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AN OPTIMIZATION PARAMETER FOR SERIATION OF NOISY

DATA∗

MAHYA GHANDEHARI† AND JEANNETTE JANSSEN‡

Abstract. A square symmetric matrix is a Robinson similarity matrix if entries in its rows and
columns are non-decreasing when moving towards the diagonal. A Robinson similarity matrix can be
viewed as the affinity matrix between objects arranged in linear order, where objects closer together
have higher affinity. We define a new parameter, Γ1, which measures how badly a given matrix fails
to be Robinson similarity. Namely, a matrix is Robinson similarity precisely when its Γ1 attains zero,
and a matrix with small Γ1 is close (in the normalized ℓ1-norm) to a Robinson similarity matrix.
Moreover, both Γ1 and the Robinson similarity approximation can be computed in polynomial time.
Thus, our parameter recognizes Robinson similarity matrices which are perturbed by noise, and can
therefore be a useful tool in the problem of seriation of noisy data.

Key words. Robinson similarity matrices, Robinsonian matrices, unit interval graphs, seriation,
linear embeddings of graphs
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1. Introduction. Many real-life networks, such as online social networks, bio-
logical networks and neural networks, are manifestations of an underlying (hidden)
spatial reality. For example, members of a social network can be identified with nodes
placed in a metric space, whose coordinates represent the interests, backgrounds, and
other significant features of the users. The formation of the network is then modeled
as a stochastic process, where the probability of a link occurring between two nodes
decreases as their metric distance increases. A fundamental and challenging problem
in the analysis of a social network (or any other spatial network) is to uncover its
“hidden spatial layout”, i.e. to identify the metric space representation of the net-
work. Analysis and visualization of data becomes considerably more tractable when
the dataset is presented according to its spatial reality.

The classical seriation problem, introduced by Robinson in [22], can be viewed
as the special case of the spatial layout problem, restricted to one dimension. The
objective of the seriation problem is to order a set of items so that similar items are
placed closer to each other. The seriation question translates in a natural way into a
question regarding symmetric matrices. A symmetric matrix is a Robinson similarity
matrix, or Robinson matrix for short, if its entries are non-decreasing when moving
towards the main diagonal in each row or column. A symmetric matrix A is said to
be Robinsonian, if it becomes a Robinson matrix after simultaneous application of a
permutation π to its rows and columns. In that case, the permutation π is called a
Robinson ordering of A. If the entries of the symmetric matrix A = [Ai,j ] represent
similarity of items i and j, then the Robinson ordering represents a linear arrangement
of the items so that similar items are placed closer together.

The problem of recognizing Robinsonian matrices, and finding their Robinson
orderings, can be solved in polynomial time. See [19] for the first polynomial time
algorithm for this problem, and [24, 20, 15, 14] for more recent efficient algorithms.
Most of these algorithms are based on a similar principle; namely the connection
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between Robinsonian similarity matrices and unit interval graphs ([15, 14]) or interval
(hyper) graphs ([19, 24, 20]). A spectral algorithm based on reordering the matrix
according to the components of the second eigenvector of the Laplacian, or the Fiedler
vector, was given in [1], and was then applied to the ranking problem in [11].

The seriation problem has diverse and significant applications, from its origin in
archeological studies to recent applications to ecology and sociology. For a histori-
cal overview of the problem and its diverse applications, see [16]. In most of these
applications, it is natural to expect the data to be noisy. In that case, the optimal
reordering of a data-derived matrix may not be itself a Robinson matrix, but it will
be close to one. The question then becomes, to which extent a given matrix resembles
a Robinson matrix. All of the algorithms mentioned in the previous paragraph only
apply to noise-free Robinsonian similarity matrices.

In the presence of noise, the goal of the seriation problem is to find an “almost
Robinson” ordering of a given matrix, i.e. an ordering for which the reordered matrix
is closest to being Robinson. This question turned out to be much more challenging
than the error-free analogue. In fact, it is shown in [4] that the problem of finding
a reordering and a Robinson matrix which is the best ℓ∞-approximation is NP-hard.
In [5] a factor 16 approximation algorithm is given for the case of ℓ∞. NP-hardness
for a number of related problems is established in [2], where approximation by ℓp

distance is considered. Specifically, it is shown that for an integer p, the problem
of finding proper strong Robinson relations within specified ℓp distances of a given
matrix is NP-complete. A proper strong Robinson relation corresponds to an appro-
priate relabelling of the original matrix together with a Robinson matrix with certain
additional, stronger properties. In [10] (together with the references therein) a statis-
tical approach to the problem of seriation with noise is developed, where the error of
Robinson approximation is measured by the Frobenius norm.

If the appropriate labelling is given, then the problem becomes more tractable.
Now the problem is that of finding a Robinson matrix closest to a given matrix. For
the ℓ∞-norm, it is known that this problem can be solved in polynomial time since
an explicit closed form for the optimal solution can be easily given (cf. [23]). The
problem of finding the best ℓ1-approximation can be formulated as a linear program:
Minimize the linear function ‖A− R‖1 subject to the constraint that R is Robinson
similarity. The constraint can be expressed with O(n3) inequalities, and thus the
problem can be solved in polynomial time.

In this article, we develop new methods and algorithms which can be used for
seriation of noisy data. Our focus here is on formalizing the notion of a matrix being
“almost Robinson.” To do so, we introduce a parameter, which we call Γ1, that mea-
sures how much the local structure of a matrix resembles being a Robinson similarity.
Namely, Γ1 sums the magnitude of local violations to the Robinson similarity prop-
erty, and achieves the value 0 precisely when the matrix is Robinson. This parameter
is a natural tool for the seriation problem, and has been used in practice as a heuristic
to measure the amount of deviation from a Robinson form (see [3, 13]). Moreover,
Γ1 is simple to formulate, and can be computed in linear time. The main goal of this
paper is to show that if the number and magnitude of local violations is small, then
the matrix is indeed close, in the sense of ℓ1-norm, to a Robinson matrix. Precisely,
we prove in Theorem 2.2 that for every given matrix A, there exists a Robinson matrix
R so that ‖A−R‖1 ≤ 26Γ1(A)

1/3. In addition, we give a polynomial time algorithm
to compute the Robinson approximation R which fulfills the above inequality.

A proposed application of this work is a novel scheme for treating the seriation
problem of noisy data, in which the selection of the best permutation is guided by
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parameter Γ1. The traditional formulation is: Given a matrix A, find a permutation

π and a Robinson matrix R so that ‖Aπ −R‖p is minimized. (Here Aπ refers to the
matrix obtained by permuting rows and columns of A according to π.) This approach
requires the simultaneous optimization of both the matrix R and the permutation π.
Using the results in this paper, we can instead reduce the noisy seriation problem to
the following problem:

Given a symmetric matrix A, find a permutation of its rows and columns so that

Γ1(A) is minimized.

Once such a permutation is found, our algorithm can be used to compute the
appropriate Robinson approximation. While this approach is not an approximation
algorithm per se, we do bound the performance of this approach in terms of the
optimal outcome. Namely, as will be shown in Lemma 2.3, the best possible Robinson
approximation has normalized ℓ1 distance at least 1

4Γ1(A) from A. Therefore, our
results implicitly bound the Robinson approximation achieved by our algorithm in
terms of the optimal solution.

The results of this article are fundamentally different from any previous results
on ℓ∞-fitting Robinsonian structures (see for example [4]). Indeed, when matrices
grow large in size, the ℓ1-norm provides us with a more suitable notion of “closeness”.
This fact becomes apparent when we analyze a growing sequence of graphs which are
convergent in the sense of Lovász-Szegedy [18]. Indeed, this article (and the choice
of notation for the parameter Γ1) was motivated by our previous work [6], where
we introduce a parameter Γ which characterizes Robinson graphons. Graphons are
symmetric functions on [0, 1]2 with values in [0, 1], which can be thought of as the
“blueprint” of a random graph whose vertices are randomly sampled from the interval
[0, 1]. A matrix A = [Ai,j ] can be interpreted as a graphon in a natural way, by
splitting the unit square into subsquares of size 1

n × 1
n , and setting the graphon equal

to Ai,j everywhere in the (i, j)-th subsquare. A Robinson graphon is a graphon which
is non-decreasing along every horizontal or vertical line towards the main diagonal.

Our main result in [6] is that Γ becomes a continuous parameter, when the space
of graphons is equipped with the box-norm. Therefore Γ provides us with a param-
eter to measure Robinson resemblance, which can be efficiently approximated. The
parameters Γ1 and Γ are closely related, even though box-norm continuity does not
hold for Γ1 anymore. In future work [12], we employ these parameters simultaneously
in order to develop (continuous) methods for seriation of noisy data.

Finally, we mention applications to graphs and networks. Binary Robinson ma-
trices correspond to unit interval graphs. More precisely, a graph is a unit interval
graph if and only if the adjacency matrix is Robinsonian, that is, there exists a la-
belling of the vertices so that the resulting adjacency matrix is a Robinson matrix.
The parameter Γ1 can be directly applied to a (labelled) graph, and if Γ1 is sufficiently
small, our algorithm constructs a unit interval graph that is close, in edit distance, to
the original graph.

When applied to real-life networks, the parameter Γ1 can be used to measure
how closely the matrix conforms to a linear model. In previous work, the authors
investigated this question in the context of graph limits [6, 7]. In a linear graph model
the vertices of the graph are placed on a line, and the links are formed stochastically so
that vertices that are closer together are more likely to connect. The linear layout can
refer to a time line, in case of graphs derived from archeology, or the food chain, in case
of food webs. But a linear layout may also point to the presence of a strong hidden
variable that influences link formation, such as hierarchy, in a professional social
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network, or age in a friendship graph. If a graph conforms to a linear model, then
we expect the adjacency matrix of the graph to be “almost-Robinson.” Parameter Γ1

may therefore serve as a measure of the “linearity” of a given network.
The rest of this article is organized as follows. In Section 2, we introduce the

necessary notations and definitions, and we state our main result, namely Theorem
2.2. In Section 3, we present Algorithm 3.1 which finds a Robinson approximation
for the special case where A is a binary matrix (i.e. a graph adjacency matrix). The
values of every cell in the Robinson approximation is decided based on the entries of
A in the upper right and the lower left regions defined by that cell (see Figure 2).
Algorithm 3.1 is very simple to state, however one needs to use careful approximations
and counting tricks to prove that the algorithm generates an output which indeed is a
good ℓ1-approximation for the input matrix. Section 4 provides us with an adaptation
of Algorithm 3.1 to general matrices. This is indeed a natural generalization, as every
matrix with entries in [0, 1] decomposes into a convex combination of binary matrices.
Fortunately, the parameter Γ1 distributes over such decompositions, even though it
is not a linear parameter in general. This allows us to apply Algorithm 3.1 to the
components of the decomposition in stages. In Section 5, we develop an algorithm
that represents a preprocessing step for Algorithm 3.1. This preprocessing step is
designed to transform the input matrix A, so that Algorithm 3.1 generates a better-
approximating output matrix R. The trade-off here is that the preprocessing step
increases the complexity of the algorithm, which still remains polynomial. We finish
the paper by some concluding remarks and future directions.

2. Definitions and main results. For a given positive integer n, let An denote
the set of all symmetric n×n matrices with entries in [0, 1]. Note that the restriction
on the range of the entries is not a limitation, since it can always be achieved by
shifting and scaling of the matrix. A matrix A ∈ An is called binary if it has entries
only from {0, 1}. We refer to the position in the i-th row and j-th column of A as
the (i, j)’th cell. For a matrix A of size n, we define its (normalized) ℓ1-norm to be
‖A‖1 = 1

n2

∑n
i,j=1 |Ai,j |.

Definition 2.1. An n × n symmetric matrix A is a Robinson matrix if, for all
1 ≤ i < j < k ≤ n,

(2.1) Ai,j ≥ Ai,k and Aj,k ≥ Ai,k.

In this section, we define a parameter, denoted by Γ1, which measures how badly a
matrix fails to be Robinson. The choice of notation for Γ1 is due to the fact that it
simply adds the magnitude of violations to (2.1). Precisely, given a symmetric matrix
A of size n,

Γ1(A) =
1

n3

∑

1≤i<k<j≤n

[Ai,j −Ai,k]+ + [Ai,j −Ak,j ]+,

where [x]+ = x if x ≥ 0, and 0 otherwise. It is clear that Γ1(A) = 0 if and only if A
is a Robinson matrix. Note also that, for a binary matrix A which is not Robinson,
Γ1(A) ≥ 1

n3 . Moreover, the computation of Γ1(A) for an n × n matrix A involves a
simple summation which can be executed in O(n3) steps. Finally note that, due to
the normalization factor 1

n3 , Γ1(A) ∈ [0, 1) whenever A ∈ An.
We are now ready to state our main result (Theorem 2.2), whose proof takes a

large part of the paper and finishes only at the end of Section 5.
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Theorem 2.2. For every A ∈ An, there exists a Robinson matrix R ∈ An so that

‖A−R‖1 ≤ 26 Γ1(A)
1/3.

Moreover, R can be computed in polynomial time. In addition, if A is binary, then
there exists a binary matrix R satisfying the conditions of the theorem.

The distance between A and the Robinson approximation obtained in Theorem
2.2 is bounded in terms of Γ1(A), and thus the algorithm does not necessarily give
the best possible approximation. However, as stated in the following simple lemma,
there is a close relationship between Γ1(A) and the distance between A and the best
possible Robinson approximation.

Lemma 2.3. For every pair of matrices A and R in An, if R is a Robinson matrix
then

‖A−R‖1 ≥
1

4
Γ1(A).

Consequently, we have

min {‖A−R‖1 : R ∈ An is Robinson similarity} ≥ 1

4
Γ1(A).

Proof. Since the function [ · ]+ is sub-additive, we observe that

Γ1(A) = Γ1(A−R+R) ≤ Γ1(A−R) + Γ1(R) = Γ1(A−R),

as R is a Robinson matrix and thus Γ1(R) = 0. Moreover, for every symmetric matrix
B of size n, we have

Γ1(B) =
1

n3

∑

1≤i<k<j≤n

[Bi,j − Bi,k]+ + [Bi,j −Bk,j ]+

≤ 1

n3

∑

1≤i<k<j≤n

|Bi,j |+ |Bi,k|+ |Bi,j |+ |Bk,j |

≤ 4

n3

n∑

k=1

∑

1≤i,j≤n

|Bi,j | ≤ 4‖B‖1.

Letting B = A−R finishes the proof.

Applying Theorem 2.2 to binary matrices, we obtain an interesting corollary for
graphs. For a graph G, let the augmented adjacency matrix BG denote the matrix
which is obtained from the adjacency matrix of G by replacing its diagonal entries by
1. Then, BG is a Robinson matrix precisely when the 1-entries of each row and each
column are all consecutive. This is called the symmetric consecutive ones property
(i.e. C1P for rows and columns simultaneously), and it is known to characterize unit
interval graphs, or equivalently as shown in [21], proper interval graphs (see [8, 9, 17]).
Precisely, a graph is a unit interval graph if and only if there exists a linear order on its
vertices with respect to which BG has the consecutive ones property, i.e. is a Robinson
matrix.

The parameter Γ1 of the augmented adjacency matrix counts the number of triples
(i, j, k), 1 ≤ i < j < k ≤ n, for which vertices i and k are adjacent, but vertex j is
not adjacent to either i or k. On the other hand, the (unnormalized) ℓ1-distance



6 M. GHANDEHARI AND J. JANSSEN

Fig. 1. The black region is convex around the diagonal.

‖BG − BĜ‖1 between the augmented adjacency matrices BG and BĜ of two labeled

graphs G and Ĝ of the same order corresponds to the edit distance between the graphs
themselves. The edit distance between two graphs G and Ĝ, denoted by ed(G, Ĝ), is
the minimum number of edge deletions and edge additions that need to be performed
on G to transfer it to Ĝ. Applying these concepts, Theorem 2.2 directly leads to the
following corollary.

Corollary 2.4. For every graph G on vertex set V = {1, 2, . . . , n}, there exists

a unit interval graph Ĝ on vertex set V so that

ed(G, Ĝ)

n2
≤ 26 Γ1(G)1/3.

3. Robinson similarity approximation for binary matrices. In this sec-
tion, we present an algorithm that finds a Robinson approximation for the special
case where A is a binary matrix, and can thus be interpreted as the adjacency matrix
of a graph. The algorithm can be intuitively understood as follows. We divide all
cells of the matrix into black and white cells, and convert all zeros in the black cells
to ones, and all ones in the white cells to zeros. The black region is convex around the
diagonal, in the sense that, if a cell is black, then so are all other cells closer to the
diagonal in the same row or column. In other words, the binary matrix whose sup-
port is precisely the black region is a Robinson matrix, which is indeed the Robinson
approximation that the algorithm returns (See Figure 1).

The decision on whether to assign a cell to the black or white region depends on
the entries in the upper right (UR) and lower left (LL) regions defined by the cell.
Precisely, for any cell (a, b), 1 ≤ a < b ≤ n, we define

UR(a, b) = {(i, j) : i < a < b < j},
LL(a, b) = {(i, j) : a ≤ i ≤ j ≤ b}.

Roughly speaking, a cell will be black if it has enough ones in its upper right region,
and it is white when it has enough zeros in its lower left region. So, we need the
following notations (also shown in Figure 2):

1UR(a, b) = |UR(a, b) ∩ {(i, j) : Aij = 1}|,
0LL(a, b) = |LL(a, b) ∩ {(i, j) : Aij = 0}|.

In addition, define 1UR(a, b) = 0LL(a, b) = 0 when a ∈ {0, n+ 1} or b ∈ {0, n+ 1} or
a > b.

Algorithm 3.1 has complexity θ(n2), and is therefore linear in the size of the input.
A cell is considered black if Ri,j is set to one, and white if Ri,j is set to zero. If (i, j)
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b

a

Fig. 2. Regions UR(a, b) (blue) and LL(a, b) (red)

Algorithm 3.1 Robinson approximation of a binary matrix

input: binary matrix A ∈ An, threshold t > 0
output: binary Robinson matrix R ∈ An

for i← 1 to n do

R1,i ← 0; Ri,1 ← 0
Ri,n ← 0; Rn,i ← 0

end for

for i← 2 to n do

j ← n− 1
while j ≥ i do
1UR(i, j)← 1UR(i− 1, j) + 1UR(i, j + 1)− 1UR(i− 1, j + 1) +Ai−1,j+1

if 1UR(i, j) < t then Ri,j ← 0; Rj,i ← 0;
else Ri,j ← 1; Rj,i ← 1
j ← j − 1;

end while

end for

return R

is black and i ≤ k < j, then UR(i, j) ⊂ UR(i, k), so 1UR(i, k) ≥ 1UR(i, j) ≥ t, and
thus (i, k) is also black. Similarly, (k, j) is also black. So, the region of black cells is
convex around the diagonal, and R is indeed a Robinson matrix. We will now show
in Theorem 3.1 that the distance between R and A is bounded by a function of t and
n, if the parameter t satisfies Condition (3.1). We will then show in Corollary 3.3
that an appropriate t can be chosen as a function of Γ1(A), so that ‖A−R‖1 can be
bounded in terms of Γ1(A).

Theorem 3.1. Let A ∈ An be a binary matrix, with the property that

(3.1) for all 1 ≤ i ≤ j ≤ n, 1UR(i, j) < t or 0LL(i, j) < t.

If R is the matrix produced as output of Algorithm 3.1 on input A with threshold t,

then ‖A−R‖1 ≤ 16
√
t+4
n .

Proof. As explained earlier, black cells are exactly the cells (i, j) for which Ri,j

attains 1, i.e. the cells for which 1UR(i, j) ≥ t. Let B denote the collection of all black
cells above the diagonal, that is

B = {(i, j) : 1 ≤ i ≤ j ≤ n and 1UR(i, j) ≥ t}.

Note that B is convex around the diagonal, in the sense that if a cell (i, j) belongs to
B then LL(i, j) ⊆ B. However, the black region can be disconnected. Precisely, there
can be diagonal cells not in B, in which case B consists of a collection of connected
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regions which are convex around the diagonal. Note also that, by definition, B cannot
contain any cells (i, j) so that |UR(i, j)| < t, and specifically, B cannot contain any
cells from the first row or the last column.

Let ∂B denote the set of boundary cells of B, i.e.

∂(B) = {(i, j) ∈ B : (i− 1, j) 6∈ B or (i, j + 1) 6∈ B}.

The set ∂B precisely contains all black cells above the diagonal that are adjacent to
cells outside B. Thus,

(3.2) B =
⋃

(i,j)∈∂B
LL(i, j).

Similarly, the white region W and its boundary cells are defined as

W = {(i, j) : 1 ≤ i ≤ j ≤ n and 1UR(i, j) < t},

and
∂W = {(i, j) ∈ W : (i+ 1, j) 6∈ W or (i, j − 1) 6∈ W}.

Claim 1. Let B0 = {(i, j) ∈ B : Ai,j = 0}. Then |B0| ≤ 4n
√
t

Proof of Claim 1. First, list elements of ∂B as (i1, j1), (i2, j2), . . . , (im, jm) in such
a way that i1 ≤ i2 ≤ . . . ≤ im, and if il = il+1 then jl < jl+1. This ordering follows
the “contour” of the black region, starting with the first black cell in the first row
containing any black cells. Since both indices range from at least 1 to at most n, it is
clear that the boundary contains at most 2n cells, and m ≤ 2n.

To control the amount of possible overlaps in the covering of B in (3.2), we now
construct a subsequence C of ∂B, so that the lower left regions of cells in C cover most
of the black region. The subsequence C = {(ink

, jnk
)} is constructed inductively. In

the first step, let (in1 , jn1) be the last cell in the first row of B. At step k ≥ 1,
let nk be the largest index so that (ink

, jnk
) ∈ C. Define n to be the first index in

{1, . . . ,m} which satisfies jnk
< jn, (in, jn + 1) 6∈ B, and either in − ink

> ⌊
√
t⌋ or

jn − jnk
> ⌊
√
t⌋. So cell (in, jn) is the first cell in ∂B whose row or column index

differs by at least ⌊
√
t⌋ + 1 from the last cell added to C, and also is the last black

cell in its row. Set nk+1 = n, and add (ink+1
, jnk+1

) to C. Since ∂B has at most 2n

elements, and ⌊
√
t⌋ + 1 ≥

√
t, this inductive process ends in at most 2n√

t
steps. So

|C| ≤ 2n√
t
.

We now claim that B \ ⋃(i,j)∈C LL(i, j) can be covered with |C| squares of di-

mensions ⌊
√
t⌋ × ⌊

√
t⌋. Consider two consecutive elements of C, say (ink

, jnk
) and

(ink+1
, jnk+1

). Let (i, j) be the first cell in ∂B \ ⋃(i,j)∈C LL(i, j) after (ink
, jnk

). By

construction, (i, j) is not in the same row or column as (ink
, jnk

), and thus i > ink

and j > jnk
. Let (i′, j′) be the last cell before (ink+1

, jnk+1
) in ∂B \⋃(i,j)∈C LL(i, j).

(If no such n exists, then k is the last index in C, and we let (i′, j′) = (im, jm), the
last cell of ∂B.)

By construction of C, we know that i′ − i+ 1 ≤ i′ − ink
≤ ⌊
√
t⌋ and j′ − j + 1 ≤

j′ − jnk
≤ ⌊
√
t⌋. Moreover, since (i, j) and (i′, j′) belong to ∂B, and B is convex

around the diagonal, every cell (a, b) ∈ B with i ≤ a ≤ i′ must satisfy j ≤ b ≤ j′, so it
must belong to the square whose top-left corner is (i, j), and its bottom-right corner
is (i′, j′). We denote this square by Sk, and note that |Sk| ≤ t. Thus,

B ⊆
|C|⋃

k=1

LL(ink
, jnk

) ∪
|C|⋃

k=1

Sk.
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By Condition (3.1), every cell (i, j) ∈ B satisfies 0LL(i, j) ≤ t. So,

|B0| ≤
∑

(i,j)∈C
0LL(i, j) +

∑

(i,j)∈C
|Si,j | ≤ |C|t+ |C|t = 4n

√
t.

Claim 2. Let W1 = {(i, j) ∈ W : Ai,j = 1}. Then |W1| ≤ 4n
√
t+ 2n.

Proof of Claim 2. This proof is similar to the proof of the previous claim. Cells
in the boundary ∂W are enumerated similarly, and a subsequence D = {(ink

, jnk
)} of

∂W is defined analogous to C: let (in1 , jn1) be the last cell in the first column ofW , and
for k ≥ 1, define nk+1 to be the first index in {1, . . . ,m} which satisfies ink+1

> ink
,

(ink+1
+ 1, jnk+1

) 6∈ W , and either ink+1
− ink

> ⌊
√
t⌋ or jnk+1

− jnk
> ⌊
√
t⌋. Let Sk

be the square of size at most ⌊
√
t⌋×⌊

√
t⌋ covering all white cells between consecutive

cells of D. Then we have

W ⊆ ∂W ∪
⋃

(i,j)∈D
UR(i, j) ∪

|D|⋃

k=1

Sk

Note that dealing with the white region is slightly different from the black region, in
the sense that UR(i, j) does not include cell (i, j) and the cells in row i and column
j (see Figure 2). So, we include the boundary explicitly to cover the white region.

By definition ofW , every white cell (i, j) ∈ W satisfies 1UR(i, j) < t. This implies
that

|W1| ≤ |∂W|+
∑

(i,j)∈D
1UR(i, j) +

|D|∑

i=1

|Sk| ≤ 2n+ |D|t+ |D|t ≤ 4n
√
t+ 2n.

The above two claims show that R and A differ above the diagonal in at most
8n
√
t+2n cells. Adding the region below the diagonal and normalizing, we conclude

that ‖A−R‖1 ≤ 2(8
√
t+2)
n .

The following simple counting lemma provides a threshold, in terms of Γ1, for
which Condition (3.1) always holds.

Lemma 3.2. Let A ∈ An be a binary matrix whose diagonal entries are all 1.
Then, for every cell (i, j), we have

1UR(i, j) 0LL(i, j) ≤ 2n4Γ1(A).

Proof. Without loss of generality, assume that i < j.

1UR(i, j) 0LL(i, j) =
∑

(s, t) ∈ UR(i, j)
(s′, t′) ∈ LL(i, j)

[As,t −As′,t′ ]+

≤ 1

2

∑

1≤s<i≤s′≤t′≤j<t≤n

[As,t −As,t′ ]+ + [As,t′ −As′,t′ ]+ + [As,t −As′,t]+ + [As′,t −As′,t′ ]+

≤ 1

2

∑

1≤s<s′≤t′<t≤n

[As,t −As,t′ ]+ + [As,t −As′,t]+

+
1

2

∑

1≤s<s′≤t′<t≤n

[As,t′ −As′,t′ ]+ + [As′,t −As′,t′ ]+,
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where the second inequality can be justified using the fact that if [As,t −As′,t′ ]+ = 1
then both [As,t−As,t′ ]++[As,t′−As′,t′ ]+ = 1 and [As,t−As′,t]++[As′,t−As′,t′ ]+ = 1
are satisfied. Now observe that

∑

1≤s<s′≤t′<t≤n

[As,t −As,t′ ]+ ≤
n∑

s′=1

∑

1≤s<t′<t≤n

[As,t −As,t′ ]+ ≤ n4Γ1(A),

and similarly
∑

1≤s<s′≤t′<t≤n[As,t−As′,t]+ ≤ n4Γ1(A). Moreover, for every s and s′,
we have [As,s′ −As′,s′ ]+ = 0, since As′,s′ = 1. Thus,

∑

1≤s<s′≤t′<t≤n

[As,t′ −As′,t′ ]+ =
∑

1≤s<s′<t′<t≤n

[As,t′ −As′,t′ ]+

≤
n∑

t=1

∑

1≤s<s′<t′≤n

[As,t′ −As′,t′ ]+ ≤ n4Γ1(A),

and similarly
∑

1≤s<s′≤t′<t≤n[As′,t −As′,t′ ]+ ≤ n4Γ1(A). This finishes the proof.

Corollary 3.3. For every binary matrix A ∈ An, there exists a binary Robinson
matrix R ∈ An such that

‖A−R‖1 ≤
5

n
+ 29/2Γ1(A)

1/4.

Moreover, R can be computed in linear time.

Proof. From the binary matrix A ∈ An, we first construct Ã by replacing every
0 entry on the diagonal of A with 1. Clearly, Ã ∈ An and Γ1(Ã) ≤ Γ1(A). Moreover,

‖A − Ã‖1 ≤ 1
n . If Γ1(Ã) = 0, we take R = Ã and we are done. So assume that

Γ1(Ã) > 0. Let R ∈ An be the matrix produced as output of Algorithm 3.1 on input

Ã with threshold t = n2

√
4Γ1(Ã). By Lemma 3.2 and the fact that Γ1(Ã) > 0, Ã

and parameter t = n2

√
4Γ1(Ã) satisfy Condition (3.1) of Theorem 3.1. Thus,

‖R−A‖1 ≤ ‖A− Ã‖1 + ‖Ã−R‖1 ≤
5

n
+ 16(4Γ1(Ã))1/4 ≤ 5

n
+ 29/2Γ1(A)

1/4.

4. Robinson similarity approximations of general matrices. For general
matrices, we first decompose the matrix into a convex combination of binary matrices,
a standard technique widely used in the literature, and then apply Algorithm 3.1 to
each summand. Given any matrix A ∈ An, let range(A) = {Ai,j : 1 ≤ i ≤ j ≤ n}.
Consider the linear ordering 0 = s0 < s1 < · · · < sm of range(A) ∪ {0}, and define
matrices A(k), 1 ≤ k ≤ m as follows:

(4.1) A
(k)
i,j =

{
1 if Ai,j ≥ sk,
0 otherwise.

Clearly, each matrix A(k) is binary, and

(4.2) A =

m∑

k=1

(sk − sk−1)A
(k).
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We refer to the matrices A(k) as the layers of A. From the definition of the layers, it

is easy to see that A(k) ≤ A(l) whenever l < k. Indeed for such l and k, if A
(k)
i,j = 1

then A
(l)
i,j = 1 as well, since sl < sk.

The advantage of writing A as a convex combination of its layers, as opposed to
any other decomposition of A, lies in the fact that Γ1 distributes over this particular
decomposition of A, even though Γ1 is not a linear map in general.

Proposition 4.1. Suppose A is “layered” as in Equation (4.2). Then we have

Γ1(A) =

m∑

l=1

(sl − sl−1)Γ1(A
(l)).(4.3)

Proof. Fix a triple i, j, k satisfying 1 ≤ i < k < j ≤ n, and let n1, n2, n3 ∈
{1, . . . ,m} be so that Ai,j = sn1 , Ai,k = sn2 , and Ak,j = sn3 . From the definition of
the layers in (4.1), we have

(i) A
(l)
i,j = 1 if l ≤ n1, and A

(l)
i,j = 0 if l > n1.

(ii) A
(l)
i,k = 1 if l ≤ n2, and A

(l)
i,k = 0 if l > n2.

(iii) A
(l)
k,j = 1 if l ≤ n3, and A

(l)
k,j = 0 if l > n3.

Note first that [Ai,j−Ai,k]+ = [sn1−sn2 ]+ = 0 precisely when n1 ≤ n2. Using (i), (ii)

and (iii) it is easy to see that, if n1 ≤ n2, then [A
(l)
i,j −A

(l)
i,k]+ = 0 for every 1 ≤ l ≤ m.

On the other hand, if [Ai,j − Ai,k]+ > 0 and thus n1 > n2, then, if l ≤ n2 or l > n1

then [A
(l)
i,j − A

(l)
i,k]+ = 0, and if n2 < l ≤ n1 then [A

(l)
i,j − A

(l)
i,k]+ = 1. Hence, we can

verify the following claim:

[Ai,j −Ai,k]+ =

m∑

l=1

(sl − sl−1)[A
(l)
i,j −A

(l)
i,k]+.

Indeed, if n1 ≤ n2 then both sides of the above equation are equal to 0. For the case
where n1 > n2, we have

m∑

l=1

(sl − sl−1)[A
(l)
i,j −A

(l)
i,k]+ =

n1∑

l=n2+1

sl − sl−1 = sn1 − sn2 = [Ai,j −Ai,k]+.

Repeating the above argument, we obtain a similar claim for [A
(l)
i,j − A

(l)
k,j ]+, and

consequently we get

[Ai,j −Ai,k]+ + [Ai,j −Ak,j ]+ =

m∑

l=1

(sl − sl−1)
(
[A

(l)
i,j −A

(l)
i,k]+ + [A

(l)
i,j −A

(l)
k,j ]+

)
.

So we have

m∑

l=1

(sl − sl−1)Γ1(A
(l)) =

m∑

l=1

(sl − sl−1)
( 1

n3

∑

1≤i<k<j≤n

[A
(l)
i,j −A

(l)
i,k]+ + [A

(l)
i,j −A

(l)
k,j ]+

)

=
1

n3

∑

1≤i<k<j≤n

m∑

l=1

(sl − sl−1)
(
[A

(l)
i,j −A

(l)
i,k]+ + [A

(l)
i,j −A

(l)
k,j ]+

)

=
1

n3

∑

1≤i<k<j≤n

[Ai,j −Ai,k]+ + [Ai,j −Ak,j ]+ = Γ1(A),

which finishes the proof.
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Algorithm 4.1 Robinson similarity approximation of a general matrix

input: Matrix A ∈ An, positive thresholds t1, . . . , tm
output: Robinson similarity matrix R ∈ An

Compute range(A) ∪ {0, 1}, as an ordered list s
for i← 1 to n do

for k ← 1 to m do

R
(k)
1,i ← 0; R

(k)
i,1 ← 0

R
(k)
i,n ← 0; R

(k)
n,i ← 0

Ai,i ← 1
end for

end for

for i← 2 to n do

j ← n− 1
while j ≥ i do
for k ← 1 to m do

if Ai,j ≥ s[k] then temp← 1;
else temp← 0
1kUR(i, j)← 1kUR(i− 1, j) + 1kUR(i, j + 1)− 1kUR(i− 1, j + 1) + temp

if 1kUR(i, j) < tk then R
(k)
i,j ← 0; R

(k)
j,i ← 0;

else R
(k)
i,j ← 1; R

(k)
j,i ← 1

end for

j ← j − 1;
end while

end for

R← 0

for k ← 1 to m do R← R + (s[k]− s[k − 1])R(k)

return R

Algorithm 4.1 is essentially a simultaneous execution of Algorithm 3.1 for each
binary matrix A(k). The quantities 1kUR(i, j) thus refer to the number of ones in the
region UR(i, j) in A(k). The algorithm has complexity O(n2m), where m is the size
of range(A), and thus m ≤ n2. Since every matrix R(k) is Robinson similarity, so is
their linear combination R. In the following theorem, we will show that there exist
thresholds t1, . . . , tm so that the difference between A and R is bounded by CΓ1(A)

1/4

for some constant C. To avoid anomalous behavior, we assume that our input matrix
is not Robinson similarity, i.e. Γ1(A) > 0.

Theorem 4.2. Let A ∈ An, and Γ1(A) > 0. If R is the matrix produced as output

of Algorithm 4.1 on input A with thresholds tk =
√
4Γ1(A(k))n2 for k = 1, . . . ,m, then

‖A−R‖1 ≤ 29/2Γ1(A)
1/4

(1 +O(n−1/4)).

Proof. First suppose A is a binary matrix. Then by Corollary 3.3 applied to A
with threshold

√
4Γ1(A)n

2, we get ‖A−R‖1 ≤ 5
n + 29/2Γ1(A)

1/4.

Next, assume that A ∈ An is a general matrix, and let A =
∑m

k=1(sk− sk−1)A
(k)

be the decomposition of A into layers of binary matrices as described in Equation
(4.2). Then, we have Γ1(A) =

∑m
k=1(sk−sk−1)Γ1(A

(k)). To avoid clutter of notation,
let ǫ = Γ1(A) and ǫk := Γ1(A

(k)). For every 1 ≤ k ≤ m, we apply Corollary 3.3 to
A(k) with threshold tk = (4ǫk)

1/2n2 to obtain a Robinson similarity matrix R(k) such
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that

‖A(k) −R(k)‖1 ≤
5

n
+ 29/2ǫ

1/4
k .

So, Algorithm 4.1 computes R =
∑m

k=1(sk − sk−1)R
(k), which is Robinson similarity

as well. Moreover,

‖A−R‖1 ≤
m∑

k=1

(sk − sk−1)‖A(k) −R(k)‖1

≤ 29/2
m∑

k=1

(sk − sk−1)ǫ
1/4
k +

m∑

k=1

(sk − sk−1)
5

n

≤ 29/2(Γ1(A))
1/4 +

5

n
,

where in the last inequality we used the fact that the function f(x) = x1/4 is concave.
By definition, if A ∈ An is not Robinson similarity, then Γ1(A) ≥ 1

n3 , and thus

nΓ1(G)1/4 ≥ n1/4. This completes the proof.

5. Improvement through preprocessing. Finally, we give an algorithm that
represents a preprocessing step for Algorithm 3.1. By Theorem 3.1, the Robinson
similarity approximation produced by Algorithm 3.1 is at bounded distance from the
input matrix A, provided that Condition (3.1) holds. By Lemma 3.2, the condition
holds for every matrix, if we choose t >

√
2n2(Γ1(A))

1/2 (see proof of Corollary 3.3.)
The preprocessing step is designed to transform the input matrix A, such that the
condition holds for a smaller value of t. The modified matrix is then used as input
to Algorithm 3.1 with the new value of t, which leads to an output matrix R that is
closer to the input matrix.

The trade-off here is that the preprocessing step increases the complexity of the
algorithm. This increase is tolerable, as the complexity still remains polynomial. We
give an implementation which is quadratic for binary matrices, but we believe that a
more sophisticated implementation would lead to an improvement in the complexity.
In the following, the algorithm is given in detail for binary matrices only. It can easily
be adapted to general matrices, in much the same way that Algorithm 4.1 is adapted
from Algorithm 3.1.

First, we introduce some terminology. Suppose that matrix A is given, and a
threshold value t > 0 is fixed. Let ∆ denote the collection of all cells in A which
are on or above the diagonal. We call a cell (i, j) ∈ ∆ inverted if 1UR(i, j) ≥ t and
0LL(i, j) ≥ t. Thus, there exist inverted cells if and only if Condition (3.1) is violated.
To toggle a cell (i, j) is to set the value of all cells in UR(i, j) equal to zero, and the
values of all cells in LL(i, j) equal to 1. It is easy, yet important, to observe that
toggling a cell can only decrease Γ1(A).

Lemma 5.1. Let A ∈ An and t > 0 be given. Suppose that (i, j) ∈ ∆ is an

inverted cell, and let Ã denote the matrix obtained from A by toggling (i, j). Then for
any fixed triple 1 ≤ s < k < t ≤ n, we have

(5.1) [Ãs,t − Ãs,k]+ ≤ [As,t −As,k]+ and [Ãs,t − Ãk,t]+ ≤ [As,t −Ak,t]+.

Consequently, we get Γ1(Ã) ≤ Γ1(A).
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Proof. We only prove the first inequality; the second one can be proved similarly.
Fix a triple 1 ≤ s < k < t ≤ n. First note that, the first inequality in (5.1) holds
trivially whenever (s, t), (s, k) ∈ ∆\(LL(i, j)∪UR(i, j)), as on these cells the matrices

A and Ã are identical. For the cases where (s, t) ∈ UR(i, j) or (s, k) ∈ LL(i, j), we

have Ã(s, t) = 0 or Ã(s, k) = 1. Thus, in both cases, we get [Ãs,t − Ãs,k]+ = 0, and

in particular [Ãs,t − Ãs,k]+ ≤ [As,t −As,k]+. Moreover, it is clear from the definition
of the region LL(i, j) that if (s, t) ∈ LL(i, j) then (s, k) ∈ LL(i, j). Similarly, if
(s, k) ∈ UR(i, j) then (s, t) ∈ UR(i, j) as well. Putting all these together, we conclude
that the desired inequality holds in all cases. Therefore,

Γ1(Ã) =
1

n3

∑

1≤s<k<t≤n

[Ãs,t − Ãs,k]+ + [Ãs,t − Ãk,t]+

≤ 1

n3

∑

1≤s<k<t≤n

[As,t −As,k]+ + [As,t − Ak,t]+

= Γ1(A),

which finishes the proof.

Algorithm 5.1 can then be described as follows: each inverted cell is toggled, and
after each toggling step, the values of 1UR and 0LL are recalculated for each cell.

Algorithm 5.1 Preprocessing step

input: Matrix A ∈ An, threshold t
output: Updated matrix A
for i← 1 to n do

for j ← i to n do

Compute 1UR(i, j) and 0LL(i, j)
if 1UR(i, j) ≥ t and 0LL(i, j) ≥ t then
for all cells (r, s) ∈ UR(i, j) do Ar,s ← 0; As,r ← 0
for all cells (r, s) ∈ LL(i, j) do Ar,s ← 1; As,r ← 1

end for

end for

Note that Algorithm 5.1 involves computing 1UR(a, b) for all 1 ≤ a ≤ i and
j ≤ b ≤ n, and computing 0LL(a, b) for all i ≤ a ≤ j and i ≤ b ≤ j. These values
must be recomputed in each iteration, since A is being changed. Any cell (i, j) is
tested exactly once, to see whether it is inverted, and if it is, it is toggled. This
naive implementation of the algorithm has complexity O(n4) and is thus quadratic
in the size of the input. When adapted to general matrices, the complexity becomes
O(mn4), where m is the number of different values taken by entries of A. Clearly
m ≤ n2. Also, if all entries of A are rounded to the nearest multiple of ǫA1/3 (recall
that ǫ = Γ1(A)), then m = ǫ−1/3, while the error between A and R is still of the same
order.

One may be concerned that toggling some cells may create new inverted cells, in
which case, just considering each cell once would not be sufficient, and the complexity
could increase. The following lemma shows this cannot be the case.

Lemma 5.2. Suppose Algorithm 5.1 is applied to a binary matrix A, with threshold
t. Then the output of the algorithm, which we call the modified matrix, satisfies the
condition that, for each cell (i, j), 1UR(i, j) < t or 0LL(i, j) < t.
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Proof. It suffices to show that, if an inverted cell (i, j) is toggled, no cell that
was not inverted before the toggle can become inverted afterwards. Suppose to the
contrary that there exists a cell (k, ℓ) which becomes inverted after the toggle. That is,
either 1UR(k, ℓ) is increased by the toggle, or 0LL(k, ℓ) is increased. Assume without
loss of generality that 1UR(k, ℓ) increases after the toggle. The toggle sets all entries
in UR(i, j) to zero, and all entries to LL(i, j) to one. So for 1UR(k, ℓ) to increase,
UR(k, ℓ) and LL(i, j) must intersect. Thus, (k, ℓ) ∈ LL(i, j). Therefore, after the
toggle, all entries in LL(k, ℓ) have been set to one, so 0LL(k, ℓ) = 0 < t. Therefore,
(k, ℓ) is not an inverted cell after the toggle, which contradicts our assumption.

The above lemma shows that the modified matrix Â returned by Algorithm 5.1
satisfies Condition 3.1 of Theorem 3.1 for the chosen value of t. Thus, this matrix
can be used as input for Algorithm 3.1 to obtain a Robinson similarity approximation
R, and Theorem 3.1 can be applied to bound ‖Â − R‖1. However, to obtain a good

approximation we need to make sure we can also bound ‖A−Â‖1, the distance between
the input and output matrices of Algorithm 5.1. The following lemma gives such a
bound.

Lemma 5.3. Let A ∈ An be a binary matrix. Let Â denote the output of Algorithm

5.1 with threshold t. Then ‖A− Â‖1 ≤ 4n2

t (Γ1(A) − Γ1(Â)).

Proof. The output matrix Â is obtained from A by consecutive toggling of inverted
cells, occurring in lines 5 and 6 of Algorithm 5.1. The condition in line 4 checks
whether a cell is inverted. Let A = A0, A1, A2, . . . , Am = Â denote the matrices in
the intermediate steps. We will bound the distance between two consecutive matrices.

Fix s, 0 ≤ s < m, and assume that As is modified because cell (i, j) is found to
be inverted, and is then toggled. So 1UR(i, j) ≥ t and 0LL(i, j) ≥ t, where 1UR and
0LL are computed from As. So As+1 is formed from As by adjusting every cell in
UR(i, j) and its counterpart below the diagonal to be 0, and every cell in LL(i, j) and
its counterpart below the diagonal to be 1.

We can intuitively observe that Γ1(A
s) drops by at least 0LL(i,j)1UR(i,j)

n4 when (i, j)
is toggled. Note that, normalizing as in the definition of Γ1 and applying the same
reasoning as in Lemma 3.2, one may be tricked into thinking that Γ1(A

s) drops at least
by 2

n3 0LL(i, j)1UR(i, j) when (i, j) is toggled, since a contribution of 2
n3 is removed for

each pair of “bad” cells from UR(i, j) and LL(i, j). However, this reasoning does not
take overcounting into consideration. We dedicate the following claim to a rigorous
proof of this intuitive observation.

Claim 5.4. For A, s, and (i, j) as above, we have

Γ1(A
s)− Γ1(A

s+1) ≥ 0LL(i, j)1UR(i, j)

n4
.

Proof of claim. First, consider a cell (k, ℓ) from UR(i, j) containing 1, and a cell
(k′, ℓ′) from LL(i, j), containing 0. Similar to the proof of Lemma 3.2, we have that

2 = 2[As
k,ℓ −As

k′,ℓ′ ]+ = [As
k,ℓ −As

k′,ℓ]+ + [As
k′,ℓ −As

k′,ℓ′ ]+

+[As
k,ℓ −As

k,ℓ′ ]+ + [As
k,ℓ′ −As

k′,ℓ′ ]+.(5.2)

By Lemma 5.1, for every triple 1 ≤ k < l′ < l ≤ n we have

[As+1
k,l −As+1

k,l′ ]+ ≤ [As
k,l −As

k,l′ ]+ and [As+1
k,l −As+1

l′,l]+ ≤ [As
k,l −As

l′,l]+.



16 M. GHANDEHARI AND J. JANSSEN

This, together with the fact that As+1
k,l = 0 whenever (k, l) ∈ UR(i, j), implies that

∑

1≤k<l′<l≤n

(k,l)∈UR(i,j)

i≤l′≤j

[As
k,l −As

k,l′ ]+ =
∑

1≤k<l′<l≤n

(k,l)∈UR(i,j)

i≤l′≤j

[As
k,l −As

k,l′ ]+ − [As+1
k,l −As+1

k,l′ ]+

≤
∑

1≤k<l′<l≤n

[As
k,l −As

k,l′ ]+ − [As+1
k,l −As+1

k,l′ ]+.

Similarly, we have

∑

1≤k<k′<l≤n

(k,l)∈UR(i,j)

i≤k′≤j

[As
k,l −As

k′,l]+ ≤
∑

1≤k<k′<l≤n

[As
k,l −As

k′,l]+ − [As+1
k,l −As+1

k′,l]+.

Adding up the above two inequalities, we get,

(5.3)
∑

1≤k<l′<l≤n

(k,l)∈UR(i,j)

i≤l′≤j

[As
k,l−As

k,l′ ]++
∑

1≤k<k′<l≤n

(k,l)∈UR(i,j)

i≤k′≤j

[As
k,l−As

k′,l]+ ≤ n3(Γ(As)−Γ(As+1)).

Repeating the above argument for elements of LL(i, j), the following inequality can
be derived in a similar fashion.
(5.4)∑

1≤k<k′<l′≤n

(k′,l′)∈LL(i,j)

1≤k≤i

[As
k,l′ −As

k′,l′ ]+ +
∑

1≤k′<l′<l≤n

(k′,l′)∈LL(i,j)

j≤l≤n

[As
k′,l−As

k′,l′ ]+ ≤ n3(Γ(As)−Γ(As+1)).

Combining (5.2), (5.3), and (5.4), we conclude the following.

1UR(i, j)0LL(i, j) =
∑

(k,l)∈UR(i,j)

(k′,l′)∈LL(i,j)

[As
k,ℓ −As

k′,ℓ′ ]+

=
1

2

∑

(k,l)∈UR(i,j)

(k′,l′)∈LL(i,j)

([As
k,ℓ −As

k′,ℓ]+ + [As
k,ℓ −As

k,ℓ′ ]+)

+
1

2

∑

(k,l)∈UR(i,j)

(k′,l′)∈LL(i,j)

([As
k′,ℓ −As

k′,ℓ′ ]+ + [As
k,ℓ′ −As

k′,ℓ′ ]+)

≤ n

2

∑

1≤k<l′<l≤n

(k,l)∈UR(i,j)

i≤l′≤j

[As
k,l −As

k,l′ ]+ +
n

2

∑

1≤k<k′<l≤n

(k,l)∈UR(i,j)

i≤k′≤j

[As
k,l −As

k′,l]+

+
n

2

∑

1≤k<k′<l′≤n

(k′,l′)∈LL(i,j)

1≤k≤i

[As
k,l′ −As

k′,l′ ]+ +
n

2

∑

1≤k′<l′<l≤n

(k′,l′)∈LL(i,j)

j≤l≤n

[As
k′,l −As

k′,l′ ]+

≤ n4(Γ1(A
s)− Γ1(A

s+1)).
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Note that the factor n
2 in the above inequalities appear, because every fixed row or

column of As can have at most n cells from LL(i, j) or UR(i, j). This completes the
proof of the claim.

Finally, it is easy to observe that ‖As − As+1‖1 ≤ 2(0LL(i,j)+1UR(i,j))
n2 . Without

loss of generality, assume that 1UR ≥ 0LL. Then

Γ1(A
s)−Γ1(A

s+1) ≥ 0LL(i, j)1UR(i, j)

n4
=

(
0LL(i, j)

4n2

)(
4
1UR(i, j)

n2

)
≥ t

4n2
‖As −As+1‖1.

Applying the above result, we get

Γ1(A)− Γ1(Â) =

m∑

s=0

(Γ1(A
s)− Γ1(A

s+1)) ≥
m∑

s=0

t

4n2
‖As −As+1‖1

≥ t

4n2
‖

m∑

s=0

As −As+1‖1 =
t

4n2
‖A− Â‖1,

which finishes the proof.

We now have all the ingredients to prove Theorem 2.2, by combining the above
lemma with Theorem 3.1. For this, parameter t must be tuned so that the bounds
from the preprocessing step and from Algorithm 5.1 give the best possible result; it
appears that the best choice is t = 4−2/3Γ1(A)

2/3n2. (Note that this value is smaller
than the value used in Corollary 3.3.) For this choice of t, the distance between the
input matrix A and the Robinson similarity matrix returned by Algorithm 3.1 when
applied to the updated version of matrix A (after being processed by Algorithm 5.1)
is bounded by 26Γ1(A)

1/3. As the exponent on Γ1(A) has been decreased from 1/4 to
1/3, the preprocessing step leads to a substantially better Robinson approximation.

Proof of Theorem 2.2. First assume that A ∈ An is a binary matrix with Γ1(A) =

ǫ > 0. Let Â be the output of Algorithm 5.1, with threshold t = 4−2/3ǫ2/3n2. From
Lemma 5.3,

‖A− Â‖1 ≤ 45/3ǫ−2/3(Γ1(A) − Γ1(Â)) ≤ 45/3ǫ1/3.

From Lemma 5.2, we have that Â satisfies Condition (3.1) of Theorem 3.1 for our

choice of t. Let R be the output of Algorithm 3.1 applied to Â with parameter
t = 4−2/3ǫ2/3n2. Then, by Theorem 3.1, we have

‖Â−R‖1 ≤
16
√
t+ 4

n
= 45/3ǫ1/3 +

4

n
.

Combining these inequalities, we get ‖A−R‖1 ≤ 2 · 45/3ǫ1/3 + 4
n ≤ 26ǫ1/3, where we

used the fact that Γ1(A) = ǫ ≥ 1
n3 in the last inequality.

Next, assume that A ∈ An is a general matrix, and let A =
∑m

k=1(sk− sk−1)A
(k)

be the decomposition of A into layers of binary matrices as described in Equation
(4.2). Let ǫk := Γ1(A

(k)), and recall that ǫ =
∑m

k=1(sk − sk−1)ǫk. For every 1 ≤ k ≤
m, we apply the process described in the above paragraph to A(k) with parameter

tk = 4−2/3ǫ
2/3
k n2, and we obtain Robinson matrices R(k) such that

‖A(k) −R(k)‖1 ≤ 26ǫ
1/3
k .

Letting R =
∑m

k=1(sk − sk−1)R
(k), we have

‖A−R‖1 ≤
m∑

k=1

(sk − sk−1)‖A(k) −R(k)‖1 ≤ 26

m∑

k=1

(sk − sk−1)ǫ
1/3
k ≤ 26ǫ1/3,
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where in the last inequality we used the fact that the function f(x) = x1/3 is concave.
Finally, we observe that the outputs of Algorithm 5.1 and Algorithm 3.1, when

applied to a binary matrix A, are again binary matrices. Therefore, the Robinson
approximation R of Theorem 2.2 is binary, when A is a binary matrix.

6. Conclusions and further work. We defined a parameter Γ1 which measures
how much a matrix resembles a Robinson similarity matrix. We gave a polynomial
time algorithm which takes as input a symmetric matrix A, and finds a Robinson ma-
trix R so that the normalized ℓ1-distance between A and R is bounded by 26Γ1(A)

1/3.
The motivation of our work is the application to the problem of seriation of noisy data.
This problem can now be approached by solving instead the optimization problem:
given a matrix A, find a permutation π of the rows and columns of A so that Γ1(A

π)
is minimized.

Our construction method is based on a combinatorial algorithm that runs in poly-
nomial time. However, this may not give the best possible such Robinson approxi-
mation. As remarked in the introduction, the problem of finding the best possible
Robinson approximation, with error measured in ℓ1 norm, can be formulated as a
linear program. An open problem is whether there exists a combinatorial algorithm
for this task (as there exist for the ℓ∞ norm.)

In future work, we propose to study this optimization problem, to attempt to find
algorithms which solve or approximate the problem, and to determine their complex-
ity. It is well-known that the second eigenvector of the Laplacian of the matrix, also
known as the Fiedler vector, is effective in finding the correct permutation in seriation
without error. We propose to study the relationship between the Fiedler vector and
the parameter Γ1 .

An immediate next step is to test our algorithm on real data, and see whether,
in practice, the algorithm outperforms the theoretical bound. As well, a clever imple-
mentation of Algorithm 5.1 will likely lead to improved efficiency.

Acknowledgments. The authors thank the anonymous referees, whose sugges-
tions greatly improved the paper.
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