
RPM: Robust Anonymity at Scale

Donghang Lu
Purdue University

West Lafayette, IN, USA

lu5621994@gmail.com

Aniket Kate
Purdue University / Supra

West Lafayette, IN, USA

aniket@purdue.edu

ABSTRACT

This work presents RPM, a scalable anonymous communication

protocol suite using secure multiparty computation (MPC) with the

offline-online model. We generate random, unknown permutation

matrices in a secret-shared fashion and achieve improved (online)

performance and the lightest communication and computation

overhead for the clients compared to the existing robust anony-

mous communication protocols. Using square-lattice shuffling, we

make our protocol scale well as the number of clients increases.

We provide three protocol variants, each targeting different in-

put volumes and MPC frameworks/libraries. Besides, due to the

modular design, our protocols can be easily generalized to support

more MPC functionalities and security properties as they get devel-

oped. We also illustrate how to generalize our protocols to support

two-way anonymous communication and secure sorting. We have

implemented our protocols using the MP-SPDZ library suit. The

benchmark demonstrates that our protocols achieve unprecedented

online phase performance with practical offline phases.

KEYWORDS

Secure Multiparty Computation, Anonymous Communication, Se-

cure Random Permutation

1 INTRODUCTION

There are by nowmillions of users using the Tor network [27, 28] to

break the link between their identities and their messages/packets.

As the solutions like Tor network suffer from traffic analysis at-

tacks [11, 31, 38], anonymous communication becomes an active

research area and many works [1, 3, 29, 42, 43, 47, 52, 53] aim

at providing anonymous communication services efficiently. This

work explores the solutions of anonymous communication with

the help of secure multi-party computation (MPC). MPC allows

multiple distrusting parties to compute some functions collabo-

ratively with their private input; thus, it is a natural approach to

building applications with robust privacy guarantees [1, 47]. This

work proposes RPM1 as a solution for anonymous communication

in a client-server setting, where clients send their messages to the

servers in a secret-shared manner, the servers randomly shuffle the

messages and then output them to designated parties. Compared

with existing works, the highlight of our protocols is that the clients

only need the minimum cost to send the messages, meanwhile, the

1RPM stands for Random permutation matrix.

This work is licensed under the Creative Commons Attribu-
tion 4.0 International License. To view a copy of this license
visit https://creativecommons.org/licenses/by/4.0/ or send a
letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Proceedings on Privacy Enhancing Technologies 2023(2), 347ś360

© 2023 Copyright held by the owner/author(s).
https://doi.org/10.56553/popets-2023-0057

servers can perform the random shuffle very efficiently in terms of

time and communication. It makes our protocol a preferred choice

for real-time anonymous communication applications such as front-

running-resistant market maker [20, 22]. Meanwhile, clients with

limited computation power can benefit from our protocol signifi-

cantly.

RPM employs the standard offline/online model of MPC [7,

23, 37, 46, 47], where the offline phase is used to prepare input-

independent data, such that they can be consumed to accelerate the

input-dependent online phase. The overall idea is that anonymous

broadcast can be achieved by performing a random permutation to

the input messages. Recall that for any k-input permutation π , there

exists a zero-one matrix Mπ such that π (x) = Mπ x . Therefore, if

we obtain a permutation matrix such that anyone including the

adversary does not know the underlying permutation, the anony-

mous communication could be achieved by simply multiplying the

matrix with the input vector, and it is equivalent to doing k inner

product in parallel. In the offline/online model, we can generate a

permutation matrix in the offline phase as it is input-independent,

then achieve random permutation in the online phase through

multiplications. This core idea is simple and fast, which are two

great properties proven to be significantly useful in an anonymous

broadcast scheme.

We provide three variants of the protocols, targeting different

MPC frameworks and applications. The first variant leverages ef-

ficient inner product protocols to achieve a fast and cheap online

phase. It only requires one communication round and k share re-

constructions for mixing k messages. Then we present the second

variant for MPC frameworks where an inner product protocol with

constant communication complexity is not available. It requires 2

rounds and 2k reconstructions as a trade-off. Finally, we provide the

third variant to handle a larger number of inputs more efficiently

with cheaper offline phase cost and online computation complex-

ity. As a result, all existing secret-sharing-based MPC frameworks

can use our protocols for their purposes. Besides, we show how

to generalize our protocols to support more functionalities (e.g.

two-way communication and anonymous messaging) and security

properties (e.g. robustness, meaning that the protocols will make

progress and finish with correct output even with the existence of

malicious behaviors). Moreover, as the core part of our protocols

is the secure random permutation, it is of independent interest to

more applications such as oblivious sorting and some graph-based

algorithms.

We implement our protocols using MP-SPDZ framework [39],

and benchmark both the online phases and the offline phases of all

three variants of our protocols. These variants are implemented us-

ing different MPC back-ends provided by MP-SPDZ, which shows

347

Proceedings on Privacy Enhancing Technologies 2023(2) Lu et al.

that our protocols can be used in most of the existing MPC frame-

works. The results illustrate that the first two variants of our pro-

tocol have great online&offline performances when dealing with

a small number of messages (e.g., less than 10000). We can mix

k = 10000 messages in around 0.58 seconds with 1.9MB commu-

nication. When dealing with a large volume of messages, our last

variant achieves the best performance, which mixes k = 160000

messages in around 27 seconds with 88MB communication per

server. The benchmark shows the offline phase is practical for real-

world applications as well. Therefore, our protocol suits can handle

different MPC frameworks and input volumes flexibly.

Finally, we modify the malicious secure back-end of MP-SPDZ

to improve it from a secure-with-abort version to a robust version,

which can be of independent interest for MPC applications. We test

the performance of our protocols with a robustness guarantee, the

benchmark shows that our protocols achieve robustness with no

additional cost in the best cases, and around 2× more time in the

worst cases.

1.1 Paper Organization

We introduce the related works in Section 2. We present the system

model of our protocols and introduce the background and prelim-

inaries in Section 3. We explain the detailed construction of our

protocols in Section 4. We compare the theoretical complexities of

our protocols with related works in Section 4.7. In Section 5.1, we

show how our protocols are implemented using MP-SPDZ frame-

work and the detailed benchmark data is available in Section 5.2.

Besides, we illustrate the construction and the performance of the

robust version of our protocols in Section 5.4. In Section 6, we

introduce how to apply our protocols to solve more higher-level

applications.

2 RELATED WORKS

The Tor network is a popular tool for anonymous communica-

tion; however, the current low-latency Tor design is significantly

vulnerable to traffic analysis asymptotically [25] as well as empiri-

cally [11, 31, 38].

Mixing networks (mixnets) [18] improve the protection against

traffic analysis through increased latency overhead in the form

of communication over several hops (i.e., indirection) and mixing

messages at one or more honest hops. Over the last four decades,

numerous mix-net inspired protocols [17, 24, 42ś45, 52, 53] have

been proposed that can deter traffic analysis attacks; however, their

high latency overheads of several seconds (at least) are unacceptable

for many applications including browsing, messaging, or video calls.

Moreover, mixnets are inherently non-robust as even a single node

failure/crash can result in messages getting dropped.

For a high level of traffic analysis resistance while maintaining

low latency, dining-cryptographers network (DC-net) [16] and its

successors [14, 33, 41, 54ś57] are much better suited. Using a cryp-

tographic setup/coordination among clients, these schemes offer

provably strong anonymity in a constant number of rounds [26].

However, as the number of clients grows client coordination can

become an Achilles’ heel for these DC-net-based solutions.

It is easy to observe that these DC-net systems are just types of

MPC among the clients. Towards avoiding client coordination and

expensive computation on the client-side, the idea of employing

some MPC servers is getting popular [1, 3, 8, 21, 47]: here, simi-

lar to mixnets, every client is unaware of other clients and only

communicates with the MPC servers. MPC servers perform some

MPC protocols towards making clients’ messages unlinkable to

their identities. Among these MPC-based solutions, we find the

works of AsynchroMix [47], Blinder [1], and Clarion [29] to be the

closest to our work.

AsynchroMix [47] proposes two MPC solutions for anonymous

broadcast. One method is based on the switching network, where

the MPC performs loд(k) iterations of switching networks to sim-

ulate an almost-random permutation for k input messages. The

round complexity of this method isO(loд2(k)) and the communica-

tion complexity isO(kloд2(k)). In their second method (PowerMix),

the messages are encoded into a symmetric equation system, then

the anonymous broadcast can be achieved by solving it. The chal-

lenge for this method is that for any input secret-shared message,

its powers are required by the equation system, and this leads to

O(k3) computation complexity in the online phase. Although the

computation is usually not considered the bottleneck of an MPC

protocol, the benchmark shows that the computation time actually

dominates when k is large. Compared with PowerMix, our method

reduces the computation complexity of the online phase to be at

most O(k2), making it a better choice for a large volume of inputs.

Blinder [1] achieves anonymous broadcast by accumulating

client messages in a large matrix. To achieve that, each client secret

shares a matrix to the servers where all elements are zero but one

position. The non-zero position is used to store the secret-shared

message. The servers add up all the matrices from the clients and

reconstruct the sum matrix to recover the messages. Several opti-

mizations are applied to reduce communication cost and to deal

with collisions when multiple clients choose the same position.

In some sense, they achieve a scalable and efficient online phase

by pushing some of the computation to the client side. Compared

with Blinder, the communication and computation cost of the client

is cheaper in our protocol by an order of O(
√
k). Therefore, our

protocol fits better when clients have limited computation powers.

Besides Blinder, Riposte [21] uses similar approaches of offloading

part of the computation to the client-side. It uses discrete point

functions to help reduce client communication costs and achieves

the same client-side complexity as Blinder.

Eskandarian and Boneh propose a protocol called Clarion [29],

which is communication-efficient to do anonymous broadcast. They

propose constructions for both three-server setting andn-server set-

ting, and the communication cost of their protocol is O(kℓ) where
k is the number of messages and ℓ is the size of the message. Their

protocol has O(n) round complexity in the n-server setting as it is

made up of pairwise share translation. Our protocols and Clarion

provide different trade-offs and fit different scenarios. Theoretically,

our protocol has better round complexity and Clarion has better

computation complexity. Therefore, there are settings where our

protocols perform better and vice versa. Besides, due to the modular

design, our protocols can inherently support stronger security prop-

erties (e.g. censorship-resistance, robustness, and fairness) if built

with robust MPC libraries. For instance, if we build our protocols

using HoneybadgerMPC [47], we will get exactly the same security

348

RPM: Robust Anonymity at Scale Proceedings on Privacy Enhancing Technologies 2023(2)

1. Clients secret-share their
messages to servers.

2. Servers perform MPC
protocols to randomly shuffle

messages.

3. Servers reconstruct the
shuffled messages and

publish them to the Internet.

Internet

Figure 1: Client-server setting for anonymous communica-

tion with MPC shuffling.

properties as Asynchromix. However, it is impossible to do so for

Clarion.

There are also works focusing on specialized applications. Spec-

trum [49] is designed for a broadcasting system where broadcasters

share files anonymously with many subscribers. Subscribers send

dummy files to form cover traffics. The evaluation results illustrate

that Spectrum achieves better performance for scenarios with small

broadcasters and many subscribers. Compared with their settings,

all clients in our protocols are treated as "broadcasters" who can

send messages anonymously.

3 PRELIMINARY

3.1 System Model

We consider a standard client-server MPC setting with a set of n

servers P1, P2, . . . , Pn and a set of k clients c1, c2, . . . , ck (k ≥ 2).

We assume that the servers already have key pairs established to

build private, authenticated channels between each other. Besides,

we assume clients connect to all the servers via TLS.

The whole protocol is divided into three phases as shown in Fig-

ure 1: (1) clients send their messages to servers in a private manner

(via secret sharing). (2) Servers performMPC protocols to randomly

permute the inputs. (3) Servers reconstruct the permuted inputs to

be the output of the protocol. We assume the client messages are the

field elements with the same length, which can be achieved through

padding. Fixed-length messages are essential since otherwise the

message can be easily linked to its sender through the message size.

Similar to existing works [1, 47], we assume servers have agreed on

the set of client messages included in each protocol round, which

can be achieved through any Byzantine agreement protocol.

Since our protocol works across different communication set-

tings, we do not put specific network assumptions such as partial-

synchrony, bounded-synchrony, or asynchrony. Besides, the design

goal of our protocol does not include protection against network-

level attacks (e.g. DoS attacks).

The first variant of our protocol requires the usage of the Shamir

secret sharing scheme or similar error-correcting code based secret

sharing schemes. The second variant of our protocol gets rid of

this restraint and can be applied to any secret-sharing-based MPC

framework.

As for the adversary model, we assume there exists a static

adversary that can corrupt at most t servers and at most k − 2

clients. Our protocols are secure against a malicious adversary

with n ≥ 2t + 1. In practice, our protocols can be implemented

in any secret-sharing-based MPC framework, and the security of

our protocols depends on the malicious secure building blocks of

the underlying MPC frameworks. Besides, We propose verification

checks to guarantee the malicious security of the offline phase.

What’s more, if the underlying MPC framework supports security

properties such as guaranteed output delivery, our protocol should

obtain those properties inherently.

3.2 Goals and Non-Goals

Below we list the goals that our protocols achieve:

• Sender Anonymity: We want our protocol to achieve

sender anonymity for the client message i.e., the ability of

the adversary to figure out which client has sent a specific

output message is no better than random guessing, even if all

but two clients and any minority of servers are compromised.

• Fast online phase: Our protocols lead to very efficient on-

line phases in terms of communication, computation, and

communication rounds, thus being good options for low-

latency applications.

• Light-weighted clients friendly: Our protocols require

small communication and computation from the client-side.

• Scalability: Our protocols can handle a medium volume of

inputs within a short amount of time.

Non-goals.We list the non-goals below:

• Confidentiality: Our protocols do not aim at protecting

the confidentiality of the message content. Therefore, our

protocols should be combined with other methods (e.g. en-

cryption) to achieve confidentiality if it is required.

• Network-layer Attacks: Similar to most existing works,

our protocols are not designed to be resilient to network-

layer attacks (e.g. DoS attacks).

• Hiding Message Volume: Our protocols do not hide the

global volumes of the messages.

3.3 Secret-sharing-based MPC

3.3.1 Shamir Secret Sharing. Shamir secret sharing scheme with

threshold (n, t), where n > t ≥ 0, allows the dealer to share a secret

s ∈ Fp to n parties {P1, . . . , Pn } such that the s is revealed if and

only if t + 1 or more parties combine their shares to reconstruct

the secret value. To share a secret s , the dealer samples a degree-t

polynomial ϕ() such that the constant coefficient of ϕ() is the secret
s , and all other coefficients are set to be random elements. Then the

dealer sends the share ϕ(i) to the party Pi . We denote JsKit as the
secret share of party Pi for the rest of the paper. We may omit the

superscript/subscript of a share when it is clear from the context.

349

Proceedings on Privacy Enhancing Technologies 2023(2) Lu et al.

To reconstruct the secret, parties send their private shares to

each other. When the party gathers the shares from t + 1 parties, it

is sufficient for it to reconstruct the polynomial ϕ() and the secret s
can be computed through s = ϕ(0).

3.3.2 MPC with Shamir Secret Sharing. In this work, we focus on a

client-server setting where clients secret-share their private inputs

to a group of servers, and the servers performMPC protocols collab-

oratively. For the arithmetic-circuit MPC, a computed functionality

can be represented using the addition gates andmultiplication gates.

Shamir secret sharing is additive homomorphic in the sense that

the following equation holds:

Ja + bKt = JaKt + JbKt

Therefore, any addition and the linear combination of the secret

values can be performed locally by applying the same operations

over the shares. However, when it comes to multiplication, the

multiplication of two degree-t polynomials results in degree-2t

polynomials. Thus it cannot be achieved locally and we often follow

the online/offline MPC paradigm here and use Beaver triples [12]

to do the multiplication. As a result, the multiplication becomes an

interactive protocol among servers and requires communication.

When measuring the complexity of an MPC protocol, we usually

think of additions as free and only consider the number/rounds of

multiplications as they are the bottleneck of the protocols in most

cases.

Offline/Online Model. We often separate an MPC protocol into

an input-independent offline phase and an input-dependent online

phase. In the offline phase, servers prepare the input-independent

secret shares such that they can be consumed in the online phase to

make the online phase faster. The offline phase can be run for a long

time before the actual online phase starts, therefore it is allowed that

the offline phase is more costly than the online phase. The starting

point of this work is to properly design the offline phase protocols

and the online phase protocols such that most cryptographical

expensive operations are moved to the offline phase, and the online

phase only requires some basic operations such as reconstructions.

As the offline phase is often more costly than the online phase, a

standard workflow is as follows: Before the online protocol starts,

the servers can run the offline phase in advance, which may take

a long time to finish. After that, the clients send their input to the

server to execute the efficient online phase.

The goal of RPM is to optimize the online phase performance.

As the offline phase is input-independent, the offline phase can be

run early in advance, even days before the actual online phase. This

is especially useful when computations are done regularly but not

continuously. For example, an anonymous broadcasting system can

run the offline phase during the night and run the online phase

during the day once it receives user input. Therefore, it is the online

phase that actually determines the user experience. The users will

not be influenced by a more costly but still practical offline phase.

3.4 Beaver Triple Multiplication [12] for
Scalars and Matrices

To multiply two secret shares JxK and JyK, the servers prepare a pre-
computed triple JaK, JbK, JabK where a and b are random elements.

In the online phase, servers compute and reconstruct (x − a) and
(y − b), then the result is shown as follows:

JxyK = (x − a)(y − b) + (x − a)JbK + (y − b)JaK + JabK

The equation above only involves the linear combination of

secret sharing, and thus can be computed locally. Therefore, the

cost of Beaver Multiplication is two reconstructions in one round.

Beaver’s technique naturally extends to the multiplication of two

secret-sharedmatrices. The only change to the steps is to replace the

single elements with matrices [48]. The communication complexity

of multiplying two k-by-k secret shared matrices is O(k2), because
it requires the reconstructions of two k-by-k matrices. It is more

efficient than simply usingO(k3) beaver multiplications to compute

each cell. In the rest of this paper, we use the extended Beavers idea

when we refer to the multiplication of two secret-shared matrices.

3.5 Robust Secret Sharing Reconstruction

The reconstruction of Shamir Secret sharing could achieve robust-

ness if robust polynomial interpolation is used. In this work, we

use the idea of [47] to provide robust share reconstruction when

it is required. The robust reconstruction requires n ≥ 3t + 1 in a

synchronous setting. We briefly introduce the construction below:

To reconstruct a secret robustly, the parties use the first t + 1

shares to reconstruct a polynomial ϕ, and use the rest of t points

to confirm all points correspond to the same polynomial. If any

inconsistency occurs, the parties run the robust Reed-Solomon

decoding with 3t + 1 shares as the inputs. (If any share is missing,

parties can use random values as the share and it will be treated as

wrong shares and automatically corrected by the robust decoding

algorithm). The procedure is described in Algorithm 1.

Algorithm 1: Robust Shamir share reconstruction

Input :JSK = {Js1K, . . . , JsnK}
Output :s

1 Interpolate a polynomial ϕ using any t + 1 shares.

2 Use another t share to check if they are generated using the

same polynomial.

3 If it is true, output s = ϕ(0).
4 Else, run Reed-Solomon decoding with all the input shares

to reconstruct ϕ‘, and output s = ϕ‘(0).

The reason that the algorithm starts with a non-robust interpola-

tion is that the non-robust interpolation is much cheaper compared

with the robust version. If the non-robust interpolation succeeds,

there is no need to run the expensive robust version. With this

design, if there are no malicious behaviors, the performance of the

robust share reconstruction is the same as the non-robust version.

3.6 Notations

We summarize notations that appear in the rest of the paper here.

We denote JsK as a secret sharing of the secret field element s .

Besides, we use capital letters to represent matrices or vectors (S and

JSK). We denoteOpen(JsK) as the reconstruction of the secret share,

and we useMul(JxK, JyK) to represent the Beaver Multiplication of

350

RPM: Robust Anonymity at Scale Proceedings on Privacy Enhancing Technologies 2023(2)

two secret shares JxK and JyK or two secret-shared matrices/vectors

JX K and JY K. We use Inner-prodcut-and reconstruct(JX K, JY K)
to represent an algorithm that computes the dot product of two

input vectors X and Y and reconstructs the results.

4 USING PERMUTATION MATRICES FOR
ANONYMOUS COMMUNICATION

4.1 Overview of the Variants

We present three variants of our protocol targeting different MPC

frameworks and applications. The first variant is designed for MPC

frameworks with an efficient secure inner product protocol imple-

mented [19, 34, 58] (i.e. each inner product can be evaluated with a

constant number of reconstructions independent of the vector size).

The second variant gets rid of the secure inner product in the online

phase, with a cost of a little more expensive offline phase and one

more round in the online phase. Therefore, the second variant fits

better with MPC frameworks that do not support efficient secure

inner product evaluations. The third variant is designed for a large

number of inputs (e.g. k > 10000), as the offline phases of the first

two variants take a long time when k is large. Besides, Variant 3

has cheaper online computation complexity, which we find is the

bottleneck of the protocols for large k . As a trade-off, the third

variant takes more online communication and rounds.

4.2 Collecting Client Messages

As the clients can be corrupted by a malicious adversary, the mes-

sages they share to the servers may not be valid (n, t) secret sharing.
To solve this problem, we use a similar method used in [47]: servers

can prepare a random share JrK for each input client messagem.

During the input phase, all servers send their shares of r to the

client, such that the client can reconstruct r , and broadcastm + r

to servers, each server then computes their share of the message

JmK = m + r − JrK. Since JrK is guaranteed to be a valid (n, t)
secret sharing, the share of the client input is guaranteed to be well-

formed. The computation and communication required by clients

are both O(n).

4.2.1 Supporting Messages with Large Size. Our protocols can be

easily adapted to handle large messages. If the message is too large

to fit in one single field element, clients can divide the large mes-

sages into pieces with the same length and represent them using

multiple field elements (padding may be required for the last block).

In the online phase, the servers can use the same permutation

matrix P to permute all the message pieces, such that the same

permutation is performed on all client messages.

4.3 Malicious Security

To achieve malicious security, our protocols should be built on sev-

eral malicious secure building blocks. More concretely, we require a

malicious-secure secret sharing scheme [2, 40, 47, 50] to guarantee

the correctness of the secret sharing reconstruction. We also require

malicious-secure share multiplication to guarantee the correctness

of matrix operations and vector operations. A malicious secure

inner product protocol [2, 7] is required in one of our variants. We

follow a modular design such that any building blocks achieving

malicious security can fit our protocols. Besides, our protocol can

also benefit from future building blocks with better efficiency in a

plug-and-play manner.

4.4 The First Variant

4.4.1 Offline Phase. The goal of the offline phase is to generate a

random permutation matrix such that the adversary has no infor-

mation about the permutation. To achieve that, we ask t + 1 servers

to generate a random permutation matrix each and secret-share

them to all parties. Then all parties multiply these shared matri-

ces together to get the final permutation matrix. Since there is at

least one matrix provided by the honest server, the adversary has

no knowledge about the final combined permutation. Note that

this step requires the multiplication of t + 1 matrices, so our of-

fline phase is more suitable to the settings where the number of

servers is small. Besides, for small k , we can use existing methods

to efficiently evaluate the multiplication of multiple matrices such

as [46].

In the malicious setting, we also need to guarantee that the matri-

ces shared by servers are indeed permutation matrices. Therefore,

the following two checks have to be performed: (1) the elements of

the matrix are either zero or one. (2) The weight of each row and

each column is exactly one (i.e. Each row only has one position to

be one, and all other positions are zero.). To finish these checks,

we can use a linear sketch for the language of vectors of hamming

weight one [1, 15, 30]. To verify a vector w = (w1, . . . ,wk), the
sketch is represented by (∑k

i=1wi · ri)2 −m(
∑k
i=1wir

2
i) where ri

are public random values andm is the value in the single non-zero

entry (in our casem = 1). If the vector w has a hamming weight

greater than one, then the sketch outputs a non-zero value with

probability 1
|F | , where |F | is the size of the ring or field. We can

apply this sketch to each of the permutation matrices and both

properties can be properly verified. The cost of this check is cheap

since each sketch only includes one secret sharing multiplication.

The offline phase is summarized in Algorithm 2.

Algorithm 2: The offline phase of Variant 1

1 for i ← 1 to t + 1 do

2 Server Pi generates a k-by-k permutation matrixMi and

secret-share it to all servers

3 for i ← 1 to k do

4 All servers perform sketch checks mentioned in

Section 4.4.1 on the i-th row and i-th column of

JMi K.
5 If any check fails, abort.

6 All Servers multiply and compute

JPK = JM1KJM2K . . . JMt+1K
7 Output JPK.

4.4.2 Online Phase. In the online phase, we can achieve permu-

tation by simply multiplying the permutation matrix M and the

input vector X . Considering X is a vector, this is essentially k dot

products and they can be computed in parallel. The protocol is

summarized in Algorithm 3.

351

Proceedings on Privacy Enhancing Technologies 2023(2) Lu et al.

There are existing works [7, 19, 58] showing how to do dot prod-

uct efficiently. As an example, we show how degree-2t polynomial

interpolation can be used to efficiently compute and reconstruct

the inner product of two secret shared vectors X = {x1, x2, . . . , xk }
and Y = {y1,y2, . . . ,yk }:

In the online phase, parties locally compute Jxiyi K2t = Jxi Kt ·
Jyi Kt for all i , then they compute and reconstruct the inner product

result Z =
∑k
i=1 Jxiyi K2t by reconstructing a degree-2t polynomial.

If we use the protocol above to compute all the inner products in

parallel, the round complexity of our online phase is only one. The

communication complexity is O(k) as there are k reconstructions

needed in total.

However, the inner product protocol introduced above has some

constraints, therefore not all MPC frameworks support it naturally.

For instance, this protocol only works with Shamir-secret sharing

(or similar error-correcting-code-based secret sharing schemes),

and does not work on schemes such as additive secret sharing or

replicated secret sharing. Besides, as degree-2t polynomial recon-

struction is required, the protocol may need more portion of parties

to be honest (e.g. n > 3t + 1). To mitigate this problem, we design

another variant of our protocol Variant 2, where the secure inner

product is not required in the online phase.

Algorithm 3: The online phase of Variant 1 (P[i] denotes
the i-th row of the matrix P)

Input :JX K = {Jx1K, . . . , Jxk K}
Output :Y

Pre-computation :Permutation matrix JPK
1 Y = {}

2 for i ← 1 to k do

3 Y[i] = Inner-product-and-reconstruct(JP[i]K, JX K)

4 Output Y .

4.5 The Second Variant

The design goal of this variant of our protocol is to get rid of

the inner product in the online phase. To achieve that, we add an

additional step in the offline phase such that the inner product

computation is shifted into the offline phase. What’s left for the

online phase is simply some secret share reconstructions. The key

observation of this protocol is an equation PX = P(X + R) − PR,
where P is the permutation matrix, X is the input message vector,

and R is a vector of random shares. We leverage R as a mask vector

such that we can safely reconstruct X + R in the online phase, and

PR can be prepared in the offline phase as it is independent of the

input X . Finally, the permutation result PX can be written as a

linear combination of the secret shares above.

4.5.1 Offline Phase. The first part of the offline phase is still to

generate a shared permutation matrix, and the steps are the same as

Variant 1. After that, all parties collaboratively generate k random

shares JRK = {Jr1K, . . . , Jrk K}, then they compute JY K = JPKJRK
through k inner products. Note that a more expensive inner prod-

uct can be used here as it happens in the offline phase, and an

inner product protocol with O(k) reconstructions per random r

is perfectly fine because it will not explode the complexity of the

offline phase anyway, the offline phase complexity is still bounded

by the generation of the permutation matrix. We can think of this

approach as shifting the inner product computation from the on-

line phase to the offline phase with the help of some randomness

R. Finally, all parties take JPK, JRK, and JPRK as the output of the
offline phase. The protocol is summarized in Algorithm 4.

Algorithm 4: The offline phase of Variant 2

1 for i ← 1 to t + 1 do

2 Server Pi generates a k-by-k permutation matrixMi and

secret-share it to all servers

3 for i ← 1 to k do

4 All servers perform sketch checks mentioned in

Section 4.4.1 on the i-th row and i-th column of

JMi K.
5 If any check fails, abort.

6 All Servers multiply and compute

JPK = JM1KJM2K . . . JMt+1K
7 All servers generate k random shares

JRK = {Jr1K, Jr2K, . . . , Jrk K}.
8 All servers compute JPRK = Mul(JPK, JRK).
9 Output JPK, JPRK, JRK.

Online Phase. Given the input messages vector X = {x1, . . . , xk }
and the offline phase output, all parties compute and reconstruct

X + R in the first round. Then they can locally compute the share

of the output as JPX K = JPK(X + R) − JPRK, and reconstruct PX in

the second round. As we mentioned, the secure inner product is no

longer needed in this variant, and the cost is k more reconstructions

and one more round. The protocol is summarized in Algorithm 5.

Algorithm 5: The online phase of Variant 2

Input :JX K = {Jx1K, . . . , Jxk K}
Output :Y

Pre-computation :JPK, JRK, JPRK
1 JX + RK = JX K + JRK

2 X + R = Open(JX + RK)
3 JY K = JPK · (X + R) − JPRK

4 Y = Open(JY K)

4.6 The Third Variant

The first two variants illustrate great performance when dealing

with a small volume of inputs. However, the offline phase of the

first two variants requires preparing k-by-k permutation matrices,

thus the size of the matrices increases quadratically with k , and it

becomes too huge to be used in practice for large k .

To solve this problem, we propose our third variant that per-

forms much faster for larger k in both the online phase and the

offline phase. The idea is based on the permutation network[3, 36].

In [36], Hastad analyzed the efficiency of random permutation us-

ing a square network. A square network for k inputs consists of q

352

RPM: Robust Anonymity at Scale Proceedings on Privacy Enhancing Technologies 2023(2)

layers, where each layer consists of
√
k of permutation nodes. Each

permutation node takes
√
k inputs and randomly permutes them,

then sends the outputs to the next layers in a butterfly network

fashion. We present an example of a square network in Figure 2.

The study of Hastad illustrates that this network can achieve a

nearly random permutation after only q ∈ O(1) iterations. (e.g. the
result shows that after q = 15 layers, the outputs are close to a

random permutation of inputs)

Figure 2: An illustrative example of a square network with

k = 9. The network consists of q = 4 layers, where each layer

has
√
k = 3 permutation nodes, represented by square blocks.

Each permutation node takes
√
k = 3messages as inputs, ran-

domly permute and output them. In Variant 3, we can initial-

ize each permutation node using either Variant 1 or Variant 2.

All permutation nodes in the same layer can be executed in

parallel.

Variant 3 implements a square network by realizing each per-

mutation node with either Variant 1 or Variant 2. This significantly

reduces the computation cost of the offline phase. In Variant 1 and

Variant 2, the offline phase has to prepare a k-by-k permutation

matrix. In Variant 3, the offline phase generates q
√
k matrices of

size
√
k-by-

√
k . Considering the matrix multiplication is required

in the offline phase, this reduces the computation complexity of

the offline phase from O(k3) to O(q
√
k · t
√
k
3) = O(k2). Besides,

the computation complexity of the online phase is also reduced

by a factor of
√
k because the vector size of each dot product is

significantly reduced.

As a trade-off, the online phase requires higher but still constant

rounds to finish. The parameter q is flexible and can be changed

based on the time available for the offline phase and the anonymity

strength. We pick q = 15 in our experiments for a strong anonymity

guarantee.

4.7 Cost Analysis and Comparisons with
Related Works

ForVariant 1, the offline phase requires t+1 servers to each generate

a k-by-k permutation matrix, and multiply them together. This

requires O(nk3) local computation, O(logn) rounds and O(nk2)
communication. The verification check for the malicious security

takes one round and O(k) communication. As for the online phase,

since it is k dot products in parallel, the overall communication is

O(k) and the round complexity is one.

For Variant 2, the offline phase cost is the sum of the first variant

offline phase cost and k dot product protocol. Consider a dot prod-

uct protocol where parties simply use beaver triples to compute

inner products, the communication complexity for k dot product

of length-k vectors is O(k2). Therefore, the overall offline phase

communication cost isO(nk2+k2) = O(nk2). The online phase only
consists of two rounds, where each round reconstructs k secrets.

For Variant 3, the offline phase requires O(nk2) local computa-

tion, O(logn) rounds and O(nk1.5) communication. We then ex-

plain why the online phase is also the most efficient for large k : Our

benchmark illustrates that the online phase is heavily bottlenecked

by the local computation when k is large, which takes more than

95% of the overall running time. For the first two variants, the com-

putation complexity is O(k2) because both variants require k dot

products between size-k vectors. For Variant 3, each layer includes√
k permutation nodes, with each node doing

√
k dot products be-

tween size-
√
k vectors. Since we have a constant number of layers,

the overall computation complexity isO(k1.5). Therefore, Variant 3
achieves the best performance on the main bottleneck when k is

large. We highlight that when k is small, the first two variants

could be better choices since the online phase is bottlenecked by

the communication and rounds in those cases.

We summarize the theoretical online complexity of our work and

related works in Table 1, the comparison shows that our protocol

achieves the best server-server performance in the online phase,

meanwhile keeping the client-server cost minimum. As for the of-

fline phase cost, we do not provide a similar table as some protocols

are unclear about their offline phase costs. Here we just compare

the offline phase cost between our protocols and the PowerMix [47],

which has the closest online phase communication and rounds. The

communication cost of the Powermix offline phase is O(k2) and
the round complexity isO(logk). Meanwhile, our first two variants

have offline communication cost O(nk2) in O(logn) rounds. Vari-
ant 3 has the cheapest offline phase computation cost by a factor

of O(
√
k). We can observe the trade-off here: we achieve a better

online performance than Powermix by pushing more computations

to the offline phase. What’s more, when the number of servers n is

small such that it can be treated as a small constant, the offline cost

of our protocol is in the same order of magnitude as PowerMix. In

real-world applications (especially in MPC-as-a-service settings), a

small number of servers are usually preferred considering the cost

of setting up these expensive high-end machines.

4.8 Security Analysis

In what follows, we informally define the security properties we

expect from our protocols:

Correctness: At the end of a successful run of our protocol,

all servers output a set of plaintext messages, which is a random

permutation of all the input client messages.

Sender Anonymity: The ability of the adversary to figure out

which client has sent a specific output message is no better than

random guessing, even if all but two clients and any minority of

servers are compromised.

353

Proceedings on Privacy Enhancing Technologies 2023(2) Lu et al.

Table 1: Comparison of the Online Phase Performance For Recent Anonymous Communication Protocols (n is the number of

servers, where t of them can be corrupted. k is the number of client messages. q is the depth of the square network, which is a

small constant. The server-server communication is measured by the number of secret sharing reconstructions required. The

client-server communication is measured by the number of messages sent by a client to a single server.)

Client-server

communication

Client Com-

putation

Server-server

Communication

Server Com-

putation

Server

Rounds

Resilience Robustness

Capability

McMix [3] O(1) O(1) O(αk logk)∗ O(αk logk)∗ O(logk) n = 3, t = 1 ✗

Switching Net-

work [47]

O(1) O(n) O(k log2 k) O(k log2 k) log2 k n ≥ 3t + 1 ✓

PowerMix [47] O(1) O(n) O(k) O(k3) 2 n ≥ 3t + 1 ✓

Blinder [1] O(
√
k) O(n ·

√
k) O(k) O(k2) O(1) n ≥ 4t + 1 ✓

Clarion [29] O(1) O(n) O(k) O(k) O(n) n > t ✗

Variant 1 O(1) O(n) k O(k2) 1 n ≥ 2t + 1∗ ✓

Variant 2 O(1) O(n) 2k O(k2) 2 n ≥ 2t + 1∗ ✓

Variant 3 O(1) O(n) O(k) O(k1.5) q n ≥ 2t + 1∗ ✓

* n ≥ 2t + 1 is the default model setting for our malicious secure protocols (especially for Variant 1). Variant 2 can support n > t if built

in dishonest-majority MPC frameworks. Meanwhile, more restrictions might be needed to support more security properties (e.g.,

n ≥ 3t + 1 for robustness).
* In McMix [3], α refers to the number of reconstructions needed for a single secure comparison protocol. McMix requires O(k logk)
secure comparisons evaluated in O(logk) rounds.

The correctness of the protocol is trivial from the use of the

permutation matrix. As long as the permutation matrix P is valid,

the computation result is guaranteed to be a permutation of input

vectors. The validity of the permutation matrix is verified in our

offline phase through linear sketch checks in the malicious setting.

For sender anonymity, we can prove that the transcript of the ad-

versary only includes unrelated random values, therefore it cannot

differentiate any input messages.

We first provide the general idea here and put the complete proof

in Section 4.9. The intuition is that the transcript of our protocol

includes the offline data, the reconstructed X + R in Variant 2, and

the final output. The offline data are all in the form of secret shares,

and they are independent of the client inputs, thus the adversary

has no information about either the plaintext offline data or the

client inputs. The reconstructed X + R is also random because R

contains elements picked uniformly random from the field. What’s

more, the randomness of the offline phase and the randomness of

X + R are independent of each other. To conclude, the transcript

of our online protocol only contains unrelated random elements,

therefore they are indistinguishable from one another.

For Variant 3, the protocol only invokes our first two variants

multiple times, and the values outside of permutation nodes are all

secret-shared. Therefore, the privacy of the third variant is reduced

to the privacy of the first two variants.

We then discuss the security against a malicious adversary. In

the offline phase, the adversary can submit an arbitrary matrix

as permutation matrices, however, this will be captured by the

sketch check. The adversary has no information about the combined

permutation matrix because at least one random permutation is

provided by an honest party. Therefore, the adversary cannot alter

the protocols in the offline phase without being captured. In the

online phase, our protocol simply invokes malicious secure building

blocks, thus the security is reduced to the security of those building

blocks. In Variant 1, the online phase only includes k malicious-

secure inner product. In Variant 2, the online phase includes 2k

malicious-secure share reconstruction.

4.9 Security Proof

We first provide the ideal functionality that our protocols achieve,

then we present a simulator-based proof to prove the security.

The multiparty random permutation ideal functionality is inspired

by Clarion [29] and we modify it to fit our protocols better. We

model the robustness as an optional security property, and the ideal

functionality does not include it.

Definition 4.1. (Ideal Functionality of Secure Random Permuta-

tion) A secure random permutation functionality F interact with n

servers P1, P2, . . . , Pn and k ′ clients C1,C2, . . . ,Ck ′ (k ≤ k ′, where
k is the number of messages mixed in each run). We assume the

existence of an adversary that can control at most k − 2 clients and
t < n

2 servers. Any server controlled by the adversary could send

an abort to F at any time, which leads to a protocol abort.

F initiates an empty array T and waits for messages from clients.

Any message received will be added to T. After collecting k inputs

M = {m1,m2, . . . ,mk }, F secret share the vector M with (n, t)
secret sharing, and send the shares to all the servers, therefore the

adversary will have t shares for each input message. Next, F runs

the permutation step as follows: F samples a random permutation π

and computeM ′ = π (M). Then F sendsM ′ together with the secret

sharing ofM ′ to the adversary, the adversary could respond with

either finish or abort. If the response is finish, F sendsM ′ to all

the servers and outputsM ′. If the response is abort, the protocol
aborts.

354

RPM: Robust Anonymity at Scale Proceedings on Privacy Enhancing Technologies 2023(2)

Theorem 1. Assuming the existence of a malicious secure MPC

framework, especially, let Open be the malicious secure secret

sharing reconstruction, let DotProduct be the malicious secure

inner product, RPM realizes the ideal functionality F defined in

Definition 4.1.

Proof Sketch. We build up a simulator S to simulate the view

of the adversary. Without loss of generality, we assume the worst

case where the adversary controls all but two honest clients, and t

servers P1, P2, · · · , Pt .
The first step of the ideal functionality is to collect input mes-

sages from clients in the form of secret sharing. There are k input

messages in total. For each message, the adversary has access to

t shares as it controls t malicious servers. To simulate the view of

the adversary, for each input message in M , the simulator S can

generate t random values as t shares. This is identical to the ad-

versary’s view because any t shares leak no information about the

secret message.

Next, F perform the random permutation to the input message

vectorM . Here the view of the adversary includes the intermediate

communications when F executes the shuffling, and we show how

to simulate them with S below:

In Variant 1, the mixing steps only include doing k secure inner

products. Therefore, the malicious security of our protocol is re-

duced to the security of DotProduct. In Variant 2, the mixing steps

require the reconstruction of JM + RK. As R is random, M + R is

also uniformly random. Therefore S can directly generate k random

values and send them to all the servers as the simulation ofM + R.

The malicious security of the reconstruction step depends on the

malicious secure building block Open. For Variant 3, the mixing

step is a combination of multiple instances of Variant 1 or Variant 2.

The output of a permutation node is directly taken as the input of

the permutation nodes in the next layer, no more information is

leaked outside of permutation nodes. Therefore S can simulate the

view of the adversary using the strategy the methods above.

Finally, the parties reconstruct the output messages M ′ through
secret sharing reconstruction. The view of the adversary includes

the final output messagesM ′, and the corresponding n secret shares

of each message. For each opened messagem, The simulator S has

access tom and t shares as those t shares are stored in t malicious

servers. The goal of S is to generate the rest n − t shares for each
messagem, which can be done depending on the underlying secret

sharing schemes. We take Shamir secret sharing as an example. For

each message, S has t points and the secret s , which can also be

treated as a point (0, s). S can use these t + 1 points to uniquely

decide a degree-t polynomial, and use this polynomial to compute

the rest of the shares.

After the reconstruction, the adversary can decide to continue

or abort. If the adversary decides to continue, the protocol outputs

M ′ and finishes. □

5 IMPLEMENTATION AND EVALUATION

5.1 Implementation

There are currently many MPC libraries [34, 39, 47, 58] avail-

able with different trade-offs. Among them, we choose to use MP-

SPDZ [39] to implement all three variants of our protocols, because

MP-SPDZ is a collection of multiple MPC back-ends, and it allows

us to pick proper back-ends for different variants to get the best

performances. Besides, it helps us to illustrate that our protocols

can suit almost all the MPC back end because of the fact that only

the basic building blocks are needed. The code is available in a

public GitHub repo2.

AsVariant 1 requires a fast malicious secure dot product protocol,

the number of the back-ends satisfying the requirements is limited.

Among them, we find the SY-SPDZ back-end to be the one with

the best performance, thus choosing it for the benchmark. For

Variant 2, the back-end we use is malicious-shamir-party of MP-

SPDZ, as an efficient inner product is not required. For Variant 3,

we built up each permutation node using Variant 2, thus using

the same back-end. In general, we are interested to answer how

fast our online protocol can be, as the protocols target real-time

applications where the latency is the most significant. Therefore,

in the experiments we mainly report the online running time and

the online communication time. To simulate the real-world use

cases, we run the experiment using Amazon AWS. Besides, we also

conduct experiments to measure the cost of the offline phase to

confirm it is practical.

The code is written in MP-SPDZ customized language. Variant 1

directly invokes the inner product protocols k times in parallel, then

the results are reconstructed in the second round. Note that in our

original protocol, the inner product and the reconstruction could

be compressed into one single round, however, our implementation

requires two rounds to fit the framework more easily. Variant 2

invokes the reconstruction protocols in two rounds, where each

round reconstructs k secret shares. We notice that because of the

limitation of the framework, it actually takes more than 2 rounds to

finish the reconstruction when k is large. Besides, multi-threading

is used with up to 32 threads when applicable to speed up the local

computation.

5.2 Online Phase Evaluation

We run the benchmark on AWS EC2 clusters in a three-party

malicious-secure setting. The AWS instance we use is c5.9xlarge

with 32 cores and 72GB RAM. All three machines are in the same

region (US.East).

Variant 1. First, we present the benchmark result of Variant 1. The

result is available in Table 2. It shows that our protocol can mix k =

10000messages in around 1.5 seconds and 1.483MB communication.

The communication cost increases linearly with the number of

clients, which is consistent with our theoretical complexity. We

are also interested in the bottleneck of this protocol, so we also

implemented the non-multi-threading version of the protocol, its

benchmark shows the local computation dominates over 95% of the

overall running time. Therefore, the multi-threading significantly

improves the performance of our protocols as we confirm local

computation is the bottleneck especially when k is large.

Variant 2. The benchmark numbers of Variant 2 are available in

Table 3. Interestingly, the performance of Variant 2 is better than

Variant 1, although theoretically Variant 1 should perform better.

We think the reason is that the MPC back-end of Variant 2 is faster

than Variant 1, although it does not support a fast inner product.

2the link: https://github.com/lu562/MP-SPDZ

355

Proceedings on Privacy Enhancing Technologies 2023(2) Lu et al.

Table 2: Performance of the online phase of Variant 1 in the

three-party setting. (k refers to the number of clients. We as-

sume each client sends a 16 byte field element as themessage

in each execution. Communication is measured by the total

MB sent per party)

k Online Time (s) Online Communication(MB)

1000 0.05 0.961

3000 0.132 1.077

5000 0.360 1.193

7000 0.689 1.309

10000 1.485 1.483

As a result, we also use Variant 2 as the building blocks to conduct

the benchmark of Variant 3.

Table 3: Performance of the online phase of Variant 2 in the

three-party setting. (k refers to the number of clients. mes-

sage size is 16 bytes. Communication is measured by the to-

tal MB sent by all parties)

k Online Time (s) Online Communication(MB)

1000 0.02 0.193

3000 0.066 0.577

5000 0.155 0.960

7000 0.288 1.345

10000 0.580 1.921

Variant 3. For Variant 3, we implement the square network with

q = 15 layers and each permutation node is initialized by Variant 2.

The benchmark is available in Table 4. The result shows that we

can permute k = 90000 messages in around 12 seconds with 46MB

communication.

Table 4: Performance of the online phase of Variant 3 in the

three-party setting. (k refers to the number of clients. We as-

sume each client sends a 16 byte field element as themessage

in each execution. Communication is measured by the total

MB sent per party)

k Online Time (s) Online Communication(MB)

10000 0.56 5.12

40000 3.97 20.48

90000 12.68 46.08

160000 27.69 87.92

Performance with More Servers. We take Variant 3 as an exam-

ple and run it with k = 10000 for a different number of servers.

The results are available in Table 5. We only see a slight increase

in online running time when increasing the number of servers.

The reason is that our protocols are mostly bottlenecked by the

local computation (the local inner product computation), which is

independent of the number of servers.

Table 5: Online Performance of Variant 3 with more servers

(k = 10000 for all experiments, the hardware settings are the

same as the experiments above.)

n Online Time (s) Online Communication(MB)

3 0.56 5.12

5 0.58 10.2

7 0.64 15.3

5.3 Offline Phase Benchmark

To illustrate the offline phase are practical, we run the offline phases

of all three variants and record their performance in this section.

For the first two variants, the offline phase is bottleneck by an

k-by-k matrix operation. The result shows that we can run the

offline phase of Variant 1 for k = 1000 in 3.9 seconds with 32MB

communication. With the increase of k , the offline time increases

significantly, therefore we recommend the users to use Variant 3 for

large k . The offline phase of Variant 2 has almost the same time and

communication cost because they are both computational-bounded

by the generation of the permutation matrix.

Table 6: Performance of the offline phase of Variant 1 in the

three-party setting. (k refers to the number of clients. Com-

munication is measured by the total MB sent per party)

k Offline Time (s) Online Communication(MB)

1000 5.1 32

3000 126 288

5000 615 800

7000 1832 1568

10000 5767 3200

For Variant 3, the offline phase is responsible to do q
√
k matrix

multiplications, with matrix size
√
k-by-

√
k . We use multi-threading

to performmultiple matrix multiplications simultaneously, but each

matrix multiplication itself is not optimized by parallelism. we

record the offline phase performance in Table 7. The benchmark

shows that the offline phase ofk = 90000 only takes about 7minutes.

As for the bottleneck, we observe that at least for k up to 90000,

the communication and the computation both take a significant

portion of the time so they are both the bottleneck. We note that

the communication cost of this offline phase is large compared with

the first two variants.

Table 7: Offline phase benchmark forVariant 3. (k is the num-

ber of clients, communication is measured by the total MB

sent per server)

k Offline Time (s) Offline Communication(MB)

10000 5.741 480

40000 89.08 3840

90000 448.82 12960

356

RPM: Robust Anonymity at Scale Proceedings on Privacy Enhancing Technologies 2023(2)

5.4 Towards Robustness

Our proposed protocols can support more security properties if

built in proper MPC building blocks. As an illustrative example, we

show how to achieve a robust online phase for our protocols in a

synchronous setting.

Protocol Consturction. As mentioned in Section 4, the online

phase of Variant 2 and Variant 3 only requires secure secret sharing

reconstruction as the MPC building block. Therefore, we follow the

ideas of [47] and construct a robust Shamir secret-sharing recon-

struction using Reed-Solomon decoding [32]. We require n ≥ 3t + 1

to guarantee that a sufficient number of shares are available as the

input of the robust decoding algorithm. Any wrong shares sent

by the malicious parties will be corrected by robust decoding. In

a synchronous setting, if malicious parties refuse to send shares,

they will be caught by the honest online parties, and honest online

parties can use arbitrary shares as malicious parties’ shares, and

treat them as the "wrong shares".

We implement this idea using MP-SPDZ with the "malicious-

shamir-party" back-end. The original back-end achieves secure-

with-abort sharing reconstruction in a n ≥ 2t + 1 setting. The

party will use the first t + 1 shares to reconstruct a polynomial

and use the rest t points to confirm all points correspond to the

same polynomial. If any inconsistency occurs, the protocol will

abort. To achieve robustness, we change the model to be n ≥ 3t + 1

and replace its share reconstruction with a robust one. The Reed-

Solomon decoding algorithm we choose is from [32]. With this

design, the share reconstruction will have the same performance

as the non-robust version if there are no malicious behaviors. In

most scenarios, the probability that malicious behaviors happen is

low, therefore this design is beneficial to the overall performance.

Evaluation of the Robust Variant 3. We test the performance

of the robust versions of our protocols in the AWS cluster, the

hardware, and network setting are the same as in the rest of the

experiments. The only difference is that we use n = 4, t = 1 to fulfill

the requirement of robust MPC. In best cases, the performance is

the same as the non-robust version. To illustrate the worst case, we

conduct an experiment where we trigger the malicious behaviors

in every share reconstruction by forcing one party to send 0 all

the time as its shares. We build up the robust implementation of

Variant 3 by using Variant 2 as the building block, and the bench-

mark result is available in Table 8. In worst cases, the performance

is approximately 2× more than the non-robust version.

Table 8: Online phase performance of the robust Variant 3 in

(n = 4, t = 1) setting. For data in this table, We trigger the

malicious behavior by always forcing one party to send the

wrong shares to simulate the worst case.

k Online Time (s)

10000 1.75

40000 8.62

90000 24.05

160000 48.14

5.5 Performance Comparison

We present a comparison to PowerMix [47], Blinder [1], and Clar-

ion [29] as they share the closest theoretical complexity with ours.

In Powermix, it takes around 140 seconds to mix k = 1000 mes-

sages, while our protocol (Variant 2) takes around 0.02 seconds. The

main reason that we outperform Powermix is the online computa-

tion complexity (O(k3) vs O(k2)), and we also confirm that online

computation is the main bottleneck of the whole protocol.

Blinder’s benchmark is based on five MPC parties as they require

N ≥ 4t + 1, and the closest test case we can find is k = 100000, with

message size being 160B. Our case is k = 100000 and the message

size is 16B, ten times smaller than Blinder’s test case. Blinder’s

non-robust test case takes around 8 minutes to finish in their CPU

version and around 40 seconds in GPU version. Our protocol only

implements CPU version and it takes around 14 seconds to finish.

As mentioned earlier, we can support larger messages by re-running

the protocol for all message pieces using the same permutation ma-

trices, so we can simply multiply our performance numbers with

10 for a fair comparison. With the 10× factor incorporated, we

outperform the blinder CPU version protocol by around 3.5×, and
their GPU version is better than ours. We expect a similar perfor-

mance gain if our protocol can be implemented in GPU version as

most of the local computation can be done in parallel. We will take

it as one of the future works. The comparison above is based on

the non-robust versions of both works. If we take the robustness

into the picture, our protocols outperform Blinder by a factor of

1.7× to 3.5×, depending on the frequency of malicious behaviors.

What’s more, the main difference between our protocol and Blinder

protocol is the client cost, the computation and communication

cost of our protocol is O(1) while Blinder’s client cost is O(
√
k).

For Clarion [29], we realize that it outperforms our protocols

when it comes to a large volume of inputs (e.g. k ≥ 105). How-

ever, Clarion cannot support security properties like robustness.

Therefore both works have their own advantages and use cases.

6 APPLICATIONS OF RPM

We so far focused on using RPM to achieve anonymous broad-

cast. Below we show some higher-level applications with RPM as

building blocks.

6.1 Two Way Communication

First, we show how to extend our protocols to support two-way

communication, which allows the receivers to reply to the sender’s

messages anonymously. We notice that this feature is similar to

anonymous messaging [1, 3, 29], where senders and receivers con-

duct private conversations such that the adversary has no informa-

tion about their identities.

Inspired by [18], our two-way communication is split into two

parts: In the first part, the sender sends its message anonymously.

In the second part, the receiver recognizes the message from the

sender and sends the reply message back to the sender. We can

achieve the first part using any variant of our protocols, such that

the output messages Y = π (X) is a random permutation π of the

input messages X . To help the receivers recognize the messages,

357

Proceedings on Privacy Enhancing Technologies 2023(2) Lu et al.

RPM
with permutation matrix M

message 1tag1

message 2tag2

message 5tag5

message 3tag3

message 4tag4

messagetag3

messagetag5

message tag2

message tag1

message tag4

First Epoch Second Epoch

RPM

with permutation matrix M-1

messagetag3

messagetag5

message tag2

message tag1

message tag4

messagetag3

messagetag5

message tag2

message tag1

message tag4

(1) Sender 1's message is prefixed with tag 1, and the message
becomes the third message after the permutation.

(2) Receiver 1 realize the third message comes from sender 1 by checking

tags, thus put the reply message as the third input message of the second

round of RandP, which inverse the permutation of the first epoch

(3) Servers will send shares of the first output of RPM to sender 1, such that

sender 1 can reconstruct the reply message from receiver 1.

Figure 3: An example of two-way communication. The example includes five participating clients, and we mark the protocol

flow for the first sender (denoted as sender 1) in red. Sender 1 and the corresponding receiver agree with a tag (tag1 in the

figure) before the protocol.

senders and receivers agree on some tags offline3, such that these

tags can be prefixed to the sender’s messages, and the receivers can

recognize the messages through the tags. As for the second part,

the key observation is that the permutation we perform in the first

part can be reversed through the inverse permutation π−1, which
is available by computing the inverse of the permutation matrix.

Therefore, the receivers can put their reply messages in the same

position as the sender message, then the servers do a second round

of mixing protocols using the inverse of the permutation matrix

π . Instead of reconstructing the permutation outputs publicly, the

servers send their shares to the designated senders such that the

senders can reconstruct the reply messages privately. In this way,

the adversary has no information about the output of the second

round of mixing, therefore cannot build any link between the sender

messages and the reply messages. As for the computation of the

inverse of a permutation matrix, we notice that it can be achieved

by simply computing the transpose because it is an orthogonal

matrix. The computation of the transpose is just a relocation of

matrix elements and therefore is a local computation. An example

of two-way communication is shown in Figure 3.

If the application also requires hiding the content of the sender

messages, some extra steps should be deployed on the sender side

(e.g., senders can encrypt their messages except the tags using sym-

metric key encryption, share the key with the receiver offline, then

send the encrypted messages to our protocols). In this case, our

protocol achieves the same functionality as anonymous messag-

ing [1, 3].

Since the design is simply two runs of our secure mixing pro-

tocols, it is secure against malicious servers naturally. As for the

malicious clients, the worst case is that he/she can reply to a mes-

sage not belonging to him/her. To avoid it, we require the sender

and the receiver also agree on some randomness offline (e.g., a

3This step is out of the scope of this paper. Establishing shared secrets is a well-studied
problem and a lot of prior works could be used to achieve it.

common string), such that the sender could hash the randomness,

and put the hash of the randomness as the tag. The servers allow

a receiver to reply to the message only if he/she can provide the

common randomness that matches the hash value.

6.2 Secure Sorting

The secure sorting takes private inputs from k clients, and outputs

the sorted inputs without revealing their ownership. There are

in general two types of sorting algorithms. The first kind is data-

dependent sorting, where the input decides the execution path of

the algorithm. A good example is the quicksort, where the choice

of pivot decides the number of recursions. Therefore, the execution

path (e.g. execution time) leaks information about the input, and

most existing works choose to implement the second type of sorting

algorithm so-called oblivious sorting [9, 10, 51]. However, to the best

of our knowledge, themost practical oblivious sorting is achieved by

sorting networks [10] withO(k log2 k) communication inO(log2 k)
rounds.

Recently, Hamada et, al [35] propose to use data-dependent al-

gorithms in an oblivious fashion to solve the sorting problem. The

idea is that parties can perform a secure random shuffle to the input,

reconstruct the inputs, then compute data-dependent algorithms

locally with the reconstructed input. With this idea, the secure sort-

ing problem is reduced to a secure random shuffle, which can be

achieved through our random permutation protocol. By applying

our protocol there, secure sorting can be achieved by only O(k)
communication in one or two rounds.

Secure sorting itself is a vital build block of various high-level ap-

plications such as secure auctions [5, 13], combinatorial graph prob-

lems [6], and network flow problems [4]. Therefore, our protocols

can be beneficial to much more applications than just anonymous

communication.

358

RPM: Robust Anonymity at Scale Proceedings on Privacy Enhancing Technologies 2023(2)

7 CONCLUSION

In this work, we build up protocols for efficient random permu-

tation, and use them to achieve anonymous communication by

randomly permuting the messages. We perform three variants of

our protocols, each targeting different MPC frameworks and real-

world applications. The benchmark illustrates that our protocols

are efficient in both the online phase and the offline phase, besides,

the client cost of our protocol is the lowest among all existing

works, which makes our protocols friendly to clients with limited

networks and computation power. Finally, as we employ MPC in

a generic fashion, our performance will improve further as better

MPC protocols and libraries get developed in the near future.

For future works, we find the implementation of our work has

great potential to be improved. First, the use of GPU can signifi-

cantly improve the performance of our protocols as the local com-

putation in our protocols is highly parallelizable. Besides, we want

to explore the possibility to make the offline phase more efficient.

Considering the permutation matrix consists of only zeros and ones,

our offline phase could potentially be more efficient using binary

circuits, and it could finally produce a mixed-circuit solution to

make both the offline phase and the online phase efficient.

ACKNOWLEDGMENTS

This work has been partially supported by the National Science

Foundation (NSF) under grant CNS-1846316. We thank Marcel

Keller for the detailed guidance about MP-SPDZ backends and

low-level constructions. We thank Andrew Miller for the valuable

discussion about robust secret-sharing reconstruction.

REFERENCES
[1] Ittai Abraham, Benny Pinkas, and Avishay Yanai. Blinderśscalable, robust anony-

mous committed broadcast. In Proceedings of the 2020 ACM SIGSAC Conference
on Computer and Communications Security, pages 1233ś1252, 2020.

[2] Mark Abspoel, Anders Dalskov, Daniel Escudero, and Ariel Nof. An efficient
passive-to-active compiler for honest-majority mpc over rings. In Interna-
tional Conference on Applied Cryptography and Network Security, pages 122ś152.
Springer, 2021.

[3] Nikolaos Alexopoulos, Aggelos Kiayias, Riivo Talviste, and Thomas Zacharias.
MCMix: Anonymous messaging via secure multiparty computation. In 26th
USENIX Security Symposium (USENIX Security 17), pages 1217ś1234, Vancouver,
BC, August 2017. USENIX Association.

[4] Abdelrahaman Aly. Network flow problems with secure multiparty computation.
PhD thesis, Catholic University of Louvain, Louvain-la-Neuve, Belgium, 2015.

[5] Abdelrahaman Aly and Sara Cleemput. An improved protocol for securely
solving the shortest path problem and its application to combinatorial auctions.
Cryptology ePrint Archive, 2017.

[6] Abdelrahaman Aly, Edouard Cuvelier, Sophie Mawet, Olivier Pereira, and Math-
ieu Van Vyve. Securely solving simple combinatorial graph problems. In Interna-
tional Conference on Financial Cryptography and Data Security, pages 239ś257.
Springer, 2013.

[7] Assi Barak, Martin Hirt, Lior Koskas, and Yehuda Lindell. An end-to-end system
for large scale p2p mpc-as-a-service and low-bandwidth mpc for weak partic-
ipants. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, pages 695ś712, 2018.

[8] Ludovic Barman, Mahdi Zamani, Italo Dacosta, Joan Feigenbaum, Bryan Ford,
Jean-Pierre Hubaux, and David Wolinsky. Prifi: a low-latency and tracking-
resistant protocol for local-area anonymous communication. In Proceedings of
the 2016 ACM on Workshop on Privacy in the Electronic Society, pages 181ś184,
2016.

[9] Kenneth E Batcher. Sorting networks and their applications. In Proceedings of
the April 30śMay 2, 1968, spring joint computer conference, pages 307ś314, 1968.

[10] Kenneth E Batcher. Sorting networks and their applications. In Proceedings of
the April 30śMay 2, 1968, spring joint computer conference, pages 307ś314, 1968.

[11] K. S. Bauer, D. McCoy, D. Grunwald, T. Kohno, and D. C. Sicker. Low-resource
routing attacks against tor. In WPES’07, pages 11ś20, 2007.

[12] Donald Beaver. Efficient multiparty protocols using circuit randomization. In
CRYPTO 1991, pages 420ś432, 1992.

[13] Peter Bogetoft, Dan Lund Christensen, Ivan Damgård, Martin Geisler, Thomas
Jakobsen, Mikkel Krùigaard, Janus Dam Nielsen, Jesper Buus Nielsen, Kurt
Nielsen, Jakob Pagter, et al. Secure multiparty computation goes live. In Interna-
tional Conference on Financial Cryptography and Data Security, pages 325ś343.
Springer, 2009.

[14] Jurjen Bos and Bert den Boer. Detection of disrupters in the dc protocol. In
Jean-Jacques Quisquater and Joos Vandewalle, editors, Advances in Cryptology Ð
EUROCRYPT ’89, pages 320ś327, 1990.

[15] Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret sharing: Improvements
and extensions. In Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, pages 1292ś1303, 2016.

[16] David Chaum. The dining cryptographers problem: Unconditional sender and
recipient untraceability. Journal of cryptology, 1(1):65ś75, 1988.

[17] David Chaum, Debajyoti Das, Farid Javani, Aniket Kate, Anna Krasnova, Joeri
de Ruiter, and Alan T. Sherman. cmix: Mixing with minimal real-time asymmetric
cryptographic operations. In ACNS, 2017.

[18] David L Chaum. Untraceable electronic mail, return addresses, and digital
pseudonyms. Communications of the ACM, 24(2):84ś90, 1981.

[19] Koji Chida, Daniel Genkin, Koki Hamada, Dai Ikarashi, Ryo Kikuchi, Yehuda
Lindell, and Ariel Nof. Fast large-scale honest-majority mpc for malicious ad-
versaries. In Annual International Cryptology Conference, pages 34ś64. Springer,
2018.

[20] Michele Ciampi, Muhammad Ishaq, Malik Magdon-Ismail, Rafail Ostrovsky, and
Vassilis Zikas. Fairmm: A fast and frontrunning-resistant crypto market-maker.
Cryptology ePrint Archive, 2021.

[21] Henry Corrigan-Gibbs, Dan Boneh, and David Mazieres. Riposte: An anonymous
messaging system handling millions of users. 2015 IEEE Symposium on Security
and Privacy, May 2015.

[22] Philip Daian, Steven Goldfeder, Tyler Kell, Yunqi Li, Xueyuan Zhao, Iddo Bentov,
Lorenz Breidenbach, and Ari Juels. Flash boys 2.0: Frontrunning, transaction
reordering, and consensus instability in decentralized exchanges. arXiv preprint
arXiv:1904.05234, 2019.

[23] Ivan Damgård, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter Scholl, and
Nigel P Smart. Practical covertly secure mpc for dishonest majorityśor: breaking
the spdz limits. In European Symposium on Research in Computer Security, pages
1ś18. Springer, 2013.

[24] G. Danezis, R. Dingledine, and N. Mathewson. Mixminion: design of a type iii
anonymous remailer protocol. In 2003 Symposium on Security and Privacy, 2003.,
pages 2ś15, 2003.

[25] Debajyoti Das, Sebastian Meiser, Esfandiar Mohammadi, and Aniket Kate.
Anonymity trilemma: Strong anonymity, low bandwidth overhead, low latency-
choose two. In 2018 IEEE Symposium on Security and Privacy (SP), pages 108ś126.
IEEE, 2018.

[26] Debajyoti Das, Sebastian Meiser, Esfandiar Mohammadi, and Aniket Kate. Com-
prehensive anonymity trilemma: User coordination is not enough. Proceedings
on Privacy Enhancing Technologies, 2020:356ś383, 2020.

[27] R. Dingledine and N. Mathewson. Tor Protocol Specification. https://gitweb.
torproject.org/torspec.git?a=blob_plain;hb=HEAD;f=tor-spec.txt. Accessed Feb
2022.

[28] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The second-
generation onion router. In Proceedings of the 13th USENIX Security Symposium,
page 21, 2004.

[29] Saba Eskandarian and Dan Boneh. Clarion: Anonymous communication from
multiparty shuffling protocols. Cryptology ePrint Archive, 2021.

[30] Saba Eskandarian, Henry Corrigan-Gibbs, Matei Zaharia, and Dan Boneh. Ex-
press: Lowering the cost of metadata-hiding communication with cryptographic
privacy. In 30th USENIX Security Symposium (USENIX Security 21), pages 1775ś
1792, 2021.

[31] N. S. Evans, R. Dingledine, and C. Grothoff. A Practical Congestion Attack on
Tor Using Long Paths. In USENIX’09, pages 33ś50, 2009.

[32] Shuhong Gao. A new algorithm for decoding reed-solomon codes. In Communi-
cations, information and network security, pages 55ś68. Springer, 2003.

[33] Philippe Golle and Ari Juels. Dining cryptographers revisited. In Proc. of Eurocrypt
2004, 2004.

[34] Vipul Goyal, Hanjun Li, Rafail Ostrovsky, Antigoni Polychroniadou, and Yifan
Song. Atlas: efficient and scalable mpc in the honest majority setting. In Annual
International Cryptology Conference, pages 244ś274. Springer, 2021.

[35] Koki Hamada, Ryo Kikuchi, Dai Ikarashi, Koji Chida, and Katsumi Takahashi.
Practically efficient multi-party sorting protocols from comparison sort algo-
rithms. In Taekyoung Kwon, Mun-Kyu Lee, and Daesung Kwon, editors, Infor-
mation Security and Cryptology ś ICISC 2012, pages 202ś216, Berlin, Heidelberg,
2013. Springer Berlin Heidelberg.

[36] Johan Håstad. The square lattice shuffle. Random Structures and Algorithms,
29(4):466ś474, 2006.

[37] Yuval Ishai, Eyal Kushilevitz, SigurdMeldgaard, Claudio Orlandi, andAnat Paskin-
Cherniavsky. On the power of correlated randomness in secure computation. In

359

Proceedings on Privacy Enhancing Technologies 2023(2) Lu et al.

Theory of Cryptography Conference, pages 600ś620. Springer, 2013.
[38] Aaron Johnson, Chris Wacek, Rob Jansen, Micah Sherr, and Paul Syverson. Users

get routed: Traffic correlation on tor by realistic adversaries. In Proc. ACM SIGSAC
conference on Computer & communications security 2013, pages 337ś348, 2013.

[39] Marcel Keller. Mp-spdz: A versatile framework for multi-party computation. In
Proceedings of the 2020 ACM SIGSAC conference on computer and communications
security, pages 1575ś1590, 2020.

[40] Marcel Keller, Emmanuela Orsini, and Peter Scholl. Mascot: Faster malicious
arithmetic secure computation with oblivious transfer. In Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security, CCS ’16,
New York, NY, USA, 2016. Association for Computing Machinery.

[41] Anna Krasnova, Moritz Neikes, and Peter Schwabe. Footprint scheduling for
dining-cryptographer networks. In Jens Grossklags and Bart Preneel, editors, FC,
pages 385ś402, 2016.

[42] Albert Kwon, Henry Corrigan-Gibbs, Srinivas Devadas, and Bryan Ford. Atom:
Horizontally scaling strong anonymity. In Proceedings of the 26th Symposium on
Operating Systems Principles, pages 406ś422, 2017.

[43] David Lazar, Yossi Gilad, and Nickolai Zeldovich. Karaoke: Distributed private
messaging immune to passive traffic analysis. In 13th USENIX Symposium on
Operating Systems Design and Implementation, OSDI 2018, Carlsbad, CA, USA,
October 8-10, 2018, pages 711ś725, 2018.

[44] Stevens Le Blond, David Choffnes,WilliamCaldwell, Peter Druschel, andNicholas
Merritt. Herd: A Scalable, Traffic Analysis Resistant Anonymity Network for
VoIP Systems. In Proc. ACM SIGCOMM 2015, pages 639ś652, 2015.

[45] Stevens Le Blond, David Choffnes, Wenxuan Zhou, Peter Druschel, Hitesh Bal-
lani, and Paul Francis. Towards Efficient Traffic-analysis Resistant Anonymity
Networks. In Proc. ACM SIGCOMM 2013, pages 303ś314, 2013.

[46] Donghang Lu, Albert Yu, Aniket Kate, and Hemanta Maji. Polymath: Low-
latency mpc via secure polynomial evaluations and its applications. Proceedings
on Privacy Enhancing Technologies, 2022(1):396ś416, 2022.

[47] Donghang Lu, Thomas Yurek, Samarth Kulshreshtha, Rahul Govind, Aniket Kate,
and Andrew Miller. Honeybadgermpc and asynchromix: Practical asynchronous
mpc and its application to anonymous communication. In Proceedings of the
2019 ACM SIGSAC Conference on Computer and Communications Security, pages
887ś903, 2019.

[48] P. Mohassel and Y. Zhang. SecureML: a system for scalable privacy-preserving
machine learning. In 2017 IEEE Symposium on Security and Privacy (SP), pages
19ś38, 2017.

[49] Zachary Newman, Sacha Servan-Schreiber, and Srinivas Devadas. Spectrum:
High-bandwidth anonymous broadcast. In 19th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 22), pages 229ś248, Renton, WA, April
2022. USENIX Association.

[50] Tal Rabin and Michael Ben-Or. Verifiable secret sharing and multiparty protocols
with honest majority. In Proceedings of the twenty-first annual ACM symposium
on Theory of computing, pages 73ś85, 1989.

[51] Donald L. Shell. A high-speed sorting procedure. Communications of the ACM,
2(7):30ś32, 1959.

[52] Nirvan Tyagi, Yossi Gilad, Derek Leung, Matei Zaharia, and Nickolai Zeldovich.
Stadium: A distributed metadata-private messaging system. In Proceedings of the
26th Symposium on Operating Systems Principles, pages 423ś440, 2017.

[53] Jelle Van Den Hooff, David Lazar, Matei Zaharia, and Nickolai Zeldovich. Vu-
vuzela: Scalable private messaging resistant to traffic analysis. In Proceedings of
the 25th Symposium on Operating Systems Principles, pages 137ś152, 2015.

[54] Luis von Ahn, Andrew Bortz, and Nicholas J. Hopper. K-anonymous message
transmission. In Proceedings of the 10th ACM SIGSAC CCS, page 122ś130, 2003.

[55] Michael Waidner. Unconditional sender and recipient untraceability in spite of
active attacks. In Advances in Cryptology Ð EUROCRYPT ’89, pages 302ś319,
1990.

[56] Michael Waidner and Birgit Pfitzmann. The dining cryptographers in the disco:
Unconditional sender and recipient untraceability with computationally secure
serviceability. In Advances in Cryptology Ð EUROCRYPT ’89, pages 690ś690, 1990.

[57] David Isaac Wolinsky, Henry Corrigan-Gibbs, Bryan Ford, and Aaron Johnson.
Dissent in numbers: Making strong anonymity scale. In 10th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 12), pages 179ś182, 2012.

[58] Yihua Zhang, Aaron Steele, and Marina Blanton. Picco: a general-purpose com-
piler for private distributed computation. In Proceedings of the 2013 ACM SIGSAC
conference on Computer & communications security, pages 813ś826, 2013.

A BENCHMARK OF TWO-WAY
COMMUNICATION

The benchmark result is shown in Table 9. As the protocol is

essentially two executions of the Variant 3, we see that the per-

formance numbers are also approximately 2× of the numbers in

Variant 3 benchmark.

Table 9: Performance of the two-way communication. (k

refers to the number of clients. We assume each client sends

a 16 byte field element as the message in each execution.

Communication is measured by total MB sent per party)

k Online Time (s) Online Communication(MB)

10000 1.08 9.92

40000 7.89 39.68

90000 25.95 89.28

160000 57.22 158.72

360

	Abstract
	1 Introduction
	1.1 Paper Organization

	2 Related Works
	3 Preliminary
	3.1 System Model
	3.2 Goals and Non-Goals
	3.3 Secret-sharing-based MPC
	3.4 Beaver Triple Multiplication Beaver for Scalars and Matrices
	3.5 Robust Secret Sharing Reconstruction
	3.6 Notations

	4 Using Permutation Matrices for Anonymous Communication
	4.1 Overview of the Variants
	4.2 Collecting Client Messages
	4.3 Malicious Security
	4.4 The First Variant
	4.5 The Second Variant
	4.6 The Third Variant
	4.7 Cost Analysis and Comparisons with Related Works
	4.8 Security Analysis
	4.9 Security Proof

	5 Implementation and Evaluation
	5.1 Implementation
	5.2 Online Phase Evaluation
	5.3 Offline Phase Benchmark
	5.4 Towards Robustness
	5.5 Performance Comparison

	6 Applications of RPM
	6.1 Two Way Communication
	6.2 Secure Sorting

	7 Conclusion
	Acknowledgments
	References
	A Benchmark of two-way communication

