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Semantic OcTree Mapping and Shannon Mutual
Information Computation for Robot Exploration

Arash Asgharivaskasi

Abstract—Autonomous robot operation in unstructured and
unknown environments requires efficient techniques for map-
ping and exploration using streaming range and visual observa-
tions. Information-based exploration techniques, such as Cauchy—
Schwarz quadratic mutual information and fast Shannon mutual
information, have successfully achieved active binary occupancy
mapping with range measurements. However, as we envision robots
performing complex tasks specified with semantically meaningful
concepts, it is necessary to capture semantics in the measurements,
map representation, and exploration objective. This work presents
semantic octree mapping and Shannon mutual information com-
putation for robot exploration. We develop a Bayesian multiclass
mapping algorithm based on an octree data structure, where each
voxel maintains a categorical distribution over semantic classes.
We derive a closed-form efficiently computable lower bound of the
Shannon mutual information between a multiclass octomap and
a set of range-category measurements using semantic run-length
encoding of the sensor rays. The bound allows rapid evaluation
of many potential robot trajectories for autonomous exploration
and mapping. We compare our method against state-of-the-art
exploration techniques and apply it in a variety of simulated and
real-world experiments.

Index Terms—Reactive and sensor-based planning, view plann-
ing for simultaneous localization and mapping (SLAM), vision-
based navigation.

I. INTRODUCTION

CCURATE modeling, real-time understanding, and effi-
A cient storage of a robot’s environment are key capabilities
for autonomous operation. Occupancy grid mapping [1], [2]
is a widely used, simple, yet effective, technique for distin-
guishing between traversable and occupied space surrounding
a mobile robot. OctoMap [3] is an extension of occupancy
grid mapping, introducing adaptive resolution to improve the
memory usage and computational cost of generating 3-D maps of
large environments. Delegating increasingly sophisticated tasks
to autonomous robots requires augmenting traditional geomet-
ric models with semantic information about the context and
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Fig. 1. Robot autonomously explores an unknown environment using an
RGBD sensor and a semantic segmentation algorithm.

object-level structure of the environment [4], [5], [6]. Robots
also are increasingly expected to operate in unknown environ-
ments, with little to no prior information, in applications, such
as disaster response, environmental monitoring, and reconnais-
sance. This calls for algorithms allowing robots to autonomously
explore unknown environments and construct low-uncertainty
metric-semantic maps in real time, while taking collision and
visibility constraints into account.

This article considers the active metric-semantic mapping
problem, requiring a robot to explore and map an unknown
environment, relying on streaming distance and object category
observations, e.g., generated by semantic segmentation over
RGBD images [7]. See Fig. 1 as an illustration of the sensor data
available for mapping and exploration. We extend information-
theoretic active mapping techniques [8], [9], [10] from binary
to multiclass environment representations. Our approach intro-
duces a Bayesian multiclass mapping procedure which main-
tains a probability distribution over semantic categories and
updates it via a probabilistic range-category perception model.
Our main contributions are as follows.

1) A Bayesian multiclass octree mapping approach.

2) A closed-form efficiently computable lower bound for the
Shannon mutual information between a multiclass octree
map and a set of range-category measurements.

3) Efficient C++ implementation achieving real-time high-
accuracy performance onboard physical robot systems in
3-D real-world experiments.!

Open-source software and videos supplementing this paper are available at
https://arashasgharivaskasi-bc.github.io/SSMI_webpage.
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Unlike a uniform-resolution grid map, our semantic OctoMap
enables efficient mutual information evaluation via run-length
encoding of the range-category observations. As a result, the
informativeness of many potential robot trajectories may be
evaluated to (re)select one that leads to the best tradeoff between
map uncertainty reduction and motion cost. Unlike traditional
class-agnostic exploration methods, our model and information
measure capture the uncertainty of different semantic classes,
leading to faster and more accurate exploration. The proposed
approach relies on general range and class measurements and
general pose kinematics, making it suitable for either ground or
aerial robots, equipped with either camera or LiDAR sensors,
exploring either indoor or outdoor environments.

We name our method semantic octree mapping and Shannon
mutual information (SSMI) computation for robot exploration.
This article is an extended version of our previous conference
article [11] enabling its application in large-scale 3-D environ-
ments. Direct application of the regular-grid method in the con-
ference version to 3-D environments faces several challenges,
including memory inefficiency, because 3-D environments are
predominantly made up of free or unknown space, and informa-
tion computation inefficiency due to naive summation over all
voxels visited by sensor rays. We introduce 1) an octree repre-
sentation for Bayesian multiclass mapping, performing octree
ray-tracing and leaf node merging using semantic category dis-
tributions, 2) semantic run-length encoding (SRLE) for sensor
rays which enables efficient mutual information computation
between a multiclass octree and range-category measurements,
and 3) acomprehensive set of experiments and comparisons with
state-of-the-art techniques in 2-D and 3-D environments. We
demonstrate the effectiveness of SSMI in real-world mapping
and autonomous exploration experiments performed in real-time
onboard different mobile robot platforms operating in indoor and
outdoor environments.

II. RELATED WORK

Frontier-based exploration [12] is a seminal work that high-
lighted the utility of autonomous exploration and active map-
ping. It inspired methods [13], [14] that rely on geometric
features, such as the boundaries between free and unknown
space (frontiers) and the volume that would be revealed by
new sensor observations. Due to their intuitive formulation and
low computational requirements, geometry-based exploration
methods continue to be widely employed in active percep-
tion. Recent works include semantics-assisted indoor explo-
ration [15], hex-decomposition-based coverage planning [16],
and Laplace potential fields for safe outdoor exploration [17].
More related to our work, receding-horizon ‘“next-best-view”
planning [18] presents an active octree occupancy mapping
method which executes trajectories built from a random tree
whose quality is determined by the amount of unmapped space
that can be explored. Similarly, the graph-based exploration
methods of [19] and [20] use local random trees in free space
to sample candidate viewpoints for exploration, while a global
graph maintains the connections among the frontiers in the
map. Cao et al. [16], [21] introduced hierarchical active 3-D
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coverage and reconstruction which computes a coarse coverage
path at the global scale followed by a local planner that ensures
collision avoidance via a high-resolution path. As shown by
Corah and Michael [22], coverage-based exploration strategies
can be formulated as mutual-information maximization policies
in the absence of sensor noise. However, in many real-world
circumstances sensor measurements are corrupted by nontrivial
noise, reducing the effectiveness of geometric exploration meth-
ods that do not capture probabilistic uncertainty. For example,
due to the domain shift between the training data and the test en-
vironment, utilizing a pretrained semantic segmentation model
in the mapping process requires accounting for measurement
uncertainty in the exploration policy.

The work by Elfes [23] is among the first to propose an
information-based utility function for measuring and minimiz-
ing map uncertainty. Information-based exploration strategies
have been devised for uncertainty minimization in robot local-
ization or environment mapping [24], [25], [26]. Information-
theoretic objectives, however, require integration over the poten-
tial sensor measurements, limiting the use of direct numerical
approximations to short planning horizons. Kollar and Roy [27]
formulated active mapping using an extended Kalman filter and
proposed alocal-global optimization, leading to significant gains
in efficiency for uncertainty computation and long-horizon plan-
ning. Unlike geometry-based approaches, information-theoretic
exploration can be directly formulated for active simultane-
ous localization and mapping (SLAM) [28], [29], [30], [31],
aiming to determine a sensing trajectory that balances robot
state uncertainty and visitation of unexplored map regions.
Stachniss et al. [32] approximated information gain for a Rao-
blackwellized particle filter over the joint state of robot pose
and map occupancy. Julian et al. [8] prove that, for range
measurements and known robot position, the Shannon mutual
information is maximized over trajectories that visit unexplored
areas. However, without imposing further structure over the
observation model, computing the mutual information objective
requires numerical integration. The need for efficient mutual
information computation becomes evident in 3-D environments.
Cauchy—Schwarz quadratic mutual information (CSQMI) [9]
and fast Shannon mutual information (FSMI) [10] offer effi-
ciently computable closed-form objectives for active occupancy
mapping with range measurements. Henderson et al. [33] pro-
posed an even faster computation based on a recursive expres-
sion for Shannon mutual information in continuous maps.

The recent success of machine learning methods of perception
has motivated learning autonomous exploration policies. Chen
et al. [34] attempted to bridge the sim2sim and sim2real gaps
via graph neural networks and deep reinforcement learning.
This enables decision-making over graphs containing relevant
exploration information which is provided by human experts
in order to predict a robot’s optimal sensing action in belief
space. Lodel et al. [35] introduced a deep reinforcement learning
policy which recommends the next best view that maximizes
information gain via defining mutual information as the train-
ing reward. Zwecher et al. [36] employed deep reinforcement
learning to find an exploration policy that plans collision-
free coverage paths, while another neural network provides a
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predicted full map given the partially observed environment.
Zhang et al. [37] proposed a multiagent reinforcement learning
exploration method, where regions of interest, free space, and
robots are represented as graph nodes, and hierarchical-hops
graph neural networks (H2GNN) are used to identify key infor-
mation in the environment. Related to multirobot exploration,
the authors in [38] utilized an actor-critic strategy to map an un-
known environment, where Voronoi partitioning divides the ex-
ploration regions among the robots. As this article demonstrates,
incorporating semantic uncertainty in addition to geometric
information in the exploration process can be beneficial. In addi-
tion, using Shannon mutual information as an objective function
may help train more generalizable exploration policies because
it mitigates the need for training sensor-specific models. Hence,
the techniques proposed in this article are complementary to
learning approaches and can provide robustness to measurement
uncertainty and domain shift caused by sensor and operational
condition variations.

Active semantic mapping has recently attracted much at-
tention due to the proliferation of fast object detection and
semantic segmentation algorithms implemented on mobile robot
platforms. The authors in [39] used a two-layer architecture,
where the knowledge representation layer provides a belief over
the environment state to the action layer, which subsequently
chooses an action to gather information or execute a task. The
work in [40] presents a semantic exploration policy which takes
an occluded semantic point cloud of an object, finds a match
in a database to estimate the full object dimensions, and then
generates candidate next observation poses to reconstruct the
object. The next best view is computed via a volumetric informa-
tion gain metric that computes visible entropy from a candidate
pose. The semantic map used in this article is a collection of
bounding boxes around objects. Active semantic mapping has
also been employed to develop sample-efficient deep learning
methods. Blum et al. [41] proposed an active learning method
for training semantic segmentation networks where the novelty
(epistemic uncertainty) of the input images is estimated as the
distance from the training data in the embedding space, while a
path planning method maximizes novelty of future input images
along the planned trajectory, assuming novel images are spatially
correlated. Georgakis et al. [42] actively train a hierarchical
semantic map generation model that predicts occupancy and
semantics given occluded input. The authors use an ensemble of
map generation models in order to predict epistemic uncertainty
of the predicted map. The uncertainty is then used to choose
trajectories for actively training the model with new images that
differ the most with the training data of the current model. SSMI
distinguishes itself from the aforementioned works by introduc-
ing a dense Bayesian multiclass mapping with a closed-form
uncertainty measure, as opposed to sampling-based uncertainty
estimation. Moreover, our information-theoretic objective func-
tion directly models sensor noise specifications, unlike volumet-
ric information gain.

This article is most related to CSQMI [9] and FSMI [10]
in that it develops a closed-form expression for mutual in-
formation. However, instead of a binary map and range-only
measurements, our formulation considers a multiclass map with

IEEE TRANSACTIONS ON ROBOTICS, VOL. 39, NO. 3, JUNE 2023

Bayesian updates using range-category measurements. Since
the same occupancy map can be derived from many different
multiclass maps, the information associated with various object
classes will fail to be captured if we solely rely on occupancy
information, as the case in CSQMI and FSMI. Therefore, we
expect to perform exploration more efficiently by using the
multiclass perception model, and consequently, expanding the
notion of uncertainty to multiple classes.

III. PROBLEM STATEMENT

Consider a robot with pose X; € SF(3) at time ¢ and deter-
ministic discrete-time kinematics

R; p:

Xe=1lgr

s Xt+1 = Xt exp (Tﬁt) (l)

where R; € SO(3) is the robot orientation, p; € R? is the robot
position, 7 is the time step, and u; := [v} ,w/]" € U C RS
is the control input, consisting of linear velocity v; € R? and
angular velocity w; € R3. The function (A) : RS — s5e¢(3) maps
vectors in R to the Lie algebra se(3). See [43, Ch. 7] for a defini-
tion of the Lie groups SO(3) and SE(3) and the corresponding
Lie algebras 50(3) and se(3). The robot is navigating in an envi-
ronment consisting of a collection of disjoint sets £, C R?, each
associated with a semantic category k € K := {0,1,..., K}.
Let & denote free space, while each & for & > 0 represents
a different category, such as building, vegetation, terrain (see
Fig. 1).

We assume that the robot is equipped with a sensor that pro-
vides information about the distance to and semantic categories
of surrounding objects along a set of rays {n,},, where b is
the ray index, 17, € R? with ||1;||2 = "max, and rmax > 0 is the
maximum sensing range.

Definition 1: A sensor observation at time t from robot pose
X, isacollection Z; := {z;;}, of range and category measure-
ments z; , := (14, Y1,5) € R>o x K, acquired along the sensor
rays R;ym, with n, € {n, }, at robot position p;.

Such information may be obtained by processing the ob-
servations of an RGBD camera or a Lidar with a semantic
segmentation algorithm [7]. Fig. I shows an example where each
pixel in the RGB image corresponds to one sensor ray 7);,, while
its corresponding values in the semantic segmentation and the
depth images encode category v, ;, and range r p, respectively.
The goal is to construct a multiclass map m of the environment
based on the labeled range measurements. We model m as a
gridof cellsi € Z := {1,..., N}, each labeled with a category
m; € K. In order to model noisy sensor observations, we con-
sider a probability density function (PDF) p(Z; | m, X;). This
observation model allows integrating the measurements into a
probabilistic map representation using Bayesian updates. Let
pe(m) := p(m | Z1.4,X;.+) be the probability mass function
(PMF) of the map m given the robot trajectory X;.; and obser-
vations Z1.; up to time ¢. Given a new observation Z; 1 obtained
from robot pose X, 1, the Bayesian update to the map PMF is

per1(m) o< p(Zi41(m, Xy p1)p(m). (2)
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We assume that the robot pose is known and omit the dependence
of the map distribution and the observation model on it for
brevity. We consider the following problem.

Problem: Given a prior map PMF p,(m) at time ¢ and a finite
planning horizon 7', maximize the ratio

I(m; Zi1aqr | Z14)
max
weerr J (Xpopro1, Upeyr-1)

subjectto (1),(2) (3)

of the mutual information I(m; Z;41.417 | Z1.¢) between the
map m and future sensor observations Z; 1., to the motion
cost J(Xt.447-1, Ut47-1) Of the control sequence us.¢47-1.

The definitions of the mutual information and motion cost
terms in (3) are

1 (m; Zt+1:t+T|Zl it

Z/ / (m, Zep1:047[21:4)

mekKN

T

H H dZt+T b
b

p(m, Zit1.41 | Z14t)

x lo
& p(M|Z1.)p(Zig147] Z1:4)

T—
J(Xt:t-',-Tflyut:t-i-T—l) =4q Xt+T Z Xt+7'aut+7')

“)

where the integration in (4) is over all possible values of all
sensor beams over all times z; , 3, and the strictly positive terms
¢(X) and ¢(X, u) model terminal and stage motion costs (e.g.,
distance traveled, elapsed time), respectively.

We develop a multiclass extension to the log-odds occupancy
mapping algorithm [44, Ch. 9] in Section IV and derive an
efficient approximation to the mutual information term in Sec-
tion V. In Section VI, we present a multiclass extension of
the OctoMap [3] algorithm, alongside a fast computation of
mutual information over a semantic OctoMap using run-length
encoding. This allows autonomous exploration of large 3-D
environments by rapidly evaluating potential robot trajectories
online and (re)selecting the one that maximizes the objective
in (3). In Section VII, we demonstrate the performance of
our approach in simulated and real-world experiments. Finally,
Section VIII concludes this article.

IV. BAYESIAN MULTICLASS MAPPING

This section derives the Bayesian update in (2), using a
multinomial logit model to represent the map PMF p,(m) where
each cell m; of the map stores the probability of object classes in
K. To ensure that the number of parameters in the model scales
linearly with the map size N, we maintain a factorized PMF
over the cells

N
(m) = Hpt(mi). (5)

We represent the individual cell PMFs p,(m;) over the semantic
categories /C using a vector of log odds

_ T
log BER=G| € R ©
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where the free-class likelihood p;(m; = 0) is used as a pivot.
Given the log-odds vector h, ;, the PMF of cell m; may be
recovered using the softmax function o : RE+! s RE+1

eZ_H exp(hy ;)

17 exp(hy ;) @

pe(mi = k) = opq1(he ;) =
where ey, is the standard basis vector with kth element equal
to 1 and O elsewhere, 1 is the vector with all elements equal
to 1, and exp(-) is applied elementwise to the vector h; ;. To
derive Bayes rule for the log-odds h; ;, we need to specify an
observation model for the range and category measurements.

Definition 2: The inverse observation model of a range—
category measurement z obtained from robot pose X along
sensor ray 1) with respect to map cell m; is a probability mass
function p(m;|z; X, n).

The Bayesian update in (2) for h; ; can be obtained in terms
of the range—category inverse observation model, evaluated at a
new measurement set Z; 1.

Proposition 1: Let h, ; be the log odds of cell m; at time ¢.
Given sensor observation Z; 1, the posterior log-odds are

hypr=hei+ > (i(z) —hoy) ®)

z2€Z4 1

where 1;(z) is the inverse observation model log odds

li(Z) =

Proof: See Appendix A. |

To complete the Bayesian multiclass mapping algorithm sug-
gested by (8) we need a particular inverse observation model.
When a sensor measurement is generated, the sensor ray con-
tinues to travel until it hits an obstacle of category K\ {0} or
reaches the maximum sensing range .. The labeled range
measurement z = (r, y) obtained from position p with orienta-
tion R indicates that map cell m; is occupied if the measurement
end point p + —Rn lies in the cell. If m; lies along the sensor
ray but does not contain the end point, it is observed as free.
Finally, if m; is not intersected by the sensor ray, no information
is provided about its occupancy. The map cells along the sensor
ray can be determined by a rasterization algorithm, such as the
Bresenham’s line algorithm [45]. We parameterize the inverse
observation model log-odds vector in (9) as

p(m;=0|z)

.
p(m;=K|z)
p(m;=0]z) - O

log p(m;=0|z)

log

¢ +E, 19", rindicates m; is occupied
L((r,y):=< ¢, r indicates m; is free
hg i, otherwise

(10)

where E, := eye; and Pt ¢, ¢ € RE*! are parameter vec-
tors, whose first element is 0 to ensure that 1;(z) is a valid
log-odds vector. This parameterization leads to an inverse obser-
vation model p(m; = k|z) = o41(1;(2z)), which is piecewise
constant along the sensor ray. Fig. 2 illustrates our Bayesian
multiclass mapping method.

To compute the mutual information between an observation
sequence Z;1..+7 and the map m in the next section, we will
also need the PDF of a range—category measurement z.; €
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Fig.2. Tllustration of the Bayesian multiclass mapping given a range—category observation z¢1 = (7141, y¢+1) for an environment with object classes of white

(free class), red, and blue, encoded as y = 0, y = 1, and y = 2, respectively. (a) Portion of the map m along the observation z; . Each cell has a multiclass
log-odds vector hy ; € R3 fori € {1,...,5} at time t. The cell brightness encodes the occupancy probability, while the cell color represents the most likely
category. (b) Map estimate at time ¢ 4 1 after update with z; 1. Note how each multiclass log-odds vector changes based on the inverse observation model
1;(z¢+1). (c) Second and third elements of the inverse observation log-odds vector 1;(z¢41) for ¢ = 3 as a function of range r and category y in observation
Z;+1. Note that the first element of 1;(z; 1) is always zero. (a) Map estimate at time 7 with observation z; 1. (b) Posterior map estimate at time 7 + 1. (c) Inverse

observation log-odds vector for i = 3.

Zi+1.44+1 conditioned on Z7.4. Let R, (r) C Z denote the set
of map cell indices along the ray R, 7, from robot position p,
with length 7. Let 7, 5 (¢) denote the distance traveled by the ray
R 7, within cell m; and zj b € R (r) denote the index of the
cell hit by z, . We define the PDF of z, ;, = (r,y) conditioned
on Zq.; as

pt(mij,b =y)
’YT’b(i:,b)

Z14) = H pe(mi = 0).

1€R+ b (T)\{'Lfr,b}

p(zrp 11

This definition states that the likelihood of z, ;, = (,y) at time
t depends on the likelihood that the cells m; along the ray R..n;,
of length 7 are empty and the likelihood that the hit cell m;- .
has class y. A similar model for binary observations has been
used in [8], [9], and [10].

This section described how an observation affects the map
PMF p;(m). Now, we switch our focus to computing the mutual
information between a sequence of observations Z;1.;+7 and
the multiclass occupancy map m.

V. INFORMATIVE PLANNING

Proposition 1 allows a multiclass formulation of occupancy
grid mapping, where the uncertainty of a map cell depends on the
probability of each class p;(m; = k), instead of only the binary
occupancy probability 1 — p;(m; = 0). Moreover, the inverse
observation model in (10) may contain different likelihoods
for the different classes which can be used to prioritize the
information gathering for specific classes. Fig. 3(a) shows an
example where the estimated map of an environment with three

classes, free, classi, classs, contains two regions with similar
occupancy probability but different semantic uncertainty. In
particular, the red and green walls have the same occupancy
probability of 0.9, as shown in Fig. 3(b), but the red region
more certainly belongs to class; and the green region has high
uncertainty between the two classes. As can be seen in Fig. 3(c),
the mutual information associated with a binary occupancy map
cannot distinguish between the red and green regions since
they both have the same occupancy probability. In contrast,
the multiclass map takes into account the semantic uncertainty
among different categories, as can be seen in Fig. 3(d), where
the uncertain green region has larger mutual information than
the certain red region.

These observations suggest that more accurate uncertainty
quantification may be achieved using a multiclass instead of
a binary perception model, potentially enabling a more ef-
ficient exploration strategy. However, computing the mutual
information term in (4) is challenging because it involves in-
tegration over all possible values of the observation sequence
Zy41.44+7- Our main result is an efficiently computable lower
bound on I (m; Z;41.417|Z1.¢) for range—category observations
Ziy1.44+7 and a multiclass occupancy map m. The result is
obtained by selecting a subset Z;, 1., 7 = {ZTab}j—i{—’kBl,b=l of
the observations Z; 1.4+ in which the sensor rays are nonover-
lapping. Precisely, any pair of measurements z,;, z.ny €
Z,; 1.4, satisfies

Rr,b(rmax) N RT,’b’ (Tmax) = (. (12)
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Fig.3. Comparison between the information surfaces of binary and multiclass
map representations. (a) Environment with three classes free, classi, and
classa where the white and gray regions represent free and unknown space,
respectively, with p*Mi(m;) = [1,0, 0] and p&® (m;) = [0.3,0.3,0.3]. The
red and green regions have the same occupancy probability of p(m; =
occupied) = 0.9 but different class uncertainty, i.e., p(m;) = [0.1,0.8,0.1]
and p&*"(m;) = [0.1,0.45,0.45]. (b) Binary occupancy map, where the
intensity of each pixel is proportional to its occupancy probability, regardless
of object class. (c) Occupancy mutual information surface. (d) Semantic mutual
information surface. Each pixel in the information surfaces shows the value of
mutual information between the map and a set of range-category observations,
uniformly sampled from a 360° field of view at each pixel location.

In practice, constructing Z, , 1.4 requires removing intersect-
ingrays from Z; 1., 7 to ensure that the remaining observations
are mutually independent. The mutual information between m
and Z, ., can be obtained as a sum of mutual information
terms between single rays z,, € Z,,4.,,7 and map cells m;
observed by z. ;. This idea is inspired by CSQMI [9] but we
generalize it to multiclass observations and map.

Proposition 2: Given a sequence of labeled range observa-
tions Zy g, let 2404 7 = {z771,}31€;r]31,b:1 be a subset
of nonoverlapping measurements that satisfy (12). Then, the
Shannon mutual information between Z; 1,47 and a multiclass
occupancy map m can be lower bounded as

I(m; Zygraqr|Z10) > 1 (M3 210 07] Z0)

t+T B K Nrp

S D) D) SN IR CHICHORNIE)
T=t+1b=1 k=1 n=1
where N-r,b = |Rr,b(rmax)‘
prp(n, k) == pi(mg: , = k) 11 pi(mi = 0)

S S CON TN

Crp(n, k) == f (¢+ +Epnypt —ho ht,i;ﬁb)
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Algorithm 1: Information-theoretic Path Planning.

Input: robot pose X;, map estimate p;(m)

1: F = findFrontiers(p:(m))

2:for f € F do

3: Xt+1:t+T7 Ut i4+7-1 = planPath(Xt,pt (m), f)
4: Compute (3) over Xy.;47, Ugp7—1 via (13)
5:return X7, 7, uy,, r ; with the highest value

>

i€Rr b (m\{i% )

1" exp(h)
1T exp (¢ + h)

f (¢7 - ho,i7 ht,i)

F(6,h) = log ( ) £ 6o (¢+h)

and 7~€T,b(n) C Rrp(rmax) is the set of the first n map
cell indices along the ray R, 7y, ie., Rop(n):={i|iec
R‘Bb(r)’ |R‘r,b(r)| =n,r < rmax}~

Proof: See Appendix B. |

In (13), p;.»(n, k) represents the probability that the nth map
cell along the ray R.m;, belongs to object category k£ while
all of the previous cells are free. The function f(¢, h) denotes
the log-ratio of the map PMF ¢ (h) and its posterior o (¢ + h),
averaged over object categories in /C [see (26) in Appendix B
for more details]. As aresult, C; ;(n, k) is the sum of log-ratios
for the first n cells along the ray R;m, under the same event
as the one p; ;(n, k) is associated with. Therefore, the lower
bound I(m; Z,; ., 7|Z1.+) is equivalent to the expectation of
summed log-ratios C' ;(n, k) over all possible instantiations of
the observations in Z, , 1., 7.

Proposition 2 allows evaluating the informativeness according
to (3) of any potential robot trajectory Xy.; 7, Uzt 7—1. In order
to perform informative planning, first, we identify the boundary
between the explored and unexplored regions of the map, similar
to [12]. This can be done efficiently using edge detection, for
example. Then, we cluster the corresponding map cells by de-
tecting the connected components of the boundary. Each cluster
is called a frontier. A motion planning algorithm is used to
obtain a set of pose trajectories to the map frontiers, determined
from the current map PMF p;(m). Algorithm 1 summarizes the
procedure for determining a trajectory Xj;, r, u;, r ; that
maximizes the objective in (3), where J (X4 47-1, Wppyr—1) IS
the length of the corresponding path. This kinematically feasible
trajectory can be tracked by a low-level controller that takes the
robot dynamics into account.

Evaluation of the mutual information lower bound in Propo-
sition 2 can be accelerated without loss in accuracy for map
cells along the observation rays that contain equal PMFs. In
the next section, we investigate this property of the proposed
lower bound within the context of OcTree-based representations.
We begin with proposing a multiclass version of the OctoMap
technique, where map cells with equal multiclass probabilities
can be compressed into a larger voxel. Next, a fast semantic
mutual information formula is presented based on compression
of range—category ray-casts over OcTree representations.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on March 29,2024 at 17:16:05 UTC from IEEE Xplore. Restrictions apply.



1916

IEEE TRANSACTIONS ON ROBOTICS, VOL. 39, NO. 3, JUNE 2023

r g b
Q P uint8 | uint8 | uint8
i i i i I_l_ - l l semantics color value children
] N2
Inner_ g oo " SemanticLogOdds | ColorRGB | float32 | SemanticOcTreeNode**
Node
P
Leaf g '
Node ' '
-
Pruning R N N . | N N N
label | ColorRGB | ColorRGB | ColorRGB
IO EL LI LR EENENE] RN Y] ' float32
. J ] logOdds float32 float32 float32
' 1
U L L I T data others
(@ (b)
Fig. 4. Example of a semantic OctoMap. (a) A white circle represents an inner node such that its children collectively cover the same physical space as the

inner node itself. A colored square represents a partition of the 3-D space where all downstream nodes contain identical semantic and occupancy values; therefore,
they can be pruned into a leaf node. Lastly, black dots represent unexplored spaces of the environment. (b) geometric representation of the same OcTree with an

overview of the SemanticOcTreeNode class.

VI. INFORMATION COMPUTATION FOR SEMANTIC OCTOMAP
REPRESENTATIONS

Utilizing a regular-grid discretization to represent a 3-D envi-
ronment has prohibitive storage and computation requirements.
Large continuous portions of many real environments are un-
occupied, suggesting that adaptive discretization is significantly
more efficient. OctoMap [3] is a probabilistic 3-D mapping tech-
nique that utilizes an OcTree data structure to obtain adaptive
resolution, e.g., combining many small cells associated with free
space into few large cells. In this section, we develop a multiclass
version of OctoMap and propose an efficient multiclass mutual
information computation which benefits from the OcTree struc-
ture.

A. Semantic OctoMap

An OcTree is a hierarchical data structure containing nodes
that represent a section of the physical environment. Each node
has either O or 8 children, where the latter corresponds to the
8 octants of the Euclidean 3-D coordinate system. Thus, the
children of a parent node form an eight-way octant partition
of the space associated with the parent node. Fig. 4 shows an
example of a multiclass OcTree data structure.

We implement a SemanticOcTreeNode class as a building
block of the multiclass OcTree structure. A SemanticOcTreeN-
ode instance stores occupancy, color, and semantic information
of its corresponding physical space, as shown in Fig. 4(b). The
most important data members of the SemanticOcTreeNode class
are as follows.

1) Children: An array of pointers to SemanticOcTreeNode
storing the memory addresses of the eight child nodes.
Value: A float variable storing the log-odds occupancy
probability of the node.

Color: A ColorRGB object storing the RGB color of the
node.

Semantics: A SemanticLogOdds object maintaining a cat-
egorical probability distribution over the semantic labels
in the form of a log-odds ratio.

2)
3)

4)

For performance reasons, the SemanticLogOdds class only
stores the multiclass log-odds for the three most likely class
labels, with each label represented by a unique RGB color. In this
case, the log-odds associated with the rest of the labels lump into
a single others variable. This relives the multiclass OcTree im-
plementation from dependence on the number of labels that the
object classifier can detect. Moreover, it significantly improves
the speed of the mapping algorithm in cases with many semantic
categories. See Section VII-D for an analysis of mapping time
versus the number of stored classes.

The implementation of the multiclass OcTree is completed
by defining a SemanticOcTree class, which is derived from the
OccupancyOcTreeBase class of the OctoMap library [3] and
uses a SemanticOcTreeNode as its node type. Fig. 5 illustrates
the derivation of the SemanticOcTree and SemanticOcTreeNode
classes as a UML diagram.

In order to register a new observation to a multiclass OcTree,
we follow the standard ray-casting procedure over an OcTree, as
in [3], to find the observed leaf nodes. Then, for each observed
leaf node, if the observation demands an update, the leaf node
is recursively expanded to the smallest resolution and the mul-
ticlass log-odds of the downstream nodes are updated using (8).
At the ray’s end point, which indicates an occupied cell, we also
update the color variable by averaging the observed color with
the current stored color of the corresponding node. Algorithm 2
details the Bayesian update procedure for the multiclass OcTree.

To obtain a compressed OctoMap, it is necessary to define
a rule for information fusion from child nodes toward parent
nodes. Depending on the application, different information fu-
sion strategies may be implemented. For example, a conservative
strategy would assign the multiclass log-odds of the child node
with the highest occupancy probability to the parent node. In
this work, we simply assign the average log-odds vector of the
child nodes to their parent node, as shown in Algorithm 3. The
benefit of an OctoMap representation is the ability to combine
similar cells (leaf nodes) into a large cell (inner node). This is
called pruning the OcTree. Every time after an observation is
integrated to the map, starting from the deepest inner node, we
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Fig.5. UML diagram showing the class inheritance used for the implementa-
tion of a multiclass OcTree.

check for each inner node if 1) the node has eight children, 2)
its children do not have any children of their own, and 3) its
children all have equal multiclass log-odds. If an inner node
satisfies all of these three criteria, its children are pruned and
the inner node is converted into a leaf node with the same
multiclass log-odds as its children. This helps to compress
the majority of the free cells into a few large cells, while the
occupied cells usually do not undergo pruning since only their
surfaces are observed by the sensor and their inside remains
an unexplored region. Due to sensor noise, it is unlikely that
cells belonging to the same class (e.g., free or occupied by the
same obstacle) attain identical multiclass log-odds. Maximum
and minimum limits for the elements of the multiclass log-odds
are used so that each cell arrives at a stable state as its multiclass
log-odds entries reach the limits. Stable cells are more likely to
share the same multiclass probability distribution, consequently
increasing the chance of OcTree pruning. However, thresholding
causes loss of information near p;(m; = k) = 1, k € K which
can be controlled by the maximum and minimum limits.

B. Information Computation

A ray cast through an OcTree representation may visit several
large cells within which the class probabilities are homogeneous.
We exploit this property to obtain the mutual information be-
tween a multiclass OctoMap and a single ray as a summation
over a subset of OcTree leaf nodes instead of individual map
cells. This simplification provides a significant performance gain
with no loss of accuracy. The following formulation can be
considered a multiclass generalization of the run-length encod-
ing technique introduced by [10], using the mutual information

1917

Algorithm 2: Multiclass OcTree Update of Node n;.

Input: OcTree node n;, observation z = (r, y), mixing
coefficient o
1: s = n;.semantics
2: s.d = n;.semantics.data
3: 5.0 = n;.semantics.others
4: if z indicates free then
5: Update s with ¢~
: else if z indicates class y then
if class y is among the 3 most likely classes in s then
Update s with ¢ + E, 19T
else > Derive h,, as a portion « of others class
10: hax = s.0+ loga
11: 5.0 += ¢l +log (1 —a)
12: s, = concat(s.d, (y, haux))
13:  Update s, with ¢+ + E, 19T
14: Perform descending sort on s. with respect to
log-odds values
> Pick 3 most likely classes
15: s.d=5.0:2]
> Combine the least likely class with others class
16:  s.0=log(exp (s.[3]) + exp (s.0))
> Apply thresholds s and 5 for log-odds values
17: s§ < min{max{sy, s}, 5}
18: n;.semantics = s
19: return n;

LR

lower bound in (13) and the multiclass OcTree defined earlier
in this section.

Suppose that the map cells along a single beam R .7, have
piecewise-constant multiclass probabilities such that the set
{mi | i € R+ p(rmax)} can be partitioned into (), groups of
consecutive cells indexed by 7237 p(Tmax), ¢ = 1,..., Qrp, Where

pe(mi = k) = pi(m; = k)

\VIZ’] € Rff-}b(rmax) Vk € K. (14)

In this case, the log-odds probabilities encountered by a ray cast
can be compressed using semantic run-length encoding, defined
as follows.

Definition 3: A semantic run-length encoding of aray R.n,
cast through a multiclass OcTree is an ordered list of tuples of
the form [(wrp ¢, xtq)]qQ;f , where w; 5 ; and X, ,, respectively,
represent the width and the log-odds vector of the intersection
between the ray and the cells in RY , (rmax). The width w4
is the number of OcTree elements e{long the ray intersection,
where an OcTree element is a cell with the smallest physical
dimensions.

Fig. 6 shows an example of SRLE over a semantic OctoMap.
While SRLE can be used in a uniform-resolution grid map, it is
particularly effective of a multiclass OcTree, which inherently
contains large regions with homogeneous multiclass log-odds.
In addition, the OcTree data structure allows faster ray casting
since it can be done over OcTree leaf nodes [46], [47], instead
of a uniform-resolution grid, as in [45].
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Octree Element <=

Algorithm 3: Semantic Fusion of Two Child Nodes.

Input: OcTree nodes n; and n;

1: s; = n;.semantics

2: s; = nj.semantics

> Non-repeating list of classes in s; and s;
Ky = uniqueClass(s;, s;)

> Object instantiation for the fused semantics
sy = SemanticLogOdds()

> Slice s;.0 into smaller probabilities

3:

4:

5:0; = s;.0 — log(1 + Ky.size — s;.d.size) .
6:0; = sj.0—log(1+ Ky.size — s;.d.size) =
T:for y € Ky do SRLE: [(4, X, ), (2, X,)» (2 X,)]
8: ify ¢ s;.dlabel Ny € sjéd.llabeoldl;hen — N
9: Sf.d.a,ppend (y, w Elements Log-odds
10: elseif y € s;.d.label Ay ¢ Sj .d.label then Fig. 6. Ray cast representation as semantic run-length encoding (SRLE). The
. s;.d[y].logOdds+o; multiclass log-odds x; , are uniform within each cube. The voxel corresponding
11: Sf .d.append (y) 2 ) to ¢ = 2 is unexplored, hence its multiclass log-odds are denoted as X o-
12: else d[y].logOdd d[y].logOdd
13: s¢.d.append (y, %i0]-10g 8257 Y1209 s) ; (¢_ x )
. ; ; — X0,q90 Xt, bl
14: Perform descending sort on s¢.d with respect to + 0 mla q(;))Q a {(WT,b’q — 1) (g, 0)
- Mt\Y,

log-odds values
15: eitos
16:
17:
18:
19:
20:

21:

expOthers = exp ( )
fori > 3 do
expOthers += exp(sys.d[i].logOdds)
sf.d[3 : end].remove()
sf.0 = log(expOthers)
sf < min{max{s¢,s}, 5}
return sy

— ™" (0, 0) + 71(q,0)]

BT,b(q7 k) = f (¢)+ + Ek+1,l/)+ - XO,qu Xt,q)

qg—1
+ Zwr,b,jf (6™ — Xo,5: Xt.j) -
j=1

SRLE ray casting delivers substantial gains in efficiency for
mutual information computation since the contribution of each
group {m; | i € R?,(rmax)} in the innermost summation of

(13) can be obtained in closed form.

Proposition 3: The Shannon mutual information between a
single range—category measurement z.; and a semantic Oc-

toMap m can be computed as

K Qrp

Zl:t) = Z Z pT,b(Q7 k)GT,b((L k)

k=1 g=1

I(m;z.

where ()7 is the number of partitions along the ray R, that
have identical multiclass log-odds and the multiclass probabili-

ties for each partition are denoted as

{ k)

7Tt(‘17 k) = pt(mi
Xt,q - ht,i

Furthermore, defining w4 4 = |R? , (rmax)| as the width of the

qth partition, we have

q—1
prp(a k) == me(q, k) [ [ =" (4,0),
j=1
1—7.7"(q,0)
@T I k = T I k - :
,b(q ) B 7b(q ) 1 — '/Tt(q, 0)

Authorized licensed use limited to: Univ of Calif San Diego.

Vi € Rz’b(rmax).

Proof: See Appendix C. |

In (15), prp(g, k) relates to the event that the partition
RZ, (rmax) belongs to category k while all of the previous
pari[itions along the ray R,n, are free. Analogous to the def-
inition of C ;(n, k) in Proposition 2, - ;(g, k) is the weighted
sum of log-ratios f(¢,x) for the first ¢ partitions along the
ray R;n, under the same event as the one p. (¢, k) is asso-
ciated with. Accumulating the multiclass probabilities within
the partition Rﬁﬁb(rmax) yields ©. (g, k), see (33) for more
details. Therefore, the mutual information in (15) is equivalent
to the expectation of accumulated log-ratios O ;(q, k) over all
possible instantiations of z; .

Proposition 3 allows an extension of the mutual-information
lower bound in Proposition 2 to semantic OctoMap represen-
tations, summarized in the following corollary. The proof fol-
lows directly from the additive property of mutual information
between a semantic OctoMap and a sequence of independent
observations.

Corollary 1: Given a sequence of range—category obser-
vations Z;y1.4+7, the Shannon mutual information between
Zyy144+7 and a semantic OctoMap m can be lower bounded
as

5

I(m; Zy4m|21) > 1 (m; §t+1:t+T|let)

t+T B K Q-

= > 33N prnla.k)0-(a. k)

T=t+1 b=1 k=1 g=1

(16)
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where Z, 1., 7 is a subset of nonoverlapping measurements
that satisfy (12), and p;;(q, k) and ©; (g, k) are defined in
Proposition 3.

The same approach, as in Algorithm 1, is used for autonomous
exploration over a semantic OctoMap. However, we employ
the information computation formula of (16) to quantify the
informativeness of candidate robot trajectories. The active map-
ping method in Algorithm 1 provides a greedy exploration
strategy, which does not change subsequent control inputs based
on the updated map distribution. Greedy exploration may be
suboptimal and manifests itself as back and forth travel between
map frontiers. We alleviate this behavior by 1) computing the
information along the whole trajectory as opposed only at the
frontiers or next best view, and 2) replan frequently to account for
the updated map distribution. Discounted by distance traveled as
the cost of a trajectory, this leads to a more accurate calculation
of information gain along a candidate path which rules out most
of the back and forth visiting behavior. It is also important
to mention that the main scope of this work is introduction
of a novel multiclass semantic OcTree representation and the
mutual information between such model and range-category
observations. Our method enables fast and accurate evaluation
of information for any set of candidate trajectories, likes of
which can be generated by random tree methods [10], [48] or
hierarchical planning strategies [21] or, in the simplest form, a
greedy approach that computes paths to each frontier. We believe
utilizing our proposed information measure to score candidate
viewpoints would be complementary, rather than an alternative,
to the state-of-the-art exploration methods that use sophisticated
optimization strategies [19], [21], [49].

C. Computational Complexity

Note that the mutual information computations in both (13)
and (16) can be performed recursively. For (13), we have
pe(my: = k)pe(mi: = 0)

Prp(n + 1,k = Prb n,k
( ) (n, k) P, =)

CT,b(n + 17 k) = C(7'71) n, k)
—f (¢+ + Ep1ypt — hO,i’;),),ht,ifr,b)
+f (¢>+ +Epp1yp’ — ho . ht,j:’b)

+f (¢7 - hO,i*ﬂwht,i*ﬂb)

where j*, and i} , correspond to the index of farthest map cell

a7

in R, 4(n+ 1) and R, ,(n), respectively. A similar recursive
pattern can be found in (16)
m(q+ 1, k)m, """ (q,0)

Tt (Q7 k)

pru(q+1,k) = pru(q, k)

ﬁ‘r,b(q + 1a k) - B‘r,b(Qa k)
- f (¢+ + Ek+1¢+ - XO,qa Xt,q)
+f (&7 + Exp1¥" — X044 1 Xtgr1)

t+wrpaf (@7 = Xo.4 Xt.q) - (18)
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Fig. 7.  Synthetic environments used for comparisons among frontier-based
exploration [12], FSMI [10], and SSMI. Different semantic categories are
represented by distinct colors. Left: An instance of procedurally generated

random environment with 10 object classes. Right: Hand-designed environment
with corridor and block structures with 12 object classes.

This implies that the innermost summations of (13) and (16)
can be obtained in O(N; ;) and O(Q; ), respectively, where
N+ is the number of map cells along a single ray R,7; up
to its maximum range, and (), is the number of groups of
consecutive cells that possess the same multiclass probabilities.
In an environment containing /K object classes, evaluating the
informativeness of a trajectory composed of 7' observations,
where each observation contains B beams, has a complexity of
O(TBKN; ;) for a regular-grid multiclass representation and a
complexity of O(TBKQ;. ;) for a multiclass OcTree representa-
tion.

As we demonstrate in Section VII-C, for aray R, n;, we often
observe that . is significantly smaller than N ; thanks to
the OcTree pruning mechanism. Since N, scales linearly with
the map resolution, the complexity of information computation
over a semantic OctoMap grows sublinearly with respect to the
inverse of the OcTree element dimensions, which is a parameter
analogous to the map resolution.

VII. EXPERIMENTS

In this section, we evaluate the performance of SSMI in
simulated and real-world experiments. We compare SSMI with
two baseline exploration strategies, i.e., frontier-based explo-
ration [12] and FSMI [10], in a 2-D active binary mapping
scenario in Section VII-A and a 2-D active multiclass map-
ping scenario in Section VII-B. All three methods use our
range—category sensor model in (10) and our Bayesian multi-
class mapping in (8) but select informative robot trajectories
X¢41:447(ut.e47-1) based on their own criteria. In Section VI-
I-C, we evaluate the improvement in ray tracing resulting from
SRLE through an experiment in a 3-D simulated Unity envi-
ronment. In Section VII-D, we investigate the influence of the
number of stored semantic classes on mapping performance. In
addition, in Section VII-E, we use a similar 3-D simulation envi-
ronment to apply SSMI alongside Frontier, FSMI, and hierarchi-
cal coverage maximization method TARE [21]. In this section,
we use our OcTree-based multiclass information computation
introduced in Section VI in order to demonstrate large-scale
realistic active multiclass mapping. Finally, in Section VII-F
and Section VII-G, we test SSMI mapping and exploration in
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Simulation results for active mapping on the environments in Fig. 7, for 20 exploration iterations. Solid and dotted lines represent mean and 1 standard

deviation from the mean, respectively. (a) and (b) Exploration performance averaged over ten random environments with three random starting positions for each
instance. Exploration in the random environments sometimes did not terminate before the maximum number of iterations, and therefore the corresponding curves
do not flatten. This can be attributed to the fact that random maps, with the same size as the structured map, contain more frontiers that need to be explored in each
iteration since each scan has a higher probability of being occluded in multiple angles due to the lack of certain patterns, such as corridors. (c) and (d) Exploration
performance on the structured environment averaged over three random starting positions. For the structured map, the exploration terminates before reaching the
maximum number of iterations, which explains the flat curves at the end of the corresponding plots. (a) Random map/binary exploration. (b) Random map/semantic
exploration. (c) Structured map/binary exploration. (d) Structured map/semantic exploration.

real environments using ground wheeled robots. An open-source
implementation of SSMI is available on GitHub.?

In each planning step of 2-D exploration, we identify frontiers
by applying edge detection on the most likely map at time ¢ (the
mode of p;(m)). Then, we cluster the edge cells by detecting
the connected components of the boundaries between explored
and unexplored space. We plan a path from the robot pose X,
to the center of each frontier using A* graph search and provide
the path to a low-level controller to generate u;.;47—;. For 3-D
exploration, we first derive a 2-D occupancy map by projecting
the most likely semantic OctoMap at time ¢ onto the z =0
surface and proceed with similar steps, as in 2-D path planning.

A. 2-D Binary Exploration

We consider active binary occupancy mapping first. We com-
pare SSMI against Frontier and FSMI in one structured and ten
procedurally generated 2-D environments, shown in Fig. 7. A
2-D LiDAR sensor is simulated with additive Gaussian noise
N(0,0.1). Fig. 8(a) and (c) compare the exploration perfor-
mance in terms of map entropy reduction and percentage of the
map explored per distance traveled among the three methods.
SSMI performs similarly to FSMI in that both achieve low map
entropy by traversing significantly less distance compared to
Frontier.

2[Online]. Available: https://github.com/ExistentialRobotics/SSMI.

B. 2-D Multiclass Exploration

Next, we use the same 2-D environments in Fig. 7 but intro-
duce range—category measurements. Range measurements are
subject to additive Gaussian noise N'(0,0.1), while category
measurements have a uniform misclassification probability of
0.35. Fig. 8(b) and (d) compare the semantic exploration per-
formance for all three strategies. SSMI reaches the same level
of map entropy as FSMI and Frontier but traverses a noticeably
shorter distance. This can be attributed to the fact that only SSMI
distinguishes map cells whose occupancy probabilities are the
same but their per-class probabilities differ from each other. To
further illustrate this, we visualize the entropy and information
surfaces used by FSMI and SSMI. Fig. 9(a) shows a snapshot of
semantic exploration, while Fig. 9(b) visualizes the entropy of
each pixel ¢ computed as

K

H(m;|Z1.4) = - Zpt(mi = k) logpt(m; = k)
k=0

(19)

where Z;.; denote realized observations until time ¢. The task of
exploration can be regarded as minimizing the conditional en-
tropy summed over all pixels, i.e., map entropy. However, since
the observations are not known in advance, we resort to estimate
the reduction in uncertainty by computing the expectation over
the observations. Accounting for the prior uncertainty in map,
we arrive at maximizing mutual information as our objective,
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(a) (b)

©) ()

Fig. 9. Comparison between different mutual information formulations used
for exploration. (a) and (b) A snapshot of 2-D exploration showing the map
estimate and the corresponding uncertainty, where the entropy for each pixel ¢ is
computed as in (19). (¢) and (d) Mutual information used to find the informative
trajectory by FSMI and SSMI, respectively. Brighter pixels indicate larger
values. (a) Partially explored semantic map. (b) Entropy surface. (¢) Occupancy
mutual information surface. (d) Multiclass mutual information surface.

which is related to entropy as follows:

H(m;) —Ez, , {H(m;|Z1.4)} = I(my; Z14).  (20)

Therefore, the exploration performance is highly dependent
upon the mutual information formulation, since it directly dic-
tates how the uncertainty is quantified. As shown in Fig. 9(d) and
resulted from capturing per-class uncertainties, semantic mutual
information of SSMI, computed in (13) provides a smoother and
more accurate estimation of information-rich regions compared
to the binary mutual information formula used by FSMI ([10,
eq. (18)]) shown in Fig. 9(c).

C. SRLE Compression for 3-D Ray Tracing

In this subsection, we evaluate the ray-tracing compression
resulting from SRLE through an experiment in a photorealistic
3-D Unity simulation, shown in Fig. 10(e). We use a Husky
robot equipped with an RGBD camera and run a semantic seg-
mentation algorithm over the RGB images. In order to remove
irrelevant randomness, the sensors and the semantic segmenta-
tion are defined as error-free. We define map resolution as the
inverse of the dimensions of an OcTree element. For resolutions
ranging from 1.3 to 6.6m~!, we run five exploration iterations
using the semantic OctoMap and information computation of
Section VI and store all ray traces in SRLE format. Fig. 11
shows the change in distribution for the number of OctoMap

1921

cells @ and OcTree elements NV visited during each ray trace, as
well as the time required to execute each exploration episode as
a function of map resolution. In other words, N represents the
number of cells to be processed during mapping and information
computation as if the environment was represented as a regular
3-D grid, while ) represents the actual number of processed
semantic OctoMap cells. The pruning mechanism of the OcTree
representation results in a substantial gain in terms of the number
of cells visited for each ray tracing. As opposed to the almost
linear growth of NV, the distribution for @) is effectively inde-
pendent of the map resolution, except for very fine resolutions
where void areas between observations rays prevent efficient
pruning. However, for map resolutions larger than 2m~?, the
exploration time tends to grow larger with the increase of map
resolution. This is attributed to the recursive ray insertion method
of OctoMap in which it is required to recompute log odds for
each OcTree element along an observation ray whenever an
observation ray does not carry the same (free or object class)
state as the visited cell. In the subsequent 3-D experiments, we
choose map resolution of 2m~" in order to balance between
performance and map accuracy.

D. Mapping Time Versus Number of Stored Classes

We analyze the influence of the number of stored classes in
the semantic OctoMap on the mapping time. Let K denote
the number of stored semantic classes. Algorithm 2 has O(K)
memory and O(Klog K ) computational complexity (due to
sorting in line 14). Furthermore, let py; be the misclassifi-
cation probability assumed to be uniformly distributed among
all incorrect classes. Regarding accuracy, for a classifier with
Pmiss < %, where K is the number of all object classes, the
true class will be always asymptotically recoverable as long
as K > 2, thanks to the auxiliary others class that stores the
accumulated probability of the K — K least likely classes (see
line 16 of Algorithm 2). In general, K controls how fast the
true class will be detected with the cost of additional memory
use and computation. In order to quantitatively evaluate the
effect of Ky on mapping time, we consider the same Husky
robot as the previous subsection with a fixed trajectory, shown in
Fig. 12 (top), and measure the mapping frequency as a function
of K. Fig. 12 (bottom) shows the decrease in average mapping
frequency as K increases. It is important to mention that the
trajectory along which the data are collected only visits six object
classes, which explains the change in slope for K > 6.

E. 3-D Exploration in a Unity Simulation

We evaluate SSMI in the same 3-D simulation environment
as two previous subsections, however, this time the range mea-
surements have an additive Gaussian noise of A/(0,0.1) and
the semantic segmentation algorithm detects the true class with
a probability of 0.95 while the misclassification happens uni-
formly in the pixel space. Fig. 10 shows several iterations of the
exploration process. For comparison, we implemented a 3-D ver-
sion of FSMI [10] that utilizes run-length encoding to accelerate
the information computation for a binary OctoMap. Moreover,
we deploy the state-of-the-art hierarchical exploration method
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()

Fig. 10.

(e)

Time lapse of autonomous exploration and multiclass mapping in a simulated Unity environment. The robot is equipped with an RGBD sensor and

runs semantic segmentation. Different colors represent different semantic categories (grass, dirt road, building, etc.). (a) Robot begins exploration. (b) After 16
iterations, the robot starts to refine previously explored areas to fill partially observed objects. (c) Robot explores unknown regions located on the boundaries of
the explored area at iteration 40. (d) Multiclass occupancy map after 60 exploration iterations. (e) Photo-realistic Unity simulation environment.

of TARE [21] in our 3-D Unity simulation environment. Fig. 13
shows the change in map entropy versus distance traveled and
total elapsed time for all exploration strategies. We observe
that SSMI is the most efficient in terms of solving the tradeoff
between path length and information gathered along the path.
SSMI achieves the lowest entropy in the multiclass OctoMap.
Similar to the discussion in Section VII-B, this observation
can be ascribed to the fact that, among the compared methods,
the only objective function which captures the uncertainty in
both semantic classes and occupancy of the environment is
the one used by SSMI. On the other hand, SSMI and FSMI
require evaluation of mutual information along each candidate
trajectory, which has the same cardinality as the number of
all frontiers in the current map estimate p;(m), whereas the
hierarchical planning method employed by TARE only requires
local trajectory computation with a global coverage path ob-
tained at a coarse level. As a result, TARE exploration can be
performed over a relatively shorter time period compared to
SSMI and FSMI in scenarios where the number of frontiers
is large, e.g., outdoor areas. Parallel computation of mutual
information for each candidate trajectory or using heuristics,
such as frontier size in order to sort candidate solutions would
improve the computation time of SSMI; however we believe

these are outside of the scope of this article. Fig. 14 compares the
mapping precision of various object classes for the tested meth-
ods. SSMI exhibits higher precision for object categories that
appear rarely, such as the Animal or Tree classes while Frontier
slightly outperforms SSMI when it comes to mapping the Grass
and Dirt Road categories. This can be explained by the tendency
of SSMI toward achieving high overall classification precision
even if it requires slight reduction of precision for certain object
categories. Furthermore, TARE achieves the highest precision
for the Building class, which can be justified by the observation
that the computed global coverage path tends to traverse near
building walls.

F. 3-D Mapping in a Real-World Outdoor Environment

We deployed our semantic OcTree mapping approach on a
Husky robot equipped with an Ouster OS1-32 LiDAR and an
Intel RealSense D455 RGBD camera. Our software stack is
implemented using the robot operating system (ROS) [50]. The
LiDAR is used for localization via iterative closest point (ICP)
scan matching [51]. A neural network based on a FCHarDNet
architecture [52] and trained on the RUGD dataset [53] was used
for semantic segmentation. The RGBD camera produces color
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Fig. 11.  Variation of the visited OctoMap cells and OcTree elements denoted

as @ and N, respectively, with respect to the map resolution. Solid blue and
red lines represent the average values for () and N over all ray castings, while
the dashed lines show one standard deviation from the average. The green curve
shows the total exploration time for each map resolution. All measurements are
accumulated in the course of five exploration iterations.
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Fig. 12. Mapping time versus number of stored classes. Top: Robot trajectory

(in green) used for all mapping frequency evaluations. Bottom: Average mapping
frequency as a function of the number of stored semantic classes K.

and depth images with size 640 x 480 at 30 frames per second.
The semantic segmentation algorithm takes a 2-D color image
and outputs a semantic label for each pixel in the image, at an
average frame rate of 28.7 frames per second. By aligning the
semantic image and the depth map, we derive a semantic 3-D
point cloud which is utilized for Bayesian multiclass mapping.
Our implementation was able to update the semantic OctoMap
every 0.12 s, on average, while all of the computations were
performed on the mobile robot. The experiment was carried out
in an approximately six acre forested area shown in Fig. 15.
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Fig. 15. Environment for the outdoor mapping experiment. Left: Satellite
image of the experiment locale with robot trajectory shown in yellow. Right:
Corresponding locations from the ground level point of view.

The environment contained various terrain features, including
asphalt road, gravel, grass, densely forested areas, and hills. In
addition, a number of buildings and other structures, such as
bleachers, tents, and cars add to the diversity of the type of object
categories within the locale. The robot was manually controlled
via joystick, and traveled the path shown in Fig. 15 (left) while
incrementally building the semantic OctoMap. Fig. 16 shows the
semantic mapping result overlaying the satellite image obtained
via 2-D projection of the semantic OctoMap. We computed the

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on March 29,2024 at 17:16:05 UTC from IEEE Xplore. Restrictions apply.



1924

Tree [l
Asphalt [JJi
Grass [}
sky |l
Gravel [l
Building [JJj
Flower [}

Fig. 16.  Semantic mapping output overlaying the satellite image. The map is
obtained via 2-D projection of the 3-D semantic OctoMap.
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Fig. 17.  Memory use of regular grid versus semantic OctoMap.

memory size of the semantic OctoMap, and compared it with
the corresponding regular voxel grid representation, where each
voxel contains the same amount of data as an OcTree leaf node
at the lowest depth. Fig. 17 shows an almost fivefold saving in
memory when using OcTree data structure. The importance of
the memory savings of the OctoMap representation becomes
more apparent when communication is considered. Our seman-
tic OctoMap implementation resulted in a network bandwidth
requirement of 238 KB/s for OctoMap, whereas a regular grid
required 1173 KB/s for map communication.

G. 3-D Exploration in a Real-World Office Environment

We implemented SSMI on a ground wheeled robot to au-
tonomously map an indoor office environment. Fig. 18 shows the
robot equipped with an NVIDIA Xavier NX computer, a Hokuyo
UST-10LX LiDAR, and an Intel RealSense D4351 RGBD cam-
era. Similar to the outdoor experiments, ROS was used for
software deployment on the robot, and ICP laser scan matching
provided localization. This time, we utilized a ResNetl8 [54]
neural network architecture pretrained on the SUN RGB-D
dataset [55] for semantic segmentation. In particular, we em-
ployed the deep learning inference ROS nodes provided by
NVIDIA [56], which are optimized for Xavier NX computers
via TensorRT acceleration. Due to limited computational power
available on the mobile platform, we operated the RGBD camera
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Fig. 18.  Robot car used in indoor real-world experiments.
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Fig. 19. Real-world experiment results for active mapping for 20 exploration

iterations.

at alower frame rate of 15 Hz with color and depth image size set
to 640 x 480. The semantic segmentation algorithm was able
to produce pixel classification images (resized to 512 x 400)
at an average rate of 9.8 frames per second. Our implementation
was able to publish semantic OctoMap ROS topics every 0.34 s,
on average, with all of the processing occurred on the mobile
platform. Fig. 20 depicts the exploration process, while Fig. 19
shows the performance of SSMI compared to frontier-based over
20 exploration iterations. We observe that, similar to the simu-
lations, SSMI outperforms frontier-based exploration in terms
of distance traveled. Also, SSMI shows on par performance
compared to Frontier in terms of entropy reduction per time.
This can be explained by the fact that large depth measurement
noise and classification error in the real-world experiments result
in 1) the need for revisiting explored areas in order to estimate
an accurate map, leading to poor entropy reduction for the
frontier-based method and 2) a small number of safe candidate
trajectories, leading to fewer computations to be performed by
SSMI. Overall, our experiments show that SSMI outperforms
Frontier in indoor exploration scenarios, where the number and
length, of candidate trajectories is constrained by the size of the
environment.
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Fig. 20.

(@

Time lapse of autonomous exploration and multiclass mapping in the environment shown in (d). The exploration is run for 20 iterations. Different colors

represent different semantic categories (floor, wall, furniture, etc.). (a) Robot begins exploration. (b) Robot visits neighboring unexplored regions while trying to
refine the map of visited areas. (c) Semantic OctoMap after 20 exploration iterations. (d) Office environment featuring corridors, furniture, signs, and doors.

VIII. CONCLUSION

This article developed techniques for active multiclass map-
ping of large 3-D environments using range and semantic
segmentation observations. Our results enable efficient mutual
information computation over multiclass maps and make it
possible to optimize for per-class uncertainty. Our experiments
showed that SSMI performed on par with the state-of-the-art
FSMI method in binary active mapping scenarios. However,
when semantic information was considered SSMI outperformes
existing algorithms and lead to efficient exploration and accurate
multiclass mapping even in the presence of domain shift due
to the difference between the classification training data and
the testing environment. Experiments in both simulated and
real-world environments showed the scalability of SSMI for
large-scale 3-D exploration scenarios.

APPENDIX A
PROOF OF PROPOSITION 1

Applying Bayes rule in (2) and the factorization in (5) to
pi(m) for some z € 2,14 leads to

. p(z) L p(m
L[lp(mi|21;t,z) = (@20 };[1 p(m

2)

) p(m;|Z1.4). Q1)

The term 1% may be eliminated by considering the odds

ratio of an arbitrary category m; = k; € K versus the free cate-
gory m; = 0 for each cell ¢

(22)

Since each term in both the left- and right-hand side products
only depends on one map cell m;, the expression holds for each
individual cell. Rewriting the expression for cell m,; in vector
form, with elements corresponding to each possible value of
k; € IC, and taking an elementwise log leads to

T
p(mi=K|Z.4,2)
p(m;=0|Z1.¢+,2)

p(m;=0[Z1.¢,2)

p(mi=0|21.¢,2) log

log

= (1i(z) —ho;) + he ;. (23)

Applying (23) recursively for each element z € Z;; leads to
the desired result in (8). O
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APPENDIX B
PROOF OF PROPOSITION 2

Let Rit1:0+7(Tmax) = Ur 3 Rrp(rmax) be the set of map
indices which can potentially be observed by Z,, 1., 7. Using
the factorization in (5) and the fact that Shannon entropy is
additive for mutually independent random variables, the mutual
information only depends on the cells whose index belongs to

Rt—i—l:t—i—T(Tmax)a i~e-,
I(m; 240447 | 21:4)

t+17 B

=2 > >

T=t+1b=1i€Rr p(Tmax)

I(m’L7 Zryp | Zl:t)- (24)

This is true because the measurements z, , € Z,,4.,, 7 are in-
dependent by construction and the terms 1 (m;; 2, 1.,y 7 | Z1:¢)
can be decomposed into sums of mutual information terms
between single-beam measurements z ;, and the respective ob-
served map cells m;. The mutual information between a single
map cell m; and a sensor ray z is

I(mi;z | Z1.t)

K

—[p(z| 2103 plmi=k | 2,21 log”

k=0

(mi=k |z, 21.4)
pt(mi:k)
(25)

Using the inverse observation model in (10) and the Bayesian
multiclass update in (8), we have

K

Zp(mz =k ‘ Zazl:t)logp
k=0

(mi =k ‘ Zazl:t)
pe(m; = k)

(mzzo | Z,Zl:t)
p(m;=0)
(26)

= (1(2)—ho;) o (li(z) ~hg+hy ;) +log 2

= f(Li(z) —ho, hy ;)
where (10) and (8) were applied a second time to the log
term above. Plugging (26) back into the mutual information
expression in (25) and returning to (24), we have

I(m; Zii14T | Z1.4)

t+7T B K

-y Yy

T=t+1b=1y=1

T'max

(p(zr,b = (ry) | Z1)

> Fi((r,y) —hoi he ) ) dr. 27)

iERﬂ—, b (""max)

For z,;, = (r,y), the second term inside the integral above can
be simplified to

Crp(r,y) == Z J(L((r,y)) —hoi, hy ;)

74‘67—\’/7—,17 (Tmax)

=f <¢+ +Ey19" —ho ht,i;‘b)

+ Z f(¢™ —hghy,)

iERT,b (T)\{L:ﬂb}

(28)

dz.
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because for map indices i € R+ p(rmax) \ R+p(r) that are not
observed by z,;, we have 1;((r,y)) = ho; according to (10)
and f(ho; —ho,h; ;) = 0.

Next, we apply the definition of (11) for the first term
in the integral in (27), which turns it into an integration
over pr (7, y)Cr (1, y). Note that p, (7, y) and C (7, y) are
piecewise-constant functions since R, ;(r) is constant with
respect to r as long as the beam z lands in cell m;-. Hence,
we can partition the integration domain over r into a union
of intervals where the beam z hits the same cell, i.e., R, ()
remains constant

Tn-1

Tmax N Nevo oy, ~
| pestr)Costreydr = 3 [ Bratr)Contri dr
0 n=1

where N = |Rp(Tmax)|s 70 = 0, and 7n = rmax. From the
piecewise-constant property of p- (7, y) and C (7, y) over the
interval (r,,_1, 7], one can obtain

Tn _
/ ﬁ'r,b(’ru y)C‘r,b(r? y) dr
Th-1

= (T Y)Crp (1, )7 (1) = Prp(n, y)Crp(n, y)
(29)

where p; ,(n,y) and C ,(n, y) are defined in the statement of
Proposition 2. Substituting y with k£ and plugging the integration
result into (27) yields the lower bound in (13) for the mutual
information between m and Z; 1.4y 7. O

APPENDIX C
PROOF OF PROPOSITION 3

Consider a single beam z ;, passing through cells {m; };,i €
Rr.b(Tmax). As shown in Appendix B, the mutual information
between the map m and a beam z ;, can be computed as

K Nrp
I(m;2-p|210) = > > prs(n k)Crp(n, k). (30)
k=1n=1
Assuming piecewise constant class probabilities, we have
N‘r,b
> pro(nk)Crp(n, k)
n=1
Qrb Wrob,1iq
=> 3 pamk)Crp(nk) (D)

g=1 n=ws b 1:.q-1+1

where wrp 1.4 = 23:1 Wrp . For each wrpi.q-1 <n <
Wrb,1:q- the terms pr p(n, k) and C p(n, k) are expressed as

q—1

n—1-wr p 1.9 Wrb,j -
pra(n, k) = m(g, k)| rra) (q,0) [T w7 (5.0)

j=1

C‘r,b(nv k) = f <¢+ + Ek+l¢+ — Xo,q> Xt,q)
+

(n -1- w‘nb,l:q*l)f (¢7 - X[),q? Xt,q)

qg—1
+ Zw‘r,b,jf (¢~ — X(),j7Xt,j) .
j=1
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Plugging this into the inner summation of (31) leads to

Wr b,1:q

>

N=Wr p 1:q-111

Pr,b(% k)C'r,b(nv k)

wT’b,qfl
= p'r,b(q’ k) ﬁT,b(Q7 k) Z TFg (Q7 0)
7=0
Wr,b,qfl

+ f (¢7 - XO,q7 Xt,q) ]ﬂ'g((L O) (32)

Jj=0

The summations in (32) can be computed explicitly, leading to
the following closed-form expression:

Wrbq—1

ﬁr,b(Q?k) Z ﬂ-i((bo)

=0

= 6T,b(q3 k)

f (¢_ - XO,qa Xt,q)
(1 —m(q,0))?

— g (,0) + w0, 0)] = Oru(a. k). (33)

+ [(wrng — D (4, 0)

Therefore, the Shannon mutual information between a semantic
OctoMap m and a range-category measurement z,; can be
computed as in (15). O

REFERENCES

[1] A.Elfes, “Using occupancy grids for mobile robot perception and naviga-
tion,” Computer, vol. 22, no. 6, pp. 46-57, 1989.

[2] S. Thrun, “Learning occupancy grid maps with forward sensor models,”
Auton. Robots, vol. 15, no. 2, pp. 111-127, 2003.

[3] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard,
“OctoMap: An efficient probabilistic 3D mapping framework based on oc-
trees,” Auton. Robots,2013. [Online]. Available: https://octomap.github.io

[4] S. Song, F. Yu, A. Zeng, A. X. Chang, M. Savva, and T. Funkhouser,
“Semantic scene completion from a single depth image,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., 2017, pp. 1746-1754.

[5] L.Gan,R.Zhang,J. W. Grizzle, R. M. Eustice, and M. Ghaffari, “Bayesian
spatial kernel smoothing for scalable dense semantic mapping,” IEEE
Robot. Automat. Lett., vol. 5, no. 2, pp. 790-797, Apr. 2020.

[6] T. Wang, V. Dhiman, and N. Atanasov, “Learning navigation costs from
demonstration with semantic observations,” Proc. Mach. Learn. Res.
vol. 120, pp. 1-11, 2020.

[71 A. Milioto and C. Stachniss, “Bonnet: An open-source training
and deployment framework for semantic segmentation in robotics
using CNNs,” in Proc. IEEE Int. Conf. Robot. Automat., 2019,
pp. 7094-7100.

[8] B. J. Julian, S. Karaman, and D. Rus, “On mutual information-
based control of range sensing robots for mapping applica-
tions,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2013,
pp- 5156-5163.

[9] B. Charrow, S. Liu, V. Kumar, and N. Michael, “Information-theoretic

mapping using Cauchy-Schwarz quadratic mutual information,” in Proc.

IEEE Int. Conf. Robot. Automat., 2015, pp. 4791-4798.

Z.Zhang, T. Henderson, V. Sze, and S. Karaman, “FSMI: Fast computation

of Shannon mutual information for information-theoretic mapping,” in

Proc. IEEE Int. Conf. Robot. Automat., 2019, pp. 6912-6918.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[33]

[34]

1927

A. Asgharivaskasi and N. Atanasov, “Active bayesian multi-class mapping
from range and semantic segmentation observations,” in Proc. IEEE Int.
Conf. Robot. Automat., 2021, pp. 1-7.

B. Yamauchi, “A frontier-based approach for autonomous exploration,” in
Proc. IEEE Int. Symp. Comput. Intell. Robot. Automat., 1997, pp. 146—151.
W. Burgard, M. Moors, C. Stachniss, and F. E. Schneider, “Coordinated
multi-robot exploration,” IEEE Trans. Robot., vol. 21, no. 3, pp. 376-386,
Jun. 2005.

H. H. Gonzdlez-Baiios and J.-C. Latombe, “Navigation strategies for
exploring indoor environments,” Int. J. Robot. Res., vol. 21, no. 10/11,
pp- 829-848, 2002.

C. Gomez, M. Fehr, A. C. Hernandez, J. Nieto, R. Barber, and R. Siegwart,
“Hybrid topological and 3D dense mapping through autonomous
exploration for large indoor environments,” in Proc. IEEE Int. Conf.
Robot. Automat., 2020, pp. 9673-9679.

X. Kan, H. Teng, and K. Karydis, “Online exploration and coverage
planning in unknown obstacle-cluttered environments,” [EEE Robot.
Automat. Lett., vol. 5, no. 4, pp. 5969-5976, Jul. 2020.

R. Maffei, M. P. Souza, M. Mantelli, D. Pittol, M. Kolberg, and V.
A. M. Jorge, “Exploration of 3D terrains using potential fields with
elevation-based local distortions,” in Proc. IEEE Int. Conf. Robot.
Automat., 2020, pp. 1-6.

A. Bircher, M. Kamel, K. Alexis, H. Oleynikova, and R. Siegwart,
“Receding horizon “next-best-view” planner for 3D exploration,” in Proc.
IEEE Int. Conf. Robot. Automat., 2016, pp. 1462—1468.

T. Dang, F. Mascarich, S. Khattak, C. Papachristos, and K. Alexis,
“Graph-based path planning for autonomous robotic exploration in
subterranean environments,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots
Syst., 2019, pp. 3105-3112.

H. Zhu, C. Cao, Y. Xia, S. Scherer, J. Zhang, and W. Wang, “Dsvp: Dual-
stage viewpoint planner for rapid exploration by dynamic expansion,” in
Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2021, pp. 7623-7630.

C. Cao, H. Zhu, H. Choset, and J. Zhang, “Tare: A hierarchical framework
for efficiently exploring complex 3D environments,” in Proc. Robot.: Sci.
Syst., 2021, pp. 1-9.

M. Corah and N. Michael, “Volumetric objectives for multi-robot
exploration of three-dimensional environments,” in Proc. IEEE Int. Conf.
Robot. Automat., 2021, pp. 9043-9050.

A. Elfes, “Robot navigation: Integrating perception, environmental
constraints and task execution within a probabilistic framework,” in Proc.
Reasoning With Uncertainty Robot., 1995, pp. 93-130.

S. J. Moorehead, R. Simmons, and W. L. Whittaker, “Autonomous
exploration using multiple sources of information,” in Proc. IEEE Int.
Conf. Robot. Automat., 2001, pp. 3098-3103.

F. Bourgault, A. A. Makarenko, S. B. Williams, B. Grocholsky, and H.
F. Durrant-Whyte, “Information based adaptive robotic exploration,” in
Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2002, pp. 540-545.

A. Visser and B. Slamet, “Balancing the information gain against the
movement cost for multi-robot frontier exploration,” in Proc. Eur. Robot.
Symp., 2008, pp. 43-52.

T. Kollar and N. Roy, “Efficient optimization of information-theoretic
exploration in SLAM,” in Proc. AAAI Conf. Artif. Intell., 2008,
pp. 1369-1375.

H. Carrillo, I. Reid, and J. A. Castellanos, “On the comparison of
uncertainty criteria for active SLAM,” in Proc. IEEE Int. Conf. Robot.
Automat., 2012, pp. 2080-2087.

L. Carlone, J. Du, M. K. Ng, B. Bona, and M. Indri, “Active SLAM and
exploration with particle filters using Kullback-Leibler divergence,” J.
Intell. Robotic Syst., vol. 75, no. 2, pp. 291-311, 2014.

N. Atanasov, J. Le Ny, K. Daniilidis, and G. J. Pappas, “Decen-
tralized active information acquisition: Theory and application to
multi-robot SLAM,” in Proc. IEEE Int. Conf. Robot. Automat., 2015,
pp. 4775-4782.

J. Wang, T. Shan, and B. Englot, “Virtual maps for autonomous exploration
with pose SLAM,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2019,
pp- 4899-4906.

C. Stachniss, G. Grisetti, and W. Burgard, “Information gain-based
exploration using Rao-Blackwellized particle filters,” in Proc. Robotics:
Sci. Syst., 2005, pp. 65-72.

T. Henderson, V. Sze, and S. Karaman, “An efficient and continuous
approach to information-theoretic exploration,” in Proc. IEEE Int. Conf.
Robot. Automat., 2020, pp. 8566—-8572.

F. Chenetal., “Zero-shot reinforcement learning on graphs for autonomous
exploration under uncertainty,” in Proc. IEEE Int. Conf. Robot. Automat.,
2021, pp. 5193-5199.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on March 29,2024 at 17:16:05 UTC from IEEE Xplore. Restrictions apply.



1928

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]
[44]
[45]
[46]

[47]

[48]

[49]

[50]

[51]

[52]

M. Lodel, B. Brito, A. Serra-Gémez, L. Ferranti, R. Babuska, and J.
Alonso-Mora, “Where to look next: Learning viewpoint recommendations
for informative trajectory planning,” in Proc. Int. Conf. Robot. Automat.,
2022, pp. 4466-4472.

E. Zwecher, E. Iceland, S. R. Levy, S. Y. Hayoun, O. Gal, and A. Barel,
“Integrating deep reinforcement and supervised learning to expedite
indoor mapping,” in Proc. IEEE Int. Conf. Robot. Automat., 2022,
pp. 10542-10548.

H. Zhang, J. Cheng, L. Zhang, Y. Li, and W. Zhang, “H2GNN:
Hierarchical-hops graph neural networks for multi-robot exploration
in unknown environments,” /EEE Robot. Automat. Lett., vol. 7, no. 2,
pp. 3435-3442, Apr. 2022.

J. Hu, H. Niu, J. Carrasco, B. Lennox, and F. Arvin, “Voronoi-based
multi-robot autonomous exploration in unknown environments via deep
reinforcement learning,” IEEE Trans. Veh. Technol., vol. 69, no. 12,
pp. 14413-14423, Dec. 2020.

T. S. Veiga, M. Silva, R. Ventura, and P. U. Lima, “A hierarchical approach
to active semantic mapping using probabilistic logic and information
reward pomdps,” Proc. Int. Conf. Automated Plan. Scheduling, vol. 29,
no. 1, pp. 773-781, 2021.

V. Suriani, S. Kaszuba, S. R. Sabbella, F. Riccio, and D. Nardi, “S-ave:
Semantic active vision exploration and mapping of indoor environments
for mobile robots,” in Proc. Eur. Conf. Mobile Robots, 2021, pp. 1-8.

H. Blum, S. Rohrbach, M. Popovic, L. Bartolomei, and R. Y. Siegwart, “Ac-
tive learning for UAV-based semantic mapping,” 2019, arXiv:1908.11157.
G. Georgakis, B. Bucher, K. Schmeckpeper, S. Singh, and K. Daniilidis,
“Learning to map for active semantic goal navigation,” in Proc. 10th Int.
Conf. Learn. Representations, 2022.

T. D. Barfoot, State Estimation for Robotics. Cambridge, U.K.: Cambridge
Univ. Press, 2017.

S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. Cambridge,
MA, USA: MIT Press, 2005.

J. E. Bresenham, “Algorithm for computer control of a digital plotter,”
IBM Syst. J., vol. 4, no. 1, pp. 25-30, 1965.

H. Samet, “Implementing ray tracing with octrees and neighbor finding,”
Comput. Graph., vol. 13, no. 4, pp. 445-460, 1989.

M. Agate, R. L. Grimsdale, and P. F. Lister, “The hero algorithm for
ray-tracing octrees,” in Proc. Adv. Comput. Graph. Hardware 1V, 1991,
pp. 61-73.

K. Saulnier, N. Atanasov, G. J. Pappas, and V. Kumar, “Information
theoretic active exploration in signed distance fields,” in Proc. IEEE Int.
Conf. Robot. Automat., 2020, pp. 4080-4085.

A. Asgharivaskasi, S. Koga, and N. Atanasov, “Active mapping via
gradient ascent optimization of Shannon mutual information over
continuous se(3) trajectories,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots
Syst., 2022, pp. 1-8.

M. Quigley et al., “ROS: An open-source robot operating system,” in
Proc. Conf. Robot. Automat. Workshop Open Source Softw., 2009, vol. 3,
no. 3.2, p. 5.

A. Censi, “An ICP variant using a point-to-line metric,” in Proc. IEEE
Int. Conf. Robot. Automat., 2008, pp. 19-25.

P. Chao, “Fully convolutional hardnet for segmentation in Pytorch,”
Accessed: Jul. 1, 2022. [Online]. Available: https://github.com/PingoLH/
FCHarDNet

IEEE TRANSACTIONS ON ROBOTICS, VOL. 39, NO. 3, JUNE 2023

[53] M. Wigness, S. Eum, J. G. Rogers, D. Han, and H. Kwon, “A RUGD
dataset for autonomous navigation and visual perception in unstructured
outdoor environments,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst.,
2019, pp. 5000-5007.

[54] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016,
pp. 770-778.

[55] S. Song, S. P. Lichtenberg, and J. Xiao, “Sun RGB-D: A RGB-D scene
understanding benchmark suite,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 2015, pp. 567-576.

[56] NVIDIA, “Deep learning nodes for ROS/ROS2,” Accessed: Jul. 10, 2021.
[Online]. Available: https://github.com/dusty-nv/ros_deep_learning

Arash Asgharivaskasi (Student Member, IEEE) re-
ceived the B.S. degree in electrical engineering from
the Sharif University of Technology, Tehran, Iran, in
2018, and the M.S. degree in electrical and computer
engineering in 2021 from the University of California
San Diego, La Jolla, CA, USA, where he is currently
working toward the Ph.D. degree in electrical and
computer engineering.

His research interests include active information
acquisition using mobile robots with applications to
mapping, security, and environmental monitoring.

Nikolay Atanasov (Member, IEEE) received the B.S.
degree in electrical engineering from Trinity College,
Hartford, CT, USA, in 2008, and the M.S. and Ph.D.
degrees in electrical and systems engineering from the
University of Pennsylvania, Philadelphia, PA, USA,
in 2012 and 2015, respectively.

He is currently an Assistant Professor of Electri-
cal and Computer Engineering with the University
of California San Diego, La Jolla, CA, USA. He
works on probabilistic perception models that unify
geometry and semantics and on optimal control and
reinforcement learning approaches for minimizing uncertainty in these models.
His research focuses on robotics, control theory, and machine learning, applied
to active sensing using ground and aerial robots.

Dr. Atanasov was the recipient of the Joseph and Rosaline Wolf award for the
best Ph.D. dissertation in Electrical and Systems Engineering at the University
of Pennsylvania, in 2015, the best conference paper award at the International
Conference on Robotics and Automation in 2017, and the NSF CAREER award
in 2021.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on March 29,2024 at 17:16:05 UTC from IEEE Xplore. Restrictions apply.



