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Semantic OcTree Mapping and Shannon Mutual

Information Computation for Robot Exploration
Arash Asgharivaskasi , Student Member, IEEE, and Nikolay Atanasov , Member, IEEE

Abstract—Autonomous robot operation in unstructured and
unknown environments requires efficient techniques for map-
ping and exploration using streaming range and visual observa-
tions. Information-based exploration techniques, such as Cauchy–
Schwarz quadratic mutual information and fast Shannon mutual
information, have successfully achieved active binary occupancy
mapping with range measurements. However, as we envision robots
performing complex tasks specified with semantically meaningful
concepts, it is necessary to capture semantics in the measurements,
map representation, and exploration objective. This work presents
semantic octree mapping and Shannon mutual information com-
putation for robot exploration. We develop a Bayesian multiclass
mapping algorithm based on an octree data structure, where each
voxel maintains a categorical distribution over semantic classes.
We derive a closed-form efficiently computable lower bound of the
Shannon mutual information between a multiclass octomap and
a set of range-category measurements using semantic run-length
encoding of the sensor rays. The bound allows rapid evaluation
of many potential robot trajectories for autonomous exploration
and mapping. We compare our method against state-of-the-art
exploration techniques and apply it in a variety of simulated and
real-world experiments.

Index Terms—Reactive and sensor-based planning, view plann-
ing for simultaneous localization and mapping (SLAM), vision-
based navigation.

I. INTRODUCTION

A
CCURATE modeling, real-time understanding, and effi-

cient storage of a robot’s environment are key capabilities

for autonomous operation. Occupancy grid mapping [1], [2]

is a widely used, simple, yet effective, technique for distin-

guishing between traversable and occupied space surrounding

a mobile robot. OctoMap [3] is an extension of occupancy

grid mapping, introducing adaptive resolution to improve the

memory usage and computational cost of generating 3-D maps of

large environments. Delegating increasingly sophisticated tasks

to autonomous robots requires augmenting traditional geomet-

ric models with semantic information about the context and
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Fig. 1. Robot autonomously explores an unknown environment using an
RGBD sensor and a semantic segmentation algorithm.

object-level structure of the environment [4], [5], [6]. Robots

also are increasingly expected to operate in unknown environ-

ments, with little to no prior information, in applications, such

as disaster response, environmental monitoring, and reconnais-

sance. This calls for algorithms allowing robots to autonomously

explore unknown environments and construct low-uncertainty

metric-semantic maps in real time, while taking collision and

visibility constraints into account.

This article considers the active metric-semantic mapping

problem, requiring a robot to explore and map an unknown

environment, relying on streaming distance and object category

observations, e.g., generated by semantic segmentation over

RGBD images [7]. See Fig. 1 as an illustration of the sensor data

available for mapping and exploration. We extend information-

theoretic active mapping techniques [8], [9], [10] from binary

to multiclass environment representations. Our approach intro-

duces a Bayesian multiclass mapping procedure which main-

tains a probability distribution over semantic categories and

updates it via a probabilistic range-category perception model.

Our main contributions are as follows.

1) A Bayesian multiclass octree mapping approach.

2) A closed-form efficiently computable lower bound for the

Shannon mutual information between a multiclass octree

map and a set of range-category measurements.

3) Efficient C++ implementation achieving real-time high-

accuracy performance onboard physical robot systems in

3-D real-world experiments.1

1Open-source software and videos supplementing this paper are available at
https://arashasgharivaskasi-bc.github.io/SSMI_webpage.
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Unlike a uniform-resolution grid map, our semantic OctoMap

enables efficient mutual information evaluation via run-length

encoding of the range-category observations. As a result, the

informativeness of many potential robot trajectories may be

evaluated to (re)select one that leads to the best tradeoff between

map uncertainty reduction and motion cost. Unlike traditional

class-agnostic exploration methods, our model and information

measure capture the uncertainty of different semantic classes,

leading to faster and more accurate exploration. The proposed

approach relies on general range and class measurements and

general pose kinematics, making it suitable for either ground or

aerial robots, equipped with either camera or LiDAR sensors,

exploring either indoor or outdoor environments.

We name our method semantic octree mapping and Shannon

mutual information (SSMI) computation for robot exploration.

This article is an extended version of our previous conference

article [11] enabling its application in large-scale 3-D environ-

ments. Direct application of the regular-grid method in the con-

ference version to 3-D environments faces several challenges,

including memory inefficiency, because 3-D environments are

predominantly made up of free or unknown space, and informa-

tion computation inefficiency due to naïve summation over all

voxels visited by sensor rays. We introduce 1) an octree repre-

sentation for Bayesian multiclass mapping, performing octree

ray-tracing and leaf node merging using semantic category dis-

tributions, 2) semantic run-length encoding (SRLE) for sensor

rays which enables efficient mutual information computation

between a multiclass octree and range-category measurements,

and 3) a comprehensive set of experiments and comparisons with

state-of-the-art techniques in 2-D and 3-D environments. We

demonstrate the effectiveness of SSMI in real-world mapping

and autonomous exploration experiments performed in real-time

onboard different mobile robot platforms operating in indoor and

outdoor environments.

II. RELATED WORK

Frontier-based exploration [12] is a seminal work that high-

lighted the utility of autonomous exploration and active map-

ping. It inspired methods [13], [14] that rely on geometric

features, such as the boundaries between free and unknown

space (frontiers) and the volume that would be revealed by

new sensor observations. Due to their intuitive formulation and

low computational requirements, geometry-based exploration

methods continue to be widely employed in active percep-

tion. Recent works include semantics-assisted indoor explo-

ration [15], hex-decomposition-based coverage planning [16],

and Laplace potential fields for safe outdoor exploration [17].

More related to our work, receding-horizon “next-best-view”

planning [18] presents an active octree occupancy mapping

method which executes trajectories built from a random tree

whose quality is determined by the amount of unmapped space

that can be explored. Similarly, the graph-based exploration

methods of [19] and [20] use local random trees in free space

to sample candidate viewpoints for exploration, while a global

graph maintains the connections among the frontiers in the

map. Cao et al. [16], [21] introduced hierarchical active 3-D

coverage and reconstruction which computes a coarse coverage

path at the global scale followed by a local planner that ensures

collision avoidance via a high-resolution path. As shown by

Corah and Michael [22], coverage-based exploration strategies

can be formulated as mutual-information maximization policies

in the absence of sensor noise. However, in many real-world

circumstances sensor measurements are corrupted by nontrivial

noise, reducing the effectiveness of geometric exploration meth-

ods that do not capture probabilistic uncertainty. For example,

due to the domain shift between the training data and the test en-

vironment, utilizing a pretrained semantic segmentation model

in the mapping process requires accounting for measurement

uncertainty in the exploration policy.

The work by Elfes [23] is among the first to propose an

information-based utility function for measuring and minimiz-

ing map uncertainty. Information-based exploration strategies

have been devised for uncertainty minimization in robot local-

ization or environment mapping [24], [25], [26]. Information-

theoretic objectives, however, require integration over the poten-

tial sensor measurements, limiting the use of direct numerical

approximations to short planning horizons. Kollar and Roy [27]

formulated active mapping using an extended Kalman filter and

proposed a local-global optimization, leading to significant gains

in efficiency for uncertainty computation and long-horizon plan-

ning. Unlike geometry-based approaches, information-theoretic

exploration can be directly formulated for active simultane-

ous localization and mapping (SLAM) [28], [29], [30], [31],

aiming to determine a sensing trajectory that balances robot

state uncertainty and visitation of unexplored map regions.

Stachniss et al. [32] approximated information gain for a Rao-

blackwellized particle filter over the joint state of robot pose

and map occupancy. Julian et al. [8] prove that, for range

measurements and known robot position, the Shannon mutual

information is maximized over trajectories that visit unexplored

areas. However, without imposing further structure over the

observation model, computing the mutual information objective

requires numerical integration. The need for efficient mutual

information computation becomes evident in 3-D environments.

Cauchy–Schwarz quadratic mutual information (CSQMI) [9]

and fast Shannon mutual information (FSMI) [10] offer effi-

ciently computable closed-form objectives for active occupancy

mapping with range measurements. Henderson et al. [33] pro-

posed an even faster computation based on a recursive expres-

sion for Shannon mutual information in continuous maps.

The recent success of machine learning methods of perception

has motivated learning autonomous exploration policies. Chen

et al. [34] attempted to bridge the sim2sim and sim2real gaps

via graph neural networks and deep reinforcement learning.

This enables decision-making over graphs containing relevant

exploration information which is provided by human experts

in order to predict a robot’s optimal sensing action in belief

space. Lodel et al. [35] introduced a deep reinforcement learning

policy which recommends the next best view that maximizes

information gain via defining mutual information as the train-

ing reward. Zwecher et al. [36] employed deep reinforcement

learning to find an exploration policy that plans collision-

free coverage paths, while another neural network provides a
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predicted full map given the partially observed environment.

Zhang et al. [37] proposed a multiagent reinforcement learning

exploration method, where regions of interest, free space, and

robots are represented as graph nodes, and hierarchical-hops

graph neural networks (H2GNN) are used to identify key infor-

mation in the environment. Related to multirobot exploration,

the authors in [38] utilized an actor-critic strategy to map an un-

known environment, where Voronoi partitioning divides the ex-

ploration regions among the robots. As this article demonstrates,

incorporating semantic uncertainty in addition to geometric

information in the exploration process can be beneficial. In addi-

tion, using Shannon mutual information as an objective function

may help train more generalizable exploration policies because

it mitigates the need for training sensor-specific models. Hence,

the techniques proposed in this article are complementary to

learning approaches and can provide robustness to measurement

uncertainty and domain shift caused by sensor and operational

condition variations.

Active semantic mapping has recently attracted much at-

tention due to the proliferation of fast object detection and

semantic segmentation algorithms implemented on mobile robot

platforms. The authors in [39] used a two-layer architecture,

where the knowledge representation layer provides a belief over

the environment state to the action layer, which subsequently

chooses an action to gather information or execute a task. The

work in [40] presents a semantic exploration policy which takes

an occluded semantic point cloud of an object, finds a match

in a database to estimate the full object dimensions, and then

generates candidate next observation poses to reconstruct the

object. The next best view is computed via a volumetric informa-

tion gain metric that computes visible entropy from a candidate

pose. The semantic map used in this article is a collection of

bounding boxes around objects. Active semantic mapping has

also been employed to develop sample-efficient deep learning

methods. Blum et al. [41] proposed an active learning method

for training semantic segmentation networks where the novelty

(epistemic uncertainty) of the input images is estimated as the

distance from the training data in the embedding space, while a

path planning method maximizes novelty of future input images

along the planned trajectory, assuming novel images are spatially

correlated. Georgakis et al. [42] actively train a hierarchical

semantic map generation model that predicts occupancy and

semantics given occluded input. The authors use an ensemble of

map generation models in order to predict epistemic uncertainty

of the predicted map. The uncertainty is then used to choose

trajectories for actively training the model with new images that

differ the most with the training data of the current model. SSMI

distinguishes itself from the aforementioned works by introduc-

ing a dense Bayesian multiclass mapping with a closed-form

uncertainty measure, as opposed to sampling-based uncertainty

estimation. Moreover, our information-theoretic objective func-

tion directly models sensor noise specifications, unlike volumet-

ric information gain.

This article is most related to CSQMI [9] and FSMI [10]

in that it develops a closed-form expression for mutual in-

formation. However, instead of a binary map and range-only

measurements, our formulation considers a multiclass map with

Bayesian updates using range-category measurements. Since

the same occupancy map can be derived from many different

multiclass maps, the information associated with various object

classes will fail to be captured if we solely rely on occupancy

information, as the case in CSQMI and FSMI. Therefore, we

expect to perform exploration more efficiently by using the

multiclass perception model, and consequently, expanding the

notion of uncertainty to multiple classes.

III. PROBLEM STATEMENT

Consider a robot with pose Xt ∈ SE(3) at time t and deter-

ministic discrete-time kinematics

Xt :=

[

Rt pt

0⊤ 1

]

, Xt+1 = Xt exp (τ ût) (1)

whereRt ∈ SO(3) is the robot orientation,pt ∈ R
3 is the robot

position, τ is the time step, and ut := [v⊤
t ,ω

⊤
t ]

⊤ ∈ U ⊂ R
6

is the control input, consisting of linear velocity vt ∈ R
3 and

angular velocity ωt ∈ R
3. The function (̂·) : R6 → se(3) maps

vectors inR6 to the Lie algebra se(3). See [43, Ch. 7] for a defini-

tion of the Lie groups SO(3) and SE(3) and the corresponding

Lie algebras so(3) and se(3). The robot is navigating in an envi-

ronment consisting of a collection of disjoint sets Ek ⊂ R
3, each

associated with a semantic category k ∈ K := {0, 1, . . . ,K}.

Let E0 denote free space, while each Ek for k > 0 represents

a different category, such as building, vegetation, terrain (see

Fig. 1).

We assume that the robot is equipped with a sensor that pro-

vides information about the distance to and semantic categories

of surrounding objects along a set of rays {ηb}b, where b is

the ray index, ηb ∈ R
3 with ‖ηb‖2 = rmax, and rmax > 0 is the

maximum sensing range.

Definition 1: A sensor observation at time t from robot pose

Xt is a collection Zt := {zt,b}b of range and category measure-

ments zt,b := (rt,b, yt,b) ∈ R≥0 ×K, acquired along the sensor

rays Rtηb with ηb ∈ {ηb}b at robot position pt.

Such information may be obtained by processing the ob-

servations of an RGBD camera or a Lidar with a semantic

segmentation algorithm [7]. Fig. 1 shows an example where each

pixel in the RGB image corresponds to one sensor ray ηb, while

its corresponding values in the semantic segmentation and the

depth images encode category yt,b and range rt,b, respectively.

The goal is to construct a multiclass map m of the environment

based on the labeled range measurements. We model m as a

grid of cells i ∈ I := {1, . . . , N}, each labeled with a category

mi ∈ K. In order to model noisy sensor observations, we con-

sider a probability density function (PDF) p(Zt | m,Xt). This

observation model allows integrating the measurements into a

probabilistic map representation using Bayesian updates. Let

pt(m) := p(m | Z1:t,X1:t) be the probability mass function

(PMF) of the map m given the robot trajectory X1:t and obser-

vationsZ1:t up to time t. Given a new observationZt+1 obtained

from robot pose Xt+1, the Bayesian update to the map PMF is

pt+1(m) ∝ p(Zt+1|m,Xt+1)pt(m). (2)
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We assume that the robot pose is known and omit the dependence

of the map distribution and the observation model on it for

brevity. We consider the following problem.

Problem: Given a prior map PMF pt(m) at time t and a finite

planning horizon T , maximize the ratio

max
ut:t+T−1

I (m;Zt+1:t+T | Z1:t)

J(Xt:t+T−1,ut:t+T−1)
subject to (1), (2) (3)

of the mutual information I(m;Zt+1:t+T | Z1:t) between the

map m and future sensor observations Zt+1:t+T to the motion

cost J(Xt:t+T−1,ut:t+T−1) of the control sequence ut:t+T−1.

The definitions of the mutual information and motion cost

terms in (3) are

I (m;Zt+1:t+T |Z1:t) :=
∑

m∈KN

∫

· · ·

∫

p(m,Zt+1:t+T |Z1:t)

× log
p(m,Zt+1:t+T | Z1:t)

p(m|Z1:t)p(Zt+1:t+T |Z1:t)

T
∏

τ=1

∏

b

dzt+τ,b

J(Xt:t+T−1,ut:t+T−1) := q(Xt+T ) +
T−1
∑

τ=0

c(Xt+τ ,ut+τ )

(4)

where the integration in (4) is over all possible values of all

sensor beams over all times zt+τ,b, and the strictly positive terms

q(X) and c(X,u) model terminal and stage motion costs (e.g.,

distance traveled, elapsed time), respectively.

We develop a multiclass extension to the log-odds occupancy

mapping algorithm [44, Ch. 9] in Section IV and derive an

efficient approximation to the mutual information term in Sec-

tion V. In Section VI, we present a multiclass extension of

the OctoMap [3] algorithm, alongside a fast computation of

mutual information over a semantic OctoMap using run-length

encoding. This allows autonomous exploration of large 3-D

environments by rapidly evaluating potential robot trajectories

online and (re)selecting the one that maximizes the objective

in (3). In Section VII, we demonstrate the performance of

our approach in simulated and real-world experiments. Finally,

Section VIII concludes this article.

IV. BAYESIAN MULTICLASS MAPPING

This section derives the Bayesian update in (2), using a

multinomial logit model to represent the map PMF pt(m) where

each cellmi of the map stores the probability of object classes in

K. To ensure that the number of parameters in the model scales

linearly with the map size N , we maintain a factorized PMF

over the cells

pt(m) =
N
∏

i=1

pt(mi). (5)

We represent the individual cell PMFs pt(mi) over the semantic

categories K using a vector of log odds

ht,i :=
[

log pt(mi=0)
pt(mi=0) · · · log pt(mi=K)

pt(mi=0)

]⊤
∈ R

K+1 (6)

where the free-class likelihood pt(mi = 0) is used as a pivot.

Given the log-odds vector ht,i, the PMF of cell mi may be

recovered using the softmax function σ : RK+1 	→ R
K+1

pt(mi = k) = σk+1(ht,i) :=
e⊤k+1 exp(ht,i)

1⊤ exp(ht,i)
(7)

where ek is the standard basis vector with kth element equal

to 1 and 0 elsewhere, 1 is the vector with all elements equal

to 1, and exp(·) is applied elementwise to the vector ht,i. To

derive Bayes rule for the log-odds ht,i, we need to specify an

observation model for the range and category measurements.

Definition 2: The inverse observation model of a range–

category measurement z obtained from robot pose X along

sensor ray η with respect to map cell mi is a probability mass

function p(mi|z;X,η).
The Bayesian update in (2) for ht,i can be obtained in terms

of the range–category inverse observation model, evaluated at a

new measurement set Zt+1.

Proposition 1: Let ht,i be the log odds of cell mi at time t.
Given sensor observation Zt+1, the posterior log-odds are

ht+1,i = ht,i +
∑

z∈Zt+1

(li(z)− h0,i) (8)

where li(z) is the inverse observation model log odds

li(z) :=
[

log p(mi=0|z)
p(mi=0|z) · · · log p(mi=K|z)

p(mi=0|z)

]⊤
. (9)

Proof: See Appendix A. �

To complete the Bayesian multiclass mapping algorithm sug-

gested by (8) we need a particular inverse observation model.

When a sensor measurement is generated, the sensor ray con-

tinues to travel until it hits an obstacle of category K \ {0} or

reaches the maximum sensing range rmax. The labeled range

measurement z = (r, y) obtained from position p with orienta-

tionR indicates that map cellmi is occupied if the measurement

end point p+ r
rmax

Rη lies in the cell. If mi lies along the sensor

ray but does not contain the end point, it is observed as free.

Finally, if mi is not intersected by the sensor ray, no information

is provided about its occupancy. The map cells along the sensor

ray can be determined by a rasterization algorithm, such as the

Bresenham’s line algorithm [45]. We parameterize the inverse

observation model log-odds vector in (9) as

li((r, y)) :=











φ+ +Ey+1ψ
+, r indicates mi is occupied

φ−, r indicates mi is free

h0,i, otherwise

(10)

whereEk := eke
⊤
k andψ+,φ−,φ+ ∈ R

K+1 are parameter vec-

tors, whose first element is 0 to ensure that li(z) is a valid

log-odds vector. This parameterization leads to an inverse obser-

vation model p(mi = k|z) = σk+1(li(z)), which is piecewise

constant along the sensor ray. Fig. 2 illustrates our Bayesian

multiclass mapping method.

To compute the mutual information between an observation

sequence Zt+1:t+T and the map m in the next section, we will

also need the PDF of a range–category measurement zτ,b ∈
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Fig. 2. Illustration of the Bayesian multiclass mapping given a range–category observation zt+1 = (rt+1, yt+1) for an environment with object classes of white

(free class), red, and blue, encoded as y = 0, y = 1, and y = 2, respectively. (a) Portion of the map m along the observation zt+1. Each cell has a multiclass
log-odds vector ht,i ∈ R3 for i ∈ {1, . . . , 5} at time t. The cell brightness encodes the occupancy probability, while the cell color represents the most likely
category. (b) Map estimate at time t+ 1 after update with zt+1. Note how each multiclass log-odds vector changes based on the inverse observation model
li(zt+1). (c) Second and third elements of the inverse observation log-odds vector li(zt+1) for i = 3 as a function of range r and category y in observation
zt+1. Note that the first element of li(zt+1) is always zero. (a) Map estimate at time t with observation zt+1. (b) Posterior map estimate at time t + 1. (c) Inverse
observation log-odds vector for i = 3.

Zt+1:t+T conditioned on Z1:t. Let Rτ,b(r) ⊂ I denote the set

of map cell indices along the ray Rτηb from robot position pτ

with length r. Let γτ,b(i) denote the distance traveled by the ray

Rτηb within cell mi and i∗τ,b ∈ Rτ,b(r) denote the index of the

cell hit by zτ,b. We define the PDF of zτ,b = (r, y) conditioned

on Z1:t as

p(zτ,b|Z1:t) =
pt(mi∗

τ,b
= y)

γτ,b(i∗τ,b)

∏

i∈Rτ,b(r)\{i∗τ,b}

pt(mi = 0). (11)

This definition states that the likelihood of zτ,b = (r, y) at time

t depends on the likelihood that the cells mi along the ray Rτηb

of length r are empty and the likelihood that the hit cell mi∗
τ,b

has class y. A similar model for binary observations has been

used in [8], [9], and [10].

This section described how an observation affects the map

PMF pt(m). Now, we switch our focus to computing the mutual

information between a sequence of observations Zt+1:t+T and

the multiclass occupancy map m.

V. INFORMATIVE PLANNING

Proposition 1 allows a multiclass formulation of occupancy

grid mapping, where the uncertainty of a map cell depends on the

probability of each class pt(mi = k), instead of only the binary

occupancy probability 1− pt(mi = 0). Moreover, the inverse

observation model in (10) may contain different likelihoods

for the different classes which can be used to prioritize the

information gathering for specific classes. Fig. 3(a) shows an

example where the estimated map of an environment with three

classes, free , class1, class2, contains two regions with similar

occupancy probability but different semantic uncertainty. In

particular, the red and green walls have the same occupancy

probability of 0.9, as shown in Fig. 3(b), but the red region

more certainly belongs to class1 and the green region has high

uncertainty between the two classes. As can be seen in Fig. 3(c),

the mutual information associated with a binary occupancy map

cannot distinguish between the red and green regions since

they both have the same occupancy probability. In contrast,

the multiclass map takes into account the semantic uncertainty

among different categories, as can be seen in Fig. 3(d), where

the uncertain green region has larger mutual information than

the certain red region.

These observations suggest that more accurate uncertainty

quantification may be achieved using a multiclass instead of

a binary perception model, potentially enabling a more ef-

ficient exploration strategy. However, computing the mutual

information term in (4) is challenging because it involves in-

tegration over all possible values of the observation sequence

Zt+1:t+T . Our main result is an efficiently computable lower

bound on I(m;Zt+1:t+T |Z1:t) for range–category observations

Zt+1:t+T and a multiclass occupancy map m. The result is

obtained by selecting a subset Zt+1:t+T = {zτ,b}
t+T,B
τ=t+1,b=1 of

the observations Zt+1:t+T in which the sensor rays are nonover-

lapping. Precisely, any pair of measurements zτ,b, zτ,′b′ ∈
Zt+1:t+T satisfies

Rτ,b(rmax) ∩Rτ,′b′(rmax) = ∅. (12)
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Fig. 3. Comparison between the information surfaces of binary and multiclass
map representations. (a) Environment with three classes free , class1, and
class2 where the white and gray regions represent free and unknown space,
respectively, with pwhite(mi) = [1, 0, 0] and pgray(mi) = [0.3, 0.3, 0.3]. The
red and green regions have the same occupancy probability of p(mi =
occupied) = 0.9 but different class uncertainty, i.e., pred(mi) = [0.1, 0.8, 0.1]
and pgreen(mi) = [0.1, 0.45, 0.45]. (b) Binary occupancy map, where the
intensity of each pixel is proportional to its occupancy probability, regardless
of object class. (c) Occupancy mutual information surface. (d) Semantic mutual
information surface. Each pixel in the information surfaces shows the value of
mutual information between the map and a set of range-category observations,
uniformly sampled from a 360◦ field of view at each pixel location.

In practice, constructing Zt+1:t+T requires removing intersect-

ing rays fromZt+1:t+T to ensure that the remaining observations

are mutually independent. The mutual information between m

and Zt+1:t+T can be obtained as a sum of mutual information

terms between single rays zτ,b ∈ Zt+1:t+T and map cells mi

observed by zτ,b. This idea is inspired by CSQMI [9] but we

generalize it to multiclass observations and map.

Proposition 2: Given a sequence of labeled range observa-

tions Zt+1:t+T , let Zt+1:t+T = {zτ,b}
t+T,B
τ=t+1,b=1 be a subset

of nonoverlapping measurements that satisfy (12). Then, the

Shannon mutual information betweenZt+1:t+T and a multiclass

occupancy map m can be lower bounded as

I(m;Zt+1:t+T |Z1:t) ≥ I
(

m;Zt+1:t+T |Z1:t

)

=

t+T
∑

τ=t+1

B
∑

b=1

K
∑

k=1

Nτ,b
∑

n=1

pτ,b(n, k)Cτ,b(n, k) (13)

where Nτ,b := |Rτ,b(rmax)|

pτ,b(n, k) := pt(mi∗
τ,b

= k)
∏

i∈R̃τ,b(n)\{i∗τ,b}

pt(mi = 0)

Cτ,b(n, k) := f
(

φ+ +Ek+1ψ
+ − h0,i∗

τ,b
,ht,i∗

τ,b

)

Algorithm 1: Information-theoretic Path Planning.

Input: robot pose Xt, map estimate pt(m)
1: F = findFrontiers(pt(m))
2: for f ∈ F do

3: Xt+1:t+T ,ut:t+T−1 = planPath(Xt, pt(m), f)
4: Compute (3) over Xt:t+T ,ut:t+T−1 via (13)

5: return X∗
t:t+T , u∗

t:t+T−1 with the highest value

+
∑

i∈R̃τ,b(n)\{i∗τ,b}

f
(

φ− − h0,i,ht,i

)

f(φ,h) := log

(

1⊤ exp(h)

1⊤ exp (φ+ h)

)

+ φ⊤σ (φ+ h)

and R̃τ,b(n) ⊆ Rτ,b(rmax) is the set of the first n map

cell indices along the ray Rτηb, i.e., R̃τ,b(n) := {i | i ∈
Rτ,b(r), |Rτ,b(r)| = n, r ≤ rmax}.

Proof: See Appendix B. �

In (13), pτ,b(n, k) represents the probability that the nth map

cell along the ray Rτηb belongs to object category k while

all of the previous cells are free. The function f(φ,h) denotes

the log-ratio of the map PMF σ(h) and its posterior σ(φ+ h),
averaged over object categories in K [see (26) in Appendix B

for more details]. As a result, Cτ,b(n, k) is the sum of log-ratios

for the first n cells along the ray Rτηb under the same event

as the one pτ,b(n, k) is associated with. Therefore, the lower

bound I(m;Zt+1:t+T |Z1:t) is equivalent to the expectation of

summed log-ratios Cτ,b(n, k) over all possible instantiations of

the observations in Zt+1:t+T .

Proposition 2 allows evaluating the informativeness according

to (3) of any potential robot trajectoryXt:t+T ,ut:t+T−1. In order

to perform informative planning, first, we identify the boundary

between the explored and unexplored regions of the map, similar

to [12]. This can be done efficiently using edge detection, for

example. Then, we cluster the corresponding map cells by de-

tecting the connected components of the boundary. Each cluster

is called a frontier. A motion planning algorithm is used to

obtain a set of pose trajectories to the map frontiers, determined

from the current map PMF pt(m). Algorithm 1 summarizes the

procedure for determining a trajectory X∗
t:t+T , u∗

t:t+T−1 that

maximizes the objective in (3), where J(Xt:t+T−1,ut:t+T−1) is

the length of the corresponding path. This kinematically feasible

trajectory can be tracked by a low-level controller that takes the

robot dynamics into account.

Evaluation of the mutual information lower bound in Propo-

sition 2 can be accelerated without loss in accuracy for map

cells along the observation rays that contain equal PMFs. In

the next section, we investigate this property of the proposed

lower bound within the context of OcTree-based representations.

We begin with proposing a multiclass version of the OctoMap

technique, where map cells with equal multiclass probabilities

can be compressed into a larger voxel. Next, a fast semantic

mutual information formula is presented based on compression

of range–category ray-casts over OcTree representations.
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Fig. 4. Example of a semantic OctoMap. (a) A white circle represents an inner node such that its children collectively cover the same physical space as the
inner node itself. A colored square represents a partition of the 3-D space where all downstream nodes contain identical semantic and occupancy values; therefore,
they can be pruned into a leaf node. Lastly, black dots represent unexplored spaces of the environment. (b) geometric representation of the same OcTree with an
overview of the SemanticOcTreeNode class.

VI. INFORMATION COMPUTATION FOR SEMANTIC OCTOMAP

REPRESENTATIONS

Utilizing a regular-grid discretization to represent a 3-D envi-

ronment has prohibitive storage and computation requirements.

Large continuous portions of many real environments are un-

occupied, suggesting that adaptive discretization is significantly

more efficient. OctoMap [3] is a probabilistic 3-D mapping tech-

nique that utilizes an OcTree data structure to obtain adaptive

resolution, e.g., combining many small cells associated with free

space into few large cells. In this section, we develop a multiclass

version of OctoMap and propose an efficient multiclass mutual

information computation which benefits from the OcTree struc-

ture.

A. Semantic OctoMap

An OcTree is a hierarchical data structure containing nodes

that represent a section of the physical environment. Each node

has either 0 or 8 children, where the latter corresponds to the

8 octants of the Euclidean 3-D coordinate system. Thus, the

children of a parent node form an eight-way octant partition

of the space associated with the parent node. Fig. 4 shows an

example of a multiclass OcTree data structure.

We implement a SemanticOcTreeNode class as a building

block of the multiclass OcTree structure. A SemanticOcTreeN-

ode instance stores occupancy, color, and semantic information

of its corresponding physical space, as shown in Fig. 4(b). The

most important data members of the SemanticOcTreeNode class

are as follows.

1) Children: An array of pointers to SemanticOcTreeNode

storing the memory addresses of the eight child nodes.

2) Value: A float variable storing the log-odds occupancy

probability of the node.

3) Color: A ColorRGB object storing the RGB color of the

node.

4) Semantics: A SemanticLogOdds object maintaining a cat-

egorical probability distribution over the semantic labels

in the form of a log-odds ratio.

For performance reasons, the SemanticLogOdds class only

stores the multiclass log-odds for the three most likely class

labels, with each label represented by a unique RGB color. In this

case, the log-odds associated with the rest of the labels lump into

a single others variable. This relives the multiclass OcTree im-

plementation from dependence on the number of labels that the

object classifier can detect. Moreover, it significantly improves

the speed of the mapping algorithm in cases with many semantic

categories. See Section VII-D for an analysis of mapping time

versus the number of stored classes.

The implementation of the multiclass OcTree is completed

by defining a SemanticOcTree class, which is derived from the

OccupancyOcTreeBase class of the OctoMap library [3] and

uses a SemanticOcTreeNode as its node type. Fig. 5 illustrates

the derivation of the SemanticOcTree and SemanticOcTreeNode

classes as a UML diagram.

In order to register a new observation to a multiclass OcTree,

we follow the standard ray-casting procedure over an OcTree, as

in [3], to find the observed leaf nodes. Then, for each observed

leaf node, if the observation demands an update, the leaf node

is recursively expanded to the smallest resolution and the mul-

ticlass log-odds of the downstream nodes are updated using (8).

At the ray’s end point, which indicates an occupied cell, we also

update the color variable by averaging the observed color with

the current stored color of the corresponding node. Algorithm 2

details the Bayesian update procedure for the multiclass OcTree.

To obtain a compressed OctoMap, it is necessary to define

a rule for information fusion from child nodes toward parent

nodes. Depending on the application, different information fu-

sion strategies may be implemented. For example, a conservative

strategy would assign the multiclass log-odds of the child node

with the highest occupancy probability to the parent node. In

this work, we simply assign the average log-odds vector of the

child nodes to their parent node, as shown in Algorithm 3. The

benefit of an OctoMap representation is the ability to combine

similar cells (leaf nodes) into a large cell (inner node). This is

called pruning the OcTree. Every time after an observation is

integrated to the map, starting from the deepest inner node, we
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Fig. 5. UML diagram showing the class inheritance used for the implementa-
tion of a multiclass OcTree.

check for each inner node if 1) the node has eight children, 2)

its children do not have any children of their own, and 3) its

children all have equal multiclass log-odds. If an inner node

satisfies all of these three criteria, its children are pruned and

the inner node is converted into a leaf node with the same

multiclass log-odds as its children. This helps to compress

the majority of the free cells into a few large cells, while the

occupied cells usually do not undergo pruning since only their

surfaces are observed by the sensor and their inside remains

an unexplored region. Due to sensor noise, it is unlikely that

cells belonging to the same class (e.g., free or occupied by the

same obstacle) attain identical multiclass log-odds. Maximum

and minimum limits for the elements of the multiclass log-odds

are used so that each cell arrives at a stable state as its multiclass

log-odds entries reach the limits. Stable cells are more likely to

share the same multiclass probability distribution, consequently

increasing the chance of OcTree pruning. However, thresholding

causes loss of information near pt(mi = k) = 1, k ∈ K which

can be controlled by the maximum and minimum limits.

B. Information Computation

A ray cast through an OcTree representation may visit several

large cells within which the class probabilities are homogeneous.

We exploit this property to obtain the mutual information be-

tween a multiclass OctoMap and a single ray as a summation

over a subset of OcTree leaf nodes instead of individual map

cells. This simplification provides a significant performance gain

with no loss of accuracy. The following formulation can be

considered a multiclass generalization of the run-length encod-

ing technique introduced by [10], using the mutual information

Algorithm 2: Multiclass OcTree Update of Node ni.

Input: OcTree node ni, observation z = (r, y), mixing

coefficient α
1: s = ni.semantics
2: s.d = ni.semantics.data
3: s.o = ni.semantics.others
4: if z indicates free then

5: Update s with φ−

6: else if z indicates class y then

7: if class y is among the 3 most likely classes in s then

8: Update s with φ+ +Ey+1ψ
+

9: else ⊲ Derive haux as a portion α of others class

10: haux = s.o+ logα
11: s.o += φ+

others + log (1− α)
12: sc = concat(s.d, (y, haux))
13: Update sc with φ+ +Ey+1ψ

+

14: Perform descending sort on sc with respect to

log-odds values

⊲ Pick 3 most likely classes

15: s.d = sc[0 : 2]
⊲ Combine the least likely class with others class

16: s.o = log(exp (sc[3]) + exp (s.o))
⊲ Apply thresholds s and s for log-odds values

17: sf ← min{max{sf , s}, s}
18: ni.semantics = s
19: return ni

lower bound in (13) and the multiclass OcTree defined earlier

in this section.

Suppose that the map cells along a single beam Rτηb have

piecewise-constant multiclass probabilities such that the set

{mi | i ∈ Rτ,b(rmax)} can be partitioned into Qτ,b groups of

consecutive cells indexed byRq
τ,b(rmax), q = 1, . . . , Qτ,b, where

pt(mi = k) = pt(mj = k)

∀i, j ∈ Rq
τ,b(rmax) ∀k ∈ K. (14)

In this case, the log-odds probabilities encountered by a ray cast

can be compressed using semantic run-length encoding, defined

as follows.

Definition 3: A semantic run-length encoding of a ray Rτηb

cast through a multiclass OcTree is an ordered list of tuples of

the form [(ωτ,b,q,χt,q)]
Qτ,b

q=1 , whereωτ,b,q andχt,q , respectively,

represent the width and the log-odds vector of the intersection

between the ray and the cells in Rq
τ,b(rmax). The width ωτ,b,q

is the number of OcTree elements along the ray intersection,

where an OcTree element is a cell with the smallest physical

dimensions.

Fig. 6 shows an example of SRLE over a semantic OctoMap.

While SRLE can be used in a uniform-resolution grid map, it is

particularly effective of a multiclass OcTree, which inherently

contains large regions with homogeneous multiclass log-odds.

In addition, the OcTree data structure allows faster ray casting

since it can be done over OcTree leaf nodes [46], [47], instead

of a uniform-resolution grid, as in [45].
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Algorithm 3: Semantic Fusion of Two Child Nodes.

Input: OcTree nodes ni and nj

1: si = ni.semantics
2: sj = nj .semantics
⊲ Non-repeating list of classes in si and sj

3: Kf = uniqueClass(si, sj)
⊲ Object instantiation for the fused semantics

4: sf = SemanticLogOdds()
⊲ Slice si.o into smaller probabilities

5: oi = si.o− log(1 +Kf .size− si.d.size)
6: oj = sj .o− log(1 +Kf .size− sj .d.size)
7: for y ∈ Kf do

8: if y /∈ si.d.label ∧ y ∈ sj .d.label then

9: sf .d.append
(

y,
oi+sj .d[y].logOdds

2

)

10: else if y ∈ si.d.label ∧ y /∈ sj .d.label then

11: sf .d.append
(

y,
si.d[y].logOdds+oj

2

)

12: else

13: sf .d.append
(

y,
si.d[y].logOdds+sj .d[y].logOdds

2

)

14: Perform descending sort on sf .d with respect to

log-odds values

15: expOthers = exp
(

oi+oj
2

)

16: for i > 3 do

17: expOthers += exp(sf .d[i].logOdds)
18: sf .d[3 : end].remove()
19: sf .o = log(expOthers)
20: sf ← min{max{sf , s}, s}
21: return sf

SRLE ray casting delivers substantial gains in efficiency for

mutual information computation since the contribution of each

group {mi | i ∈ Rq
τ,b(rmax)} in the innermost summation of

(13) can be obtained in closed form.

Proposition 3: The Shannon mutual information between a

single range–category measurement zτ,b and a semantic Oc-

toMap m can be computed as

I (m; zτ,b|Z1:t) =

K
∑

k=1

Qτ,b
∑

q=1

ρτ,b(q, k)Θτ,b(q, k) (15)

where Qτ,b is the number of partitions along the ray Rτηb that

have identical multiclass log-odds and the multiclass probabili-

ties for each partition are denoted as
{

πt(q, k) = pt(mi = k)

χt,q = ht,i

∀i ∈ Rq
τ,b(rmax).

Furthermore, defining ωτ,b,q = |Rq
τ,b(rmax)| as the width of the

qth partition, we have

ρτ,b(q, k) := πt(q, k)

q−1
∏

j=1

π
ωτ,b,j

t (j, 0),

Θτ,b(q, k) := βτ,b(q, k)
1− π

ωτ,b,q

t (q, 0)

1− πt(q, 0)

Fig. 6. Ray cast representation as semantic run-length encoding (SRLE). The
multiclass log-oddsχt,q are uniform within each cube. The voxel corresponding
to q = 2 is unexplored, hence its multiclass log-odds are denoted as χ0,2.

+
f
(

φ− − χ0,q,χt,q

)

(1− πt(q, 0))2

[

(ωτ,b,q − 1)π
ωτ,b,q+1
t (q, 0)

− ωτ,b,qπ
ωτ,b,q

t (q, 0) + πt(q, 0)
]

βτ,b(q, k) := f
(

φ+ +Ek+1ψ
+ − χ0,q,χt,q

)

+

q−1
∑

j=1

ωτ,b,jf
(

φ− − χ0,j ,χt,j

)

.

Proof: See Appendix C. �

In (15), ρτ,b(q, k) relates to the event that the partition

Rq
τ,b(rmax) belongs to category k while all of the previous

partitions along the ray Rτηb are free. Analogous to the def-

inition of Cτ,b(n, k) in Proposition 2, βτ,b(q, k) is the weighted

sum of log-ratios f(φ,χ) for the first q partitions along the

ray Rτηb under the same event as the one ρτ,b(q, k) is asso-

ciated with. Accumulating the multiclass probabilities within

the partition Rq
τ,b(rmax) yields Θτ,b(q, k), see (33) for more

details. Therefore, the mutual information in (15) is equivalent

to the expectation of accumulated log-ratios Θτ,b(q, k) over all

possible instantiations of zτ,b.

Proposition 3 allows an extension of the mutual-information

lower bound in Proposition 2 to semantic OctoMap represen-

tations, summarized in the following corollary. The proof fol-

lows directly from the additive property of mutual information

between a semantic OctoMap and a sequence of independent

observations.

Corollary 1: Given a sequence of range–category obser-

vations Zt+1:t+T , the Shannon mutual information between

Zt+1:t+T and a semantic OctoMap m can be lower bounded

as

I(m;Zt+1:t+T |Z1:t) ≥ I
(

m;Zt+1:t+T |Z1:t

)

=

t+T
∑

τ=t+1

B
∑

b=1

K
∑

k=1

Qτ,b
∑

q=1

ρτ,b(q, k)Θτ,b(q, k) (16)
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where Zt+1:t+T is a subset of nonoverlapping measurements

that satisfy (12), and ρτ,b(q, k) and Θτ,b(q, k) are defined in

Proposition 3.

The same approach, as in Algorithm 1, is used for autonomous

exploration over a semantic OctoMap. However, we employ

the information computation formula of (16) to quantify the

informativeness of candidate robot trajectories. The active map-

ping method in Algorithm 1 provides a greedy exploration

strategy, which does not change subsequent control inputs based

on the updated map distribution. Greedy exploration may be

suboptimal and manifests itself as back and forth travel between

map frontiers. We alleviate this behavior by 1) computing the

information along the whole trajectory as opposed only at the

frontiers or next best view, and 2) replan frequently to account for

the updated map distribution. Discounted by distance traveled as

the cost of a trajectory, this leads to a more accurate calculation

of information gain along a candidate path which rules out most

of the back and forth visiting behavior. It is also important

to mention that the main scope of this work is introduction

of a novel multiclass semantic OcTree representation and the

mutual information between such model and range-category

observations. Our method enables fast and accurate evaluation

of information for any set of candidate trajectories, likes of

which can be generated by random tree methods [10], [48] or

hierarchical planning strategies [21] or, in the simplest form, a

greedy approach that computes paths to each frontier. We believe

utilizing our proposed information measure to score candidate

viewpoints would be complementary, rather than an alternative,

to the state-of-the-art exploration methods that use sophisticated

optimization strategies [19], [21], [49].

C. Computational Complexity

Note that the mutual information computations in both (13)

and (16) can be performed recursively. For (13), we have

pτ,b(n+ 1, k) = pτ,b(n, k)
pt(mj∗

τ,b
= k)pt(mi∗

τ,b
= 0)

pt(mi∗
τ,b

= k)

Cτ,b(n+ 1, k) = Cτ,b(n, k)

− f
(

φ+ +Ek+1ψ
+ − h0,i∗

τ,b
,ht,i∗

τ,b

)

+ f
(

φ+ +Ek+1ψ
+ − h0,j∗

τ,b
,ht,j∗

τ,b

)

+ f
(

φ− − h0,i∗
τ,b

,ht,i∗
τ,b

)

(17)

where j∗τ,b and i∗τ,b correspond to the index of farthest map cell

in R̃τ,b(n+ 1) and R̃τ,b(n), respectively. A similar recursive

pattern can be found in (16)

ρτ,b(q + 1, k) = ρτ,b(q, k)
πt(q + 1, k)π

ωτ,b,q

t (q, 0)

πt(q, k)

βτ,b(q + 1, k) = βτ,b(q, k)

− f
(

φ+ +Ek+1ψ
+ − χ0,q,χt,q

)

+ f
(

φ+ +Ek+1ψ
+ − χ0,q+1,χt,q+1

)

+ ωτ,b,qf
(

φ− − χ0,q,χt,q

)

. (18)

Fig. 7. Synthetic environments used for comparisons among frontier-based
exploration [12], FSMI [10], and SSMI. Different semantic categories are
represented by distinct colors. Left: An instance of procedurally generated
random environment with 10 object classes. Right: Hand-designed environment
with corridor and block structures with 12 object classes.

This implies that the innermost summations of (13) and (16)

can be obtained in O(Nτ,b) and O(Qτ,b), respectively, where

Nτ,b is the number of map cells along a single ray Rτηb up

to its maximum range, and Qτ,b is the number of groups of

consecutive cells that possess the same multiclass probabilities.

In an environment containing K object classes, evaluating the

informativeness of a trajectory composed of T observations,

where each observation contains B beams, has a complexity of

O(TBKNτ,b) for a regular-grid multiclass representation and a

complexity of O(TBKQτ,b) for a multiclass OcTree representa-

tion.

As we demonstrate in Section VII-C, for a ray Rτηb we often

observe that Qτ,b is significantly smaller than Nτ,b thanks to

the OcTree pruning mechanism. Since Nτ,b scales linearly with

the map resolution, the complexity of information computation

over a semantic OctoMap grows sublinearly with respect to the

inverse of the OcTree element dimensions, which is a parameter

analogous to the map resolution.

VII. EXPERIMENTS

In this section, we evaluate the performance of SSMI in

simulated and real-world experiments. We compare SSMI with

two baseline exploration strategies, i.e., frontier-based explo-

ration [12] and FSMI [10], in a 2-D active binary mapping

scenario in Section VII-A and a 2-D active multiclass map-

ping scenario in Section VII-B. All three methods use our

range–category sensor model in (10) and our Bayesian multi-

class mapping in (8) but select informative robot trajectories

Xt+1:t+T (ut:t+T−1) based on their own criteria. In Section VI-

I-C, we evaluate the improvement in ray tracing resulting from

SRLE through an experiment in a 3-D simulated Unity envi-

ronment. In Section VII-D, we investigate the influence of the

number of stored semantic classes on mapping performance. In

addition, in Section VII-E, we use a similar 3-D simulation envi-

ronment to apply SSMI alongside Frontier, FSMI, and hierarchi-

cal coverage maximization method TARE [21]. In this section,

we use our OcTree-based multiclass information computation

introduced in Section VI in order to demonstrate large-scale

realistic active multiclass mapping. Finally, in Section VII-F

and Section VII-G, we test SSMI mapping and exploration in
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Fig. 8. Simulation results for active mapping on the environments in Fig. 7, for 20 exploration iterations. Solid and dotted lines represent mean and 1 standard
deviation from the mean, respectively. (a) and (b) Exploration performance averaged over ten random environments with three random starting positions for each
instance. Exploration in the random environments sometimes did not terminate before the maximum number of iterations, and therefore the corresponding curves
do not flatten. This can be attributed to the fact that random maps, with the same size as the structured map, contain more frontiers that need to be explored in each
iteration since each scan has a higher probability of being occluded in multiple angles due to the lack of certain patterns, such as corridors. (c) and (d) Exploration
performance on the structured environment averaged over three random starting positions. For the structured map, the exploration terminates before reaching the
maximum number of iterations, which explains the flat curves at the end of the corresponding plots. (a) Random map/binary exploration. (b) Random map/semantic
exploration. (c) Structured map/binary exploration. (d) Structured map/semantic exploration.

real environments using ground wheeled robots. An open-source

implementation of SSMI is available on GitHub.2

In each planning step of 2-D exploration, we identify frontiers

by applying edge detection on the most likely map at time t (the

mode of pt(m)). Then, we cluster the edge cells by detecting

the connected components of the boundaries between explored

and unexplored space. We plan a path from the robot pose Xt

to the center of each frontier using A∗ graph search and provide

the path to a low-level controller to generate ut:t+T−1. For 3-D

exploration, we first derive a 2-D occupancy map by projecting

the most likely semantic OctoMap at time t onto the z = 0
surface and proceed with similar steps, as in 2-D path planning.

A. 2-D Binary Exploration

We consider active binary occupancy mapping first. We com-

pare SSMI against Frontier and FSMI in one structured and ten

procedurally generated 2-D environments, shown in Fig. 7. A

2-D LiDAR sensor is simulated with additive Gaussian noise

N (0, 0.1). Fig. 8(a) and (c) compare the exploration perfor-

mance in terms of map entropy reduction and percentage of the

map explored per distance traveled among the three methods.

SSMI performs similarly to FSMI in that both achieve low map

entropy by traversing significantly less distance compared to

Frontier.

2[Online]. Available: https://github.com/ExistentialRobotics/SSMI.

B. 2-D Multiclass Exploration

Next, we use the same 2-D environments in Fig. 7 but intro-

duce range–category measurements. Range measurements are

subject to additive Gaussian noise N (0, 0.1), while category

measurements have a uniform misclassification probability of

0.35. Fig. 8(b) and (d) compare the semantic exploration per-

formance for all three strategies. SSMI reaches the same level

of map entropy as FSMI and Frontier but traverses a noticeably

shorter distance. This can be attributed to the fact that only SSMI

distinguishes map cells whose occupancy probabilities are the

same but their per-class probabilities differ from each other. To

further illustrate this, we visualize the entropy and information

surfaces used by FSMI and SSMI. Fig. 9(a) shows a snapshot of

semantic exploration, while Fig. 9(b) visualizes the entropy of

each pixel i computed as

H(mi|Z1:t) = −
K
∑

k=0

pt(mi = k) log pt(mi = k) (19)

where Z1:t denote realized observations until time t. The task of

exploration can be regarded as minimizing the conditional en-

tropy summed over all pixels, i.e., map entropy. However, since

the observations are not known in advance, we resort to estimate

the reduction in uncertainty by computing the expectation over

the observations. Accounting for the prior uncertainty in map,

we arrive at maximizing mutual information as our objective,
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Fig. 9. Comparison between different mutual information formulations used
for exploration. (a) and (b) A snapshot of 2-D exploration showing the map
estimate and the corresponding uncertainty, where the entropy for each pixel i is
computed as in (19). (c) and (d) Mutual information used to find the informative
trajectory by FSMI and SSMI, respectively. Brighter pixels indicate larger
values. (a) Partially explored semantic map. (b) Entropy surface. (c) Occupancy
mutual information surface. (d) Multiclass mutual information surface.

which is related to entropy as follows:

H(mi)− EZ1:t
{H(mi|Z1:t)} = I(mi;Z1:t). (20)

Therefore, the exploration performance is highly dependent

upon the mutual information formulation, since it directly dic-

tates how the uncertainty is quantified. As shown in Fig. 9(d) and

resulted from capturing per-class uncertainties, semantic mutual

information of SSMI, computed in (13) provides a smoother and

more accurate estimation of information-rich regions compared

to the binary mutual information formula used by FSMI ([10,

eq. (18)]) shown in Fig. 9(c).

C. SRLE Compression for 3-D Ray Tracing

In this subsection, we evaluate the ray-tracing compression

resulting from SRLE through an experiment in a photorealistic

3-D Unity simulation, shown in Fig. 10(e). We use a Husky

robot equipped with an RGBD camera and run a semantic seg-

mentation algorithm over the RGB images. In order to remove

irrelevant randomness, the sensors and the semantic segmenta-

tion are defined as error-free. We define map resolution as the

inverse of the dimensions of an OcTree element. For resolutions

ranging from 1.3 to 6.6 m−1, we run five exploration iterations

using the semantic OctoMap and information computation of

Section VI and store all ray traces in SRLE format. Fig. 11

shows the change in distribution for the number of OctoMap

cells Q and OcTree elements N visited during each ray trace, as

well as the time required to execute each exploration episode as

a function of map resolution. In other words, N represents the

number of cells to be processed during mapping and information

computation as if the environment was represented as a regular

3-D grid, while Q represents the actual number of processed

semantic OctoMap cells. The pruning mechanism of the OcTree

representation results in a substantial gain in terms of the number

of cells visited for each ray tracing. As opposed to the almost

linear growth of N , the distribution for Q is effectively inde-

pendent of the map resolution, except for very fine resolutions

where void areas between observations rays prevent efficient

pruning. However, for map resolutions larger than 2 m−1, the

exploration time tends to grow larger with the increase of map

resolution. This is attributed to the recursive ray insertion method

of OctoMap in which it is required to recompute log odds for

each OcTree element along an observation ray whenever an

observation ray does not carry the same (free or object class)

state as the visited cell. In the subsequent 3-D experiments, we

choose map resolution of 2 m−1 in order to balance between

performance and map accuracy.

D. Mapping Time Versus Number of Stored Classes

We analyze the influence of the number of stored classes in

the semantic OctoMap on the mapping time. Let Ks denote

the number of stored semantic classes. Algorithm 2 has O(Ks)
memory and O(Ks logKs) computational complexity (due to

sorting in line 14). Furthermore, let pmiss be the misclassifi-

cation probability assumed to be uniformly distributed among

all incorrect classes. Regarding accuracy, for a classifier with

pmiss <
K−1
K

, where K is the number of all object classes, the

true class will be always asymptotically recoverable as long

as Ks ≥ 2, thanks to the auxiliary others class that stores the

accumulated probability of the K −Ks least likely classes (see

line 16 of Algorithm 2). In general, Ks controls how fast the

true class will be detected with the cost of additional memory

use and computation. In order to quantitatively evaluate the

effect of Ks on mapping time, we consider the same Husky

robot as the previous subsection with a fixed trajectory, shown in

Fig. 12 (top), and measure the mapping frequency as a function

of Ks. Fig. 12 (bottom) shows the decrease in average mapping

frequency as Ks increases. It is important to mention that the

trajectory along which the data are collected only visits six object

classes, which explains the change in slope for Ks > 6.

E. 3-D Exploration in a Unity Simulation

We evaluate SSMI in the same 3-D simulation environment

as two previous subsections, however, this time the range mea-

surements have an additive Gaussian noise of N (0, 0.1) and

the semantic segmentation algorithm detects the true class with

a probability of 0.95 while the misclassification happens uni-

formly in the pixel space. Fig. 10 shows several iterations of the

exploration process. For comparison, we implemented a 3-D ver-

sion of FSMI [10] that utilizes run-length encoding to accelerate

the information computation for a binary OctoMap. Moreover,

we deploy the state-of-the-art hierarchical exploration method
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Fig. 10. Time lapse of autonomous exploration and multiclass mapping in a simulated Unity environment. The robot is equipped with an RGBD sensor and
runs semantic segmentation. Different colors represent different semantic categories (grass, dirt road, building, etc.). (a) Robot begins exploration. (b) After 16
iterations, the robot starts to refine previously explored areas to fill partially observed objects. (c) Robot explores unknown regions located on the boundaries of
the explored area at iteration 40. (d) Multiclass occupancy map after 60 exploration iterations. (e) Photo-realistic Unity simulation environment.

of TARE [21] in our 3-D Unity simulation environment. Fig. 13

shows the change in map entropy versus distance traveled and

total elapsed time for all exploration strategies. We observe

that SSMI is the most efficient in terms of solving the tradeoff

between path length and information gathered along the path.

SSMI achieves the lowest entropy in the multiclass OctoMap.

Similar to the discussion in Section VII-B, this observation

can be ascribed to the fact that, among the compared methods,

the only objective function which captures the uncertainty in

both semantic classes and occupancy of the environment is

the one used by SSMI. On the other hand, SSMI and FSMI

require evaluation of mutual information along each candidate

trajectory, which has the same cardinality as the number of

all frontiers in the current map estimate pt(m), whereas the

hierarchical planning method employed by TARE only requires

local trajectory computation with a global coverage path ob-

tained at a coarse level. As a result, TARE exploration can be

performed over a relatively shorter time period compared to

SSMI and FSMI in scenarios where the number of frontiers

is large, e.g., outdoor areas. Parallel computation of mutual

information for each candidate trajectory or using heuristics,

such as frontier size in order to sort candidate solutions would

improve the computation time of SSMI; however we believe

these are outside of the scope of this article. Fig. 14 compares the

mapping precision of various object classes for the tested meth-

ods. SSMI exhibits higher precision for object categories that

appear rarely, such as the Animal or Tree classes while Frontier

slightly outperforms SSMI when it comes to mapping the Grass

and Dirt Road categories. This can be explained by the tendency

of SSMI toward achieving high overall classification precision

even if it requires slight reduction of precision for certain object

categories. Furthermore, TARE achieves the highest precision

for the Building class, which can be justified by the observation

that the computed global coverage path tends to traverse near

building walls.

F. 3-D Mapping in a Real-World Outdoor Environment

We deployed our semantic OcTree mapping approach on a

Husky robot equipped with an Ouster OS1-32 LiDAR and an

Intel RealSense D455 RGBD camera. Our software stack is

implemented using the robot operating system (ROS) [50]. The

LiDAR is used for localization via iterative closest point (ICP)

scan matching [51]. A neural network based on a FCHarDNet

architecture [52] and trained on the RUGD dataset [53] was used

for semantic segmentation. The RGBD camera produces color
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Fig. 11. Variation of the visited OctoMap cells and OcTree elements denoted
as Q and N , respectively, with respect to the map resolution. Solid blue and
red lines represent the average values for Q and N over all ray castings, while
the dashed lines show one standard deviation from the average. The green curve
shows the total exploration time for each map resolution. All measurements are
accumulated in the course of five exploration iterations.

Fig. 12. Mapping time versus number of stored classes. Top: Robot trajectory
(in green) used for all mapping frequency evaluations. Bottom: Average mapping
frequency as a function of the number of stored semantic classes Ks.

and depth images with size 640 × 480 at 30 frames per second.

The semantic segmentation algorithm takes a 2-D color image

and outputs a semantic label for each pixel in the image, at an

average frame rate of 28.7 frames per second. By aligning the

semantic image and the depth map, we derive a semantic 3-D

point cloud which is utilized for Bayesian multiclass mapping.

Our implementation was able to update the semantic OctoMap

every 0.12 s, on average, while all of the computations were

performed on the mobile robot. The experiment was carried out

in an approximately six acre forested area shown in Fig. 15.

Fig. 13. Simulation results for exploration in Unity 3-D environment.

Fig. 14. Mapping precision for observed semantic classes.

Fig. 15. Environment for the outdoor mapping experiment. Left: Satellite
image of the experiment locale with robot trajectory shown in yellow. Right:
Corresponding locations from the ground level point of view.

The environment contained various terrain features, including

asphalt road, gravel, grass, densely forested areas, and hills. In

addition, a number of buildings and other structures, such as

bleachers, tents, and cars add to the diversity of the type of object

categories within the locale. The robot was manually controlled

via joystick, and traveled the path shown in Fig. 15 (left) while

incrementally building the semantic OctoMap. Fig. 16 shows the

semantic mapping result overlaying the satellite image obtained

via 2-D projection of the semantic OctoMap. We computed the
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Fig. 16. Semantic mapping output overlaying the satellite image. The map is
obtained via 2-D projection of the 3-D semantic OctoMap.

Fig. 17. Memory use of regular grid versus semantic OctoMap.

memory size of the semantic OctoMap, and compared it with

the corresponding regular voxel grid representation, where each

voxel contains the same amount of data as an OcTree leaf node

at the lowest depth. Fig. 17 shows an almost fivefold saving in

memory when using OcTree data structure. The importance of

the memory savings of the OctoMap representation becomes

more apparent when communication is considered. Our seman-

tic OctoMap implementation resulted in a network bandwidth

requirement of 238 KB/s for OctoMap, whereas a regular grid

required 1173 KB/s for map communication.

G. 3-D Exploration in a Real-World Office Environment

We implemented SSMI on a ground wheeled robot to au-

tonomously map an indoor office environment. Fig. 18 shows the

robot equipped with an NVIDIA Xavier NX computer, a Hokuyo

UST-10LX LiDAR, and an Intel RealSense D435i RGBD cam-

era. Similar to the outdoor experiments, ROS was used for

software deployment on the robot, and ICP laser scan matching

provided localization. This time, we utilized a ResNet18 [54]

neural network architecture pretrained on the SUN RGB-D

dataset [55] for semantic segmentation. In particular, we em-

ployed the deep learning inference ROS nodes provided by

NVIDIA [56], which are optimized for Xavier NX computers

via TensorRT acceleration. Due to limited computational power

available on the mobile platform, we operated the RGBD camera

Fig. 18. Robot car used in indoor real-world experiments.

Fig. 19. Real-world experiment results for active mapping for 20 exploration
iterations.

at a lower frame rate of 15 Hz with color and depth image size set

to 640 × 480. The semantic segmentation algorithm was able

to produce pixel classification images (resized to 512 × 400)

at an average rate of 9.8 frames per second. Our implementation

was able to publish semantic OctoMap ROS topics every 0.34 s,

on average, with all of the processing occurred on the mobile

platform. Fig. 20 depicts the exploration process, while Fig. 19

shows the performance of SSMI compared to frontier-based over

20 exploration iterations. We observe that, similar to the simu-

lations, SSMI outperforms frontier-based exploration in terms

of distance traveled. Also, SSMI shows on par performance

compared to Frontier in terms of entropy reduction per time.

This can be explained by the fact that large depth measurement

noise and classification error in the real-world experiments result

in 1) the need for revisiting explored areas in order to estimate

an accurate map, leading to poor entropy reduction for the

frontier-based method and 2) a small number of safe candidate

trajectories, leading to fewer computations to be performed by

SSMI. Overall, our experiments show that SSMI outperforms

Frontier in indoor exploration scenarios, where the number and

length, of candidate trajectories is constrained by the size of the

environment.
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Fig. 20. Time lapse of autonomous exploration and multiclass mapping in the environment shown in (d). The exploration is run for 20 iterations. Different colors
represent different semantic categories (floor, wall, furniture, etc.). (a) Robot begins exploration. (b) Robot visits neighboring unexplored regions while trying to
refine the map of visited areas. (c) Semantic OctoMap after 20 exploration iterations. (d) Office environment featuring corridors, furniture, signs, and doors.

VIII. CONCLUSION

This article developed techniques for active multiclass map-

ping of large 3-D environments using range and semantic

segmentation observations. Our results enable efficient mutual

information computation over multiclass maps and make it

possible to optimize for per-class uncertainty. Our experiments

showed that SSMI performed on par with the state-of-the-art

FSMI method in binary active mapping scenarios. However,

when semantic information was considered SSMI outperformes

existing algorithms and lead to efficient exploration and accurate

multiclass mapping even in the presence of domain shift due

to the difference between the classification training data and

the testing environment. Experiments in both simulated and

real-world environments showed the scalability of SSMI for

large-scale 3-D exploration scenarios.

APPENDIX A

PROOF OF PROPOSITION 1

Applying Bayes rule in (2) and the factorization in (5) to

pt(m) for some z ∈ Zt+1 leads to

N
∏

i=1

p(mi|Z1:t, z) =
p(z)

p(z|Z1:t)

N
∏

i=1

p(mi|z)

p(mi)
p(mi|Z1:t). (21)

The term
p(z)

p(z|Z1:t)
may be eliminated by considering the odds

ratio of an arbitrary category mi = ki ∈ K versus the free cate-

gory mi = 0 for each cell i

N
∏

i=1

p(mi = ki|Z1:t, z)

p(mi = 0|Z1:t, z)

=
N
∏

i=1

p(mi = ki|z)

p(mi = 0|z)

p(mi = 0)

p(mi = ki)

p(mi = ki|Z1:t)

p(mi = 0|Z1:t)
. (22)

Since each term in both the left- and right-hand side products

only depends on one map cell mi, the expression holds for each

individual cell. Rewriting the expression for cell mi in vector

form, with elements corresponding to each possible value of

ki ∈ K, and taking an elementwise log leads to

[

log p(mi=0|Z1:t,z)
p(mi=0|Z1:t,z)

· · · log p(mi=K|Z1:t,z)
p(mi=0|Z1:t,z)

]⊤

= (li(z)− h0,i) + ht,i. (23)

Applying (23) recursively for each element z ∈ Zt+1 leads to

the desired result in (8). �
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APPENDIX B

PROOF OF PROPOSITION 2

Let Rt+1:t+T (rmax) := ∪τ,bRτ,b(rmax) be the set of map

indices which can potentially be observed by Zt+1:t+T . Using

the factorization in (5) and the fact that Shannon entropy is

additive for mutually independent random variables, the mutual

information only depends on the cells whose index belongs to

Rt+1:t+T (rmax), i.e.,

I(m;Zt+1:t+T | Z1:t)

=

t+T
∑

τ=t+1

B
∑

b=1

∑

i∈Rτ,b(rmax)

I(mi; zτ,b | Z1:t). (24)

This is true because the measurements zτ,b ∈ Zt+1:t+T are in-

dependent by construction and the terms I(mi;Zt+1:t+T | Z1:t)
can be decomposed into sums of mutual information terms

between single-beam measurements zτ,b and the respective ob-

served map cells mi. The mutual information between a single

map cell mi and a sensor ray z is

I(mi; z | Z1:t)

=

∫

p(z | Z1:t)

K
∑

k=0

p(mi=k | z,Z1:t) log
p(mi=k | z,Z1:t)

pt(mi=k)
dz.

(25)

Using the inverse observation model in (10) and the Bayesian

multiclass update in (8), we have

K
∑

k=0

p(mi = k | z,Z1:t) log
p(mi = k | z,Z1:t)

pt(mi = k)

= (li(z)−h0,i)
⊤σ(li(z)−h0,i+ht,i)+log

p(mi=0 | z,Z1:t)

pt(mi=0)

= f(li(z)− h0,i,ht,i) (26)

where (10) and (8) were applied a second time to the log

term above. Plugging (26) back into the mutual information

expression in (25) and returning to (24), we have

I(m;Zt+1:t+T | Z1:t)

=
t+T
∑

τ=t+1

B
∑

b=1

K
∑

y=1

∫ rmax

0

(

p(zτ,b = (r, y) | Z1:t)

∑

i∈Rτ,b(rmax)

f (li((r, y))− h0,i,ht,i)

)

dr. (27)

For zτ,b = (r, y), the second term inside the integral above can

be simplified to

C̃τ,b(r, y) :=
∑

i∈Rτ,b(rmax)

f(li((r, y))− h0,i,ht,i)

= f
(

φ+ +Ey+1ψ
+ − h0,i∗

τ,b
,ht,i∗

τ,b

)

+
∑

i∈Rτ,b(r)\{i∗τ,b}

f
(

φ− − h0,i,ht,i

)

(28)

because for map indices i ∈ Rτ,b(rmax) \ Rτ,b(r) that are not

observed by zτ,b, we have li((r, y)) = h0,i according to (10)

and f(h0,i − h0,i,ht,i) = 0.

Next, we apply the definition of (11) for the first term

in the integral in (27), which turns it into an integration

over p̃τ,b(r, y)C̃τ,b(r, y). Note that p̃τ,b(r, y) and C̃τ,b(r, y) are

piecewise-constant functions since Rτ,b(r) is constant with

respect to r as long as the beam z lands in cell mi∗ . Hence,

we can partition the integration domain over r into a union

of intervals where the beam z hits the same cell, i.e., Rτ,b(r)
remains constant

∫ rmax

0

p̃τ,b(r, y)C̃τ,b(r, y) dr =

Nτ,b
∑

n=1

∫ rn

rn−1

p̃τ,b(r, y)C̃τ,b(r, y) dr

where Nτ,b = |Rτ,b(rmax)|, r0 = 0, and rN = rmax. From the

piecewise-constant property of p̃τ,b(r, y) and C̃τ,b(r, y) over the

interval (rn−1, rn], one can obtain
∫ rn

rn−1

p̃τ,b(r, y)C̃τ,b(r, y) dr

= p̃τ,b(rn, y)C̃τ,b(rn, y)γ(n) = pτ,b(n, y)Cτ,b(n, y)
(29)

where pτ,b(n, y) and Cτ,b(n, y) are defined in the statement of

Proposition 2. Substituting y with k and plugging the integration

result into (27) yields the lower bound in (13) for the mutual

information between m and Zt+1:t+T . �

APPENDIX C

PROOF OF PROPOSITION 3

Consider a single beam zτ,b, passing through cells {mi}i, i ∈
Rτ,b(rmax). As shown in Appendix B, the mutual information

between the map m and a beam zτ,b can be computed as

I(m; zτ,b|Z1:t) =
K
∑

k=1

Nτ,b
∑

n=1

pτ,b(n, k)Cτ,b(n, k). (30)

Assuming piecewise constant class probabilities, we have

Nτ,b
∑

n=1

pτ,b(n, k)Cτ,b(n, k)

=

Qτ,b
∑

q=1

ωτ,b,1:q
∑

n=ωτ,b,1:q−1+1

pτ,b(n, k)Cτ,b(n, k) (31)

where ωτ,b,1:q =
∑q

j=1 ωτ,b,j . For each ωτ,b,1:q−1 < n ≤
ωτ,b,1:q , the terms pτ,b(n, k) and Cτ,b(n, k) are expressed as

pτ,b(n, k) = πt(q, k)π
(n−1−ωτ,b,1:q−1)
t (q, 0)

q−1
∏

j=1

π
ωτ,b,j

t (j, 0)

Cτ,b(n, k) = f
(

φ+ +Ek+1ψ
+ − χ0,q,χt,q

)

+ (n− 1− ωτ,b,1:q−1)f
(

φ− − χ0,q,χt,q

)

+

q−1
∑

j=1

ωτ,b,jf
(

φ− − χ0,j ,χt,j

)

.
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Plugging this into the inner summation of (31) leads to

ωτ,b,1:q
∑

n=ωτ,b,1:q−1+1

pτ,b(n, k)Cτ,b(n, k)

= ρτ,b(q, k)

[

βτ,b(q, k)

ωτ,b,q−1
∑

j=0

πj
t (q, 0)

+ f
(

φ− − χ0,q,χt,q

)

ωτ,b,q−1
∑

j=0

jπj
t (q, 0)

]

. (32)

The summations in (32) can be computed explicitly, leading to

the following closed-form expression:

βτ,b(q, k)

ωτ,b,q−1
∑

j=0

πj
t (q, 0)

+ f
(

φ− − χ0,q,χt,q

)

ωτ,b,q−1
∑

j=0

jπj
t (q, 0)

= βτ,b(q, k)
1− π

ωτ,b,q

t (q, 0)

1− πt(q, 0)

+
f
(

φ− − χ0,q,χt,q

)

(1− πt(q, 0))2

[

(ωτ,b,q − 1)π
ωτ,b,q+1
t (q, 0)

− ωτ,b,qπ
ωτ,b,q

t (q, 0) + πt(q, 0)
]

= Θτ,b(q, k). (33)

Therefore, the Shannon mutual information between a semantic

OctoMap m and a range-category measurement zτ,b can be

computed as in (15). �
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