
Federated Learning Over Images:

Vertical Decompositions and Pre-Trained Backbones Are Difficult to Beat

Erdong Hu1, Yuxin Tang1, Anastasios Kyrillidis, Chris Jermaine

Rice University

{eh51, yuxin.tang, anastasios, cmj4}@rice.edu

Abstract

We carefully evaluate a number of algorithms for learn-

ing in a federated environment, and test their utility for a

variety of image classification tasks. We consider many

issues that have not been adequately considered before:

whether learning over data sets that do not have diverse sets

of images affects the results; whether to use a pre-trained

feature extraction “backbone”; how to evaluate learner

performance (we argue that classification accuracy is not

enough), among others. Overall, across a wide variety of

settings, we find that vertically decomposing a neural net-

work seems to give the best results, and outperforms more

standard reconciliation-used methods.

1. Introduction

There has been a recent influx of work aimed at devel-

oping and evaluating new algorithms for Federated Learn-

ing (FL) [2, 6, 20, 29], particularly for image classifica-

tion [3, 14, 18, 27, 28, 31, 35, 50, 53]. Most papers are pri-

marily concerned with the development of innovative al-

gorithms, and less concerned with the design of appropri-

ate benchmarks and especially, appropriate baselines to test

against. This paper, in contrast, is concerned with bench-

marking: Which existing methods for FL work best, and

under what conditions do they work, or not work? As such,

our primary contribution is a set of carefully-designed ex-

periments, rather than the introduction of a new FL algo-

rithm. Our benchmarks are designed to address the follow-

ing concerns regarding the design of FL benchmarks and

baselines.

(1) Learning algorithms are typically evaluated on a few di-

verse data sets, rather than a large variety of more focused

data sets. The most common benchmark for evaluating fed-

erated image classification is CIFAR-100 [25]. This dataset

includes whales, chairs, dinosaurs, and so on. This is a very

1Equal contribution.

diverse set of classes, and we are concerned that few FL

tasks will involve differentiating dinosaurs from rabbits.

For example, imagine that the members of a bird watch-

ing club taking pictures with their smartphones; club mem-

bers label the pictures with the bird species, and FL is used

to build a classifier. Or, a set of companies who are typi-

cally competitors—and hence cannot exchange data—want

to work together to classify pictures of industrial drill bits

based on whether they are going to fail. Both of these

deployments involve narrow domains, and the classifica-

tion problems involve fine-grained differentiation [13, 48]

among members of a narrow category. True, not all appli-

cations of FL will be narrow, but they are likely to be far

narrower than classifying whales versus chairs. We argue

that, while evaluating on a broad data set—such as CIFAR-

100—is useful, it is also necessary to evaluate FL algo-

rithms on a variety of more narrow data sets.

(2) Most evaluations focus on final accuracy or the number

of communication rounds required for convergence. FL al-

gorithms are often evaluated by reporting final accuracies

(after convergence), or by plotting test accuracy as a func-

tion of the number of epochs, or the number of communi-

cation rounds. However, final accuracy, at least in isolation,

is not really a useful metric. After all, the simplest “FL” al-

gorithm is classical, data parallel learning [33, 41, 52]. That

is, run distributed gradient descent; compute gradients lo-

cally over mini-batches in a fully synchronous way, then do

an all-reduce. As this is functionally equivalent to central-

ized learning, it is invariant to data distribution, and is likely

to be the most accurate method in terms of final accuracy.

However, it is inefficient in a federated environment.

Likewise, considering accuracy as a function of commu-

nication rounds ignores the computation or communication

cost of each round. Communication and computation costs

can vary across methods, and are typically far more impor-

tant than the number of rounds. A method that can quickly

achieve high accuracy with a relatively large number of very

inexpensive communication rounds—where a small frac-

tion of the model is communicated at each round—is proba-

19328

2023 IEEE/CVF International Conference on Computer Vision (ICCV)

2380-7504/23/$31.00 ©2023 IEEE
DOI 10.1109/ICCV51070.2023.01776

Authorized licensed use limited to: MIT Libraries. Downloaded on March 29,2024 at 17:21:57 UTC from IEEE Xplore. Restrictions apply.

bly preferred to one that uses few rounds, but must transmit

a huge amount of data. Similarly, for computation, given

similar accuracies, an algorithm that performs one forward

and one backward gradient descent pass is preferred over

one that performs two additional forward passes, as extra

overhead [28], even though both operate in the same num-

ber of communication rounds.

(3) Pre-trained feature extractors need to be a standard

baseline. Training the feature-extraction backbone that is

used in most deep image processing networks—that is, the

series of convolutional and pooling layers and without the

final classification layer—is not easy. It is difficult to get

the training process right, and training a good backbone re-

quires a lot of computation.

Researchers have recently suggested using pre-trained

backbones, especially for few-shot training [7, 16]. In a

pre-trained backbone, a pre-trained feature extractor such

as a convolutional neural network (CNN) [15, 19, 39] or vi-

sion transformer [10] is used without modification to em-

bed an image in a high-dimensional space. Learning is then

performed on the resulting vectors, and not on the original

images. The goal is to leverage an existing, well-trained

model on the new learning problem. Given the resource

constraints in many FL scenarios, it is unclear why attempt-

ing to fully train such a backbone from scratch in a federated

environment would be the first approach. Instead, we sug-

gest simply taking a standard, pre-trained backbone (such as

a ResNet [15], or a DenseNet [19], or both used together)

and directly using that backbone as a feature extractor, with-

out training.

The benefit is that each training image only needs to be

pushed through the backbone one time to obtain a compact

set of features, and then that set can be used during train-

ing. As the backbone need not to be communicated or re-

peatedly used to process the input images, both CPU/GPU

cycles and communication are saved during federated train-

ing. Furthermore, final accuracies might actually be better,

as this approach sidesteps the difficulty of training the back-

bone.

(4) Off-the-shelf performance is really what matters, but it

is often neglected in research studies. In a centralized en-

vironment, it is feasible to train and re-train many times, as

various parameters (learning rate, proximal weight, exact

neural architecture, etc.) are tuned. In FL, this is much less

feasible. Most FL scenarios imagine a resource-constrained

environment (possibly involving edge devices), where one

cannot ignore the cost of tuning. FL is typically happening

on someone else’s hardware, and so running an algorithm

many times during parameter tuning is likely to make par-

ticipation in training far less palatable.

Further, application-specific tuning may simply be im-

possible. A device may enter the federated training and then

drop out shortly after, never to be seen again. One cannot

access a missing device’s data to perform validation, and

clearly, one cannot retrain over data that cannot be accessed.

As such, we argue that “off-the-shelf” performance is

more important than in centralized learning. That is, it be-

comes important to settle on one set of universal parameters

that tend to work in most deployments, such that the learn-

ing algorithm can be universally deployed without further

tuning. At the very least, this is an important use case that

should be covered in most experiments.

Our Contributions. Our contributions are as follows.

• We suggest several rules-of-thumb governing benchmark

and baseline development for FL over images, and use

those rules to devise an extensive FL image classification

benchmark, and use that benchmark.

• We show that using pre-trained features and other model

reduction tools are necessary for practical FL.

• We highlight some surprising behaviors of current FL al-

gorithms, including the effect of client population size,

that to our knowledge are not sufficiently explored in cur-

rent literature.

• Our source code is publicly available at

https://github.com/huerdong/

FedVert-Experiments

2. Background

The common setting for FL is the following: There are

total N devices participating in the optimization. To protect

data privacy (or due to communication constraints), devices

are not allowed to share local data samples to others. Each

device has its own local objective function fi parameterized

by its own model wi. The coefficient pi = ni/n is the

number of data samples ni on each device, divided by the

unified total data sample n =
∑N

i=1
ni. There will be a

central server that collects all the parameters wi uploaded

by each device and aggregate them into a single model w.

The common formulation of FL is to optimize a global

optimization function L(w):

min
w

L(w) =

N
∑

i=1

piL(wi; {xloc, yloc}), (1)

where L(wi; {xloc, yloc}) represents the local objective for

device i, based on local data {xloc, yloc}. The natural algo-

rithm that arises from this objective is FedAvg [37] which

directly applies stochastic gradient descent (SGD) to learn

wi’s. In the most basic case, where FedAvg performs only

one local gradient step, the above formulation becomes

equivalent to data parallel SGD [33, 41, 52].

In real-world applications of FL, local data distributions

are often skewed towards specific classes: i.e., the natural

19329

Authorized licensed use limited to: MIT Libraries. Downloaded on March 29,2024 at 17:21:57 UTC from IEEE Xplore. Restrictions apply.

distribution of real data can be very skewed, with certain

classes only existing in a very small segment of clients’ de-

vices. In these heavily non-i.i.d. scenarios, the learned wi

in Eq. (1) can diverge in drastically different directions and,

in the most extreme cases, diverge in opposite directions.

When FL is performed in this scenario, the averaging can

result in a model drastically different from any of the client

models and has degraded performance as a consequence; a

phenomenon often called client drift [54]. It is this con-

cern that has motivated the development of a number of FL

methods beyond FedAvg [21,28,30,43], a few of which will

be described in the next section.

3. Federated Learning Methods Tested

3.1. The Methods

In our experiments, we consider the following FL meth-

ods, chosen as a representative set of the state-of-the-art.

FedAvg. Federated averaging [37] is the most simple av-

eraging algorithm and is the basis of the others, whereby

client models are trained locally by (stochastic) gradient de-

scent. These local models are aggregated by directly aver-

aging their weights, or equivalently averaging their com-

puted gradients using this averaged gradient for one global

round of gradient descent.

FedProx. FedProx [30] is a modification on FedAvg that

introduces an additional ℓ2-norm term to the local loss func-

tion, that takes the difference between the previously com-

municated global model and the current model. The aim is

to avoid client drift by biasing the training towards an estab-

lished model. Again, the clients then compute local models

whose weights are averaged. Given the model weights w0

from the previous communication round, the FedProx mod-

ification to the FedAvg objective is:

min
wi

{

L(wi; {xloc, yloc}) +
µ
2
∥wi − w0∥

2
2

}

, i ∈ [N]

where µ is a regularization parameter.

MOON. MOON (Model-Contrastive) [28] uses a similar

principle as FedProx by comparing the current model with

the previous model. However, it utilizes a cross-entropy

loss, rather than ℓ2-norm loss, as in:

min
wi

{

L(wi; {xloc, yloc})− µ log e
sim(z,zglob)/τ

e
sim(z,zglob)/τ+esim(z,zprev)/τ

}

where sim() is the cosine similarity function, and

z, zglob, zprev are representations of the data generated by

the respective model (respectively: learned, current global,

previous local). Ä is a temperature hyperparameter.

FedAdam. While the above algorithms modify the local

training process of FedAvg, FedAdam [40] modifies the ag-

gregation step. Once the averaged weights are computed

via local gradient descent and their average is computed, it

is used to compute a global gradient surrogate to be used in

the Adam algorithm [22].

FedNova. FedNova [43] introduces a client gradient re-

weighting scheme when accumulating the models parame-

ters/gradients and generalizes FedAvg and FedProx as spe-

cific parameterizations. However, we use the specific for-

mulation specified in [43], where these weights are nor-

malizations of the local gradients.

IST. We consider the previous set of learning algorithms

to be “reconciliation-used”; in that, they attempt to train

a copy of the model at each site. In contrast, IST, or in-

dependent subnet training [51] does not utilize averaging

or some other method to try to reconcile versions of the

model trained at the various site. Instead, IST decomposes

the model and sends non-overlapping parts of the model to

different sites. In one training round, all neurons (or ac-

tivations) in a neural network are randomly partitioned to

the active sites. A weight is only sent to a site if it con-

nects two neurons that have been assigned to the site. Thus,

each site is assigned only a very small subnetwork, which

is trained locally for a number of gradient descent steps. At

the end of local training, the updated weights are shuffled

(with or without the aid of a central server) and the process

is repeated. Since subnetworks are independent, there is no

averaging or other form of reconciliation needed. There are

many variants of this approach in the literature, including

FjORD [17], HeteroFL [9], LotteryFL [26], FedSelect [4],

FedRolex [1], Federated Dropout [5], PVT [47], and the

independent subnetwork training approach in the non-FL

setting [11, 32, 44, 45, 51]. It is this latter version of the ap-

proach (for MLPs) that we apply here.

ISTProx. This is IST, but with a proximal term added to

the loss function.

3.2. Analytic Comparison

The focus of our experiments will be on comparing each

of the methods based on their ability to produce high test

accuracy with a low cost. In the paper, we will define cost

in terms of floating point operations (FLOPs) required to

reach a given accuracy, and in terms of floating point num-

bers transferred. As such, we begin by considering the num-

ber of FLOPS required and the floating point numbers that

must be transferred to complete one gradient descent step

for each of the methods.

In our analysis, we assume that we are using a pre-

trained backbone to transform each input image into a vec-

tor, and we are learning a MLP with two weight matrices.

The MLP accepts an n1-dimensional input. It has a hid-

den layer of n2 neurons, and has n3 outputs. Assume a

batch size of b at each of s sites. Since each image only

goes through the pre-trained backbone once, the FLOP cost

19330

Authorized licensed use limited to: MIT Libraries. Downloaded on March 29,2024 at 17:21:57 UTC from IEEE Xplore. Restrictions apply.

of the pre-trained backbone is negligible when amortized

over many gradient descent steps. We will consider only

the FLOPs associated with the weights, as the cost associ-

ated with updating weights dominates the cost associated

with the activation layers.

Begin with FedAvg. In this case, to push a batch through,

we have approximately 2b(n1n2 + n2n3) FLOPs for the

forward pass and approximately 2b(n1n2 + 2n2n3) for the

backward pass, for a total of 4n1n2b + 6n2n3b FLOPs at

each site. Coordination requires 2s(n1n2 + n2n3) floating

point numbers be sent (the model needs to be distributed to

all sites, and then the updated model needs to be collected

from all sites). The number of FLOPs incurred during aver-

aging is typically not significant, as we are simply average

s copies of the two weight matrices, having n1n2 and n2n3

floating point numbers each, and this may be done using a

distributed algorithm.

Adding a proximal term in the case of FedProx may have

little effect, as this changes the backward pass at each site

by adding FLOP computations that scales linearly with the

weight matrices, but does not scale with the batch size b.
Thus, for any reasonable batch size, it is insignificant. If

multiple gradient update steps are performed at each site, it

also requires storing an older copy of the weight matrices at

each site.

FedAdam is a federated version of the Adam algorithm

and as such, it requires storing four additional matrices—

typically at a coordinator—two of which are associated with

each of the MLP’s weight matrices. It must approximate the

gradient and run the Adam algorithm at the coordinator dur-

ing each update. However, this does not affect the memory,

computation, or communication requirements at each site,

and so any differences may not be of practical importance.

FedNova requires a normalization step at each site dur-

ing the local gradient computation, but this only requires

multiplying each gradient by a scalar, which is likely in-

significant and so it is also, for practical purposes, compu-

tationally no more expensive than FedAvg. MOON is more

expensive than FedAvg in terms of FLOPs, as it needs to

compute multiple representations of each training iteration.

The obvious MOON implementation will require 4bn1n2

additional FLOPs compared to FedAvg at each site. In

addition, MOON needs to locally maintain two additional

copies of the weight matrices.

Next, consider IST. At each site, n2 is effectively cut by

a fraction s, because the neurons in the hidden later is parti-

tioned s ways and only the weights associated with neurons

assigned to a site are actually sent or used there. Hence, the

total number of FLOPs is (4n1n2b+ 6n2n3b)/s, and coor-

dination requires that only 2(n1n2 + n2n3) floating point

numbers be sent and received; each weight is assigned to

exactly one site. There are no FLOPs associated with co-

ordination, as there is no averaging done; weights are sim-

ply updated and sent around. Due to the partitioning, the

memory usage at each site is on average smaller than that of

FedAvg by a factor of s. Like FedAvg, adding a proximal

term has little effect on either FLOPs or bytes transferred.

4. Experimental Setup

4.1. Pre­Trained Backbones

All of the methods we tested (except for one baseline)

utilize pre-trained backbones. That is, we take a pre-trained

feature image classifiers: ResNet101 [15] and DenseNet121

[19], and remove the classification layers to produce two

“backbones.” When processing an image, we simply con-

catenate the feature vectors produced by the two backbones

to produce a 3072 dimensional vector. We also evaluate

FedProx, but without a pre-trained backbone. This version

of FedProx (called “FedFull”) uses a ResNet18 instead of a

single-hidden layer MLP.

4.2. Data Sets and Hyperparameters

Overall, we conduct experiments on a diverse and broad

range of image classification data sets: (1) CUB-200-2011

(Birds) [42], (2) Stanford Cars (Cars) [23], (3) VGGFlow-

ers (Flwrs) [38], (4) Aircraft (Aircrft) [36], (5) Describable

Textures (Textre) [8], and (6) CIFAR 100 (CFAR) [24]. The

only processing we apply on these data sets, besides using

the pre-trained feature extractors, is the standard cropping

and resizing of image data. For the Aircrft data set, there are

multiple levels of specificity of labels - manufacturer, fam-

ily, variant - we chose variant for the finest-grained classes.

We use the Birds data set to tune the methods. After ex-

tensive experimentation on Birds, we chose a learning rate

of 0.01, as we found this to give stable convergence in all

algorithms, except FedAdam, where we choose a learning

rate of 0.03. For all algorithms except for IST, ISTProx, and

FedFull, tuning led us to a single-hidden-layer, multi-layer

perceptron (MLP) with 1,000 hidden neurons sitting on top

of the feature extractor. FedFull was trained with its “out of

the box” configuration. For IST and ISTProx, we find scal-

ing the hidden neurons based on the number of concurrent

training sites made sense (3000 neurons for ten sites, 6000

for 20, 9000 for 30, 18000 for 60, and so on). This ensures

that the client models are not too small.

A number of other hyperparameters were also optimized

using the Birds data set. For the various hyperparameters

in each algorithm, we applied a grid search on a set list of

parameter values, as described in the next subsection. We

consider the number of local iterations of stochastic gradi-

ent descent as a hyperparameter with either 1, 5, or 25 local

training batches, before a communication round. We use a

batch size of 32 images. For FedProx, FedNova, and IST-

Prox, we tuned the additional proximal hyperparameter µ.

For MOON, we have a similar weight parameter µ (the co-

19331

Authorized licensed use limited to: MIT Libraries. Downloaded on March 29,2024 at 17:21:57 UTC from IEEE Xplore. Restrictions apply.

(a) Final accuracies

Birds Cars Flwrs Aircrft Textre CFAR

FedAvg 73.5 66.7 95.9 48.8 74.3 76.7

FedProx 74.0 65.7 95.8 48.9 74.7 75.1

MOON 74.3 66.0 95.6 48.9 74.6 75.3

FedAdam 67.6 51.1 92.4 41.9 72.8 70.1

FedNova 73.3 66.8 95.6 49.0 74.7 74.7

FedFull 5.2 2.8 35.1 5.4 40.3 7.8

IST 74.6 67.8 96.4 50.6 74.6 76.2

ISTProx 74.8 66.8 96.5 50.4 74.7 76.1

(b) Communication (GB) to threshold acc.

Birds Cars Flwrs Aircrft Textre CFAR

FedAvg 9 6 4 13 3 10

FedProx 13 FAIL 6 21 5 15

MOON 13 43 6 21 4 16

FedAdam 8 FAIL 2 FAIL 1 7

FedNova 57 138 17 84 12 68

FedFull FAIL FAIL FAIL FAIL FAIL FAIL

IST 3 288 1 3 1 3

ISTProx 3 FAIL 2 3 1 3

(c) GFLOPs to threshold acc.

Birds Cars Flwrs Aircrft Textre CFAR

FedAvg 904 642 445 1334 275 979

FedProx 53 FAIL 23 86 18 62

MOON 110 FAIL 46 178 34 121

FedAdam FAIL FAIL 170 FAIL 152 750

FedNova 1140 2768 333 1680 232 1355

FedFull FAIL FAIL FAIL FAIL FAIL FAIL

IST 11 1152 6 14 3 12

ISTProx 11 FAIL 6 14 3 13

Table 1: i.i.d. results, 100 sites, 10% participation.

efficient of the contrastive term) and Ä , the temperature of

the contrastive term. FedAdam has a central learning rate

as well, which we set to 0.01. Exact values for all of our

hyperparameters are given in the appendix. We stress that,

while we performed careful tuning on the Birds data set, all

hyperparameters were re-used blindly and without modifi-

cation, on all other data sets.

4.3. Evaluation Metrics

Choosing an evaluation metric is among the most diffi-

cult aspects of evaluating FL methods, but does not seem

to have received much attention in the literature. Most pa-

pers focus on final accuracy: What is the accuracy that a

FL method exhibits on a test set after training? Unfor-

tunately, final accuracy as a metric makes little sense in

isolation from other considerations. After all, the method

that likely gives the very best final accuracy is simple dis-

Figure 1: Accuracy as a function of time for FedProx and

FedFull on the Stanford Cars data set.

tributed mini-batch training, where each site computes gra-

dients over a small subset of its local data; those gradients

are summed and a central site updates the model. This is

algorithmically equivalent to centralized training, but it is

typically not tested, because it is generally assumed that the

convergence would be too “slow,” for some implicit defini-

tion of “slow.” Thus, a more carefully-defined evaluation

framework (beyond simple accuracy) is needed.

Hence, we consider three metrics: final accuracy, com-

putational efficiency, and communication efficiency [34,46].

Of the three, we assert that final accuracy should be consid-

ered the least important; it is most useful as a way to con-

textualize the other two metrics (e.g., “what final accuracy

can I achieve in G gigaFLOPs of computation?”).

4.4. Tuning and Evaluation

For a given method, using the Birds data set, we first

perform a grid search over the various hyperparameters,

and for each hyperparameter set, we run the method for a

“long time,” where a “long time” allows a maximum of 1014

floating point operations (or 100 teraFLOPs, where floating

point operations are summed across all devices participat-

ing in federated training) and five terabytes of data commu-

nicated (assuming single-precision floating point computa-

tions). Note that 100 teraFLOPs corresponds to around 14

hours of CPU time on a single mobile phone, or perhaps

several hundred hours of processor time on a limited IoT

device. Once a method exceeds 100 teraFLOPs or five ter-

abytes of communication, we take its very best observed test

accuracy, averaged over ten communication rounds. The

best average observed over all hyperparameter settings is

taken as the method’s “final accuracy”.

Once we have the method’s final accuracy, we then per-

form a grid search over all hyperparameters to find the two

sets of parameter settings for the method that (a) minimize

the number of FLOPs to reach 90% of the final accuracy,

and (b) minimize the number of GB of communication nec-

essary to reach 90% of the final accuracy. Now we have

19332

Authorized licensed use limited to: MIT Libraries. Downloaded on March 29,2024 at 17:21:57 UTC from IEEE Xplore. Restrictions apply.

(a) i.i.d., Cars, one round accuracy. (b) Skewed, Cars, one round accuracy. (c) Skewed, Cars, 20 rounds accuracy.

(d) i.i.d., Flowers, one round accuracy. (e) Skewed, Flowers, one round accuracy. (f) Skewed, Flowers, 20 rounds accuracy.

Figure 2: Comparison of similarity of the FL descent direction to a centrally-computed descent direction. One means the

directions are identical; 0 represents de-correlation. At left is i.i.d. data; center is skewed data, similarity computed over one

descent step; right is skewed data, similarity computed over 20 descent steps.

three sets of hyperparameters: one optimized for accuracy,

one for gigaFLOPs, and one for communication. The rea-

son that we use three sets of hyperparameters is that the

goals of maximizing accuracy, minimizing FLOPs and min-

imizing communication are often in direct opposition to one

another, and these resources can often be traded (e.g., more

local iterations and FLOPs for less communication).

Next, we consider each data set in sequence. We first run

each method to 100 teraFLOPs or five terabytes of com-

munication on the data set, using the accuracy-optimized

parameters. We then compute the maximum accuracy that

any method obtained on the data set, and set 90% of this

accuracy as a target. Then, for each method and each data

set, we compute two additional numbers: the number of

gigaFLOPs required to reach the target accuracy for five

consecutive rounds (using the FLOP-optimized settings),

and the number of gigabytes of communication required

to reach the target accuracy (using the communication-

optimized settings). If a method is unable to reach the target

accuracy within the 100 teraFLOPs/five terabytes limit, it is

said to have failed (indicated as FAIL in tables).

We estimate the amount of FLOPs used during training

using the FlopCountAnalysis tool in the Python fvcore [12].

Similarly, for our communication costs we estimate the size

of a model in bytes with the Python torchinfo [49] package.

The reason for this evaluation strategy is simple. In prac-

tice, the preferred FL method is likely to be the one that

reaches a high level of accuracy with little cost. Hence, we

(somewhat arbitrarily, but precisely) define “high level of

accuracy” as 90% of the peak accuracy observed over all

methods for a given data set. Given this target, evaluation

is then a matter of counting floating point operations and

bytes to reach that target.

Note that other metrics are possible: power usage and

elapsed wall clock time are two of the most obvious. How-

ever, both of these will be closely related to FLOPs and

communication required, and hence we stick to these two.

5. Identically Distributed Data

5.1. Setup

In our first set of experiments, the images are randomly

partitioned across the sites, so that each site has a randomly-

selected (with replacement) subset of the overall set of im-

ages in the training data set. After a round of communica-

tion finishes, ten sites are randomly selected as being “on

the network” and those sites participate in the present round

of training. After local training finishes and all of the re-

sults have been communicated, another set of ten sites are

randomly selected and the process continues.

For this simple “i.i.d.” setup, our experiments will an-

swer a few key questions. First and foremost, should we

be doing full backpropagation through a convolutional net-

work, or should we be exclusively using a pre-trained back-

19333

Authorized licensed use limited to: MIT Libraries. Downloaded on March 29,2024 at 17:21:57 UTC from IEEE Xplore. Restrictions apply.

(a) Final accuracies

Birds Cars Flwrs Aircrft Textre CFAR

FedAvg 61.5 56.4 88.9 40.2 68.1 61.4

FedProx 58.4 50.1 85.4 35.6 66.8 60.5

MOON 57.7 48.0 86.9 37.6 66.2 58.6

FedAdam 49.4 16.9 81.0 28.9 54.0 40.5

FedNova 58.4 47.1 83.6 37.0 64.3 60.3

IST 64.3 50.8 90.7 39.8 69.5 49.4

ISTProx 64.8 50.3 91.3 40.6 68.2 56.7

(b) Communication (GB) to threshold acc.

Birds Cars Flwrs Aircrft Textre CFAR

FedAvg 131 62 51 79 55 59

FedProx 250 FAIL 124 FAIL 71 54

MOON FAIL FAIL 193 FAIL 143 74

FedAdam FAIL FAIL FAIL FAIL FAIL FAIL

FedNova 743 FAIL 430 608 309 160

IST 79 FAIL 37 119 69 FAIL

ISTProx 72 FAIL 59 134 72 219

(c) GFLOPs to theshold acc

Birds Cars Flwrs Aircrft Textre CFAR

FedAvg 13121 6245 5150 7892 5461 5884

FedProx 1000 FAIL 495 FAIL 283 218

MOON FAIL FAIL 581 1243 653 1207

FedAdam FAIL FAIL FAIL FAIL FAIL FAIL

FedNova 14872 FAIL 8614 12172 6181 3200

IST 315 FAIL 148 475 277 FAIL

ISTProx 287 FAIL 238 535 288 875

Table 2: Skewed data results, 100 sites, 10% participation.

bone? Second, when one considers computation and com-

munication (rather than just final accuracy) do the meth-

ods compare differently than when the only metric is accu-

racy? And finally, does the data set used matter? Results

are shown in Table 1. For each data set, the best result is

indicated in bold.

5.2. Discussion

There are a few clear results. First, except for FedAdam

and FedFull, the methods generally have very similar final

accuracy, with the two IST-based methods being slightly

higher. Thus, one key finding is that for data without skew-

ness across sites, if one is only interested in final accuracy, it

does not seem to matter much which method is used, and this

result holds across data sets. The two exceptions to this are

FedAdam and FedFull. FedAdam does not reach the same

final accuracy as the other methods, but it generally does

quite a good job reaching high accuracy with relatively lit-

tle communication. This corresponds to the fact that it tends

to converge in relatively few communication rounds.

FedFull is a very interesting case. Note that it has poor

final accuracy—only 3% in the case of the Cars data set.

As a result, it is labeled as “FAIL” in every case, because it

can never reach 90% of the peak accuracy observed for the

other methods on a given data set. One might ask, Why is

FedFull such a poor choice? The answer is simple: as we

put a 100 teraFLOP/five terabyte “timeout” on the com-

putation, FedFull timed out in every case. That is, it al-

ways hit the 100 teraFLOP/five terabyte limit. Were Fed-

Full allowed infinite computation and infinite communica-

tion, it is actually the preferred method, as the pre-trained

backbones limit accuracy. For example, consider Figure

1, which plots accuracy as a function of FLOPs for both

FedFull and FedProx on Cars. FedFull eventually reaches

90% accuracy, but it takes nearly four orders of magnitude

more FLOPs to top out compared to FedProx. This FLOP

usage gap is apparent in Fig. 1 where even the first com-

munication round of FedFull requires more FLOPs than the

amount required for the entire FedProx training. As a result,

we would argue that full backpropagation is effectively un-

usable in resource-constrained FL. Note, however, that our

FedFull was trained using an initialization consisting of ran-

dom weights. Perhaps a hybrid method makes sense, where

one begins with FedProx (with a pre-trained backbone) and

then once the MLP begins to reach peak accuracy, we allow

backpropagation over the backbone to begin. This issue de-

serves further investigation. That said, given our maximum

FLOP count and communication, FedFull is not competitive

and in the interest of space, we will not consider it further.

The final observation we make is the general superiority

of IST, over each of the six data sets. It is perhaps not sur-

prising that IST is efficient in terms of communication and

in terms of computation. Each site obtains only a fraction

of the MLP that is being trained, saving communication and

computation at each site. However, it is surprising that it is

also generally the most accurate method, in terms of final

accuracy (or close to it) in every case. We will examine this

finding more fully, later in the paper.

6. Effect of Data Skewness

6.1. Setup

How might these results change if data are not uni-

formly distributed across sites? To answer this question,

we modify our experiments as follows. Rather than assign-

ing each training image to each site with uniform proba-

bility, we sample the class probabilities for each site from

a Dirichlet(0.01) distribution, and rerun our experiments

(with 100 sites and 10 sites active in each round). This

creates a relatively extreme—yet still realistic—amount of

skew. For the six data sets we tested, the three-tuple

(number of classes in data set, min number of classes at any

site, max number of classes at any site) is: for Birds (200, 7,

19334

Authorized licensed use limited to: MIT Libraries. Downloaded on March 29,2024 at 17:21:57 UTC from IEEE Xplore. Restrictions apply.

(a) 1000 sites

Change in acc., 2% → 6% participation

Birds Cars Flwrs Aircrft Textre CFAR

FedAvg 0.1 -0.8 0 0 -1.1 1.3

FedProx 0.1 -2 0.4 0.8 1 1.1

MOON 0.3 2.9 0.5 0.5 -0.2 1.4

FedAdam 12.8 16.8 7 12.5 12.1 12.4

FedNova 0.6 -0.5 -0.5 0 0.6 0.8

1.2 7.3 0.5 2.4 0.7 4.9

ISTProx 0.4 6.3 0.4 1.8 7.6 4.1

(b) 100 sites

Change in acc., 10% → 30% participation

Birds Cars Flwrs Aircrft Textre CFAR

FedAvg -0.5 -0.8 0.6 -0.1 1.2 4

FedProx -0.4 -2 3.7 2.1 -0.6 0

MOON 1.5 2.9 -0.5 -0.3 -0.1 2.8

FedAdam 2 14.9 -0.9 0.6 0.4 5

FedNova 0.3 -0.5 4.3 -0.7 -0.6 -0.3

IST 2.3 7.3 -1.7 0.1 0.1 6.2

ISTProx 3 6.3 -0.9 3 1.3 2.2

Table 3: Observed change in accuracy, computed as “(%

correct with fewer sites) - (% correct with more sites)”,

when active sites increases. Red indicates negative change.

20), Aircraft (100, 2, 15), Stanford Cars (196, 4, 20), Flow-

ers (102, 3, 15), Textures (47, 1, 9), and CIFAR100 (100, 1,

13). This matches the realistic case where each site has ac-

cess to only a few of the classes, and from this limited local

information, an accurate global model must be constructed.

Results are shown in Table 2.

6.2. Discussion

Probably the single most interesting finding is that for

a highly-skewed situation, there seems to be divergence in

performance, depending upon the data set. The two IST

methods seem to perform best overall, with either IST or

ISTProx being the superior option in terms of final accu-

racy, FLOPs, or communication for four of the six data sets.

However, IST does relatively poorly on the venerable CFAR

data set. CFAR is a somewhat strange benchmark, as the

images are tiny (32 × 32) and widely varied within the data

set, and both IST variants have problems with this. Never-

theless, it is a good stress test. Note that in the two cases

where IST does not do the best, it is either simple FedAvg

or FedProx that is the best performer. One of the most sur-

prising findings is that FedAvg dominates all other methods

in all metrics (accuracy, FLOPs, communication) on Cars.

Overall, across the two experiments (i.i.d. and skewed),

we find that adding a proximal term to FedAvg (to obtain

FedProx) seems to have little effect on accuracy, but does

(a) 1000 sites

Change in comm., 2% → 6% participation

Birds Cars Flwrs Aircrft Textre CFAR

FedAvg 3.02 2.41 2.53 4.28 2.25 2.07

FedProx 2.76 NA 2.34 2.98 2 2.12

MOON 2.78 0.88 2.52 2.91 2.28 2.11

FedAdam NA NA 0 NA NA NA

FedNova 2.6 3.81 2.43 3.73 2.77 3.12

IST 1.41 0 1.07 1.95 1.03 NA

ISTProx 1.29 NA 1.15 2.2 0.48 NA

(b) 100 sites

Change in comm., 10% → 30% participation

Birds Cars Flwrs Aircrft Textre CFAR

FedAvg 0.65 NA 1.97 0.24 1.24 0

FedProx ∞ 3.13 2.82 6.43 1.75 2.41

MOON ∞ NA 1.27 NA 5.31 7.39

FedAdam NA NA 1.29 NA 2.23 2.89

FedNova 0.3 -0.5 4.3 -0.7 -0.6 -0.3

IST ∞ NA 1.09 ∞ 2.73 6.44

ISTProx NA NA NA NA NA NA

Table 4: Multiplicative change in communication when

tripling the number of active sites. Red text indicates more

than a 3× increase; black indicates less than a 3× increase.

“NA” indicates the case when there was a FAIL in both

bases. ∞ indicates a change from non-fail to a FAIL, and 0

indicates a change from FAIL to non-fail.

speedup convergence, both in terms of reducing communi-

cation and FLOPs. However, IST seems to be the best per-

former overall, allowing for significant reductions in com-

munication and FLOPs. The addition of a proximal term

does not seem to help IST much. The other methods tested

all seem to under-perform.

6.3. FL, Approximating Centralized Learning

How does the training process for a method (such as Fe-

dAvg and FedProx) that trains the entire model at each site

and then reconciles the various versions of the model, com-

pare with IST, which avoids this through decomposition?

To examine, we centrally train a model from initial-

ization through convergence using min-batch gradient de-

scent, obtaining model parameters Mi for the ith train-

ing epoch. Then, using FL, we start training in a feder-

ated setting from Mi for some number of communication

rounds, to obtain new model parameters M̂i. We refer to

the set of model parameters we would have obtained af-

ter processing exactly the same set of data centrally, via

a series of mini-batches, as M∗

i . Then the cosine sim-

ilarity of the directions both methods move, defined as

(M̂i − Mi) · (M
∗

i − Mi)/(||M̂i − Mi|| × ||M∗

i − Mi||),

19335

Authorized licensed use limited to: MIT Libraries. Downloaded on March 29,2024 at 17:21:57 UTC from IEEE Xplore. Restrictions apply.

shows the utility of FL as an approximation for centralized

learning. Cosine similarity close to one means FL and cen-

tralized training move in the same direction. Zero implies

de-correlation.

Some results obtained in this way are plotted in Figure

2, where we consider FedAvg, FedProx, IST, and ISTProx.

These plots depict this cosine similarity as a function of

the training epochs. We plot running averages to smooth

the data. The top three plots are for Cars, the bottom three

Flwrs. The results for identically distributed data are at left,

whereas skewed data are in the center, and at the right.

FedAvg and FedProx are shown to approximate the cen-

tralized gradient descent direction well early on, but the

similarity drops after initial training. This makes sense, as

initially, with a random initialization, learning is “easy” as

the model is far from optimal. In the i.i.d. case FedAvg

and FedProx perform well. But in the skewed case, af-

ter the initial training period, similarity to the centralized

training direction drops. IST seems more well-behaved,

with less variance. Especially considering how well the

methods approximate the direction of centralized training

through twenty rounds on skewed data (the right column),

the IST-based methods seem to do better. This is espe-

cially pronounced for the Flwrs data set through the first

20 epochs, where IST averages a similarity of 0.035, com-

pared to 0.01 for the averaging-based methods. Perhaps

this is due to the high variance of the directions computed

by FedAvg and FedProx—as estimators for the centrally-

predicted direction—compared to IST. Examining why this

is deserves further investigation in future work.

7. Varying Sites and Connectivity

7.1. Setup

All of our experiments thus far have focused on the sim-

ple case of 100 sites, where at each communication round,

10% of the sites are connected. We now ask: how do things

change when the number of sites changes and/or the number

of sites connected at each communication round changes?

Keeping all of the other settings the same, we try 1000 sites,

with either 2% or 6% of the sites connected at each com-

munication round, and 100 sites, with either 10% of 30% of

the sites connected at each round. Due to space constraints,

we consider accuracy and communication here, and provide

further results of these experiments in the appendix. In Ta-

ble 3, we show the absolute change in percentage accuracy

moving from 2% to 6% connectivity, and from 10% to 30%

connectivity. In Table 4, we show the multiplicative change

in communication required. Note that, as we increase the

number of active sites by 3×, we might expect a 3× in-

crease in communication if the same number of communi-

cation rounds are required. If fewer rounds are required, we

would see an increase that is less than 3×.

7.2. Discussion

FedAdam, IST, and ISTProx are generally helped a bit

by increasing participation. But for the other methods, the

results obtained by increasing participation rates are mixed,

with a surprising number of red values in both Table 3 and

Table 4, indicating a decrease in accuracy or communica-

tion efficiency via the addition of extra active sites. In addi-

tion, it seems that the increase from 2% participation to 6%

participation is much more helpful than 10% to 30%.

The lack of clear benefit to increasing the rate of partic-

ipation is not surprising in retrospect. Aside from FedFull,

each of the methods was able to run to convergence in the

allotted FLOP/communication budget. The central question

becomes: can we run to convergence in fewer rounds by do-

ing more work in each round? This seems very unlikely,

as this is akin to increasing the batch size in centralized

learning, and expecting a significant decrease in the num-

ber of batches required for convergence. There is typically

some decrease in the number of batches with increasing

batch size, but it often is not significant. In reconciliation-

based methods, this may be particularly inefficient as local

training rounds cause the active sites to diverge and simply

makes it more difficult to reconcile them. IST may have

another advantage in that regard, in that more active sites

does not increase communication for IST, it simply means

that each site gets less of the full model. As long as each

site can tolerate local learning using a smaller model (due

to partitioning more ways), the learning may benefit from

seeing a greater variety of data in each round. This cer-

tainly seems to be the case in when moving from 2% to 6%,

which benefits IST.

8. Conclusion

We have designed a set of experiments to evaluate FL

methods. Among the issues considered were what were the

appropriate evaluation metrics (accuracy alone makes little

sense), whether to use a pre-trained backbone, and the ef-

fect of connectivity on the efficiency of the learning. We

find that overall, the method of decomposition of a neural

network into independent subnetworks seems to be the best

option. This has the benefit of decreasing communication

and computation compared to “reconciliation-based” meth-

ods that train a copy of the model at each site, as the model

is sharded, rather than broadcasted.

Acknowledgements. We would like thank the anonymous

reviewers for their comments on the submitted version of

the paper. Work presented in this paper has been supported

by an NIH CTSA, award No. UL1TR003167 and by the

NSF under grant Nos. 1918651, 1910803, 2008240, and

2131294.

19336

Authorized licensed use limited to: MIT Libraries. Downloaded on March 29,2024 at 17:21:57 UTC from IEEE Xplore. Restrictions apply.

References

[1] Samiul Alam, Luyang Liu, Ming Yan, and Mi Zhang. Fe-

drolex: Model-heterogeneous federated learning with rolling

sub-model extraction. arXiv preprint arXiv:2212.01548,

2022. 3

[2] Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp,

Dzmitry Huba, Alex Ingerman, Vladimir Ivanov, Chloe Kid-

don, Jakub Konečnỳ, Stefano Mazzocchi, Brendan McMa-

han, et al. Towards federated learning at scale: System de-

sign. Proceedings of Machine Learning and Systems, 1:374–

388, 2019. 1

[3] Qi Chang, Hui Qu, Yikai Zhang, Mert Sabuncu, Chao Chen,

Tong Zhang, and Dimitris N Metaxas. Synthetic learn-

ing: Learn from distributed asynchronized discriminator gan

without sharing medical image data. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 13856–13866, 2020. 1

[4] Zachary Charles, Kallista Bonawitz, Stanislav Chik-

navaryan, Brendan McMahan, et al. Federated select: A

primitive for communication-and memory-efficient feder-

ated learning. arXiv preprint arXiv:2208.09432, 2022. 3

[5] Gary Cheng, Zachary Charles, Zachary Garrett, and Keith

Rush. Does federated dropout actually work? In Proceed-

ings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, pages 3387–3395, 2022. 3

[6] Li Chou, Zichang Liu, Zhuang Wang, and Anshumali Shri-

vastava. Efficient and less centralized federated learning. In

Machine Learning and Knowledge Discovery in Databases.

Research Track: European Conference, ECML PKDD 2021,

Bilbao, Spain, September 13–17, 2021, Proceedings, Part I

21, pages 772–787. Springer, 2021. 1

[7] Arkabandhu Chowdhury, Mingchao Jiang, Swarat Chaud-

huri, and Chris Jermaine. Few-shot image classification:

Just use a library of pre-trained feature extractors and a sim-

ple classifier. In Proceedings of the IEEE/CVF International

Conference on Computer Vision (ICCV), pages 9445–9454,

October 2021. 2

[8] M. Cimpoi, S. Maji, I. Kokkinos, S. Mohamed, , and A.

Vedaldi. Describing textures in the wild. In Proceedings of

the IEEE Conf. on Computer Vision and Pattern Recognition

(CVPR), 2014. 4

[9] Enmao Diao, Jie Ding, and Vahid Tarokh. HeteroFL:

Computation and communication efficient federated learn-

ing for heterogeneous clients. In International Conference

on Learning Representations. 3

[10] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,

Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,

Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-

vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is

worth 16x16 words: Transformers for image recognition at

scale. In International Conference on Learning Representa-

tions, 2021. 2

[11] Chen Dun, Cameron R Wolfe, Christopher M Jermaine, and

Anastasios Kyrillidis. ResIST: Layer-wise decomposition of

resnets for distributed training. In Uncertainty in Artificial

Intelligence, pages 610–620. PMLR, 2022. 3

[12] FAIR. facebookresearch/fvcore: Collection of common

code that’s shared among different research projects in

fair computer vision team. https://github.com/

facebookresearch/fvcore. Accessed: 2022-10-11.

6

[13] Michael Fleischman and Eduard Hovy. Fine grained classi-

fication of named entities. In COLING 2002: The 19th In-

ternational Conference on Computational Linguistics, 2002.

1

[14] Chaoyang He, Alay Dilipbhai Shah, Zhenheng Tang,

Di Fan1Adarshan Naiynar Sivashunmugam, Keerti Bhog-

araju, Mita Shimpi, Li Shen, Xiaowen Chu, Mahdi

Soltanolkotabi, and Salman Avestimehr. Fedcv: A federated

learning framework for diverse computer vision tasks, 2021.

1

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), June 2016. 2, 4

[16] Stefan Hinterstoisser, Vincent Lepetit, Paul Wohlhart, and

Kurt Konolige. On pre-trained image features and synthetic

images for deep learning. CoRR, abs/1710.10710, 2017. 2

[17] Samuel Horváth, Stefanos Laskaridis, Mario Almeida, Ilias

Leontiadis, Stylianos Venieris, and Nicholas Lane. Fjord:

Fair and accurate federated learning under heterogeneous tar-

gets with ordered dropout. In M. Ranzato, A. Beygelzimer,

Y. Dauphin, P.S. Liang, and J. Wortman Vaughan, editors,

Advances in Neural Information Processing Systems, vol-

ume 34, pages 12876–12889. Curran Associates, Inc., 2021.

3

[18] Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Fed-

erated visual classification with real-world data distribution.

In European Conference on Computer Vision, pages 76–92.

Springer, 2020. 1

[19] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kil-

ian Q. Weinberger. Densely connected convolutional net-

works. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), July 2017. 2, 4

[20] Peter Kairouz, H Brendan McMahan, Brendan Avent,

Aurélien Bellet, Mehdi Bennis, Arjun Nitin Bhagoji, Kallista

Bonawitz, Zachary Charles, Graham Cormode, Rachel Cum-

mings, et al. Advances and open problems in federated learn-

ing. Foundations and Trends® in Machine Learning, 14(1–

2):1–210, 2021. 1

[21] Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri,

Sashank Reddi, Sebastian Stich, and Ananda Theertha

Suresh. SCAFFOLD: Stochastic controlled averaging for

federated learning. In Hal Daumé III and Aarti Singh, ed-

itors, Proceedings of the 37th International Conference on

Machine Learning, volume 119 of Proceedings of Machine

Learning Research, pages 5132–5143. PMLR, 13–18 Jul

2020. 3

[22] Diederik P. Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. In Yoshua Bengio and Yann LeCun,

editors, 3rd International Conference on Learning Represen-

tations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,

Conference Track Proceedings, 2015. 3

19337

Authorized licensed use limited to: MIT Libraries. Downloaded on March 29,2024 at 17:21:57 UTC from IEEE Xplore. Restrictions apply.

[23] Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei.

3d object representations for fine-grained categorization. In

4th International IEEE Workshop on 3D Representation and

Recognition (3dRR-13), Sydney, Australia, 2013. 4

[24] Alex Krizhevsky. Learning multiple layers of features from

tiny images. 2009. 4

[25] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple

layers of features from tiny images. 2009. 1

[26] Ang Li, Jingwei Sun, Binghui Wang, Lin Duan, Sicheng Li,

Yiran Chen, and Hai Li. Lotteryfl: Empower edge intelli-

gence with personalized and communication-efficient feder-

ated learning. In 2021 IEEE/ACM Symposium on Edge Com-

puting (SEC), pages 68–79, 2021. 3

[27] Daiqing Li, Amlan Kar, Nishant Ravikumar, Alejandro F

Frangi, and Sanja Fidler. Fed-sim: Federated simulation

for medical imaging. arxiv e-prints, page. arXiv preprint

arXiv:2009.00668, 2, 2020. 1

[28] Qinbin Li, Bingsheng He, and Dawn Song. Model-

contrastive federated learning. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 10713–10722, 2021. 1, 2, 3

[29] Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia

Smith. Federated learning: Challenges, methods, and future

directions. IEEE Signal Processing Magazine, 37(3):50–60,

2020. 1

[30] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar San-

jabi, Ameet Talwalkar, and Virginia Smith. Federated op-

timization in heterogeneous networks. In I. Dhillon, D. Pa-

pailiopoulos, and V. Sze, editors, Proceedings of Machine

Learning and Systems, volume 2, pages 429–450, 2020. 3

[31] Wenqi Li, Fausto Milletarı̀, Daguang Xu, Nicola Rieke,

Jonny Hancox, Wentao Zhu, Maximilian Baust, Yan Cheng,

Sébastien Ourselin, M Jorge Cardoso, et al. Privacy-

preserving federated brain tumour segmentation. In Inter-

national workshop on machine learning in medical imaging,

pages 133–141. Springer, 2019. 1

[32] Fangshuo Liao and Anastasios Kyrillidis. On the conver-

gence of shallow neural network training with randomly

masked neurons. CoRR, abs/2112.02668, 2021. 3

[33] Tao Lin, Sebastian U. Stich, Kumar Kshitij Patel, and Martin

Jaggi. Don’t use large mini-batches, use local sgd. In Inter-

national Conference on Learning Representations, 2020. 1,

2

[34] Xiulong Liu, Jiannong Cao, Yanni Yang, Wenyu Qu, Xibin

Zhao, Keqiu Li, and Didi Yao. Fast rfid sensory data col-

lection: Trade-off between computation and communication

costs. IEEE/ACM Trans. Netw., 27(3):1179–1191, jun 2019.

5

[35] Yang Liu, Anbu Huang, Yun Luo, He Huang, Youzhi Liu,

Yuanyuan Chen, Lican Feng, Tianjian Chen, Han Yu, and

Qiang Yang. Fedvision: An online visual object detection

platform powered by federated learning. Proceedings of the

AAAI Conference on Artificial Intelligence, 34(08):13172–

13179, Apr. 2020. 1

[36] Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew B.

Blaschko, and Andrea Vedaldi. Fine-grained visual classi-

fication of aircraft. CoRR, abs/1306.5151, 2013. 4

[37] Brendan McMahan, Eider Moore, Daniel Ramage, Seth

Hampson, and Blaise Aguera y Arcas. Communication-

Efficient Learning of Deep Networks from Decentralized

Data. In Aarti Singh and Jerry Zhu, editors, Proceedings of

the 20th International Conference on Artificial Intelligence

and Statistics, volume 54 of Proceedings of Machine Learn-

ing Research, pages 1273–1282. PMLR, 20–22 Apr 2017. 2,

3

[38] Maria-Elena Nilsback and Andrew Zisserman. A visual vo-

cabulary for flower classification. In IEEE Conference on

Computer Vision and Pattern Recognition, volume 2, pages

1447–1454, 2006. 4

[39] Keiron O’Shea and Ryan Nash. An introduction to convolu-

tional neural networks. CoRR, abs/1511.08458, 2015. 2

[40] Sashank J. Reddi, Zachary Charles, Manzil Zaheer, Zachary

Garrett, Keith Rush, Jakub Konečný, Sanjiv Kumar, and

Hugh Brendan McMahan. Adaptive federated optimization.

In International Conference on Learning Representations,

2021. 3

[41] Sebastian U. Stich. Local SGD converges fast and commu-

nicates little. In International Conference on Learning Rep-

resentations, 2019. 1, 2

[42] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie.

Caltech-ucsd birds-200-2011 (cub-200-2011). Technical Re-

port CNS-TR-2011-001, California Institute of Technology,

2011. 4

[43] Jianyu Wang, Qinghua Liu, Hao Liang, Gauri Joshi, and

H Vincent Poor. Tackling the objective inconsistency prob-

lem in heterogeneous federated optimization. Advances

in neural information processing systems, 33:7611–7623,

2020. 3

[44] Qihan Wang, Chen Dun, Fangshuo Liao, Chris Jermaine, and

Anastasios Kyrillidis. LOFT: Finding lottery tickets through

filter-wise training. arXiv preprint arXiv:2210.16169, 2022.

3

[45] Cameron R Wolfe, Jingkang Yang, Arindam Chowdhury,

Chen Dun, Artun Bayer, Santiago Segarra, and Anastasios

Kyrillidis. GIST: Distributed training for large-scale graph

convolutional networks. arXiv preprint arXiv:2102.10424,

2021. 3

[46] Tianbao Yang. Trading computation for communication:

Distributed stochastic dual coordinate ascent. In C.J. Burges,

L. Bottou, M. Welling, Z. Ghahramani, and K.Q. Wein-

berger, editors, Advances in Neural Information Processing

Systems, volume 26. Curran Associates, Inc., 2013. 5

[47] Tien-Ju Yang, Dhruv Guliani, Françoise Beaufays, and Gio-

vanni Motta. Partial variable training for efficient on-device

federated learning. In ICASSP 2022-2022 IEEE Interna-

tional Conference on Acoustics, Speech and Signal Process-

ing (ICASSP), pages 4348–4352. IEEE, 2022. 3

[48] Ze Yang, Tiange Luo, Dong Wang, Zhiqiang Hu, Jun Gao,

and Liwei Wang. Learning to navigate for fine-grained clas-

sification. CoRR, abs/1809.00287, 2018. 1

[49] Tyler Yep. Tyleryep/torchinfo: View model summaries

in pytorch! https://github.com/TylerYep/

torchinfo. Accessed: 2022-10-11. 6

[50] Peihua Yu and Yunfeng Liu. Federated object detection: Op-

timizing object detection model with federated learning. In

19338

Authorized licensed use limited to: MIT Libraries. Downloaded on March 29,2024 at 17:21:57 UTC from IEEE Xplore. Restrictions apply.

Proceedings of the 3rd International Conference on Vision,

Image and Signal Processing, pages 1–6, 2019. 1

[51] Binhang Yuan, Cameron R. Wolfe, Chen Dun, Yuxin Tang,

Anastasios Kyrillidis, and Chris Jermaine. Distributed learn-

ing of fully connected neural networks using independent

subnet training. Proc. VLDB Endow., 15(8):1581–1590, apr

2022. 3

[52] Jian Zhang, Christopher De Sa, Ioannis Mitliagkas, and

Christopher Ré. Parallel SGD: When does averaging help?

arXiv preprint arXiv:1606.07365, page arXiv:1606.07365,

June 2016. 1, 2

[53] Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon

Civin, and Vikas Chandra. Federated learning with non-iid

data. arXiv preprint arXiv:1806.00582, 2018. 1

[54] Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon

Civin, and Vikas Chandra. Federated learning with non-iid

data. CoRR, abs/1806.00582, 2018. 3

19339

Authorized licensed use limited to: MIT Libraries. Downloaded on March 29,2024 at 17:21:57 UTC from IEEE Xplore. Restrictions apply.

