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ABSTRACT: Controlling the evaporation of a solvent has made it possible to grow
crystals, nanoparticles, and microparticles from liquid droplets. At the heart of this
process is the evaporation-induced diffusion of solute atoms, causing the liquid
solution of the solute atoms to be in a supersaturated state. In this work, we analyze
the mass transport in a spherical liquid droplet, which experiences the loss or
evaporation of the solvents across the droplet surface. Using a pseudo-steady-state
method, two approximate solutions are derived for the moving boundary problem:
one is a linear function of the square of radial variable with a constraint to the loss
rate of the solvent, and the other is an exponential function of the square of radial
variable without any constraint to the loss rate of the solvent. The numerical results
obtained from both approximate solutions are in accord with the numerical results
from the finite element method, validating the approximate solutions. The results
reveal that a small evaporation/loss rate of the solvent is needed to maintain a
relatively uniform distribution of solute atoms in a liquid droplet during the solvent evaporation/loss.

■ INTRODUCTION
Halide perovskites with unique properties of a large absorption
coefficient,1,2 tunable bandgap,3,4 and high photoluminescence
quantum yield5,6 have attracted great interest in the
applications of solar energy7 and optoelectronics.8 One of
the challenges for the applications of halide perovskites is the
structural degradation associated with the penetration of water
molecules and light-induced phase segregation. This has
stimulated research in the production of single-crystal films
of halide perovskites.
There are generally three approaches available to produce

single-crystal films of halide perovskites�bulk crystal slic-
ing,9,10 chemical vapor deposition,11,12 and space-limited
growth.13−18 Among the three approaches, space-limited
growth, which is based on the nucleation and growth of
halide perovskite crystals in liquid solutions, has unique
advantages of relatively high efficiency, tunable chemical
compositions, limited loss of materials, and controllable film
thickness. The nucleation and growth of halide perovskite
crystals require the precursor solution to be supersaturated,
which allows for the “deposition” and motion of monomers on
the surfaces of the crystals to reach “equilibrium” positions.
The continuous growth of single-crystal films of halide
perovskites is dependent on the concentration of the precursor
solution being maintained at a supersaturated state.
Currently, there are two approaches used in the space-

limited growth of single-crystal films of halide perovskites. One
involves isothermal loss/evaporation of the solvent in the
precursor solution to maintain or increase the degree of
supersaturation,19 and the other is mainly based on the inverse-

temperature principle of the decrease in solubility with
increasing temperature.20 Note that increasing temperature
also causes the loss/evaporation of the solvent. The loss/
evaporation of the solvent can be generally regarded as the
diffusion of the solvent from the precursor solution to the
surrounding environment across the free surface, which can
lead to the redistribution of monomers in the precursor
solution with the highest concentration of monomers at the
free surface and likely hinder the growth of single-crystal films.
There is a great need to understand the effects of the loss or
evaporation of the solvent on the spatiotemporal evolution of
the concentration of monomers in a liquid solution.
There are various mathematical models reported in

literature21−24 on the effects of the loss/evaporation of the
solvent on the diffusion of solute atoms in an isolated liquid
droplet and a sessile droplet, as reviewed by Erbil25 and Sazhin
et al.26 Approximate solutions have been obtained under
assumptions that the size of the droplet is maintained
unchanged,22 or the evaporation rate and the diffusion
coefficient of solute atoms are constants.21−24 Gardner23

gave an asymptotic solution of the concentration of solute
atoms in an evaporating drop with the conditions of constant
evaporation rate and diffusion coefficient, and Gavin24

Received: October 5, 2023
Revised: December 1, 2023
Accepted: December 6, 2023
Published: December 19, 2023

Articlepubs.acs.org/Langmuir

© 2023 American Chemical Society
797

https://doi.org/10.1021/acs.langmuir.3c02993
Langmuir 2024, 40, 797−804

D
ow

nl
oa

de
d 

vi
a 

U
N

IV
 O

F 
K

EN
TU

C
K

Y
 o

n 
Ja

nu
ar

y 
23

, 2
02

4 
at

 1
8:

27
:2

7 
(U

TC
).

Se
e 

ht
tp

s:
//p

ub
s.a

cs
.o

rg
/s

ha
rin

gg
ui

de
lin

es
 fo

r o
pt

io
ns

 o
n 

ho
w

 to
 le

gi
tim

at
el

y 
sh

ar
e 

pu
bl

is
he

d 
ar

tic
le

s.

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Fuqian+Yang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Yong+Li"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Kai+Zhang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.langmuir.3c02993&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.langmuir.3c02993?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.langmuir.3c02993?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.langmuir.3c02993?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.langmuir.3c02993?fig=tgr1&ref=pdf
https://pubs.acs.org/toc/langd5/40/1?ref=pdf
https://pubs.acs.org/toc/langd5/40/1?ref=pdf
https://pubs.acs.org/toc/langd5/40/1?ref=pdf
https://pubs.acs.org/toc/langd5/40/1?ref=pdf
pubs.acs.org/Langmuir?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acs.langmuir.3c02993?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/Langmuir?ref=pdf
https://pubs.acs.org/Langmuir?ref=pdf


presented an approximate solution of the problem. Currently,
no analytical solutions are available, and numerical methods
have been used to solve the related problems.27−29 There has
been great interest in obtaining analytical or approximate
solutions of the problem, which can predict the spatiotemporal
evolution of solute atoms in a liquid droplet in the synthesis of
single-crystal films of halide perovskites and in the applications
of particle engineering.
Realizing the importance in controlling the formation and

growth of single-crystal films of halide perovskites and the need
to have an analytical or approximate solution for the
spatiotemporal evolution of the concentration of solute
atoms in a liquid droplet during the solvent evaporation of
the liquid droplet, we revisited the problem of the evaporation
effects on the spatial distribution of solute atoms in a spherical
liquid droplet. Following the method used by Langmuir,21 we
derived the evaporation/loss rate of the solvent across the
surface of the liquid droplet. Approximate solutions of the
spatiotemporal evolution of the concentration of solute atoms
in the liquid droplet are obtained. Comparison between the
approximate solutions and the numerical results from the finite
element method is performed to validate the approximate
solutions.

■ METHODS
Consider a spherical liquid droplet of radius R, which is enclosed in an
air-filled spherical shell of the outmost radius b (b ≫ R), as shown in
Figure 1. The liquid droplet consists of the solvent and solute atoms

(or monomers). At the initial state (t = 0 with t as time), solute atoms
(or monomers) are uniformly distributed in the droplet and the initial
radius of the liquid droplet is R0. The solvent in the liquid droplet
experiences loss/evaporation at a rate of ṁs (= dms/dt in the unit of
moles per unit time) into the spherical shell. The loss/evaporation
rates are the functions of temperature, chemical composition of the
solvent, and size of the droplet. There are two diffusion zones�one is
in the spherical shell for the diffusion of the solvent, and the other is
in the droplet for the diffusion of the solute atoms (or monomers).
For both diffusions, the corresponding diffusion coefficients are
assumed to be constant. Note that the use of the spherical liquid
droplet requires that the droplet size is smaller than the capillary
length of (γ/ρg)1/2 (γ, surface tension; ρ, density; g, gravity). For a
water droplet at room temperature, the capillary length is ∼2.7 mm.
The spherical core−shell structure represents an ideal situation with
the distance between adjacent droplets being much larger than the
droplet size.

For the solvent diffusion in the spherical shell with b ≫ R, the
characteristic time is R2/Ds (Ds as the diffusion coefficient of the
solvent in the spherical shell); for the diffusion of solute atoms in the
spherical droplet, the characteristic time is R2/D (D is the diffusion
coefficient of the solute atoms in the droplet). In general, there is Ds
≫ D, yielding that the characteristic time of R2/Ds is much smaller
than the characteristic time of R2/D. Thus, the diffusion of the solvent

in the spherical shell can be approximated to be quasi-steady, as
implicitly used by Langmuir.21 The diffusion equation for the
diffusion of the solvent in the spherical shell is

+ =c
r r

c
r

d
d

2 d
d

0
2

s
2

s

(1)

with cs as the concentration of the solvent in the unit of mole per unit
volume. The boundary conditions are

= =c b c R c( ) 0 and ( )s s s0 (2)

Here, cs0 is the concentration of the solvent at the surface of the liquid
droplet, which is assumed to be independent of the radius of the
droplet. Note that the first equation in eq 2 can also be used for a
constant concentration of the solvent, c0, by introducing an auxiliary
variable of c (= c − c0). The second equation is based on the condition
that there is no convection present outside of the droplet. There likely
exists the effect of the surrounding material, whose effect can be
introduced by using the Gibbs−Thomson equation.30

The solution of eq 1 with the boundary conditions of eq 2 is
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which gives the amount of the solvent per unit time (loss or
evaporation rate), diffusing into the spherical shell as
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with ms in the unit of mole. For b ≫ R, eq 4 is simplified as

=
m
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d
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4s
s s0 (5)

which is the same as the result given by Langmuir.21 According to the
gas law,31 there is p = cs0RgT with p, Rg, and T as the pressure, gas
constant, and absolute temperature, respectively. Substituting p =
cs0RgT in eq 5 yields the loss/evaporation rate of the solvent from the
liquid droplet as
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The diffusion/evaporation of the solvent from the droplet into the
spherical shell causes the shrinking of the droplet, and the volume
change of the solvent can be calculated as
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where Vs and Ωs are the volume and molar volume of the solvent in
the droplet, respectively. The parameter α is defined as

pD

R T
s s

g (8)

which has the same unit as the diffusion coefficient and can be
regarded as the nominal diffusion coefficient of the solvent in the
spherical shell.

For the diffusion of the solute atoms in the droplet, the diffusion
equation is
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with c as the concentration of the solute atoms in the droplet in the
unit of mole per unit volume. The volume of the droplet can be
calculated as
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Figure 1. Schematic of a spherical liquid droplet of radius R enclosed
in an air-filled spherical shell of the outmost radius b (b ≫ R).
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where Ωc is the molar volume of the solute atoms and r is the radial
variable. Assuming that there is no change in the number/amount of
the solute atoms during the diffusion/evaporation of the solvent into
the spherical shell, we have

=V
t

V
t

d
d

d
d

s
(11)

Substituting eqs 7 and 10 in eq 11 gives

=R
t R

d
d (12)

whose solution is

=R R t22
0
2 (13)

with the condition of R(0) = R0. It is evident that the size of the liquid
droplet decreases with an increase in the diffusion/evaporation time,
as expected.

The initial condition for the diffusion of the solute atoms in the
droplet is

=c r c( , 0) 0 (14)

and the boundary conditions are
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The first equation in eq 15 is attributed to the shrinking of the liquid
droplet, which causes the motion of the solute atoms at the surface of
the droplet toward the droplet center.

We can follow the approach used by Schlünder22 to introduce the
dimensionless radius. This can reduce the above moving boundary
problem to a fixed boundary problem with a modified partial
differential equation for the diffusion of the solute atoms, which
allows for the use of the separation of variables to solve the modified
partial differential equation. See the Appendix section for the analysis.
However, the operator of the derived “eigenequation” is not self-
conjugated, and it is likely that no orthogonal eigenfunctions or
eigenvalues can be obtained from the “eigenequation”.

To solve the partial differential equation with the moving boundary
and the initial boundary conditions, we use a pseudo-steady-state
method32,33 to approximately solve the problem. The steady-state
solution of eq 9 is

=c A (16)

which satisfies the second boundary condition in eq 15. Now, let the
concentration of the solute atoms be

= + + ···c r t t
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with Ȧ(t) = dA(t)/dt. Substituting eq 17 with eq 15, one can easily
show that eq 17 satisfies eq 15. Applying the boundary condition of eq
15 to eq 17 yields
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To the order of Ȧ(t), eq 18 gives
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It needs to be pointed out that it requires Ȧ(t) > 0, i.e., α < 2D, to
meet the condition of ∂c/∂r > 0 at r = R. Substituting eq 13 in eq 19,
we obtain the solution of A(t) as

=t t
R

A( ) A (1
2

) D
0

0
2

3/2(1 /2 )

(20)

and the spatiotemporal evolution of the concentration of the solute
atoms in the droplet to the order of Ȧ(t) as
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with the parameter A0 to be determined.
In general, it is expected that the parameter A0 can be determined

by the initial condition of eq 14. However, this can lead to the
violation of the principle of mass conservation since there is no
change in the solute atoms during the loss/evaporation of the solvent,
as assumed. Thus, we determine the parameter A0 from the mass
conservation of the solute atoms, as given below
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Equation 22 represents that the number of moles of the solute atoms
remains unchanged during the loss/evaporation of the solvent.
Substituting eq 21 in eq 22 yields
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which gives the spatiotemporal evolution of the concentration of the
solute atoms in the droplet as
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It needs to be pointed out that the spatiotemporal evolution of the
concentration of the solute atoms in the droplet given in eq 24 is only
applicable with the condition of α < 2D. Under the condition of α >
2D, one likely needs to use numerical methods or other methods to
obtain the spatiotemporal evolution of the concentration of the solute
atoms in the droplet due to the loss or evaporation of the solvent in
the droplet.

Realizing that eq 17 can be likely approximated as the Taylor series
of an exponential function of r2, we assume that the concentration of
the solute atoms in the droplet can be expressed without constraint to
the ratio of α/D as
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with f(t) and g(t) to be determined. Note that f(t) and g(t) in eq 25
are assumed to be independent. Using the boundary condition of eq
15, we obtain
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Substituting the second equation in eq 26 into eq 22 yields the
function f(t) as
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with erfi(z) as the imaginary error function erf(iz)/i. Thus, the
approximate solution of the spatiotemporal evolution of the
concentration of the solute atoms in the droplet without constraint
to the ratio of α/D is found to be
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For the purpose of comparison, eq 25 is expanded in the Taylor series
to the term r2 as

i
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Comparing eq 29 with eq 17 yields

= =f t t f t g t t( ) A( )and ( ) ( ) A( ) (30)

if it requires eq 25 that can be degenerated to eq 17 or the solution of
eq 28 that can be degenerated to the solution of eq 24. However, f(t)
and g(t) in eq 25 are treated as independent. Thus, the solution of eq
28 cannot be degenerated to the solution of eq 24.

■ RESULTS AND DISCUSSION
In the numerical calculation, we introduce the following
dimensionless variables

= = =r R Dt R D/ , / , and /0 0
2 (31)

Using the dimensionless variables, eqs 24 and 28 can be
written as

= [ + ]

[ + ]

<

c
c

( , )
(1 2 ) 1

3
10(1 /2)

1
2(1 /2)(1 2 )

for

2

0

3/2 1

2

(32)

= [ ]c
c

( , )
3

(1 2 ) (e
2

erfi
2

)

exp(
2(1 2 )

)

0

3/2 /2 1

2

(33)

For comparison, the finite element method (FEM) was used to
solve the moving boundary problem. Specifically, the partial
differential equation with the moving boundary given in eq 13
was solved by using the PDE module of the commercial finite
element package COMSOL Multiphysics. To ensure the
convergence of numerical results, a one-dimensional finite
element model with 1000 two-node linear elements was
constructed in the radial direction of the spherical droplet, and
the relative tolerance was set as 10−3.
Figure 2 presents the spatial distribution of the concen-

tration of solute atoms in a liquid droplet at different instances
for λ = 0.25. The solid lines represent the FEM results; the
cross symbols represent the results from eq 32, and the solid
diamond symbols represent the results from eq 33. The FEM
results and the results from eqs 32 and 33 exhibit similar
trends. At the same instant, the concentration of the solute
atoms decreases from the surface of the droplet toward the
center of the droplet. At the same spatial position, the
concentration of the solute atoms in the droplet increases with
the increase in the evaporation time, as expected. Comparing
the results from the numerical method, eqs 32 and 33, we note
that there are no observable differences among these results for
the dimensionless time larger than and equal to 0.2. This
suggests that the approximations used in the pseudo-steady-
state method and the exponential function with the boundary
condition and the mass conservation likely are valid in solving
the diffusion problem with the moving boundary condition. It
needs to be pointed out that the results obtained from eqs 32
and 33 slightly deviate from the FEM results at a dimensionless

time of 0.01 with the largest relative difference being less than
10%.
To further confirm the validity of eq 28 (eq 33) as an

approximation of the solution of the concentration of solute
atoms in an evaporated liquid droplet without any constraint to
the ratio of α/D, we performed the FEM calculation of the
spatial distribution of the concentration of solute atoms in a
droplet for the ratios of α/D being 0.25, 0.5, 1, 2, 4, and 8
when the dimensionless radius of the droplet reaches 0.5.
Figure 3 shows the numerical results of the spatial distribution

of the concentration of the solute atoms in an evaporated
liquid droplet. For comparison, the results obtained from eq 33
are also included in Figure 3, as represented by the open circle
symbols. In general, the results obtained from eq 33 are in
good accord with the FEM results. The largest deviation of the
results obtained from eq 33 occurs at the center of the droplet
with the ratio of α/D being 8. Both results reveal a rapid
increase in the concentration of solute atoms at the surface of
the droplet and the decrease in the concentration of solute
atoms at the center of the droplet with increasing the ratio of
α/D when the droplet reaches the same size under different
ratios of α/D.
Figure 4a,b shows the FEM results of the variations of the

concentrations of solute atoms at the surface and center of an

Figure 2. Spatial distribution of the concentration of solute atoms in a
spherical liquid droplet at different instances for λ = 0.25. The solid
lines represent the FEM results, the cross symbols represent the
results from eq 32, and the solid diamond symbols represent the
results from eq 33.

Figure 3. Spatial distribution of the concentration of solute atoms in
an evaporated liquid droplet for ratios of α/D being 0.25, 0.5, 1, 2, 4,
and 8 when the dimensionless radius of the droplet reaches 0.5. The
solid lines represent the FEM results; the open circle symbols
represent the results from eq 33.
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evaporated liquid droplet with the ratio of α/D when the
droplet reaches the same dimensionless sizes of 0.75, 0.5,
0.375, 0.3, and 0.25. It is evident that the larger the ratio of α/
D, the higher the concentration of solute atoms at the surface
of the droplet (Figure 4a) and the smaller the concentration of
solute atoms at the center of the droplet (Figure 4b) for the
evaporated droplet having the same dimensionless size. The
ratio of α/D (the loss/evaporation rate) plays an important
role in regulating the spatiotemporal evolution of the
concentration of solute atoms in the droplet.
Note that the time for the evaporated droplet to reach the

same dimensionless size is dependent on the numerical value
of the ratio α/D, as shown in Figure 5. Increasing the ratio of

α/D reduces the time needed for the evaporated droplet to
reach the same dimensionless size, as expected due to the
“convection” effect on the motion of solute atoms near the
surface of the droplet. This results in the increase in the
concentration of solute atoms near the surface of the droplet
and limits the increase in the concentration of solute atoms at
the center of the droplet because of the requirement of mass
conservation.
The asymptotic solution given by Gardner23 has been widely

used in particle engineering.34−38 In the heart of the
asymptotic solution given by Gardner23 are the assumptions
that the temporal evolution of the size of a spherical liquid
droplet follows the first equation in eq 15, and the temporal
evolution of the concentration of solute atoms in the droplet
asymptotically follows the relation of c ∝ t3/2, in which Gardner

analyzed the problem with a reversal time, i.e., the asymptotic
solution was derived by considering the expansion of the
droplet from a “zero-size” droplet. Gardner23 obtained a
differential equation independent of time and an asymptotic
solution of the concentration of solute atoms in an exponential
form. However, the spatial distributions of the concentration of
solute atoms given by Gardner23 at different instants are
similar, and the ratio of the spatial distributions of the
concentration of solute atoms at two different instants is only
time-dependent. Such a result is different from those presented
in Figure 2. Thus, the asymptotic solution given by Gardner23

likely cannot represent the temporal evolution of the
concentration of solute atoms in an evaporated droplet.
Recently, Sazhin et al.26 proposed a model for the analysis of

the drying of a liquid droplet, in which the analytical solution
for the diffusion of species in the droplet was based on the
condition of stationary boundary.39 To address the problem of
the moving boundary, they introduced an effective diffusivity
with the proportionality coefficient being a function of the
liquid Schmidt number and the Reynolds number of the liquid.
Numerical calculations are required to determine the
spatiotemporal distribution of the species. One challenging
issue in applying the approach by Sazhin et al.26,39 is the
determination of the proportionality coefficient, which is likely
dependent on the physical properties of the solvent and
species, and it is unclear whether such a method can be applied
to any liquid systems. On the other hand, the solution
developed in this work is presented in a closed-form
formulation, which can likely allow for the analysis of the
spatiotemporal distribution of species in an evaporated droplet
without multistep numerical calculations.
The analysis presented in this work is focused on an ideal

situation in which a liquid droplet is isolated and suspended in
space. In many cases, liquid droplets are present on the surface
of solids or the effect of gravity is not negligible. Under such
cases, the liquid droplets are in the form of a sessile or pendant
shape. The problems are nonspherically symmetric. It would
be very difficult, if not impossible, to obtain an approximate
solution in a closed-form formulation. Numerical methods
generally are needed to solve the problems.
Currently, the evaporation of the solvent in liquid droplets

has been used to prepare micro- and nanoparticles, which
involves nucleation and growth processes. According to
thermodynamics, the onset of nucleation requires that the
concentration of solute atoms (monomers) is larger than the
solubility of the solute atoms (monomers), i.e., the liquid

Figure 4. Variations of the concentrations of solute atoms in an evaporated liquid droplet with the ratio of α/D when the droplet reaches
dimensionless sizes of 0.75, 0.5, 0.375, 0.3, and 0.25: (a) at the surface and (b) at the center.

Figure 5. Variation of the dimensionless time with the ratio of α/D
for the droplet to reach the same dimensionless sizes of 0.75, 0.5,
0.375, 0.3, and 0.25.
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solution is supersaturated. For a nonsupersaturated liquid
droplet, the evaporation of the solvent can lead to an increase
in the concentration of the solute atoms (monomers) and the
evolution of the liquid solution to a supersaturated state.
According to the results presented in Figure 3, the evaporation
of the solvent can cause nonuniform distribution of the
concentration of the solute atoms (monomers) and spatial
distribution of the degree of supersaturation. The largest
degree of supersaturation will be at the surface of the droplet,
and nucleation starts to occur at the surface of the droplet.
This trend makes it difficult to produce a single-crystal particle,
monodisperse nanoparticles, or monodisperse microparticles
for a large ratio of α/D, i.e., a large evaporation rate. To
produce a single-crystal particle or monodisperse nanoparticles
or microparticles, it generally requires that the concentration of
solute atoms (monomers) in a droplet is relatively uniform.
This indicates that a small ratio of α/D, i.e., a small
evaporation rate, is needed to maintain a relatively uniform
distribution of solute atoms during the evaporation of the
solvent in a liquid droplet, as revealed in Figure 3.

■ CONCLUSIONS
In summary, we have analyzed the diffusion of solute atoms in
a spherical liquid droplet, which experiences the loss of solvent
through diffusion and evaporation across the droplet surface to
the surrounding space. Under the condition that the transport
of solvent atoms in the surrounding space can be described as a
quasi-steady-state diffusion process, the shrinkage rate of the
liquid droplet is found to be proportional to the diffusion
coefficient of the solvent in the surrounding space and
inversely proportional to the instant size of the liquid droplet.
Using this relationship, the pseudo-steady-state method, and
the principle of mass conservation, we have solved the moving
boundary problem and obtained an approximate solution for
the spatiotemporal evolution of the concentration of solute
atoms in a spherical liquid droplet with a ratio of α/D less than
2. According to the approximate solution, we have proposed a
general formulation for the spatiotemporal evolution of the
concentration of solute atoms and obtained an approximate
solution without any constraint to the ratio of α/D.
The comparison between the results obtained from the

developed approximate solutions and the corresponding ones
obtained from the FEM calculation has validated the
approximate solutions and confirmed the applicability of the
pseudo-steady-state method in analyzing the mass transport in
an evaporated liquid droplet. The rapid increase in the
concentration of solute atoms (monomers) at the surface of an
evaporated liquid droplet with the evaporation time for a large
ratio of α/D can lead to the nucleation and growth of
nanoparticles near the droplet surface and polydisperse
nanoparticles and/or microparticles. To produce nearly
monodisperse nanoparticles or a single-crystal particle, a
small ratio of α/D, i.e., a small evaporation rate, is needed to
maintain a relatively uniform distribution of solute atoms in a
liquid droplet during the evaporation of the solvent.

■ APPENDIX
Following the approach used by Schlünder,22 we introduce a
dimensionless variable of ς = r/R, and eq 9 can be
reformulated with the variable of ς as
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Substituting eq 13 in eq A1 yields
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The initial conditions are
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in which the first equation indicates the migration of solute
atoms toward the droplet center during the solvent
evaporation.
Following the principle of the separation of variables, we

introduce two auxiliary functions of C(ς) and H(t) and express
c(ς, t) as

=c t C H t( , ) ( ) ( ) (A5)

Substituting eq A5 in eq A2 yields
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with η being a constant. For the function of C(ς), there is
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Define λ = α/D. The solution of eq A7 is found to be

= [ ] + [ ]C A B
( ) H ,

2
F

2
,

1
2

,
211

2

(A8)

where H[•, •] and 1F1[•, •, •] are the Hermite function and
confluent hypergeometric function, respectively, and A and B
are the two constants.
Substituting eq A8 in eq A4 yields
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To have non-zero solution, we obtain the following equation of
η as
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which determines the eigenvalues of ηn (n = 0, 1, 2, ...) if they
exist. However, the operator for eq A11 is not self-conjugated,
and it is likely that no orthogonal eigenfunctions and
eigenvalues can be obtained from eq A11.
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