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Abstract— Corn, wheat, and rice are vital as staple foods,
affecting our economy, culture, health, and environment. Our
research focuses on using a convolutional neural network (CNN)
to detect food plant diseases. Early and accurate detection is
essential to control the spread of infection and maintain the
health of the food plant industry, making sustainable food
systems a pressing matter. Traditional neural networks can't
cope with the weight increase caused by large image sizes and
numerous hidden layer neurons. To solve this, we suggest a new
method for identifying plant diseases early using CNN. By
adjusting the CNN's hyperparameters, we can optimize it for the
given dataset. To train the proposed deep CNN model, we use
real plant disease datasets such as the PlantVillage dataset [19],
Wheat Leaf Dataset [20], Rice Leaf Disease Data Set [21], and
Rice Leaf Disease Image Samples [22]. We were able to achieve
impressive results for wheat (99.34%), corn (95.15%), and rice
(92.47%) plant disease detection, with a promising level of
accuracy demonstrated in our experimental findings. The results
achieved in this paper exceed the accuracy of other related
research works (details in literature review).

Keywords— Food plan disease, Machine Learning (ML), Deep
Learning (DL), Transfer Learning (TL), Convolution Neural
Network (CNN).

I. INTRODUCTION

Agriculture is a significant global industry, employing
over 1.3 billion people and contributing to 12.5% of the GDP.
Yuan Longping's hybrid rice and Norman Ernest Borlaug's
high-yield wheat have been pivotal in increasing food
production, particularly in areas prone to famine. However,
plants are still at risk of disease, mainly from fungi spores,
causing substantial economic losses. Wheat stem rust alone
results in around $1 billion in losses per year, according to the
Food and Agriculture Organization (FAO).

The objective of this project is to detect plant leaf diseases
crossing multiple data sets, specifically those that affect food
plants. Such a tool would prove invaluable to farmers, allowing
them to promptly identify and treat diseases, and achieve
successful and healthy plantations.

Traditionally, detecting crop diseases heavily relied on
agricultural experts physically visiting fields. This approach,
however, was limited by the number of experts available,
weather conditions, and farm locations. Fortunately, the
advancement of machine learning (ML) has provided a more
efficient means of disease detection. With its robust ability to
identify mapping relationships among vast input (staple food
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plant disease images) and output (diseases), ML offers a faster,
less costly, and more effective alternative solution to the
traditional approach, thereby reducing the burden on
agricultural experts.

One of the most effective ML approaches for image
recognition is the CNN [1]-[4]. This subtype of Neural
Networks contains a convolutional layer that reduces the high
dimensionality of images while preserving their important
information. By leveraging CNNs, we can effectively detect
plant diseases with a high level of accuracy, providing farmers
with a reliable and efficient tool for identifying and treating
diseases at an early stage, and ultimately ensuring the health
and productivity of their crops. That is why CNNs are
especially suited for image processing for plant leaf disease
identification in agriculture [5].

After the introduction of the PlantVillage dataset in 2015
[6], deep learning using CNN has emerged as a promising area
of research for plant disease identification [7]. The
effectiveness of this approach has been demonstrated by
experimental results, which indicate that the proposed disease
identification method based on CNN achieves an impressive
overall accuracy of 99.34%, 95.15%, and 92.47% for wheat,
corn, and rice plant diseases, respectively. In recent times,
several other plant disease datasets, such as the Northern Leaf
Blight (NLB) dataset [8], the RoCoLe coffee disease dataset
[9], the rice disease dataset [10], and the cassava disease
dataset [11], have been made publicly available for training
deep learning models.

While there have been several research efforts on ML-
based plant disease detection, few have been able to create
models that can consistently achieve high testing accuracies
across datasets and various image acquisition conditions.
Consequently, there remain several unanswered questions,
such as whether it is feasible to develop algorithms that are
robust enough to effectively learn from any given data.

In light of this, we propose a novel approach to plant leaf
disease diagnosis by segmenting leaf images and detecting any
spots or other distortions using MATLAB. Next, we will train
a CNN to detect various plant species, including those that are
diseased or healthy. With this approach, we achieved greater
accuracy and robustness in staple plant disease detection,
contributing to more efficient and effective agricultural
practices.
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The major contributions are given as follows:

e Images obtained from various sources were
preprocessed to ensure uniformity in size and format,
suitable for the input layer of the ML model;

e  The proposed ML model's adaptability and robustness
were evaluated by utilizing data from diverse sources;

e The training process was fine-tuned with parameters
optimized to handle wvarious situations such as
overfitting and underfitting;

e To demonstrate the proposed ML model's robustness
and universality, it was applied to various datasets
with diverse classification classes, rather than being
exclusively suited for specific datasets;

e For the first time, the proposed algorithm
demonstrated robustness to all three staple food plant
datasets (corn, wheat, and rice) with impressive
results across different crops like wheat (99.34%),
corn (95.15%), and rice (92.47%), unlike most other
researchers who only tested one of the staple food
datasets [12]- [17] or compared it with other plant
data such as tomato, pepper, potato [18].

II. LITERATURE REVIEW

Applying ML to plant leaf disease detection has been
studied by many researchers since this application doesn’t
heavily depend on traditional field experts, which saves time; it
could detect plant disease in the early stage to avoid food
reduction and increase productivity to stabilize the basic
economy. However, the majority of the researchers only
studied 1 plant, like tomato, potato, corn, wheat, or rice. The
proposed algorithm is suitable for all 3 data sets.

In their study, Yakkundimath R et al. evaluated pre-trained
VGG-16 and GoogleNet convolutional neural network (CNN)
models on a held-out dataset using a threefold cross-validation
method. The results showed an accuracy of 92.24% and
91.28% for rice plant dis-ease, respectively [12]; Panigrahi K
et al. investigated several classification techniques, including
Naive Bayes (NB), Decision Tree (DT), K-Nearest Neighbor
(KNN), Support Vector Machine (SVM), and Random Forest
(RF), for detecting maize plant diseases using plant images.
The results showed that the RF algorithm achieved the highest
accuracy of 79.23% compared to the other classification
techniques [13]; Agarwall M, etc. investigated Convolution
Neural Network, and achieved an accuracy of 94% for corn
crop [14]; Deng R et al. conducted a study on an Ensemble
Model for diagnosing six types of rice diseases and achieved
an overall accuracy of 91% [15]; Jahan N, etc. did several
experiments on wheat datasets. In terms of model accuracies,
VGG16 (98%) outperformed the other models and thus it is
suggested to utilize VGG16 for the detection of wheat diseases
[16]; Jiang Z and colleagues explored the use of a pre-trained
ImageNet model for transfer learning, which resulted in an
accuracy of 98.75% for detecting wheat diseases [17].

III. DATA PREPARATION

The data in this study is from PlantVillage dataset [19],
Wheat Leaf Dataset [20], Rice Leaf Disease Data Set [21], and

Rice Leaf Disease Image Samples [22]. Wheat, corn, and rice
data for each category are shown below.

One big problem in image detection of the public data set,
including plant disease detection is that the images from
different data set sources come with different size, which make
it impossible to feed the DL model since each model requires
identical image sizes to work properly. Without pre-processing
the data from different sets, it is impossible to utilize DL to
help disease detection.

In this study, we pre-process the dataset using the
MATLAB learning APP: Image Batch Processor. After loading
the dataset to the app, we use imresize() command to resize all
the images in the data set once and for all.

In the pre-trained AlexNet, we use size [227 227 3]. After
the image is unified, we can download the image into a unified
format, like PNG JPG, or other formats for the learning model.
Keep your text and graphic files separate until after the text has
been formatted and styled. Do not use hard tabs, and limit the
use of hard returns to only one return at the end of a paragraph.
Do not add any kind of pagination anywhere in the paper. Do
not number text heads-the template will do that for you.

A. Wheat Data Set

The wheat data set [20] contains 3 classes of data including
Healthy, Septoria, and Stripe-rust. The original image size
varies (Fig 1. a), and after the preprocessing, we unified all the
images into [227 227 3] (Fig 1. b). The table below shows the
image numbers of each class, and size of image before and
after preprocessing.

TABLE I. WHEAT DATASET

Wheat No. of | The original | After the pre-
Dataset from | images size of the | processed size
Kaggle [20] images of the images
Healthy 102 different size | 227*227*3
Septoria 97 different size | 227*227*3
Stripe-rust 208 different size | 227*227*3
407 (total)
2 stripo rust stripe rust B L y
===
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stripe rust saptoria stripe rust stripajuat septoria septoria
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Fig. 1. Wheat data: a. original image; b. after pre-processed
image.
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B. Corn Data Set

The corn data set [19] contains 4 classes of data including
Healthy, Common-rust, Gray-leaf-spot and Blight. The
original image size varies (Fig 2. a), and after the
preprocessing, we unified all the images into [227 227 3] (Fig
2. b). The table below shows the image numbers of each class,
and the total number of the data set.

TABLE II. CORN DATASET

Corn No. of | The original | After the pre-

Dataset images size of the | processed size

from Kaggle images of the images

[19]

Healthy 1162 different size | 227*227*3

Common- 1306 256*256*3 227%227%*3

rust

Gray-leaf- 574 256*256*3 227%227%*3

spot

Blight 1146 256*256*3 227%227%*3
4188 (total)

Blight Biight

Gray Leal Spot Biight

a

Fig. 2. Corn data: a. original image; b. after pre-processed
image.

C. Rice Data Set

The rice data set [21] [22] contains 6 classes of data
including Bacterial-blight, Blast, Brown spot, Hisba, Turgro,
and Healthy. The original image size varies (Fig 3. a), and
after the preprocessing, we unified all the images into [227
227 3] (Fig 3. b). The table below shows the image numbers
of each class, and the total number of the data set.

TABLE III. RICE DATASET

Rice Dataset | No. of | The original | After the pre-
from images size of the | processed size
Mendeley, images of the images
Kaggle, and

UCl [21]

[22]

Bacterial- 1584 different size | 227*227*3
blight

Blast 1440 300*300*3 227%227*3
Brown-spot | 1600 300*300*3 227%227*3
Hispa 565 different size | 227*227*3
Turgro 1308 different size | 227*227*3
Healthy 1488 different size | 227*227*3

7992

(total)

AN =

Bactarlalblight

e

Bacterialblight
R

Fig. 3. Rice data: a. original image; b. after pre-processed
image.

IV. PROPOSED METHODOLOGY

In this experiment, we used pre-trained AlexNet, which is
the first major CNN. AlexNet used GPU for the training
process, which will make the training faster than other models.
AlexNet, a pre-trained neural network, is capable of classifying
images into 1000 object categories, including animals, flowers,
cats, hats, and more. Due to this, the network has acquired a
robust set of feature representations for a diverse range of
images.

By adding a deconvolution layer to the traditional AlexNet
and classifying images through the full connection layer, the
accuracy of classification has been improved compared to the
traditional 8-layer AlexNet. The proposed network is a 30-
layer network with a convolution layer, batch normalization
layer, polling layer, LeakyRelu layer, drop-off layer, SoftMax
layer, and fully connected layer. The hyperparameters are
tuned to optimize the optimal performance. (Parameter tuning
details are in the experiment section)
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A. Algorithm Architecture

The new convolutional neural network architecture is shown in Fig. 4.
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Fig. 4. Proposed Convolutional Neural Network Architecture.

B. Proposed Algorithm

The CNN is an algorithm with layer by layer. Images or
data were fed into the input layer, and it will pass layer by
layer. Features will be extracted throughout layers to train the
model to learn the uniqueness of each class, so it could be used
to classify new images to the correct class.

In the proposed architecture, the convolution layer is
utilized to extract image features like edges, corners, and lines
using a filter that moves over the input image and computes the
dot product with the corresponding intensity values. The size
of the output volume is calculated based on the input volume
(V), filter size (F), stride (S), and zero padding amount (P),
using the formula (V-F+2P)/S+1. To illustrate, consider the
first convolution layer of the architecture, which takes an input
volume of 227 x 227 x 3, where 3 represents the number of
color channels (R, G, B) in the image. This layer comprises 96
filters of size 11 x 11 x 3, with a stride of 4 x 4, and the same
padding (P=1) is applied. By applying the formula, the
resulting output dimension is calculated as follows: (227-
11+2(1))/4+1 = 56. Therefore, the dimension of the output of
the first convolution layer is 56 x 56 x 96.

When training a convolutional neural network, it's
recommended to incorporate batch normalization layers
between convolutional layers and nonlinearities (like ReLU
layers) to speed up the process and minimize the network's
sensitivity to initialization. This is achieved by normalizing a
mini batch of data across all observations independently for
each channel using the batch normalization layer.

The network with batch-normalized layer improves the
published result, and even exceeds the accuracy of human
raters [23].

The ReLU layer applies the ReLU activation function to
the input data, and this operation sets any input values that are
negative to zero while keeping the positive values unchanged.,
it helps to improve the network's ability to learn and predict the
given data. However, the Leaky ReLU function is a modified
version of the ReLU activation function, designed to tackle the
issue of the "dying ReLU" problem because the ReLU
activation function deactivates neurons in the region where
input values are less than zero, due to a gradient of 0, which
can lead to the dying ReLU problem. To solve this problem,
the Leaky ReLU function is introduced. It differs from the
ReLU function in that instead of setting negative input values
to 0, it assigns a small linear component of the input value to
negative input values. This can be expressed through the
following formula. In this experiment, we changed the last 2
ReLU layers to Leaky-ReLU layers, which improved the
performance of the algorithm.

- . x,x >0
ReLU activation function: f(x)—{o’ X <0

Leaky-ReLU activation function: f(x)= {
(while default scale is 0.01)

X, x>0
scale *x,x < 0

The rectified feature map from the ReLu layer will then
go through a pooling layer. Pooling is a down-sampling
operation that reduces the dimensionality of the feature map.
Max pooling will be used which chooses the maximum value
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of the filter and then places it in the new pooling feature map.
The size of the output of the pooling will be determined as
follows. If we assume that the size of the output volume is
given by (V-F)/S+1, where V is the input volume, F is the filter
size, and S is the stride, then consider the first pooling layer. If
the input volume is of size 19 x 19 x 64, and a 3 x 3 max
pooling operation with a stride of 2 is applied to it, then the
resulting output can be calculated as follows: (19-3)/2+1 = 9.
Thus, the output size is 9 x 9 x 64.

After applying convolutional and down-sampling
operations one or more fully connected layers are typically
added. These layers are called "fully connected" because each
neuron in the layer is connected to all the neurons in the
preceding layer. The role of the fully connected layer is to
combine the features learned by the previous layers across the
image, enabling the neural network to identify larger patterns.
The final fully connected layer takes the learned features and
combines them to classify the images.

During the training of a neural network, overfitting can be a
problem that leads to poor performance on new data. To
combat this, a technique called "dropout" can be used. The
Dropout layer is a type of layer that randomly sets some of the
input units to 0 with a certain frequency (called the "rate") at
each training step. This helps to prevent the neural network
from relying too heavily on any particular input unit or feature,
which can lead to overfitting [24].

The activation function used in the output layer is
SSoftMax plays an important role for the plant disease
classification problem. Each value in the output of the
SSoftMax function is interpreted as the probability of
membership for each class.

Usually, the final layer in a neural network is the
classification layer. The purpose of this layer is to obtain the
output probabilities from the SSoftMax activation function,
which assigns a probability value to every input for all the
mutually exclusive classes. Using these probabilities, the
classification layer determines the ultimate class assignment
for each input and calculates the corresponding loss.

V. EXPERIMENTAL RESULTS

A. Experiment with Wheat Data Set

The wheat data set contains 3 classes of images of corn
plant leaves, including Healthy, Septoria, and Stripe-rust. The
training and validation data number is shown below.

TABLE IV. WHEAT PLANT DISEASE DATA SET
DETAILS TO APPLY PROPOSED ALGORITHM (IMAGE
DATA SET AFTER PRE-PROCESSING).

Healthy 102 82 20
Septoria 97 78 19
Stripe-rust 208 166 42

407  (total)

After getting the image processed with the same size and
format, we apply the data set in the pre-trained AlexNet. The
original AlexNet has 2 layers, including 1 input layer, 5
convolution layers, 6 Relu layers, 2 norm Channel
Normalization layers, 3 max-pooling layers, 3 fully connected
layers, 2 drop-out layers, 1 SoftMax layer, and 1 output layer.
The default set learning rate is 0.01, and L2 regulation is
0.0001, shuffle every epoch, and the drop-off probability rate is
0.5.

During the experiment, we fine-tuned a few parameters, for
example changing the layers, adjusting the default learning rate
and normalization rate... We finalized the best result by adding
a norm Channel Normalization layer behind each convolution
layer, updating the last 2 Relu layers to the leaky-Relu layer,
setting the learning rate at 0.00015, raising drop off rate to 0.7,
dropping the L2 regulation to 0.00025, and increasing max
epochs to 60. The fine-tuned network achieved really good
results. The best result is that the validation accuracy is 100%.
Since every time, the data was shuffled and training data and
validation data were randomly chosen for the algorithm, we
run 5 times of the algorithm, and got the average result of
99.34%. Multiple time test results and best result plot are
shown below.

TABLE V. PROPOSED ALGORITHM ON WHEAT PLANT
DISEASE

Test 1 Test 2 Test 3 Test4 | Test5 | Average

99.18% | 98.77% | 98.77% | 100% | 100% | 99.34%

B. Experiment with Corn Data Set

The corn data set contains 4 classes of images of corn
plant leaves including Healthy, Common-rust, Gray-leaf-spot,
and Blight. The training and validation data number is shown
below.

TABLE VI. CORN PLANT DISEASE DATA SET DETAILS
TO APPLY PROPOSED ALGORITHM (IMAGE DATA
SET AFTER PRE-PROCESSING)

Corn Dataset | No. of | Training data | Validation
from Kaggle images (80%) data (20%)
Healthy 1162 930 232
Common-rust | 1306 1045 261
Gray-leaf-spot | 574 459 115
Blight 1146 917 229

4188 (total)

Wheat No. of | Training data | Validation data
Dataset from | images (80%) (20%)
Kaggle

After dividing the dataset, we applied the data to the
proposed CNN model. We kept the fine-tuning parameters for
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the wheat data set, and we achieved good results. The best
accuracy result is 95.58%. Same as the wheat data set, since
the data was chosen randomly to train the algorithm, so result
varies each time you run the algorithm. So, we did 5 times of
the experiment and got an average accuracy result of 99.34%.
The test run results each time and the best result plot are
shown below.

TABLE IX. PROPOSED ALGORITHM ON RICE PLANT
DISEASE

Test 1 Test 2 Test 3 Test 4 Test 5 Average

92.18% | 92.30% | 92.49% | 92.62% | 92.74% | 92.47%

TABLE VII. PROPOSED ALGORITHM FOR CORN
PLANT DISEASE

Test 1 Test 2 Test 3 Test 4 Test 5 Average
94.86% | 94.50% | 95.10% | 95.58% | 95.70% | 95.15%

C. Experiment with Rice Data Set

The corn data set contains 6 classes of images of corn
plant leaves including Bacterial-blight, Blast, Gray-leaf-spot,
Brown-spot, Hispa, Turgro, and Healthy. The training and
validation data number is shown below.

TABLE VIII. RICE PLANT DISEASE DATA SET
DETAILS TO APPLY PROPOSED ALGORITHM (IMAGE
DATA SET AFTER PRE-PROCESSING)

Rice Dataset | No. of | Training Validation
from images data (80%) | data (20%)
Mendeley,
Kaggle and
UCI
Bacterial- 1584
blight 1267 317
Blast 1440 1152 288
Brown-spot 1600 1280 320
Hispa 565 452 113
Turgro 1308 1046 262
Healthy 1488 1190 298

7992 (total)

After dividing the rice dataset, we applied the data to the
proposed CNN model. We kept the fine-tuning parameters for
the wheat and corn data set, and we encountered the
overfitting problem, which means that the algorithm did great
with training data but poorly with the validation data. So, we
have to fine-tune some of the training parameters, like raising
the L2 regulation parameter to 0.00045, cutting max epochs to
stop the training early, updating the drop-off rate to 0.65, etc.
The result is not as good as the corn and what data set, the best
accuracy result is 92.74%. But the result is still higher than
[15] and [12]. Same as the wheat data set, since the data was
chosen randomly to train the algorithm, so result varies each
time you run the algorithm. So, we did 5 times of the
experiment and got an average accuracy result of 92.47%. The
test run results each time and the best result plot are shown
below.

After all the experiments, the result for each data set and
relevant work during the literature review is shown below.
Other researchers applied CNN, SVM, random forest tree,
VGG16, etc., but the graph shows clearly that the proposed
algorithm shows better performance.

‘Wheat Plant Disease

99.50% 99.34%
99.00% 98.75%
98.50%
0,
98.00% 98A)
97.50%
97.00%
Proposed VGG[16] ImageNet[17]
Algorithm

Fig. 5. Results compared with other State-of-Art research on
wheat plant disease.

Corn Plant Disease

100.00%  95.15% 94%
30.00% 79.23%
. (]
60.00%
40.00%
20.00%
0.00%
Proposed Random CNN[14]
Algorithm Forest[13]

Fig. 6. Results compared with other State-of-Art research on
corn plant disease.

Rice Plant Disease

93.00%
92.50%
92.00%
91.50%
91.00%
90.50%
90.00%

92.47%
92.24%

91%

Proposed VGG[12] Ensemble[15]

Algorithm
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Fig. 7. Results compared with other State-of-Art research on
rice plant disease.

VI. CONCLUSIONS

In this paper, the pre-trained AlexNet works with different
layers and fine-tuning techniques as the new proposed
algorithm is proposed for plant disease detection. The authors
achieved an accuracy of 95.15%, 99.34%, and 92.47% for corn
disease detection, wheat disease detection, and rice disease
detection respectively. In the future, we will try to combine
more datasets to evaluate the inclusiveness of the algorithm
that was proposed in this paper; and In Situ Resource
Utilization (ISRU) image monitoring, so the farmer will be
alarmed when disease on a plant is detected automatically.

In this research work, the proposed innovative method was
proved to be successful. The main contributions were listed
below:

e Various sources provided the images, which were
preprocessed to ensure that they were uniform in size
and format, making them suitable for the ML model's
input layer.

e Data from diverse sources were used to evaluate the
proposed ML model's adaptability and robustness.

e The training process parameters were fine-tuned to
handle various situations such as overfitting and
underfitting.

e To demonstrate the proposed ML model's robustness
and universality, it was tested on various datasets with
different classification classes instead of being limited
to specific datasets.

e  Unlike other researchers who only tested one of the
staple food plant datasets or compared it to non-staple
plant data such as tomato, pepper, or potato [18], the
proposed algorithm demonstrated robustness for the
first time across all three staple food plant datasets
(corn, wheat, and rice) [12]-[17].
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