.2(i). □

6.3. In view of Theorem 5 the irreducbility statement of Theorem 1 is immediate from
the next proposition.

Proposition. Suppose that a and b are (i, n)–segments in general position. Then V (ωi,a)⊗
V (ωi,b) is irreducible.

Proof. We shall use the equivalent formulation given in Proposition 4.2 for a pair of segments
to be in general position.

Suppose that ar < b1 and b1 − ar > 2i. Then bm − ap > 2i and 0 > ap − bm /∈ Si,n for
all 1 ≤ m ≤ s and 1 ≤ p ≤ r. It follows from Lemma 6.2 that the module V (ωi,b)⊗V (ωi,a) is
irreducible. If bs < a1 and a1 − bs /∈ Si,n or is bs − a1 /∈ 2Z the proof is identical and we omit
the details.

It remains to consider the case when s ≤ r and {b1, · · · , bs} ⊂ {a1, · · · , ar}. We proceed
by induction on s and for each s by a further induction on r. Suppose that s = 1 and b1 = am
for some 1 ≤ m ≤ r. If m = r the result is immediate if we prove the following claim:

wtℓ(V (ωi,a)⊗ V (ωi,ar)) ∩ P+
n = {ωi,aωi,ar}.

To prove the claim, let ω be an element of the intersection and write ω = ω(p)ω(p′) ∈ P+
n

with p = (p1, · · · , pr) ∈ Pi,a and p′ ∈ Pi,ar . If ω(p′) ̸= ωi,ar then there exists j ∈ c−p′ with

p′(j) ≥ p′(s) for all s ∈ c+p′ ∪c−p′ and p′(j) > ar. It follows that j ∈ c+pk for some 1 ≤ k ≤ r with

pk(j) = p′(j) > ar > ak. This implies that ω(pk) ̸= ωi,ak and so there exists j′ ∈ c−pk with

pk(j
′) > p′(j). It follows from Proposition 1.6.2 that ω−1

j′,pk(j′)
occurs in any reduced expression

for ω which contradicts ω ∈ P+
n . Hence ω = ω(p)ωi,ar .

If ω(p) ̸= ωi,a then there must exist 1 ≤ k ≤ r with c−pk = {i} and pk(i) = ar and c−j = ∅
for all 1 ≤ k ̸= j ≤ r. But this means that k < r and then we have a contradiction to the
definition of the set Pi,a. In particular, we have proved the case s = r = 1.

Applying the Cartan involution Ω we see using the discussion in Section 1.5.1 that the module
V (ωi,a1)⊗ V (ωi,a) is also irreducible.

Hence to complete the proof that induction begins at s = 1 case we must consider a1 <
b1 = am < ar. We assume moreover that the inductive hypothesis hold for r′ < r. Let
a′ = (a1, · · · , am) and a′′ = (am+1, · · · , ar). These are both (i, n)–segments of length at most
r − 1 and consider

V (ωi,a′′)⊗ V (ωi,a′)⊗ V (ωi,am).

The tensor products V (ωi,a′′) ⊗ V (ωi,a′) and V (ωi,am) ⊗ V (ωi,a′) are ℓ–highest weight by
Lemma 6.2. The inductive hypothesis shows that the tensor product of the second and third
module is irreducible and hence ℓ–highest weight. Theorem 5 shows that the entire tensor
product is ℓ–highest weight and hence so is its quotient V (ωi,a)⊗V (ωi,am). Working with the
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(n+1−i, n)–segments, a′1 = (a1+n+1, · · · , am−1+n+1), and a′′1 = (am+n+1, · · · , ar+n+1)
and the tensor product

V (ωn+1−i,am+n+1)⊗ V (ωn+1−i,a′′
1
)⊗ V (ωn+1−i,a′

1
),

we see similarly that every pair of modules in the tensor product is ℓ–highest weight and hence
so is V (ωn+1−i,am+n+1)⊗ V (ωn+1−i,a∗). The irreducibilty of the tensor product follows from
Proposition 1.5.2(i) and completes the proof that induction begins is when s = 1.

Assuming the result for 1 ≤ s′ < s and for all r ≥ s′ we prove it for s and all r ≥ s.
Writing b′ = (b1, · · · , bs−1) we consider

V (ωi,a)⊗ V (ωi,bs)⊗ V (ωi,b′).

The tensor product V (ωi,bs) ⊗ V (ωi,b′) is ℓ-highest weight by Lemma 6.2 and the tensor
product of the remaining two pairs is irreducible by the inductive hypothesis on s. Hence
the module V (ωi,a) ⊗ V (ωi,b) is ℓ–highest weight. A similar argument with (n + 1 − i, n)–
segments as in the s = 1 case also proves that the dual of this module is ℓ–highest weight and
the irreducibility of the tensor product follows by Proposition 1.5.2(i). This completes the
proof of the inductive step and the proof of the proposition is complete.

□
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