HIGHER ORDER KIRILLOV-RESHETIKHIN MODULES, IMAGINARY
MODULES AND MONOIDAL CATEGORIFICATION FOR U,(A")

MATHEUS BRITO AND VYJAYANTHI CHARI

ABSTRACT.

1. THE MAIN RESULTS

In this section we introduce the basic notation and state our main results. We assume
throughout that ¢ is a non—zero complex number and not a root of unity. As usual C (resp.
Z, Z+, N) will denote the set of complex numbers (integers, non-negative integers, positive
integers). Let C* be the set of non—zero complex numbers.

1.1. The essential notation.

1.1.1. The algebra U,,. Given n € N let [1, 7] be the set of integers {1,--- ,n}. Let U, be the
quantum loop algebra over C of type AS); we refer the reader to [5] for precise definitions. For
our purposes, it is enough to recall that U, isa Hopf algebra and is generated as an algebra
by elements z k:z?tl, qbfr i € [l,n] and s € Z, r € Z\ {0}. The algebra generated by the

1,87
clements k', ¢ i € [1,n], 7 € Z\{0} is denoted UY and is a commutative subalgebra of U,,.

2,77
Given a € C* let 7, : U,, — U, be the Hopf algebra homomorphism given by

:cffs — a*xt Ta(k;tl) = k:iil, Ta(qﬁfr) =a"¢F

1,87 7,77

where i € [1,n], s € Z and 0 # r € Z.

1.1.2. The group Pp. Let P, (resp. P,) be the (multiplicative) free abelian group (resp.
monoid) generated by elements of the set {w;, : i € [1,n], a € Z}. The elements of P, are
called /~weights and those of P;" the dominant /~weights. Let P be the free (additive) abelian
group on generators {w; : i € [1,n]} and P the corresponding monoid. Define a morphism of
groups by extending the assignment

wt: P =P, wtw;q=w;, i€[l,n], a€Z.
It is also convenient to identify P with the monoid consisting of n-tuple of polynomials by
extending the assignment
wia = (1= 05,5q") jeqn )
to a multiplicative homomorphism.
V.C. was partially supported by DMS-1719357, the Max Planck Institute, Bonn and by the Infosys Visiting
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1.1.3. The category %,. type 17 also mention that ¢ is not a root of unity? Let Jn be the
category of finite-dimensional representations of U,,. The Hopf algebra structure on U,, makes
Zn, a monoidal rigid tensor category. For a € C* and V € .%,, let 7,V be the corresponding
object of .#,,. Clearly

(VW) 27,V 1, W.

Let Ko(.%,) be the corresponding Grothendieck ring of .%,, and let [V] denote the class of an
object V of .%,.

1.1.4. The modules W(w) and V(w) and the category F, 7. For w € P, let W(w) be the
U,,—module generated by an element v,, satisfying the relations

—\d i 1 d + - =
xi—svw =0= (x@ 0) egmi(u)+ Vi, kive BT (U)y Vw) ¢i7rvw = Vi Vs ST € Z, r#0,

)

where Wfr € C(q) are defined by

+ 4+ degm Ti(q" )
- r _ degm; _ ) -
E_ :Vz,:tru q m(qu) ) W (ﬂ'z(u))zEI

Any quotient of W(w) is called an ¢-~highest weight module with highest /—weight w and we
will continue to denote by v,, the image of the generator of W(w) in any quotient. The module
W (w) is finite-dimensional and has an unique irreducible quotient which we denote as V (w).
Finally, any irreducible module in .%,, is isomorphic to a tensor product of objects of the form
7V (w) for some b € C* and w € P;I.

Let %, 7 be the full subcategory of .%#, whose Jordan-Holder constituents are of the form
V(w), w € PF. It is well-known that .7%, 7 is a rigid tensor subcategory of .%, and we let
Ko(#n,z) be the corresponding Grothendieck ring.

1.2. Higher order KR—modules and the first main theorem.

1.2.1. The set Sy and (i,n)-segments. For i € [1,n], let

Sin=1{2j:1<j<min{i,n+1—i}} = Sut1-in. (1.1)
Definition. We shall say that an element a = (aj,--- ,a,) € Z" is an (i, n)-segment of length
rifa,—a,—1 €S;, foral2<p<r. O

Since 0 ¢ S;,, the entries of a are all distinct and so in what follows we will also think of
segments as sets.

Example. If n = 3 we have
S13 =12} = S33, Sa23=1{2,4}.

Moreover, the element a = (0,4, 6,10) is the union of three (1,3)-segments (and also (3,3)-
segments): (0), (4,6) and (10). However a is a (2, 3)-segment of length 4.



1.2.2. General and special position of segments.

Definition. Say that two (i,n)-segments a = (a1, -- ,a,) and b = (by,--- ,bs) are in general
position if their union does not contain an (i,n)-segment of length greater than max{r, s}.
Otherwise we say that they are in special position. O
Examples.

(i) An (i,7n)-segment is in general position with itself.
(ii) Suppose that n = 3 and consider the (2, 3)-segments

a=(0,2,6,10), b= (4,10), c=(16,18).
Then a and b are in special position since their union contains the (2, 3)-segment

(0,2,4,6,10) while a,c (and also b, c¢) are in general position.

1.2.3. The KR-modules of type (i,n). Given i € [1,n] let P, be the submonoid of P,
generated by the elements w; 4, a € Z. For a = (a1,--- ,a,) € Z" set

_ . . +
Wia = Wia, " Wia, € Pi’n.

)

Definition. Given w € P;’ we say that V(w) is a KR-module of type (i,n) if there exists an
(7,n)-segment a such that w = w; 4. O

We note that the usual KR-module for U, is of the form w; o where a = (a,a+2,---a+2r—2)
for some a € Z and r > 1. We refer to the KR—-modules associated with more general segments
as the higher order KR-modules since they encode the reducibility data of V(w;.) ® V(w;p)
in higher rank.

Remark. The modules V(w;a) where a is an (i,n)-segment are a special family of snake
modules studied in [20, 21].

1.2.4. A prime factorization result. We can now state our first main theorem, which gener-
alizes the result of [4] in the rank one case.

Theorem 1. Given w € P;fn there exists a unique integer £ > 1 and unique (upto permuta-
tion) (4,n)-segments ay, - - - ,a; which are in pairwise general position such that

V(w) 2 V(wia,) @ @ V(wiay)-
In particular V(w) ® V(w) is irreducible for all w € P;fn. Moreover V(w) is prime iff there
exists an (i,n) segment a with w = w; a.

1.3. The second main theorem: an inflation of Grothendieck rings.

1.3.1. The {—weight space decomposition and q—characters. Given any object V of .%#,, we can
regard it as a module for the commutative subalgebra U?. Tt follows that we can write V'
as a direct sum of generalized eigenspaces for the action of this subalgebra. The generalized
eigenspaces are called /~weight spaces and it was proved in [10] that if V' is an object of .%,, 7
then the /—weight spaces are indexed by elements of P, in a natural way and so,

V=P Vo, wteV={weP,:V,#0}

wEPn
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The g—character of V' is the element x,, (V') of the group ring of Z[P,] given by
Xqn(V) = Z dim V,e(w).
wEePh

One also has the usual weight space decomposition of V' in terms of the generators Kiﬂ;

namely
vo@n n- @ %
AeP W(&SZ)\

Given any subgroup G of P, the corresponding truncated g—character is given as follows:
X9, (V)= dimVye(w) € Z[G].
weg

1.3.2. The subgroups G, and the category €, . Given n € N let G, be the subgroup of P,
generated by the elements

{wpr:r—pe?2Z, pell,n], re(—o0,0]},

and let Q,J{ be the corresponding monoid.

The category %, is defined to be the full subcategory of .%#, whose simple factors are of
the form V(w), w € G;'. For V € €, set

Xan(V) = xgn(V).
The following was proved in [15].
Proposition. The category €, is a monoidal tensor category and the assignment
[V(w)] = Xgn(V(w), weG,
defines an injective homomorphism of rings X, : Ko(€, ) — Z[Gn]. In particular the image

of Xqn 18 a polynomial subalgebra of Z[Gy]. O

1.3.3. The homomorphism ®;,,, the category C;n and the second main result. Assume that
n € N and i € [1,n] are such that n+1 = i(i + 1) for some i.

Define a homomorphism ®; , : 77{” — P by
— + - — +
W= Wiay Wiga, € P <I>Z-7n(w) = Wij1iay ** Wijpiap € Pr -

Let ¢, be the full subcategory of Fy, consisting of objects whose Jordan—Holder components
are of the form V(¢(w)), w € G;".

Our second main result is the following.

Theorem 2. The category ¢, is a monoidal tensor category and we have an isomorphism
of Grothendieck rings

(I)Z,n : ’Co(%i) — K:o((gi

E i7n

) such that @; [V(w)] = [V(®;,(w))], wE g{.

in

In particular, we have a geometric g—character formula for V(®; ,(w)).
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1.3.4. Monoidal Categorification. Recall from [14] the category %, which consists of objects V'
in %, whose Jordan—Holder constituents lie in the submonoid of G,, generated by the elements
{wja:je(l,n], —2r —1 < a <0}. It was proved in [14] for r = 1 and in [23] in general that
the Grothendieck ring Ky(%,) is the monoidal categorification of a cluster algebra. In other
words, there exists a cluster algebra A and an injective homomorphism A — Ky(%,) which
maps a cluster variable to the class of a prime representation and a cluster monomial to the
class of irreducible tensor product of representations. Define %;, in the obvious way. The
following is now an immediate consequence of Theorem 2.

Proposition. The category €;, is a monoidal tensor category and hence the ring Ko(€;,) is
a monoidal categorification of a cluster algebra.

1.4. Imaginary Modules. Recall that a module V(w) for U, is said to be real if its
tensor square is irreducible. Otherwise, we call the module imaginary.

The first example of imaginary modules was given by Leclerc in [19] where he showed that if
W = W2 6W1,3W33W2 0

then the module V(w) for U, is imaginary. In [18] further examples of real and imaginary
modules can be found. In both cases the examples come from representations of affine Hecke
algebras by using Schur—Weyl duality.

As an illustration of the possible applications of our main results we construct new exam-
ples (which do not fit into the framework of [18]) of imaginary irreducible modules and we
work entirely inside .%,.

Proposition. Suppose that i € [1,n] and b = (by,--- ,b,) with r > i is an (i,2i — 3)—segment
and let a = (by — 2i,--- ,b, — 2i). Then one of the factors of Jordan—Holder series of the
module V(w;p) ® V(wia) is an imaginary irreducible module.

Remark. We shall see that Leclerc’s example corresponds to the case ¢ = 2 and n = 3 and
b = (6,4).

We have the following general conjecture.

Conjecture. Retain the assumptions of the proposition set

1 . .
8j=§(bj_1—bj—‘r2’t), 2<3<r,
w = wi,br (w’ifsr,bkflfsTwi+sr,bk,1787‘) e (wi782,b]_782w7:+82,b1782) w’i,bl —n—1-

Then V (w) is an imaginary module occurring in the Jordan-Holder series of V(w; p) @V (wja).

We shall prove the conjecture in certain special cases which will show that this family of
examples are very rarely of the type given in [18].

Note that Proposition ??(i) proves the conjecture for i > 2 and b = (2k, - - - , 2¢) while part
(ii) proves it in the case when ¢ = 3 and b = (12,10,6). Comments to be made for arbitrary
n and the inflation maps
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We prove these results in the subsequent sections. Sections 5 and Section 6 are devoted to
the proof of Theorem 1. Theorem 2 and Proposition 1.3.4 are proved in Section 2. The proof
of Proposition 7?7 can be found in Section 3.

1.5. Further known facts on the structure of .%,. We conclude this section by stating
known results on the category .%,, the f~highest weight modules and their ¢g-characters which
will be needed for our study.

1.5.1. Duals and the Cartan involution. Let V be an objecic of %#,. Then V has a left and
right dual denoted by V* and *V respectively, and we have U,—maps

C>V*'V, V*V —-C —0.

Moreover if we set
w;'k,a = Wn+1—i,a+n+1, *wi,a = Wn+1l—i,a—n—1
we get corresponding endomorphisms w — w* and w +— *w of P and
V(w)" 2 V(w*), "V(w)=2V(w).

We shall freely use properties of duals, in particular, the isomorphisms

UV)2vVeU" "(UV)2"'Ve*l,

Homg (V@ U,W) = Homyg (U,V*®@ W), Homg (U®V,W) = Homg (U, W V).

Motivated by this, we have the following definition.
Definition. Given an (i,n)-segment a = (ai,--- ,ar) we define the (n + 1 — i, n)-segments

a*=(ai+n+1,---,ap+n+1)and *fa=(a; —n—1,--- ;ap, —n—1). O

The quantum affine analog of the Cartan involution of A, is the algebra homomorphism
and coalgebra anti automorphism 2 : U,, — U, given by

O(x7,) = —af_,, Q¢ =¢F_., k) =k,

1,8 1,—8?
for i € [1,n], s € Z and 0 # r € Z. If U,V are objects of %, and w € P,

n
isomorphisms

QUV)=ZQV)QU), QUV(w)=2V(Qw)), Qwis) =wWnti—i—a-

we have

1.5.2. Tensor products. Part (i) of the next proposition was proved in [5, 6]. Part (ii) was
proved independently in [1] and [2] and part (iii) in [2].
Proposition. Suppose that w = wj, 4, -+ Wiy ), € 73; with a1 < --- < ag.

(i) Letw' € P;F. The module V(ww') occurs with multiplicity one in the Jordan—Holder series
of V(w) @ V(w'). Moreover, V(ww') is isomorphic to V(w) @ V(') iff V(w) @ V(w')
and its left (or right) dual are {—highest weight modules.

(ii)) We have,

W(w) = V(wik,ak) Q- ® V("‘Jil,al)
and hence for all w,w' € P, the following holds in Ko(F):

(W (we")] = [W(w)][W(w)].



(111) The module V(wi, a,) @ V(Wiy,ay) 15 {-highest weight iff
ag —ay ¢ {2p+ 2 — iy — iz : max{iy, iz} < p < min{i; +is — 1,n}}.
([

1.5.3. g—characters and a result of Frenkel-Reshetikhin. Recall from Section 1.3.1 the defini-
tion of the g—character of an object of .%, 7. The following was proved in [10].

Theorem 3. The assignment [V] — x4(V') defines an injective homomorphism of rings
Xq Ko(ﬁnz) — Z[Pn]

Moreover, Ko(#,,z) is a polynomial ring in the generators [V (w; )] with ¢ € [1,n] and a € Z.

In particular if V' and V' are objects of .%,, z we have,

wte(V ® V’) =wt, Vwt, V.
(|

1.5.4. {-lowest weight modules. An f-lowest weight module is defined in the obvious way; it
is generated by an element v which is an eigenvector for the elements (;51?5 and z; v = 0.

Proposition. (i) Any (—highest weight module with {—highest weight w in F, is also a lowest
(~weight module with lowest weight (w*)~!.

(ii) Let V,V' be {—highest weight modules with {—highest weight w,w’ € P} respectively. Let
v~ and v™ be non—zero lowest and highest {—weights of V and V'. Then v~ @ v' is an
(~weight vector with {~weight (w*)™'w’ and

VeV =U,lv- @vh).
In particular if U is a proper quotient of V. ® V' then dim Uw=)-1w # 0.

Proof. We sketch a proof. Let A = wtw. Since V is an ¢-highest weight module we have
wtV C A— Q" and dim V), = 1. Since V is a finite-dimensional module for U,, and hence also
for U,, U,, hasnt been defined it follows that dim V,, x» = 1 where w, is the longest element of
the Weyl group S,,+1 of A,; in particular any non-—zero element of V,,_» is an {~weight vector.
It was shown in [2] that if V = V(w) then V,,, ) was an /~weight space with ¢~weight (w*)~!.
Since V(w) is a quotient of any /~highest weight module with /—weight w, part (i) follows.

Part (ii) is immediate from the formulae for the comultiplication [7] (see also [2]). O

1.5.5. The {-root lattice and diagram subalgebras. For i € [1,n] and r € Z let a;, € Py, be
defined by

Qg = wf_lLawi,r—lwz‘,aJrlwifl,a7
and let Q,, be the subgroup of P, generated by these elements and let Q" be defined in the
obvious way. define @ and Q*.Then it is known (see for instance, [3]) that

wty W(w) C w(Q) .
S

Given J C [1,n] let ﬁn 7 be the subalgebra of U, generated by the elements z e K ,qufs
with j € J. Let P, ; be the subgroup of P, generated by the elements w;. with j € J and
¢ € Z and define 77:{ 7> 9n,s and Q: s in the obvious way. Define a homomorphism P, — P, s
sending w — wy by7 extending the éssignment

Wi c — Wi, 1€ J, Wi 1, 2 g J.
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Let V(wy) be an irreducible /~highest weight module for ﬂn J with /-highest weight w .

The following well-known lemma is immediate from the results of [9].

Lemma. Suppose that V is an object of Fp 7z and let J C [1,n]. Suppose w € P, and
0 #v €V, are such that IAJ'nJU s an L-highest weight module for IAJn,J. Then

(oS Q;J, wJij1 ewtyViwy) = wa™ ! e wt, Uyv.
O

1.5.6. Tensor products and diagram subalgebras. Given J C [1,n] and w,w’ € P, we have
an isomorphism of U,, j—modules V(w ;) = U, jv, C V(w).

V(wJ) ® V(w{]) = IAjn,JUw b2y ﬂn,]”w’-

In particular if v € V(wy) ® V(w')) is an ¢-highest weight vector with ¢~highest w wa]ajl
with o € Q' ; then V(w) ® V(w’) has an ¢~highest weight vector with ¢-highest ww'a™?,

1.6. Some results of Mukhin and Young. We recall special cases of the results of
Mukhin and Young established in [20, 21] which will play an important role in the paper.

1.6.1. The sets P;, and P; 5. For i € [1,n] and a € Z, let P; , be the set of all functions
p: [0,n + 1] — Z satisfying the following:

p(0)=i+a, p(r+1)—p(r)e{-1,1}, 0<r<n, pn+l)=n+l-ita.

For p € IP; , set
c;t ={re[l,n]:p(r—1)=p(r)+1=p(r+1)},

w(p) = H Wrp(r) H w,:;(r) € Pn.

recy reCc,

In particular w(p) is in the subgroup of P,, generated by the elements {w; ;) : j € cz‘f Uc, }.

Let p; o and pza be the elements of P; , given as follows:

) t—j+a, 075 <0, . at+i+j, 0<j<n+1-—4,

pia(j) =19 . " o pia(d) = S o

j—i+ta, 1<j<n+l, a+2n+2—i—j n+2—-i<j<n+1.
Then

w(pi,a) = Wia, w(pza) = w;—il-l—i,a-l—n—i—l‘
The following is a simple calculation.
Lemma. Let a,b, c be integers b—a = 2my and ¢ — b = 2mq for some m1,mo € N. Then, for
all j € [0,n 4 1] we have
pi,a(j) < p(]) < p;c(j)a pE ]P)i,b-



Given a = (aq, - ,a,) € Z" of length r > 1, set
Pia={(p1, -+ 0r) :0j €Pig;, pj(k) <ps(k)forallke0,n+1], 1<j<s<r} (12)
w(p) =w(p1) --wpr), p= (1, - .pr) € Pia. (1.3)
Remark. The condition that p € P; 5 guarantees that the expression on the right hand side
of (1.3) is a reduced word in P;.
1.6.2. Givena=(ai,---,a,) € Z" and b = (b1, ,bs) € Z* set
aVb= <a17"' 7arab17"' 7bs)-

The next proposition is a special case of the main result of [20, 21]. We remark that those
papers do not use the language of (i,n)-segments. However it is not hard to see that the
module V(w; 5) associated to a (i,n)-segment a satisfies the restrictions of that paper.
Proposition. Let a = (a1, ,a,) be an (i,n)-segment.

(i) Suppose that ¢ is an (i,n)—-segment such that either aVc or cVa is also an (i,n)-segment.
Then V(wia) @ V(wje) is reducible.

(ii) We have
wty V(wia) = {w(p) :p € Pia}, dimV(w;a) = # wtpV(wia),
and
P Nwty V(wia) = {Wia Wi, }-
(i1i) Let 1 < m, < min{i,n + 1 — i} and take b = (a2, - ,ar,a, + 2m;). Then b is an
(i,n)-segment and the following equality holds in Ko(Fy):

[V(wia) @ V(wib)] = [V(wiawia,+2m ][V (@ibw; g om, )] + [V(@H)][V ()]

where
wi = Witmi,a1+my *° Witmy,ar+meys 2mj = Qj+1 — Gy, 1<;j<r-1
Moreover,
wltw™ ¢ th(V(wi’awi’aTJerr) X V(wi,bw;arJerr)).
O
1.6.3. We note some consequences of Lemma 1.6.1 and Proposition 1.6.2 for later use.
Proposition. Suppose that a = (aq,--- ,a,) is an (i,n)-segment and for 1 < j < s < r let
ajs = (aj, -, as).
(i) We have

(p17”' 7p1”) S ]P)i,a — (p]’ 7p3) € IP>'i7aj,s‘
(ii) Suppose that

I, . 1 !
W =Wia " wl,alj—lwwn+1—i,a5+1+n+1 Witl—iartntl

where w is in the subgroup of Py generated by wp,p, m € [1,n] and a; < b < as+n+ 1.
Then
w € wty V(w,-yaj,s) — W' e wty V(wi7a).
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Proof. Part (i) is immediate from Proposition 1.6.2(ii). If w € wtyV(wja;,) let P, =
(Pjs- -+ ,ps) € Pia;, be such that w(gjs) = w. It is immediate from Lemma 1.6.1(i) that

p=(0fh: Do Djr P Dia s D) € Pia,
and hence by Proposition 1.6.2(ii) again, we have w’ = w(p) € wt;V(w;a). To prove the

converse let p = (p1,---,pr) be such that w(p) = w’. Note that by our assumption on w
we have thagwi,al " Wigq;_, must occur in wi(p). This can only happen if (p1,---,p;) =
(s 7p%ﬁl). Similarly, w;}rl ittt n+1 i.ay+ns1_q MUst occur in w(p) and this
can only happen if (psy1,--+ ,pr) = (pfi“,- ,p;%)- Therefore, by item (i) of this proposition
we have p' = (pj,---,ps) € Pia,, and hence w = w(p'). Proposition 1.6.2(ii) implies that
w € V(wja;,) which completes the proof. O

2. PROOF OF THEOREM 2

Throughout this section we fix i € [1,n] with n +1 =0 mod i and write n + 1 = i(i + 1).
Let H; (resp. ”H;r ) be the subgroup (resp. submonoid) of P; generated by the elements of the
set

{wjﬂl -7 € [175]7 j_ a < 2Z; ac (—O0,0]}

2.1. The map ®;,,. Let &;, : P; = Py, (vesp. ¢;,, : P; — P,) be the group homomorphism
defined by extending the assignment
05, (Wja) = Wijias  (resp. &7, (w)) = wij), JEL], a€Z
Clearly wto ®; , = ¢; , owt.
Lemma. We have ®;,(QF) C Q) and ¢;,,(QF) C Qf. Moreover for m,w € P;,
wtw —wtm € Q; = G, (Wtw) — ¢, (wtm) € Q).
Proof. 1t is easily checked that

(2
rale) =3 3
p=1 s=p—i
formulate the /—root version similarly.
For the second assertion of the lemma, the forward direction is now immediate. For the
converse assume that w —mw =Y " j=18jj with s; <0 for some j. The assertion follows once

we notice that the coefficient of ay; in (¢5,,(Wtw) — ¢;,(wt)) is is;.
O

More generally, one computes that for j € [1,i] and a € Z we that ®; ,(ajq) is equal to

i—1 k
H H Q1) 4k, i(a+1)—k+2p—206 (j+1)—k, i(a+1)—k+2p—2 H Q5 i(at1)—it+-2p—2-
k=1p=1 p=1

In the rest of the section we shall, for ease of notation, set ® = ®; . and ¢ = ¢;,,.
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2.2. The set ®(wtyV(wya)). Given p € Py, with 1 < k <4, define ®(p) : [0,n+1] > Z
as follows: for 0 < j <i+1 and 0 < j’ < i we have
o o ip(5)+7, p(i+1)—p@y) =1,
p)n+1) =n+1—iktia, )i+ )= P PN )
ip(j) =5’ p(G+1) —p(j) = -1

A straightforward checking hows that
®(p) € Piria, and w(P(p)) = ¢(w(p)).
Conversely, suppose that g € P i, is such that w(g) € ®(P;). We claim that g(ir) is a mul-

tiple of ¢ for all € [0,4]. This follows from the assumption on w(g) if g(ir — 1) = g(ir + 1);
otherwise there exists my,mo € [1,n] with m; < ir < mg and g(ms — 1) = g(ms + 1) for
s =1,2. Since g(ir) = g(m1) £ (ir — mq) the result again follows from our assumptions.
Hence we can define
®(g): 0,i+1] = Z, & '(r)=g(ir)/i, re0,i+1].
It is straightforward to see that ®~1(g) € Py, and that
w(g) = @(w(27(9))).

The following is now a trivial checking using Proposition 1.6.2.

Proposition. Let k € [1,i] and assume that a = (ay,--- ,a,) is a (k,i)-segment and assume
that w € P;. Then
™ € Wity V(wk,a) <= @(ﬂ') € wty V(wik,ia).

The following corollary is immediate by using Proposition 1.5.2.
Corollary. For all w € P{F, we have
mewtyW(w) = &(rm) € wty W(P(w)).

Remark. In fact Proposition 2.2 holds for all the modules studied in [21] and the proof is
identical to the one given above for segments.

2.3. We prove a partial converse to Corollary 2.2.
2.3.1. The set wty V(®(wiq)) \ P(wte V(wp.,q).

Lemma. Let wy, € H; and suppose that w € wty V(wik,ia) and w ¢ ®(H;) with reduced
exTpPression

w=w! - w s €L, 1<ji<---<jp<m, e€{-11}, 1<s<r.

Ji,e1 JrsCr?
Let s € [1,7] be such that cs is mazimal with the property that wj, ., ¢ ®(H;). Then e; = —1.
Proof. Let p € P, i be such that w(p) = w, in particular this means that if p(j —1) = p(j+1)

then j = jj for some k € [1,r] and p(jr) = ¢ and also that ¢ — cx—1 = €x(jr—1 — Jjx) for
2<k<r.
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Assume that there exists m such that €, = 1 and wj,, ,, ¢ ®(H;) (otherwise there is noth-
ing to prove). This means immediately that there exists m’ € [1,n] with €, = —1 and so r > 2.

Setting (jo, co, €0) = (0,ik +1ia,0) and (jr+1,Cr+1,€r41) = (n+1,n+1—ik+1ia,0) we see that
€m—1 = —1+ 5m,1 + 5m,r = €m+1l, Cm—1—Cm = Jm — Jm-1> Cm+1— Cm = Jm+1 — Jm
and so
Cm—1 T+ Jm-1=Cm + Jm = Cmt1 — Jm+1 + 2Jm.

It is now simple to see that at least one of wy41,,,., ¢ ®(H;) and the Lemma follows since
Cm+1 > Cmy- O

2.3.2. The next proposition gives the partial converse to Proposition 2.2.
Proposition. Suppose that
W=Wj gy Wia, €M, T=w(p1)- - w(pr) € wh W(S(w)), ps € Pijia,, 1<5<k.
Then
e d(H;) = wps) =P(w(9s)), 9s €Pj,a,, 1 <s<k. (2.1)
T EPy = e d(H;. (2.2)

Proof. We proceed by induction on k£ with Proposition 2.2 showing that induction begins at
k=1.

For the inductive step, suppose for a contradiction that w(p;) ¢ ®(H;). Choose s; as in
Lemma 2.3.1, i.e., ws_ll’pl(ﬂ) occurs in w(p1) and if p1(j + 1) = p1(j — 1) and w; ;) ¢ P(H;)
then pi(s1) > p1(j). Then we must have that wy, ;, (s;) occurs in w(py,) for some 2 <m < k
and assume without loss of generality that m = 2. In particular this means that w(ps) ¢ ®(H;).

1
Repeating we find that this process can never stop which is clearly absurd.

Hence w(p1) € ®(H;) and so by Proposition 2.2 w(p1) = ®(w(g1)) for some g1 € Pj 4.
It follows that
w(p2) -+ w(pk) = D(rw(gr) ") € Wty W(P(ww} ', )

The inductive hypothesis applies and the proposition follows. O

Corollary. Suppose that
wi,wy € H;, T =m17a, 75 € wiy(V(P(ws)), s=1,2.
Then,
T ePF = e d(H;),
e d(H;) = 7€ P(H;), s=1,2
Proof. Recall from Section 1.5.2 that V(w) is the unique irreducible quotient of W (w) and
that
wty V(w) C wty W(w), wty W(wi)wty W(ws) = wty W(wiwa).

The corollary is now an immediate consequence of the proposition. ([l
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2.4. Let H;, = ®;,,(H;). In what follows we shall continue to denote by ®;, the in-
duced map from Z[H;] — Z[Hin]. Let €; (resp. i,) be the full subcategory of .%; 5 (resp.
Fn,z7,) consisting of objects whose Jordan-Holder constituents are of the form V(w) (resp.
V(®;,(w))) with w € 7—[{“

2.5. For m > 1 and a subgroup G of P,, and an object V' of .7, 7 set
(V)= dimVe(w) € Z[G].
weg
It was proved in [10] that if G = Py, then one has an injective homomorphism

Xpm : ,Cg(ymyz) — Z[Pm]

Moreover the image of x”™ is a polynomial algebra generated by the elements X7 (V (w;))
with j € [1,m] and b € Z.

An analogous result was proved in [16] for 4; with G = #H;. In fact one has the following
more general statement.

2.6. 'We now prove the following proposition.

Proposition. Retain the notation established so far.
(i) The category €; n is a monoidal tensor category.
(i) The assignment
X Ko(Gin) — Z[Hinl,
is an injective homomorphism and the image is the polynomial algebra generated by the
elements X (V (®7,,(wja))), wja € ’H;. Moreover, we have

B;,, 0 X 9 (V(wja)) = X (V(P70(wja)), wja € Hi
Corollary. We have an isomorphism Ko(€;) — Ko(%in) defined by [V (wja)] = [V (7, (wja))]-
Moreover this map takes snake modules to snake modules.

Proof. The isomorphism is clear from the proposition. Suppose that V(w) is a snake module
in ¢;. Then it is clear that ®; , (w) also defines a snake. Using Remark 2.2 we have

®; ,(why V(w)) = wte(V/(®;,,(w))) N @7, (H5)-

Since ¢-weight spaces are one-dimensional in snake modules we have that dimV (w)r =
dim V(®; ,,(w))a.  (x) and so we get

;5 0 XV (w) = XV (@(w)).

Using injectivity we get the corollary.
O

The proposition is established in several steps. Since ¢,n are fixed from now on for ease of
notation we set

O =0;,, H=HHin H'=H],

H="H; HT=H

2
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2.6.1. Proof of Proposition 2.6. To prove that % , is a monodial tensor category it suffices to
prove that the Jordan—Holder constituents of V(®(w1)) @ V(®(ws)) are of the form V(P(m))
with 7 € H;r . But this is immediate from the second assertion of Corollary 2.3.2.

To prove that 7 is a homomorphism of rings we must show that

(Z dim V(w1)we(w ) (Z dim V(w2)we(w ) Z dim (V(w1) ® V(w2)),, e(w).

wWEH wWEH wEH

But this is immediate from the first assertion of Corollary 2.3.2 and the fact that x"» is a
homomorphism.

To prove that x is injective we use the following elementary fact. Suppose that V; and
V5 are two objects of F,, such that (dim V7)., = (dim V3),, for all w € P,;/. Then [V4] = [V5].
Since any /-dominant weight of an object of €;, is in H* by Corollary 2.3.2 we see that x*
is injective.

Part (i) of this proposition shows that ICo(%;,,) is generated by the classes of V(®(wjq))
with w;,. Since ®(w;,) are part of the generators of Ko(.%#,z) it follows that KCo(%;,,) and
hence also the image of x* are polynomial algebras. The final statement of (ii) is obvious
from (2.1).

2.7.

Proposition. We have an isomorphism of algebras Ko(€;) — Ko(€in) which maps V(w) to
V(®70(w))-

Proof. 1t is clear from the proposition and the results of [16] that the assignment
[V(wja)] = [V(®;,(w))]

defines an isomorphism of rings ¥ : ICo(%;) — Ko(%ipn). Writing w = wj, o, -+ W, ap WE
prove by induction on wtw that this isomorphism maps V(w) to V(®;,(w)). The definition
of the isomorphism shows that induction begins and we prove the inductive step. Let w’ =
Wiy ag " * " Wiy a, and write

V(wip.ap) @ V(W) = [V(w)] + Z ax[V(m)], ar €Z4, ar =0 if wtw £ wtw.
71'67'[;—
Using Corollary 2.3.2 we can also write,

V(@70 (wia))OV (87, ()] = [V( @50 (@))]+ D brlV(P5(m))], br € Zo, br =0 if wm £ whw.
weH{r

Using Proposition 2.2 and using the induction hypothesis we get
(I)E,n © XHE [V(wikvak) ® V(w/>] - XHi’n[V(cI)in(wik,ak» ® V((I){,n(w/))]
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3. IMAGINARY MODULES

In this section we study tensor products of pairs of modules defined by dual (i, n)-segments.
We first state a general conjecture that such tensor products always have an imaginary module
in its Jordan—Holder series. We then give an approach to proving this conjecture. Finally,
we show that the conjecture is always true if we work with Kirillov-Reshetikhin modules and
we give examples involving higher order Kirillov—Reshetikhin modules as well. Finally, we
show that the methods of this section can be used to construct a rather simple example of an
imaginary module in Dy.

3.1. A conjecture. Let ¢ > 2 and assume that b = (by,---,b,) with r > 2 is a (i,p)—
segment for some p < 2¢ — 3. Define integers 2s; = b;_1 — b; + 2¢ and set

W = Wib, (wi*Smbr—l*SrwiJrsmbr—l*Sr) T (wi*527b1 *Szwi+82,b1*52)wi7b1 —2i- (3'1)
Conjecture. The U,—module V(w) is imaginary for all n > 2i — 1.

Remark.
(i) It suffices to prove the conjecture for n = 2i — 1 by Proposition 1.5.6.
(ii) Taking b = (0,2,4,6) as a (2,1)-segment we see that w = wg w1 3w33w20 and this is
the original example of Leclerc.
(iii) If b = (0,4,6,10) and ¢ = 3 then w = w3 w2 5w3 5w3 10. This example shows up in the
work of [18] but in general the examples considered in this section are not part of their
theory.

3.2. The following is the main result of this section.

Theorem 4. Let i, > 2 and assume that p divides i for some 1 < p <i. Let b = (by,--- ,b,) €
Z". Conjecture 3.1 is true if by — bs_1 = 2p for all 2 < s < 7.

Remark. In Section 3.9 we show that the conjecture holds if i = 3 and the (3,2)-segment
b = (12,10,6). Notice that this case is not covered by the theorem.

3.3. Letie[l,n],b= (b1, - ,b;) bean (i,2i — 1) segment and set

a= (b1 —2i,--,b,—21), V=V(wip)®V(wia).
Lemma. We have.
dim(V®V); =1=dimV;.
Proof. 1t suffices to prove that for e = 0, 1,
w € Wty V(wi,b)®(1+5) and w™! € wty V(wiva)®(l+6) = w= wz.l"ge.

If € = 0 write

w = w(pl) te 'w(pr)a w_l = w(pll) o w(p,r)7
and if e =1

w=wp) - wp)w(g) - wlg), w ' =wp)) wp)wg)- - wg),

with (plv"' apT)v(gla"' )gT‘) S ]P)i,bv (pllv 7p/r)’(giv ag;) S Pi,a~
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Since w(p;) and w(g}) are in the subgroup of P, generated generated by the elements wy, .
with ¢ < b, if j <r and ¢ < b, if j = r it follows that

e=0 = wp,) =wip, = w(p’r)_l.
In the case ¢ = 1 we claim that

w(pr)w(gr) = wzz,br = w(p;)w(g;).
-1
jien
w(gs) for some s < r and hence w(gs) has wl;l,dl with d; > ¢;. Again this means that wy, 4,
must occur in w(py) for some k < r. Repeating we see that this process never stops which is
absurd and the claim follows. In particular the result holds for = 1 and if » > 1 we have
proved that

If not, assume that w appears in w(p,) with ¢; > b, maximal. Then wj, ., must occur in

—1- 1 —1- 1
wi = ww,; € wiy V(wl-7b1)®( +e), w] e wty V(wi,a1)®( +e),

where by = (b1, -+ ,br—1), a1 = (a1, -+ ,ar—1). An obvious induction gives the result.

O
3.4. We shall need the following result.
Lemma. Suppose that ™ € P and w2 € wt; V. Then 7 = 1.
Proof. Suppose that 72 € wt, V. Write
w?f}dl . -w?f:dm =’ =w(p)wp), pEPip, P €Pia, €1, ,em € {—1,1}. (3.2)

€15k ‘
iner Wi, with € €

{—1,0,1} and a similar assertion for w(p’). Suppose that w(p,) # wiy,. Since Wty V(w;a) is
in the subgroup of P generated by elements w; . with ¢ < b, we would get a contradiction to

By Proposition 1.6.2 we know that w(p) is a weight of the form w

(3.2). Hence w(p,) = w;p,. Again to avoid a contradiction we must have w(p).) = wi_blr. But
this means that w2 € V(wip,) @ V(wia,) with a; = (a1, -+ ,a,—1) and by = (by,--- ,b,_1)
and an obvious induction proves the Lemma.

O

3.5.
Proposition. Suppose that w = wj, ¢, -+ Wiy ¢, € P with ¢; < cg < -+ < ¢ and assume
that (ij,cj) # (i1 +n+1,c1+n+1) forall1 < j <k Then
(W) 'w ¢ wty W(w)
In particular if M is any £-highest weight module with £—highest weight w, we have

Homg =~ (M ® M,V(w)) = 0.

2i—1

Proof. Let m < k be maximal such that ¢,, < ¢; + n + 1. The assumptions of the Lemma
mean that wj, ¢, - -wim’cmw;}rkihcﬁnﬂ occur in any reduced expression for (w*)~'w. This
means that if we choose p; € Pj; ., 1 < j < k such that

_ -1 -1 . Y
w(pl) o w<pk> = Wntl—ir,ci4ntl T Pnti—ig cpn+1%i,01 Wig,crs
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we can assume without loss of generality that w(pj) = Wi ¢; for all 1 < 5 < m. On the other
hand there must exist 1 < s<ksothatn+1—1i¢ Cp. and ps(n +1—14) = c¢; + n+ 1. This
means that ¢ < ¢1 +n + 1 and hence ¢5 < ¢,,. But this is a contradiction since we saw that
we must also have w(ps) = wi, ¢, if s < m. O

The following is immediate.

Corollary. Letn=2i—1 and b = (by,--- ,b;) be an (i,2i — 3) segment with r > 2i — 1 and
let
28j: j_1+2i—bj,2§j ST.

Setting
w = w’i,b»,— (wifsr,br—lfs'rwi‘i’sr, br—lfsr) e (wi752,b1752wi+527b1 *32)wi,b1*2i7 (33)
we have
(W) lw ¢ wt, W(w).
O
3.6.

Proposition. Let n = 2i — 1. Retain the notation established so far and assume that b is an
(1,2i — 3)—segment and let w be as in (3.3). Suppose that V(w) occurs in the Jordan—Holder
series of V.. Suppose also that if V(w) with w € Pt occurs in the Jordan-Holder series of V
then wtw < wtw if and only if # = 1. Then V(w) is imaginary.

Proof. Set V! = V(w;a) ® V(w;p). By Section 1.5.1 we have maps of U,,~modules
C—=V, <,>»V sC—o.

Since V(w;ja) ® V(w;a) is irreducible (in other words real) by Theorem 1 (see [8, Theorem
3.4]) we can use [17, Corollary 3.16] to conclude that C is the socle (resp. head) of V' (resp. V).

Since V(w) occurs in the Jordan—Holder series for V', we can choose M C V si that there
exists a surjective map M — V(w) — 0. Since V has simple socle the assumptions on w
guarantee that we have a non—split short exact sequence

0-C—->M-—>V(w)—0
and that M is an {~highest weight module with w as its ¢-highest weight.

Let @ : V®V — V be the map idp, ® < ,> ®id,. Clearly ® is surjective and Lemma
3.3 gives
P(VeV)1=V1#0 andso (M M) #0.

Using Lemma 3.4 and Lemma 3.5 and Proposition 1.5.4 we see ®(M ® M) must have an
irreducible quotient V(7r) with 7 ¢ {1,w,w?}. Tt follows that

dD(M®C+CoM) =0,

and hence we have an induced map V(w) ® V(w) — V(7) — 0 and the proof is complete .

O
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3.7. We prove Theorem 4 by showing that w satisfies the conditions of Proposition 3.6.

For 1 <m <iand a € Z let g},, € P; o be defined by requiring

w(gzm) = wi—m,a—&-mw;;_i_Qmwi-i-m,a-i-m'
Equivalently
{gim 1<m<iy={gePiq:c, ={i}}. (3.4)
It is easy to check that g = ({4,977 1., 9ii_1) € Pia and hence w = w; pw(g) € Wty V.

We first prove that V(w) occurs in the Jordan-Holder series of V. Proposition 1.5.2(iii)
gives the following sequence of inclusions of Usg;_2,_1—modules,

C— V(wi—p,{bl—Zp}Vb) ® V(wi—p,av{bT—2i+2p})
= V(wi*p,br?p) ® V(wifp,b) ® V(wi—p,a) ® V<wi*p,br*2i+2p)7

and so
Hom
Uz 2y

(V(wipp1—2i) @ V(wi—pp, ), V(wipp) ® V(wi—pa)) # 0.

By Proposition 1.5.2 the ﬁgi_gp_rmodule V(wi—pp—2i) @ V(wi_pp,) is irreducible and so
V(wi—pb) ® V(wi—pa) contains an £-highest weight vector of (-weight w;_pp wi_pp,—2; and

1

Wi—p,by —2iWi—pb, = wi—p,bw(pﬁm,p) o 'w(p?EpJ,p)wi—p,bl—m-
It follows from Section 1.5.6 that V contains an ¢~highest vector of weight
wibw(piy_,) Wi, Wik —2i

and it is trivial to check that this is precisely w.

We now show that if 1 # 7 € wt, VNP5, is such that wt w—wtw € Q4,_; then 7 € wt, V(w).
For this we set

cp=(b1—i+p,-bp_1—i+tp), 1<k<r
and first show that 7 is in the following set:
{wipwip—2i} U {wi b, wp.c,waimp,e,Wip—2i 0 1 <k <r} (3.5)

We first reduce the problem to the case when p = 1. Assume that i — b, € 27Z, b, < 0 and that
p divides b,. Set

i=ip, i®>2, b;=0bs/p, b =(b], - ,b), ®=DLoe 191,
a® = (b -2 by —2i%), V' =V(wipe) ® V(wiac).
Let w® be the element defined in (3.1) associated with i® and b®. It is obvious that
P(wio po) = wip, P(W°) =w.
Since 7 € 735;71 we can use Corollary 2.3.2 and write
= O(mw)P(mw2), 7 € Hoo1, P(m1) € Wty V(w;p), P(mwa) € wty V(wia).
Proposition 2.2 now shows that

w1 € Wty V(wjopo), T2 € Wty V(wie a0) = @ =mmy € Wiy V.
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By Lemma 2.1 we have
wtw —wtm € QF,_; <= wtw® —wt7® € Q}
and hence we have shown that
{meP) | iwtm <wtw}nNwt,V==0{me Pl, | wtmw® < wtw®} Nwt, V°. (3.6)
It remains to prove (3.5) for p = 1. This is done as follows. Write

7=w()wp), p'=0, ) €Pip, p=(p1,---,0r) € Pia

By Proposition 1.6.2 we see that wty V(w;a) is contained in the subgroup generated by the
elements w; . with ¢ < b,. Since ® € Py;_; we have w(p,) = w;p,. Proposition 1.6.2 implies
that w(p') = w;ip and hence we get

C,. = {i}, ie. ps:pZ“”ms, forsome 0<my < ---<my<i, 1<s<r.
Since wt m < wt w we see that if my < i—1 then as+2mso = by —2i+2ms = b1 +2—2i4+2m9 < by

and hence w; [}2 om, Would occur in a reduced expression for 7 contradicting 7 € Pr. 1t fol-

lows from Proposition 1.6.2 that m; > i — 1 for all 2 < j < r. Equation 3.5 is now a simple
calculation.

We prove that any 7 in the set in (3.5) is in wty V(w). Let J = {1,---,2p — 1} and let
U, j-submodule V;(w) of V(w) generated by vg,. Since w; = wye, € P;t | we have

Vi(w) =y, , Viwpe,)-
The module on the right has the following /—weight:

q,J

Cr=0r+i+p, - ,b_1+i+p)

-1
wpackz wp,ék )

and hence the module V' (w) has an /—weight vector v of /~weight

Wi by —2i%p,c, W Wop ?2W2i—p,c,. Wi b, -

-1
p7ék
The element v is an /~highest weight vector for J' = {2i—2p+1,-- - ,2i—1} with corresponding
(~highest weight wg;_p .. A similar argument now proves that V(w) contains an ¢-highest

weight vector of /-weight given buy

-1
k w2p77w2z_2p77w217p,6k w217p,Ck wl7b7' °

—1
Wib1 —2i%p,c Wy &

Now one has to drop ¢ in the subalgebra (2p,---,2i — p) to get the result.

3.8. The case i >p > 1.

Let v, be the ¢-highest weight of V' (w) and J = [1,7 — 1]. Using the discussion in Section
1.5.6 we have
Ujve = Vi(ws) = Vi(wpe,)
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Using Proposition 1.6.2 it is easy to check that

Wp e, Wi e €Wt Vi(wpe,), € = (bk+p,-- b1 +p).
In particular, there exists 3 € Q'} such that wp,ckwi__lp & = (w,@;l)J and hence Lemma 1.5.5

implies that

W =wl € wt)V(w), dimV(w)y =1.
Working similarly as before, with v, € V(w)y non-zero and J' = [i + 1,2i — 1], we have that
v, is (-highest weight vector for the subalgebra Uy and (w')j = wai—pc,. Then there exists
52 € Q}r, such that

w%—ﬂckwijrlp,f:k = (W’B;_I)J’ € wty ﬂJ"”w’ - w(/@kﬁ;c)il € Wty V(w)

One checks that put in more details

—1 2 —1
W(BLBL) T = Wib, Wp.e, Wi gy —pW2iperWib—2i(Witpe, Wipe)

3.8.1. Foreachl <k <rlet
Vi = V(Wi b, Wpd,wW2i—pd,,) @ V(Wi —2iWp,cp W2i—p,ci )

where dy is such that ¢, = ci V di. It follows from Proposition 1.5.2 that Vj is ¢-highest
weight and hence V' (w) is its irreducible quotient. From now on we fix such k and for easy of
notation we write

Tl = Wibh,Wpd,W2i—pdys T2 = Wib —2iWp.c,,W2i—p,cp-

For K C [1,n] let wo i be the longest element of the subgroup of W generated by the simple
reflections {s; : j € K}. Let w = wo jwo j» € W, where J and J' are as before. The discussion
in the previous section gives

Tyw(m1) = 71(ByBr) " € wty V(m1),

$ISV(71'1)TUJ(7TI) =0, j#£i—p,i+p, sE. (3.7)

In particular, since dim V(7)1 v, = 1 it follows that
dim(Ve) g, 8,1 = 1 = dimV{w)y g, g,)-1-

Therefore, if v € V(w)w(,ﬁ 31 is non zero, by (3.7) v is an ¢-highest weight vector for the
EME
action of Uy, K = [i —p+1,i+ p— 1] and hence, using Section 1.5.6 and Theorem 1 we have

Ujv = Vic(wip, w2e, _pWibi—2i) = Vic (Wi b, Wi, —pWibi—2i) @ Vic (Wi ey —p)-

Since Wig i

€ wty Vg (wig,—p), using Lemma 1.5.6 it follows that wy € V(w) as desired.
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3.9. We give an example where the conjecture holds for the higher rank KR—modules. The
simplest example is when ¢ = 3 and we work with the (3, 5)-segments b = (10, 6) anda = (4,0)
when once can prove that the module w3 j9w2 sw4 5w3 0. But this is an example which appears
in the work of Lapid. So instead, we give an example which does not appear in their work and
comes from the (3, 5)-segments

b =(12,10,6), a=(6,4,0), w = w3 12w18w25wW15W58W3,0.
We consider Us—module V = V(wsp) @ V(wsa) and prove that V(w) satisfies the conditions
of Proposition 3.6.
Suppose that 7 = w(p/)w(p) is an ~dominant weight of V, with p' = (p,ph,p5) € P3yp

it follows that w(ph) = w3 12 and hence also, by using Proposition 1.6.2 that w(ph) = w3 10.
Suppose that w(p)) # wse; then there exists j € c, with p4(j) > 8. It follows that j € c;js
3

and p = (p1,p2,p3) € P3a. Since w(p) is in the subgroup of PZ generated by w; . with ¢ < 12
)

for some s = 2,3 and ps(j) = p5(j). If s =2 then the only possibility is w(p2) = wiéw;;,gw;é
and so j = 3 and p4(j) = 8. This means w(pf) = w2,7w3_7§w4,7 and now we see that w;éw;é

occurs in the reduced word for « which is a contradiction. Hence we have

T = w; pw(p), c,, C {3}, s=1,2,3.

In particular we have proved that all /~dominant weights in V' occur with multiplicity 1.

Assume that ™ # w; pw;a. Then
c,, = {3} = p1(3) =6 = p2(3) =8, 10.

If p2(3) = 8 then c,, = () which is impossible. Hence we must have pa(3) = 10 and c,, = {3}.
It follows that w(ps) = w;b and so w = 1. If ¢, = () then

c,, = 13} = p2(3) = 6,10.

If p2(3) = 10 then we must have p3(3) = 12 and so we get the weight w3 ews . If p2(3) = 6
then p3(3) € {10,12} and

me{w= W3 12W1 8W5 8W2 5W4 5W3 0, w3,10w2,5w4,5w3,0}~
Finally if ¢, = c,, = 0 and c,, = {3} then we must have p3(3) = 10,12 and we get

S {‘U3,12w3,6“-’1,8w5,8w3,4w3,0a w3,10w3,6w3,4w3,0}-

The usual application of Proposition 1.5.2 and Theorem 5 shows that V' is ¢~highest weight.
Theorem 1 shows that the irreducible quotient of V' is V := V(w3 (9.4)vb) ® V(w3). It follows
from Proposition 1.6.2 that if 7 is such that ¢, = ¢, = () then ™ € wt, V. Moreover
it also follows that w ¢ wty, V. Therefore if v is an /-weight vector of weight w then v
generates a proper submodule, say M of V. We claim that v is an ¢~highest weight vector.
Otherwise M contains an /—highest weight vector w’ with wtw’ > wtw. But the preceding
analysis shows that the only possibility is w;aw;1 which would mean M = V and gives a
contradiction. Hence V(w) is the unique irreducible quotient of M. It remains to prove that
M has Jordan-Holder series of length two. If not it has a Jordan-Holder consitiuent V()
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with 7 € {w3 10w2swa5w30, waewsp} and in that case w ¢ wty V(w). By Lemma 1.5.5 we
get
_ -1 -1_.-1 -1 -1
W3,10W2,5W4 5W3,0 = W 90 50 100 1931 € Whe V(w).
Hence the only possibility is that @ = w3gwso. If m ¢ wty V(w) let v € M be an (—weight
vector of weight . Then v’ generates a proper submodule of M. This means that v' must
be an /-highest weight vector since otherwise the submodule that it generates would be M.

Hence we have a non—zero map
V(wse) @ V(wsg) = M — V.
This means that there exists a non—zero map
V(wsp) @ V(wzp) = V(wszi2) ® V(wsp).

The module on the right is irreducible by Theorem 1 and hence the map is surjective and an
isomorhpism. But this is absurd since they have different {—weights.

3.10. An example in Dy4. Using the methods of this section we give the first example
outside quantum affine sl,, of an imaginary module. In Dy it is known that the left dual of
V(wja) is V(wjat6) and we assume that 2 is the trivalent node. We take

b = (10,8,6), a=(4,2,0), w = wi,10w18wW25W12W1,0,

V = V(wl,b) X V(wl,a), V= V(wi,bwi7a),
and prove that the module V(w) is imaginary.

We first discuss the analogs of the results of Sections 3.3-3.5. The arguments are all much
easier in this case but we include the details since this is the first example of an imaginary
module in type different from A. It is convenient to recall that wt, V(w1) is the set with
elements

—1 —1 —1 —1
W1,0, W2,1W1 o, Wy 3W32W42, W3 Wa2, Wy W32,

-1, -1 1 1
W23W3 Wy 9, W1daWys5, Wig-

In particular we see that wty V(w1) are in the subgroup generated by w; . with ¢ < 5 and

w16 It follows from this and [11, Lemma 4.4] that if # € wt; V and @ € PT then 7 = w; pw1
with wi € wty V(w;.a). We shall use this freely in what follows.

Suppose that m = wiws € wty V(wi,b)®2 and assume that w # wib. Then without loss
of generality we have w; # w; 1, and hence it follows from [11] that a reduced expression for
w must contain w]_cl for some j,c¢ with ¢ > 12 and ¢ maximal with this property. It is then
immediate that ws # w;p, either and a reduced expression for it must have w; . and so also
w,;(li with d > 13. Since the wty V(w1,) with a = 6,8 does not contain a term of the form
wi q with d > 13 we see that = ¢ PT. In other words w%b is the unique ¢ dominant weight of
V(wip)®2.

Suppose that wiws = 1 with wi € wty V(w;p) and wa € wty V(w;a). Since wi = w;p, it fol-
lows that dim V4 = 1. Similarly if wjwe = 1 with wy € wt; V(w; p)®? and wy € wty V(w; a)%2
one proves that w; = ‘-"?,b and hence dim(V ® V)1 = 1.
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Next we prove that w € P% is such that w2 € wt,V then @ = 1. But this is clear by
inspection since 72 = w;pwi With wy € wty V(w;a).

We prove that (w*)~lw ¢ wt, W (w). But this follows since if we write (w*) 'w as a product of
(—weights from each fundamental module, then we must take wi, € Wty V(w1 ,4) for a =0, 2.
But then wié does not occur as part of an /—weight of the other modules.

The final thing to prove is that w satisfies the conditions of Proposition 3.6. Once that is
done the proof that V(w) is imaginary is identical to the one given in the A,, case. For this
we proceed as follows.

Note that we have a map C < V. Moreover, it was proved in [2] that V is {~highest weight.
Using [22] we know that the irreducible quotient V of V has a unique /~dominant weight. Since
W = W1,10wW1 8wW2 5w12w1,0 is an {~dominant weight in V' and if 7 is any other {~weight in V'
then wt m < wt w = 6w —ay it follows that V (w) must occur in the Jordan—Holder series of V.

For this, it suffices to prove that @ ¢ {w;pwia,w,1} is an ~dominant weight of V' then
7 € wty V(w). Writing # = w; pw1 a simple computation shows that the following are the
only possibilities for 7r:

W1,8W1,6W1,2W1,0, W1,10W25W10 W1,6wW1,0-
By the appropriate analog of Lemma 1.5.5 we see that
-1_-1,-1, -1, -1 -1
W1,8W1,6W1,2W1,0 = WOy 6O 70 7W5 W1 oW1 7 € Wiy V(w).

Next we prove that wi jowaswi,0 ¢ wteV; equivalently that wféw;éw275w170 is not an /-
weight of V(wj a). In turn this is equivalent to proving that wféwféw275 is not an f—weight
of V(wiawi2). Since

[V(wi4) ® V(wi2)] = [V(wrawi2)] + [V(w23)],
and wiéwiéw% € wty V(wa3) and it occurs in V(wi4) ® V(w12) with multiplicity one it
follows that wiéwiéwzg, is not an /-weight of V(w1 4w 2).
Finally we prove that w;swio € wtyV(w). Using Lemma 1.5.5 and the corresponding re-
sult for Uy with J = {1} and then with J = {2,3,4} we see that
™= w1,1owigw%76w5}wiéw1,o = w(a1,3042,6a2,4a3,703,5044,7014,5042,8042,6)71.

Notice that wtw + a1 = 8w; — 3we. This is W—conjugate to 2wy + 3ws f 4w + wo = wtw.
It follows that any element in V(w)y is an £-highest weight vector for U with J = {1} and
hence by Lemma 1.5.5 again we get

W= wiewi = ﬂal_sl)al_% € wty V(w)

and the proof is complete.
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4. COMBINATORICS OF (i,n)-SEGMENTS

In this section we shall give an alternate formulation for a pair of segments to be in special
or general position. We then use this to prove that any element of P;rn can be written uniquely,

upto a renumbering as a product of elements associated to segments in general position.

4.1. Given a = (a1, -+ ,a,) € Z" and b = (by,--- ,bs) € Z* recall the notation a V b
established in Section 1.6.2. In the rest of this section we shall prove the following proposition.

Proposition. Suppose that a = (ay,--- ,a,) € Z". There exists a unique integer k > 1 and
(i,n)-segments ay,--- ,a; which are pairwise in general position and a permutation o € S,
such that

(Ag(1)s "+ 1 Go(r)) = a1 Vag:--Va.

Moreover k is unique and the (i,n)—segments are also unique up to a permutation by an element

of Sk.

Example. Let a = (0,6,4,2,10,16,10) € Z7, then the associated (2, 3)-segments are
a; = (0,2,4,6,10), ag ={10}, az = {16},

or any permutation of these by an element of S3. The following corollary is immediate.

Corollary. Suppose that w = w;a € P:n for some a € Z". Then w can be written uniquely
(upto a permutation) as a product w = Wia, " " Wia, where ay,---,ay are (i,n)—segments in

general position.

4.2. To prove Proposition 4.1 it is useful to have a more explicit formulation of segments
in general or special position.

Proposition. Let a = (a1, -+ ,a,) and b= (b1, -+, by) with r > m be (i,n)—segments.
(i) The segments a and b are in general position if and only if one of the following holds:

(CL) b1 —a, > 2i,
(b) a1 — by > 2t
(C) bl — ai gé QZ,
(d) {b1, - b} C {a1, - ,a}.

(i) The segments a and b are in special position if and only there exists 1 < j < m such that
one of the following hold:
(CL) bj —ay € S@n or ay — bj S S@n,
(b) there exists 1 < k < r such that ai, < bj < ap41.

Proof. For part (i) note that it is clear that if one of conditions (a)-(d) hold then a and b are
are in general position. For the converse we suppose that none of the conditions (a) — (d) are
satisfied and show that aUb contains a segment of length r + 1. If by > a, then by —a, € S;
which means that (a1,--- ,a,,b1) is an (i,n)-segment. The case b,, < a; is similar. Hence to
complete the proof of (i) we must consider the case when all of the following hold:

by <ap, by >ar, by —ay €2Z.

If a, < by or by < ay for some 1 < k < m then (a1, - ,a,,bg) or (by,a1,---a,) is an (i,n)-
segment. Otherwise, we have a1 < b < by < --+ < by, < a,. Since condition (d) does not
hold, it follows that b, ¢ {ai1,---,a,} for some 1 < p < m; in other words, there exists
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2 < k < r such that a;_1 < b, < aj. This means that b, — ap—1 and a;, — b, are elements
of Sj p and so (ay,- - ,ag—1, bk, ak, - - - a,) is an (4, n)-segment. The proof of part (i) is complete.

If either of the conditions in part (ii) hold then {a1,---a,,b;} is an (i, n)-segment after apply-
ing a suitable permutation and hence a and b are in special position. Suppose that a and b
are in special position and assume that there does not exist 1 < j < m and 1 < k < r with
ap < bj < apy1. By part (i) we see that we cannot have {by,--- by} C {a1, -+ ,a,}. Hence
we are forced to have either j maximal such that b; < a; or k£ minimal with by > a,. In the
first case either j = m or j < m and b; < a1 < bj41. If j = m then the segments can be in
special position only if a; — by, € S;n. If j < m then bj11 —b; € S;, and so a1 — bj € 5; 5.
The proof in the second case is identical. ([l

Corollary. Suppose that a = (a1, ,a,) and b = (by, -+ ,by,) are (i,n)-segments in general
position with r > m. Then,

{al,"‘,ar}m{bl“’,bm}#@ - {bl"'vbm}c{a:b”'ua’r‘}'
(]

4.3. Proof of Proposition 4.1. Let a = (aj,--- ,a,) € Z". We proceed by induction on r
with induction beginning trivially at » = 1. After applying an element of S,. if needed, we may
assume without loss of generality that a; < as for all 1 < s < r and that r; < r is maximal
so that a; = (a1,as--- ,a,) is an (i,n)-segment. If r; = r we are done and otherwise we let
b = (ar,+1, - ,ar). The inductive hypothesis applies to b and we write b =az V --- V a; as
in the proposition.

We prove that a; and a, are in general position for 2 < s < k. Suppose that a; = (b1, -+, by,)
and recall that a; < b;. Assume for a contradiction that a; and a; are in special position.
By Proposition 4.2(ii) there exists 1 < p < m such that either a;_; < b, < a; for some
2<k<riora, <b, with b, —a,, € S;,. In either case after applying a suitable permu-
tation if needed we see that {a1,--- ,ar,,bp} is an (i, n)-segment contradicting our choice of r.

It remains to prove that k is unique and the segments are unique up to an element of Sg.
For this, suppose that ci,---, ¢y is another set of (i,n)-segments in general position with
a=c1V---Vcy. Since a; is minimal it must occur as the first term in some segment. Assume
without loss of generality that a; is the first term in c; and also that ¢; has maximal length say
s1 amongst those cs with first term ay. Since 71 is the maximum length of an (i, n)-segment
starting at a; we have s; < ri. We claim that ¢; = a;. Otherwise, there exists 1 < p < 1
minimal such that a, does not occur in c;. All the other segments ¢y whose initial term is
a1 have length at most s; and hence by Corollary 4.2 must be contained in ¢;. Hence none
of these segments contain a, and so there must exist an (i,n)-segment c; of length s; whose
minimal term is a,, for some 1 < m < p and contains a,. Consider c; Uc;. If s; > s; then
since ap—1 € c; it follows that ¢ U {a,} is a longer (i, n)-segment in the union while if s; > s;
then {a,,—1}Uc; is a longer segment in the union. In both cases we have a contradiction to the
fact that c; and c; are in general position. It follows that a; = c¢; and that b=ca V---V c,.
The uniqueness is now immediate by the inductive hypothesis.



26 MATHEUS BRITO AND VYJAYANTHI CHARI

5. PROOF OF THEOREM 1: REDUCIBILITY

In this section we assume that a = (aq, -+ ,a,) and b = (by,--- ,bs) are (i, n)-segments in
special position and assume that r > s.

5.1. The following elementary Lemma is helpful.

Lemma. Suppose that w,w’ € P, are in the subgroup of P, generated by elements w; . with
c1 < ¢ < cp. Suppose that wi,w] and wa,w' are elements of the subgroup generated by wj .
with ¢ < ¢1 and ¢ > ¢y respectively. Then

wiwwr = Www) = w =w)], w=w, wy=uw).

5.2.  We prove that V(w;a) ® V(w;p) is reducible. We shall do this by showing that
wtp V(wia) @ V(wip) # wte V(wiawib). (5.1)
Recall from Proposition 1.6.2 that this statement is true in the special case when
r=s, aj=>bj_1, 1<j<r (5.2)
We shall prove the general case by showing that we can always find (i, n)—segments
a1 = (aj,"+,aj4p) Ca, b1 = (bm, ,bpmip) Cb
which satisfy the conditions in (5.2) and also
max{a;j_1,bm—1} < min{a;, by}, min{ajipt1, bmtp+1} > max{ajip, bmip}t- (5.3)
Once this is done the proof is completed as follows. Choose
e wtyV(wia,) @V (wipb,) \ Wt V(wja,wib,)

and set

W = WiagWiby TWinar Wix by

where ag = (a1, -+ ,aj-1), a2 = (@j4pt+1,- - ,ar) and by, by defined similarly, where under-
stand that these segments can be empty. Writing m = wiwy with w; € wt; V(w;a,) and
wy € V(w;p,) we see by using Proposition 1.6.3 that

waao‘rrw;’la;wi’bowi:’lb; =w= (wi’aowlwi_*?a;)(wi7b0w2w;}b§) e wtpV(wia) @ V(wip).
To prove (5.1) it is enough to show that
w & why (V(Wiawiby) @ V(wiawWib,) ® V(Wia,Wib,))

since the module V(w; aw;p) occurs in the Jordan-Holder series of the triple tensor product.
Suppose for a contradiction that

W = TT1TT973
where 71, g, 3 are {—weights of the corresponding modules in the tensor product. Since m
and 7o are in the subgroup of P, generated by elements w,, . with p € [1,n] and

max{bm4p +n+1,aj4p +n+1} > c>min{by, ajim} > aj—1
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we see that together with (5.3) and Lemma 5.1 that w = 7 which contradicts our choice.

We prove the existence of a; and b; by induction on s. Suppose that s = 1. If r = 1
the result is immediate from (5.2). If » > 1 then by Proposition 4.2 we have to consider the
case aj < by < aj41 for some 0 < j < r, where we understand that the first or last inequality
holds vacuously if j = 0 or j = r and we take

a1 = (aj4q,,), b1 = (b1).

For the inductive step we assume that the existence of the appropriate segments for all s’ < s
and for all » > s’. Suppose that either by < ay or by = a; or by < a; and there exists j > 2
and k with a; < bj < apy1. Set b’ = (b2, -+ ,bs). The inductive hypothesis applies to a and
b’ in the first case and to &' = (ag, -+ ,a,) and b’ in the other cases. It follows that we can
take a; = aj and by = b} .

Next let by < a1 < by and assume that there does not exist j > 2 with a; < b; < ag4+1. Since
r > s there exists p € [2,s + 1] maximal so that ap—1 = by, if 2 <m < p—1and a,—1 # b,
where we understand bs41 = 0. This time we take by = (b1, -+ ,bp,—1) and a1 = (a1, -+ ,ap—1).

Finally, it remains to consider the case when by > a;. Working from the other side we
see that we can further reduce to the case when b; < a, as well. Choose p maximal and p’
minimal so that a, < by < bs < a,y. Since a and b are in special position there exists j € [1, s]
minimal such that a; < b; < aj41 for some k € [p,p’]. Define an integer m as follows: if either
j=1orj>1andbj_1 <a, we take m = 0; otherwise we take m so that ag_,, = bj_nv_1
for all 0 < m’ < m and aj_,, > bj—m—1. Notice that m must exist since a, < by and j was
chosen minimal. This time we take

a) = ((Zk_m, e aak‘)a bl = (bjfma e ?bj)a
and the proof of the inductive step is complete.
6. PROOF OF THEOREM 1: IRREDUCIBILITY
We complete the proof of Theorem 1.
6.1. We recall the main results of [12] and [13].

Theorem 5. Let wy,- -+ ,w, € P,/. The module V(w1) ® --- ® V(w,) is an ¢~highest weight
module (resp. irreducible) if the modules V(w;) ® V(wy) are £-highest weight (resp. irre-
ducible) for all 1 < j < k <r. O

6.2. We shall use the following consequence of Proposition 1.5.2 and Theorem 5 repeatedly.

Lemma. Suppose thatc = (c1,--- ,cx) andd = (dy,-- - ,dp) are (i,n) segments with ¢; —dy, ¢
Sin (resp. £(cj —dy) ¢ Sin) for alll1 < j <k and1l <m <p. Then V(w;q) ® V(wic) is
(—highest weight (resp. irreducible). O

Proof. Using Proposition 1.5.2(ii), (iii) and Theorem 5 we see that W (w;q) ® W(wic) is ¢~
highest weight and hence so is the quotient V(w;q) ® V(w;c). If in addition we also have
dm —cj ¢ Sipfor 1 <j<kand1l<m <p, then it follows that W (w;+ c+) ® W (w;= q+) and
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hence V(wi« ¢+ ) ® V(w;= q+) are also ¢~highest weight. The irreducibility of V(w;q) @ V(wjc)
then follows from Proposition 1.5.2(i). O

6.3. In view of Theorem 5 the irreduchbility statement of Theorem 1 is immediate from
the next proposition.

Proposition. Suppose that a and b are (i,n)-segments in general position. Then V(w;a) ®
V(wip) is irreducible.

Proof. We shall use the equivalent formulation given in Proposition 4.2 for a pair of segments
to be in general position.

Suppose that a, < b; and by — a, > 2i. Then b,, —a, > 2i and 0 > a, — by, ¢ S;, for
all1 <m < sand 1< p<r. It follows from Lemma 6.2 that the module V(w;p) ® V(w;a) is
irreducible. If by < a; and a1 — bs ¢ S; 5, or is bs — a1 ¢ 2Z the proof is identical and we omit
the details.

It remains to consider the case when s < r and {b1,---,bs} C {a1,---,a,}. We proceed
by induction on s and for each s by a further induction on r. Suppose that s =1 and by = a,
for some 1 < m < r. If m = r the result is immediate if we prove the following claim:

th(V(wLa) X V(wim)) N ’P;_ = {w¢7awi7ar}.

To prove the claim, let w be an element of the intersection and write w = w(p)w(p’) € P,;S

with p = (p1,---,pr) € Pia and p € Pig. If w(p) # wi,, then there exists j € C, with
p'(j) > p'(s) for all s € c;“,Uc;, and p/(j) > a,. It follows that j € ¢, for some 1 < k < r with
pr(j) = P'(§) > ar > ay. This implies that w(py) # wiq, and so there exists j' € ¢, with

pr(5") > p'(j). It follows from Proposition 1.6.2 that wj_,lpk (jr) oceurs in any reduced expression

for w which contradicts w € P;7. Hence w = w(p)wi q,.-

If w(p) # wia then there must exist 1 < k < r with ¢, = {i} and px(i) = a, and ¢; =0
for all 1 < k # j < r. But this means that k < r and then we have a contradiction to the

definition of the set P; 5. In particular, we have proved the case s = r = 1.

Applying the Cartan involution {2 we see using the discussion in Section 1.5.1 that the module
V(wia) ® V(w;a) is also irreducible.

Hence to complete the proof that induction begins at s = 1 case we must consider a; <
by = a;, < a,. We assume moreover that the inductive hypothesis hold for ' < r. Let
a' = (a1, - ,am,) and 8" = (441, - ,ar). These are both (i, n)-segments of length at most
r — 1 and consider

Vi(wiar) @ V(wia) ®V(wia,,)-
The tensor products V(w;ar) ® V(w;a) and V(wig,,) ® V(w; ) are -highest weight by
Lemma 6.2. The inductive hypothesis shows that the tensor product of the second and third

module is irreducible and hence ¢-highest weight. Theorem 5 shows that the entire tensor
product is £-highest weight and hence so is its quotient V(w; a) ® V(wjq,,). Working with the
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(n+1—i,n)-segments, aj = (a1 +n+1, -+ ,am—1+n+1), and af = (ap+n+1, -+ ,a,+n+1)
and the tensor product

V(wnt1—iamtnt1) @ V(wni1iar) ® V(wni1iar),

we see similarly that every pair of modules in the tensor product is /~highest weight and hence
50 is V(wWnt1—i,am+n+1) @ V(wWnti1—iax). The irreducibilty of the tensor product follows from
Proposition 1.5.2(i) and completes the proof that induction begins is when s = 1.

Assuming the result for 1 < s’ < s and for all » > s’ we prove it for s and all r > s.
Writing b’ = (b, -+ ,bs—1) we consider

V(wi,a) & V(wi,bs) ® V(wi,b/).

The tensor product V(w;p,) ® V(w;p) is -highest weight by Lemma 6.2 and the tensor
product of the remaining two pairs is irreducible by the inductive hypothesis on s. Hence
the module V(w;a) ® V(w;p) is £-highest weight. A similar argument with (n + 1 —i,n)-
segments as in the s = 1 case also proves that the dual of this module is /~highest weight and
the irreducibility of the tensor product follows by Proposition 1.5.2(i). This completes the
proof of the inductive step and the proof of the proposition is complete.

O
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