
International Journal of Information Security (2024) 23:447–465
https://doi.org/10.1007/s10207-023-00744-5

R E G UL A R C O N T R I B U T I O N

Pepal: Penalizing multimedia breaches and partial leakages

Easwar Vivek Mangipudi1       ·  Krutarth Rao2 ·  Jeremy Clark3 ·  Aniket Kate1

Published online: 14 September 2023
© The Author(s), under exclusive licence to Springer-Verlag GmbH, DE 2023

Abstract
Storage of media files by users at a third party, like cloud services or escrows, is increasing every day along with the risk of
stored files being leaked through breaches from third parties. In this article, we study the problem of handling either intentional
or unintentional multimedia storage breaches by the entity hosting the data. To address the problem, we design the Pepal:
protocol where the sender forwarding multimedia data to a receiver can penalize the receiver through loss of cryptocurrency
even for partial data leakage. Pepal: achieves this by augmenting a blockchain on-chain smart contract between the two parties
with an off-chain cryptographic protocol. The protocol involves a new primitive doubly oblivious transfer (DOT), which,
when combined with robust watermarking and a claim-or-refund blockchain contract, provides the necessary framework for a
provably secure protocol. Any public data leakage by the receiver leads to the sender learning the receiver’s crypto-currency
secret key, which allows him to transfer the claim-or-refund deposit of the receiver. The Pepal: protocol also ensures that the
malicious sender cannot steal the deposit, even by leaking the original multimedia document in any form. We analyze our
DOT-based design against partial adversarial leakages and show it to be robust against even small leakages. The prototype
implementation of our Pepal: protocol shows our system to be efficient and easy to deploy in practice.

Keywords Data breach · Penalization · Oblivious transfer · Smart contract

1 Introduction

Data breach attacks on cloud platforms are increasing every
year [2, 26, 29, 41], the reasons for which vary from com-
promises of ill-maintained data servers to careless data
custodians. Although it has been observed and reported that
90% of the data breaches can be avoided with good secu-
rity practices on the custodian’s infrastructure [1], there is no
evident decrease in the number. In these cases, taking legal
action is not only expensive and time-consuming but it is also
difficult to establish responsibility in today’s geopolitically

B  Easwar Vivek Mangipudi
easwar.vivek@gmail.com

Krutarth Rao
raokrutarth@gmail.com

Jeremy Clark
j.clark@concordia.ca

Aniket Kate
aniket@purdue.edu

1 Purdue University, West Lafayette, USA

2 Hewlett Parckard, Spring, USA

3 Concordia University, Montreal, Canada

distributed data flows. It would be imperative to devise tools
that would encourage the data hosts to adopt better security
practices.

In this work, we introduce a complementary security
mechanism that is inexpensive, automated, and not restricted
by the geo-political boundaries to disincentivize data leak-
age. In particular, our goal is to make the data custodians
more accountable through automatically enforceable mone-
tary penalties resulting in immediate loss of funds. We ensure
the penalization of even partial leakages (Pepal:) by enforc-
ing a cryptocurrency claim-or-refund smart contract with the
deposit made by the data receiver. Applicability scenarios for
Pepal: contracts range from industrial media custodianship,
data and software escrows, leaking privately shared personal
data (pictures and other mediafiles) of others on social media,
and even to non-disclosure agreements between mutually dis-
trusting entities [3].
Example Scenarios Data Escrow refers to the responsibil-
ity of safe storage of the data at a custodian [7]; any data
breach typically results in criminal litigation against the cus-
todian. However, legal action may be undesirable due to the
uncertainty of recovering the payment (which increases if the
winning party is owed court costs in addition to the actual

1 2 3

http://orcid.org/0000-0001-8617-7605


448

remedy) [21]. Pepal: can be useful in such circumstances
by automating the monetary recovery procedure. We assume
that the data sender and the custodian agree on an amount of
money awarded to the owner should specified documents be
demonstrably leaked. Towards automatically ensuring that
the owner will receive the funds, this amount could take the
form of a surety bond held in trust by a Bitcoin or other per-
missionless/permissioned blockchain-based cryptocurrency
smart contract. Another interesting use case is users down-
loading paid media that should not be publicly shared online.
The downloaders make a timed deposit, along with the actual
payment, for an agreed time and value for the download. If
no dishonest sharing happens, it will be returned to the down-
loader/customer else it will be forfeited.

Pepal: does not preclude the use of the court system, it
simply complements it or shifts the responsibility of bring-
ing legal action to the entity seeking to recover their bond.
Allowing an escalation to court is essential as some disclo-
sures are in the public interest (whistle-blowing) [14]. In
some instances, a third party might pay the value of the bond
for the information (news media, crowdfunding, etc.). We
expect that the proposed mechanism encourages the parties
involved to follow better security practices, and the proposed
Pepal: protocol is a step in that direction.
Contributions We formalize and provide a solution direc-
tion to the problem of automatically settling intentional or
unintentional data breaches with a blockchain smart contract,
eschewing the traditional recourse of costly legal action. Our
Pepal: protocol, which achieves it, is a crypto-augmented
smart contract system obtaining an arbitrator-free settle-
ment. It comprises a claim-or-refund smart contract, a robust
watermarking scheme, a proposed cryptographic primitive –
Doubly Oblivious Transfer (DOT), and a non-interactive
zero-knowledge (NIZK) proof for mutually distrusting par-
ties.

In our core protocol, the sender and receiver create a
claim-or-refund transaction on Bitcoin [12, 15, 43] where
an amount is deposited that can be spent at any time with a
jointly signed transaction or spent after a period of time by
an sender-only signed transaction. The document provided to
the receiver has the receiver’s signing (private) key embedded
in it with a robust binary watermarking scheme that cannot
be removed (or retrieved) by anyone except the embedding
party. The challenging aspects of the Pepal: protocol involve
arranging for the signing key to be embedded such that (1)
the sender does not learn the value of the key at the time of
embedding, (2) the receiver does not learn the document
contents until the key is embedded, and (3) the sender is con-
vinced the embedded key is the receiver’s correct signing
key. Within these constraints, to perform the embedding, the
parties must jointly perform a two-party computation with
their respective private inputs. Our novel DOT and commit-
ted receiver oblivious transfer (CROT) protocols, securely

E. V. Mangipudi et al.

realize this two-party computation to ensure that the sender
can retrieve the receiver’s embedded key from the document
if it leaks (widely enough to reach the sender) and spend the
deposited cryptocurrency.

We implement the Pepal: system using the Relic library for
the cryptographic primitives, a robust image watermarking
scheme and claim-or-refund contract for Bitcoin. Given the
prevalence of robust watermarking in the multimedia indus-
try [4, 6], we find our Pepal: system easy to deploy. Our
single-threaded implementation takes on average 1.73 sec-
onds when a 1.3MB image is used as data for the transfer
when the 256-bit key is embedded once.

Given the inherent non-cryptographic robustness guaran-
tees of the robust watermarking system, we also analyze
partial data disclosures. In particular, even when the receiver
decides to reveal the document partially, our proposed DOT
protocol ensures that the embedding party or the sender
can retrieve significantly more bits than when the standard
oblivious transfer is used. For example, when the receiver’s
256-bit signing key is embedded 16 times in the multimedia
document, even a 15% leakage of document blocks reveals
roughly 235 bits of receiver’s key to the sender with DOT; as
opposed to roughly only 50 bits that are revealed when an
oblivious transfer protocol is employed.

2 Solution overview

We consider a scenario where a sender wishes to forward a
private multimedia document M to a receiver. The receiver is
expected to hold a public key-secret key pair ( pk, sk), where
the key sk is a signing key of a (say) Bitcoin wallet corre-
sponding to pk. Instead of the sender directly sending M to
the receiver, we expect the sender and receiver to jointly com-
pute a function f (( M , pk), sk), which should provide the
receiver a version Msk of M that has been tagged (or robustly
watermarked) with the key sk. The protocol should abort (or
not produce a meaningful Msk) if sk from the receiver and
pk from the sender are not matching key pair. At the end of
the protocol, the sender does not learn sk or Msk and the
receiver does not learn any further information about M . A
cryptocurrency wallet holds the receiver’s escrow deposit for
accountability.

We consider the problem in a mutually distrustful setting,
and either the sender or the receiver can be malicious. A mali-
cious sender can try to learn the signing key of the receiver to
steal the deposit. When appropriate, he can also make the
document public and try to accuse the receiver of dishonest
disclosure. On the other hand, the malicious receiver can try
to remove/replace the watermark from the obtained docu-
ment and release the modified version to the public without
revealing her key. In such an adversarial setting, we wish to
satisfy the following privacy and integrity goals:

1 2 3



Data

1

1

2

2

2

2

2

Pepal:: penalizing multimedia breaches and partial leakages

Data transfer

Sender Watermarked Receiver

Unauthorized sharing

Penalization

Key
Extraction

Cryptocurrency Network

Fig. 1 Pepal: protocol’s high-level view: The sender transfers a water-
marked version of the document to the receiver. The watermark is the
secret key of the receiver unknown to the sender. Upon unauthorized
sharing publicly, the sender extracts the watermark (secret key) and
penalizes the receiver by transferring the pre-setup deposit

• Sender Privacy: Before the transfer completes, no infor-
mation regarding the document is available to the
receiver.

• Receiver Privacy: Before the disclosure of the document
by the receiver, no information regarding the receiver’s
signing key is available to the sender.

• Sender Integrity: In case of false accusation by the sender,
no action is taken.

• Receiver Integrity (Revealing property): In case of dis-
closure of the document by the receiver, the signing key
of the receiver is revealed to the sender.

We formalize these properties as an ideal functionality in
Fig. 8 in Sect. 7.
Solution OverviewWe propose the Pepal: protocol, depicted
in Fig. 1 involving the two parties, Sender and Receiver. The
sender has the multimedia document M , and the receiver has
the signing key sk. The receiver initially makes a time-locked
bitcoin deposit of an agreed value of funds that can be opened
only if the signing key of the receiver is available. The sender
divides the document into several blocks and creates two
watermarked versions (corresponding to 0 and 1) for each
block. The parties run multiple 1-out-of-2 Oblivious Transfer
(OT2) protocol instances, one for the transfer of each of the
document blocks. The sender uses the watermarked blocks as
inputs while the receiver uses each of the bits of his signing
key as choice bits for the OT2 s and obtains one version of

449

each block , i.e., for a 256-bit signing key of the receiver, the
sender (in the simplest case) divides the document into 256
blocks and creates two versions for each block using robust
watermarking. The sender and receiver then perform 256 OT1
s, where the choice bit for each OT1 is each of the bits of the
256-bit key of the receiver. The receiver also proves to the
sender in zero-knowledge that the signing key used for the
deposit is indeed formed of the bits used for OT1 s.

As the document is transferred through oblivious transfer,
the sender can not gain any information about the sign-ing
key of the receiver. However, suppose the document is
revealed/disclosed before the time of the expiry of the agree-
ment. In that case, the sender learns the signing key of the
receiver from the watermark of the revealed document. He
can then penalize the malicious receiver by transferring the
funds to himself. The multiple OT1 s, one for each block,
ensure that the watermark embedded in the document corre-
sponds to the signing-key bits.

To transfer the funds out of the deposit, the sender needs
both his and the receiver’s signature, which can not be
obtained before the document is revealed to the public. Thus,
he can penalize the receiver only if she is dishonest. If the
receiver is honest, the agreement will expire after the agreed
time, and the funds will be transferred back to her. The trans-
actional logic of the deposit is depicted as a pseudo-code in
Algorithm 1.

Algorithm 1 Claim-or-Refund contract logic
1: if Current time tnow ≥  t then
2: Direct the locked funds back to the contract creator
3: else
4: if Both the sender and receiver sign the transaction then
5:           Direct the funds to the mentioned recipient
6: else
7: Transaction is invalid

The receiver, instead of full disclosure, can disclose the
document partially to the public. She can reveal, say, half of
the total 256 blocks received so that only half the number of
bits of her signing key are revealed to the sender. However,
for a 256-bit key of the receiver, the sender can in fact divide
the document into more numbers of blocks than just 256. This
way, he can embed the key multiple times in the document;
for example, the sender can divide it into 512 parts so that
the key gets embedded twice. The sender can perform 512
OT1 s with the receiver using her 256-bit key twice for the
same. In such a scenario, the sender can extract more number
of bits upon partial disclosure. Also, the information in the
document may not be “uniform” throughout the document,
so the sender can also try to embed the key multiple times in a
document part where there is “more" information by dividing
it into more parts at those document locations.

1 2 3



2

1

1

1

450

The receiver understands that one bit of her signing key is
watermarked in each document block received using that bit
in OT1. She also knows which particular bit is embedded in
a particular document block; this is because, the watermark
embedded in a block is the same as the choice bit used for
OT2 in obtaining a document block. Leveraging this knowl-
edge, the receiver can try to minimize the number of bits
revealed to the sender. For example, with the sender divid-
ing the document into 512 blocks and the receiver having a
256-bit signing key, the receiver can reveal 100 blocks of the
received document revealing only 50 bits to the sender. She
can achieve this by revealing two blocks received with each
bit for 50 bits. To prevent such an attack, we propose a prim-
itive called Doubly Oblivious Transfer (DOT). DOT prevents
the receiver from learning which bit (index of the bit) of her
key is watermarked into a particular block.

In DOT, the sender has two messages m0, m1, and the
receiver has two bits s0, s1 (refer Fig. 2 in Appendix). The
sender has an extra choice bit c, using which he transfers
msc (associated with the bit sc) to the receiver. At the end of
DOT instance, the receiver cannot determine the value of c
and m1−sc and the sender does not know the bit sc that has
been used in the transfer of msc . Refer to Fig. 2 in the
Appendix for the pictorial depiction of the simplest form of
DOT protocol.

For Pepal:, the sender can use DOT to transfer the docu-
ment to the receiver such that she has no information about
which of her bits is embedded in a particular document block.
As we analyze in Sect. 7.1, this greatly improves the expected
number of bits revealed to the sender in case of partial disclo-
sure. For example, with the sender dividing the document into
512 blocks and 256-bit key at the receiver, upon disclosure
of 100 blocks, the expected number of bits that the sender
can extract is 90.3 instead of 50 while using just oblivious
transfer.

Notice that our Pepal: protocol augments cryptographic
primitive with a smart contract. Given the limited express-
ibility of Bitcoin contracts, our (off- chain) cryptographic
solution seems necessary, but this may not be the case for
Turing complete systems like Ethereum [5]. However, defin-
ing the complete solution as a smart contract will not be or
may not remain inexpensive enough. Further comments
regarding the contracts can be found in Sect. 9 .

3 Building blocks and cryptographic tools

In this section, we introduce the building blocks and crypto-
graphic tools required for the protocol– robust watermarking,
oblivious transfer and claim-or-refund contract.

1 For s0 =  s1 =  b, the receiver knows that she received mb; however,
that does not constitute any privacy leakage in our application as c and
m1−sc remain private.

E. V. Mangipudi et al.

Robust Bit Watermarking A robust watermarking scheme is
defined by the property that the watermark can not be
removed without loss of information from the watermarked
data. The watermarking scheme is defined by three algo-
rithms, for key generation, embedding the watermark and
detection of the watermark. M  is the set of all possible doc-
uments, W � {0, 1} the set of all possible watermarks, K  is
the set of all keys and κ is the security parameter. The three
algorithms define the scheme:
wm.gen (κ ): Given κ , outputs keys kemd , kdet � K  proba-
bilistically.
wm.embed (M , w, kemd ): Takes the document M , water-
mark w � W and embedding key kemd as inputs and
generates a watermarked document M .
wm.detect (M , kdet , w): Takes the watermarked document
M , the detection key kdet and the watermark w as input and
outputs  if the watermark in M  matches w, else outputs �.

The watermarking scheme is expected to satisfy the prop-
erties of imperceptibility and robustness. To describe the
properties, we adapt the watermarking definition suggested
by Adelsbach et al. [9]. We assume a given similarity func-
tion si m(M , M ) which returns � if the two documents M
and M  are not similar and  if they are.

• Imperceptibility: The watermarked and the original ver-
sions of the document should be similar i.e., �M �
M, �kem d � K  and �w � W ,
if wm.embed(M , w, kemd ) →  M , then sim(M , M ) =  .

• Robustness: No known algorithm should be able to
effectively change or remove the watermark in the water-
marked document without leaving the document itself
unusable, even with the detection key.

The Pepal: protocol uses a robust watermarking scheme to
watermark either the bit 0 or the bit 1. The actual water-
marking scheme varies depending on the type of the data
being watermarked. While theoretically, an algorithm may
exist which can remove the watermark from the data, we
just require that such an algorithm should not be avail-
able or known to humans; this approach was formalized
by Rogaway[42]. We discuss the robust watermarking algo-
rithms in Sect. 8.
Oblivious Transfer1-out-of-2 oblivious transfer (OT2) is a
two-party (a sender and a receiver) computation mechanism,
where the sender has two messages M0 and M1 and the
receiver has a bit b � {0, 1}. The goal is to transfer Mb to the
receiver and at the end of the protocol, the receiver should not
learn any information about M1−b and the sender should not
learn b. We consider the oblivious transfer protocol, called
the Verified Simplest OT by Doerner et al. [22] which is an

1 2 3



1

1

Pepal:: penalizing multimedia breaches and partial leakages

extended version of OT protocol by Chou et.al. [19], recalled
in Appendix A along with Fig. 11.

The multiplicative group G used for the protocol is
Gap-DH [27] and the additional verification step forces
the receiver to make oracle queries before receiving the
encryptions from the sender, there by making the protocol
UC-Secure.
Bitcoin Claim-or-Refund Contract Bitcoin [40] is a peer-
to-peer decentralized network where participants are rep-
resented by a public and private key pair. The hash of the
public key serves as the user’s address and the private key is
used to sign and authorize transactions. Script in Bitcoin is a
stack-based language simulating a Push Down Automata
and is used to write a smart contract. Spending funds typi-
cally involves executing/running two scripts on the spender’s
machine. The first is scriptPubKey which is embedded in the
input transaction under the script field. It entails the con-
ditions that must be met to spend the unspent transaction
outputs (UTXO). The second one is scriptSig which is an
unlocking script provided by the user who wants to spend
the UTXO. When scriptSig and scriptPubKey are executed
in sequence, the user gets to know if the transaction is valid.
Bitcoin offers both sender and receiver of the funds an aspect
of privacy until the funds in the deposit are directed to a
recipient i.e., in our case, after the documents become public
and the key gets revealed to the sender. Such privacy is not
observable in any other non-blockchain financial system.

Time-Locked Compensation Deposits: We construct
scriptPubKey with two prominent Bitcoin scripting lan-
guage operators: OP_CHECKLOCKTIMEVERIFY and
OP_CHECKMULTISIGVERIFY.

OP_CHECKLOCKTIMEVERIFY allows users to create
transactions whose outputs can only be spent in the future.
OP_MULTISIGVERIFY allows the creation of transactions
which need multiple signatures. In our case, the receiver cre-
ates a deposit which is locked till a future time t . The funds of
the deposit can be transferred only if both the signatures of
sender and the receiver are submitted before the time t .
After time t , the unspent funds are transferred back to the
receiver. Embedding such instructions into the funds is com-
monly referred to as a smart contract. Our smart contract
automates the claim-or-refund functionality. The funds are
transferred either when the time of the agreement expires or
when the signatures of both sender and receiver are available.

The scriptPubKey that receiver uses in the contract is

IF
OP_CHECKLOCKTIMEVERIFY OP_DROP
pkR OP_CHECKSIGVERIFY
ELSE
OP_2 pkR pkS OP_2

OP_CHECKMULTISIGVERIFY
ENDIF

451

Fig. 2 Doubly Oblivious Transfer Primitive: the sender has two input
messages m0 , m1 and a bit c. The receiver has two input bits s0 , s1 and
obtains msc

4 Doubly oblivious transfer — DOT

In our solution, the receiver obtains the document blocks
by running OT2 multiple times with her signing key bits as
the choice bits. However, while running OT2, the receiver
understands that each of the message that is received by using
choice bit is indeed affected by the choice bit i.e., the receiver
knows the index of the bit embedded through watermark in a
received message/document block.

To overcome this, we propose a primitive, in which the
receiver, after giving multiple bits as input, receives several
messages corresponding to the input bits, but the receiver
does not have any information about which bit was used as
choice bit for choosing a certain message. In the simplest
case the sender has two messages m0, m1 along with a choice
bit c and the receiver has two bits s0, s1 as depicted in Fig. 2.
The sender chooses one of the indices of the bits of the
receiver using the bit c and the receiver receives the message
msc corresponding to the bit of the chosen index. Here, the
sender does not know which message has been received by
the receiver and the receiver does not know which of her two
bits is chosen as the choice bit to choose the messages. Hence
we call it Doubly Oblivious Transfer (DOT) protocol.

Figure 3 represents the ideal functionality of the DOT pro-
tocol. The functionality FDOT interacts with the sender S and
receiver R. The adversary A  controls the communication and
the delivery of the messages. When the sender and receiver
forward their inputs, they use the tags inputS, inputR
respectively. The functionality delivers the corresponding
messages to sender and receiver on receiving the messages
deliverS, deliverR from the adversary. DOT hides
the index c and m1−sc from the receiver, but it need not essen-
tially hide the value sc itself. For s0 =  s1 =  b, the receiver
knows the value b but not c.

Each session of the protocol run is identified by a session
id sid . The sender S forwards the two messages M0 , M1 and
the choice bit c along with the tag inputS to the function-
ality indicating the input from sender S. Upon the initiation
of the session by the sender, the functionality informs the
receiver R by forwarding the intd message along with the
session id sid . The session initiation is also intimated to the

1 2 3



452

Functionality F D O T

Ideal functionality F D O T  interacts with sender S and
receiver R. The sender has two messages M0, M1 and
a choice bit c. The receiver has two bits so, s1. The
adversary A  corrupts either the sender or receiver.

Sender input.  Upon receiving the message
(inputS, M0 , M1 , c, sid) with M0, M1      � {0, 1}�,
c � {0, 1} from sender S, record S, M0, M1, c, sid,
forward the message (intd, sid) to the receiver R
and (input, sid) to A .

Receiver input .  Upon receiving the message
(inputR, s0 , s1 , sid) with s0 , s1        �     {0, 1} from
receiver R, record R, s0, s1, sid, forward the
message (input, sid) to A .

Sender output.  Upon receiving the message
(deliverS, sid) from A ,  check if R, s0, s1 , sid is

stored, else ignore the     message. Send
(delivered, sid) to S.

Receiver output.  Upon receiving the message
(deliverR, sid) from A ,  check if S, M0, M1, c, sid is
stored, else ignore the message. Forward
(output, Msc , sid) to R.

Fig. 3 Ideal functionality of DOT

E. V. Mangipudi et al.

adversary A .  Upon the initiation of the session, the receiver
forwards the two bits s0, s1 to the functionality along with
the session id to the functionality. The adversary controls the
delivery of messages from the functionality, this is modelled
by the deliverS, deliverR messages from the adver-
sary. On receiving the deliverS message with the session
id sid , the functionality checks if the a corresponding previ-
ous input from the receiver is received, if yes, the sender is
intimated that the receiver input has been received by for-
warding the delivered message to the sender. Finally
upon receiving the deliverRmessage along with sid from
the adversary, the functionality checks if it received the input
from the sender for that session id and if yes forwards the
message Msc to the receiver.
Construction We provide a construction which realizes the
ideal functionality of DOT with two messages M0 , M1 and a
choice bit c at the sender and two bits s0, s1 at the receiver as
given in the Fig. 3. Both the parties possess public key-
secret key pairs (refer Fig. 4) and pk =  pkS � pkR where
pkS , pkR are public keys of sender and receiver. The sender
samples two elements from the group (can be points from
the elliptic curve), encrypts the two messages using a sym-
metric encryption E (.) (.) with the keys obtained by hashing
the elements. These encryptions are randomly permuted and
forwarded to the receiver in the form of Enci . This is the
first step in DOT. The sender then transfers the elements to
the receiver such that the receiver can only decrypt Msc . The

Fig. 4 Doubly oblivious
transfer (DOT) protocol

1 2 3



1

1

1

1

2

2

2 1

i

i

1

Pepal:: penalizing multimedia breaches and partial leakages

encryption and forwarding of messages prevents the need to
map random message strings onto group elements for the
ElGamal encryption in the next step.

The sender samples two more elements, populates gi , j ,
i , j � {0, 1} as shown in Fig. 4 and encrypts all gi , j to
the public key pk using Epk (.) - a Re-randomizable encryp-
tion like ElGamal encryption to obtain ui , j . Now two OT2

instances are run, one for each i with ui , j as inputs. The
receiver inputs si as the choice bit for the instance i of OT2.

Here the sender S initiates the protocol, this would cor-
respond to the inputS message of the functionality. Once
the protocol is initiated, the receiver inputs the bits s0, s1

into the OT2 protocol instance. This would correspond to the
inputR message of the ideal functionality messages where
the receiver forwards the bits s0, s1.

The encryption of the elements to the key pk later helps
the receiver to hide which keys have been obtained by her
through OT2 and helps the sender to hide the order in which
the keys have been forwarded. Hiding the order implies hid-
ing the mapping between bits si and elements obtained by
the receiver through OT1. The receiver after receiving the
different ui ,si through OT1 proceeds by applying Rpk (.), a re-
randomization operation to obtain vi ,si . These re-randomized
encryptions of obtained encrypted elements are now for-
warded back to the sender. If there was no re-randomization
step, the sender would know what elements have been
obtained by the receiver and so will know what version of
the message was taken by the receiver. Hence we use the
re-randomization step to hide from the sender, information
regarding which messages have been obtained by the receiver
through OT1. The sender from vi ,si , decrypts his layer of
ElGamal encryption using the decryption operation Dsk S (.)
to obtain xi ,si . He then drops x1−c,si and forwards only the
element xc,sc to the receiver. The element xc,sc (which at this
point is only encrypted to the receiver’s public key) is then
decrypted by the receiver using her private key using Dsk R (.)
to obtain the element gc,sc . The key obtained as hash of gc,sc is
used to decrypt the initially obtained random permutation
of messages. Only one of them gets decrypted correctly. The
receiver, while decrypting the encrypted messages, would
not know which message is the correct encryption using the
obtained key, she tries to decrypt each of the messages. For
the receiver to be able to recognize the correct message for
the key, we need a mechanism.

To achieve the decryption and identification of the correct
message block by the receiver, the sender initially appends
each of the messages with a string which is obtained as a
certain public function f (.) of key (like hash of the key) used
to encrypt the message before the encryption process. After
decrypting each block with the key, the receiver matches the
appended string with the locally calculated string using f (.)
of the key. Whichever message has the correct match, is the
correct message. Thus the receiver decrypts Msc . Here it can

453

be seen that only the receiver obtains an output from the
protocol, this is modelled through the output message in
the ideal functionality.

Imagine the case when the initial encryptions are not
permuted, then the receiver knows that the the encryptions
received correspond to bit indices 0 and 1 in that order, so
she can try to attack the system by setting one of the bits,
say s0 =  0 and the other s1 =  1, then which ever encryp-
tion gets decrypted, will reveal which of the two si s has been
chosen by the sender. To prevent such a scenario, the initial
permutation of the encryptions is necessary.
Universal Composability [13] Let EXECρ ,A,E be the ensem-
ble of the output of the environment E when interacting with
the adversary A  and parties running the protocol ρ over the
random coins of all the involved machines

Definition 1 A protocol ρ UC-realizes an ideal functionality
F  if for any adversary A, there exists a simulator such that for
any environment E , the ensemble EXECρ ,A,E and EXECF ,S ,E
are computationally indistinguishable.

Theorem 1 The DOT protocol UC-realizes the functionality
FDOT in the F O T -hybrid model under the following condi-
tions:
Corruption Model: Static corruption (the sender or receiver
is corrupted at the beginning of the protocol).
Hybrid Functionalities: H is modelled as a random oracle
and secure channels between the parties are assumed.
Computational Assumption: The encryption scheme used
in the initial step is symmetric, non-committing and robust
[19]. Group used for OT2 module G is a Gap-DH group.

We provide proofs of all the theorems in 1.

5 Generalization of DOT protocol

The DOT protocol can be easily extended to work with mul-
tiple messages at the sender and κ-bit signing key of the
receiver as shown in Fig. 5.

In the general case, the sender has a total of 2κ messages
Mi , j , for 0 ≤  i ≤  κ −  1, j � {0, 1} and the receiver has bits
sn , 0 ≤  n ≤  κ −  1. After participating in the protocol, the
receiver receives Mi ,l , l =  sπ (i ) for a permutation π of set of
indices i chosen at the sender. The permutation of indices is
the general case equivalent of the choice bit c of the two bit
case.

Forwarding a random permuted order of encrypted mes-
sages remains similar for the general case. When the elements
are sampled in the general case, sampling extra elements is
not necessary. The sender performs a permutation π on the
rows i of the elements gi , j to obtain g , j which are encrypted
using Epk (.) as before. Now, g , j are input to i instances of
OT2 to which the receiver inputs si as the choice bits for

1 2 3



i

i i

2

2

2

1

454 E. V. Mangipudi et al.

Fig. 5 Doubly oblivious
transfer protocol (General Case)

each instance i . The receiver obtains ui ,si , re-randomizes the
encryption using R p k (.) and sends back vi ,si . After receiv-
ing vi ,s , the sender reverses the permutation order to obtain
wi ,si =  π −1(vi ,si ). He then decrypts his layer of encryption
using DskS (.) and forwards xi ,si to the receiver who decrypts
her layer of decryption to obtain g ,si . These g ,si are hashed to
obtain the final keys which are then used to decrypt the
Enci received in the first step. Note that if the number of
messages is not a multiple of 2κ , the sender can sample extra
elements and encrypt them to input them in OT1. After receiv-
ing the encrypted elements from the receiver, he can discard
the elements at the indices where the extra elements have
been placed in the OT2 step. Also, if the receiver tries to
attack the protocol by manipulating the cipher texts after
the re-randomization step, she will not be able to receive
meaningful keys for the correct decryption, she can gain no
information regarding the sender’s messages or permutation
applied on encrypted messages.

6 Committed receiver oblivious transfer

An oblivious Transfer instance transfers one message Mb

where b � {0, 1} of the two messages M0 and M1 from the
sender to the receiver with bit b. In our protocol which uses

DOT (which in-turn uses OT1), we further require the bit b to
be a bit of the signing-key of the receiver. With a simple OT1,
the sender can not be sure if that is the case. To overcome
this, we propose the committed receiver oblivious transfer
(CROT) primitive.

In CROT, the receiver forwards a non-interactive zero
knowledge (NIZK) proof of knowledge to prove that the bit
inputs from the receiver are in fact bits of the signing key.
The functionality of the protocol CROT is presented in the
Fig. 6. The functionality FC R O T interacts with the sender S
and receiver R. The sender has 2κ messages Mi , j , i � [0, κ
−  1], j � 0, 1. The receiver has bits si which form the secret
key sk of the key pair (sk , pk). The adversary A  con-trols the
communication and the delivery of the messages.

The sender S uses the session id sid and tag inputS
to forward the messages Mi , j to the functionality and to
initiate the protocol instance. The functionality stores the
sender input messages using the record S, Mi , j , sid . The
functionality intimates the initiation of the session to the
adversary and the receiver using the messages input,
intd respectively. Upon the intimation, the receiver R for-
wards the bits si with the inputR tag to the functionality.
After receiving the message (inputR, si , sid), the function-
ality stores the record (R, si , sid) and intimates the adversary
that the input has been received. The adversary sends the

1 2 3



i

i =0

i =0 i

i

i

DL

Pepal:: penalizing multimedia breaches and partial leakages

Fig. 6 Ideal functionality of CROT

messages deliverS and deliverR to ask the function-
ality to deliver the outputs to the sender and the receiver.
Upon receiving deliverS, the functionality checks if a
record R, si , sid  is stored and if yes, it sends the message
(delivered, sid) to the sender. On receiving the message
(deliverR, sid), the functionality checks if there is a
corresponding record S, Mi , j , sid . If it exists, it verifies
whether the bits si forwarded by the receiver correspond to
the secret key (sk ) of the public key pk. On successful veri-
fication, it forwards the messages Mi ,si to the receiver.

We depict the construction of the protocol in Fig. 7 .
Construction The protocol construction for the ideal func-
tionality FCROT as given is the Fig. 6 is presented here. The
sender has messages Mi , j for 0 ≤  i ≤  κ −  1 and j � {0, 1}.
The receiver has a signing key sk (si for 0 ≤  i ≤  κ −  1 are the
bits of sk). The sender and receiver inputs are modelled using
the inputS and inputR messages of the function-ality;
the sender initiates the protocol using the inputS
message. Given a multiplicative group G and its generator g,
the sender initially chooses a random value a ←  Zq  and for-
wards h =  ga to the receiver. This would be the Setup phase.
In the next Commit and Prove phase, the receiver chooses ran-
dom ri ← R  Zq and computes ci =  gri hsi for 0 ≤  i ≤  κ − 1.

455

The c values are forwarded to the sender as commitments
to the bits si . The receiver also forwards r =        κ −1 2i ri to
the sender. Along with these, for 0 ≤  i ≤  κ − 1,  the receiver
forwards non-interactive zero knowledge (NIZK) proofs of
knowledge of exponents [17] ri and si such that ci =  gri +asi .

Each of these NIZK proofs is realized using the stan-
dard Fiat-Shamir transformation [25] of an interactive sigma
protocol for Pedersen commitments in the random oracle
model. Following the formal symbolic notation introduced
by Camenisch and Stadler [17], each proof is depicted as
PoK{(ri , si )|gri hsi } in Fig. 7. This phase is used by the
receiver to prove that the bits si used for the transfer are
indeed the bits of the signing key sk. The sender verifies if

c =  gr pka for the computed c = κ −1 c(2i ). He also
verifies the NIZK proof. If both the verifications succeed,
he proceeds with the protocol, else, aborts. The verification
would also fail if ( pk, sk) are not a key pair. This verification
corresponds to the verification in the ‘Receiver output’ step
of the functionality of Fig. 6.

After successful verification the sender computes the keys
ki , j =  H ((ci · h− j )a ) for each 0 ≤  i ≤  κ − 1  and j � {0, 1}.
The sender verifies if the receiver computed the keys using
the verification step similar to Verified Simplest OT [22]. He
forwards the challenges pi =  H (H (ki ,0)) � H (H (ki ,1)) for
each i and receives the responses in the form of p and the
sender verifies if p =  H (H (ki ,0)). The keys ki , j are used
to encrypt messages Mi , j respectively to obtain the cipher
texts Ci , j . The cipher texts Ci , j are forwarded to the receiver
who attempts to decrypt the blocks Ci ,si using the keys ki ,si

finishing the Transfer phase. The receiver can not compute
the keys ki ,1−si (follows from Lemma 1 of [19]) and so can
not decrypt Ci ,1−si . It can be observed that at the end of the
protocol only the receiver obtains an output in the form of the
messages Mi ,si , this is modelled throught the output mes-
sage in the ‘Receiver output’ step of the functionality. One
can observe that the protocol does not enforce the receiver to
use “bits", if the receiver uses any other values other than bits
in CROT, the receiver receives encryptions which can not be
decrypted.

The model for CROT includes static corruption of parties,
modelling H as random oracle and group G being Gap-DH
[27] while the encryption used is symmetric, non-committing
and robust [19].

Theorem 2 The CROT protocol UC-realizes the ideal func-
tionality FCROT in the FZ K -hybrid model under the following
assumptions:

• Corruption Model: static corruption
• Hybrid Functionalities: H is modeled as a random

oracle and authenticated channels between users are
assumed.

1 2 3



2

2

456 E. V. Mangipudi et al.

Fig. 7 Committed receiver
oblivious transfer (CROT)
Protocol

• Computational Assumptions: G is Gap-DH. The sym-
metric encryption used is non-committing and robust.

7 The Pepal: protocol

Here, we detail the steps of the Pepal: protocol which uses
DOT with CROT. The watermarking and the DOT protocol
are the off-chain cryptographic components while the smart-
contract and the deposit are the on-chain parts.

1. NetworkSetup: The sender and receiver setup their Bit-
coin identities by generating secret key-public key pairs;
the sender has the document M .

2. DepositSetup(sk, t , V alue): A time-locked bitcoin
deposit is created by the receiver with the signing key sk
for a time t and for a amount of V alue. The deposit is a
2-of-2 multisig deposit requiring the secret keys of both
the sender and the receiver to transfer the funds.

3. WaterMark(M ): The document M is broken into κ
blocks Mi , 0 ≤  i ≤  κ −  1 for a κ-bit long sk and
each block Mi is watermarked to generate two versions
Mi ,0 , Mi ,1. Any watermarking scheme which satisfies
the previously mentioned properties (refer Sect. 3) can
be used.

4. DOT with CROT(Mi ,0 , Mi ,1 , sk): The Doubly Oblivi-
ous Transfer protocol, used to transfer the document,
takes the watermarked blocks as input. In Pepal:, the
DOT protocol instead of using OT1, uses CROT. The pro-
tocol is same as the general case of DOT (as shown in Fig.

5 of Appendix) but uses CROT instead of OT1. The sender
watermarks the document blocks to obtain Mi , j , gener-
ates keys from sampled group elements and forwards the
permuted symmetric encrypted versions of the blocks to
the receiver. He then encrypts the group elements using
El-Gamal encryption to the key pk =  pkS � pkR where
pkS , pkR are the public keys of sender and receiver. The
sender inputs encrypted elements in a permuted order to
the CROT protocol. The receiver after proving in zero
knowledge that the input to the protocol is her signing
key sk, receives a set of encrypted elements which she
re-randomizes and sends back. The sender, decrypts his
layer of encryption, inverts the applied permutation to
obtain the elements in their original order and forwards
them to the receiver who will be able to decrypt them.
The appropriately decrypted symmetrically encrypted
blocks are then joined together to form the receiver’s
version of the document Msk .

5. Penalize(Msk , skS ): Upon revelation of the document,
the receiver’s secret key sk is extracted from the docu-
ment Msk and is used with the sender’s secret key skS

to transfer the deposited funds to the sender to penalize
the receiver.

Utilizing Bitcoin Before the Pepal: protocol begins, after the
two parties agree on the Pepal: process, the sender shares
his/her public key pkS with the receiver to create a deposit.
The sender will assert that the receiver creates a transaction T
X that is valid for a mutually agreed upon time t , and can be
redeemed by the sender instantly with the signing keys of the

1 2 3



Pepal:: penalizing multimedia breaches and partial leakages

sender (skS) and the receiver(skR). Here, the deposit should
hold the funds equal to an agreed upon value V alue. Ver-
ifyDeposit(T X) at the sender verifies the above mentioned
criterion. This algorithm receives the hash of the transac-
tion as an input and verifies that the transaction meets the
above mentioned criteria, i.e. it is a valid deposit that directs
V alue to the sender if the sender has both the signing/private
keys. Earlier versions of Bitcoin allowed senders to broadcast
time locked transactions and these transactions would be in
the unverified transactions pool until the time lock expired or
an unlocking scriptSig was provided by the spender of T X .
However, current (as of February 2019) Bitcoin transaction
does not permit nodes to propagate transactions that have an
active time lock. Therefore, the receiver sends T X over any
secure communication channel so that the sender can verify
and sign the transaction. Once the document becomes public,
we are assured from the watermarking scheme that the leaked
copy of the document will have the receiver’s signing key.
Using the extraction algorithm Extract(M , Msk) the sender
can reconstruct the signing key sk. Once the sender has sk,
he can sign the transaction T X with the Sign(T X , sk) and
broadcast the signed transaction directing the funds in T X to
his Bitcoin address.

Note that, if the sender wishes to release the data without
any penalization (before the condition is met), he can forward
the (partial) signature using his secret key to the receiver who
can use it along with signature with own secret key to obtain
the deposit.
Ideal functionalityFig. 8 presents the ideal functionality
FPepal: for Pepal:, while Theorem 3 proves its security.

The functionality FPepal: interacts with the sender S
and receiver R. The sender has 2κ watermarked messages
Mi , j , i � [0, κ −  1], j � 0, 1. The receiver has bits si which
form the secret key sk of the key pair (sk , pk). While for-
warding the input the sender also forwards a permutation
π (·) of indices [0, κ −  1]. Before delivering the messages
Mi ,l , l =  sπ (i ) to the receiver, the functionality checks if the
input bits si form the secret key sk corresponding to the
public key pk.

Here we show that the functionality achieves the desirable
properties discussed in Sect. 2. The properties of sender and
receiver privacy are trivially satisfied by the functionality as it
does not reveal any information except transferring the corre-
sponding watermarked blocks to the receiver. If the receiver
discloses the document, the sender can extract the embedded
watermark bits and hence the signing key of the receiver, thus
satisfying the revealing property. If the sender tries to falsely
accuse the receiver by revealing the document in any form,
the receiver does not lose the deposit as the sender does not
have the receiver’s key without disclosure, this achieves the
sender integrity property. Though the penalization is shown
as a step of Pepal:, as it takes place outside of the transfer

457

Fig. 8 Ideal functionality of Pepal:

mechanism after the data breach in a non-interactive way, it is
not included in the ideal functionality of the Pepal: protocol.

Theorem 3 The Pepal: protocol securely implements the
ideal functionality FPepal: in the F D O T , FCROT hybrid model
under the following assumptions:
Corruption Model: static corruption
Hybrid Functionalities: H is modeled as a random oracle
and authenticated channels between users are assumed.
Computational Assumptions: CDH and DDH are assumed
to be hard in G,  G is Gap-DH. The symmetric encryption
used is non-committing and robust.

7.1 Illustration

We illustrate the utility of Pepal: with DOT using CROT with
an example. The sender can break the document down into
more than κ blocks, say 2κ , to perform CROT twice, there by
embedding the receiver’s key two times. The finer he breaks
the document, the more number of times he will be able to
embed the receiver’s key and so can extract more number of
bits upon partial disclosure. For a receiver with 256 bit key,
the sender for embedding the key twice divides the document

1 2 3



1

1

2

2

2

2

m m

1

458

Table 1 Time (mean ±  standard deviation) taken (in seconds) for steps
of the protocol when signing key is embedded for  =  1, 4 and 16,  is the
number of copies of secret key embedded in the data

Watermarking Full protocol

 =  1                             0.357 ±  0.009                            1.737 ±  0.226

=  4                             1.346 ±  0.213                           16.067 ±  0.638

=  16                           1.643 ±  0.283                           83.101 ±  1.623

Fig. 9 Number of bits revealed to sender upon dishonest disclosure
by receiver when Pepal: is employed with OT2 and DOT with 256-bit
signing key.  is the number of copies of secret key embedded in the
data

into 512 blocks and creates two watermarked versions for
each of the 512 blocks and wishes to transfer 512 messages.

The receiver wishes to selectively reveal parts of the doc-
ument to the public while not revealing too much of her key
bits to the sender. It is understood that the receiver reveals
at least enough number of blocks (not too few) to carry use-
ful/sufficient information. Let us assume she wishes to reveal
100 document blocks. We wish to compare how many bits
she will actually reveal to the sender when she reveals 100
document blocks when Pepal: with DOT is used, to a sce-
nario where just OT2 is used to transfer the messages instead
of DOT.

If the sender uses just OT1 for the message transfer, he
inputs one pair of messages for each OT1 and performs 512
such OT1 instances to transfer the 512 messages. In this case,
the receiver knows which document block has been obtained
using a particular key bit and so knows which two blocks have
a certain key bit embedded in them. As she knows which two
blocks have the same bit embedded in them, she will reveal
50 such pairs (with the same key bit) to the public so that the
sender can learn only 50 of her signing key bits .

E. V. Mangipudi et al.

However, if the sender uses DOT with CROT to transfer the
document and the receiver decides to reveal 100 document
blocks, as she does not know which key bit is embedded in a
certain document block, she randomly picks 100 document
blocks and reveals to the public. The expected number of
key bits revealed to the sender in such a scenario would be
90.3 for 100 blocks as opposed to 50 bits with just OT1.
Following [28, 45], the expected number of bits revealed to
the sender when m blocks of the document are released with κ
-bit key being watermarked over  times in the document is κ
1 −  (κ−1)�/κ� .

Figure 9 indicates the number of bits revealed to the sender
against the percentage of blocks revealed to the public when
the signing-key is watermarked times with  � {2, 4, 8, 16}.
When the key is embedded 8 times, a leakage of 20% of the
document/file can leak up to 211 bits of the key whereas,
when it is embedded 16 times, even a 15% leak reveals as
many as 235 bits. This scenario is particularly useful with
larger files like video files, where the key can be embedded
many number of times such that even a minor clip of the video
can reveal close to the whole of the signing key. The plot in the
Fig. 9 compares the number of signing-key bits revealed to
the sender when Pepal: uses DOT and OT2. It clearly indicates
that higher the number of times the key is embedded, higher
are the number of bits revealed to the sender upon leakage.
However, one has to note that the maximum number of times
a key can be embedded by dividing the document depends
on the document and its entropy.
Computation and Communication Overhead For the transfer
protocol, the number of exponentiations at the sender and
receiver is linear in . When DOT uses CROT, the number of
exponentiations performed by the sender would be 11κ +
and by the receiver would be 7κ . The communication in
the DOT protocol involves forwarding two versions of AES
encrypted blocks, messages of CROT and forwarding of κ
ElGamal encrypted points by the receiver and the sender. In
CROT, the sender forwards 2κ ElGamal encrypted elements
while the receiver forwards 3κ elements including the proof
of knowledge messages.

8 Implementation and analysis

We have implemented the Pepal: protocol as a single-
threaded program and analyzed its performance on a MacOS
machine with 3.1 GHz Intel Core i7 and 16 GB RAM. Our
implementation involves the DOT protocol with robust water-
marked images and a claim-or-refund contract as a Bitcoin
script. An execution run involves the transfer of an image to
the receiver, and we examine the execution times for the dif-
ferent involved modules. The receiver’s key is 256-bit long

1 2 3



Pepal:: penalizing multimedia breaches and partial leakages 459

Fig. 10 Original and
reconstructed images

and the sender breaks the document into blocks before pro-
ceeding with the protocol.
Watermarking The sender, after creating the document
blocks, watermarks each block with 0 and 1 to generate two
versions. We employ the watermarking system by Meerwald
[38] which implements the Cox algorithm [20] of robust
watermarking for the image blocks. The Cox algorithm is
well-studied and benchmarked against several attacks [11].
In our scheme, we watermark the image document by
embedding the key multiple times, Table 1 indicates the
watermarking time taken where the 256-bit is embedded for
=  1, 4 and 16 indicating embedding once, 4 and 16 times. For
=  1, 4 the document in divided into 256 and 1024 blocks
respectively which are transferred using the DOT pro-tocol to
the receiver who reconstructs the image from the received
blocks. For demonstrative purposes, the original image
before watermarking and the image reconstructed at the
receiver for  =  1 are available in Fig. 10. While we use the
Cox algorithm which is not proven to be robust, we reiterate
that depending on the data type and application, any robust
watermarking scheme can be used in our protocol for that
specific application. Works such as [36], [37], [24] present
different audio watermarking schemes while works
like [35], [46] deal with robust video watermarking. For soft-
ware watermarking, schemes suggested in [44], [33] can be
considered.
Cryptographic Module - DOT For the cryptographic part, we
use the RELIC library [8]. The receiver’s key is 256-bit long.
The sender breaks the document into blocks, encrypts each
of the watermarked document and forwards the blocks to the
receiver in thefirst step of DOT protocol. The encryption used
to for this step is AES in the counter mode. The sender gener-
ates group elements while participating in the DOT protocol
to transfer the blocks which are ElGamal encrypted, which
are later re-randomized by the receiver. The receiver decrypts
the AES encrypted document blocks with the keys obtained
through the ElGamal encryption and oblivious transfer.

Table 1 provides the computation timing details for the
complete protocol i.e., the time including breaking the docu-
ment into blocks to the point where the receiver reconstructs

the document from received watermarked blocks. It presents
the statistics of execution times taken over 100 runs of
the experiment. Notice that the timing values reported are
when the process is running in a single-thread. With multi-
threading and pre-processing ElGamal encryption exponen-
tiation, we expect significant improvement in performance
and reduction in timing. Note that each individual step of the
transfer protocol can be highly parallelized. While transfer-
ring a large volume of data, the sender can divide the data
into multiple parts and run the transfer protocol on each part
such that  copies of the key are watermarked in each part.
Each instance of transfer protocol can be run in parallel.

To simulate the dishonest breach and eventual procure-
ment of the leaked document by the receiver, the recon-
structed image is sent to the sender of the document. The
sender runs the key-extraction algorithm on the obtained
image and extracts the receiver’s key to perform the penal-
ization.

9 Discussion

9.1 Multiple Receivers

In a scenario involving multiple receivers of the same docu-
ment, the sender can embed the signing key of a each receiver
multiple times into each receiver’s version of the document.
He can do so by dividing the document into higher number
of parts compared to the receiver’s key length. This ensures
that, in case of collusion and each receiver contributing a
small portion of his document while colluding, the sender
can still extract considerable amounts of signing keys from
the revealed document.
Contracts In Sect. 3, we developed a penalization smart
contract for the Bitcoin scripting system, which intention-
ally has a limited set of instructions. Systems like Ethereum
[5] expand this set of instructions into a fully-featured pro-
gramming language allowing it to perform much elaborate
tasks where it is easily possible to write our claim-or-refund
contract. However, despite the much better expressivity, it

1 2 3



460

does not seem to be possible to create an elaborate contact
that can efficiently substitute the required DOT protocol and
robust watermarking scheme.We implemented the penalizing
claim-or-refund smart contract as a Bitcoin smart contract as
well as a Hyperledger chaincode, as they allow the systems
to be executed in a permissionless as well as permissioned
blockchain setting. In the future, it would be interesting to
create similar solutions using Solidity over the Ethereum
network that can at least partially reduce the required cryp-
tographic tools.
Fairness The receiver deposits the bitcoins before the com-
mencement of the protocol and so, if the document transfer
does not go through, his funds will be locked till the end of the
deposit time period. This is not ‘fair’ for the receiver. How-
ever, in a more realistic setting, in such a scenario the parties
would just re-run the protocol and transfer the document.

In the applications where the protocol is used, the sender
and the receiver identify themselves to each other with pub-
licly verifiable identities and hence are aware of the identities
of the parties they are interacting with. The sender of the
data can not abort the protocol multiple times in a wide
spread manner as the receiver will simply stop interacting
with the sender. He can do that upon noticing the protocol
being aborted more than certain number of times there by
locking his funds.
Miner The receiver can indeed be a miner in a Bitcoin sys-
tem. He can try to pre-mine transactions to escape penalty
incase of disclosure. This scenario can be prevented by the
approach taken in [43, Sec. 6]. In case the sender has the
knowledge only of the breach without having access to the
revealed document, he can choose to make the watermarking
algorithm’s private key public to make the receiver lose her
deposit.
Data CustodyIn case of storing data at a custodian, the user
should be retrieving or downloading the data after the end of
time period, this is because if the sender retrieves the data,
he can get a copy of the receiver’s data with receiver’s key
embedded in it, he may reveal it to the public and try to
blame the receiver for the leak. In such a scenario, the parties
can agree to retrieve the deposit and nullify the contract and
when the sender decides to store the data again, can perform
the protocol. Another way is to have a mechanism in which
along with the cooperation of the sender, the receiver can
forward a copy of the data with the watermark stripped, such
an approach can be looked at in the future.

10 Related work

A closely related subject to penalizing data breaches, one
that is well-studied, is traitor tracing [16, 18]. In a traitor
tracing scheme, decryption boxes with unique private keys
(for a common public key) are distributed to a number of

E. V. Mangipudi et al.

subscribers. If a device is reverse-engineered and the key is
leaked, the device it came from can be determined by the
service provider.

Kiayais et al. [32] propose a communication optimal
asymmetric fingerprinting protocol where the sender for-
wards different versions of data to the receivers. If any subset
of users/receivers collude to produce a pirate copy of the
original file/data, the sender can implicate at least one of the
colluding parties to a third party judge. The proposed pro-
tocol is communication rate (ratio of size of data to the size of
transmission length) optimal protocol based on Tardos
codes. Each of the receivers is associated with code word
and the sent message is divided into parts with two ver-
sions of each part. The receivers obtain parts of the data
corresponding to the symbols of the codeword. When they
collude, the resulting data corresponds to a codeword which
is implicated. This approach requires the total document to
be reconstructed from the collusion to recover the codeword
. Dwork et al. [23] introduce the idea of using secret informa-
tion (like a credit card number) which is revealed to the other
party upon unauthorized sharing of the data. The aim of the
work was to prevent the reduction in the amount of data trans-
fer for unauthorized sharing. The adversarial party either has
to transfer all the data or lose their secret information to the
third party. Kiayias and Tang [30] propose leakage deterring
cryptographic primitive schemes where any unauthorized use
or transfer of the primitive can result in the secret data (key)
being revealed which is embedded in the public data (key)
associated with the primitive. However these works require
the complete data to be revealed after collusion or use of the
primitive. In this work, we consider the two party scenario
and focus on the partial leakage of the data which makes it
challenging.

Kiayias and Tang [31] add a Bitcoin smart contract to hold
a bond that is recoverable. This body of work has limited
applicability to our Pepal: problem for three main reasons:
(1) we want to detect leaked documents that have been mean-
ingfully written, not keys which are arbitrary, random values;
(2) we want the entity distributing the values to not learn the
value until it is leaked; and (3) unlike in the smart contract
variant [31], we cannot have the provider provision the sign-
ing key for use by both parties. For these reasons, we do not
build our solution from traitor tracing schemes.

In another line of work, Nasir et al. build a seller-buyer
watermarking scheme in [39] where the watermark embed-
ded in the document is not known to seller/sender but can
identify the buyer once the document is distributed. The main
drawback of their scheme is the requirement of a third trusted
authority for providing the watermark for the buyer, also the
sender needs to go through the legal procedure and prove to
the judge that the buyer is indeed the one who leaked and the
penalization is through court system.

1 2 3



Z K

i

DL

Pepal:: penalizing multimedia breaches and partial leakages 461

In [10], Andre et al. propose a zero-knowledge proof based
protocol for providing proof of ownership of the document
but does not involve proving that a certain party is the leaker
or a way to penalize the leak.

Using bitcoin contracts for collatorizing the fair and cor-
rect execution of cryptographic protocols has been explored
earlier [12, 15, 34]. Our bitcoin contract is a standard claim-
or-refund transaction common in this literature. The main
difference is that one party must prove that the signing key
used in this transaction is consistent with the one taken as
input to a private computation.

Fig. 11 1-out-of-2 Oblivious Transfer [22]

11 Conclusion

In this work, we devise and implement the Pepal: proto-
col that disincentives intentional or unintentional multimedia
breach through automated penalization. Our aim here is to
raise the bar for the data receivers/custodians by introducing a
complementary security mechanism that is inexpensive,
automated, and is not restricted by the geo-political bound-
aries.

To realize our protocol, we have employed robust water-
marking and a claim-of-refund smart contract, and pro-
posed a new primitive called Doubly Oblivious Transfer
(DOT). DOT along with committed receiver oblivious trans-
fer (CROT) not only ensures that the signing key used by the
receiver for the deposit is same as the one used to obtain the
document, but also provides no information to the receiver
about which of her signing key bits has been embedded in a
certain document part. We implement the protocol and
observed it to be practical and easy to deploy.

Funding This work has been supported by National Science Foundation
(NSF) under grant CNS-1846316.

Availability of data and material Any further data is available on
request from the authors.

Code Availability The code for the project can be found at https://github.
com/easwarvivek/Pepal

Declarations

Conflicts of interest The authors of this article declare that they have
no conflict of interest.

Appendix A: 1-out-of-2 Verified Simplest
Oblivious Transfer:

In this protocol, by Doerner et.al. [22] (an augmented
version of Oblivious Transfer by Chou et al. [19]), given a
multiplicative group G  and its generator g, the sender ini-
tially chooses a random value a ← R  Zq  and the receiver

chooses a random value r ← R  Zq . The sender transmits
h =  ga to the receiver who computes c =  gab+r and trans-
mits to the sender. The sender then computes two keys k0

and k1 as k0 =  H (ca ) and k1 =  H (ch−1)a and computes a
challenge p =  H (H (k0)) � H (H (k1) and forwards it to the
receiver. The receiver computes the key kb =  H (hr ) and
returns p =  H (kb) � pb. After verifying if p =  H (H (k) ), the
sender encrypts M0 and M1 using these two keys gen-
erating C0 and C1 which are then forwarded to the receiver.
The receiver decrypts the message Mb using the key kc =  hr .
Depending on b, only one of k0 and k1 would be equal to gar

computed by the receiver. The other key gar−r 2 
can not be

computed by the receiver and hence learns no information
about Mb−1 . As the sender just encrypts and forwards the
two messages, learns no information about the bit b. Fig-
ure 11 provides the depiction of the protocol. The advantage
of adding the verification step is that it forces the receiver to
compute the keys before receiving the encryptions and makes
the protocol (UC)secure in the real-world ideal paradigm.
Functionality F D L [22] The functionality is parameterized
by group G  and runs with two parties P1 and P2. The parties
can be sender S and receiver R.

Proof : On receiving (prove, a , g) where a � Zq , g � G
from party P , store this message. On receiving, (prove, h, g)
from party Pj , where h , g � G,  if h =  ga , send (accept) to
Pj , otherwise send fail to Pj .

The parties can be sender S and receiver R. The parties use
the functionality F Z K to prove in zero-knowledge, that they
own the secret keys of the corresponding public keys.

Appendix B: Forwarded Proofs for DOT, CROT
and Pepal:

Theorem 1 The DOT protocol UC-realizes the functionality
FDOT in the F O T -hybrid model under the following condi-
tions:
Corruption Model: Static corruption (the sender or receiver
is corrupted at the beginning of the protocol).

1 2 3

https://github.com/easwarvivek/Pepal
https://github.com/easwarvivek/Pepal


2

DL

Z K

1

1

2

2

Z K

2

2
1

1 1

2

DL

462

Hybrid Functionalities: H is modelled as a random oracle
and secure channels between the parties are assumed.
Computational Assumption: The encryption scheme used
in the initial step is symmetric, non-committing and robust
[19]. Group used for OT1 module G is a Gap-DH group.

Proof We prove the security of DOT by constructing a sim-
ulator which generates an indistinguishable view in the real
world - ideal world paradigm for the adversary. The parties
use the functionality F Z K to prove in zero-knowledge, that
they own the secret keys of the corresponding public keys.

Malicious Sender

• Receive (prove, skS, pkS) on behalf of F D L . On accept-
ing, forward accept to the sender, else abort.

• Answer all oracle queries of the sender randomly and
store the query and reply pairs in the form of (qk , rk ).

• Receive the encrypted messages Enci , i � {0, 1} from
the sender and participate in oblivious transfer for the
next step.

• Set the bits si , i � {0, 1} randomly with values from {0, 1}
as choice bits before participating in the OT2 protocol.

• For OT2 part of the protocol, invoke multiple instances
corrupted sender phase of the simulator of the UC-secure
OT [22] developed by Chou et al. [19, 27] (call it, SO T ).
The simulator SO T extracts the sender inputs for each of
the instances; obtain the inputs.

• Perform the operations like an honest receiver. Receive
the elements ui ,si and try to decrypt (own layer of encryp-
tion, the sender is expected to encrypt the messages with
Epk (.)).

• If any of the received elements results in an error dur-
ing decryption, abort. Else, re-randomize the encryption
using R p k (.) to obtain vi ,si and forward them back to
the sender. Receive an encrypted group element as xc,sc ,
try to decrypt and hash it to obtain the decryption key.
Decrypt one of the received messages with the obtained
key. If it results in an error, abort.

• Decrypt the initial Enci as follows: for each i , k , from
the initially stored pairs (qk , rk ), perform Decrk (Enci ).
The first value that gets decrypted meaningfully is set
as Mi for any i . If no key rk decrypts meaningfully, set
Mi =�.

• Obtain the choice bit c of the sender as follows: during
the OT1 protocol, the simulator SOT extracts the message
inputs of the sender side [19] and forwards them to SDOT .
For each OT1 instance i , SDOT receives two messages
gi ,0 , gi ,1 from SO T , the simulator SDOT stores all the
elements in the form of gi , j . For each i , the simulator
checks which of the elements gi , j , j � {0, 1}, matches
with the decrypted element (obtained from sender in the

E. V. Mangipudi et al.

last step of the protocol). Whenever a match is seen, c is
set to i .

• Forward the messages Mi , i � {0, 1} and choice bit c to
the ideal functionality FDOT .

The adversary can not distinguish between a real world
view and simulated view owing to the following facts: the
simulator SOT is UC-Secure [22]; ElGamal encryption offers
semantic security when DDH is hard; the real world hon-
est receiver’s output will be different only if the simulator
decrypts the encryptions received to a different value apart
from the ones used by the sender, but this happens with a neg-
ligible probability owing to the robustness of the encryption
scheme.

Malicious Receiver

• Receive (prove, skR , pkR) on behalf of F D L . On accept-
ing, forward accept to the receiver, else abort.

• Generate two strings C1 ←  A1 (1λ ) and C2 ←  A1 (1λ )
and forward to the receiver.

• Sample four group elements gi , j for i , j � {0, 1} and
encrypt them using ElGamal encryption Epk (.) to obtain
ui , j .

• Performs two instances of OT1 and use ui , j as inputs for
instance i of OT .

• The receiver inputs si to the OT2 instance i . For the OT2

protocol, the simulator invokes the corrupted receiver
phase of simulator of Verified Simplest Oblivious Trans-
fer [22] (call it SO T ).

• Obtain re-randomized elements vi ,si , decrypt own layer
of encryption using Dsk S () to obtain xi ,si and forward
xc,sc for a randomly chosen bit c.

• Answer all oracle queries randomly except at the points
gi , j . When queried on any of the points gi , j , sends the
bits j , j to the functionality and obtain the message m. •

Reply to the query with a key k ←  A2 (C p , m ) where p
is uniformly picked from {1, 2} for every instance of the
simulation.

The receiver can not distinguish the real and simulated
view. This is because: ElGamal encryption offers semantic
security when DDH is hard, OT1 used is UC-secure [22] and
the fact that when the simulator does not abort, the indis-
tinguishability holds from non-committing property of the
encryption scheme. The UC-security of the DOT follows
from Definition 1.

Theorem 2 The CROT protocol UC-realizes the ideal func-
tionality FCROT in the FZ K -hybrid model under the following
assumptions:

Corruption Model: static corruption

1 2 3



Z K

s

aκ −1 κ −1
i =0 i =0

s

DL

exp
i

i

i i

i

i i

i

i

i
i

F

Z K

i

Z K

2κ

 1

1
2

Pepal:: penalizing multimedia breaches and partial leakages

Hybrid Functionalities: H is modeled as a random oracle
and authenticated channels between users are assumed.
Computational Assumptions: G is Gap-DH. The symmetric
encryption used is non-committing and robust.

Proof The simulator SCROT interposes between a corrupted
party and the CROT functionality FCROT. The verified OT is a
“Selective-Failure" Oblivious Transfer, in which the sender
can guess the choice bit of the receiver and if the guess is
correct, he will be notified it is correct and the receiver is not
informed of the same. However, in our CROT protocol, all
the messages are transferred simultaneously. For the sender
to guess the receiver’s choice bits, they need to guess all the
bits simultaneously. The probability of the sender guessing
all the receiver bits correctly is negligible.

Malicious Sender
The simulator SCROT interposes between a malicious

sender and the CROT functionality FCROT , it outputs the
sender’s messages Mi ,0 , Mi ,1.

• Receiver (prove, a , A) from sender on behalf of F R D L .
On receiving (accept,A) forward it to the sender, else
abort.

• Sample random values si , ri , i � [0, κ − 2 ]  and compute
the corresponding ci =  gri h i and compute sκ −1 , rκ −1

such that =  gr pk where r = 2i ri . Com-
pute ZK-PoKsπi proving the knowledge of ri , si for each
gri h i . Forward gr , ci , πi to the sender.

• Invoke F Z K to prove that the sampled bits correspond to
the public key pk

• Compute the pads ki , j =  H (ci · h− j )a . Compute the
expected challenges as p      =  H (H (ki ,0))�H (H (ki ,1))

• Upon receiving the sender’s challenges p , If for any
i , pi =  pexp, then set the p =  H (H (ki ,0)) and add
(guess, s) to the set G; Otherwise, let Q  be the set of
all queries made by the sender to the random oracle. If
there exists queries Q j such that such that H (Q j ) =
pi � H (H (ki ,1)) then set s  =  1. Otherwise set s  =  0.
Add guess, s  to the set G. Send the set G to FCROT . If
cheat-undetected is received, send k  =  H (H (ksi )) to
the sender. Otherwise send k  =  H (H (ks  

)) and halt.
• Upon receiving the cipher texts Ci , j decrypt them using

ki , j and send them to the functionality FCROT .

Malicious Receiver
The simulator interposes between the ideal functionality

FCROT and the malicious receiver. It outputs the choice bits si

of the receiver and the corresponding message chosen Mi ,si .
It makes use of the random oracle H and the functionalities

RDL
Z K

463

• Sample a � Z p  and compute ga to the receiver on behalf
of the functionality F D L .

• Receive gr , ci , πi from the receiver just like an honest
sender. Verify the proofs and abort if any of the forwarded
proofs fail.

• Compute the keys ki , j like an honest sender.
• Observe the random oracle queries of the receiver. If the

receiver ever queries ki ,0 set si =  0. If they every query
ki ,1 set si =  1. Once bi s are set, send si to the the func-
tionality FCROT and receiver no-cheat.

• Run the verification as the honest sender would.
• Upon receiving the messages Mi ,si      from the func-

tionality, set the corresponding ciphertexts as Ci ,si     =
Eki ,s (Mi ,si ) and set the other ciphertexts to random val-
ues.

In the malicious sender case, the first message received by
the consists of the gr , ci , PoK. Since r is picked randomly,
the view of the sender is identical in both the worlds. The
simulator SCROT receives the value a on behalf of the func-
tionality F D L and so can compute the values ri , ci such that
the zero-knowledge proof and verification check hold. It can
also compute the the keys ki , j and hence verify if the chal-
lenges received pi are correct.

During the verification phase of the transfer, the sender is
required to compute values H (H (ki ,0 )), H (H (ki ,1)), only
one set of the hashes are known to the receiver which cor-
respond to H (H (ki ,si )). To induce a selective failure, the
sender can try to guess the receiver bits and set random val-
ues for the opposite ones while calculating the challenges
pi , To guess all the bits correctly and simultaneously, the
sender succeeds only with negligible probability  1 . All the
oracle queries made by the sender can be used to compute
the sender’s guesses in the protocol which can be forwarded
to the functionality which aborts if the guesses are incor-
rect. After this point, the simulator behaves like an honest
real world receiver and forwards all the messages accord-
ingly and aborts under same conditions. There the view of
the malicious sender under the real world execution of the
protocol is indistinguishable from its view while interacting
with the simulator SCROT , he can distinguish the view with

no better probability than 2
κ .

In the malicious receiver case, h is chosen by the simu-
lator and ci is chosen by the receiver. These values fix the
computed keys ki , j to be computed. The receiver can not
guess the ki ,si values except with probability of  

κ for each.
When the receiver queries the random oracle, the simulator
records the queries and finds the corresponding choice bit si .
If the receiver can query the random oracle at ki ,si and ki ,1−si ,
then the simulator can not compute the choice bit. However
the receiver can not make both those queries, as any such
receiver breaks the CDH assumption. The rest of the simu-

1 2 3



Z K

2

Z K

DL

Z K

464

lator steps follow a honest sender and the view generated is
identically distributed to the real-world paradigm. Thus the
view of the malicious receiver is identical in the real world
and the ideal world paradigm if the CDH problem is hard in
the group selected.

Theorem 3 The Pepal: protocol securely implements the
ideal functionality FPepal: in the F D O T , F D L hybrid model
under the following assumptions:

Corruption Model: static corruption
Hybrid Functionalities: H is modeled as a random oracle
and authenticated channels between users are assumed.
Computational Assumptions: CDH and DDH are assumed
to be hard in G,  G is Gap-DH. The symmetric encryption
used is non-committing and robust.

Proof Pepal: protocol uses DOT which internally uses CROT
instead of multiple instances of the standard OT1 for the
transfer of messages/document blocks from the sender to
the receiver. The simulator for the Pepal: protocol simply
invokes the corresponding simulator SDOT which invokes
the simulator SCROT instead of instances of SO T . The UC-
security of the CROT protocol is already established through
Theorem 2.

Malicious sender
The simulator SCROT interposes between a malicious

sender and the Pepal: functionality FPepal:.

• Receive (prove, skS, pkS) on behalf of F D L . On accept-
ing, forward accept to the sender, else abort.

• Sample a random secret key skR and parse the bits of the
secret key into si , i � [0, κ − 1]  and participate in the DOT
protocol.

• Invoke the malicious sender phase of the simulator SDOT
for the same.

• The simulator SDOT receives the ElGamal encryptions
from the sender just as a receiver would

• For the message transfer, SDOT inturn invokes a single
instance of the malicious sender phase of the CROT simu-
lator SCROT (instead of multiple instances of SOT ) during
the transfer phase.

• The simulator SCROT after interacting with the malicious
sender, outputs the sender messages ui , j . Since the sim-
ulator acts as the receiver it has access to skR. It also has
access to skS through the FZ K functionality. Hence it can
decrypt the messages ui , j .

• After this the simulator behaves like a honest receiver
and participates in all the further protocol steps.

• The keys ui , j are used to decrypt the messages Mi , j .
Forward the messages Mi , j to the functionality FPepal:
as inputS, Mi , j , π, sid  for the session id sid.

E. V. Mangipudi et al.

Malicious receiver The simulator SCROT interposes between
a malicious receiver and the Pepal: functionality FPepal:.

• Receive (prove, skR , pkR) on behalf of F D L . On accept-
ing, forward accept to the receiver, else abort.

• Invoke the malicious receiver phase of the simulator SDOT
which forwards the encryptions of the keys.

• As a part of steps of SDOT , invoke the malicious receiver
phase of SCROT instead of multiple instances of the sim-
ulator SO T .

• SCROT outputs the choice bits si of the receiver.
• Forward the choice bits to the functionality FDOT to

obtain the messages Mi ,si .
• Use the receiver bits si through DOT simulator to set the

encryptions which can be opened by the receiver to the
values forwarded by the functionality FDOT .

The simulator SPepal: is the simulator SDOT which invokes
the simulator SCROT instead of multiple instances of SO T for
the transfer protocol. The UC-security follows from the UC-
security of the DOT and the CROT protocols. SD O T which
internally invokes SCROT (instead of SOT ), produces an indis-
tinguishable view for the adversary in the real world-ideal
world paradigm.

References

1. (2015) Data protection and breach. https://otalliance.org/system/
files/files/resource/documents/dpd_2015_guide.pdf

2. (2015) Man in the cloud (mitc) attacks. https://www.imperva.com/
docs/HII_Man_In_The_Cloud_Attacks.pdf

3. (n.d.) Data breaches. https://www.privacyrights.org/data-
breaches?title=&breach_type%5B%5D=267

4. (n.d.) Digital watermarking alliance. http://
digitalwatermarkingalliance.org/

5. (n.d.) Ethereum website. https://www.ethereum.org/
6. (n.d.) Friendmts. https://www.friendmts.com/nab-2017-

showcase/
7. (n.d.) Nsw data and information custodianship policy. https://

www.finance.nsw.gov.au/ict/sites/default/files/NSW%20Data
%20and%20Information%20Custodianship%20Polic%20v1-0.
pdf

8. (n.d.) Relic: efficient library for cryptography. https://github.com/
relic-toolkit

9. Adelsbach, A., Sadeghi, A.R.: Zero-knowledge watermark detec-
tion and proof of ownership. In: Information Hiding (2001a)

10. Adelsbach, A., Sadeghi, A.R.: Zero-knowledge watermark detec-
tion and proof of ownership. In: Moskowitz, I.S. (ed.) Information
Hiding, pp. 273–288. Springer, Berlin Heidelberg, Berlin, Heidel-
berg (2001)

11. Amer, I., Sheha, T., Badawy, W., Jullien, G.: A tool for robust-
ness evaluation of image watermarking algorithms. In: Elleithy, K.
(ed.) Advanced Techniques in Computing Sciences and Software
Engineering, pp. 59–63. Springer, Netherlands, Dordrecht (2010)

12. Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek,
L.: Secure multiparty computations on bitcoin. In: IEEE Sympo-
sium on Security and Privacy (2014)

1 2 3

https://otalliance.org/system/files/files/resource/documents/dpd_2015_guide.pdf
https://otalliance.org/system/files/files/resource/documents/dpd_2015_guide.pdf
https://www.imperva.com/docs/HII_Man_In_The_Cloud_Attacks.pdf
https://www.imperva.com/docs/HII_Man_In_The_Cloud_Attacks.pdf
https://www.privacyrights.org/data-breaches?title=&breach_type%5B%5D=267
https://www.privacyrights.org/data-breaches?title=&breach_type%5B%5D=267
http://digitalwatermarkingalliance.org/
http://digitalwatermarkingalliance.org/
https://www.ethereum.org/
https://www.friendmts.com/nab-2017-showcase/
https://www.friendmts.com/nab-2017-showcase/
https://www.finance.nsw.gov.au/ict/sites/default/files/NSW%20Data%20and%20Information%20Custodianship%20Polic%20v1-0.pdf
https://www.finance.nsw.gov.au/ict/sites/default/files/NSW%20Data%20and%20Information%20Custodianship%20Polic%20v1-0.pdf
https://www.finance.nsw.gov.au/ict/sites/default/files/NSW%20Data%20and%20Information%20Custodianship%20Polic%20v1-0.pdf
https://www.finance.nsw.gov.au/ict/sites/default/files/NSW%20Data%20and%20Information%20Custodianship%20Polic%20v1-0.pdf
https://github.com/relic-toolkit
https://github.com/relic-toolkit


Pepal:: penalizing multimedia breaches and partial leakages

13. Arun, V., Kate, A., Garg, D., Druschel, P., Bhattacharjee, B.: Find-
ing safety in numbers with secure allegation escrows arXiv preprint
arXiv:1810.10123 (2020)

14. Bast, C.M.: At what price silence: are confidentiality agreements
enforceable? William Mitchell Law Rev. 25(2), 627 (1999)

15. Bentov, I., Kumaresan, R.: How to use bitcoin to design fair pro-
tocols. In: ICC (2014)

16. Boneh, D., Franklin, M.: An efficient public key traitor tracing
scheme. In: CRYPTO (1999)

17. Camenisch, J., Stadler, M.: Proof Systems for General Statements
About Discrete Logarithms, p. 260. Technical report/Dept of Com-
puter Science, ETH Zürich (1997)

18. Chor, B., Fiat, A., Naor, M.: Tracing traitors. In: CRYPTO (1994)
19. Chou, T., Orlandi, C.: The simplest protocol for oblivious transfer.

In: LATINCRYPT (2015)
20. Cox, I.J., Kilian, J., Leighton, F.T., Shamoon, T.: Secure spread

spectrum watermarking for multimedia. IEEE TIP 6(12), 1673–
1687 (1997)

21. Cunningham, T.J., Huffman, B., Salmon, C.M.: Settlement trends
in data breach litigation (2014). https://www.financierworldwide.
com/settlement-trends-in-data-breach-litigation

22. Doerner, J., Kondi, Y., Lee, E., a shelat.: Secure two-party thresh-
old ecdsa from ecdsa assumptions. In: 2018 IEEE Symposium on
Security and Privacy (SP), pp 595–612, (2018) https://doi.org/10.
1109/SP.2018.00036

23. Dwork, C., Lotspiech, J., Naor, M.: Digital signets: Self-enforcing
protection of digital information (preliminary version). In: Pro-
ceedings of the twenty-eighth annual ACM symposium on Theory
of computing, pp 489–498 (1996)

24. Erfani, Y., Siahpoush, S.: Robust audio watermarking using
improved TS echo hiding. Digital Signal Process. 19(5), 809–814
(2009). https://doi.org/10.1016/j.dsp.2009.04.003

25. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to
identification and signature problems. In: Proceedings on Advances
in cryptology—CRYPTO ’86, pp 186–194 (1987)

26. Floyd, T., Grieco, M., Reid, E.F.: Mining hospital data breach
records: Cyber threats to u.s. hospitals. In: 2016 IEEE Conference
on Intelligence and Security Informatics (ISI), pp 43–48 (2016)

27. Genc, Z.A., Iovino, V., Rial, A.: The simplest protocol for oblivious
transfer revisited (2017). https://eprint.iacr.org/2017/370.pdf

28. Härder, T., Bühmann, A.: Database caching-towards a cost model
for populating cache groups. In: Benczúr, A., Demetrovics, J., Got-
tlob, G. (eds.) Advances in Databases and Information Systems, pp.
215–229. Springer, Heidelberg (2004)

29. Hourihan, C., Cline, B.: A look back: U.s. healthcare data breach
trends". (2008) https://hitrustalliance.net/content/uploads/2014/
05/HITRUST-Report-U.S.-Healthcare-Data-Breach-Trends.pdf

30. Kiayias, A., Tang, Q.: How to keep a secret: leakage deter-ring
public-key cryptosystems. In: Proceedings of the 2013 ACM
SIGSAC conference on Computer & communications security, pp
943–954 (2013)

31. Kiayias, A., Tang, Q.: Traitor deterring schemes: using bitcoin as
collateral for digital content. In: ACM CCS (2015)

32. Kiayias, A., Leonardos, N., Lipmaa, H., Pavlyk, K., Tang, Q.:
Communication optimal tardos-based asymmetric fingerprinting.
In: Nyberg, K. (ed.) Topics in Cryptology – CT-RSA 2015, pp.
469–486. Springer International Publishing, Cham (2015)

465

33. Kim, S., Wu, D.J.: Watermarking cryptographic functionalities
from standard lattice assumptions. In: Katz, J., Shacham, H. (eds.)
Advances in Cryptology - CRYPTO 2017, pp. 503–536. Springer
International Publishing, Cham (2017)

34. Kosba, A., Miller, A., Shi, E., Wen, Z., Papamanthou, C.: Hawk:
The blockchain model of cryptography and privacy-preserving
smart contracts. In: IEEE Symposium on Security and Privacy
(2016)

35. Lancini, R., Mapelli, F., Tubaro, S.: A robust video watermarking
technique in the spatial domain. In: International Symposium on
VIPromCom Video/Image Processing and Multimedia Commu-
nications, pp 251–256, (2002) https://doi.org/10.1109/VIPROM.
2002.1026664

36. Lei, B.Y., Soon, I.Y., Li, Z.: Blind and robust audio watermarking
scheme based on svd-dct. Signal Process. 91(8), 1973–1984(2011).
https://doi.org/10.1016/j.sigpro.2011.03.001

37. Lie, W.N., Chang, L.C.: Robust and high-quality time-domain
audio watermarking based on low-frequency amplitude modifica-
tion. IEEE Trans. Multimed. 8(1), 46–59 (2006). https://doi.org/
10.1109/TMM.2005.861292

38. Meerwald, P.: Watermarking source code. Online, (2005) http://
www.cosy.sbg.ac.at/~pmeerw/Watermarking

39. Memon, N., Wong, P.W.: A buyer-seller watermarking protocol.
IEEE Trans. Image Process. 10(4), 643–649 (2001). https://doi.
org/10.1109/83.913598

40. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system
(2008)

41. Rahulamathavan, Y., Rajarajan, M., Rana, O.F., Awan, M.S., Bur-
nap, P., Das, S.K.: Assessing data breach risk in cloud systems.
In: 2015 IEEE 7th International Conference on Cloud Computing
Technology and Science (CloudCom), pp 363–370 (2015)

42. Rogaway, P.: Formalizing human ignorance. In: Nguyen, P.Q.
(ed.) Progress in Cryptology - VIETCRYPT 2006, pp. 211–228.
Springer, Heidelberg (2006)

43. Ruffing, T., Kate, A., Schröder, D.: Liar, liar, coins on fire!: penal-
izing equivocation by loss of bitcoins. In: ACM CCS (2015)

44. Venkatesan, R., Vazirani, V., Sinha, S.: A graph theoretic approach
to software watermarking. In: Moskowitz, I.S. (ed.) Information
Hiding, pp. 157–168. Springer, Berlin Heidelberg, Berlin, Heidel-
berg (2001)

45. Yao, S.B.: An attribute based model for database access cost anal-
ysis. ACM Trans. Database Syst. 2(1), 45–67 (1977). https://doi.
org/10.1145/320521.320535

46. Zhang, J., Ho, A.T.S., Qiu, G., Marziliano, P.: Robust video water-
marking of h.264/avc. In: IEEE Transactions on Circuits and
Systems II: Express Briefs 54(2):205–209, (2007) https://doi.org/
10.1109/TCSII.2006.886247

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

1 2 3

http://arxiv.org/abs/1810.10123
https://www.financierworldwide.com/settlement-trends-in-data-breach-litigation
https://www.financierworldwide.com/settlement-trends-in-data-breach-litigation
https://doi.org/10.1109/SP.2018.00036
https://doi.org/10.1109/SP.2018.00036
https://doi.org/10.1016/j.dsp.2009.04.003
https://eprint.iacr.org/2017/370.pdf
https://hitrustalliance.net/content/uploads/2014/05/HITRUST-Report-U.S.-Healthcare-Data-Breach-Trends.pdf
https://hitrustalliance.net/content/uploads/2014/05/HITRUST-Report-U.S.-Healthcare-Data-Breach-Trends.pdf
https://doi.org/10.1109/VIPROM.2002.1026664
https://doi.org/10.1109/VIPROM.2002.1026664
https://doi.org/10.1016/j.sigpro.2011.03.001
https://doi.org/10.1109/TMM.2005.861292
https://doi.org/10.1109/TMM.2005.861292
http://www.cosy.sbg.ac.at/~pmeerw/Watermarking
http://www.cosy.sbg.ac.at/~pmeerw/Watermarking
https://doi.org/10.1109/83.913598
https://doi.org/10.1109/83.913598
https://doi.org/10.1145/320521.320535
https://doi.org/10.1145/320521.320535
https://doi.org/10.1109/TCSII.2006.886247
https://doi.org/10.1109/TCSII.2006.886247

