RPM: Robust Anonymity at Scale

Donghang Lu
Purdue University
West Lafayette, IN, USA
1u5621994@gmail.com

ABSTRACT

This work presents RPM, a scalable anonymous communication
protocol suite using secure multiparty computation (MPC) with the
offline-online model. We generate random, unknown permutation
matrices in a secret-shared fashion and achieve improved (online)
performance and the lightest communication and computation
overhead for the clients compared to the existing robust anony-
mous communication protocols. Using square-lattice shuffling, we
make our protocol scale well as the number of clients increases.
We provide three protocol variants, each targeting different in-
put volumes and MPC frameworks/libraries. Besides, due to the
modular design, our protocols can be easily generalized to support
more MPC functionalities and security properties as they get devel-
oped. We also illustrate how to generalize our protocols to support
two-way anonymous communication and secure sorting. We have
implemented our protocols using the MP-SPDZ library suit. The
benchmark demonstrates that our protocols achieve unprecedented
online phase performance with practical offline phases.

KEYWORDS

Secure Multiparty Computation, Anonymous Communication, Se-
cure Random Permutation

1 INTRODUCTION

There are by now millions of users using the Tor network [27, 28] to
break the link between their identities and their messages/packets.
As the solutions like Tor network suffer from traffic analysis at-
tacks [11, 31, 38], anonymous communication becomes an active
research area and many works [1, 3, 29, 42, 43, 47, 52, 53] aim
at providing anonymous communication services efficiently. This
work explores the solutions of anonymous communication with
the help of secure multi-party computation (MPC). MPC allows
multiple distrusting parties to compute some functions collabo-
ratively with their private input; thus, it is a natural approach to
building applications with robust privacy guarantees [1, 47]. This
work proposes RPM! as a solution for anonymous communication
in a client-server setting, where clients send their messages to the
servers in a secret-shared manner, the servers randomly shuffle the
messages and then output them to designated parties. Compared
with existing works, the highlight of our protocols is that the clients
only need the minimum cost to send the messages, meanwhile, the
tion 4.0 International License. To view a copy of this license
visit https://creativecommons.org/licenses/by/4.0/ or send a BY

letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
Proceedings on Privacy Enhancing Technologies 2023(2), 347-360

© 2023 Copyright held by the owner/author(s).
https://doi.org/10.56553/popets-2023-0057

IRPM stands for Random permutation matrix.

This work is licensed under the Creative Commons Attribu-

347

Aniket Kate
Purdue University / Supra
West Lafayette, IN, USA
aniket@purdue.edu

servers can perform the random shuffle very efficiently in terms of
time and communication. It makes our protocol a preferred choice
for real-time anonymous communication applications such as front-
running-resistant market maker [20, 22]. Meanwhile, clients with
limited computation power can benefit from our protocol signifi-
cantly.

RPM employs the standard offline/online model of MPC [7,
23, 37, 46, 47], where the offline phase is used to prepare input-
independent data, such that they can be consumed to accelerate the
input-dependent online phase. The overall idea is that anonymous
broadcast can be achieved by performing a random permutation to
the input messages. Recall that for any k-input permutation 7, there
exists a zero-one matrix M, such that z(x) = M, x. Therefore, if
we obtain a permutation matrix such that anyone including the
adversary does not know the underlying permutation, the anony-
mous communication could be achieved by simply multiplying the
matrix with the input vector, and it is equivalent to doing k inner
product in parallel. In the offline/online model, we can generate a
permutation matrix in the offline phase as it is input-independent,
then achieve random permutation in the online phase through
multiplications. This core idea is simple and fast, which are two
great properties proven to be significantly useful in an anonymous
broadcast scheme.

We provide three variants of the protocols, targeting different
MPC frameworks and applications. The first variant leverages ef-
ficient inner product protocols to achieve a fast and cheap online
phase. It only requires one communication round and k share re-
constructions for mixing k messages. Then we present the second
variant for MPC frameworks where an inner product protocol with
constant communication complexity is not available. It requires 2
rounds and 2k reconstructions as a trade-off. Finally, we provide the
third variant to handle a larger number of inputs more efficiently
with cheaper offline phase cost and online computation complex-
ity. As a result, all existing secret-sharing-based MPC frameworks
can use our protocols for their purposes. Besides, we show how
to generalize our protocols to support more functionalities (e.g.
two-way communication and anonymous messaging) and security
properties (e.g. robustness, meaning that the protocols will make
progress and finish with correct output even with the existence of
malicious behaviors). Moreover, as the core part of our protocols
is the secure random permutation, it is of independent interest to
more applications such as oblivious sorting and some graph-based
algorithms.

We implement our protocols using MP-SPDZ framework [39],
and benchmark both the online phases and the offline phases of all
three variants of our protocols. These variants are implemented us-
ing different MPC back-ends provided by MP-SPDZ, which shows

Proceedings on Privacy Enhancing Technologies 2023(2)

that our protocols can be used in most of the existing MPC frame-
works. The results illustrate that the first two variants of our pro-
tocol have great online&offline performances when dealing with
a small number of messages (e.g., less than 10000). We can mix
k = 10000 messages in around 0.58 seconds with 1.9MB commu-
nication. When dealing with a large volume of messages, our last
variant achieves the best performance, which mixes k = 160000
messages in around 27 seconds with 88MB communication per
server. The benchmark shows the offline phase is practical for real-
world applications as well. Therefore, our protocol suits can handle
different MPC frameworks and input volumes flexibly.

Finally, we modify the malicious secure back-end of MP-SPDZ
to improve it from a secure-with-abort version to a robust version,
which can be of independent interest for MPC applications. We test
the performance of our protocols with a robustness guarantee, the
benchmark shows that our protocols achieve robustness with no
additional cost in the best cases, and around 2X more time in the
worst cases.

1.1 Paper Organization

We introduce the related works in Section 2. We present the system
model of our protocols and introduce the background and prelim-
inaries in Section 3. We explain the detailed construction of our
protocols in Section 4. We compare the theoretical complexities of
our protocols with related works in Section 4.7. In Section 5.1, we
show how our protocols are implemented using MP-SPDZ frame-
work and the detailed benchmark data is available in Section 5.2.
Besides, we illustrate the construction and the performance of the
robust version of our protocols in Section 5.4. In Section 6, we
introduce how to apply our protocols to solve more higher-level
applications.

2 RELATED WORKS

The Tor network is a popular tool for anonymous communica-
tion; however, the current low-latency Tor design is significantly
vulnerable to traffic analysis asymptotically [25] as well as empiri-
cally [11, 31, 38].

Mixing networks (mixnets) [18] improve the protection against
traffic analysis through increased latency overhead in the form
of communication over several hops (i.e., indirection) and mixing
messages at one or more honest hops. Over the last four decades,
numerous mix-net inspired protocols [17, 24, 42-45, 52, 53] have
been proposed that can deter traffic analysis attacks; however, their
high latency overheads of several seconds (at least) are unacceptable
for many applications including browsing, messaging, or video calls.
Moreover, mixnets are inherently non-robust as even a single node
failure/crash can result in messages getting dropped.

For a high level of traffic analysis resistance while maintaining
low latency, dining-cryptographers network (DC-net) [16] and its
successors [14, 33, 41, 54-57] are much better suited. Using a cryp-
tographic setup/coordination among clients, these schemes offer
provably strong anonymity in a constant number of rounds [26].
However, as the number of clients grows client coordination can
become an Achilles’ heel for these DC-net-based solutions.

It is easy to observe that these DC-net systems are just types of
MPC among the clients. Towards avoiding client coordination and

348

Lu et al.

expensive computation on the client-side, the idea of employing
some MPC servers is getting popular [1, 3, 8, 21, 47]: here, simi-
lar to mixnets, every client is unaware of other clients and only
communicates with the MPC servers. MPC servers perform some
MPC protocols towards making clients’ messages unlinkable to
their identities. Among these MPC-based solutions, we find the
works of AsynchroMix [47], Blinder [1], and Clarion [29] to be the
closest to our work.

AsynchroMix [47] proposes two MPC solutions for anonymous
broadcast. One method is based on the switching network, where
the MPC performs log(k) iterations of switching networks to sim-
ulate an almost-random permutation for k input messages. The
round complexity of this method is O(log?(k)) and the communica-
tion complexity is O(klog?(k)). In their second method (PowerMix),
the messages are encoded into a symmetric equation system, then
the anonymous broadcast can be achieved by solving it. The chal-
lenge for this method is that for any input secret-shared message,
its powers are required by the equation system, and this leads to
O(k®) computation complexity in the online phase. Although the
computation is usually not considered the bottleneck of an MPC
protocol, the benchmark shows that the computation time actually
dominates when k is large. Compared with PowerMix, our method
reduces the computation complexity of the online phase to be at
most O(k?), making it a better choice for a large volume of inputs.

Blinder [1] achieves anonymous broadcast by accumulating
client messages in a large matrix. To achieve that, each client secret
shares a matrix to the servers where all elements are zero but one
position. The non-zero position is used to store the secret-shared
message. The servers add up all the matrices from the clients and
reconstruct the sum matrix to recover the messages. Several opti-
mizations are applied to reduce communication cost and to deal
with collisions when multiple clients choose the same position.
In some sense, they achieve a scalable and efficient online phase
by pushing some of the computation to the client side. Compared
with Blinder, the communication and computation cost of the client
is cheaper in our protocol by an order of O(Vk). Therefore, our
protocol fits better when clients have limited computation powers.
Besides Blinder, Riposte [21] uses similar approaches of offloading
part of the computation to the client-side. It uses discrete point
functions to help reduce client communication costs and achieves
the same client-side complexity as Blinder.

Eskandarian and Boneh propose a protocol called Clarion [29],
which is communication-efficient to do anonymous broadcast. They
propose constructions for both three-server setting and n-server set-
ting, and the communication cost of their protocol is O(k{) where
k is the number of messages and ¢ is the size of the message. Their
protocol has O(n) round complexity in the n-server setting as it is
made up of pairwise share translation. Our protocols and Clarion
provide different trade-offs and fit different scenarios. Theoretically,
our protocol has better round complexity and Clarion has better
computation complexity. Therefore, there are settings where our
protocols perform better and vice versa. Besides, due to the modular
design, our protocols can inherently support stronger security prop-
erties (e.g. censorship-resistance, robustness, and fairness) if built
with robust MPC libraries. For instance, if we build our protocols
using HoneybadgerMPC [47], we will get exactly the same security

RPM: Robust Anonymity at Scale

I |

Figure 1: Client-server setting for anonymous communica-
tion with MPC shuffling.

2. Servers perform MPC
protocols to randomly shuffle
messages.

B

1. Clients secret-share their
messages to servers.

properties as Asynchromix. However, it is impossible to do so for
Clarion.

There are also works focusing on specialized applications. Spec-
trum [49] is designed for a broadcasting system where broadcasters
share files anonymously with many subscribers. Subscribers send
dummy files to form cover traffics. The evaluation results illustrate
that Spectrum achieves better performance for scenarios with small
broadcasters and many subscribers. Compared with their settings,
all clients in our protocols are treated as "broadcasters” who can
send messages anonymously.

3 PRELIMINARY
3.1 System Model

We consider a standard client-server MPC setting with a set of n
servers P1, Py, ..., P, and a set of k clients c1,ca, ..., (k = 2).
We assume that the servers already have key pairs established to
build private, authenticated channels between each other. Besides,
we assume clients connect to all the servers via TLS.

The whole protocol is divided into three phases as shown in Fig-
ure 1: (1) clients send their messages to servers in a private manner
(via secret sharing). (2) Servers perform MPC protocols to randomly
permute the inputs. (3) Servers reconstruct the permuted inputs to
be the output of the protocol. We assume the client messages are the
field elements with the same length, which can be achieved through
padding. Fixed-length messages are essential since otherwise the
message can be easily linked to its sender through the message size.
Similar to existing works [1, 47], we assume servers have agreed on
the set of client messages included in each protocol round, which
can be achieved through any Byzantine agreement protocol.

Since our protocol works across different communication set-
tings, we do not put specific network assumptions such as partial-
synchrony, bounded-synchrony, or asynchrony. Besides, the design

349

Proceedings on Privacy Enhancing Technologies 2023(2)

goal of our protocol does not include protection against network-
level attacks (e.g. DoS attacks).

The first variant of our protocol requires the usage of the Shamir
secret sharing scheme or similar error-correcting code based secret
sharing schemes. The second variant of our protocol gets rid of
this restraint and can be applied to any secret-sharing-based MPC
framework.

As for the adversary model, we assume there exists a static
adversary that can corrupt at most ¢ servers and at most k — 2
clients. Our protocols are secure against a malicious adversary
with n > 2t + 1. In practice, our protocols can be implemented
in any secret-sharing-based MPC framework, and the security of
our protocols depends on the malicious secure building blocks of
the underlying MPC frameworks. Besides, We propose verification
checks to guarantee the malicious security of the offline phase.
What’s more, if the underlying MPC framework supports security
properties such as guaranteed output delivery, our protocol should
obtain those properties inherently.

3.2 Goals and Non-Goals

Below we list the goals that our protocols achieve:

e Sender Anonymity: We want our protocol to achieve
sender anonymity for the client message i.e., the ability of
the adversary to figure out which client has sent a specific
output message is no better than random guessing, even if all
but two clients and any minority of servers are compromised.

¢ Fast online phase: Our protocols lead to very efficient on-
line phases in terms of communication, computation, and
communication rounds, thus being good options for low-
latency applications.

o Light-weighted clients friendly: Our protocols require
small communication and computation from the client-side.

e Scalability: Our protocols can handle a medium volume of
inputs within a short amount of time.

Non-goals.We list the non-goals below:

¢ Confidentiality: Our protocols do not aim at protecting
the confidentiality of the message content. Therefore, our
protocols should be combined with other methods (e.g. en-
cryption) to achieve confidentiality if it is required.

o Network-layer Attacks: Similar to most existing works,
our protocols are not designed to be resilient to network-
layer attacks (e.g. DoS attacks).

¢ Hiding Message Volume: Our protocols do not hide the
global volumes of the messages.

3.3 Secret-sharing-based MPC

3.3.1 Shamir Secret Sharing. Shamir secret sharing scheme with
threshold (n, t), where n > t > 0, allows the dealer to share a secret
s € Fp to n parties {Py, ..., Py} such that the s is revealed if and
only if t + 1 or more parties combine their shares to reconstruct
the secret value. To share a secret s, the dealer samples a degree-t
polynomial ¢() such that the constant coefficient of ¢() is the secret
s, and all other coefficients are set to be random elements. Then the
dealer sends the share (i) to the party P;. We denote [s] as the
secret share of party P; for the rest of the paper. We may omit the
superscript/subscript of a share when it is clear from the context.

Proceedings on Privacy Enhancing Technologies 2023(2)

To reconstruct the secret, parties send their private shares to
each other. When the party gathers the shares from ¢ + 1 parties, it
is sufficient for it to reconstruct the polynomial ¢() and the secret s
can be computed through s = ¢(0).

3.3.2 MPC with Shamir Secret Sharing. In this work, we focus on a
client-server setting where clients secret-share their private inputs
to a group of servers, and the servers perform MPC protocols collab-
oratively. For the arithmetic-circuit MPC, a computed functionality
can be represented using the addition gates and multiplication gates.
Shamir secret sharing is additive homomorphic in the sense that
the following equation holds:

[a+b], = [a], + [,

Therefore, any addition and the linear combination of the secret
values can be performed locally by applying the same operations
over the shares. However, when it comes to multiplication, the
multiplication of two degree-t polynomials results in degree-2¢
polynomials. Thus it cannot be achieved locally and we often follow
the online/offline MPC paradigm here and use Beaver triples [12]
to do the multiplication. As a result, the multiplication becomes an
interactive protocol among servers and requires communication.
When measuring the complexity of an MPC protocol, we usually
think of additions as free and only consider the number/rounds of
multiplications as they are the bottleneck of the protocols in most
cases.

Offline/Online Model. We often separate an MPC protocol into
an input-independent offline phase and an input-dependent online
phase. In the offline phase, servers prepare the input-independent
secret shares such that they can be consumed in the online phase to
make the online phase faster. The offline phase can be run for a long
time before the actual online phase starts, therefore it is allowed that
the offline phase is more costly than the online phase. The starting
point of this work is to properly design the offline phase protocols
and the online phase protocols such that most cryptographical
expensive operations are moved to the offline phase, and the online
phase only requires some basic operations such as reconstructions.
As the offline phase is often more costly than the online phase, a
standard workflow is as follows: Before the online protocol starts,
the servers can run the offline phase in advance, which may take
a long time to finish. After that, the clients send their input to the
server to execute the efficient online phase.

The goal of RPM is to optimize the online phase performance.
As the offline phase is input-independent, the offline phase can be
run early in advance, even days before the actual online phase. This
is especially useful when computations are done regularly but not
continuously. For example, an anonymous broadcasting system can
run the offline phase during the night and run the online phase
during the day once it receives user input. Therefore, it is the online
phase that actually determines the user experience. The users will
not be influenced by a more costly but still practical offline phase.

3.4 Beaver Triple Multiplication [12] for
Scalars and Matrices

To multiply two secret shares [x] and [y], the servers prepare a pre-
computed triple [a], [b], [ab] where a and b are random elements.

350

Lu et al.

In the online phase, servers compute and reconstruct (x — a) and
(y — b), then the result is shown as follows:

[xy] = (x = a)(y = b) + (x — @)[b] + (y — b)[a] + [ab]

The equation above only involves the linear combination of
secret sharing, and thus can be computed locally. Therefore, the
cost of Beaver Multiplication is two reconstructions in one round.

Beaver’s technique naturally extends to the multiplication of two
secret-shared matrices. The only change to the steps is to replace the
single elements with matrices [48]. The communication complexity
of multiplying two k-by-k secret shared matrices is O(k?), because
it requires the reconstructions of two k-by-k matrices. It is more
efficient than simply using O(k®) beaver multiplications to compute
each cell. In the rest of this paper, we use the extended Beavers idea
when we refer to the multiplication of two secret-shared matrices.

3.5 Robust Secret Sharing Reconstruction

The reconstruction of Shamir Secret sharing could achieve robust-
ness if robust polynomial interpolation is used. In this work, we
use the idea of [47] to provide robust share reconstruction when
it is required. The robust reconstruction requires n > 3t + 1in a
synchronous setting. We briefly introduce the construction below:
To reconstruct a secret robustly, the parties use the first ¢ + 1
shares to reconstruct a polynomial ¢, and use the rest of ¢ points
to confirm all points correspond to the same polynomial. If any
inconsistency occurs, the parties run the robust Reed-Solomon
decoding with 3¢ + 1 shares as the inputs. (If any share is missing,
parties can use random values as the share and it will be treated as
wrong shares and automatically corrected by the robust decoding
algorithm). The procedure is described in Algorithm 1.

Algorithm 1: Robust Shamir share reconstruction

ST = Als1], - - - [sa]}

Input
Output
1 Interpolate a polynomial ¢ using any t + 1 shares.
2 Use another t share to check if they are generated using the
same polynomial.
3 Ifit is true, output s = ¢(0).
4 Else, run Reed-Solomon decoding with all the input shares
to reconstruct ¢°, and output s = ¢°(0).

The reason that the algorithm starts with a non-robust interpola-
tion is that the non-robust interpolation is much cheaper compared
with the robust version. If the non-robust interpolation succeeds,
there is no need to run the expensive robust version. With this
design, if there are no malicious behaviors, the performance of the
robust share reconstruction is the same as the non-robust version.

3.6 Notations

We summarize notations that appear in the rest of the paper here.
We denote [s] as a secret sharing of the secret field element s.
Besides, we use capital letters to represent matrices or vectors (S and
[S])- We denote Open([[s]]) as the reconstruction of the secret share,
and we use Mul([x], [y]) to represent the Beaver Multiplication of

RPM: Robust Anonymity at Scale

two secret shares [x] and [y] or two secret-shared matrices/vectors
[X] and [Y]. We use Inner-prodcut-and reconstruct([X], [Y])
to represent an algorithm that computes the dot product of two
input vectors X and Y and reconstructs the results.

4 USING PERMUTATION MATRICES FOR
ANONYMOUS COMMUNICATION

4.1 Overview of the Variants

We present three variants of our protocol targeting different MPC
frameworks and applications. The first variant is designed for MPC
frameworks with an efficient secure inner product protocol imple-
mented [19, 34, 58] (i.e. each inner product can be evaluated with a
constant number of reconstructions independent of the vector size).
The second variant gets rid of the secure inner product in the online
phase, with a cost of a little more expensive offline phase and one
more round in the online phase. Therefore, the second variant fits
better with MPC frameworks that do not support efficient secure
inner product evaluations. The third variant is designed for a large
number of inputs (e.g. k > 10000), as the offline phases of the first
two variants take a long time when k is large. Besides, Variant 3
has cheaper online computation complexity, which we find is the
bottleneck of the protocols for large k. As a trade-off, the third
variant takes more online communication and rounds.

4.2 Collecting Client Messages

As the clients can be corrupted by a malicious adversary, the mes-
sages they share to the servers may not be valid (n, t) secret sharing.
To solve this problem, we use a similar method used in [47]: servers
can prepare a random share [r] for each input client message m.
During the input phase, all servers send their shares of r to the
client, such that the client can reconstruct r, and broadcast m + r
to servers, each server then computes their share of the message
[m] = m+ r — [r]. Since [r] is guaranteed to be a valid (n, t)
secret sharing, the share of the client input is guaranteed to be well-
formed. The computation and communication required by clients
are both O(n).

4.2.1 Supporting Messages with Large Size. Our protocols can be
easily adapted to handle large messages. If the message is too large
to fit in one single field element, clients can divide the large mes-
sages into pieces with the same length and represent them using
multiple field elements (padding may be required for the last block).
In the online phase, the servers can use the same permutation
matrix P to permute all the message pieces, such that the same
permutation is performed on all client messages.

4.3 Malicious Security

To achieve malicious security, our protocols should be built on sev-
eral malicious secure building blocks. More concretely, we require a
malicious-secure secret sharing scheme [2, 40, 47, 50] to guarantee
the correctness of the secret sharing reconstruction. We also require
malicious-secure share multiplication to guarantee the correctness
of matrix operations and vector operations. A malicious secure
inner product protocol [2, 7] is required in one of our variants. We
follow a modular design such that any building blocks achieving
malicious security can fit our protocols. Besides, our protocol can

351

Proceedings on Privacy Enhancing Technologies 2023(2)

also benefit from future building blocks with better efficiency in a
plug-and-play manner.

4.4 The First Variant

4.4.1 Offline Phase. The goal of the offline phase is to generate a
random permutation matrix such that the adversary has no infor-
mation about the permutation. To achieve that, we ask ¢ + 1 servers
to generate a random permutation matrix each and secret-share
them to all parties. Then all parties multiply these shared matri-
ces together to get the final permutation matrix. Since there is at
least one matrix provided by the honest server, the adversary has
no knowledge about the final combined permutation. Note that
this step requires the multiplication of ¢ + 1 matrices, so our of-
fline phase is more suitable to the settings where the number of
servers is small. Besides, for small k, we can use existing methods
to efficiently evaluate the multiplication of multiple matrices such
as [46].

In the malicious setting, we also need to guarantee that the matri-
ces shared by servers are indeed permutation matrices. Therefore,
the following two checks have to be performed: (1) the elements of
the matrix are either zero or one. (2) The weight of each row and
each column is exactly one (i.e. Each row only has one position to
be one, and all other positions are zero.). To finish these checks,
we can use a linear sketch for the language of vectors of hamming
weight one [1, 15, 30]. To verify a vector w = (wy,..., wy), the
sketch is represented by (Z;‘:l wi - ri)? — m(Zif:1 wirl.z) where r;
are public random values and m is the value in the single non-zero
entry (in our case m = 1). If the vector w has a hamming weight
greater than one, then the sketch outputs a non-zero value with
probability ﬁ where |F| is the size of the ring or field. We can
apply this sketch to each of the permutation matrices and both
properties can be properly verified. The cost of this check is cheap
since each sketch only includes one secret sharing multiplication.
The offline phase is summarized in Algorithm 2.

Algorithm 2: The offline phase of Variant 1

1 fori«— 1tot+1do

2 Server P; generates a k-by-k permutation matrix M; and
secret-share it to all servers
3 fori «— 1tokdo
4 All servers perform sketch checks mentioned in
Section 4.4.1 on the i-th row and i-th column of
[M:].
5 If any check fails, abort.

6 All Servers multiply and compute

[P] = [Mi][Mz] . .. [Me41]
7 Output [P].

4.4.2 Online Phase. In the online phase, we can achieve permu-
tation by simply multiplying the permutation matrix M and the
input vector X. Considering X is a vector, this is essentially k dot
products and they can be computed in parallel. The protocol is
summarized in Algorithm 3.

Proceedings on Privacy Enhancing Technologies 2023(2)

There are existing works [7, 19, 58] showing how to do dot prod-
uct efficiently. As an example, we show how degree-2t polynomial
interpolation can be used to efficiently compute and reconstruct
the inner product of two secret shared vectors X = {x1,x2,...,xx}
and Y = {y1, 2, ..., yg}:

In the online phase, parties locally compute [x;y;],, = [x:], -
[yi], for all i, then they compute and reconstruct the inner product
result Z = Zle [xiyi],; by reconstructing a degree-2t polynomial.

If we use the protocol above to compute all the inner products in
parallel, the round complexity of our online phase is only one. The
communication complexity is O(k) as there are k reconstructions
needed in total.

However, the inner product protocol introduced above has some
constraints, therefore not all MPC frameworks support it naturally.
For instance, this protocol only works with Shamir-secret sharing
(or similar error-correcting-code-based secret sharing schemes),
and does not work on schemes such as additive secret sharing or
replicated secret sharing. Besides, as degree-2¢ polynomial recon-
struction is required, the protocol may need more portion of parties
to be honest (e.g. n > 3t + 1). To mitigate this problem, we design
another variant of our protocol Variant 2, where the secure inner
product is not required in the online phase.

Algorithm 3: The online phase of Variant 1 (P[i] denotes
the i-th row of the matrix P)

Input X0 = A{Dals - - - [xe]}

Output 1Y

Pre-computation : Permutation matrix [P]
1Y={

2 fori « 1tok do
3 L Y[i] = Inner-product-and-reconstruct([P[i]], [X])

4 Output Y.

4.5 The Second Variant

The design goal of this variant of our protocol is to get rid of
the inner product in the online phase. To achieve that, we add an
additional step in the offline phase such that the inner product
computation is shifted into the offline phase. What’s left for the
online phase is simply some secret share reconstructions. The key
observation of this protocol is an equation PX = P(X + R) — PR,
where P is the permutation matrix, X is the input message vector,
and R is a vector of random shares. We leverage R as a mask vector
such that we can safely reconstruct X + R in the online phase, and
PR can be prepared in the offline phase as it is independent of the
input X. Finally, the permutation result PX can be written as a
linear combination of the secret shares above.

4.5.1 Offline Phase. The first part of the offline phase is still to
generate a shared permutation matrix, and the steps are the same as
Variant 1. After that, all parties collaboratively generate k random
shares [R] = {[r1], ..., [rx]}, then they compute [Y] = [P][R]
through k inner products. Note that a more expensive inner prod-
uct can be used here as it happens in the offline phase, and an
inner product protocol with O(k) reconstructions per random r

352

Lu et al.

is perfectly fine because it will not explode the complexity of the
offline phase anyway, the offline phase complexity is still bounded
by the generation of the permutation matrix. We can think of this
approach as shifting the inner product computation from the on-
line phase to the offline phase with the help of some randomness
R. Finally, all parties take [P], [R], and [PR] as the output of the
offline phase. The protocol is summarized in Algorithm 4.

Algorithm 4: The offline phase of Variant 2

1 fori<— 1tot+1do

2 Server P; generates a k-by-k permutation matrix M; and
secret-share it to all servers
3 fori «— 1tokdo
4 All servers perform sketch checks mentioned in
Section 4.4.1 on the i-th row and i-th column of
[M;].
5 If any check fails, abort.

=N

All Servers multiply and compute
[P] = [Mi][M2] - .. [Mr44]
7 All servers generate k random shares
[R] = {Ir]. [r2]. - -, I
8 All servers compute [PR]] = Mul([P], [R]).
Output [P], [PR], [R].

©

Online Phase. Given the input messages vector X = {x1,...,xx}
and the offline phase output, all parties compute and reconstruct
X + R in the first round. Then they can locally compute the share
of the output as [PX] = [P](X + R) — [PR], and reconstruct PX in
the second round. As we mentioned, the secure inner product is no
longer needed in this variant, and the cost is k more reconstructions
and one more round. The protocol is summarized in Algorithm 5.

Algorithm 5: The online phase of Variant 2
Input 0X] = {x]s - - - [xe]}
Output 1Y

Pre-computation: [P], [R], [PR]
[X +R] = [X] + [R]

2 X + R = Open([X +R])

[YT = [P] - (X + R) - [PR]

Y = Open([Y])

-

@

'S

4.6 The Third Variant

The first two variants illustrate great performance when dealing
with a small volume of inputs. However, the offline phase of the
first two variants requires preparing k-by-k permutation matrices,
thus the size of the matrices increases quadratically with k, and it
becomes too huge to be used in practice for large k.

To solve this problem, we propose our third variant that per-
forms much faster for larger k in both the online phase and the
offline phase. The idea is based on the permutation network[3, 36].
In [36], Hastad analyzed the efficiency of random permutation us-
ing a square network. A square network for k inputs consists of ¢

RPM: Robust Anonymity at Scale

layers, where each layer consists of Vk of permutation nodes. Each
permutation node takes Vk inputs and randomly permutes them,
then sends the outputs to the next layers in a butterfly network
fashion. We present an example of a square network in Figure 2.
The study of Hastad illustrates that this network can achieve a
nearly random permutation after only ¢ € O(1) iterations. (e.g. the
result shows that after g = 15 layers, the outputs are close to a
random permutation of inputs)

—> > —>
—> —>
—> ——>
—> —>
N N L s
—> —>
—> ——>
—> —>
—> > —>

Figure 2: An illustrative example of a square network with
k = 9. The network consists of ¢ = 4 layers, where each layer
has Vk = 3 permutation nodes, represented by square blocks.
Each permutation node takes Vk = 3 messages as inputs, ran-
domly permute and output them. In Variant 3, we can initial-
ize each permutation node using either Variant 1 or Variant 2.
All permutation nodes in the same layer can be executed in
parallel.

Variant 3 implements a square network by realizing each per-
mutation node with either Variant 1 or Variant 2. This significantly
reduces the computation cost of the offline phase. In Variant 1 and
Variant 2, the offline phase has to prepare a k-by-k permutation
matrix. In Variant 3, the offline phase generates gVk matrices of
size Vk-by-Vk. Considering the matrix multiplication is required
in the offline phase, this reduces the computation complexity of
the offline phase from O(k%) to O(gVk - t\/ES) = O(k?). Besides,
the computation complexity of the online phase is also reduced
by a factor of Vk because the vector size of each dot product is
significantly reduced.

As a trade-off, the online phase requires higher but still constant
rounds to finish. The parameter q is flexible and can be changed
based on the time available for the offline phase and the anonymity
strength. We pick g = 15 in our experiments for a strong anonymity
guarantee.

4.7 Cost Analysis and Comparisons with
Related Works

For Variant 1, the offline phase requires ¢ +1 servers to each generate
a k-by-k permutation matrix, and multiply them together. This
requires O(nk?) local computation, O(log n) rounds and O(nk?)
communication. The verification check for the malicious security
takes one round and O(k) communication. As for the online phase,

353

Proceedings on Privacy Enhancing Technologies 2023(2)

since it is k dot products in parallel, the overall communication is
O(k) and the round complexity is one.

For Variant 2, the offline phase cost is the sum of the first variant
offline phase cost and k dot product protocol. Consider a dot prod-
uct protocol where parties simply use beaver triples to compute
inner products, the communication complexity for k dot product
of length-k vectors is O(kz). Therefore, the overall offline phase
communication cost is O(nk? +k?) = O(nk?). The online phase only
consists of two rounds, where each round reconstructs k secrets.

For Variant 3, the offline phase requires O(nk?) local computa-
tion, O(log n) rounds and O(nk!-®) communication. We then ex-
plain why the online phase is also the most efficient for large k: Our
benchmark illustrates that the online phase is heavily bottlenecked
by the local computation when k is large, which takes more than
95% of the overall running time. For the first two variants, the com-
putation complexity is O(k?) because both variants require k dot
products between size-k vectors. For Variant 3, each layer includes
vk permutation nodes, with each node doing vk dot products be-
tween size—\/% vectors. Since we have a constant number of layers,
the overall computation complexity is O(k!-%). Therefore, Variant 3
achieves the best performance on the main bottleneck when k is
large. We highlight that when k is small, the first two variants
could be better choices since the online phase is bottlenecked by
the communication and rounds in those cases.

We summarize the theoretical online complexity of our work and
related works in Table 1, the comparison shows that our protocol
achieves the best server-server performance in the online phase,
meanwhile keeping the client-server cost minimum. As for the of-
fline phase cost, we do not provide a similar table as some protocols
are unclear about their offline phase costs. Here we just compare
the offline phase cost between our protocols and the PowerMix [47],
which has the closest online phase communication and rounds. The
communication cost of the Powermix offline phase is O(k?) and
the round complexity is O(log k). Meanwhile, our first two variants
have offline communication cost O(nk?) in O(log n) rounds. Vari-
ant 3 has the cheapest offline phase computation cost by a factor
of O(\/E). We can observe the trade-off here: we achieve a better
online performance than Powermix by pushing more computations
to the offline phase. What’s more, when the number of servers n is
small such that it can be treated as a small constant, the offline cost
of our protocol is in the same order of magnitude as PowerMix. In
real-world applications (especially in MPC-as-a-service settings), a
small number of servers are usually preferred considering the cost
of setting up these expensive high-end machines.

4.8 Security Analysis

In what follows, we informally define the security properties we
expect from our protocols:

Correctness: At the end of a successful run of our protocol,
all servers output a set of plaintext messages, which is a random
permutation of all the input client messages.

Sender Anonymity: The ability of the adversary to figure out
which client has sent a specific output message is no better than
random guessing, even if all but two clients and any minority of
servers are compromised.

Proceedings on Privacy Enhancing Technologies 2023(2)

Lu et al.

Table 1: Comparison of the Online Phase Performance For Recent Anonymous Communication Protocols (n is the number of
servers, where ¢ of them can be corrupted. k is the number of client messages. q is the depth of the square network, which is a
small constant. The server-server communication is measured by the number of secret sharing reconstructions required. The
client-server communication is measured by the number of messages sent by a client to a single server.)

Client-server Client Com- | Server-server Server Com- | Server Resilience Robustness
communication | putation Communication | putation Rounds Capability
McMix [3] 0O(1) 0o(1) O(aklogk)* O(aklogk)" | O(logk) | n=3,t=1 X
Switching Net- | O(1) O(n) O(k log? k) O(klog?k) | log%k n>3t+1 v
work [47]
PowerMix [47] | O(1) O(n) o(k) 0(k3) 2 n>3t+1 v
Blinder [1] o(k) O(n - Vk) o(k) o(k?) 0(1) n>4t+1 v
Clarion [29] 0O(1) O(n) O(k) O(k) O(n) n>t X
Variant 1 0(1) O(n) k 0(k?) 1 n>2t+1* v
Variant 2 0(1) O(n) 2k 0(k?%) 2 n>2t+1" v
Variant 3 0O(1) O(n) O(k) O(k™>) q n>2t+1" v

"n > 2t + 1 s the default model setting for our malicious secure protocols (especially for Variant 1). Variant 2 can support n > ¢ if built
in dishonest-majority MPC frameworks. Meanwhile, more restrictions might be needed to support more security properties (e.g.,

n > 3t + 1 for robustness).

" In McMix [3], « refers to the number of reconstructions needed for a single secure comparison protocol. McMix requires O(k log k)

secure comparisons evaluated in O(log k) rounds.

The correctness of the protocol is trivial from the use of the
permutation matrix. As long as the permutation matrix P is valid,
the computation result is guaranteed to be a permutation of input
vectors. The validity of the permutation matrix is verified in our
offline phase through linear sketch checks in the malicious setting.

For sender anonymity, we can prove that the transcript of the ad-
versary only includes unrelated random values, therefore it cannot
differentiate any input messages.

We first provide the general idea here and put the complete proof
in Section 4.9. The intuition is that the transcript of our protocol
includes the offline data, the reconstructed X + R in Variant 2, and
the final output. The offline data are all in the form of secret shares,
and they are independent of the client inputs, thus the adversary
has no information about either the plaintext offline data or the
client inputs. The reconstructed X + R is also random because R
contains elements picked uniformly random from the field. What’s
more, the randomness of the offline phase and the randomness of
X + R are independent of each other. To conclude, the transcript
of our online protocol only contains unrelated random elements,
therefore they are indistinguishable from one another.

For Variant 3, the protocol only invokes our first two variants
multiple times, and the values outside of permutation nodes are all
secret-shared. Therefore, the privacy of the third variant is reduced
to the privacy of the first two variants.

We then discuss the security against a malicious adversary. In
the offline phase, the adversary can submit an arbitrary matrix
as permutation matrices, however, this will be captured by the
sketch check. The adversary has no information about the combined
permutation matrix because at least one random permutation is
provided by an honest party. Therefore, the adversary cannot alter
the protocols in the offline phase without being captured. In the
online phase, our protocol simply invokes malicious secure building

354

blocks, thus the security is reduced to the security of those building
blocks. In Variant 1, the online phase only includes k malicious-
secure inner product. In Variant 2, the online phase includes 2k
malicious-secure share reconstruction.

4.9 Security Proof

We first provide the ideal functionality that our protocols achieve,
then we present a simulator-based proof to prove the security.
The multiparty random permutation ideal functionality is inspired
by Clarion [29] and we modify it to fit our protocols better. We
model the robustness as an optional security property, and the ideal
functionality does not include it.

Definition 4.1. (Ideal Functionality of Secure Random Permuta-
tion) A secure random permutation functionality F interact with n
servers Py, Py, ..., Py and k’ clients C1, Cy, . .., Cys (k < k', where
k is the number of messages mixed in each run). We assume the
existence of an adversary that can control at most k — 2 clients and
t < % servers. Any server controlled by the adversary could send
an abort to F at any time, which leads to a protocol abort.

F initiates an empty array T and waits for messages from clients.
Any message received will be added to T. After collecting k inputs
M = {mq,my,...,m}, F secret share the vector M with (n, t)
secret sharing, and send the shares to all the servers, therefore the
adversary will have ¢ shares for each input message. Next, F runs
the permutation step as follows: F samples a random permutation 7
and compute M’ = 7(M). Then F sends M” together with the secret
sharing of M’ to the adversary, the adversary could respond with
either finish or abort. If the response is finish, F sends M’ to all
the servers and outputs M’. If the response is abort, the protocol
aborts.

RPM: Robust Anonymity at Scale

Theorem 1. Assuming the existence of a malicious secure MPC
framework, especially, let Open be the malicious secure secret
sharing reconstruction, let DotProduct be the malicious secure
inner product, RPM realizes the ideal functionality F defined in
Definition 4.1.

ProoF SKETCH. We build up a simulator S to simulate the view
of the adversary. Without loss of generality, we assume the worst
case where the adversary controls all but two honest clients, and ¢
servers P1, Py, - -+, P;.

The first step of the ideal functionality is to collect input mes-
sages from clients in the form of secret sharing. There are k input
messages in total. For each message, the adversary has access to
t shares as it controls t malicious servers. To simulate the view of
the adversary, for each input message in M, the simulator S can
generate ¢t random values as t shares. This is identical to the ad-
versary’s view because any t shares leak no information about the
secret message.

Next, F perform the random permutation to the input message
vector M. Here the view of the adversary includes the intermediate
communications when F executes the shuffling, and we show how
to simulate them with S below:

In Variant 1, the mixing steps only include doing k secure inner
products. Therefore, the malicious security of our protocol is re-
duced to the security of DotProduct. In Variant 2, the mixing steps
require the reconstruction of [M + R]. As R is random, M + R is
also uniformly random. Therefore S can directly generate k random
values and send them to all the servers as the simulation of M + R.
The malicious security of the reconstruction step depends on the
malicious secure building block Open. For Variant 3, the mixing
step is a combination of multiple instances of Variant 1 or Variant 2.
The output of a permutation node is directly taken as the input of
the permutation nodes in the next layer, no more information is
leaked outside of permutation nodes. Therefore S can simulate the
view of the adversary using the strategy the methods above.

Finally, the parties reconstruct the output messages M’ through
secret sharing reconstruction. The view of the adversary includes
the final output messages M’, and the corresponding n secret shares
of each message. For each opened message m, The simulator S has
access to m and ¢ shares as those t shares are stored in ¢ malicious
servers. The goal of S is to generate the rest n — t shares for each
message m, which can be done depending on the underlying secret
sharing schemes. We take Shamir secret sharing as an example. For
each message, S has t points and the secret s, which can also be
treated as a point (0, s). S can use these t + 1 points to uniquely
decide a degree-t polynomial, and use this polynomial to compute
the rest of the shares.

After the reconstruction, the adversary can decide to continue
or abort. If the adversary decides to continue, the protocol outputs
M’ and finishes. m]

5 IMPLEMENTATION AND EVALUATION

5.1 Implementation

There are currently many MPC libraries [34, 39, 47, 58] avail-
able with different trade-offs. Among them, we choose to use MP-
SPDZ [39] to implement all three variants of our protocols, because

355

Proceedings on Privacy Enhancing Technologies 2023(2)

MP-SPDZ is a collection of multiple MPC back-ends, and it allows
us to pick proper back-ends for different variants to get the best
performances. Besides, it helps us to illustrate that our protocols
can suit almost all the MPC back end because of the fact that only
the basic building blocks are needed. The code is available in a
public GitHub repo?.

As Variant 1requires a fast malicious secure dot product protocol,
the number of the back-ends satisfying the requirements is limited.
Among them, we find the SY-SPDZ back-end to be the one with
the best performance, thus choosing it for the benchmark. For
Variant 2, the back-end we use is malicious-shamir-party of MP-
SPDZ, as an efficient inner product is not required. For Variant 3,
we built up each permutation node using Variant 2, thus using
the same back-end. In general, we are interested to answer how
fast our online protocol can be, as the protocols target real-time
applications where the latency is the most significant. Therefore,
in the experiments we mainly report the online running time and
the online communication time. To simulate the real-world use
cases, we run the experiment using Amazon AWS. Besides, we also
conduct experiments to measure the cost of the offline phase to
confirm it is practical.

The code is written in MP-SPDZ customized language. Variant 1
directly invokes the inner product protocols k times in parallel, then
the results are reconstructed in the second round. Note that in our
original protocol, the inner product and the reconstruction could
be compressed into one single round, however, our implementation
requires two rounds to fit the framework more easily. Variant 2
invokes the reconstruction protocols in two rounds, where each
round reconstructs k secret shares. We notice that because of the
limitation of the framework, it actually takes more than 2 rounds to
finish the reconstruction when k is large. Besides, multi-threading
is used with up to 32 threads when applicable to speed up the local
computation.

5.2 Online Phase Evaluation

We run the benchmark on AWS EC2 clusters in a three-party
malicious-secure setting. The AWS instance we use is c5.9xlarge
with 32 cores and 72GB RAM. All three machines are in the same
region (US.East).

Variant 1. First, we present the benchmark result of Variant 1. The
result is available in Table 2. It shows that our protocol can mix k =
10000 messages in around 1.5 seconds and 1.483MB communication.
The communication cost increases linearly with the number of
clients, which is consistent with our theoretical complexity. We
are also interested in the bottleneck of this protocol, so we also
implemented the non-multi-threading version of the protocol, its
benchmark shows the local computation dominates over 95% of the
overall running time. Therefore, the multi-threading significantly
improves the performance of our protocols as we confirm local
computation is the bottleneck especially when k is large.

Variant 2. The benchmark numbers of Variant 2 are available in
Table 3. Interestingly, the performance of Variant 2 is better than
Variant 1, although theoretically Variant 1 should perform better.
We think the reason is that the MPC back-end of Variant 2 is faster
than Variant 1, although it does not support a fast inner product.

2the link: https://github.com/lu562/MP-SPDZ

Proceedings on Privacy Enhancing Technologies 2023(2)

Table 2: Performance of the online phase of Variant 1in the
three-party setting,. (k refers to the number of clients. We as-
sume each client sends a 16 byte field element as the message
in each execution. Communication is measured by the total
MB sent per party)

k Online Time (s) | Online Communication(MB)
1000 0.05 0.961
3000 0.132 1.077
5000 0.360 1.193
7000 0.689 1.309
10000 1.485 1.483

As a result, we also use Variant 2 as the building blocks to conduct
the benchmark of Variant 3.

Table 3: Performance of the online phase of Variant 2 in the
three-party setting. (k refers to the number of clients. mes-
sage size is 16 bytes. Communication is measured by the to-
tal MB sent by all parties)

k Online Time (s) | Online Communication(MB)
1000 0.02 0.193
3000 0.066 0.577
5000 0.155 0.960
7000 0.288 1.345
10000 0.580 1.921

Variant 3. For Variant 3, we implement the square network with
q = 15 layers and each permutation node is initialized by Variant 2.
The benchmark is available in Table 4. The result shows that we
can permute k = 90000 messages in around 12 seconds with 46MB
communication.

Table 4: Performance of the online phase of Variant 3 in the
three-party setting. (k refers to the number of clients. We as-
sume each client sends a 16 byte field element as the message
in each execution. Communication is measured by the total
MB sent per party)

k Online Time (s) | Online Communication(MB)
10000 0.56 5.12
40000 3.97 20.48
90000 12.68 46.08
160000 27.69 87.92

Performance with More Servers. We take Variant 3 as an exam-
ple and run it with k = 10000 for a different number of servers.
The results are available in Table 5. We only see a slight increase
in online running time when increasing the number of servers.
The reason is that our protocols are mostly bottlenecked by the
local computation (the local inner product computation), which is
independent of the number of servers.

356

Lu et al.

Table 5: Online Performance of Variant 3 with more servers
(k = 10000 for all experiments, the hardware settings are the
same as the experiments above.)

n | Online Time (s) | Online Communication(MB)
3 0.56 5.12
5 0.58 10.2
7 0.64 15.3

5.3 Offline Phase Benchmark

To illustrate the offline phase are practical, we run the offline phases
of all three variants and record their performance in this section.
For the first two variants, the offline phase is bottleneck by an
k-by-k matrix operation. The result shows that we can run the
offline phase of Variant 1 for k = 1000 in 3.9 seconds with 32MB
communication. With the increase of k, the offline time increases
significantly, therefore we recommend the users to use Variant 3 for
large k. The offline phase of Variant 2 has almost the same time and
communication cost because they are both computational-bounded
by the generation of the permutation matrix.

Table 6: Performance of the offline phase of Variant 1 in the
three-party setting. (k refers to the number of clients. Com-
munication is measured by the total MB sent per party)

k Offline Time (s) | Online Communication(MB)
1000 5.1 32
3000 126 288
5000 615 800
7000 1832 1568
10000 5767 3200

For Variant 3, the offline phase is responsible to do q\/E matrix
multiplications, with matrix size \/E—by—\/; We use multi-threading
to perform multiple matrix multiplications simultaneously, but each
matrix multiplication itself is not optimized by parallelism. we
record the offline phase performance in Table 7. The benchmark
shows that the offline phase of k = 90000 only takes about 7 minutes.
As for the bottleneck, we observe that at least for k up to 90000,
the communication and the computation both take a significant
portion of the time so they are both the bottleneck. We note that
the communication cost of this offline phase is large compared with
the first two variants.

Table 7: Offline phase benchmark for Variant 3. (k is the num-
ber of clients, communication is measured by the total MB
sent per server)

k Offline Time (s) | Offline Communication(MB)
10000 5.741 480
40000 89.08 3840
90000 448.82 12960

RPM: Robust Anonymity at Scale

5.4 Towards Robustness

Our proposed protocols can support more security properties if
built in proper MPC building blocks. As an illustrative example, we
show how to achieve a robust online phase for our protocols in a
synchronous setting.

Protocol Consturction. As mentioned in Section 4, the online
phase of Variant 2 and Variant 3 only requires secure secret sharing
reconstruction as the MPC building block. Therefore, we follow the
ideas of [47] and construct a robust Shamir secret-sharing recon-
struction using Reed-Solomon decoding [32]. We require n > 3t +1
to guarantee that a sufficient number of shares are available as the
input of the robust decoding algorithm. Any wrong shares sent
by the malicious parties will be corrected by robust decoding. In
a synchronous setting, if malicious parties refuse to send shares,
they will be caught by the honest online parties, and honest online
parties can use arbitrary shares as malicious parties’ shares, and
treat them as the "wrong shares".

We implement this idea using MP-SPDZ with the "malicious-
shamir-party” back-end. The original back-end achieves secure-
with-abort sharing reconstruction in a n > 2t + 1 setting. The
party will use the first t + 1 shares to reconstruct a polynomial
and use the rest ¢ points to confirm all points correspond to the
same polynomial. If any inconsistency occurs, the protocol will
abort. To achieve robustness, we change the model to be n > 3t + 1
and replace its share reconstruction with a robust one. The Reed-
Solomon decoding algorithm we choose is from [32]. With this
design, the share reconstruction will have the same performance
as the non-robust version if there are no malicious behaviors. In
most scenarios, the probability that malicious behaviors happen is
low, therefore this design is beneficial to the overall performance.

Evaluation of the Robust Variant 3. We test the performance
of the robust versions of our protocols in the AWS cluster, the
hardware, and network setting are the same as in the rest of the
experiments. The only difference is that we use n = 4, t = 1 to fulfill
the requirement of robust MPC. In best cases, the performance is
the same as the non-robust version. To illustrate the worst case, we
conduct an experiment where we trigger the malicious behaviors
in every share reconstruction by forcing one party to send 0 all
the time as its shares. We build up the robust implementation of
Variant 3 by using Variant 2 as the building block, and the bench-
mark result is available in Table 8. In worst cases, the performance
is approximately 2Xx more than the non-robust version.

Table 8: Online phase performance of the robust Variant 3 in
(n = 4,t = 1) setting. For data in this table, We trigger the
malicious behavior by always forcing one party to send the
wrong shares to simulate the worst case.

k Online Time (s)
10000 1.75
40000 8.62
90000 24.05
160000 48.14

357

Proceedings on Privacy Enhancing Technologies 2023(2)

5.5 Performance Comparison

We present a comparison to PowerMix [47], Blinder [1], and Clar-
ion [29] as they share the closest theoretical complexity with ours.
In Powermix, it takes around 140 seconds to mix k = 1000 mes-
sages, while our protocol (Variant 2) takes around 0.02 seconds. The
main reason that we outperform Powermix is the online computa-
tion complexity (O(k3) vs O(k?)), and we also confirm that online
computation is the main bottleneck of the whole protocol.
Blinder’s benchmark is based on five MPC parties as they require
N > 4t +1, and the closest test case we can find is kK = 100000, with
message size being 160B. Our case is k = 100000 and the message
size is 16B, ten times smaller than Blinder’s test case. Blinder’s
non-robust test case takes around 8 minutes to finish in their CPU
version and around 40 seconds in GPU version. Our protocol only
implements CPU version and it takes around 14 seconds to finish.
As mentioned earlier, we can support larger messages by re-running
the protocol for all message pieces using the same permutation ma-
trices, so we can simply multiply our performance numbers with
10 for a fair comparison. With the 10x factor incorporated, we
outperform the blinder CPU version protocol by around 3.5X, and
their GPU version is better than ours. We expect a similar perfor-
mance gain if our protocol can be implemented in GPU version as
most of the local computation can be done in parallel. We will take
it as one of the future works. The comparison above is based on
the non-robust versions of both works. If we take the robustness
into the picture, our protocols outperform Blinder by a factor of
1.7X to 3.5%, depending on the frequency of malicious behaviors.
What’s more, the main difference between our protocol and Blinder
protocol is the client cost, the computation and communication
cost of our protocol is O(1) while Blinder’s client cost is Oo(k).
For Clarion [29], we realize that it outperforms our protocols
when it comes to a large volume of inputs (e.g. k > 10°). How-
ever, Clarion cannot support security properties like robustness.
Therefore both works have their own advantages and use cases.

6 APPLICATIONS OF RPM

We so far focused on using RPM to achieve anonymous broad-
cast. Below we show some higher-level applications with RPM as
building blocks.

6.1 Two Way Communication

First, we show how to extend our protocols to support two-way
communication, which allows the receivers to reply to the sender’s
messages anonymously. We notice that this feature is similar to
anonymous messaging [1, 3, 29], where senders and receivers con-
duct private conversations such that the adversary has no informa-
tion about their identities.

Inspired by [18], our two-way communication is split into two
parts: In the first part, the sender sends its message anonymously.
In the second part, the receiver recognizes the message from the
sender and sends the reply message back to the sender. We can
achieve the first part using any variant of our protocols, such that
the output messages Y = n(X) is a random permutation r of the
input messages X. To help the receivers recognize the messages,

Proceedings on Privacy Enhancing Technologies 2023(2)

First Epoch

(1) Sender 1's message is prefixed with tag 1, and the message
becomes the third message after the permutation.

Lu et al.

Second Epoch

(2) Receiver 1 realize the third message comes from sender 1 by checking
tags, thus put the reply message as the third input message of the second
round of RandP, which inverse the permutation of the first epoch

tag1 |message 1

—>| tag3 | message |

tag3 | message

|ta93 | message |—>

—>| tagb | message

tag2 |message 2

|tag5 | message |—> tagb

message

RPM

il

*){ tag1 l message

tag3 |message 3

ik

’ tag1 l message }—> RPM tag1

message

with permutation matrix M

with permutation matrix w1

—>| tag4 | message

|tag4 |message l—) message

—>| tag2 | message

tag5s |message 5

ﬂ

!

| tag2 | message |—>

tag2 | message

(3) Servers will send shares of the first output of RPM to sender 1, such that

sender 1 can reconstruct the reply message from receiver 1.

Figure 3: An example of two-way communication. The example includes five participating clients, and we mark the protocol
flow for the first sender (denoted as sender 1) in red. Sender 1 and the corresponding receiver agree with a tag (tagl in the

figure) before the protocol.

senders and receivers agree on some tags offline3, such that these
tags can be prefixed to the sender’s messages, and the receivers can
recognize the messages through the tags. As for the second part,
the key observation is that the permutation we perform in the first
part can be reversed through the inverse permutation 7!, which
is available by computing the inverse of the permutation matrix.
Therefore, the receivers can put their reply messages in the same
position as the sender message, then the servers do a second round
of mixing protocols using the inverse of the permutation matrix
7. Instead of reconstructing the permutation outputs publicly, the
servers send their shares to the designated senders such that the
senders can reconstruct the reply messages privately. In this way,
the adversary has no information about the output of the second
round of mixing, therefore cannot build any link between the sender
messages and the reply messages. As for the computation of the
inverse of a permutation matrix, we notice that it can be achieved
by simply computing the transpose because it is an orthogonal
matrix. The computation of the transpose is just a relocation of
matrix elements and therefore is a local computation. An example
of two-way communication is shown in Figure 3.

If the application also requires hiding the content of the sender
messages, some extra steps should be deployed on the sender side
(e.g., senders can encrypt their messages except the tags using sym-
metric key encryption, share the key with the receiver offline, then
send the encrypted messages to our protocols). In this case, our
protocol achieves the same functionality as anonymous messag-
ing [1, 3].

Since the design is simply two runs of our secure mixing pro-
tocols, it is secure against malicious servers naturally. As for the
malicious clients, the worst case is that he/she can reply to a mes-
sage not belonging to him/her. To avoid it, we require the sender
and the receiver also agree on some randomness offline (e.g., a

3This step is out of the scope of this paper. Establishing shared secrets is a well-studied
P P pap g
problem and a lot of prior works could be used to achieve it.

common string), such that the sender could hash the randomness,
and put the hash of the randomness as the tag. The servers allow
a receiver to reply to the message only if he/she can provide the
common randomness that matches the hash value.

6.2 Secure Sorting

The secure sorting takes private inputs from k clients, and outputs
the sorted inputs without revealing their ownership. There are
in general two types of sorting algorithms. The first kind is data-
dependent sorting, where the input decides the execution path of
the algorithm. A good example is the quicksort, where the choice
of pivot decides the number of recursions. Therefore, the execution
path (e.g. execution time) leaks information about the input, and
most existing works choose to implement the second type of sorting
algorithm so-called oblivious sorting [9, 10, 51]. However, to the best
of our knowledge, the most practical oblivious sorting is achieved by
sorting networks [10] with O(k log? k) communication in O(log? k)
rounds.

Recently, Hamada et, al [35] propose to use data-dependent al-
gorithms in an oblivious fashion to solve the sorting problem. The
idea is that parties can perform a secure random shuffle to the input,
reconstruct the inputs, then compute data-dependent algorithms
locally with the reconstructed input. With this idea, the secure sort-
ing problem is reduced to a secure random shuffle, which can be
achieved through our random permutation protocol. By applying
our protocol there, secure sorting can be achieved by only O(k)
communication in one or two rounds.

Secure sorting itself is a vital build block of various high-level ap-
plications such as secure auctions [5, 13], combinatorial graph prob-
lems [6], and network flow problems [4]. Therefore, our protocols
can be beneficial to much more applications than just anonymous
communication.

358

RPM: Robust Anonymity at Scale

7 CONCLUSION

In this work, we build up protocols for efficient random permu-
tation, and use them to achieve anonymous communication by
randomly permuting the messages. We perform three variants of
our protocols, each targeting different MPC frameworks and real-
world applications. The benchmark illustrates that our protocols
are efficient in both the online phase and the offline phase, besides,
the client cost of our protocol is the lowest among all existing
works, which makes our protocols friendly to clients with limited
networks and computation power. Finally, as we employ MPC in
a generic fashion, our performance will improve further as better
MPC protocols and libraries get developed in the near future.

For future works, we find the implementation of our work has
great potential to be improved. First, the use of GPU can signifi-
cantly improve the performance of our protocols as the local com-
putation in our protocols is highly parallelizable. Besides, we want
to explore the possibility to make the offline phase more efficient.
Considering the permutation matrix consists of only zeros and ones,
our offline phase could potentially be more efficient using binary
circuits, and it could finally produce a mixed-circuit solution to
make both the offline phase and the online phase efficient.

ACKNOWLEDGMENTS

This work has been partially supported by the National Science
Foundation (NSF) under grant CNS-1846316. We thank Marcel
Keller for the detailed guidance about MP-SPDZ backends and
low-level constructions. We thank Andrew Miller for the valuable
discussion about robust secret-sharing reconstruction.

REFERENCES

[1] Ittai Abraham, Benny Pinkas, and Avishay Yanai. Blinder-scalable, robust anony-
mous committed broadcast. In Proceedings of the 2020 ACM SIGSAC Conference
on Computer and Communications Security, pages 1233-1252, 2020.

Mark Abspoel, Anders Dalskov, Daniel Escudero, and Ariel Nof. An efficient

passive-to-active compiler for honest-majority mpc over rings. In Interna-

tional Conference on Applied Cryptography and Network Security, pages 122-152.

Springer, 2021.

[3] Nikolaos Alexopoulos, Aggelos Kiayias, Riivo Talviste, and Thomas Zacharias.
MCMix: Anonymous messaging via secure multiparty computation. In 26th
USENIX Security Symposium (USENIX Security 17), pages 1217-1234, Vancouver,
BC, August 2017. USENIX Association.

[4] Abdelrahaman Aly. Network flow problems with secure multiparty computation.
PhD thesis, Catholic University of Louvain, Louvain-la-Neuve, Belgium, 2015.

[5] Abdelrahaman Aly and Sara Cleemput. An improved protocol for securely
solving the shortest path problem and its application to combinatorial auctions.
Cryptology ePrint Archive, 2017.

[6] Abdelrahaman Aly, Edouard Cuvelier, Sophie Mawet, Olivier Pereira, and Math-
ieu Van Vyve. Securely solving simple combinatorial graph problems. In Interna-
tional Conference on Financial Cryptography and Data Security, pages 239-257.
Springer, 2013.

[7] Assi Barak, Martin Hirt, Lior Koskas, and Yehuda Lindell. An end-to-end system
for large scale p2p mpc-as-a-service and low-bandwidth mpc for weak partic-
ipants. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, pages 695-712, 2018.

[8] Ludovic Barman, Mahdi Zamani, Italo Dacosta, Joan Feigenbaum, Bryan Ford,

Jean-Pierre Hubaux, and David Wolinsky. Prifi: a low-latency and tracking-

resistant protocol for local-area anonymous communication. In Proceedings of

the 2016 ACM on Workshop on Privacy in the Electronic Society, pages 181-184,

2016.

Kenneth E Batcher. Sorting networks and their applications. In Proceedings of

the April 30-May 2, 1968, spring joint computer conference, pages 307-314, 1968.

Kenneth E Batcher. Sorting networks and their applications. In Proceedings of

the April 30-May 2, 1968, spring joint computer conference, pages 307-314, 1968.

K. S. Bauer, D. McCoy, D. Grunwald, T. Kohno, and D. C. Sicker. Low-resource

routing attacks against tor. In WPES 07, pages 11-20, 2007.

[2

[9

[

[10

[11]

359

Proceedings on Privacy Enhancing Technologies 2023(2)

[12] Donald Beaver. Efficient multiparty protocols using circuit randomization. In
CRYPTO 1991, pages 420-432, 1992.

Peter Bogetoft, Dan Lund Christensen, Ivan Damgard, Martin Geisler, Thomas
Jakobsen, Mikkel Kreigaard, Janus Dam Nielsen, Jesper Buus Nielsen, Kurt
Nielsen, Jakob Pagter, et al. Secure multiparty computation goes live. In Interna-
tional Conference on Financial Cryptography and Data Security, pages 325-343.
Springer, 2009.

Jurjen Bos and Bert den Boer. Detection of disrupters in the dc protocol. In
Jean-Jacques Quisquater and Joos Vandewalle, editors, Advances in Cryptology —
EUROCRYPT 89, pages 320-327, 1990.

Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret sharing: Improvements
and extensions. In Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, pages 1292-1303, 2016.

David Chaum. The dining cryptographers problem: Unconditional sender and
recipient untraceability. Journal of cryptology, 1(1):65-75, 1988.

David Chaum, Debajyoti Das, Farid Javani, Aniket Kate, Anna Krasnova, Joeri
de Ruiter, and Alan T. Sherman. cmix: Mixing with minimal real-time asymmetric
cryptographic operations. In ACNS, 2017.

David L Chaum. Untraceable electronic mail, return addresses, and digital
pseudonyms. Communications of the ACM, 24(2):84-90, 1981.

Koji Chida, Daniel Genkin, Koki Hamada, Dai Ikarashi, Ryo Kikuchi, Yehuda
Lindell, and Ariel Nof. Fast large-scale honest-majority mpc for malicious ad-
versaries. In Annual International Cryptology Conference, pages 34—64. Springer,
2018.

Michele Ciampi, Muhammad Ishaq, Malik Magdon-Ismail, Rafail Ostrovsky, and
Vassilis Zikas. Fairmm: A fast and frontrunning-resistant crypto market-maker.
Cryptology ePrint Archive, 2021.

Henry Corrigan-Gibbs, Dan Boneh, and David Mazieres. Riposte: An anonymous
messaging system handling millions of users. 2015 IEEE Symposium on Security
and Privacy, May 2015.

Philip Daian, Steven Goldfeder, Tyler Kell, Yunqi Li, Xueyuan Zhao, Iddo Bentov,
Lorenz Breidenbach, and Ari Juels. Flash boys 2.0: Frontrunning, transaction
reordering, and consensus instability in decentralized exchanges. arXiv preprint
arXiv:1904.05234, 2019.

Ivan Damgard, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter Scholl, and
Nigel P Smart. Practical covertly secure mpc for dishonest majority—or: breaking
the spdz limits. In European Symposium on Research in Computer Security, pages
1-18. Springer, 2013.

G. Danezis, R. Dingledine, and N. Mathewson. Mixminion: design of a type iii
anonymous remailer protocol. In 2003 Symposium on Security and Privacy, 2003.,
pages 2-15, 2003.

Debajyoti Das, Sebastian Meiser, Esfandiar Mohammadi, and Aniket Kate.
Anonymity trilemma: Strong anonymity, low bandwidth overhead, low latency-
choose two. In 2018 IEEE Symposium on Security and Privacy (SP), pages 108-126.
IEEE, 2018.

Debajyoti Das, Sebastian Meiser, Esfandiar Mohammadi, and Aniket Kate. Com-
prehensive anonymity trilemma: User coordination is not enough. Proceedings
on Privacy Enhancing Technologies, 2020:356-383, 2020.

R. Dingledine and N. Mathewson. Tor Protocol Specification. https://gitweb.
torproject.org/torspec.git?a=blob_plain;hb=HEAD;f=tor-spec.txt. Accessed Feb
2022.

Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The second-
generation onion router. In Proceedings of the 13th USENIX Security Symposium,
page 21, 2004.

Saba Eskandarian and Dan Boneh. Clarion: Anonymous communication from
multiparty shuffling protocols. Cryptology ePrint Archive, 2021.

Saba Eskandarian, Henry Corrigan-Gibbs, Matei Zaharia, and Dan Boneh. Ex-
press: Lowering the cost of metadata-hiding communication with cryptographic
privacy. In 30th USENIX Security Symposium (USENIX Security 21), pages 1775—
1792, 2021.

N. S. Evans, R. Dingledine, and C. Grothoff. A Practical Congestion Attack on
Tor Using Long Paths. In USENIX’09, pages 33-50, 2009.

Shuhong Gao. A new algorithm for decoding reed-solomon codes. In Communi-
cations, information and network security, pages 55-68. Springer, 2003.

Philippe Golle and Ari Juels. Dining cryptographers revisited. In Proc. of Eurocrypt
2004, 2004.

Vipul Goyal, Hanjun Li, Rafail Ostrovsky, Antigoni Polychroniadou, and Yifan
Song. Atlas: efficient and scalable mpc in the honest majority setting. In Annual
International Cryptology Conference, pages 244-274. Springer, 2021.

Koki Hamada, Ryo Kikuchi, Dai Ikarashi, Koji Chida, and Katsumi Takahashi.
Practically efficient multi-party sorting protocols from comparison sort algo-
rithms. In Taekyoung Kwon, Mun-Kyu Lee, and Daesung Kwon, editors, Infor-
mation Security and Cryptology — ICISC 2012, pages 202-216, Berlin, Heidelberg,
2013. Springer Berlin Heidelberg.

[36] Johan Hastad. The square lattice shuffle. Random Structures and Algorithms,
29(4):466-474, 2006.

Yuval Ishai, Eyal Kushilevitz, Sigurd Meldgaard, Claudio Orlandi, and Anat Paskin-
Cherniavsky. On the power of correlated randomness in secure computation. In

[13

[14

jpry
&

(16

(17

(18

[19

)
=

[21

[22

[23

[24]

~
2

[26

[27

[28

™
29,

[30

[31]

[32

[33

[34

[37

Proceedings on Privacy Enhancing Technologies 2023(2)

[38]

[39

[40

[41]

[42

[43]

[44]

[45

[46

[47]

[48]

[49

[50

[51]

Theory of Cryptography Conference, pages 600-620. Springer, 2013.

Aaron Johnson, Chris Wacek, Rob Jansen, Micah Sherr, and Paul Syverson. Users
get routed: Traffic correlation on tor by realistic adversaries. In Proc. ACM SIGSAC
conference on Computer & communications security 2013, pages 337-348, 2013.
Marcel Keller. Mp-spdz: A versatile framework for multi-party computation. In
Proceedings of the 2020 ACM SIGSAC conference on computer and communications
security, pages 1575-1590, 2020.

Marcel Keller, Emmanuela Orsini, and Peter Scholl. Mascot: Faster malicious
arithmetic secure computation with oblivious transfer. In Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security, CCS ’16,
New York, NY, USA, 2016. Association for Computing Machinery.

Anna Krasnova, Moritz Neikes, and Peter Schwabe. Footprint scheduling for
dining-cryptographer networks. In Jens Grossklags and Bart Preneel, editors, FC,
pages 385-402, 2016.

Albert Kwon, Henry Corrigan-Gibbs, Srinivas Devadas, and Bryan Ford. Atom:
Horizontally scaling strong anonymity. In Proceedings of the 26th Symposium on
Operating Systems Principles, pages 406-422, 2017.

David Lazar, Yossi Gilad, and Nickolai Zeldovich. Karaoke: Distributed private
messaging immune to passive traffic analysis. In 13th USENIX Symposium on
Operating Systems Design and Implementation, OSDI 2018, Carlsbad, CA, USA,
October 8-10, 2018, pages 711-725, 2018.

Stevens Le Blond, David Choffnes, William Caldwell, Peter Druschel, and Nicholas
Merritt. Herd: A Scalable, Traffic Analysis Resistant Anonymity Network for
VoIP Systems. In Proc. ACM SIGCOMM 2015, pages 639-652, 2015.

Stevens Le Blond, David Choffnes, Wenxuan Zhou, Peter Druschel, Hitesh Bal-
lani, and Paul Francis. Towards Efficient Traffic-analysis Resistant Anonymity
Networks. In Proc. ACM SIGCOMM 2013, pages 303-314, 2013.

Donghang Lu, Albert Yu, Aniket Kate, and Hemanta Maji. Polymath: Low-
latency mpc via secure polynomial evaluations and its applications. Proceedings
on Privacy Enhancing Technologies, 2022(1):396—416, 2022.

Donghang Lu, Thomas Yurek, Samarth Kulshreshtha, Rahul Govind, Aniket Kate,
and Andrew Miller. Honeybadgermpc and asynchromix: Practical asynchronous
mpc and its application to anonymous communication. In Proceedings of the
2019 ACM SIGSAC Conference on Computer and Communications Security, pages
887-903, 2019.

P. Mohassel and Y. Zhang. SecureML: a system for scalable privacy-preserving
machine learning. In 2017 IEEE Symposium on Security and Privacy (SP), pages
19-38, 2017.

Zachary Newman, Sacha Servan-Schreiber, and Srinivas Devadas. Spectrum:
High-bandwidth anonymous broadcast. In 19th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 22), pages 229-248, Renton, WA, April
2022. USENIX Association.

Tal Rabin and Michael Ben-Or. Verifiable secret sharing and multiparty protocols
with honest majority. In Proceedings of the twenty-first annual ACM symposium
on Theory of computing, pages 73-85, 1989.

Donald L. Shell. A high-speed sorting procedure. Communications of the ACM,
2(7):30-32, 1959.

360

[52

[53

[54

[55

[56

[57

[58

A

Lu et al.

] Nirvan Tyagi, Yossi Gilad, Derek Leung, Matei Zaharia, and Nickolai Zeldovich.
Stadium: A distributed metadata-private messaging system. In Proceedings of the
26th Symposium on Operating Systems Principles, pages 423-440, 2017.

Jelle Van Den Hooff, David Lazar, Matei Zaharia, and Nickolai Zeldovich. Vu-
vuzela: Scalable private messaging resistant to traffic analysis. In Proceedings of
the 25th Symposium on Operating Systems Principles, pages 137-152, 2015.

Luis von Ahn, Andrew Bortz, and Nicholas J. Hopper. K-anonymous message
transmission. In Proceedings of the 10th ACM SIGSAC CCS, page 122-130, 2003.

Michael Waidner. Unconditional sender and recipient untraceability in spite of
active attacks. In Advances in Cryptology — EUROCRYPT ’89, pages 302-319,
1990.

Michael Waidner and Birgit Pfitzmann. The dining cryptographers in the disco:
Unconditional sender and recipient untraceability with computationally secure
serviceability. In Advances in Cryptology — EUROCRYPT ’89, pages 690-690, 1990.
] David Isaac Wolinsky, Henry Corrigan-Gibbs, Bryan Ford, and Aaron Johnson.
Dissent in numbers: Making strong anonymity scale. In 10th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 12), pages 179-182, 2012.
Yihua Zhang, Aaron Steele, and Marina Blanton. Picco: a general-purpose com-
piler for private distributed computation. In Proceedings of the 2013 ACM SIGSAC
conference on Computer & communications security, pages 813-826, 2013.

BENCHMARK OF TWO-WAY
COMMUNICATION

The benchmark result is shown in Table 9. As the protocol is

essentially two executions of the Variant 3, we see that the per-
formance numbers are also approximately 2X of the numbers in

Va

riant 3 benchmark.

Table 9: Performance of the two-way communication. (k
refers to the number of clients. We assume each client sends
a 16 byte field element as the message in each execution.
Communication is measured by total MB sent per party)

k Online Time (s) | Online Communication(MB)
10000 1.08 9.92
40000 7.89 39.68
90000 25.95 89.28
160000 57.22 158.72

	Abstract
	1 Introduction
	1.1 Paper Organization

	2 Related Works
	3 Preliminary
	3.1 System Model
	3.2 Goals and Non-Goals
	3.3 Secret-sharing-based MPC
	3.4 Beaver Triple Multiplication Beaver for Scalars and Matrices
	3.5 Robust Secret Sharing Reconstruction
	3.6 Notations

	4 Using Permutation Matrices for Anonymous Communication
	4.1 Overview of the Variants
	4.2 Collecting Client Messages
	4.3 Malicious Security
	4.4 The First Variant
	4.5 The Second Variant
	4.6 The Third Variant
	4.7 Cost Analysis and Comparisons with Related Works
	4.8 Security Analysis
	4.9 Security Proof

	5 Implementation and Evaluation
	5.1 Implementation
	5.2 Online Phase Evaluation
	5.3 Offline Phase Benchmark
	5.4 Towards Robustness
	5.5 Performance Comparison

	6 Applications of RPM
	6.1 Two Way Communication
	6.2 Secure Sorting

	7 Conclusion
	Acknowledgments
	References
	A Benchmark of two-way communication

