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8                  This paper considers the initial stage of Radiatively Driven Convection ( R D C ) ,  when the perturbations
9         from a quiescent but time-dependent background state are small. Radiation intensity is assumed to decay

10         exponentially away from the surface, and we consider parameter regimes in which the depth of the water
11         is greater than the decay scale of e of the radiation intensity. Both time-independent and time-periodic
12         radiation are considered. In both cases, the background temperature profile of the water column is time-
13         dependent. A  linear analysis of the system is performed based on these time-dependent profiles. We find
14         that the perturbations grow in time according to exp[(σ(t)t)], where σ(t) is a time-dependent growth
15         rate. An appropriately defined Reynolds number is the primary dimensionless number characterising the
16         system, determining the wavelength, vertical structure, and growth rate of the perturbations. Simulations
17         using a Boussinesq model (the Stratified Ocean Model with Adaptive Refinement) confirm the linear
18         analysis.

19         1. Intro duct ion
20

21 This paper focusses on radiatively driven convection ( R D C ) ,  which occurs when heat is applied to a 22

fluid by absorption of radiation penetrating a finite distance from a boundary. To  achieve convection, 23         the
resulting heating must result in an unstable buoyancy distribution developing in the fluid. In fluids 24         where
the buoyancy increases with temperature, the radiation must be applied from below. This occurs, 25         for
example, in the interior of stars, where the radiation from the inner core drives convection in the 26         outer
layer (Spiegel 1971). Conversely, in fluids where buoyancy decreases with temperature, such as 27         fresh
water below the temperature of maximum density, R D C  requires that radiation be applied from 28         above.
An example of the latter in a geophysical setting occurs in temperate lakes during spring when 29         the water
column is below the critical temperature and solar radiation heats the surface layer (see e.g. 30         Bouffard et
al. 2019; Cannon et al. 2019; Austin et al. 2022). An important difference between R D C  31         in the interior of
stars and R D C  in lakes is that in the former, the horizontally (or ensemble) averaged 32         temperature profile
can be assumed to be in a statistically steady state, that is, the amount of heat 33         received from the inner
core is eventually transferred to the surface and lost to space, whereas in the 34         case of R D C  in lakes heat
continuously accumulates in the system. Austin et al. (2022) shows that 35         some heat loss occurs during
nighttime, but it is small compared to the net daytime heat input. Thus, 36         the averaged temperature never
achieves steady state. Additionally, and just as important, in lakes the 37         radiation intensity is itself time-
dependent, following a diurnal cycle.
38 R D C  as it applies to temperate lakes has been the subject of several recent observational studies that 39

focus on vertical velocity (Bogdanov et al. 2019; Bouffard et al. 2019; Cannon et al. 2019) and the scale 40         of
convection cells (Forrest et al. 2008; Yang et al. 2017; Bogdanov et al. 2019; Austin 2019; Austin et al. 41         2022).
42 These studies show that in R D C  systems that are driven by a cyclical radiation which spends a
43         significant amount in the ”off” state each cycle follows a consistent pattern:
44         (i)Onset: the beginning of each cycle starts from a relatively quiescent state.
45      (ii)Linear phase: warming of the water column develops a top-heavy buoyancy distribution on which 46

perturbations grow. In this stage, the effect of perturbations on the averaged buoyancy field is negligible. 47

The latter is still driven solely by the absorbed radiation.
48 (iii)Non-linear phase: the amplitude of perturbations saturates due to nonlinear interactions.
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49 (iv)Recovery phase: As the intensity of the radiation wanes, turbulent fluctuations decrease in intensity,
50         and eventually the system relaxes to a mostly quiescent state with little or no residual stratification.
51 Early studies (Mironov and Terzhevik 2000; Mironov et al. 2001) suggest that if the depth is hori-52

zontally uniform, when turbulence develops, the vertical divergence of the total heat flux (the sum of 53

turbulent and radiative heat fluxes) becomes constant with depth, that is, the rate of heating becomes 54

uniform, or, which is the same, the stratification profile becomes frozen in time (even as the fluid heats 55

up). This suggests that the stratification during the nonlinear phase is determined by the length of the 56

linear phase, since the stratification ceases to grow once turbulence sets it. Since advection operates on 57         the
averaged vertical temperature gradient, whose temperature contrast at the end of the linear phase 58         is
proportional to the time lapsed since the onset of radiation, the latter also gives an estimate for the 59

temperature fluctuations, at least until the waning solar radiation alters the balance and turbulence 60

starts eroding the temperature gradient. From this point of view, the linear phase sets the characteristics 61         of
the turbulent phase. This provides the motivation for the present study.
62 Motivated by observations of R D C  in Lake Superior, Christopher et al. (2023) recently studied the
63         onset of R D C  by applying a time-periodic heat flux to the surface of a fluid. Applying Floquet theory, 64

they calculated the critical Rayleigh number and normalised wavenumber as a function of normalised 65

frequency of thermal forcing (their figures 2 and 3), and showed that the critical Rayleigh number 66

captures stability properties in two-dimensional numerical simulations (their figures 8 and 9).
67 Although appropriate to consider the stability of the background R D C  state, the analysis in Christo-68

pher et al. cannot be used to study the evolution of perturbations at geophysical scales. The maximum 69

normalised frequency considered in Christopher et al. (2023) is 100, while, for example, the normalised 70

frequency in geophysical settings such as Lake Superior is of O(107). Moreover, their analysis does not 71

provide the growth rate and vertical structure of the most unstable mode, nor are any characteristics of 72         the
system described when the Rayleigh number exceeds the critical value.
73 Christopher et al.’s analysis applies to cases where the time scale of evolution of the perturbations 74

is comparable to or larger than the period of the forcing, but at more geophysically relevant scales the 75

perturbations grow on a time scale much shorter than the forcing period.
76 Yet, the onset is still followed by a period in time during which the perturbations are still small, so
77         a linearised treatment is still appropriate. With this in mind, here we develop a theory that applies to
78         systems in which appropriately defined Reynolds and Péclet numbers are large, and the forcing can be 79

time-dependent. This is not intended to provide a stability analysis of R D C  in the traditional sense. 80

The aim of the latter is to determine over which range of values of the relevant parameters the system 81

develops instabilities. In our analysis, we consider the linearised regime in the limit of large Reynolds 82

numbers, where we expect the system to be unstable, and we concentrate on two questions:
83         1. What are the wavelength, vertical structure, and growth rate of the growing perturbations during the
84         initial linear growth stage for R D C  driven at geophysical scales?
85         2. How do these features relate to environmental parameters such as radiation intensity and penetration
86         depth?
87 We consider the problem from the point of view of an initial-value problem. At t =  0 radiation is 88

applied to the surface of a motionless, unstratified fluid with a realistic e-folding decay scale, where the 89

radiation can be either time-independent or can have a diurnal cycle, and we follow the growth of a 90

perturbation from t =  0 driven by the time-evolving background state.
91 We find that perturbations do not follow the typical exponential growth exp(αt), which may be 92

expected for instabilities that grow on an otherwise constant-in-time background, (α being the constant 93         in-
time growth rate). Instead, the perturbations grow as exp[(σ(t)t)] and σ(t) � tn/2 with n =  1 for 94         time-
independent radiation and n =  2 for time-periodic radiation (the latter for times shorter than the 95         period).
96                  This paper is organised as follows. In Section 2 we linearise the equations of motions by considering
97         a time-varying basic state buoyancy profile which is heated by radiative forcing, whose evolution is
98         considered in Section 3; in Section 4 we estimate scalings for velocity and buoyancy by balancing the
99         dominant terms in perturbation equations and introduce the relevant nondimensional parameters; in

100         Section 5 we explore the behaviour of the perturbations under linearised dynamics in the limit of large
101         Reynolds number; in Section 6 we use Direction Numerical Simulations (DNS) to confirm the prediction
102         obtained from the linearised equations; finally we provide a summary and conclusions. Several Appendices

103         discuss technical points.
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104         2. R D C  in the linearised regime
105 We consider a fluid with a linear equation of state for the density ρ =  ρ0(1 −  αT ), where T is the
106         temperature. We assume a negative thermal expansion coeficient α. The fluid is subject to a radiative 107

forcing applied to the surface. The applied heat flux S0 e z /Z 0  F (t)  decays exponentially away from the 108

surface and can be modulated in time (figure 1). The problem under the Boussinesq approximation can 109         be
formulated as follows

110
D t  

=  −
ρ0  

�p̃ + be3 +  ν�2u, � · u  =  0, (2.1)

D b  
=  −  

B  
F (t)e

 z   
+  κ�2b. (2.2)

0

111         Here u  =  (ũ, ṽ, w̃) is the velocity, p̃  is the pressure deviation from the hydrostatic profile, b =  g(ρ0 −  112

ρ)/ρ0 =  αgT is the buoyancy, B  =  (−αg So /ρ0 Cp ) is the buoyancy flux due to the radiative heat flux 113

S0 , ρ0 is the reference density, Cp  is the heat capacity, g is the gravitational acceleration, Z 0  is the 114         e-
folding decay scale of the radiation flux, ν is the molecular viscosity, κ  is the molecular heat diffusivity, 115         and
e3 is the unit vector pointing upward. The surface through which radiation is applied is at z =  0 116         and the
domain extends below to z =  −H .  All  thermodynamic quantities are evaluated at the reference 117

temperature. Mutatis mutandis, the same configuration applies to radiation applied to the bottom of a 118

fluid with a positive expansion coeficient, with the understanding that in this case Z 0  <  0.
119 For time-independent radiation,

F (t)  =  1, (2.3)
120         while for diurnal solar radiation

F (t)  =  sin(Ωt)     if     t <  τD T L , else     0, (2.4)

121         where Ω =  π /τD T L  and τ D T L  is the daytime length.
122 We decompose the motion into a basic state and perturbations

u  =  0 +  u(x, t), b =  b(z, t) +  b(x, t), p̃  =  p +  p(x, t). (2.5)

123         Here x  =  (x, y, z) and b(z, t =  0) =  0. The basic state satisfies

0 =  −  
1 
�p +  be3, (2.6)

0
124

∂t 
=  −

Z 0  
F (t)e Z 0  +  κ

∂z
b

. (2.7)

125         From here, we follow the same approach used to study the stability of Rayleigh-Bénard convection
126         (Chandrasekhar 1961).     Subtracting the basic state momentum equation (2.6) from (2.1) and then
127         neglecting squares of perturbations, the linearized perturbation momentum equation reads

∂t 
=  −

ρ0  
�p +  be3 +  ν�2u, (2.8)

128 From (2.8) and the incompressibility condition we derive a single equation for the Laplacian of the
129         vertical velocity

∂�
t
w 

=  �2 b +  ν�2�2w. (2.9)

130         Here, �2 =  ∂2/∂x2 + ∂2 /∂y2 is the horizontal Laplacian operator. Subtracting the basic state buoyancy
131         equation (2.7) from (2.2) and then neglecting squares of perturbations, the linearized perturbation
132         buoyancy equation reads

∂t 
+  w

∂b(z, t) 
=  κ�2b. (2.10)

133         Substituting �hb in (2.9) into �h[(2.10)], these two equations can be combined as

∂ 
∂t

2w 
+  (�2 w)

∂z 
−  (ν +  κ)

∂t
�2�2w +  νκ�2�2�2w =  0. (2.11)

134         (2.7), (2.9) and (2.10) will be used to find scalings for the linear system. (2.11) will be used to find the
135         growth rate and the spatial structure of the perturbations.
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Figure 1: Schematic of R D C .

136         3. Evolut ion of the background profile
137                  With an appropriate choice of a vertical velocity scale W0, a buoyancy scale b0, and a time scale t0 (to
138         be defined in the next section), we define dimensionless vertical velocity, buoyancy, time, and coordinates

ŵ =  w/W0, b =  b/b0, t =  t/t0, x̂  =  x/Z0 , ŷ =  y/Z0 , ẑ  =  z/Z0 . (3.1)

139         We also define a Reynolds number R e  ≡  W0Z0 /ν and a Péclet number P e ≡  W0 Z0 /κ. From the
140         buoyancy scale, we can derive a temperature scale T0 =  b0 /(−αg). In the following we will dispense from
141         decorating non-dimensional variables, and all variables except those in section 4 are non-dimensional.
142         The background buoyancy profile satisfies

∂t 
=  −F (t )e z  +  

P e ∂z
b

, (3.2)

143         where the Péclet number P e is the ratio of the perturbation time scale (to be defined more precisely
144         later) to the diffusive time scale Z 2 /κ .  This equation needs to be solved subject to boundary and initial 145

conditions. For the latter, we simply choose b(z, 0) =  0. At the bottom (z =  − H )  of the water column, 146         the
natural choice is a no-flux condition. At the surface, we assume that the latent, sensible and long-147

wavelength radiative heat flux are small compared to the incoming short-wave heat flux, and thus we 148

approximate the surface boundary condition with a no-flux condition as well. This approximation is 149

suggested by the observations of Austin et al. (2022) who reports that the total increase in the heat 150

content of the water column as a function of time can be, to a great degree of accuracy, predicted by 151

integrating the equation for heat over the water column with no-flux conditions at both boundaries. As 152         we
shall see, for large values of P e, the evolution of the perturbations is primarily controlled by the 153

evolution of the stratification in the bulk of the water column driven by the absorbed radiation. With 154

these boundary conditions, (3.2) can be solved by writing the solution as a standard trigonometric series. 155

The vertical gradient of the general solution is thus

∂b
(z, t) =  

X  
am R(λm /P e, t) sin(λm z),

m = 1

156         where the wave number λm  =  mπ/H , and the coeficients

2λm  1 −  (−1 ) m e − H

m H 1 +  λm

(3.3)

(3.4)

157         The function R(s, t) describes the relaxation of the solution to the stationary state (which is not steady
158         for diurnal radiation)

1 − e − α t
if F (t)  =  1, (Steady radiation) s

2 + Ω 2  (s sin(Ωt) −  Ω(cos(Ωt) −

e− s t ) )      if F (t)  =  sin(Ωt), (Diurnal radiation).

159         In the case of steady radiation, R(s, t) =  R(st, 1)t. For diurnal radiation this is not in general true.
160         However, here we are interested in perturbations that grow on a time scale much shorter than the
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Figure 2: Profiles of ∂b/∂z normalized with fast time (solid lines) and ez (dashed lines) for different
values of τ plotted against z/ τ . The viscous profiles depart from the inviscid solution starting at a
depth which deepens as τ .

161         diurnal period, i.e. Ωt � 1. In this case we can approximate

R(s, t) � Ω
st −  (1 −  e − s t )  

+  O((Ωt)2), (3.6)

162         and therefore R(s, t) � R(st, 1)t2 + O((Ω t)2 ). Thus we can write a general form for the background shear
" #

∂b
(z, t) = apR(λpτ , 1) sin(λpz) tn ≡  Sn (z, τ )tn , (3.7)

p = 1

163         with τ =  t/P e, n =  1, 2 for steady and unsteady radiation respectively, and Sn (z , τ ) is the term in 164

square brackets in (3.7) with the appropriate choice for R ,  the relaxation function. Thus, for large values 165         of
the Péclet number, there are two time scales that control the evolution of the background stratification 166

profile: the ”fast” time t over which the profile evolves in a self-similar manner, and the ”slow” time τ 167         over
which the overall shape of the profile changes as the diffusive boundary layer grows at the surface. 168         In
particular, the inviscid solution

t

b(z, t) =  −e z        F (t ′ )dt ′ . (3.8)
0

169         is recovered in the limit τ → 0.
170 For finite, but small values of τ the inviscid solution approximates well the actual solution except 171

for the surface boundary layer whose thickness grows as τ (figure 2). Of course, for this to work,
172         the penetration depth (which in our units is 1) must be much larger than the thickness of the surface
173         boundary layer during the time over which the analysis is carried. In practise, this limits the analysis 174

to times shorter than Z 2 /κ .  Thus, our analysis cannot be applied to Rayleigh-Benard convection driven 175         by
a time-dependent surface heat flux (SHF convection), because that would require taking the Z 0  → 0 176         limit.
Physically, in time-dependent SHF the driving signal is carried into the fluid by the developing 177         boundary
layer itself. Whereas in R D C  we have a non-trivial inviscid solution which is modified over 178         a slow time by
diffusion effects, in SHF convection the inviscid solution is trivial, and the background 179         system evolves
under the slow time alone.
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180         4. Scal ing and normalisation
181 In this section, we temporarily revert to dimensional quantities. There are two length scales in R D C :
182         the depth of water H  and the radiation penetration scale Z0 . As near-surface water warms gradually and 183

just starts to sink, the depth of water during the initial stages of R D C  should not play a role provided 184

H /Z 0  � 1. Thus Z 0  is the natural length scale during the onset of this process .
185 The basic state is the time-dependent solution to (2.7) given by (3.7). Clearly, both b and ∂b/∂z change
186         continuously over time. Thus, perturbations grow against a background state which is itself changing.
187 We derive scales by balancing the dominant terms in (2.9) and (2.10). Since growing perturbations are
188         forced by the basic state, which is time dependent in R D C ,  time-derivative terms must be retained. In
189         the vertical momentum equation (2.9), we assume the local vertical acceleration and buoyancy balance

∂�
t
w 

� �H b. (4.1)

190         In the buoyancy equation (2.10), we assume a balance between the local rate of increase in buoyancy
191         and vertical advection of buoyancy

∂t 
� w

∂b(z, t)
. (4.2)

192         Three equations sufice to solve for the vertical velocity scale W0, the buoyancy scale b0, and the time
193         scale t0.

194 4.1. Time independent radiation
195 The inviscid solution for the background buoyancy provides a scale for the buoyancy

b0 =  
B  

t0, (4.3)
0

196         which in conjunction with (4.1) and (4.2) allows us to determine the other scales

W0 =  (B Z0 )1/3 ,
     2 1/3 b0 =

,
0

1/3

t0 =  
B

. (4.4)

197         Substituting (3.1) and (4.4) into (2.11) we have
∂ 
∂t

2w 
−  �H wS1(z, τ )t −  

R e  
+  

P e

 

∂t
�2�2w +  

ReP e
�2�2�2w =  0. (4.5)

198         The physical interpretation of the characteristic scales (4.4) is that as the R D C  develops, the perturba-
199         tions grow to O(W0) and O(b0) over a time O(t0), after which the system becomes nonlinear.
200 Also, note that W0 =  (B Z0 )1 / 3  in (4.4) has the same form as the Deardorff (1970) scaling W� =  201

(B�H )1/3 , which characterises the vertical velocity in SHF convection (B � is the buoyancy flux applied 202         to
the surface and H  is the depth of the water). However, the fact that the two scalings are of the same 203         form
should be viewed as a coincidence, because the two problems differ fundamentally. The Deardorff 204         scaling
characterises vertical velocity in SHF convection in the nonlinear steady state stage, while (4.4) 205         are
scalings for the linear, time-dependent stage of R D C  in which the radiation profile penetrates into 206         fluid
with an e-folding decay scale Z0 .

207 4.2. Diurnal solar radiation
208                              In this case, the inviscid solution indicates that

b0 =  
B  
Ωt2. (4.6)

0

209         Substituting W0, b0, and t0 into (4.1), (4.2), (4.6), we have

W0 =  b0,
0 t0 

=  
Z 0  

, b0 =  
B  
Ωt2, (4.7)

0

210         which together yield

W0 =  (BΩZ 2 )1/4 , b0 =  (BΩ )1/2 ,

2 1/4

t0 =
BΩ

, (4.8)

211         which are to be interpreted as their counterpart in the steady radiation case. Substituting (3.1) and (4.8)
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212         into (2.11) and working under the assumption that Ωt0 � 1 so that the background solution retains the
213         self similar profile in the fast time t, we have

∂ 
∂t

2w 
−  �2 wS2(z, τ )t2 −  

R e  
+  

P e

 

∂t
�2�2w +  

ReP e
�2�2�2w =  0. (4.9)

214         5. Evolut ion of perturbations
215 The equations for the evolution of the perturbation under steady and periodic radiation conditions
216         can be condensed in a single equation which in non dimensional form reads

∂t 
+  

P e ∂τ 
−  

Re
�2

∂t 
+  

P e ∂τ 
−  

P e
�2       �2w =  Sn (z, τ )tn�2 w, (5.1)

217         with n =  1 describing the steady radiation case and n =  2 the diurnal cycle. This equation describes the
218         evolution of the perturbed vertical velocity w(x, y, z, t, τ ).
219 In the geophysical settings of interest, the Reynolds and Péclet numbers are large, though not infinite,
220         and therefore it is of consequence to consider whether (5.1) can be further simplified. To  this extent, it 221

would be tempting to discard altogether the terms proportional to R e − 1  and P e−1 . However, this would 222         not
be appropriate, since, on physical grounds, we expect that viscosity and diffusivity at suficiently 223         small
scales cannot be ignored. However, it is reasonable to expect that no high-frequency oscillations 224         should be
expected in τ (otherwise it would be a fast time), and thus we can neglect the term P e−1∂/∂τ . 225         Equation
(5.1) is invariant under rotations around the vertical axis. Thus, we consider perturbations 226         confined to a
two-dimensional vertical plane. Since equation (5.1) is not homogeneous in fast time, the 227         typical solution
form eγ t  with γ being a constant growth rate cannot be applied. Therefore, we seek 228         solutions in the form
of

w(x, t) =  eiK xψ(z , t, τ ), (5.2)
229         and we expand ψ(z, t, τ ) = f K (t)ϕK (z , τ ).  The ϕK (z , τ ) functions are the eigenvectors of the Sturm-
230         Liouville problem

d
dz2      −  K 2 ϕm  =  −

D m  
K 2 n!Sn (z , τ )ϕm , ϕm(0, τ ) =  ϕm (−H/z0 , τ )  =  0, (5.3)

231         where D m ( K )  is the corresponding eigenvalue, and normalized such that
Z 0

K 2 n!Sn (z , τ )ϕK (z , τ )ϕK (z , τ )dz =  δm l (5.4)
− H / z 0

232         with n =  1 is for steady state radiation and n =  2 for diurnal radiation. As we shall see, the eigenvalues
233         Dm ’s control the growth of the perturbations in the inviscid limit.
234 A  second simplification that we seek is to replace n!Sn (z, τ ) with its limiting value n!Sn (z, 0) =  ez in 235

(5.1) and the attendant Sturm-Liouville problem. This assumption is justified by considering that, by 236

the time the linear stage of perturbation growth comes to an end, τ is still very small. Indeed, one way 237         to
interpret the Péclet number is to see it as the ratio of t0 (the time scale of growth of perturbations) 238         to the
diffusive time scale Z 2 /κ .  Thus at large Péclet numbers the perturbations ought to experience a 239

background state whose only mode of change is self-similar. In Appendix A  we verify that the effect of 240         the
neglected surface boundary layer on the spectral properties of the Sturm-Liouville problem is small, 241

especially on the eigenvalues Dm ’s, which control how perturbations grow in time.
242 For a given K ,  there are countable eigenvalues D 1 ( K )  >  D 2 ( K )  >  . . ., and the corresponding
243         eigenvectors form an orthonormal basis. D 1 ( K )  as a function of the wavelength λ  =  2π /K  is shown 244

in Figure 3a, with a few representative eigenvectors shown in figure 3b. Note how, as K  increases, the 245

region over which the eigenvector is non-negligible decreases. In fact, with a simple rescaling of the 246

problem, it can be shown that the extent of the non-zero region decreases as 1/ K .  Although it is not 247

possible to give an analytic expression for the Dm ’s, we have D m ( K )  =  O (K 2 )  for K  � 1, whereas 248

D m ( K )  =  O (K 0 )  for K  � 1. In particular, the fact that the eigenvalues saturate at large wave numbers 249         will
have significant consequences. For a given horizontal wavenumber K ,  substituting (5.2) into (5.1) 250         yields a
system of coupled ODEs for the amplitude functions f K ( t ) .  In Appendix B  we show that when 251         the
Reynolds number is large (with fixed Prandtl number), to leading order the system decouples, so 252         that
each amplitude function f K ( t )  evolves independently from the other. For a given f K ( t ) ,  the inviscid 253         growth
rate is controlled by the eigenvalue D m ( K ) .  Because we are interested in the characteristics of 254         the fastest
growing perturbations, we focus on the case m =  1. From now on, D ( K )  =  D 1 ( K )  and
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Figure 3: Solution of the Sturm-Liouville problem (5.3). (a) eigenvalue D  as a function of λ. (b)
eigenvector ϕ(z) for the maximal D  for a given λ. Solutions are obtained by solving (5.3) using a
domain −5  � z � 0, boundary conditions ϕ(−5) =  ϕ(0) =  0, and 1000 uniform grids. The eigenvalue D
controls the growth rate in (5.8)-(5.9), (5.14), and (5.17), while the eigenvector ϕ(z) represents the
vertical structure of perturbations.

255         f K ( t )  =  f K ( t ) .  By introducing the renormalized wavenumber K  =  K /
√

D R e  to order O(Re−1 / 2 )  the
256         amplitude f K ( t )  satisfies the following equation

d
dt 

K  
+  K2 1 +  

P r

 

dt 
+  P r −1 K 4  −  D ( K )

n !
f K  =  0, (5.5)

257         where P r  =  P e/Re is the Prandtl number of the fluid.
258 In the previous equation, we can discern two limits. In the limit K  → ∞ with R e  constant, (5.5) tends
259         to a simple differential equation with constant coeficients, whose characteristic polynomial has roots

σ1,2 (K) =  −K 2 { 1 , P r − 1 } (5.6)

260         both of which are real and negative and thus exponentially damped. This is to be expected on physical 261

grounds, as for suficiently small wavelengths diffusive effects will smooth out and eventually dampen 262

fluctuations. Conversely, when K  → 0, with K  constant, the equation reduces to the modified Airy’s 263

equation
2     0 n

dt2    
 
−  D ( K )

n !
f  =  0, (5.7)

264         whose solution grows asymptotically as
 2/3

f 0 (t) � 
D (K )1 /12 t1 /4  e

(σ t t ) 3 / 2  
, σt =

3
D (K ) 1 / 3 , as     t � 1, (5.8)

265         when n =  1 and as

f 0 (t) � 
D (K )1 / 8 t1 / 2  

e(σ d t ) 2  
,

D ( K ) 1 / 4

d 23/4 as     t � 1, (5.9)

266         when n =  2. In practice, these asymptotic formulas apply already for t =  O(1), as seen by comparing 267

asymptotic solutions with the numerical integration of the corresponding equations (Figure 4). Note 268

that σd and σt tend to saturate as K  → ∞, whereas the viscous damping timescale becomes increasingly 269

shorter. On physical grounds, we can thus expect that at a certain wavenumber, dependent on the 270

Reynolds number, a cross-over occurs whereby viscous damping dominates and so very little energy 271

should be found above such wavenumber. To  verify our intuition, we consider the general solution of 272

(5.5). It can be written in terms of special functions.
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Figure 4: Comparison between asymptotic solution and numerical solution using a third-order Runge-
Kutta method with dt =  0.01, and initial conditions f (0)  =  1 and f ′ (0)  =  0. The comparison is to show
asymptotic solution captures the growth of numerical solution as t � 1. Solid curves are for D  =  1;
dashed for D  =  0.5. (a) Asymptotic solution (5.8) and numerical solution of the modified Airy equation
(5.7) with n =  1. (b) Asymptotic solution (5.9) and numerical solution of (5.7) with n =  2.

273 5.1. Time independent radiation

274                  We consider first the case when n =  1. In this case we have

f K ( t )  =  c1 (K)A(K, t) +  c2 (K)B (K, t). (5.10)

275         Here c1 (K) and c2 (K) are integration constants and the functions A  and B  can be expressed in terms of
276         Airy’s A i  and B i  functions

A(K, t) =  eσ ( K ) t Ai(ζ (K, t)), B (K, t)  =  eσ ( K ) t B i(ζ (K, t)), ζ (K, t) =  
(1 −  P r

4

1 )2 K
) 

+  4D (K )t
,  (5.11)

277         and σ (K) is the arithmetic mean of the σ i  (K)’s. The integration coeficients are given by

c1 (K) =  
(σ (K) −  1)B i(ζ (K, 0))f ′ (0) +  B i ′ (ζ (K, 0))f (0)

, (5.12)

278         and

c2 (K) =  −
(σ (K )  −  1)Ai(ζ (K, 0))f ′ (0) −  Ai ′ (ζ (K, 0))f (0)

, (5.13)

279         with ∆ ( K )  =  Ai(ζ (K, 0)B i ′ (ζ (K, 0))  −  Ai ′ (ζ (K, 0)B i(ζ (K, 0)).
280 For t >  1 the solution can be asymptotically expressed as

"
2

#−1 /4

f K ( t )  � e Σ t t       K4
P r

+  4Dt ,

K2 1 +  P r 1
"  

4 P r  −  1 2
#3/2

1
"  

4 P r  −  1 2
#3/2

(5.14)

2 P r               12Dt                  P r                                      12Dt                  P r

281 The solution when molecular viscosity and diffusivity are equal (P r  =  1) is particularly illuminating,
282         since in this case the solution is simply the inviscid solution multiplied by the viscous damping term.

 2/3

f K ( t )  � 
D(K )1 /12 t1 /4  e

− K 2 t + ( σ t t ) 3 / 2  
, σt =

3
D (K ) 1 / 3

. (5.15)

283         Neglecting the (weak) algebraic dependence on time of the prefactor, we see that evolution of a
284         perturbation with a horizontal wavenumber K  is controlled by the time- and wave-number-dependent
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Figure 5: Asymptotic growth rate Σ  vs wavelength at different times. The vertical red lines indicated
the estimated high-frequency cutoff K  =  1, i.e. λ  R e  ≈  2π. (a) Steady radiation; (b) Diurnal radiation.

285         growth rate

Σ t  =  
R e  

−
D ( K )  

+  
3

p
D ( K ) t R e 2 . (5.16)

286         Figure 5a shows the growth rate for a range of times as a function of the wavelength. Note that Σ t  is at
287         most O(1), which vindicates the choice of t0 as the relevant time scale for the process.
288 For a given Re, there is a Reynolds number dependent tmin such that for t <  tmin the time-dependent
289         growth rate Σ t ( K , t )  <  0. This can be easily seen considering that as a function of K  the viscous damping 290

is a convex function which tends to a value O(1/Re) for K  → 0, whereas the inviscid growth is a concave 291

function which approaches zero as K  t for small values of K  (figure 6)
292 To  find how tmin depends on Re, we consider the following ansatz tmin =  βRe−2 .  When substituted
293         into (5.16), the Reynolds number is factored out, leaving an equation for β that can be easily solved 294

numerically. We obtain β � 491 and a Reynolds-independent marginal wavelength λmar � 10.7. Past 295         tmin
the range of wavelengths that experiences growth widens. The upper limit of the range increases as 296         Re  t −
tmin. The lower limit of the range decreases as Re−1/ 2 (t − tmin )−1/ 4 . The peak of the growth rate 297         rapidly
shifts to smaller wavelengths (figure 5a). The existence of a minimum time that needs to elapse 298         before
instabilities can grow implies that instabilities will appear only after the background stratification 299         has
grown suficiently. Since the non-dimensional time-dependent background stratification is N 2 =  −tez , 300         the
minimum near-surface background stratification necessary to sustain perturbations is −tmin .
301 However, we recall that the superexponential growth given by (5.16) is not expected until t � 1. 302

Therefore, for large values of the Reynolds number, by the time the solution enters the superexponential 303

phase, a range of wavelengths is already poised to grow. Moreover, for large values of Re, the growth 304         rate
for most wavelengths experiencing growth is only weakly dependent on the Reynolds number. Only
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305         wavelengths that are close to either side of the interval see a significant departure from purely inviscid
306         growth. Thus, when comparing our results with numerical simulations, we use the inviscid limit.
307 The asymptotic expression is more complicated when P r  =  1, but as long as P r  remains finite, there
308         is no qualitative change in the behavior of the solution and little quantitative change. In fact, as we 309

shall see, the predicted growth rate and peak wavelength at P r  =  1 match the values observed in the 310

numerical simulation at P r  =  10.
311 The above analysis suggests that instabilities will always appear, provided that enough time is allowed 312

for the stratification to reach its critical value, regardless of the magnitude of the Reynolds number. 313

However, as we remarked above, equation (5.5) was derived in the large Re  limit. Superexponential growth 314

requires tmin to be � 1 or larger. For values of R e  greater than 20, by the time the superexponential 315         phase
begins, there is already a range of wavelengths with positive growth rates. Whether values of R e  316         smaller
than 20 can still be considered ”large” for the purpose of the theory remains to be seen. It is 317         certainly
reasonable to assume that no matter how small the Reynolds number is, a suficiently large 318         accumulation
of negative buoyancy at the surface should be able to overcome the stabilising effect of 319         viscosity and
diffusion, but this is a question that our theory cannot answer with certainty. Moreover, our 320         theory works
in the small τ limit. Under highly diffusive conditions, the growth of the surface boundary 321         layer cannot be
neglected.

322 5.2. Diurnal solar radiation
323 For the diurnal radiation case (n =  2), the general solution to (5.5) can be expressed in terms of a
324         combination of Hermite polynomials and hypergeometric functions, which play the role of Airy’s functions 325

for the n =  1 case. In this case, it is the hypergeometric function that dominates the behaviour for large 326

values of t. For large t the asymptotic solution is
K 4 P r − 1      2

f K ( t )  � c2 (K)eΣ d t  �
√

2D t  + K4 P r  −  1 2 

+  2D t2�
( 3 2 D ) 1 / 2 P r

K4 P r  −  1 2 

+  2Dt2 ,

Σ d  =  −  
2 

1 +  P r
 
+  

1 
"

K 4  P r  −  1 2 

+  2Dt
2
#1/2 

,

(5.17)
327         where in this case c2 (K) is the coeficient of integration associated to the Hypergeometric function. The
328         growth rate Σ d  is dependent on time and wave number, which, when P r  =  1 can be written as (Figure
329         5 b)

Σ d  =
K 2

√
D t

!

D ( K ) R e        2 2
(5.18)

330         Relative to the steady radiation case, the growth is more gradual at the onset, and steeper at later times,
331         but the pattern is otherwise very similar.
332 In this case as well the background stratification must grow beyond a Re-dependent critical threshold 333

for instabilities to grow. The analysis is very similar to the one done for the steady radiation case, with 334         the
exception that now tmin � 42Re−1  has the same value for the marginal stability wavelength. The 335         upper
limit of the unstable range increases as Re t, whereas the lower range decreases as (Re t)−1 / 2  

336         (figure
5b).
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Figure 6: Viscous damping and inviscid growth rate as a function of wavelength under steady radiation
conditions. The viscous damping is time independent, whereas the inviscid growth rate accelerates with
time. Up to t � 481Re−2 viscous damping dominates. Past this time, a widening range of wavenumbers
experiences net growth.

337         6. Comparison with numerical simulations
338 To  validate the theory developed in the preceding section, we use the Stratified Ocean Model with 339

Adaptive Refinement (SOMAR) to compare the prediction of our theory with the DNS simulations 340         of
R D C .  SOMAR solves the Navier-Stokes equations under the Boussinesq approximation (Santilli and 341

Scotti 2015; Chalamalla et al. 2017) using an operator splitting technique. The finite-volume discretization 342         is
second-order in space, while a third-order Runge-Kutta method is adopted for time marching. The 343

Poisson equation is solved with an eficient multigrid solver. SOMAR adjusts the time step based on a 344

C F L  condition to maintain stability under advection. Viscous terms are treated implicitly.
345 We solve equations (2.1) and (2.2) in a rectangular domain extending from the surface to the
346         bottom. Equations are discretised with uniform grids in each direction. The initial condition is a 347

motionless, unstratified fluid plus perturbations of two types. The first type is initialised with single-mode 348

perturbations with the most unstable wavelength predicted by (5.14) and (5.17) and the corresponding 349

vertical structure shown in Figure 3b, with the peak normalised by W0 being 0.001. The second type 350         is
initialised with random temperature perturbations (normalised by T0) uniformly distributed in the 351         range
-0.01 to 0.01 over the entire domain. The boundary conditions are periodic in the horizontal 352         direction.
At the surface and at the bottom of the domain we use free-slip conditions and zero buoyancy 353         flux. The use
of free-slip conditions at the bottom removes the need to resolve the viscous sublayer. As 354         convective
activity is mostly confined with Z0 , the effect is negligible at large Reynolds numbers. The 355         range of
random temperature perturbations (-0.01 to 0.01) is chosen so that nonlinear terms is at least 356         two orders
of magnitudes smaller than linear terms. The effect of the magnitude of random perturbations 357         is examined
in Appendix D.
358 The configuration of all cases simulated and compared with the theory is described in Table 1. Cases 359

T L R  and T H R  consider time-independent radiation. The other two cases, D L R  and DHR consider 360

periodic radiation conditions. The non-dimensional parameters in the time periodic cases correspond to 361

typical values found in Lake Onego ( D L R )  and Lake Michigan (DHR).
362 Together, these 4 cases cover a wide range of R e  from 200 to 65000 with P r  =  10, which is typical 363

for freshwater below the critical temperature. From our theory, we expect that over such a range of 364

Reynolds numbers, the critical wavelength and vertical structure should vary appreciably. To  capture 365

these characteristics in each case, the choice of grid spacing is made with the following criteria in mind:
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Case     Section R e P e t0Ω     δ /S D λ p S N h N v

T L R      5.1.1 932 9323 – 0.009 0.64 0.6 1.2 166     122

T H R      5.1.2 65444 654444 – 0.003 0.89 0.1 0.4 164     164

D L R      5.2.1 196 1959 0.09 0.013 0.51 1 1.7 161     173

D H R  5.2.2 20908 209080 0.26 0.004 0.83 0.15 0.5 163     205

Table 1: Configurations for the numerical simulations considered in sections 5.1 and 5.2. For each
simulation, we list the Reynolds number R e  =  W0Z0/ν , the Péclet number P e =  W0 Z0 /κ, the ratio
δ /S of the thickness of the viscous surface layer at τ =  1/P e to the thickness of the most unstable mode S ,
time scale ratio t0Ω, the eigenvalue of the most unstable mode D ,  the wavelength of the most unstable mode
λp, the vertical extent (measured from the surface) of the most unstable mode S , the number of grid
points N h  that resolve one horizontal wavelength , and the number of grid points N v  that resolve S  in
vertical. Al l  lengths are measured in units of Z0 . In all the cases considered, the non-dimensional depth H
of the domain is 5.

366         First, the vertical domain is 5 times Z0 , and horizontal domain is sized to contain 100 wavelengths with 367

the highest growth rate λp. Second, at least 161 horizontal grid points resolve the wavelength with the 368

highest growth rate λp and at least 40 grid points resolve the cutoff wavelength λcut . In the vertical 369         we
use at least 122 grid points to resolve the sharp vertical variation S  near the surface (see λp, S , 370         N h
and N v  in table 1). Third, and finally, in addition to the C F L  condition necessary to ensure the 371

numerical stability of the scheme, the time step is further subject to the constraint that it should not 372

exceed t0/40. These three rules ensure that the numerical setup does not bias the simulations. Sensitivity 373

to grid resolution tests are reported in Appendix C.
374 To  distinguish between the linear stage (where our theory is expected to hold) and the non-linear
375         stage we compare ∂b/∂t and w(∂b/∂z) in the buoyancy equation and ∂w/∂t and w(∂w/∂z) in the z-376

momentum equation. We compute the rms of each term for comparison. The average is taken over the 377

vertical range in which the eigenfunction of the most unstable wavelength varies ( S  in table 1 and figure 378

3b). The theoretical solution is normalised so that at t =  2 it coincides with the numerical solution.

379 6.1. Time independent radiation
380 Case T L R  initialized with single-mode perturbations is shown in figure 7a. The leftmost column 381

displays the time evolution of the horizontally averaged buoyancy. The red curve shows the value assumed 382         by
the theory, while the blue dashed line is calculated from the SOMAR output. The two profiles are 383         still
identical at t =  6, while significant difference exists at t =  7, signalling the end of the linear stage. 384         Even
towards the end of the linear stage, the energy is still concentrated at the wavelength of the 385         initial
condition (last column). Buoyancy and vertical velocity are shown in the central columns. The 386

perturbations evolve as a series of downward localized jets.
387 The growth of the perturbations in the simulation agrees well with the one predicted by the theory
388         until the magnitude of the nonlinear terms catches up with the magnitude of the linear terms around 389

t =  6.7 (figure 7b).
390 We estimate the time dependent growth rate from the simulation as

Σ t  ≈  
3 dt

(ln w̃), (6.1)

391         which compares extremely well with the theoretically predicted value (figure 7c) from t =  3 to t =  6, 392

after which the former declines because the system approaches the nonlinear stage. The discrepancy at 393

earlier times may simply indicates that (6.1) is sensitive to small change in w, since ∂w/∂t and df K (t)/dt 394

agree well (figure 7b). Note that over the interval t =  2 and t =  6 the magnitude of the perturbation 395

grows by 3 orders of magnitudes.
396                  Between 0 <  t <  1, ∂w/∂t drops slightly (figure 7b). Presumably, during this time, viscosity in (2.9)
397         and diffusivity in (2.10) play a role in the evolution of perturbations, because ∂b/∂z in (2.10), which grows
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Figure 7: Evolution of R D C  under time-independent radiation profile, with R e  =  932 and single-mode
perturbations. (a) From rows 1-3, time advances. Column 1, comparison between theoretical basic state
buoyancy b(z, t) and horizontally averaged buoyancy profile bave. Column 2, side view of total buoyancy b.
Column 3, side view of perturbation buoyancy b. Column 4, side view of vertical velocity, which is also
perturbation vertical velocity w. Column 5, vertical velocity spectrum at z =  −1, −2/3, and −1/3. λ  is
the wavelength of the perturbations. λp represents the theoretical most unstable wavelength. λc u t  the
theoretical cutoff wavelength. Note the appearance of a spectral line at half the forcing wavelength due to
the quadratic term in the equation of motion at t =  5. Only when the flow becomes fully nonlinear we
observe energy at wavelengths smaller than λcut . (b) rms of linear and nonlinear terms in the legend and
df K (t)/dt and df 0(t)/dt as a function of time. λp is calculated from (5.14), and D  is computed via (5.3).
(c) growth rate as a function of time. The Red curve is computed from the SOMAR output. The green
curve is the theoretical value (5.14).
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Figure 8: Same as figure 7 but with white-noise perturbations.

398         from 0, is not strong enough. This does not contradict the balance (4.1) and (4.2) and the subsequent 399

analysis in sections 4 and 5. (4.1) and (4.2) target the evolution of perturbations when ∂b/∂z grows 400

continuously, and the analysis which follows applies for t >  1.
401 Simulations of case T L R  with white-noise perturbations are shown in figure 8. The major difference 402

in this case is that the spectrum contains energy over the range of wavelengths that experience positive 403

growth, peaked on the wavelength of maximal growth (λp =  0.6 at R e  =  932) predicted by the theory, 404

which also predicts well the vertical envelope of the perturbations, with a peak at z =  −0.25 (figure 3b).
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Figure 9: Same as figure 7, but with R e  =  65444, white-noise perturbations and smaller colorbar range
for columns 1-4.

405         Towards the end of the linear stage, there is a shift of the spectrum to larger wavelengths, likely due 406

to the nonlinear merger of plumes. Of course, in the nonlinear stage three dimensional effects become 407

dominant, which are not captured by our simulations. The spectra at different depths essentially overlap, 408

indicating strong coherence across the vertical dimension, consistent with a single mode being energized. 409

Overall, the theory predicts well how the perturbation grows in time, though the measured time-410

dependent growth rate Σ t  is somewhat smaller than the one calculated from the theory, though the
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411         latter is the growth rate expected from the most unstable mode, whereas in the simulation we have a 412

combination of modes across a range of horizontal wavenumbers that, while following the same growth 413

pattern, have different values of the eigenvalue D ( K ) .  Thus it is to be expected that the measured Σ t  414         be
lower than the theoretical value based on the most unstable wavelength.
415 Case T H R  considers a much larger value of the Reynolds number (R e =  65444). In this case as well 416

the averaged numerical buoyancy profile agrees well with the profile used for the theoretical analysis up 417         to t
=  5.5, after which the numerical solution becomes dominated by nonlinearity (figure 9a, column 1). 418         The
spectra at different depths do not exactly overlap, as was the case at lower values of the Reynolds 419         number,
though still peaking near the expected wavelength of maximal growth (λp =  0.1). At large 420         values of
the Reynolds number, the growth rate of higher vertical modal orders is less sensitive to the 421         modal
number, and therefore we expect that the flow initialized with random perturbations will exhibit 422         a mixture
of contribution from different modes. Overall, the theory captures well the growth of the 423         perturbations
(figure 3b), though the presence of a continuum of energized wavelengths is reflected in 424         the overall time-
dependent rate of growth, which, while following the expected increase in time between 425         t =  2 and t =  4.5 is
lower than the growth rate based on the most unstable wavelength and mode (figure 426         9c).

427 6.2. Diurnal solar radiation
428 Simulations forced by diurnal solar radiation with single-mode perturbations agree well with theory, 429

as was for case T L R  in the preceding section. Therefore, in this section we focus on simulations with 430

white-noise perturbations.
431 Case D L R  uses parameters typical of springtime conditions in a shallow temperate lake (Lake Onego, 432

Bouffard et al. (2019)). Compared to the other cases considered, diffusion effects are stronger, which 433

results in a relatively low value for the Reynolds number (R e =  196). The agreement between the 434

buoyancy profile computed from the simulation and the one used in the theory is good up to t =  6, after 435

which nonlinearity dominates (first column in figure 10a; also figure 10b indicates that the nonlinearity 436

begins at t =  6.6). The spectra at t =  5 peak near λ  ≈  1.2, close to the theoretical prediction λp =  1. 437

Beginning at t =  6 we observe a shift of the energy to longer wavelength. This may be due to the flow 438

becoming more nonlinear. At λp =  1 the corresponding mode-1 structure function (figure 3b), extends 439

to z =  −1.7, with a peak at z =  −0.4, which captures well the vertical envelope of the fluctuations. 440         The
growth of the rms fluctuations is well described by the theory (figure 10b). Over 2 � t � 6.6, the 441         amplitude
of the fluctuations increases by four orders of magnitude. Setting w̃ =  exp(σt2) we compute 442         the growth
rate Σ d  =  σt as

Σ d  ≈  
2 dt

(ln w̃). (6.2)

443         The computed growth rate is in good agreement up to t =  6.2 (figure 10c), after which the computed
444         growth rate declines as the linear and nonlinear terms become comparable (figure 10b). As it was for the
445         steady radiation cases, the calculated growth rate when the flow is initialized with a spectrally broad-
446         banded initial condition is somewhat lower than the theoretically predicted value. However, the trend in
447         time is very similar, and the same considerations that we presented in the steady radiation case apply
448         here as well. Overall, the agreement between theory and simulations is good.
449 Case DHR  is representative of a deeper lake, close to critical temperature on a cloudy day. Such 450

conditions are often observed in Lake Michigan and Lake Superior (Cannon et al. 2019; Austin 2019). 451

With the role of viscosity and diffusivity diminished, the superexponential growth rate is larger, and 452

therefore the duration of the linear phase is shorter. Prior to t =  5, the theoretical basic state buoyancy 453

(4.6) and SOMAR output coincide, after which nonlinearity becomes apparent (t =  5.5) (figure 11a, 454

column 1). The spectra peak around the theoretical wavelength of maximal growth (λp =  0.15), which is 455

almost an order of magnitude shorter than in the previous case. The vertical envelope of the fluctuations 456         is
confined in the upper 10% of the water column during the linear phase, as expected from the mode-1 457

function associated to λp. The computed time-dependent growth rate follows the theoretical profile well, 458

though it is smaller than the value expected for the the wavelength of maximal growth. Again, this is to 459         be
expected, since the range of active wavenumbers is wide.
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Figure 10: R D C  under time-dependent radiation at R e  =  196 initialized with white-noise. Symbols and
colors as in figure 7. Note that the colorbar range for columns 1-4 is greater.
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Figure 11: R D C  under time-dependent radiation profile at R e  =  20908 with white-noise initial condition.
Symbols and colors as in figure 7. Note that the colorbar range for columns 1-4 is smaller.
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460         7. Summary and conclusions
461 We have considered the characteristics of the perturbations at the onset of Radiatively Driven
462         Convection. In this stage, the perturbations are small enough that it is permissible to linearise the
463         equations of motions around a quiescent background state characterised by a time-varying buoyancy 464

profile. We considered both steady radiation, which has been considered in recent laboratory experiments 465

(Bouillaut et al. 2019) and has applications to stellar interior (Kippenhahn et al. 1990), as well as time 466

dependent cases, more representative of Radiatively Driven Convection in temperate lakes during spring 467

time and which may have application to atmospheric convection (see, e.g. Figure 4 in Deardorff (1974)). 468         As
opposed to the more traditional Rayleigh-Bénard convection, where the background state moves heat 469         at
fixed rate from bottom to top boundary, while remaining constant in time, in Radiatively Driven 470

Convection the background state evolves in time, as heat is continuously added by radiation, and only 471

after the onset of convection heat can be effectively redistributed in the interior. By considering the most 472

likely balance in the dynamical equations, we build velocity and time scales which together with viscosity 473

allow the definition of a Reynolds number. We develop a theory that is valid for large values of the 474

Reynolds number that predicts the wavelength, vertical structure, and growth rate of the perturbations 475

during the initial linear stage. Due to the time-dependent nature of the background state, the growth of 476

perturbations not significantly affected by viscous damping has the form exp[(σt)n] where the exponent is 477         n
=  3/2 for time-independent radiation and n =  2 for diurnal radiation. We have confirmed the analysis 478         by
comparison with highly resolved DNS.
479 The theory gives a way to estimate the duration of the linear phase. Indeed, the latter terminates
480         when the amplitude of the nonlinear terms becomes comparable to the amplitude of the linear terms. 481

In Appendix D  we show that the duration of the linear phase over a range of intensities of the residual 482         flow
at dawn is found to be between 3t0 and 6t0, where the linear time scale t0 is given by the last of 483         (4.8). For
Lake Superior, assuming a water temperature of T =  3.5 o C, and a e-folding scale Z 0  =  10, 484         we obtain t0 ≈
80 min on a cloudy day when the radiative intensity is S o ≈  200 W/m2. On a sunny day, 485         with the radiative
intensity S o ≈  800 W/m2, the linear time scale is reduced to t0 ≈  60 min.
486 If we accept that once turbulence sets in the vertical gradient in temperature stabilises, the latter is
487         then set by the length of the linear phase. Ceteris paribus, a weaker initial circulation left over from the 488

previous cycle will result in a longer linear phase and thus a stronger stratification at the onset of the 489

turbulent phase, that is, a stronger temperature contrast upon which advection acts. This should result 490         in
larger rms temperature fluctuations (relative to the background) during the day. With lakes as our 491

geophysical example of R D C  under periodic radiation forcing, one way to test this prediction from an 492

observational point of view would be to correlate the strength of the fluctuations in temperature to the 493

strength of the residual circulation at first daylight.
494
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542         A p p e n d i x  A
543 In this appendix we consider the Sturm-Liouville problem 5.3 subject to a more general profile for
544         the background stratification which includes the upper boundary layer. We compare three profiles: The 545

inviscid profile considered earlier, and two profiles in which the buoyancy gradient is (a) equal to zero 546

within the region −  τ � z � 0; or (b) decreases linearly to zero within the same region. We discretise 547         the
Sturm-Liouville problem with standard second-order differences. For the latter two cases, we resolve 548         the
boundary layer with at least 20 points. Figure 12 compares the largest eigenvalue of the problem as 549         a
function of wavelength: when τ =  5 ×  10−3 , the eigenvalues computed with diffusive boundary layers 550         of
type (a) or (b) are virtually indistinguishable. Compared to the inviscid profile, saturation at small 551

wavelengths occurs more slowly, but for the same wavelength the difference is never greater than 10%. 552

The difference is much smaller for τ =  5 ×  10−4 . The corresponding eigenfunctions show little difference 553

between the two boundary layer cases. Relative to the eigenfunctions obtained from the inviscid profile, 554         we
observe a slight shift downward of the peak in the eigenfunction when the boundary layer is included. 555

However, the difference is small. Since the focus of this paper is on the small τ regime, this justifies the 556         use
of the inviscid profile (τ =  0) in the calculations presented in the main paper.
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Figure 12: D  as a function of λ  for three different buoyancy profiles: inviscid profile (blue); profile with
zero stratification in the boundary layer at τ =  5 ×  10−3 (red) and τ =  5 ×  10−4 (crosses); profile with
stratification linearly approaching zero with the boundary layer at τ =  5 ×  10−3(circles).

557         A p p e n d i x  B
558 In this appendix we present a more formal derivation of eq. (5.5). Let us consider a given K  and let 559

�2 ≡  ( − K 2
 + d2 /dz2 ) and �2     ≡  −K 2 .  We substitute (5.2) into (5.1) and project over the eigenfunctions 560

obtained solving the Sturm-Liouville problem (5.3) to obtain a set of coupled ODEs for the functions 561

fm (t).  In particular, we need to consider integrals over the vertical domain γ =  [−H /Z0 , 0]  that can be 562

written as Z
I m n  =  

γ      
�2pϕm(z) ϕn(z)dz, (7.1)

563         with p =  1, 2, 3. When p =  1, the integral reduces to

I m n  =  −
δm n  , (7.2)

564         where δm n  is the Kronecker’s delta. When p =  2, we can use integration by part and the properties of
565         the eigenfunctions to obtain

I 2  
n  =  

Z 
�

2
ϕm(z)�

2
ϕn(z)dz =  

D m D n  

 
δm n  +  ϵmn , (7.3)

566         with ϵp ≡  
R 

(epz −  1)ϕm(z)ϕn(z)dµ, where dµ =  K 2 ez dz is the weighted measure of the interval.
567         Finally, again using integration by part

I m n  =  
D m D n

−
δm  

D  
ϵm n  +  

δm n

K 2
ϵm n  +  

R
γ  e

z 

K 2  

ϕn dµ
!

. (7.4)

568         The functions f  (t) then must obey the following system of coupled ODEs:
2 n

dt2     
 
+  

l
R e

1 +  
P r

I m l  dt 
−  

R e 2 P r
I m l f l       =  − D m  n!

fm . (7.5)



l

mD D2 1

D m D 2
1

m m

m l

Onset of radiatively driven convection 23

569         Introducing the rescaled wavenumber K  =  K /
√

R e D 1 ,  we have

R e 
I m l  =  K2 

D
1  (δm l  +  ϵml ), (7.6)

570         and

Re2 I
3  

l  =  −K 4  
D m D l  

(δm l  +  ϵ2 
l )  +  O(Re−1 ). (7.7)

571         Finally, we note that for finite values of K  (i.e., small wavelengths) where viscous effects are going to be
572         important, the eigenfunctions are non-zero in a region whose size is O(Re−1 / 2 )  (see Figure 3(a)). Thus,
573         the coupling terms ϵ i =  O(Re−1 / 2 )  are negligible. Therefore, the (7.5) to O(Re−1 / 2 )  reduces to a set of
574         decoupled equations for the coeficients fm ’s, all of the form (5.5) with D  =  D m  and f  =  f m .  Since the
575         growth rate in the inviscid limit is proportional to the eigenvalue, we focus on the gravest mode (m =  1)
576         which, by definition, has the largest eigenvalue.

577         A p p e n d i x  C  Sensit iv i ty  to gr id  resolution
578 In this Appendix we show grid-independent tests. We choose T H R  and D L R  for illustration because
579         they cover the maximal and minimum Reynolds numbers R e  in this paper. As we can see from figures 13 580

and 14, as the grids are refined by a factor of 2 in both x  and z directions, the growth rates are identical 581         in
the linear stage (before the growth rates drop). The only difference appears to be a slightly longer 582

duration of the linear phase.
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Figure 13: Growth rates as a function of time under steady radiation profile with R e  =  65444. The
resolution is indicated in the legend.

Figure 14: Growth rates under diurnal radiation profile with R e  =  196. Symbols as in figure 13.

583         A p p e n d i x  D  Effects of initial perturbation magnitude
584 This appendix examines the effect of the magnitude of the initial perturbations. Section 6 considers ran-585

dom temperature perturbations normalized by T0 uniformly distributed in the range from −10 −2  to 10−2 . 586

In this appendix, we compare different initial perturbation intensities (−10−1 , 10−1 ), (−10−2 , 10−2 ), and 587

(−10−3 , 10−3 ). We choose cases T H R  and D L R  to examine the perturbation effect because they cover 588

the largest and smallest Reynolds number R e  considered in our numerical experiments. In both cases, 589

for the largest initial perturbations, the linear terms are less than an order of magnitude greater than 590         the
nonlinear terms (upper panels in figures 15 and 16) and the system never experiences a linear stage. 591         In
contrast, when the initial perturbations are smaller (last two cases), the growth rate is similar and for 592         the
case with the smallest initial condition, the duration of the superexponential stage is indeed longer. 593         This
results in the stratification at the onset of the nonlinear turbulent stage being stronger.
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Figure 15: Evolution of R D C  under time-independent radiation profile, with R e  =  65444. (a) rms of
linear and nonlinear terms. (b) growth rates. The numbers in the legend indicate the strength of the
initial perturbations. Black curve is the theoretical value (5.14).

Figure 16: Same as figure 15, but under diurnal radiation profile and R e  =  196.


