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Abstract—Non-negative matrix factorization and its
variants have been utilized for computer vision and
machine learning, however, they fail to achieve robust
factorization when the dataset is corrupted by noises.
In this paper, we propose a roust graph regularized
non-negative matrix factorization method (RGRNMF)
for image clustering. To improve the clustering effect
on the dataset corrupted by noises, we propose a
weight sparse constraint on the noise matrix and
impose the manifold structure into the learned parts-
based representation. Experimental results demon-
strate that RGRNMF can achieve the best clustering
performances on the face dataset corrupted by Salt
and Pepper noise and Contiguous Occlusion.
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I. INTRODUCTION

Clustering for computer vision and subspace
learning is a challenging work. Many clustering
methods were proposed for image retrieval [1],
image indexing [2] and image classification [3]. For
image clustering effectively, a widely used approach
is to discover an effective low-dimensional repre-
sentation for the original data. Therefore, a lot of
researches were presented to dig out the geometrical
structure information of the original data, which can
lead to a more discriminative representation.

In the past decades, many representation tech-
niques were proposed including principal compo-
nents analysis (PCA) [4] and non-negative matrix
factorization (NMF) [5]. Among these data repre-
sentation methods, the non-negative property of the

learned representation leads to be more meaningful
in image representation. NMF decomposes the orig-
inal data matrix into two low-dimensional matrices
(i.e. a basis matrix and an encoding matrix), whose
product can be best approximate to the original data
matrix. Due to the excellent property of NMF, some
variants [6]-[19] based on NMF were proposed
to improve the clustering accuracy from different
Views.

Although traditional NMF performs very well in
learning a parts-based representation for clustering,
it fails to achieve clustering while the original
data is heavily corrupted. In the view of most of
researchers, the loss function of traditional NMF
are very sensitive to outliers. Simply, the Frobenius
norm enlarges the approximation error between the
original data matrix and the product of the decom-
posed matrices. To address this issue, some studies
[6]-[12] proposed some robust loss functions to
minimize the reconstruction error. These proposed
methods can reduce outliers of the representation,
but they cannot remove outliers. Moreover, the
learned representation cannot respect the geomet-
rical structure of the original data corrupted by
noises.

To address above-mentioned problems, we
present a robust graph regularized non-negative ma-
trix factorization (RGRNMF) for image clustering.
Firstly, we propose a robust weight framework
to measure the approximation error. Secondly, we



construct a weight graph to encode the geometrical
information of the original data corrupted by noises.
Our achievements are as follows:

« We propose a robust non-negative matrix fac-
torization framework to remove outliers, and
we incorporate the geometrical information of
the original data into the learned representa-
tion.

o Extensive experiments demonstrate that our
proposed framework can achieve image clus-
tering from the original data corrupted by Salt
and Pepper noise or Contiguous Occlusion.

II. RELATED WORKS

Supposed that there are n sample images {x; }7_;
and any image z; has m—dimensional features.
Thus, we denote the original data matrix by V €
R™*™, Due to the high-dimensional property of V,
it is a challenging task to achieve image cluster-
ing. Generally, NMF is utilized to find two low-
dimensional matrices W € R™*" and H € R"™*"
for clustering. NMF can be defined by

V ~ WH, (1)

where r is a factorization rank and r <<
min{m, n}. Generally, problem (1) can be trans-
formed into a non-convex optimization problem as
follows:

min  Error(V,WH)
W.H

)
st. W>0,H>O0.

where the loss function Error can be the Frobenius

norm, L; norm, Ls; norm or Huber. Recently,

Guan et al. [12] proposed a Truncated Cauchy loss

(CauchyNMF) to reduce outliers, which can be

summarized as follows:

. e (V=WH)
W nin POV, H) = ;;g(i7 ),
3)
1 <z<
where g(z) = n(l+a), 0<sos U; o and

In(l+o), x>0
denote the scale parameter and the truncation pa-
rameter. o can be obtained by three-sigma-rule, and
v is given by the Nagy algorithm [12]. Traditional
NMF utilizes the different loss functions to reduce

outliers, but they cannot remove outliers. Therefore,
a robust NMF framework was proposed to eliminate
outliers as follows:

min  loss(M,WH,E)+ \YE,W,H)
W.,H,E (4)
st. W>0,H >0,

where M is the original data matrix corrupted by
noises, F is an error matrix, A is a hyper-parameter,
and the function 2 is the constraint term. Zhang et
al. [11] proposed the Frobenius norm as the loss
function and the L; norm as the constraint on F,
which can be described as follows:

min | M —WH —FE |2 +X|| E ||x
W,H,E
st. W>0,H>0,
where || E = Zij leij.

III. ROBUST GRAPH REGULARIZED
NON-NEGATIVE MATRIX FACTORIZATION

A. Model Formulation

Previous NMF models have some defects: 1)
They cannot remove outliers from the dataset cor-
rupted by Salt and Pepper noise or Contiguous Oc-
clusion. 2) While the dataset is corrupted by noises,
the learned representation H cannot preserve the
geometrical structure information.

In (5), Zhang et al. [11] supposed that the error
matrix E is sparse, but the outliers in £ are ne-
glected. If the error matrix contains some outliers,
then the constraint || E ||5s is not inappropriate for
outliers. Supposed that all outliers of the corrupted
image matrix M € R™*™ produced by Salt and
Pepper noise or Contiguous Occlusion are detected.
A weight graph S can be utilized to label these
outliers as follows:

0
Sij=14"
{0

Thus, we propose the constraint on E by the fol-
lowing form:

if the pixel M;; is an outlier, ©)

otherwise,

IE@S |[m )

To learn the geometrical structure information of
the original data, manifold regularization is pro-
posed to construct the relation between the origi-
nal data and the low-dimensional representation. A



widely used manifold regularization term [20] can
be described as follows:

tr(H(D — U)HT), (®)
w12
where Uj; = e~ et and D;; = Zj Wij;. In
summary, combining (7), (8) and (5) results in our
robust graph regularized non-negative matrix factor-
ization (RGRNMF), which can be summarized into
the following optimization problem

min F(W, H, E)
W,H.E

=|M-WH-E|i+X|E® S ||}
+tr(H(D —U)HT)
st. W=>0,H>0,

where A and ~y are hyper-parameters.

(€))

IV. OPTIMIZATION SCHEME
It is obvious that problem (9) is non-convex.
Therefore, the global optimal solution cannot be
searched. Supposed that the k—th solution of prob-
lem (9) is obtained. We can have the k& + 1—th
solution by optimizing the following problems

EM = argming | M — WFH* — E |2

+AE®S |3 (19)
and
W = argminyy, | M — WHF — EF 1%,
st. W=>0
(11)
and

H* = argming | M — WFTTH — EFF |2
+tr(H(D —U)HT)
sit. H>D0.
12)
It is easy to obtain the solution of problems (10),
(11) and (12) as follows:

mi; — (WH)y;
ey ¢ 1 T AV )i (13)
J ]. —+ )\Sij
(MHT); — (EHT),
: : i 14
Wil < Wil (WHHT)ZI ) ( )
WTM),; — (WTE),, HU,;

(WTWH); +vHDy;

V. EXPERIMENTAL RESULTS

We compare our proposed method (RGRNM-
F) with NMF [5], RNMF [9], MahNMF [8] and
CauchyNMF [12] on the clustering performances
of the ORL dataset. To verify the clustering ability
on the corrupted data, we propose two corruptions
including Salt and Pepper noise and Contiguous
Occlusion. For Salt and Pepper noise, there are
several percentages of corrupted pixels from 1% to
25%. Similarly, we vary the corrupted block size
for Contiguous Occlusion from 1 to 16.

To evaluate the clustering effect of all methods,
we propose Accuracy (AC) and Normalized Mutual
Information (NMI) [21]. Let A = 100 and v = 100.
Figure 1 and 2 show the clustering performances
on the ORL dataset contaminated by Salt and Pep-
per noise and Contiguous Occlusion. From these
figures, we observe that:

o CauthyNMF achieves satisfactory clustering
ACs and NMIs from the ORL dataset corrupt-
ed by Salt and Pepper noise and Contiguous
Occlusion in the beginning, however, it ob-
tains the poor clustering effect finally. This
phenomenon indicates that CauthyNMF cannot
handle heavy outliers.

e NMF, PCA Kmeans and GNMF fail to achieve
clustering. This means that They cannot handle
outliers.

« RGRNMF has relatively stable clustering per-
formances on the Salt and Pepper noise and
Contiguous Occlusion, that is to say, RGRN-
MF is more robust to outliers.

VI. CONCLUSION

This paper proposed robust graph regularized
non-negative matrix factorization (RGRNMF) to
handle Salt and Pepper noise and Contiguous Oc-
clusion. Clustering results demonstrate that our pro-
posed NMF framework has the following properties.
Firstly, RGRNMF can learn a more effective and
discriminative parts-based representation from the
ORL dataset corrupted by handle Salt and Pepper
noise or Contiguous Occlusion. Secondly, RGRN-
MF is more robust to outliers than existing NMF
methods.
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Fig. 1: The clustering performances on the ORL
dataset corrupted by Salt and Pepper noise.
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