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8 This paper considers the initial stage of Radiatively Driven Convection (RDC), when the perturbations
s from a quiescent but time-dependent background state are small. Radiation intensity is assumed to decay
10 exponentially away from the surface, and we consider parameter regimes in which the depth of the water
1 is greater than the decay scale of e of the radiation intensity. Both time-independent and time-periodic
12 radiation are considered. In both cases, the background temperature profile of the water column is time-
13 dependent. A linear analysis of the system is performed based on these time-dependent profiles. We find
1 that the perturbations grow in time according to exp[(o(t)t)], where o(t) is a time-dependent growth
15 rate. An appropriately defined Reynolds number is the primary dimensionless number characterising the
16 system, determining the wavelength, vertical structure, and growth rate of the perturbations. Simulations
17 using a Boussinesq model (the Stratified Ocean Model with Adaptive Refinement) confirm the linear
18 analysis.

s 1. Introduction

20

7 This paper focusses on radiatively driven convection (RDC), which occurs when heat is applied to a
fluid by absorption of radiation penetrating a finite distance from a boundary. To achieve convection, 2 the
resulting heating must result in an unstable buoyancy distribution developing in the fluid. In fluidss where
the buoyancy increases with temperature, the radiation must be applied from below. This occurs, s for
example, in the interior of stars, where the radiation from the inner core drives convection in the outer
layer (Spiegel 1971). Conversely, in fluids where buoyancy decreases with temperature, such as»  fresh
water below the temperature of maximum density, RDC requires that radiation be applied from. above.
An example of the latter in a geophysical setting occurs in temperate lakes during spring when the water
column is below the critical temperature and solar radiation heats the surface layer (see e.g. Bouffard et
al. 2019; Cannon et al. 2019; Austin et al. 2022). An important difference between RDC a1 in the interior of
stars and RDC in lakes is that in the former, the horizontally (or ensemble) averageds. temperature profile
can be assumed to be in a statistically steady state, that is, the amount of heats received from the inner
core is eventually transferred to the surface and lost to space, whereas in thes case of RDC in lakes heat
continuously accumulates in the system. Austin et al. (2022) shows thatss some heat loss occurs during
nighttime, but it is small compared to the net daytime heat input. Thus, s the averaged temperature never
achieves steady state. Additionally, and just as important, in lakes thes;  radiation intensity is itself time-
dependent, following a diurnal cycle.

3 RDC as it applies to temperate lakes has been the subject of several recent observational studies that s
focus on vertical velocity (Bogdanov et al. 2019; Bouffard et al. 2019; Cannon et al. 2019) and the scale « of
convection cells (Forrest et al. 2008; Yang et al. 2017; Bogdanov et al. 2019; Austin 2019; Austin et al. 2022).
@ These studies show that in RDC systems that are driven by a cyclical radiation which spends a
a3 significant amount in the ”off” state each cycle follows a consistent pattern:

w (i)Onset: the beginning of each cycle starts from a relatively quiescent state.

s (ii)Linear phase: warming of the water column develops a top-heavy buoyancy distribution on which s
perturbations grow. In this stage, the effect of perturbations on the averaged buoyancy field is negligible. 4
The latter is still driven solely by the absorbed radiation.

as (iii)Non-linear phase: the amplitude of perturbations saturates due to nonlinear interactions.

t Email address for correspondence: yun.chang@whoi.edu
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s (iv)Recovery phase: As the intensity of the radiation wanes, turbulent fluctuations decrease in intensity,
so and eventually the system relaxes to a mostly quiescent state with little or no residual stratification.

51 Early studies (Mironov and Terzhevik 2000; Mironov et al. 2001) suggest that if the depth is hori-s
zontally uniform, when turbulence develops, the vertical divergence of the total heat flux (the sum of s
turbulent and radiative heat fluxes) becomes constant with depth, that is, the rate of heating becomes s
uniform, or, which is the same, the stratification profile becomes frozen in time (even as the fluid heats ss
up). This suggests that the stratification during the nonlinear phase is determined by the length of the s
linear phase, since the stratification ceases to grow once turbulence sets it. Since advection operates ons; the
averaged vertical temperature gradient, whose temperature contrast at the end of the linear phase ss is
proportional to the time lapsed since the onset of radiation, the latter also gives an estimate for the s
temperature fluctuations, at least until the waning solar radiation alters the balance and turbulence «
starts eroding the temperature gradient. From this point of view, the linear phase sets the characteristicseax  of
the turbulent phase. This provides the motivation for the present study.

62 Motivated by observations of RDC in Lake Superior, Christopher et al. (2023) recently studied the
s onset of RDC by applying a time-periodic heat flux to the surface of a fluid. Applying Floquet theory, s
they calculated the critical Rayleigh number and normalised wavenumber as a function of normalised &
frequency of thermal forcing (their figures 2 and 3), and showed that the critical Rayleigh number s
captures stability properties in two-dimensional numerical simulations (their figures 8 and 9).

67 Although appropriate to consider the stability of the background RD C state, the analysis in Christo-es
pher et al. cannot be used to study the evolution of perturbations at geophysical scales. The maximum e
normalised frequency considered in Christopher et al. (2023) is 100, while, for example, the normalised 7
frequency in geophysical settings such as Lake Superior is of O(107). Moreover, their analysis does not =
provide the growth rate and vertical structure of the most unstable mode, nor are any characteristics of = the
system described when the Rayleigh number exceeds the critical value.

73 Christopher et al.”s analysis applies to cases where the time scale of evolution of the perturbations 7
is comparable to or larger than the period of the forcing, but at more geophysically relevant scales the s
perturbations grow on a time scale much shorter than the forcing period.

76 Yet, the onset is still followed by a period in time during which the perturbations are still small, so
77 a linearised treatment is still appropriate. With this in mind, here we develop a theory that applies to
s systems in which appropriately defined Reynolds and Péclet numbers are large, and the forcing can be »
time-dependent. This is not intended to provide a stability analysis of RDC in the traditional sense. s
The aim of the latter is to determine over which range of values of the relevant parameters the system =«
develops instabilities. In our analysis, we consider the linearised regime in the limit of large Reynolds s
numbers, where we expect the system to be unstable, and we concentrate on two questions:

ss 1. What are the wavelength, vertical structure, and growth rate of the growing perturbations during the
s initial linear growth stage for RDC driven at geophysical scales?

ss 2. How do these features relate to environmental parameters such as radiation intensity and penetration
s depth?

87 We consider the problem from the point of view of an initial-value problem. At t = 0 radiation is ss
applied to the surface of a motionless, unstratified fluid with a realistic e-folding decay scale, where the s
radiation can be either time-independent or can have a diurnal cycle, and we follow the growth of a «
perturbation from t = 0 driven by the time-evolving background state.

01 We find that perturbations do not follow the typical exponential growth exp(at), which may be «
expected for instabilities that grow on an otherwise constant-in-time background, (o being the constantes in-
time growth rate). Instead, the perturbations grow as exp[(o(t)t)] and o(t) @ t™2 with n = 1 fore time-
independent radiation and n = 2 for time-periodic radiation (the latter for times shorter than thes period).
9 This paper is organised as follows. In Section 2 we linearise the equations of motions by considering
o7 a time-varying basic state buoyancy profile which is heated by radiative forcing, whose evolution is
s¢ considered in Section 3; in Section 4 we estimate scalings for velocity and buoyancy by balancing the
% dominant terms in perturbation equations and introduce the relevant nondimensional parameters; in
w0 Section 5 we explore the behaviour of the perturbations under linearised dynamics in the limit of large
11 Reynolds number; in Section 6 we use Direction Numerical Simulations (DNS) to confirm the prediction
102 obtained from the linearised equations; finally we provide a summary and conclusions. Several Appendices
103 discuss technical points.
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wa 2. RDC in the linearised regime

105 We consider a fluid with a linear equation of state for the density p = po(1 - aT), where T is the
106 temperature. We assume a negative thermal expansion coeficient a. The fluid is subject to a radiative 10
forcing applied to the surface. The applied heat flux Spe?/Z° F (t) decays exponentially away from the s
surface and can be modulated in time (figure 1). The problem under the Boussinesq approximation can s be
formulated as follows

Du _ _ ip“+ b~e3 + vzu,~ -u"= 0, (2.1)
Dt pPo
110
Db B z ~
— = - __F(t)e?, + k@b’ (2.2)
Dt Zo

w Here 0 = (0, V, W) is the velocity, p is the pressure deviation from the hydrostatic profile, b = g(po - 12
p)/po = agT is the buoyancy, B = (-agSo/poCp) is the buoyancy flux due to the radiative heat flux us
So, po is the reference density, Cp is the heat capacity, g is the gravitational acceleration, Zo is theua e-
folding decay scale of the radiation flux, v is the molecular viscosity, k is the molecular heat diffusivity, us and
es3 is the unit vector pointing upward. The surface through which radiation is applied is at z = 01s and the
domain extends below to z = -H. All thermodynamic quantities are evaluated at the reference s
temperature. Mutatis mutandis, the same configuration applies to radiation applied to the bottom of a us
fluid with a positive expansion coeficient, with the understanding that in this case Zp < 0.

119 For time-independent radiation,

120 While for diurnal solar radiation
F(t) = sin(Qt) if t< tprL, else O, (2.4)

122 where Q = n/tprL and tpr . is the daytime length.
122 We decompose the motion into a basic state and perturbations

d= 0+ u(x,t), b= b(z,t)+ b(x, t), B=p+ p(xt). (2.5)
s Herex = (x,y,z) and b(z,t = 0) = 0. The basic state satisfies
1 _
0= - _[Bp+ bes, (2.6)
po
db B 2 0%b
a— _ZTF(t)e o + Ka?. (27)

15 From here, we follow the same approach used to study the stability of Rayleigh-Bénard convection
126 (Chandrasekhar 1961). Subtracting the basic state momentum equation (2.6) from (2.1) and then
127 neglecting squares of perturbations, the linearized perturbation momentum equation reads

ou 1
— = - —Pp+ bes+ vA?uy, 2.8
3t oo 2P 3 (2.8)
128 From (2.8) and the incompressibility condition we derive a single equation for the Laplacian of the
129 Vvertical velocity
M= BPh+ VEPECw. (2.9)

1w Here, B3, = 02/0x?+02/dy? is the horizontal Laplacian operator. Subtracting the basic state buoyancy
1 equation (2.7) from (2.2) and then neglecting squares of perturbations, the linearized perturbation
132 buoyancy equation reads

ab db(z, t) 5
— = . .
3t + w 37 KE“b (2.10)
13 Substituting B, in (2.9) into B, [£2.10)], these two equations can be combined as
25 2 T
0w, (B2 w) 9 v+ k) %PmRw + viE?E2ERw = o. (2.11)
ot? 0z ot

1 (2.7), (2.9) and (2.10) will be used to find scalings for the linear system. (2.11) will be used to find the
135 growth rate and the spatial structure of the perturbations.
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Figure 1: Schematic of RDC.

s 3. Evolution of the background profile

137 With an appropriate choice of a vertical velocity scale Wo, a buoyancy scale bp, and a time scale tp (to
1s be defined in the next section), we define dimensionless vertical velocity, buoyancy, time, and coordinates

W= w/Wo, b= b/bo, f= t/to, &= x/Zo, V=VY/Zo, 2= z/Z0. (3.1)

19 We also define a Reynolds number Re = WoZo/v and a Péclet number Pe = WgZo/k. From the
1o buoyancy scale, we can derive a temperature scale To = bo/(-ag). In the following we will dispense from
11 decorating non-dimensional variables, and all variables except those in section 4 are non-dimensional.
12 The background buoyancy profile satisfies
ob ) 1 9%
ot Ft)e® + Pedz2’

13 Where the Péclet number Pe is the ratio of the perturbation time scale (to be defined more precisely
ua later) to the diffusive time scale Z2{ k. This equation needs to be solved subject to boundary and initial s
conditions. For the latter, we simply choose b(z, 0) = 0. At the bottom (z = —H ) of the water column, s the
natural choice is a no-flux condition. At the surface, we assume that the latent, sensible and long-i
wavelength radiative heat flux are small compared to the incoming short-wave heat flux, and thus we s
approximate the surface boundary condition with a no-flux condition as well. This approximation is 1o
suggested by the observations of Austin et al. (2022) who reports that the total increase in the heat 10
content of the water column as a function of time can be, to a great degree of accuracy, predicted by is:
integrating the equation for heat over the water column with no-flux conditions at both boundaries. As 152 we
shall see, for large values of Pe, the evolution of the perturbations is primarily controlled by the iss
evolution of the stratification in the bulk of the water column driven by the absorbed radiation. With 1s.
these boundary conditions, (3.2) can be solved by writing the solution as a standard trigonometric series. 1ss
The vertical gradient of the general solution is thus

ob X .

~(z,t) = amR(Az/Pe, t)sin(Amz), (3.3)

0z m=1

(3.2)

156 Where the wave number A, = mmt/H, and the coeficients
2Am 1- (-1)me~H
H 1+ A2

am = (3.4)
17 The function R(s, t) describes the relaxation of the solution to the stationary state (which is not steady
s for diurnal radiation)

e (ssin(Qt) - Q(cos(Qt) -
1-e7c R = 1, (Steady radiation) * "%

e~y if F(t) = sin(Qt), (Diurnal radiation).
19 In the case of steady radiation, R(s,t) = R(st, 1)t. For diurnal radiation this is not in general true.
1o However, here we are interested in perturbations that grow on a time scale much shorter than the

R(s, t) = (3.5)
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Figure 2: Profiles of db/dz normalized with fast time (solid lines) and e? (dashed lines) for different
values of T plotted agail;}st z/ T. The viscous profiles depart from the inviscid solution starting at a
depth which deepens as  T.

11 diurnal period, i.e. Qt @ 1. In this case we can approximate

st- (1- e~ st)
2

R(s,t) B Q + 0((Qt)?), (3.6)

12 and therefore R(s, t) B R(st, 1)t2+O((Qt)2). Thus we can write a general form for the background shear

H#
Bt " aRZ, 1sinhyz) 10 n
a(z,’c)— apR(A;T, 1)sin(Apz) t" = Sy(z, T)t", (3.7)

p=1

s With T = t/Pe, n = 1,2 for steady and unsteady radiation respectively, and S,(z, t) is the term in 1
square brackets in (3.7) with the appropriate choice for R, the relaxation function. Thus, for large values is of
the Péclet number, there are two time scales that control the evolution of the background stratification 1es
profile: the “fast” time t over which the profile evolves in a self-similar manner, and the ”slow” time Tz over
which the overall shape of the profile changes as the diffusive boundary layer grows at the surface. 1es In
particular, the inviscid solution

Zt
b(z,t)= -e?  F(t)dt. (3.8)
0
e s recovered in the limit T = 0.
170 For finite, but small values of T the inviscid solution apR[oximates well the actual solution except i
for the surface boundary layer whose thickness grows as T (figure 2). Of course, for this to work,

12 the penetration depth (which in our units is 1) must be much larger than the thickness of the surface
13 boundary layer during the time over which the analysis is carried. In practise, this limits the analysis 17
to times shorter than Z2/k. Jhus, our analysis cannot be applied to Rayleigh-Benard convection driven s by
a time-dependent surface heat flux (SHF convection), because that would require taking the Zg - 0 limit.
Physically, in time-dependent SHF the driving signal is carried into the fluid by the developing:» boundary
layer itself. Whereas in RD C we have a non-trivial inviscid solution which is modified overs a slow time by
diffusion effects, in SHF convection the inviscid solution is trivial, and the background s  system evolves
under the slow time alone.
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1w 4. Scaling and normalisation

181 In this section, we temporarily revert to dimensional quantities. There are two length scales in RDC:
182 the depth of water H and the radiation penetration scale Zg. As near-surface water warms gradually and s
just starts to sink, the depth of water during the initial stages of RD C should not play a role provided s
H/Zo B 1. Thus Zo is the natural length scale during the onset of this process .

185 The basic state is the time-dependent solution to (2.7) given by (3.7). Clearly, both b and db/dz change
18 continuously over time. Thus, perturbations grow against a background state which is itself changing.
187 We derive scales by balancing the dominant terms in (2.9) and (2.10). Since growing perturbations are
1ss forced by the basic state, which is time dependent in RDC, time-derivative terms must be retained. In
1ss  the vertical momentum equation (2.9), we assume the local vertical acceleration and buoyancy balance

o

B, (4.1)

10 In the buoyancy equation (2.10), we assume a balance between the local rate of increase in buoyancy
191 and vertical advection of buoyancy

db(z, t
@ w ( ).

ot oz
12 Three equations sufice to solve for the vertical velocity scale Wo, the buoyancy scale bg, and the time
193 scale to.

(4.2)

194 4.1. Time independent radiation
195 The inviscid solution for the background buoyancy provides a scale for the buoyancy
B
bO = 7t0, (43)
Zo
16 Which in conjunction with (4.1) and (4.2) allows us to determine the other scales
bO = 21/3
31/3 _ _Z_O
Wo = (320)1/3, 7 , to B (4.4)
0
17 Substituting (3.1) and (4.4) into (2.11) we have
d. *w
2’ - B, wSi(z,T)t - Fw + A2 EPE*w = 0. 4.5
g S ) ReiPeét @ RePe 1 (4.5)

2

1 The physical interpretation of the characteristic scales (4.4) is that as the RD C develops, the perturba-
199 tions grow to O(Wp) and O(bo) over a time O(to), after which the system becomes nonlinear.

200 Also, note that Wo = (BZo)1/3 in (4.4) has the same form as the Deardorff (1970) scaling W2 =
(BTH)1/3, which characterises the vertical velocity in SHF convection (B? is the buoyancy flux applied 2z to
the surface and H is the depth of the water). However, the fact that the two scalings are of the same s form
should be viewed as a coincidence, because the two problems differ fundamentally. The Deardorffzs scaling
characterises vertical velocity in SHF convection in the nonlinear steady state stage, while (4.4) s are
scalings for the linear, time-dependent stage of RD C in which the radiation profile penetrates into .s  fluid
with an e-folding decay scale Zg.

207 4.2. Diurnal solar radiation
208 In this case, the inviscid solution indicates that
B
bo = 7th2). (4.6)
Zo
200 Substituting Wo, bo, and to into (4.1), (4.2), (4.6), we have
W B
0= py, Lo Wooo p= T e (4.7)
0 to Zo 0
20 Which together yield t z O
2 1/4
= YA
Wo= (BOZYHV?,  bo= (BQ)VZ, W= g8 (4.8)

1 which are to be interpreted as their counterpart in the steady radiation case. Substituting (3.1) and (4.8)
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s into (2.11) and working under the assumption that Qtp @ 1 so that the background solution retains the
213 self similar profile in the fast time t, we have
3, 2w
2! - B? wSy(z, T)t? - Y é{zﬁ)zw+ E?@Bw = 0. (4.9)
ot; H Re—Pe — RePe

x4 5. Evolution of perturbations

215 The equations for the evolution of the perturbation under steady and periodic radiation conditions
26 can be condensed in a single equation which in non dimensional form reads

0 109 1, 0 10 1 5, 5 N2

a*%&‘ Re? §+ﬂg_ﬁ B°w = Sp(z, T)t"E" W, (5.1)
217 with n = 1 describing the steady radiation case and n = 2 the diurnal cycle. This equation describes the
zns  evolution of the perturbed vertical velocity w(x,y, z, t, T).
219 In the geophysical settings of interest, the Reynolds and Péclet numbers are large, though not infinite,
20 and therefore it is of consequence to consider whether (5.1) can be further simplified. To this extent, it 2z
would be tempting to discard altogether the terms proportional to Re~* and P e~1. However, this would 2z not
be appropriate, since, on physical grounds, we expect that viscosity and diffusivity at suficiently s small
scales cannot be ignored. However, it is reasonable to expect that no high-frequency oscillations . should be
expected in T (otherwise it would be a fast time), and thus we can neglect the term Pe 29/dt. »s Equation
(5.1) is invariant under rotations around the vertical axis. Thus, we consider perturbations»s confined to a
two-dimensional vertical plane. Since equation (5.1) is not homogeneous in fast time, thex, typical solution
form e! with y being a constant growth rate cannot be applied. Therefore, we seek s solutions in the form
of

w(x, t) = e®y(z,t, 1), (5.2)

P
20 and we expand Y(z,t,T) =  _fX(t)pX(z, ). The 9f(z, T) functions are the eigenvectors of the Sturm-
230 Liouville problem

d? 1
(pzm - K2@om = - —K?n!S,(z, T)om, @m(0,T) = @m(-H/zo,T) = O, (5.3)
dz Dm
21 where D (K) is the corresponding eigenvalue, and normalized such that
Zy
KZn!Sa(z, T)0%(z, T)of (2, T)dz = &mi (5.4)
-H/zo

3 with n = 1is for steady state radiation and n = 2 for diurnal radiation. As we shall see, the eigenvalues
233 Dm’s control the growth of the perturbations in the inviscid limit.

234 A second simplification that we seek is to replace n!S,(z, T) with its limiting value n!S,(z,0) = e in s
(5.1) and the attendant Sturm-Liouville problem. This assumption is justified by considering that, by s
the time the linear stage of perturbation growth comes to an end, T is still very small. Indeed, one way .z to
interpret the Péclet number is to see it as the ratio of to (the time scale of growth of perturbations).ss to the
diffusive time scale Z2/k. Thuys at large Péclet numbers the perturbations ought to experience a
background state whose only mode of change is self-similar. In Appendix A we verify that the effect of .0 the
neglected surface boundary layer on the spectral properties of the Sturm-Liouville problem is small, 2
especially on the eigenvalues Dn’s, which control how perturbations grow in time.

202 For a given K, there are countable eigenvalues D1(K) > D2(K) > ..., and the corresponding
us  eigenvectors form an orthonormal basis. D1 (K) as a function of the wavelength A = 21t/K is shown s
in Figure 3a, with a few representative eigenvectors shown in figure 3b. Note how, as K increases, the s
region over which the eigenvector is non-negligible decreases. In fact, with a sin;;,ple rescaling of the s
problem, it can be shown that the extent of the non-zero region decreases as 1/ K. Although it is not a7
possible to give an analytic expression for the Dn’s, we have D (K) = O(K?) for K 1, whereas s
Dm(K) = O(K®) for K B 1. In particular, the fact that the eigenvalues saturate at large wave numbers s will
have significant consequences. For a given horizontal wavenumber K, substituting (5.2) into (5.1) 20 yields a
system of coupled ODEs for the amplitude functions fX(t). In Appendix B we show that when 2 the
Reynolds number is large (with fixed Prandtl number), to leading order the system decouples, so2 that
each amplitude function f € (t) evol\r/nes independently from the other. For a given f(t), the innyiscid 3 growth
rate is controlled by the eigenvalue D, (K). Because we are interested in the characteristics of .« the fastest
growing perturbations, we focus on the case m = 1. From now on, D(K) = Di1(K) and
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Figure 3: Solution of the Sturm-Liouville problem (5.3). (a) eigenvalue D as a function of A. (b)
eigenvector ¢(z) for the maximal D for a given A. Solutions are obtained by solving (5.3) using a
domain -5 B z @ 0, boundary conditions ¢(-5) = ¢(0) = 0, and 1000 uniform grids. The eigenvalue D
controls the growth rate in (5.8)-(5.9), (5.14), and (5.17), while the eigenvector ¢(z) represents the
vertical structure of perturbations.

v
= fX(t) = fi(t). By introducing the renormalized wavenumber K = K/ DRe to order O(Re™1/2) the
6 amplitude fX(t) satisfies the following equation

d K
26+ K21+ Kpr-lKk* - D(K) f*@& 0, 5.5
BN L (k) fe (5:5)
7 Where Pr = Pe/Re is the Prandtl number of the fluid.
258 In the previous equation, we can discern two limits. In the limit K = o= with Re constant, (5.5) tends
0 to a simple differential equation with constant coeficients, whose characteristic polynomial has roots
o7,(K) = -K2{1,Pr 1} (5.6)

w0 both of which are real and negative and thus exponentially damped. This is to be expected on physical 2
grounds, as for suficiently small wavelengths diffusive effects will smooth out and eventually dampen 2
fluctuations. Conversely, when K = 0, with K constant, the equation reduces to the modified Airy’s 2:
equation

d*f © t"
d-o = (5.7)
s Whose solution grows asymptotically as
2/3
£O(t) 1 elot)? o= 2 D(KY3,  as tBY, (5.8)
s wWhen n= 1and as
D(K)/4
£O(t) eloat)’ g as t@1 (5.9)
2768 1/2 ’ 23/4 ’
D(K)276% o =

6 When n = 2. In practice, these asymptotic formulas apply already for t = O(1), as seen by comparing 2
asymptotic solutions with the numerical integration of the corresponding equations (Figure 4). Note s
that o4 and o: tend to saturate as K - oo, whereas the viscous damping timescale becomes increasingly as
shorter. On physical grounds, we can thus expect that at a certain wavenumber, dependent on the 20
Reynolds number, a cross-over occurs whereby viscous damping dominates and so very little energy
should be found above such wavenumber. To verify our intuition, we consider the general solution of »»
(5.5). It can be written in terms of special functions.
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106 4 I 1
Asymp
—tQ2=0.05
—t2=0.25

Figure 4: Comparison between asymptotic solution and numerical solution using a third-order Runge-
Kutta method with dt = 0.01, and initial conditions f(0) = 1 and f (0) = 0. The comparison is to show
asymptotic solution captures the growth of numerical solution as t @ 1. Solid curves are for D = 1;
dashed for D = 0.5. (a) Asymptotic solution (5.8) and numerical solution of the modified Airy equation
(5.7) with n = 1. (b) Asymptotic solution (5.9) and numerical solution of (5.7) with n= 2.

273 5.1. Time independent radiation
270 We consider first the case when n = 1. In this case we have
fX(t) = c1(K)A(K, t) + c2(K)B(K, t). (5.10)

s Here c1(K) and c2(K) are integration constants and the functions A and B can be expressed in terms of
26 Airy’s Ai and Bi functions

(1- Pr=1)2K*+ 4D(K)t

A(K, t) = eMAI(T(K, 1)), B(K,t)= e MBi(Z(K,t)), K, t) = , (5.11
(K, t) (T(K, t)) (K, t) (T(K, t)), T(K,t) 2D (K)27 (5.11)
27 and ©(K) is the arithmetic mean of the o;” (K)’s. The integration coeficients are given by
o(K) - 1)Bi(Z(K, 0))f'(0) + Bi'(Z(K, 0))f(0
ey(k) = (T(K) = 1)BI(Z(K, 0))F'(0) + BI'(Z(K, 0))f(0) (5.12)
A(K)
28 and
K) - 1)Ai(Z(K, 0))f'(0) - Ai'(T(K, 0))f(0
6 (K) = - (K) = DAI(K, 0)F'(0) - A'(Z(K, 0))F(0) (5.13)
A(K)
2 with A(K) = Ai(Z(K, 0)Bi'(Z(K, 0)) —= Ai'(Z(K, 0)Bi(Z(K, 0)).
280 For t > 1 the solution can be asymptotically expressed as
n #_1/4
Pr-1°
f¥(t) Belt K4 7Pr + 4Dt ,
" , #3) " J#32 (5.14)
5 K21+ Pr 1 JPr-1 Dt 1 JPr-1
= - — + + _
! 2 Pr 12Dt Pr 12Dt Pr
281 The solution when molecular viscosity and diffusivity are equal (Pr = 1) is particularly illuminating,
2 since in this case the solution is simply the inviscid solution multiplied by the viscous damping term.

2/3

3
K (t 1 K2t (0ct) 7 or= 2 D(K)/". 5.15
O — = 2 o (5.15)

s Neglecting the (weak) algebraic dependence on time of the prefactor, we see that evolution of a
28 perturbation with a horizontal wavenumber K is controlled by the time- and wave-number-dependent
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(a) steady radiation. Pr =1
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15 s . ] t
—
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Figure 5: Asymptotic growth rate I vs wavelengtlat different times. The vertical red lines indicated
the estimated high-frequency cutoff K = 1, i.e. A Re = 2m. (a) Steady radiation; (b) Diurnal radiation.

s growth rate

1 K2 P

Iy = Re DW 3 D(K)tReZ. (5.16)
.6 Figure 5a shows the growth rate for a range of times as a function of the wavelength. Note that X is at
.7 most O(1), which vindicates the choice of tg as the relevant time scale for the process.
288 For a given Re, there is a Reynolds number dependent tmin such that for t < tmin the time-dependent
s growth rate 2 (K, t) < 0. This can be easily seen considering that as a function of K the viscous damping 250
is a convex function which tends to a valuge O(1/Re) for K - 0, whereas the inviscid growth is a concave 2
function which approaches zero as Kt forsmall values of K (figure 6)
292 To find how tmin depends on Re, we consider the following ansatz tmin = BRe 2. When substituted
23 into (5.16), the Reynolds number is factored out, leaving an equation for B that can be easily solved 2
numerically. We obtain B @ 491 and a Reynolds-independent marginal wavelength Amar @ 10.7. Past s tmin
the ran§e of wavelengths that experiences growth widens. The upper limit of the range increases as.ss Re t-
tmin. THefower fimit of the range decreases as Re /2 (t —tmin) /4. The peak of the growth rate  rapidly
shifts to smaller wavelengths (figure 5a). The existence of a minimum time that needs to elapse s before
instabilities can grow implies that instabilities will appear only after the background stratification 2 has

grown suficiently. Since the non-dimensional time-dependent background stratification is N2 = -te?, sw the
minimum near-surface background stratification necessary to sustain perturbations is —tmin.
301 However, we recall that the superexponential growth given by (5.16) is not expected until t @ 1. se

Therefore, for large values of the Reynolds number, by the time the solution enters the superexponential s
phase, a range of wavelengths is already poised to grow. Moreover, for large values of Re, the growthsu rate
for most wavelengths experiencing growth is only weakly dependent on the Reynolds number. Only
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;s wavelengths that are close to either side of the interval see a significant departure from purely inviscid
s growth. Thus, when comparing our results with numerical simulations, we use the inviscid limit.

307 The asymptotic expression is more complicated when Pr = 1, but as long as P r remains finite, there
;6 iS no qualitative change in the behavior of the solution and little quantitative change. In fact, as we su
shall see, the predicted growth rate and peak wavelength at Pr = 1 match the values observed in the 30
numerical simulation at Pr = 10.

311 The above analysis suggests that instabilities will always appear, provided that enough time is allowed s
for the stratification to reach its critical value, regardless of the magnitude of the Reynolds number. s
However, as we remarked above, equation (5.5) was derived in the large Re limit. Superexponential growth s
requires tmin to be @ 1 or larger. For values of Re greater than 20, by the time the superexponentialsis phase
begins, there is already a range of wavelengths with positive growth rates. Whether values of Re 515 smaller
than 20 can still be considered “large” for the purpose of the theory remains to be seen. It issz  certainly
reasonable to assume that no matter how small the Reynolds number is, a suficiently largesis accumulation
of negative buoyancy at the surface should be able to overcome the stabilising effect of 1.0 viscosity and
diffusion, but this is a question that our theory cannot answer with certainty. Moreover, our s theory works
in the small T limit. Under highly diffusive conditions, the growth of the surface boundarys» layer cannot be
neglected.

322 5.2. Diurnal solar radiation

323 For the diurnal radiation case (n = 2), the general solution to (5.5) can be expressed in terms of a
322 combination of Hermite polynomials and hypergeometric functions, which play the role of Airy’s functions s
for the n = 1 case. In this case, it is the hypergeometric function that dominates the behaviour for large s
values of t. For large t the asymptotic solution is

K4 Pr-1,2y
.\/ > P 1 2 . (320)1/2 L Pr ) p 1 2 Ho1/a
— r- r-
f¥(t) @ca(K)e®et@ ZDt+ K4 5 + 2Dt20 K* 5 + 2Dt? ,
r r
K21+ P 1 " Pr- 12 2#1/2
+ -
Sqg= - LTy T L apy
2 Pr 4 Pr
(5.17)

37 Where in this case c,(K) is the coeficient of integration associated to the Hypergeometric function. The
18 growth rate I4 is dependent on time and wave number, which, when Pr = 1 can be written as (Figure
3290 5 b)
v !

K2 Dt
- D(K)Re * 7%2
;0 Relative to the steady radiation case, the growth is more gradual at the onset, and steeper at later times,
;31 but the pattern is otherwise very similar.
332 In this case as well the background stratification must grow beyond a Re-dependent critical threshold s
for instabilities to grow. The analysis is very similar to the one done for the steady radiation case, withs the
exception that now tmin @ 42Re™! has the same value for the marginal stability wavelength. The s upper

limit of the unstable range increases as Ret, whereas the lower range decreases as (Ret) /215 (figure
5b).

24 = (5.18)



12 Y. Chang and A. Scotti

Viscous and inviscid nonlinear growth rates

viscous

inviscid at tRe? = 100
inviscid at ¢t Re? = 481
inviscid at tRe? = 1200

Figure 6: Viscous damping and inviscid growth rate as a function of wavelength under steady radiation
conditions. The viscous damping is time independent, whereas the inviscid growth rate accelerates with
time. Up to t @ 481Re~2 viscous damping dominates. Past this time, a widening range of wavenumbers
experiences net growth.

v 6. Comparison with numerical simulations

338 To validate the theory developed in the preceding section, we use the Stratified Ocean Model with ss
Adaptive Refinement (SOMAR) to compare the prediction of our theory with the DNS simulations . of
RDC. SOMAR solves the Navier-Stokes equations under the Boussinesq approximation (Santilli and sa
Scotti 2015; Chalamalla et al. 2017) using an operator splitting technique. The finite-volume discretization s.> is
second-order in space, while a third-order Runge-Kutta method is adopted for time marching. The s
Poisson equation is solved with an eficient multigrid solver. SOMAR adjusts the time step based on a s
CFL condition to maintain stability under advection. Viscous terms are treated implicitly.

345 We solve equations (2.1) and (2.2) in a rectangular domain extending from the surface to the
us  bottom. Equations are discretised with uniform grids in each direction. The initial condition is a3«
motionless, unstratified fluid plus perturbations of two types. The first type is initialised with single-mode sus
perturbations with the most unstable wavelength predicted by (5.14) and (5.17) and the corresponding s«
vertical structure shown in Figure 3b, with the peak normalised by Wo being 0.001. The second typesso s
initialised with random temperature perturbations (normalised by To) uniformly distributed in thess: range
-0.01 to 0.01 over the entire domain. The boundary conditions are periodic in the horizontalss: direction.
At the surface and at the bottom of the domain we use free-slip conditions and zero buoyancysss flux. The use
of free-slip conditions at the bottom removes the need to resolve the viscous sublayer. As s convective
activity is mostly confined with Zg, the effect is negligible at large Reynolds numbers. The sss range of
random temperature perturbations (-0.01 to 0.01) is chosen so that nonlinear terms is at leastss two orders
of magnitudes smaller than linear terms. The effect of the magnitude of random perturbationsss; is examined
in Appendix D.

358 The configuration of all cases simulated and compared with the theory is described in Table 1. Cases ss
TLR and THR consider time-independent radiation. The other two cases, DLR and DHR consider e
periodic radiation conditions. The non-dimensional parameters in the time periodic cases correspond to :a
typical values found in Lake Onego (DLR) and Lake Michigan (DHR).

362 Together, these 4 cases cover a wide range of Re from 200 to 65000 with P r = 10, which is typical s:
for freshwater below the critical temperature. From our theory, we expect that over such a range of s
Reynolds numbers, the critical wavelength and vertical structure should vary appreciably. To capture e
these characteristics in each case, the choice of grid spacing is made with the following criteria in mind:
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Case Section Re Pe tQ §6/S D Ao S Nh Ny
TLR 5.1.1 932 9323 - 0.009 0.64 0.6 1.2 166 122
THR 5.1.2 65444 654444 -— 0.003 0.89 0.1 0.4 164 164

DLR 5.21 196 1959 0.09 0.013 0.51 1 1.7 161 173

DHR 5.2.2 20908 209080 0.26 0.004 0.83 0.15 0.5 163 205

Table 1: Configurations for the numerical simulations considered in sections 5.1 and 5.2. For each
simulation, we list the Reynolds number Re = WoZo/v, the Péclet number Pe = WoZo/k, the ratio
6/S of the thickness of the viscous surface layer at t = 1/P e to the thickness of the most unstable mode S,
time scale ratio toQ, the eigenvalue of the most unstable mode D, the wavelength of the most unstable mode
Ap, the vertical extent (measured from the surface) of the most unstable mode S, the number of grid
points Ny that resolve one horizontal wavelength , and the number of grid points N, that resolve S in
vertical. All lengths are measured in units of Zp. In all the cases considered, the non-dimensional depth H
of the domain is 5.

6 First, the vertical domain is 5 times Zg, and horizontal domain is sized to contain 100 wavelengths with ze
the highest growth rate A,. Second, at least 161 horizontal grid points resolve the wavelength with the ses
highest growth rate Ap and at least 40 grid points resolve the cutoff wavelength Acyt. In the vertical s  we
use at least 122 grid points to resolve the sharp vertical variation S near the surface (see Ap, S, 30 N
and N, in table 1). Third, and finally, in addition to the CFL condition necessary to ensure the sn
numerical stability of the scheme, the time step is further subject to the constraint that it should not s»
exceed to/40. These three rules ensure that the numerical setup does not bias the simulations. Sensitivity s
to grid resolution tests are reported in Appendix C.

374 To distinguish between the linear stage (where our theory is expected to hold) and the non-linear
s stage we compare 0b/dt and w(0b/dz) in the buoyancy equation and dw/dt and w(dw/dz) in the z-s
momentum equation. We compute the rms of each term for comparison. The average is taken over the s»
vertical range in which the eigenfunction of the most unstable wavelength varies (S in table 1 and figure s
3b). The theoretical solution is normalised so that at t = 2 it coincides with the numerical solution.

379 6.1. Time independent radiation

380 Case TLR initialized with single-mode perturbations is shown in figure 7a. The leftmost column s
displays the time evolution of the horizontally averaged buoyancy. The red curve shows the value assumed s by
the theory, while the blue dashed line is calculated from the SOMAR output. The two profiles aresss  still
identical at t = 6, while significant difference exists at t = 7, signalling the end of the linear stage. s Even
towards the end of the linear stage, the energy is still concentrated at the wavelength of thess initial
condition (last column). Buoyancy and vertical velocity are shown in the central columns. The s
perturbations evolve as a series of downward localized jets.

387 The growth of the perturbations in the simulation agrees well with the one predicted by the theory
s until the magnitude of the nonlinear terms catches up with the magnitude of the linear terms around sss
t= 6.7 (figure 7b).

390 We estimate the time dependent growth rate from the simulation as
2d N
Zt = ga(ln W), (61)

.1 Which compares extremely well with the theoretically predicted value (figure 7c) fromt= 3tot= 6,3
after which the former declines because the system approaches the nonlinear stage. The discrepancy at s
earlier times may simply indicates that (6.1) is sensitive to small change in w, since dw/dt and df “(t)/dt se
agree well (figure 7b). Note that over the interval t = 2 and t = 6 the magnitude of the perturbation sss
grows by 3 orders of magnitudes.

396 Between 0 < t< 1, Ow/dt drops slightly (figure 7b). Presumably, during this time, viscosity in (2.9)
w7 and diffusivity in (2.10) play a role in the evolution of perturbations, because db/dz in (2.10), which grows
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Figure 7: Evolution of RDC under time-independent radiation profile, with Re = 932 and single-mode
perturbations. (a) From rows 1-3, time advances. Column 1, comparison between theoretical basic state
buoyancy b(z, t) and horizontally averaged buoyancy profile bave. Column 2, side view of total buoyancy b.
Column 3, side view of perturbation buoyancy b. Column 4, side view of vertical velocity, which is also
perturbation vertical velocity w. Column 5, vertical velocity spectrum at z = -1, -2/3, and -1/3. A is
the wavelength of the perturbations. A, represents the theoretical most unstable wavelength. Acy: the
theoretical cutoff wavelength. Note the appearance of a spectral line at half the forcing wavelength due to
the quadratic term in the equation of motion at t = 5. Only when the flow becomes fully nonlinear we
observe energy at wavelengths smaller than Acyt. (b) rms of linear and nonlinear terms in the legend and
df(t)/dt and df°(t)/dt as a function of time. A, is calculated from (5.14), and D is computed via (5.3).
(c) growth rate as a function of time. The Red curve is computed from the SOMAR output. The green
curve is the theoretical value (5.14).
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Figure 8: Same as figure 7 but with white-noise perturbations.

from 0, is not strong enough. This does not contradict the balance (4.1) and (4.2) and the subsequent s

analysis in sections 4 and 5. (4.1) and (4.2) target the evolution of perturbations when db/dz grows o
continuously, and the analysis which follows applies for t > 1.
Simulations of case TLR with white-noise perturbations are shown in figure 8. The major difference s
in this case is that the spectrum contains energy over the range of wavelengths that experience positive ;s

401

growth, peaked on the wavelength of maximal growth (A, = 0.6 at Re

932) predicted by the theory, s

which also predicts well the vertical envelope of the perturbations, with a peak at z = -0.25 (figure 3b).
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Figure 9: Same as figure 7, but with Re = 65444, white-noise perturbations and smaller colorbar range

for columns 1-4.

405

Towards the end of the linear stage, there is a shift of the spectrum to larger wavelengths, likely due 4

to the nonlinear merger of plumes. Of course, in the nonlinear stage three dimensional effects become a7
dominant, which are not captured by our simulations. The spectra at different depths essentially overlap, 4o
indicating strong coherence across the vertical dimension, consistent with a single mode being energized. s
Overall, the theory predicts well how the perturbation grows in time, though the measured time-«o
dependent growth rate Z: is somewhat smaller than the one calculated from the theory, though the



Onset of radiatively driven convection 17

a1 latter is the growth rate expected from the most unstable mode, whereas in the simulation we have a a2
combination of modes across a range of horizontal wavenumbers that, while following the same growth s
pattern, have different values of the eigenvalue D(K). Thus it is to be expected that the measured 2 21s be
lower than the theoretical value based on the most unstable wavelength.

a1 Case THR considers a much larger value of the Reynolds number (Re = 65444). In this case as well s
the averaged numerical buoyancy profile agrees well with the profile used for the theoretical analysis up.y tot
= 5.5, after which the numerical solution becomes dominated by nonlinearity (figure 9a, column 1). s The
spectra at different depths do not exactly overlap, as was the case at lower values of the Reynolds s number,
though still peaking near the expected wavelength of maximal growth (Ap = 0.1). At large«o values of
the Reynolds number, the growth rate of higher vertical modal orders is less sensitive to the ax modal
number, and therefore we expect that the flow initialized with random perturbations will exhibit 22 a mixture
of contribution from different modes. Overall, the theory captures well the growth of thes perturbations
(figure 3b), though the presence of a continuum of energized wavelengths is reflected in .. the overall time-
dependent rate of growth, which, while following the expected increase in time betweenss t= 2andt= 4.5is
lower than the growth rate based on the most unstable wavelength and mode (figure ss  9c).

a27 6.2. Diurnal solar radiation

a28 Simulations forced by diurnal solar radiation with single-mode perturbations agree well with theory, 420
as was for case TLR in the preceding section. Therefore, in this section we focus on simulations with a3
white-noise perturbations.

a31 Case DLR uses parameters typical of springtime conditions in a shallow temperate lake (Lake Onego, 43
Bouffard et al. (2019)). Compared to the other cases considered, diffusion effects are stronger, which s
results in a relatively low value for the Reynolds number (Re = 196). The agreement between the s

buoyancy profile computed from the simulation and the one used in the theory is good up to t = 6, after s
which nonlinearity dominates (first column in figure 10a; also figure 10b indicates that the nonlinearity s
begins at t = 6.6). The spectra at t = 5 peak near A = 1.2, close to the theoretical prediction Ap = 1. a3
Beginning at t = 6 we observe a shift of the energy to longer wavelength. This may be due to the flow s
becoming more nonlinear. At A, = 1 the corresponding mode-1 structure function (figure 3b), extends s
to z = -1.7, with a peak at z = -0.4, which captures well the vertical envelope of the fluctuations.so The
growth of the rms fluctuations is well described by the theory (figure 10b). Over 2 @t @ 6.6, thes: amplitude
of the fluctuations increases by four orders of magnitude. Setting W = exp(ot?) we compute sz the growth
rate 24 = ot as
1d .

4 = Ea(Inw). (6.2)
w3 The computed growth rate is in good agreement up to t = 6.2 (figure 10c), after which the computed
aa  growth rate declines as the linear and nonlinear terms become comparable (figure 10b). As it was for the
ws steady radiation cases, the calculated growth rate when the flow is initialized with a spectrally broad-
s banded initial condition is somewhat lower than the theoretically predicted value. However, the trend in
a7 time is very similar, and the same considerations that we presented in the steady radiation case apply
ws here as well. Overall, the agreement between theory and simulations is good.
aa9 Case DHR is representative of a deeper lake, close to critical temperature on a cloudy day. Such sso
conditions are often observed in Lake Michigan and Lake Superior (Cannon et al. 2019; Austin 2019). 4
With the role of viscosity and diffusivity diminished, the superexponential growth rate is larger, and s
therefore the duration of the linear phase is shorter. Prior to t = 5, the theoretical basic state buoyancy s
(4.6) and SOMAR output coincide, after which nonlinearity becomes apparent (t = 5.5) (figure 11a, s
column 1). The spectra peak around the theoretical wavelength of maximal growth (A, = 0.15), which is s
almost an order of magnitude shorter than in the previous case. The vertical envelope of the fluctuations s s
confined in the upper 10% of the water column during the linear phase, as expected from the mode-1 4
function associated to Ap. The computed time-dependent growth rate follows the theoretical profile well, s
though it is smaller than the value expected for the the wavelength of maximal growth. Again, thisis toss be
expected, since the range of active wavenumbers is wide.
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DLR, white-noise perturbations
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w 7. Summary and conclusions

a61 We have considered the characteristics of the perturbations at the onset of Radiatively Driven
w2 Convection. In this stage, the perturbations are small enough that it is permissible to linearise the
w3 equations of motions around a quiescent background state characterised by a time-varying buoyancy sss
profile. We considered both steady radiation, which has been considered in recent laboratory experiments uss
(Bouillaut et al. 2019) and has applications to stellar interior (Kippenhahn et al. 1990), as well as time 4
dependent cases, more representative of Radiatively Driven Convection in temperate lakes during spring s
time and which may have application to atmospheric convection (see, e.g. Figure 4 in Deardorff (1974)). 4s As
opposed to the more traditional Rayleigh-Bénard convection, where the background state moves heat s«  at
fixed rate from bottom to top boundary, while remaining constant in time, in Radiatively Driven o
Convection the background state evolves in time, as heat is continuously added by radiation, and only
after the onset of convection heat can be effectively redistributed in the interior. By considering the most 47
likely balance in the dynamical equations, we build velocity and time scales which together with viscosity
allow the definition of a Reynolds number. We develop a theory that is valid for large values of the 4.
Reynolds number that predicts the wavelength, vertical structure, and growth rate of the perturbations s
during the initial linear stage. Due to the time-dependent nature of the background state, the growth of 4
perturbations not significantly affected by viscous damping has the form exp[(ot)"] where the exponentis.» n
= 3/2 for time-independent radiation and n = 2 for diurnal radiation. We have confirmed the analysis sz by
comparison with highly resolved DNS.

a79 The theory gives a way to estimate the duration of the linear phase. Indeed, the latter terminates
w0 When the amplitude of the nonlinear terms becomes comparable to the amplitude of the linear terms. s
In Appendix D we show that the duration of the linear phase over a range of intensities of the residual . flow
at dawn is found to be between 3tp and 6tp, where the linear time scale to is given by the last of s (4.8). For
Lake Superior, assuming a water temperature of T = 3.5 °C, and a e-folding scale Zp = 10,4 we obtaintg =
80 min on a cloudy day when the radiative intensity is So = 200 W/m?2. On a sunny day, s with the radiative
intensity So = 800 W/m?, the linear time scale is reduced to to = 60 min.

486 If we accept that once turbulence sets in the vertical gradient in temperature stabilises, the latter is
a7 then set by the length of the linear phase. Ceteris paribus, a weaker initial circulation left over from the sss
previous cycle will result in a longer linear phase and thus a stronger stratification at the onset of the s
turbulent phase, that is, a stronger temperature contrast upon which advection acts. This should result o in
larger rms temperature fluctuations (relative to the background) during the day. With lakes as our .
geophysical example of RDC under periodic radiation forcing, one way to test this prediction from an s
observational point of view would be to correlate the strength of the fluctuations in temperature to the 4
strength of the residual circulation at first daylight.
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2 Appendix A

543 In this appendix we consider the Sturm-Liouville problem 5.3 subject to a more general profile for
saa the background stratification which includes the upper boundary layer. We compare three profiles: The sis
inviscid profile considerc‘af:l earlier, and two profiles in which the buoyancy gradient is (a) equal to zero s«
within the region - T B'zT0; or (b) decreases linearly to zero within the same region. We discretise sz  the
Sturm-Liouville problem with standard second-order differences. For the latter two cases, we resolve sss  the
boundary layer with at least 20 points. Figure 12 compares the largest eigenvalue of the problem as s a
function of wavelength: when t = 5x 1073, the eigenvalues computed with diffusive boundary layerssso of
type (a) or (b) are virtually indistinguishable. Compared to the inviscid profile, saturation at small ss
wavelengths occurs more slowly, but for the same wavelength the difference is never greater than 10%. ss
The difference is much smaller for T = 5x 1074. The corresponding eigenfunctions show little difference ss
between the two boundary layer cases. Relative to the eigenfunctions obtained from the inviscid profile, ssa  we
observe a slight shift downward of the peak in the eigenfunction when the boundary layer is included. sss
However, the difference is small. Since the focus of this paper is on the small T regime, this justifies thess use
of the inviscid profile (t = 0) in the calculations presented in the main paper.
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Figure 12: D as a function of A for three different buoyancy profiles: inviscid profile (blue); profile with
zero stratification in the boundary layer at T = 5x 1073 (red) and Tt = 5x 10™* (crosses); profile with
stratification linearly approaching zero with the boundary layer at T = 5x 1073(circles).

s> Appendix B

558 In this appendix we present a more formal derivation of eq. (5.5). Let us consider a given K and let ss
B = (-K? +d?/dz?) and B> =,-K?2. We substitute (5.2) into (5.1) and project over the eigenfunctions sc
obtained solving the Sturm-Liouville problem (5.3) to obtain a set of coupled ODEs for the functions se
fm(t). In particular, we need to consider integrals over the vertical domain y = [-H/Zo, 0] that can be s
written as z

180 = B?Pom(z) @n(z)dz, (7.1)
Y
ses with p=1,2,3. When p = 1, the integral reduces to

Il - _ﬁmn (72)

see  Where 6mn is the Kronecker’s delta. When p = 2, we can use integration by part and the properties of
ses the eigenfunctions to obtain

> z 2 2 K 2 )
I = ¢m(2)8 @n(z)dz = ——Bmn + €nd, (7.3)
v m n
R
s With epmn = b(epz - 1)@m(z)@n(z)dpy, where du = K2e?dz is the weighted measure of the interval.
sz Finally, again Using integration by part
|
don ’
T K 4 _émn+e$nn+6mn+e%m+ y & Smendp (7.4)
mn ~ DD, D K2 K2 . )

m

ss  The functions f_ (t) then must obey the following system of coupled ODEs:
2

d{zn +X Rp 1+F£'p 'ml%&‘ Doy L fi =_Dm}__‘l.fm- (7.5)
|
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v
Introducing the rescaled wavenumber K = K/ R€D7, we have

D D1
7R: It = KZE(GmI + ), (7.6)
and
Dm 3 4 D} 2 -1
@Im: -K DmD|(6m|+ €.1)+ O(Re™™). (7.7)

Finally, we note that for finite values of K (i.e., small wavelengths) where viscous effects are going to be
important, the eigenfunctions are non-zero in a region whose size is O(Re~1/2) (see Figure 3(a)). Thus,
the coupling terms e:m = O(Re~1/2) are negligible. Therefore, the (7.5) to O(Re~1/2) reduces to a set of
decoupled equations for the coeficients f’s, all of the form (5.5) with D = D, and f = fp,. Since the
growth rate in the inviscid limit is proportional to the eigenvalue, we focus on the gravest mode (m = 1)
which, by definition, has the largest eigenvalue.

Appendix C Sensitivity to grid resolution

In this Appendix we show grid-independent tests. We choose THR and DLR for illustration because
they cover the maximal and minimum Reynolds numbers Re in this paper. As we can see from figures 13 sz

and 14, as the grids are refined by a factor of 2 in both x and z directions, the growth rates are identical 2 in
the linear stage (before the growth rates drop). The only difference appears to be a slightly longer s
duration of the linear phase.
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THR, white-noise perturbations
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Figure 13: Growth rates as a function of time under steady radiation profile with Re = 65444. The
resolution is indicated in the legend.

DLR, white-noise perturbations

—— 16384512
AR 327681024
b — . (5.17)
05|

Figure 14: Growth rates under diurnal radiation profile with Re = 196. Symbols as in figure 13.

s Appendix D Effects of initial perturbation magnitude

s8a This appendix examines the effect of the magnitude of the initial perturbations. Section 6 considers ran-sss
dom temperature perturbations normalized by To uniformly distributed in the range from =102 to 1072, s
In this appendix, we compare different initial perturbation intensities (-107%,1071), (-1072, 1072), and s
(-1073,1073). We choose cases THR and DLR to examine the perturbation effect because they cover ss
the largest and smallest Reynolds number Re considered in our numerical experiments. In both cases, ss
for the largest initial perturbations, the linear terms are less than an order of magnitude greater thanss the
nonlinear terms (upper panels in figures 15 and 16) and the system never experiences a linear stage. s«  In
contrast, when the initial perturbations are smaller (last two cases), the growth rate is similar and fors. the
case with the smallest initial condition, the duration of the superexponential stage is indeed longer.s: This
results in the stratification at the onset of the nonlinear turbulent stage being stronger.
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Figure 15: Evolution of RDC under time-independent radiation profile, with Re = 65444. (a) rms of
linear and nonlinear terms. (b) growth rates. The numbers in the legend indicate the strength of the
initial perturbations. Black curve is the theoretical value (5.14).
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Figure 16: Same as figure 15, but under diurnal radiation profile and Re = 196.



