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Abstract

The function T' on the space of graphons, introduced in [CGHT15], aims to measure the extent to
which a graphon w exhibits the Robinson property: for all z < y < z, w(z, z) < min{w(z,y), w(y, )}
Robinson graphons form a model for graphs with a natural line embedding so that most edges are local.
The function T is compatible with the cut-norm || - ||o, in the sense that graphons close in cut-norm
have similar I'-values. In particular, any graphon close in cut-norm to the set of all Robinson graphons
has small I'-values. Here we show the converse, by proving that every graphon w can be approximated
by a Robinson graphon R, so that ||w — R, ||o is bounded in terms of I'(w). We then use classical
techniques from functional analysis to show that a converging graph sequence {G,} converges to a
Robinson graphon if and only if I'(G,,) — 0. Finally, using probabilistic techniques we show that the
rate of convergence of I for graph sequences sampled from a Robinson graphon can differ substantially
depending on how strongly w exhibits the Robinson property.
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1. Introduction

A graphon is a symmetric measurable function from [0, 1] to [0, 1]. Graphons were introduced in [LS06]
as limit objects of convergent (dense) graph sequences. Every graphon w gives rise to a rather general
random graph model whose samples are graphs of any desired size. Such so-called w-random graphs
are important as “continuous” generalizations of stochastic block models, which have been prominent
tools for modeling and analyzing large networks; see [Abb17] for a survey on recent developments in
the field of stochastic block models and their applications in community detection.

In this paper, we focus our attention on graphons w where the associated w-random graph model
exhibits a spatial, line-embedded structure. In such models, vertices can be identified with points on
the line segment [0, 1], and the link probability between points x < y increases as y moves closer to .
See for example [CHW19, HRH02] for such latent space models for social networks, and [SAC19] for an
overview on continuous latent space models in general. Graphons associated with such models are called
Robinson graphons. Namely, a graphon w : [0,1]2 — [0, 1] is Robinson if, forall 0 <2 <y < 2 < 1,

w(z, z) < min{w(z,y),w(y, 2)}. (1)

Robinson graphons were introduced in [CGHT15] under the name of diagonally increasing graphons.
The new terminology is compatible with the concept of Robinson matrices (also known as R-matrices)
which appear in the study of the well-known and challenging problem of seriation. We refer the
reader to [Liil0] for a historical overview of seriation and its applications, and to [CS11, PF14, FAV16,
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LST17, FMR19] for recent advancements and new methodologies for seriation. Robinson matrices are
significant from the graph theoretic point of view as well: the adjacency matrix of a graph, if labeled
properly, is Robinson precisely when the graph is a unit interval graph.

When dealing with real-life networks, an interesting question is whether a graph resembles an
instance of a w-random process with Robinson w. One expects random instances of Robinson graphons
to be “almost Robinson” if the sample size is large. That is, the sampled graph is expected to exhibit
asymptotic aggregated line-embedded behavior, in the sense that, for any two intervals I; < I in [0, 1],
the density of edges joining vertices with labels in I; to those with labels in I» will be not significantly
larger than the density of edges amongst vertices whose labels fall in the interval [sup([y),inf(I3)].
Here, we pursue a systematic approach for formalizing these concepts.

This paper builds upon the previous work of the authors and collaborators in [CGH'15], where we
introduced a function I' on the space of graphons such that

1. I'(w) = 0 precisely when w is a Robinson graphon.
2. If w is close to a Robinson graphon, then T'(w) is close to 0.

Intuitively, we think of I" as a gauge of Robinson property. Here, the distance between graphons is
measured by the cut-norm, denoted by || - ||g, which has close relation with the theory of (dense) graph
limits. Indeed, the cut-norm gives rise to the correct metric to define convergence of growing sequences
of dense graphs in the sense of Lovdsz-Szegedy [L.S06]. This is because the cut-norm is robust under
sampling. Namely, for a growing sequence of graphs {G,} sampled from a graphon w, almost surely,
the graphs in the sequence {G,} can be labeled so that ||wg, — w||o — 0. Here wg,, is the graphon
associated with the adjacency matrix of G,,; for details see Section 2.

Our original motivation for introducing I' in [CGH"15] was to recognize graph sequences which are
sampled from Robinson graphons. To complete this task, we need to strengthen property 2 to an “if
and only if” condition. This, however, proved to be a rather challenging problem, which we resolve in
the current article. To our knowledge, T is the first || - ||g-norm continuous function which allows the
recognition of graph sequences that are eventually Robinson. It may not be possible to compute the
exact value of T, since it involves taking a supremum over all measurable sets. However, the continuity
results of [CGHT15] guarantee that it can be approximated as accurately as one wants. This justifies
our claim that T', or the graph/graphon parameter it induces, is a suitable candidate for formalizing
the notion of almost Robinson graphs, i.e. large graphs sampled from Robinson graphons.

1.1. Contribution of this paper

In this paper we show that (1) T' indicates closeness to a Robinson graphon, (2) T' identifies graph
sequences converging to a Robinson graphon, and (3) T'-values of graph sequences sampled from a
Robinson graphon w converge to zero at different rates depending on the strength of the Robinson
property of w.

l. Robinson approximation of graphons

The main result of this article demonstrates the stability of T near 0, in the sense that if I'(w) is close
to 0, then w must be close to a Robinson graphon. This resolves [CGH" 15, Conjecture 6.5]. Even
though sections 3 and 4 deal with the particular function I'; the results hold for any I'-type function,
i.e. any function on the collection of graphons satisfying a natural condition (as in Lemma 4.1), and
attaining 0 when applied to Robinson graphons.

THEOREM 1.1. Let w : [0,1]2 — [0,1] be a graphon. Then there exists a Robinson graphon u so that
lw— uljo < 14T (w)'/7.



In Section 3, we define a Robinson approximation R, for a graphon w (see Definition 3.1), and in
Section 4 we show that ||w — Ry||o < 14T'(w)'/7. Even though the Robinson approximation R,, is easy
to state, the proof is rather technical and involves delicate estimates. The significance of Theorem 1.1
lies in the fact that it measures the error of approximation in terms of cut-norm, which is the suitable
norm when studying converging w-random graph sequences. The complicated nature of the proof
is due to the facts that firstly cut-norm is not as easy to compute as ¢ norms; and secondly, the
function I is defined via certain aggregated averages to ensure its continuity. Finally, suppose a given
graph G is sampled from some Robinson graphon. The Robinson approximation of wg provides an
approximation for the underlying graphon. This is an instance of the graphon estimation problem,
where the goal is to invert the sampling process and to recover a graphon from a sampled graph.

Il. Recognition of graph sequences sampled from Robinson graphons

In Section 5, we present an important application of Theorem 1.1. Namely, we combine Theorem 1.1
with some classical techniques from functional analysis to prove the following:

THEOREM 1.2. Let {G,} be a convergent sequence of (dense) graphs. If T'(G,) — 0, then {G,}
converges to a Robinson graphon.

The limit object of a convergent graph sequence is an equivalence class of graphons defined by
the cut-distance dg, rather than the cut-norm itself (see Section 2). The cut-distance produces a
graph limit theory that applies to isomorphism classes of graphs. In [CGH™15], it was shown that if
I'(G,) — 0, then the limit object of {G,,} can be represented by graphons u with arbitrary small T'(u).
We were, however, unable to show that the limit object can be represented by an actual Robinson
graphon; a gap which we close by Theorem 1.2 of this article. We show a similar result for the
graph/graphon parameter induced from I, denoted by I". Theorem 1.2, together with property 2,
illustrates the significance of I by proving that it identifies almost Robinson graphs.

I1l. Rate of decay for samples of a Robinson graphon

Not all Robinson graphons exhibit the linearly embedded property to the same degree. Consider

_ p 1f|y_x|§d7 — n — _
wi(z,y) = { 0 otherwise. wa(w,y) = p —cly — |

where p € (0,1), d € (0,0.5), and ¢ € (0, p], which are both Robinson. Intuitively, however, wy has a
stronger line-embedded representation. In Section 6, we show that there is indeed a difference in order
between ‘flat’ graphons like wy, and ‘steep’ graphons like ws.

THEOREM 1.3. Let w : [0,1]? — (0,1) be a Robinson graphon, and let G ~ G(n,w).

(i) If w has a flat region, i.e. there exist measurable sets S, T C [0, 1] with positive measure such that
w|sx1 = p, then with exponential probability for a graph G sampled from w, T'(G) = Q(n=1/2).

(ii) If w is a steep graphon, i.e. its partial derivatives exist and are bounded away from 0, then with
exponential probability for a graph G sampled from w, T'(G) = O(n=2/3).

1.2. Similar graph parameters

In [GJ19], the authors introduced a function I'; on the space of matrices, which attains 0 exactly when
it is applied to a Robinson matrix. While I'; is easy to compute, it fails to be continuous in cut-norm
(or equivalently the graph limit topology). So I'y is not a suitable Robinson measurement for growing
networks, whereas I' provides us with a tool to measure Robinson resemblance of large graphs.



Finally, we remark that this article tackles an instance of the question “given a graphon with
specific properties, how can we infer properties of the graphs which converge to it?” These types
of questions or their reverse versions have been studied for various classes of graphs/graphons; see
for example [BJR12] for graph sequences converging to monotone graphons and [DHJ08] for random
threshold graphs.

2. Definitions, notations and background

We denote by Wy the set of all measurable functions w : [0,1]? — [0,1] which are symmetric, i.e.
w(z,y) = w(y,x) for every point (x,y) in [0, 1]2. Let W denote the span of Wy, i.e. the set of all real-
valued bounded symmetric and measurable functions on [0, 1]2. Functions in W are called graphons.
Every n x n symmetric matrix A = [a;;] can be identified with a graphon, denoted by wy, in the
following manner: Partition [0, 1] into n equal-sized intervals I;. For every i,j € {1,...,n}, let wxy
attain a;; on I; x I;. Every labeled graph G on n vertices can be identified with the graphon associated
with the adjacency matrix of G. We denote this graphon by wg.

2.1. Cut-norm, cut-distance, graph limits, and w-random graphs
The topology described by convergent (dense) graph sequences can be formalized by endowing W with

the cut-norm, introduced in [FK99]. For w € W, the cut-norm is defined as:

|wllo = sup
S,TC[0,1]

/ XTw(m)dxdy\ | @)

where the supremum is taken over all measurable subsets S, T of [0, 1]. To develop an unlabeled graph
limit theory, the cut-distance between u,w € W is defined as follows.

0o (u,w) = inf lu® —wla, (3)

where @ is the space of all measure preserving bijections on [0, 1], and w?(z,y) = w(¢(x), ¢(y)). This
definition ensures that dn(w,u) = 0 when the graphons w and u are associated with the same graph
G with two different vertex labelings. In general, two graphons v and w are said to be dg-equivalent
(or equivalent, for short), if dg(u, w) = 0.

It is known that a graph sequence {G,} converges in the sense of Lovédsz-Szegedy whenever the
corresponding sequence of graphons {wg, } is dg-Cauchy. The limit object for such a convergent
sequence can be represented as a graphon in Wy (not necessarily integer-valued, or corresponding to
a graph). That the graph sequence {G,} is convergent to a limit object w € Wy is equivalent to
do(wea,,, w) — 0 as n tends to infinity, which in turn is equivalent to the existence of suitable labelings
for vertices of GG, for which we have

lwe, —w||g= sup ‘/ (wg, —w)| = 0. (4)
s,rclo,l/sxT
See [BCL™11, Theorem 2.3] for the above convergence results.

The concept of w-random graphs was introduced in [LS06], as a tool for generating examples of
convergent graph sequences. For a graphon w, we define the random process G(n,w) on the vertex set
{1,2,...,n}, where edges are formed according to w in two steps. First, each vertex i receives a label
x; drawn uniformly at random from [0, 1]. Next, for each pair of vertices ¢ < j independently, an edge
{1, 7} is added with probability w(z;,x;). Such edge-independent w-random graphs arise naturally in
the theory of graph limits. In fact, almost surely the sequence {G(n,w)}, forms a convergent graph
sequence, for which the limit object is just the graphon w. See [Lov12] for a comprehensive account
of dense graph limit theory.



2.2. Functions T and T

We now give the definition of the function I', which is a non-negative valued function on W. Note that
T" is not a graphon parameter, as its value does not solely depend on the equivalence class of a given
graphon, but rather on the actual representative itself.

DEFINITION 2.1 ([CGH'15]). For a function w in W, and a measurable subset A C [0, 1], we define

N(w,A) = //y<z {~/ac€Aﬂ[0,y] (w(z, z) —w(z,y)) dw}+dydz
e [ e et ) ]y

where [z]; := max{z, 0}. Moreover, I'(w) is defined as
I'(w) = sup {I'(w, A) : A C [0, 1] measurable}.

The function I attains 0 when applied to a Robinson graphon. It was shown in [CGH™ 15, Propo-
sition 4.2] that I'(w) = 0 if and only if w is a.e. equal to a Robinson graphon. Namely, T'(w) = 0
precisely when there exists a Robinson graphon w so that ||u — w|jg = 0. This fact is indeed a trivial
case of Theorem 1.1.

One can think of " as a function on labeled graphs in a natural manner, namely I'(G) = I'(wg)
for a labeled graph G. When dealing with graphs, I' identifies unit interval graphs labeled “properly”,
i.e. labeled unit interval graphs whose adjacency matrices are Robinson. We denote such labeling of
a graph, if exists, a Robinson labeling. To turn T into a graphon/graph parameter, we consider the
following natural definition:

L(w) = inf{T(u): o(u,w) =0}, (5)
(@) = min{l(wg): H is a labeled graph isomorphic to G} . (6)

It was shown in [CGH'15, Theorem 6.4] that ' is dg-continuous. Note that do(we,wy) = 0 for
any labeled graph H isomorphic to G, so I'(wg) < I'(@). From Theorem 6.4 in [CGHT15] we also
have that, for any converging graph sequence {G,}, the numerical sequences {I'(wg, )} and {I'(G,)}
converge to the same value. We conjecture that, in general, f(G) < f(wg) + O(ch)\)v but leave this
question aside since it is tangential to the main theme of the paper.

REMARK 2.2. The concepts of I'(G) and f(G) were formulated using a similar but discrete approach
in [CGH'15], and were denoted by I'*(G, <) and I'*(G) respectively, where < indicates the ordering
on V(G). It turns out that the two approaches result in asymptotically equal functions; see Section 6
for more details. To declutter notations, we have chosen to work with the simpler definitions I'(G)
and I'(G) in the present article.

3. Robinson approximation of graphons

In this section, we define a Robinson approximation R,, for a graphon w. Later, we will prove that
the error of approximation, namely ||w — Ry||g, is bounded in terms of I'(w). The following notations
will be used in the rest of this article.

NOTATION. Let S and T' be measurable subsets of [0, 1].

(i) We write S < T to signify that for all x € S, y € T, we have x < y.



(ii) The product S x T is called a cell or rectangle in [0,1]%2. We defined the average value of w on
the rectangle S x T to be

w —L w(x x
w(S,T) = |S||T|/S/T (x,y) dx dy.

We now proceed to define the Robinson approximation R, for a given graphon w. First, we need
some preliminary definitions. Since both w and R, are symmetric, we restrict our attention to the
region above the diagonal, which we denote by A. Namely, we denote

A:{(:v,y)e[o,l]Q: :ng}.

The value of the Robinson approximation at a given point is determined by the behavior of the graphon
on the upper left (UL) and lower right (LR) regions defined by that point. Precisely, for any (a,b) € A,
we define

UL(a,b) = [0,a] x [b,1],
LR(a,b) = [a,b] x [a,b]NA.
b il

a

Figure 1: Regions UL(a,b) (blue) and LR(a, b) (red)

The upper left and lower right regions provide us with an alternative, and rather more geometric,
definition of Robinson graphons. Indeed, a graphon w € W is Robinson if and only if, for all (a,b) € A
and all (z,y) € UL(a,b), w(z,y) < w(a,b). Alternatively, w is Robinson if and only if, for all (a,b) € A
and all (z,y) € LR(a,b), w(z,y) > w(a,b).

DEFINITION 3.1 (Robinson approximation for graphons). Given a graphon w € Wy with T'(w) > 0,
the Robinson approzimation R, is defined as follows. Let o = T'(w)?/7. Then for all (z,y) € A,

Ruy(z,y) = Ru(y,z) =sup {w(S,T) : S xT C UL(z,y), |S| = |T| = a}, (7)
taking the convention that sup ) = 0. Moreover, we set R,, = w, if w is Robinson itself.

From the definition of UL and LR regions, it immediately follows that R,, is indeed Robinson.
Namely, let (a,b) € A and (z,y) € LR(a,b). Then UL(a,b) C UL(z,y), and thus Ry (a,b) < Ry(z,y).
We now restate our main theorem in a more detailed form. The proof will follow in Section 4.

THEOREM 3.2 (Equivalent to Theorem 1.1). Let w : [0,1]2 — [0,1] be a graphon, and R, be as given
in Definition 3.1. Then |Ry, — w|o < 14T (w)'/7.



1"1 ///

Figure 2: We let wy = wW(Sy X Tw), w; = w(S; x T;). Lemma 4.1 bounds I" if w, > w;.

4. Properties of R, and proof of Theorem 3.2

The proof of Theorem 3.2 relies on a simple, yet important, lower estimate for I'(w), which we present
in Subsection 4.1 (see Lemma 4.1). In fact, this lemma inspires the definition of the upper left (UL)
and lower right (LR) regions. To obtain a bound on the error ||w— R,||a, we analyze points (x,y) € A
based on the average behavior of the graphon w on the two regions UL(z,y) and LR(z, y). Indeed, we
define black regions, white regions and grey regions in A, each of which containing points with similar
average behavior over the corresponding LR and/or UL regions. It turns out that understanding
features of these regions and their interactions is the key to our final estimates; this is the content
of Subsection 4.2. The proof of Theorem 3.2 is based on the idea that the total area of all the grey
regions is small (see Lemma 4.10), while the local average difference between w and R,, inside either
the black or white regions is controlled by I'(w). These facts lead to the conclusion that ||R,, — w||g
must be small.

4.1. A lower bound on I in terms of the “upper left” and “lower right” regions

The lower bound for I', presented here, is in terms of average values of w on rectangular regions of
[0,1]? that are far from and close to the diagonal.

LEMMA 4.1. Let w € W. Let S, < S; <T; <T, be subsets of [0,1] with |S,| = |Si| = |T1| = |Tu| > a.
Then

I'(w) > o® (m(su, T,) — m(sl,:rl)).

Proof. Setting A = S;UT,, we get

D(w) > TD(w,A)
> /IGTZ /yeTu [/ZESZ w(y, z) — w(LZ)dZerI dy
" /meSu /yesl [/ZETu w(z, z) —w(y, Z)dZ] . dz dy
>

[/ / / w(y, z) — w(z, 2)dz dz dy]

zeTy; JyeT, JzeS; +

+ [/ / / w(zx, z) —w(y, z)dz de dy}
z€S, JyeS; JzeT, +

= TSI [@ (S, Tu) = @S, T)] , + |SillSull Tul [@(Su, Tu) —@(S1, T)]
o®[w(S1, T) = W(S1, Th)] , + o [W(Su, Tu) — W(S1, Tu)]
o (W(Su, Tu) — wW(S1, T1)).

Y

Y
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Figure 3: w as in Remark 4.2.

REMARK 4.2. The following example shows that the above lower bound is sharp up to a factor of g.

Fori=1,...,4,1let I; = (%,%]. Define w € Wy to be

0 for (z,y) € Ir x I3,

1 fOl”(iL‘,y)EIlXIQU11><I4U13><I4,
w(x,y) o w<y7x) - % for (l‘,y) €l x IsU Iy x Iy,

1 otherwise,

as shown in Figure 3.

Applying Lemma 4.1 to the sets Iy < I < I3 < I, we obtain that I'(w) > (%)3 (%) Now consider
any set A C [0,1], and let A; = ANI; and a; = |A;| fori=1,...,4. Ify,z € I; for some i = 1,...,4,
then w(x, z) = w(z,y) for all x. If y € I; U Iz, then w(x, z) < w(z,y) forall z <y < z. If z € I3 U Iy,
then w(z,y) < w(zx, z) for all x > z > y. Therefore, only pairs (y,z) € I3 x Iy U I; X Iy can make a
positive contribution to I'(w, 4), and

1 1 1 1
———da:—l—/ ——de—l—/ — —1)dx
/yEIg /2614 |:/I€A1(2 4‘) I€A2(4 ) x€A3ﬂ[O,y](2 ) :|+
f [0 GG-Vdo+ [ (G-0det [ (-]
yel, Jzels IGAQQ{ZJ] 2 x€EA3 4 x€EA, 2 4 +

1 1 1
- T (/yel3 [al + a2 —2|A3N [E,yHery—l—/zeIz |:O[3 +ag —2|A2N [Z,EH:LLCZZ)

1
2

I(w, A)

3
{041 +ag —2[y+ as — Z]+}+dy+/

z=

INA
N
N
c\.‘.
(o

1
|:O[3 +oy — 2[1 +ag — 2]4 +dz>

1

3
1 1 3
= — / (1 + a2) dy+/ {041 tor—2(y+as — _)} dy
16 y:1 y*%*@t:; 4 +

3 =

oo 1
—|—/ [0434—044—2(—4—042—2)} dz—|—/
5 4 + 1

I toe

asg a2
/ {041 + ag — 2y} dy + / |:O[3 + oy — 22} dz
y=0 + =0 +

z=

=

(as + a4)dz>

Har+ an)(g — an) + (aa + an)(g - ).

I,
|

where we used the fact that, for any y € I3, the measure ’Agﬁ[%, y]’ is minimized when Az = [% —as,
in which case we have ’A3 N [%,y” = [y — 2 + a4 for every y € I3. Similarly, for z € I, |43 N[z,

NI oo




is minimized when A; = (1, 1 + a2], and the minimum value equals to [ + a2 — z]+. The right hand
side of the above inequality increases when oy = ay = i. So we have

r( A)<i/a3[3+ 2]d+/a2[3+ 2}d+— 2 (8)
w, = 16 o 1 Q2 y+y o1 €%} z z Q03

By symmetry, we may assume wlog that as < a3. Note also that ag < < —i— , since ag < In the

case where g < 1 + %2, the right hand side of (8) reduces to

1
I-

1 1
-+ a3)a2 — a% + g — 2(120{3) .

16 4

This is maximized when ag = and the above expression has value (75)(5).

1
a3 = g,
Now consider the case as > % + 22. Then the right hand side of (8) becomes

1 1 1 s 1 as, 1 5 1
+ e B e R s —a2+ -2 .
16 (( a2)(8 2) (8 2) (4 as)ag — aj 3 Q03

This expression is maximized (subject to our condition for this case) when oz = 1 4+ %2 and ag = 5.
The value achieved is (7)(g55), and hence the previous case achieves the maximum. This gives an
upper bound on I'(w, 4) of & (&) =3 (% (1) ) So we get 1(1)® < T'(w) < 3(3(3)?), as claimed.

4.2. Black, white and grey regions in A

For the remainder of this section, fix w € Wy with I'(w) > 0. Let a = I'(w)?/7, and let R,, be the
Robinson approximation of w as described in Definition 3.1. To prove Theorem 3.2, we need to break
down A into regions where R,, attains values between certain successive fractional multiples. We do
so by having a closer look at the definition of R,,.

REMARK 4.3. Fix an integer m; we will determine the optimal value for m later. For 1 < k£ < m and
(z,y) € A, the inequality % < Ry(x,y) < % holds precisely when the following two conditions are
satisfied:

(i) There exists an o x « cell S x T contained in UL(z,y) on which w(S,T) > &=L,

(ii) For every a x a cell S x T' contained in UL(z,y), we have w(S,T) < .

Motivated by this observation, we use the graphon w to split A into smaller regions of three types,
namely black, white and grey regions as defined below.

DEFINITION 4.4. Let a = I'(w)?/7, as was chosen in Definition 3.1. Let m be an integer. For k =
1,...,m, define the k’th black region Bj, the k’th white region Wy and the k’th grey region G as
follows.

o BkZ{(ZC,y)EA: x=y or 3SxTCUL(zy) with |S|=|T|=«aand E(S,T)>%}.
e We={(z.9) € A\By: 38X T CLR(z,y) with |S|=|T|=a and w(s,T) < L},
° ngA\(BkUWk).

Also, define Bg = Wyr1 = A and Wy = By = 0.

Finally, we introduce the regions of A on which the value of the Robinson approximation R,, is
easy to predict.



DEFINITION 4.5. For 0 < k < m, define Ry := B N Wiy1.

See Figure 4 for a demonstration of the black, white and Ry regions. Note that no set By, k > 0,
can contain any point within distance « of the border of [0,1]?; in the figure this margin is assumed
to be invisible. A similar statement holds for W), and points within distance a of the diagonal, when
k < m. From Remark 4.3, it follows that, for 1 < k < m, By \ Biy1 is exactly the region on which
% < R, < % Note that Ry is a (possibly proper) subset of By \ Biy1. This then leads to the
following remark.

REMARK 4.6. For 0 < k < m,

I=

k—1
for all (z,y) € Rk, —— < Ryl(x,y) <
m

For k& > 0 this follows immediately from the discussion above. For k = 0, note that for all 1 <i < m,
Ro N (B; \ Biy1) = 0 and thus R,, cannot attain values in U™, (=1, L] on Ry. Since R,, is bounded
between 0 and 1, it follows that R,, equals zero on Ry.

The intuition behind these definitions is the following. If (z,y) € Rk = Br N Wiy1, then UL(z,y)
contains an « x « cell with “high” w-average, and LR(z, y) contains an a x « cell with “low” w-average.
These two conditions, together with Lemma 4.1, force us to assign a value to R,, on the region Ry,
that lies between these two averages. For (Bj \ Bi+1) \ Rk, which lies in the grey region, we do not
have such a priori knowledge, as Lemma 4.1 cannot be applied here. Luckily, this does not create
problems for our error estimates, since the area of the grey regions turns out to be sufficiently small.

LEMMA 4.7. With assumptions as in Definition 4.4, we have the following.
(i) For every k=0,...,m, we have Bi+1 C B and Wy, C Wiy1.
(i1) If (z,y) € By then LR(x,y) C By. Similarly, if (x,y) € Wy then UL(z,y) C W.
(iii) If (x1,y1), (x2,y2) € G then UL(z1,y1) N LR(x2,y2) C Gi.
(iv) For every k =0,...,m, we have Bxyr1 N Wy = 0.

Proof. Parts (i) and (ii) are easy to verify. For part (iv), note that Bx+1 N Wy C B N Wy, and the
latter set is empty by definition.

To prove (iii), suppose (z,w) € UL(z1,y1) N LR(x2,y2) \ Gk, which means that either (z,w) €
UL(z1,y1) LR (22, y2) N By, or (z,w) € UL(z1, y1) NLR(z2, y2) "W). By (ii), the first case implies that
(21,y1) € Bg, and the second one implies that (z2, y2) € Wj. So either case leads to a contradiction. [

LEMMA 4.8. For every i # j, we have R; N R; = (. Moreover,

(ng) = URk' (9)
k=1 k=0
Proof. By Definition 4.4, Bxy1 N W1 = (), which implies that Ry N Rgs1 = 0. Also from Lemma 4.7

parts (i) and (iv), it follows that R; " R; = 0 if ¢ < j — 2, since W;11 N B; C Wiy1 N Biya = . This
proves that the regions R; are disjoint. To show Equation (9), observe that

A\ (

C:=

gk (O A\ WkUBk ) ﬁ WkUBk

k

1

Now, consider the expansion of (Wi UB1)N(W2UB2)N...N (W UB,y,) into expressions X1 N...NX,,
with X; € {W;, B;}, and note that by Lemma 4.7, X; N...N X, = 0 whenever X; =W, and X; = B,
for some i < j. So, every nonempty term X; N...N X,, from the above expansion must be of one of
the following forms:

10
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Figure 4: Black and white regions; example for m = 2.

(i) Xan...NnX, =B;NW,41 with 1 < j < m, if there is at least one black and one white region
amongst X;’s.

(i) Xan...NX,, =WiN---NW,,, = Wy, if all X;’s are white.
(iil) X9 N...NX,,, =B1N---N B, =B, if all X;’s are black.
This finishes the proof, as B, = B, N1 Wy,4+1 and Wy = W; N By. O

REMARK 4.9. For every 1 < k < m, the region Gy is bounded between lower and upper boundary
functions fx, g : [0,1] — [0, 1], as shown in Figure 4. Indeed, fj is the upper boundary of By, and g
is the lower boundary of Wy. To be precise, for every = € [0, 1],

f(z) = sup{z€ [z, 1]: (z,2) € By}, (10)
ge(z) = inf{z € [x,1]: (x,2) € Wi}, (11)

where we set inf () = 1, if it appears in the definition of g;. In addition, we define fy(z) = 1 and
gm+1(x) = x for all x € [0, 1], to represent the corresponding boundaries for By = Wy,+1 = A. Finally,
since fr and gx41 are the upper and lower boundaries of By and Wj1 respectively, if the region Ry
is nonempty, then it is bounded from below by gi11, and from above by f.

From the definition of By and Wk, it is clear that fi < gir. Moreover, both f; and g are in-
creasing functions. Indeed, towards a contradiction suppose fi is not increasing, i.e. assume that
there exist z1,29 € [0,1], with 21 < 23 but fr(x1) > fi(z2). Then, (zz,w) ¢ By but
(22, M) € LR(z1, M), which is a contradiction with (z1, M) € By by
Lemma 4.7 (ii). The proof for gy is similar.

Note that boundary functions fy, gx are not necessarily continuous. However, being increasing, the
boundary functions can only admit jump discontinuities. So, we can naturally extend the graph of a
boundary function to a curve by adding appropriate vertical line segments at its points of discontinuity.
We call the resulting curve a boundary curve, and we denote it by f, gr again.

LEMMA 4.10. Assume the notations and conditions of Definition 4.4, and let k € {1,...,m}. Then,
Gy does not contain any B x B square, where 3 > «. Here, Gy denotes the closure of Gy, in R2.

Proof. Let k € {1,...,m} be fixed. Clearly, points of Gj lie on or between the lower and upper
boundary curves of Gi. Towards a contradiction, suppose there are B > «a, and measurable subsets
S, T C [0,1] with |S| = |T| = B for which S x T' C Gj. Let a; = inf S, as = sup S, by = inf T, and
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by = supT; note that as —a; > B and by — by > (. Since Gy is closed, we have (ai, b)) € Gy, for
i,j = 1,2; thus using Lemma 4.7 (iii), one can easily see that [a1, az] x [b1,b2] C Gr. Note that every
point in Gy, that is not on the lower or upper boundary curves, must be an inner point. Given that
the lower and upper boundary functions of G, are increasing, we conclude that (a1, as) x (b1,b2) C Gg.
Clearly, (a1, az2) x (b1,b2) contains a closed o X « rectangle, say [a], ab] X [b], b))].

The two points (a}, b}), (a5, b]) belong to Gi, so both of them fail to satisfy the conditions for Wi,
and By. In particular, we have w([a}, ab], [b}, b5]) < £=L as (ab, b)) € By, and w([a}, ab], [b], bh]) > =L
as (af,b5) & Wy. This is a contradiction. O

4.3. Proof of Theorem 3.2.

We are now ready to prove Theorem 3.2. We use the contrapositive, by showing that, if ||R,, — w||o
is large, then I'(w) cannot be small. First observe that if I'(w)!/7 > 1/14, then |R, — w|o < 1 <
14T (w)/7, and there is nothing to prove. So without loss of generality assume that 0 < T'(w)'/7 < 1/14.

Let m be an integer chosen from [£2T'(w)~1/7, ['(w)~'/7]. Note that such an integer exists, as the

interval has length at least 1. Moreover, from the upper bound on I'(w), we get m > 13. Let a be
as in Definition 3.1, i.e. a = I'(w)?/7. Note that we chose these parameters so that ol > I'(w). This

choice of parameters allows us to use Lemma 4.1 to obtain a contradiction. In the rgst of the proof,
we will show that if ||w — Ry|/o is not small, then we can find two rectangles satisfying conditions of
Lemma 4.1, which will result in a contradiction.

Fix 8 > «, and let § := 14mpB. Towards a contradiction, assume that ||w — Ry||o > 0. So there

exist measurable subsets S, T C [0, 1] so that

‘//SXTw—Rw‘>(5.

Replacing S x T with T x S if necessary, we can assume wlog that ‘ J f(SXT)mA w— Ry| > g. We will

now show that (S x T) N A contains a region S* x T* so that w is substantially different from R,, on
this region. The precise statement is given in the following claim.

CLAM 4.11. There exist sets S*,T* of size |S*| = |[T*| = a and 0 < k < m so that S* x T* C Ry,
and for which we have the following inequality:

‘//*XT*w—Rw > ma3(3—%). (12)

Proof. Let S and T be as described above. Split S into N7 = [|S]/5] subsets S; < Sy < --- < Sy, so
that |S1]| = |S2| = -+ = |Sn,—1] = S and |Sn,| < 5. Likewise, we split T into Ny = [|T|/F] subsets
T1 S T2 S S TN2 with |T1| = |T2| = = |TN2,1| = ﬂ and |TN2| S ﬂ The sets Sl',Tj form a
“grid”, in which each cell is of the form S; x T; with 1 < ¢ < N; and 1 < j < Nj. Since |Sn,| < 3,
|Tn,| < B, and |w — Ry | < 1, we can use triangle inequality to get

R S

1<i<N;, 1<j< N2 1<i< Ni, 1<j< Ny
(S»LXTJ)I'_WA#@ (SZXTJ)QA;&Q
- // w— Ry
(Sny XT)U(SX Ty )
)
- —20. 13
' 2 (13)

Y

Y

[
(SxT)NA

V
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Recall that A = UZ;O Ry U U;cnzl Gy, and each of the regions G, or Ry is bounded by boundary curves
from the collection {fx, g1 : 1 <k <m,1 <l <m+1} as defined in Remark 4.9. Thus, if a cell S; x T}
does not cross the graph of any of these boundary curves, then it must be entirely contained 1n51de
one closed region Ry, or Gi.. Here, by “a cell crossing a boundary”, we mean that the top-left corner of
the cell is strictly above the boundary curve, and its bottom-right corner is strictly below the curve.
(Note that we need to use the concept of “a cell crossing a boundary” rather than “a cell intersecting
with the boundary”, as our cells are not necessarily connected subsets of R?. So a boundary curve can
go through a cell, without having to intersect with it.) Next, by Lemma 4.10, none of the grey regions
G can contain any of the cells S; x T; with 1 <7 < Nj and 1 < j < Nj. Let Z denote the collection
of indices (4, j) with i < Ny and j < Na, for which the associated cells do not lie in a single region Ry.
From the above discussion, we have

= {(i,j) 1<i<N;,1<j< Ny and3I1<k<mst. (S;xTj) crosses fj or gi or gm+1}.

Note that any cell with indices outside Z is completely contained in the closure of one region Ry.

Now, we bound the size of the set Z. By Remark 4.9, the lower and upper boundaries fx, gr are
increasing functions. We claim that fy (similarly gi) crosses at most 2/ cells from the grid. Indeed,
suppose that Sp, X Ty, Spy X T,y Spy, X Tn; is a sequence of distinct cells, all of which cross
the graph of fi. Since fk is increasing, after relabeling if necessary, we have that n; < ng < ... <
n, and nf <nhp <...< np. However, A cannot contain any such sequence of length more than
Ny — 14 Ny —1<2/8. Thus, we have

2(2m + 1)
7 < 22l
Since every cell indexed in Z is of size 3%, we have |F| < (4m + 2)3, where F = Ui jer Si x Tj. By

inequality (13), and the fact that |w — Ry, | < 1, we get

[ o

By the pigeonhole principle, since there are at most (1/3)? cells S; x T} of size 8 x 3, there must exist
a cell S;y x Tj, € A\ F so that S| =|T},| = 5 and

4
‘// w — Ry, Zmﬁg(?)——).
SiOXTjo m

Since (ig,jo) & Z, we conclude that S;, x T}, lies entirely in the closure Ry = B, N Wy for some
0 <k < m. It is easy to see that, there are subsets S* C S;, and T* C T}, with |S*| = |T*| = «, so
that S* x T* C Ry, = Br, N Wi41 and

g—Qﬁ—(4m+2)ﬁ=3mB—4ﬁ.

1<1<N17 1< j< N2
(SixTj)NA#D
(4,5) ¢ T

‘//*XT*w—Rw > ma?B(3 — %) >ma?(3 — —), (14)

m

which proves the claim. (In the case where 5 Is a rational number, the existence of such sets S* and 1™

is an easy application of the pigeonhole principle and the fact that > mpB(3— %)

The case where % is irrational follows from a standard density argument )

We now state and prove a second claim.
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CLAIM 4.12. If sets S*,T* and index k as in Claim 4.11 exist, then T'(w) > a3/m.

Proof. As explained in Remark 4.6, we have % <Ry, < % on S* x T*. To prove the claim, we will
consider two cases.
Case 1. Assume first that w has larger average than R, on S* x T, so ffS*xT* w— Ry >

ma?(3 — ). In this case, we have

k-1 — ma?(3 — 1) 4
ok * * ) s m
w(S*,T*) — ——>w — Ry(S ’T)_7|S*><T*| =ma(3 - —), (15)

where we use that |S* x T*| = o?.

Next we argue that k < m. From our choice of parameters, we have that m?a > (%)2 > %, which
implies that 2ma — = > 0. Assuming now that S* x T* C R,,, then by (15) and the facts that
0 <w < 1andm > 13, we have that

1 1 4
_ R — * *) <
1 <14 (2ma )< (1 ) +ma(3 ) <w(S*,T*) <1,

which is a contradiction. This proves that k < m.

Now let (x,y) be the lower right corner of S* x T*, so x = sup S* and y = inf 7*. Then (z,y) €
Wi+1, and thus LR(z,y) contains a region S; x T} so that |S;| = |T}| = «, and wW(S;,T;) < % Applying
Lemma 4.1 together with inequality (15), we now conclude that

k-1 k

I'(w) > o® (ma(3 — %) + — E)

Since m > max{{3I'(w)~/7,13}, we conclude that

m 9 4 13, —2/7 2/7 4
Yy > Yy 1> (== S S
F(w)(a3) > ma(3 m) 1> (14) I'(w) D(w)*""(3 13) 1>1, (16)
Therefore,
o?
r &
(w) > —

which proves the claim for the first case.
Case 2. For the second case, assume [ [ ;. Ry —w > ma®(3 — %) This case can only happen
if £ > 0, as R, attains 0 on S* x T* if k = 0. By a similar argument,

K w1 > ma3— 2. (17)

m m

Now let (x,y) be the upper left corner of S* x T*, so = inf S* and y = supT*. Then (x,y) € By,
and thus UL(z,y) contains a region S; x T} so that |S)| = |T}| = o, and W(S;,T;) > £L. Applying
Lemma 4.1 together with Equations (17) and (16), we now conclude that

F(w) > a*(ma(3-——)——) = %(m2a(3 -—)-1)>—.
O

Our second claim directly contradicts the assumption that T'(w) < %3 Thus our assumption that
IRy — w|la > 0 does not hold, which implies that |R, — w||o < 6 = 14mp for all 5 > «. Thus,
| R — wllo < 14ma < 14T (w)'/7. This completes the proof of Theorem 3.2.

14



5. Recognition of graph sequences sampled from Robinson graphons

Consider a graph sequence {G,,} sampled from a graphon w € Wy, i.e. a sequence {G,} that converges
to the graphon w in the sense of Lovéasz-Szegedy, or equivalently éo(wg,,,w) — 0. By [CGHT15,
Theorem 6.4], T is continuous, and in particular,

If G, —w and T'(w) =0, then I'(G,)— 0. (%)

Continuity guarantees a weaker version of the converse: if G,, — w and I'(G,,) — 0, then I'(w) = 0.
Since I(w) = inf{I'(u) : do(w,u)}, these earlier results do not imply that the dp-equivalence class of
w contains a Robinson graphon. In Theorem 5.3 to follow, we will use Theorem 3.2 and the weak*
topology of the space of graphons to show the strong version of the converse. The proof of Theorem 5.3
involves approximations of a graphon by step graphons, which we discuss in the following subsection.

5.1. Stepping operator

For an integer N € N and a graphon u € Wy, we define the step graphon uY) as follows: split the
interval [0, 1] into N equal-sized subintervals I3, ..., Iy, and define

uN(x,y) =7, 1), if (z,y) € I; x I;.

(

To avoid clutter of notation, we use uzzj) to denote the value of u(™) at every point in I; x I;. The

operator that assigns to every u € Wy, the step graphon u™) is called a stepping operator. Step
graphons approximate w in || - ||;-norm, and hence in || - ||g-norm. In the following lemma, we obtain
a universal upper bound for the rate of convergence of the step graphon approximation of a Robinson
graphon. Note that the proof of Lemma 5.1 relies heavily on the Robinson structure of the graphon.
For a general graphon, a uniform bound for the rate of convergence of step graphon approximations can
be obtained by applying the (Weak) Regularity Lemma for graphons (for example, see [Lov12, Lemma
9.9]). However, the bound from the Regularity Lemma cannot be used for our methods of proving
Theorem 5.3, since the bound is of the order of \/—%, and the partition sets are not necessarily intervals,
but rather measurable sets. The following lemma gives us better control on both the partition sets
and the error bound.

LEMMA 5.1. Let u € Wy be a Robinson graphon. Then for every N € N, |ju —u®™||; < =

Proof. Fix N € N, and note that (") is a Robinson graphon as well. Consider the symmetric graphons

u™ and ugN) that are obtained from u(") by shifting every cell towards the diagonal (for u(_N)) or

away from the diagonal (for ugN)). That is,
(N) (N) uN) if(r,y)el; xI; and 1<i<j<N
ul (z,y) i=ul (y,x) = i=lg+l e A vy =
0 if (z,y) € I; x In or (z,y) € h xI;

and
(N)

(N) o, (N) _Jougg o i@y el x I 1<i<j<N andj—i>2
uy(2,y) = uy (y,x) { 1 if (z,y) €L; xI; and 0<j—i<1

(V)

(N)

(N)
Jr .

Since v is a Robinson graphon, it can be easily checked that u <u<u and uSN) <y < uy
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On the other hand,

Y a0l = / 9

[0,1]2

N i+l N—-1 N-1 ™)

N

= ZZ%HJ 1+ZZl—2ZZul 1j+1 Zuzlz-i-l
=1 j=142 1=1j=1—1 1=2 j=1+1

TN
<
= N2

because every pair (i,7) with 1 < i < 7 < N and j — ¢ > 3, contributes exactly once in a positive

sum and exactly once in a negative sum, and there are only 7N other terms left. Thus, we have
N N

e = ™y < Juf =y < F 0

5.2. Robinsonian graphons

We are now ready to prove Theorem 1.2, which will follow from Theorem 5.3. First we introduce the
following definition, which matches a similar concept in matrix theory.

DEFINITION 5.2. A graphon w € W) is called Robinsonian if there exists a Robinson graphon u € Wy
such that dg(u,w) = 0. In other words, a graphon is Robinsonian if its dg-equivalence class contains
a Robinson graphon.

THEOREM 5.3. Let {G, }nen be a growing sequence of graphs converging to a graphon w € Wy. Then,
w s Robinsonian if and only if IT'(Gy) — 0.

Proof. The forward direction is a consequence of continuity of I. To prove the backward direction,
suppose I‘(Gn) — 0. Without loss of generality, assume that every G, is labeled so that I‘(Gn)
achieved, that is I'(G,) = I'(wg,) where wg, denotes the graphon that represents G,. From the
assumption we have I'(wg, ) — 0, and from the definition of convergence of graph sequences, we have
that 0 (wg,,, w) — 0.

Applying Theorem 3.2, for every n € N, there exists a Robinson graphon w, € Wj such that
lwn —wa, |0 < 14T (we, )7 So {u, ynen is a sequence of Robinson graphons such that 6o (w,, w) — 0
as n — 00, because

0o (tn, w) < da(up, wa,) + do(wg, ,w) < ||u, —wa, ||o + do(wg,, , w).

Now consider the graphon space Wy as a subset of B1(L>[0,1]%) := {f € L*>[0,1]*: [|f]s <1},
namely the closed unit ball of L*°[0, 1]2. The Banach space L*0, 1] is 1sornetr1cally isomorphic to the
(Banach space) dual of L'[0,1]?, so one can equip B;(L>°[0,1]?) with the weak* topology induced by
this duality. By the Banach-Alaoglu theorem, By (L]0, 1]?) is compact in the weak* topology ([Con90),
Theorem 3.1 of Chapter V]). In addition, since L'[0,1]? is separable, the unit ball By (L>°[0,1]?) is a
metrizable space in the weak* topology, and thus it is sequentially compact as well ([Con90, Theorem
5.1 of V]). Thus the sequence {uy nen in B1(L%[0,1]?) has a weak* convergent subsequence.

By going down to that subsequence if necessary, wlog we can assume that {u, }nen converges to
some z € By (L>[0,1]?) in the weak* topology, i.e. for every h € L'[0, 1]? we have f[O,lP uph — f[0,1]2 zh
as n — oo. In particular, for every measurable subsets S, T C [0, 1], we have

/ Up, — Z, as n — o0. (18)
SxT SxT

By (18), we get that for every N € N, the sequence {uglN)} converges point-wise to z(¥). Note that
every graphon u,, is Robinson. So for every N € N, the corresponding step graphons u% ) and their
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point-wise limit (™) are also Robinson. Finally, since ||z — 2(")||; — 0, z is a Robinson graphon a.e.
as well.

Next, we claim that dg(z,w) = 0. Fix ¢ > 0, and choose Ny € N such that NLO < 5. From the

convergence of {U%NO)}neN to (Vo) pick m € N so that ||u£év0) — 2N, < 5. Applying Lemma 5.1
to the Robinson graphons z(No) and u%v 0), we have
(No) (No) _ ,(No) (No) T, 7
lum = 2lle < flum = w1+ flug™ = 227N+ 127 =2l < o=+ g+ 5= <e (19)
0 0

Since 0 (w, 2) < dg(w, Um)+0a (Um, 2) < I (W, U )+ ||tm —2||1 for all m, and dg (w, ) +||wm—2]1 —
0, we have that dg(w, z) = 0. O

COROLLARY 5.4. I'(w) = 0 if and only if w is Robinsonian.

Proof. Note that f(w) is defined as an infimum over all graphons in the dg-equivalence class of w. The
above theorem tells us that this infimum is in fact achieved at 0. |

REMARK 5.5. (i) A dg-equivalence class of graphons may include more than one Robinson graphon,
i.e. there is no concept of a “unique Robinson representation” of a dg-equivalence class of
graphons. The same holds when I'(w) is small, i.e. there may be u1,us € Wy with dg(u1, w) =
do(uz, w) = 0, D(w) = D(uy) = T(ug), but |Jug — ugl|o is large. This phenomenon is the root
of complications in the proof of Theorem 5.3, and the reason that a purely combinatorial proof
could not be derived easily.

(ii) A function ¥ : W — [0, 1] is called a I'-type function if it is || - ||g-norm continuous, satisfies the
condition of Lemma 4.1, and attains 0 when applied to Robinson graphons. It is very easy to
verify that Theorem 3.2 and Theorem 5.3 hold for any I'-type function. In that sense, we think
of I' as a prototype of I'-type functions, whose definition is very natural.

6. Rate of decay for T of samples from Robinson graphons

Let w be a Robinson graphon, and consider a graph sequence {G,, } nen with G,, sampled from G(n,w).
From Corollary 6.5 in [CGHT15], we have that lim,_, I'(G,,) = 0 almost surely. In this section, we
obtain upper and lower bounds for the speed of this convergence. In particular, we prove Theorem 1.3,
which gives order bounds on I'(G,,) for graph sequences sampled from graphons with a flat region (rect-
angular region in [0, 1]? on which w is constant) and steep graphons (graphons with partial derivatives
bounded away from zero). Our results show that the decay is an order of magnitude faster for steep
graphons than for graphons with a flat region. This confirms the intuitive notion that for graphons
with stronger linearly embedded structures I'(G,,) converges to zero faster.

6.1. Some definitions and notations for this section

Due to the graph-theoretic nature of our results, we will replace the graphon-based definition f(G) by
the graph-based parameter I'*(G), originally defined in [CGH"15] as follows: Let G be a graph with
a linear order < on its vertex set V(G), and denote |[V(G)| = n. For every v € V(G), the collection
of all the neighbours of v is denoted by N(v). Also, the down-set D(v) and the up-set U(v) of v are
defined as follows:

Dw)={zeV(G):x <v} and U(v)={zx € V(G):v < x}.
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DEFINITION 6.1. Let A C V(G), and < be a linear order on the vertex set of G. We define,

r“(G,<,A) = %Z[|N(v)ﬂAﬂD(u)|—|N(u)ﬁAﬂD(u)|]+
+ %Z[|N(u)ﬁAﬂU(v)|—|N(U)ﬂAﬁU(v)H+.

We also define
I''(G,<)= max I''(G,<,4) and I''(G) =minI'*(G, <),
ACV (@) <

where the minimum is taken over all the linear orderings of V(G).

It follows from [CGH™ 15, Corollary 5.2] that the parameters I'* and T are asymptotically equal, i.e. for
a sequence of graphs {G,} of increasing order n,

P(Ga) = T(@) + OC). (20)

We will use the term with exponential probability (w.e.p.) to denote that an event holds asymp-
totically with probability at least 1 —exp (—clog2 n) for some positive constant ¢. Thus, a polynomial
number of events that all hold w.e.p. will hold simultaneously w.e.p. as well. We will make exten-
sive use of a well-known inequality, quoted below, which shows that the sum of bounded independent
variables is close to its expected value.

THEOREM 6.2 (Hoeffding’s inequality). Let {X;}¥ | be a sequence of independent random variables
bounded by the interval [0, 1], and let X = sz\il Xi. Then

N
P(IX — > E(X;)| > aN) < 2exp (—2a°N). (21)
i=1

Further concentration bounds used in this section can be found in [Wail9]. For the convenience of
the reader, we also include these results in Appendix A.

The proof of Theorem 1.3 will follow from two propositions presented in the following two subsec-
tions, each of which addresses one case of the theorem.

6.2. Graphons with a flat region

In this section, we prove Proposition 6.4 from which case (i) of Theorem 1.3 will follow. Namely, we
give a lower bound for the convergence rate of I'* of graphs sampled from graphons with a constant
rectangular region. In particular, this bound may be applied to the constant graphon, which is an
extreme case of a graphon that is Robinson, but does not have a clear linear embedding.

Recall that T'* is a graph parameter defined as min I'*(G, <), where the minimum is taken over
all the linear orderings of V(G). For any particular ordering <, one can use standard probabilistic
techniques to show that w.e.p. T*(G, <) > en~1/2 for some constant ¢. This fact is due to the random
fluctuation of the outcomes of the vertex pairs whose labels fall in the constant region of w. In order
to obtain a lower bound on I'*(G), we have to establish that the same lower bound remains true for all
orderings. This cannot be achieved using a simple union bound argument, as the number of orderings
of V(@) is superexponential. To address this issue, we partition the orderings into classes according to
a very coarse partial order of the vertex set. Next, we establish the desired lower bound on I'*(G, <)
for an entire class of orderings simultaneously, and then show that the number of classes is small
enough so that a union bound argument guarantees that w.e.p. the lower bound holds for all classes
simultaneously.

We will need the following lemma.
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LEMMA 6.3. Let Vg, Vi be two subsets of a set V, and let < be an ordering of V. Let V1 C Vg and
Vo C Vi so that
V1<V5\V1 andV2<VT\V2. (22)

Then Vi < Vp\ Vo or Vo < Vg \ V7.

Proof. Let V- = {w1,...,v,} where the vertices are labeled according to <, i.e. we have v < vy <
-++ < v,. Our assumption on < implies that if v; € V5 and v; € Vg \ Vi, then i < j; an equivalent
statement holds for Vp and V5.

For i = 1,2, let k; be the largest index in V;, that is, k; = max{k : vy € V;}. Suppose k1 < ka. Then
Vi C{vy,..., vk }, and by Condition (22) we have Vi \ Va C {vgy41,---,0n}. Therefore Vi < Vi \ Va.
Similarly, if ko < k1 then Vo < Vg \ V1. O

PROPOSITION 6.4. Let w be a graphon with a constant rectangular region, that s, there are measurable
sets S, T C [0, 1] with positive measure and a constant p € (0,1) such that w assumes p a.e. on S x T.
Then there exist constants ¢, > 0 so that, for a w-random outcome G ~ G(n,w) we have

P(T*(G) > en™ %) > 1 — exp(—an).
Moreover, the constants ¢, a depend only on p and min{|S|,|T|}.

Proof. Let w be as stated, and denote s := min{|S|, |T'|}. Let G ~ G(n,w) be an outcome with vertex
set V' ={1,2,...,n} and labels x1,...,x,. Define

Vs={ieV gz, eStandVp={ieV : 2, €T}

Clearly, w(z,y) = p for all x € Vg, y € Vpr. By Hoeflding’s inequality, with probability at least
1 —2exp(—2(s/4)?n), we have

3 3
[Vs| > 5" and |Vp| > 25" (23)

We assume this is the case.
Let 0 < € < . (An appropriate choice for ¢ will become apparent at the end of this proof.)
Consider partitions of Vg and Vr into sets V;°, V57, V¥ and ViT, VL' Vi respectively, so that

VE = Vs = V| = V)| = len] and (V' UV )NV =0. (24)

We will show that w.e.p. for any such partition, there exists a sufficiently large subset of Vgs containing
vertices that have larger than expected number of neighbours in Vi and smaller than expected number
of neighbours in V3!, and vice versa.

Let m = |en]. Fori = 1,2, let

B = {yeV{: NV >pm+Vm} (25)
cS = {yeVy: N NVT| <pm—m}

We are interested in the sets BY N Cy and By N CY. First, we establish a lower bound on their sizes.
For each y € V3°, the variable |[N(y) N V{I| is the result of m Bernoulli trials, with probability
of success equal to p, so E(|N(y) N V{T|) = pm. Moreover, since V3> N V;T = 0, these variables are
_ NV |—pm
mp(1-p)
converges in distribution to a standard normal random variable with cdf ® as m, or equivalently n,
converges to infinity. So if m is large enough, for every y € V°,

independent. Thus by the central limit theorem, for y € V5°, the random variable Z,,

o 3 1 3 1
P(y € By) = Z‘I’(\/ﬁ) and P(y € Cy) = Z‘b(m)- (26)
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Next, we show that w.e.p. |BY N CF| has a suitable lower bound. Let a, = ®( (11 )). Since
p(1—p

VI NVE = 0, the events {y € BY} and {y € C5} are independent, so (26) implies that P(y €
Bf N C%) > (3a,)?. Note that |[Bf N C§| is a sum of Bernoulli random variables with probability
of success at least (3a,)?, so E(|BY N C5|) > %a2|V5’|. From the condition V5% N (ViF U V) =0
in (24), these Bernoulli random variables are independent as well, so by Hoeflding’s inequality, we
have that, with probability at least 1 — 2exp(—2(a2/16)?|V5’|), the size |Bf N CF| is bounded below
by (1/2)a2|Vi’| > (1/2)aZ(%s — 2¢)n. Employing a similar argument for | B3 N C{'| and using a union
bound, we obtain that if (23) is satisfied, then with probability at least 1—4 exp(—2(a2/16)*(3s—2¢)n),
the set sizes |Bf N C§| and |BS N CY| are bounded below by (1/2)a2(3s — 2€)n.

To show that these lower bounds hold w.e.p. for every choice of Vis , VI i = 1,2,3, satisfying
(24), we count the number of all such partitions. The number of ways to choose V;° and V;® of size

len]| is (‘L‘e/sj‘) (IVSLI;LJG"J); recall that V¥ is determined by V;° and V3”. Tt is known, as a consequence
of Stirling’s approximation of the factorial, that lim,, %logQ (:L) = H(e), if lim,, yo 7 = € (see
[Speld]). Here, H is the binary entropy function defined as H(e) = —elogye — (1 — €)logy(1 — €).

Given that H is increasing on [0,1/2], we obtain the following upper bound on the number of ways to

choose V5, V;T:
V Vs| — len Vr Vr| — len n\* 1%
(ltﬂlel) (| SL”JL J) (L”J') (| L”JL J) : <L€”J> =2

fp(z) = 2(@2/16)2(25 —2z) — 5In(2)H(x).

Note that f, is strictly decreasing on [0,1/4), and has positive value at x = 0. Let €* be the value of
2 in [0,s/4) where f attains zero, or €* = s/4 if no such value exists. We have now established the
following claim:

CLAIM 6.5. For each 0 < € < €*, with probability at least 1 — 2exp(—2(s/4)?n) — 4exp(—fp(e)n), Vs

and Vr both have size at least (3/4)sn, and for every choice of Vi°, V¥, VIT V&' satisfying Condition
(24), |BY N CS| and |Bs N CY| are bounded below by (1/2)@%(%5 — 2¢)n.

Define

Now consider any ordering < of V, and let V;° be the first m = |en] elements of Vs according to
<, and V5° the next m elements of Vs. Similarly, let V;7 and V5 be the first m elements and the next
m elements of Vp. By Lemma 6.3, it follows that (V;° UVyY) < V¥ or (VT U VYD) < V3°. By switching
S and T if necessary, we may assume wlog that (VI UV;I) < V4%, In particular, this implies that
(VF UV NV =0, so Condition (24) is satisfied.

We now have that, for i =1, 2,

n’L(G, <, V") = Yo IN@NVTI=IN@) NV,

z,yeVyS, z<y

> > [IN() NV = IN()n V],
z€CT, yEBY <y
> 2%‘{(17,y)60is><3i5: z <y} (27)

Note that any pair (z,y) with z € Bf N C{ and y € B N C5 belongs either to the set described in
(27) with ¢ = 1 (if < y), or to the same set with i =2 (if y < z). So

n3T(G, <, ViI) +n3T(G, <, ViF) > 2¢/m |By N CY||BY N C5|,

which implies that 2T'(G, <) > T(G, <, V) + T(G, <, Vi) > 24 |BS N C5||BS N C5 .

n3
Taking ¢ = €*/2, @« = (In6) ( min S—z,f € /2 and ¢ = (1/5)a%(3s — 2¢)%\/€, and using Claim 6.5,
8 p\1

—1/2

we get that with probability at least 1 —exp(—an), we have IT'*(G, <) > ¢n for all orderings <. O
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6.3. Steep graphons

The next proposition gives an upper bound on I'* for graphs sampled from a steep graphon, and thus
covers case (ii) of Theorem 1.3. Steep graphons are graphons for which the partial derivatives exist
and are bounded away from zero.

Since we are establishing an upper bound on I'*, we only need to show the upper bound for I'*(G, <)
for some ordering <. Guided by the Robinson property, we use the natural ordering of vertices induced
from the labels assigned by the random process G(n,w). We formalize this concept as follows: For
G ~ G(n,w), we denote the vertex set of G by V = {1,...,n}, and identify each vertex i with
the label x; € [0,1], which is its sampled value. We assume that the vertices are ordered so that
21 < 29 < -+ < . The graph G, labeled in this manner, is called a labeled outcome of G(n,w).
Since the labels assigned to different vertices are almost surely distinct, we can assume that the vertex
ordering mentioned above is unique.

The rather complicated nature of our proof is due to the fact that I'*(G, <) is defined as the
maximum of I'*(G, <, A) over all possible choices of A. Thus, we must prove that the proposed upper
bound dominates T*(G, <, A) for every subset A of V(G). To do so, we proceed by partitioning the
interval [0, 1] into a large number of small intervals. We then show that the following two facts hold
with exponential probability: on the one hand, pairs of vertices chosen from intervals that are far apart
do not have a positive contribution to I'*, as w is a steep Robinson graphon; on the other hand, the
contribution to I'* coming from pairs of vertices chosen from intervals that are close together can be
bounded from above efficiently.

PROPOSITION 6.6. Let w : [0,1]> — (0,1) be a Robinson graphon, whose partial derivatives on [0, 1]
exist and are bounded away from 0. That is, there exists a positive constant c, such that

3kl 2 22)
Then, for an outcome G ~ G(n,w),
P <I‘*(G) < (2—06> n2/3) > 1 — exp(—Q(log?n)).
Proof. Let m = ¢(n), where ¢(n) is an integer-valued function so that lim, o log(?)) >1 and
limy, o0 d’(")% = 0. An appropriate choice for a function ¢, satisfying both of these properties,

becomes apparent at the end of the proof. Assume n is large enough so that

log®(n) < ¢(n) < 0.1y/nlog™ ' n. (29)

Next, divide (0, 1] into m equal-sized intervals; namely I; = (%, %], for 0 < j <m.

Let G ~ G(n,w) be a labeled outcome, i.e. V(G) is labeled so that 0 < 21 < @2 < ... < @, < L.
Throughout the proof, we identify a vertex ¢ in V' with its label z; in (0,1), which allows us to think
of V both as a set of vertices and as a subset of (0,1).

The partition {I; }o<j<m of (0,1] results in an analogous partition of the vertex set V', which we
denote by {V;}o<j<m. Namely, for every 0 < j <m, V; ={i € V : z; € I;}. We will see that w.e.p.,
these sets will all be close to their expected size. Precisely, fix 0 < j < m, and note that |Vj| is the
sum of n independent Bernoulli variables with success probability |I;|. Applying Hoeffding’s inequality

logn

with parameter o = o We conclude that, with probability at least 1 — 2 exp(—2 log? n), we have

V3] = nlL]| < valogn. (30)

Since the number of intervals I; is sub-linear in n, we can assume that w.e.p., (30) holds for every
0 < j < m. Because of the fact that \/nlogn < 0.1 Gy (from (29)), together with |I;| = , the
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inequality (30) implies that (0. 9)ﬁ Vil < (1.1 505 (my- Thus, the event

{09—<|V|<(11) (31)

)

holds w.e.p.

Recall that the definition of I'* consists of two parts, which we call I'; and I';,. We will only bound
I';; an identical bound applies to I'},. Given a set A C V, let Ay, = ANV, for k=0,...,m—1, and
view each Ay as a subset of [0,1]. Note that [0,z) N Ap = Ay, when z € V; and k < i. So we get,

n3Ty(G, A, <) = Z |N(y)ﬁ[0,:1c)ﬁAk| — |N(z)N[0,2) N Ag|

+

(]
N\gh
?

N[0,2) N Ay| — [N(z)N [0, z) m4,€|]+

= > Z [|N(y)ﬁz4k| - IN(:JC)ﬂAkﬂ+ (32)

0<k<i<j<m =z €V;
yevV;
<y

+ Y 3 [|N(y) N[0,2) N Ay| — [N(2) N [0,2) N Ak|] 63

0<k=i<j<m z€V;
yeV;
<y

To obtain an upper bound for the above sum, we need to prove a few concentration results on random
variables of the form |N(z) N S|. The graph G is determined by two sets of random variables: firstly
the random variables x; with values in [0, 1] which are assigned as labels to the vertices of G, and
secondly the binary variables Y, ., where Y, . = 1 precisely when the pair of vertices labeled as z and
z form an edge in G. According to the definition of G(n, w), the random variables Y, , are independent
Bernoulli variables with probability of success w(z, z). Event B; defined in (31) is only a function of
the labels. From now on, we assume that this event occurs.

Recall that V is ordered so that the labeling z1,...,z, is increasing. For a vertex x € V and a
subset S C V' \ {z}, define the following random variable.

Oarran(1,8) =D You— Y EY,p =|N(x)n S| —E(N(x)nS)).

seS ses

Note that E(|N(x) NS|) = >, g w(w,z). We will now show how the definition of d,
to bound n®I'}(G, 4, <) further. To simplify notation, we denote d,,
assignment {x;}7_; is understood.

Suppose x € Vi, y € Vj, o <y, and k < i < j. Since E[N(z)NAx|—E[N(y)NAk| = 3.4, w(z,2)—
w(y, z), we have

_____ =z, allows us

2, (x,8) by (x,S), when the

.....

[IV() 4] = ING) A =[5 A0) = 00, 40) = 3 (wla ) = w(y. )]

ZEAL +

Given that z < & < y and w is Robinson, every summand w(z,z) — w(y, z) in the above sum is
non-negative. Moreover, by the Mean Value Theorem and condition (28), we have w(z, z) — w(y, z) >
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c(y — z) for every z € Aj. Thus,

IV N A= IN@ Al =[5 A0 = 3@ A0 = Y (wla2) — w(.2)] |
) 2EA
< [0y ) — o, Av) — el Adl(y - @)
< 1oty 4y - L=

+[6(z, 40| CM’“'(%@L. (34)

Since E(§(x, S)) = 0 for each set S, an upper bound will depend on concentration results for sums
of random variables of type d(x, S) or §?(x, S). The following three claims will establish the necessary
bounds.

CLAIM 6.7. For a labeled outcome G ~ G(n,w) with labeling x1,...,x, assigned to V(G), define the

event
By = ﬂ ﬂ { Z 59261 ,,,,, o (7, 8) < 7m|‘9|} (35)

For n large enough so that (29) holds, we have

.002
P(B2|B1) > 1 —exp <—M>

¢(n)

That is, assuming By, w.e.p. for every 0 <k < j <m and subset S C Vj, > 6%(z,S) < 7¢L|S|.

(n)

Proof of claim. Fix an outcome G ~ G(n,w) with labeling z1,...,z, for V. Fix k < j, a subset
S C Vi, and a vertex x € Vj. Since the random variables Y; ,, s € S, are independent, by Hoeffding’s
inequality (21), we have for all ¢ > 0,

P(5(x, S) > t) < exp(—2t2/|S|) and P(6(z,S) < —t) < exp(—2t%/|S]).

eV

This means that §(z,S) satisfies the conditions of the proposition in Appendix A.7 with 02 = %,

and 62(z, S) —E(6%(x, S)) is a sub-exponential random variable with parameters v = 2v/2|S|, o = 2| 5.
Moreover, {62(z, S) — E(6*(z, 5))}sev, are independent random variables, as V; NS = 0. Thus, by the
tail bound on sums of sub-exponential variables as in Theorem Appendix A.6, part (ii), we have

. 2
(Y 2(.9) — Y E0(.8) < fVj]) 21— exp(~ @min{#,ﬁ})_

z€Vj z€Vj

Taking t = SB|S| with 8 > 4, the above inequality implies that, with probability at least 1—exp(—§ Vi),

3 8(.8) — Y B0 (@,9) < AV, 5], (36)

z€Vj z€Vj

There are at most m?2!V¢l choices for j, k, and S. Assuming B; holds, and using conditions (29)

and (31), we have that m? < n < exp(O.lW‘/f)) < exp(§|Vil) < exp((1 — In2)|Vi|). Using (31) again,
we get:

w2 exp(= 511D < explIViDexp(- {13 < exp (~(F09) - 1) (7))
is exponentially small if 3 > 4(%'91). Taking 8 = 4.9 satisfies this condition.

Finally, note that E(6*(z,5)) = >, cg Var(Yay) = X, cqw(z,y) — w(z,y)* < |S|. Therefore,
> zev; E(52(x, S)) < %ﬂl)sl, and this finishes the proof. O
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To bound summand (33), we need concentration results for a new type of sets defined as follows.
Given a set A C V, an index k and a vertex x € Vi, let Ay, = ANV, and Ap, = ANV, N[0, z).

CLAIM 6.8. For a labeled outcome G ~ G(n,w) with labeling x1, . ..,x, assigned to the vertex set V,

define the event \
B= N {]2511,,,,M(x,14i,1)]<(%) }

0<i<m T,A;CV; zeT

For n large enough so that (29) holds, we have

n
P(Bs|B1)>1-2 —0.2—— |.
Es150) > 1 2000 (02575
That is, assuming By, w.e.p. B3 holds.

Proof of claim. Fix an index 0 < i < m, two sets A;,T C V;, and a labeling z1,...,z, for V. As
before, we denote 0y, ... 4, (x,S) by §(z,S). Recall that

Z(S(JJ,AZ')I) - Z (Ym,z —w(x,z)),

xz€eT IGT,ZGAi’I

.....

where Y, , denotes the indicator variable of z € N(z) with probability of success w(z,z). A random
variable Y , contributes to the above sum, only if z € T C V;, z € A; ; C V; and z < z. Therefore,
> wer 0(x, Aig) is the sum of at most |V;|?/2 independent variables, each with expected value zero.
Applying Hoeffding’s inequality, we get

042
P <| Z 5($,Ai,z>| > t) < 2exp <%) ) (37)

xzeT

Let t = %|Vi|3/ 2. so the above bound on the probability is exponentially small. Assume that B; holds,
and n satisfies (29). Note that there are at most m22/Vil < exp(2|V;|) choices for i, A; and T. So,
applying a union bound to (37), we get

| 3y Iy : g2 "
P(Ogm T,H%{‘é‘““‘”)’ > JIViP/2} [ Br) < 2exp(=11Vil + 20Vil) < 2exp(-02505).
Since 2|V;|*/2 < 3(1.1)3/2 (ﬁ)B/Q < (%)3/2, the result follows. O

Finally, we show that with exponential probability, certain sums of variables §(y, S) can be bounded
from below.

CLAIM 6.9. For a labeled outcome G ~ G(n,w) with labeling x1, ..., x, assigned to the verter set V,

define the event ,
1.1n3/2
5= NN S b9 2

0<i<m SCVi TCV\S yeT

For n large enough so that (29) holds, we have
P(B4|By) > 1 —exp(—0.1n).

That is, assuming By, w.e.p. By holds.
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Proof of claim. Fix 0 <i<m, SCV;,, T CV\S, and a labeling z1,...,z, for V. Let §(y, S) denote
Ozy,....z, (y,S) for short. Similar to the proof of Claim 6.8, we can write > 5 0(y,S) as a sum of

2
|T||S| independent random variables. Suppose x1,...,x, are so that B; holds. Then, |T||S| < 1@;%7’;) ,
and applying Hoeffding’s inequality we get

1.1n3/2 —92.42n3
P 8y, S)< —— | >1— = ) >1- —2.2n).
2 S)< A o Sy = 1~ ewl-2an

The result will then follow by applying a union bound, as there are at most ¢(n)2ﬁ+" choices for 1,
S and T', and ¢(n)241>'<717?)+" exp(—2.2n) < exp(—0.1n). O

We have now shown that the probability that B; does not hold is exponentially small, and, if B;
holds, then the probability that any of By, Bs or B4 does not hold is also exponentially small. Using
a union bound, we can then conclude that w.e.p. By, Bs, B3 and B4 all hold. We will assume in the
rest of the proof that this is the case.

Bounding summand (32): The assumption that By Ba, Bs and B, all hold allows us to bound
I';(G, A, <) as required. First, we bound the summand (32). Suppose z € V;, y € V;, z < y, and
k <i<j. As we saw earlier in (34),

[INw) N - IN@ ] < [l 4] - A= D] (38)
+ WQJMM—ﬂéﬁ%lﬂh; (39)

Since z € V; and y € V;, and ¢ < j, we have

joio1 j+1—i

o ST S T (40)

Note that if y —z > W then summand (38) will attain zero. Using the lower bound on y — x,
we can see that summand (38) is nonzero only if j — 1 — W <14 FixyeV, Ifie

(j ~1 - 200BwA| 2¢(n)|6(y,Ak)\} the term [|5(y,Ak)| _ W in summand (38) is at
Jr

c|Ag| c|Ag|

most ;lb‘?fl‘) for each « € V;. There is exactly one such value of i and this value gives a total contribution

of at most C'Zg(mkl < 6(2;%35)22 to (41). On the other hand, there are at most W values of i
such that j — 7%(”2"%3"‘4’“)‘ <i<j.

Similarly, if y —z > w

e[ Ar] then summand (39) will attain zero. Using the upper bound from
2¢(n)|6(x, A)|

(40) we see that, given = € V;, there are at most c[Ar]

+ 1 choices for j so that summand (39)
c(1.1)%n?
2¢(n)*

can possibly have nonzero values for y € V;, and one of those values contributes at most to
(41).

Finally, since {|5(y,Ak)| _ W < |6(y, Ag)| is valid for every x < gy, and |V;| < % for
+

every ¢, we have

25



Summand (32) < > [t 40l - WL + [1te A0 - C|Ak|(2y - :c)}

0<i<j<m +
zeVi,yeV;
<y
k<i
2¢(n)|0(y, Ak 1.1n c(1.1)? [ n?
< 2 oy, A _ 41
Sg<m
yevV;
k<j
44n 5(y, Ax)? n?
> ’ +e(1.4) - (42)
c oA A o)
yev;
k<yj

Using our assumption that Bz holds, and the fact that there are only m = ¢(n) many choices for j
and k, we get

Summand (42) < ¢(n)? (L“i”) ( ;(Z)) + <c$(37;3) = <&08) d(n)n+c(1.4) <#;2> (43)

Bounding summand (33): Using our assumption that B, Bs and B4 hold, we now bound summand
(33). For z € V;, recall the notation A4; , = [0,2) N A;. Similar to the argument leading to (34), we
have

[INV@) N A = IN@) O Asal | <[5, Ave) = 8l As) = ey = 2)]

Since [-]; is sub-additive, we get

Summand (33) < Z Z [—5(33,/11',1) - W} N (44)

0<i<m i

<
eV

8 A

o Aially — z) “’>L. (45)

_|_
N
N
=)
=
=
D
|
o
=
&
N

0<i<m y
z eV T

For a fixed x € V;, a nonzero contribution of y € V; in summand (44) is possible only if (z, 4; ,)<0

and £ ;(in_)l < 725‘(;141»‘,1) ,as L ;(ln_)l is a lower bound for y—x. Therefore, there are at most W

choices for j > ¢ with nonzero contribution in (44). Let V;~ denote the set {z € V; : §(x, A; ,)<0}.
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Since for every j, |V;| is bounded above by %, we have

ity - 2)
D e R

0<i<m i<j<m
zeV; y eV
<y

Summand (44)

> (2¢(n)|5(x,Ai,m)l LUy St 400)]

<
N 0<i<m clAi| )(¢(n))
z eV,
_22n Z 5z, Ay z)?
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eV,

By definition, it is clear that |§(z, 4; ;)| < |Aiz|- So, we have

22n 2.2n
Summand (44) < — E E —5(967141',1): B E | E 5($=Ai,w)|
0<i<m gev,- Osi<m gev;™

22n

) =2 (), (1)

where the last inequality comes from our assumption that Bz holds. This bounds summand (44).
To bound summand (45), we need to take a different approach, as the distance between z and y
in this case, cannot be bounded only in terms of y. So, we proceed as follows. For each z, define
T,={yeV:y>z and 6(y, Ai»)>0}. Note that

Summand (45) = > Y [6@,,41-,1)_WL

2
0<i<m yevVv
zeV; <y

Z Z 5(yaAz,ac)

0<i<m y€Tx
reV;

IN

Given the assumption that B4 from Claim 6.9 holds, we have

1.1n2 1.1n3
Summand (45 0y, Aiz) <n = . 47
1= 0< i<zm -1 y;t (i) = <\/¢(”)> \/¢(”) 47)

x eV,

Putting inequalities (43), (46) and (47) together, we conclude that

n3 T3 (G, A, <) < <¥> d(n)n? + c(1.4) ( n3 > N 2.2 ( n2 ) 1.1n3

o) e \om ) T Ve

Thus, the best upper bound, in order, will be obtained when ¢(n) = 8(n'/3), so that ¢(n)n2, n3/é(n)?
5
n2
Vo(n)
1

¢ < 1. Using this, and taking ¢(n) = 571%, we have

n’T7(G, 4, <) < (¥+4(1.4) +V2(2.2 + 1.1)) (l) W7/ < (@) .y
C

and

are of the same order. From the conditions on w and the fact that w > 0, we have that

c
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7. Conclusions and further work

We have established that the graphon parameter T, first defined in [CGHT15], is indeed a suitable
gauge for measuring the extent to which a graphon lacks the Robinson property. It was already known
that the function I' attains zero precisely when applied to a Robinson graphon. In this paper, we show
that for any graphon w, there is a Robinson graphon R,, so that |[R, — w|o < 14T(w)'/7. Thus,
any graphon with small I'-value is close, in cut norm, to a Robinson graphon. As a corollary of this
approximation result, we prove that I detects graph sequences sampled from Robinson graphons. That
is, for a convergent graph sequence {G,, }nen, we have I'(G,,) — 0 iff the limit object has a Robinson
representative. In this paper, we have focused on proving the existence of the Robinson approximation
R, and the corresponding bound I'(w)'/7. We believe that a worthwhile direction of further study is
to improve the exponent on the bound.

Computing, or even approximating, the Robinson approximation R,, is another important topic of
investigation, which is beyond the scope of this work. The definition of R, involves calculating the
supremum of the average of w over sets of certain shape and size. Even for graphons corresponding to
matrices, it is not clear to us how R,, can be efficiently computed. We believe there may be efficient
algorithms to approximate R,,, and we find this topic worthy of further study.

Our results show that for a converging sequence of graphs, the equivalence class of the limiting
graphon contains a Robinson graphon iff the sequence of I'-values of the graphs converge to zero.
However, to compute I' of a sampled graph, one would have to come up with a labeling of the graph
that approximates the Robinson ordering of the graphon. This relates to the problem of graph seriation,
with important practical applications. We hope to use the theory developed in this paper as a stepping
stone for making progress on the seriation problem for Robinson similarity data with errors.

Finally, we show that the convergence rates of I" for sequences of random graphs sampled from a
Robinson graphon depend on how strongly the graphon exhibits the Robinson property. The relevant
result for steep graphons, only applies to graphons that are nowhere zero. Graphons that are zero
outside a band around the main diagonal form a natural model for many applications. It would be
worthwhile to extend this result to such graphons.
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Appendix A.

This appendix includes some of the definitions and concentration results that we need for Section 6.
A beautiful exposition of this material can be found in [Wail9, Section 2.1].
Let X be a Gaussian random variable with mean u and variance o2. It is easy to see that X has the

moment generating function E(eX) = " 2% valid for all A € R. The following upper deviation
inequality for X follows directly from Chernoff bound:

t2
P(X>pu+t)<e 22, foralt>0.

This deviation/concentration result can be generalized to a large class of non-Gaussian random vari-
ables, which mimic the behaviour of Gaussian random variables to some extend; such random variables
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are described in the following definition.

DEFINITION Appendix A.l. A random variable X with mean p is said to be sub-Gaussian if there
exists 0 > 0 such that for all A € R, we have

a2x2

E(MNX—M) < e, (A1)

The constant o satisfying the above equation is called the sub-Gaussian parameter, and o2 is called
the variance prozy.

In this article, we use equivalent characterizations of sub-Gaussian random variables as listed below.

THEOREM Appendix A.2 (Equivalent characterizations of sub-Gaussian random variables). (Cf. [Wail9,
Theorem 2.6]) Let X be a random variable with zero mean. Then the following are equivalent.

(i) X is a sub-Gaussian random variable with parameter o > 0, that is, for all X € R we have

2,2

E(e*) <e™2 .

(ii) There is a constant ¢ > 0 and Gaussian random variable Z with zero mean and variance 72 such
that
P(|X| > s) <cP(|Z] > s), for all s > 0.

(iii) There is a constant 0 > 0 such that

2%k)!
E(X?*) < %92’“, for allk=1,2,....

Clearly, any Gaussian random variable with variance o? is sub-Gaussian with parameter o. More
generally, any bounded random variable, supported in some interval [a, b], is sub-Gaussian with param-
eter at most 5% ([Wail9, Exercise 2.4]). An important concentration bound for sums of independent
sub-Gaussian random variables is provided by Hoeffding’s inequality. A special case of this inequality
is stated in Theorem 6.2, where Hoeffding’s bound is applied to the case of bounded random variables
supported in [0, 1].

THEOREM Appendix A.3 (Hoeffding bound). [Wai19, Proposition 2.5] Let {X;}Y| be a collection of
independent sub-Gaussian random variables with sub-Gaussian parameters o;. Then for all t > 0, we

have
n n t2
]P’(ZXi—ZE(Xi) 2t> Sexp(—m)-
i=1 i=1 ! !

An identical upper bound holds for the left-hand-side event { 2?21 X; — Z?:l E(X;) < t}.
A relaxation of the notion of sub-Gaussian random variables leads to the following definition.

DEFINITION Appendix A.4. A random variable X with mean p is said to be sub-exponential if there

exist non-negative parameters (v, o) such that for all A € (=1, 1), we have

v2i2

E(eMNX—M) <e*5-. (A.2)

Clearly, any sub-Gaussian random variable is sub-exponential as well. However, many sub-exponential
random variables are not sub-Gaussian. Some equivalent characterizations of sub-exponential random
variables are listed in the following theorem.
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THEOREM Appendix A.5 (Equivalent characterizations of sub-exponential random variables). (Cf. [Wail9,
Theorem 2.13]) Let X be a random variable with zero mean. Then the following are equivalent.

(i) X is a sub-exponential random variable with parameters (v,a), that is, for all X € (=1, 1) we

have
222

E(eM) <e™

(i) There is a constant co > 0 such that E(e**) < oo for all || < co.
(iii) There are constants c1,ca > 0 such that
P(|X| > s) < c1e” %, for all s > 0.

1
(i) The value v = sup;>, (]E(ki,k)) " is finite.

Similar to sub-Gaussian random variables, sub-exponential random variables also satisfy certain
deviation/concentration inequalities, as stated below.

THEOREM Appendix A.6 (Tail bound for (sums of independent) sub-exponential random variables).
(Cf. [Wail9, Section 2.1.3])

(i) Let X be a sub-exponential random variable with parameters (v,a). Then

e w2 ()

AN

< IA
oS

2

Px-E00> 1) < { t
>

o

1 t t2

Consequently, for every t > 0, we have P(X —E(X) > t) < e~ z™in(a02) - An identical upper
bound holds for the corresponding left-hand-side event.

(i1) Let Xi,..., X, be independent random variables, such that each X; is sub-exponential with pa-
rameters (v;, ;). Then Y i (X; — E(X;)) is sub-ezponential with parameters v, == \/>_ ., V?

i=1Y
and o 1= maxj<i<n ;. Moreover, we have

nt?

n — 2
1 win 0<t <
P (5 D (Xi —E(Xy)) > t) <{¢ SUS aa

. V*
i=1 nocy

e 2ax t >

+2

P
mln(a7u$/n) An

Consequently, for every t > 0, we have P (£ 3" (X; —E(X;)) >t) < e ?

identical upper bound holds for the corresponding left-hand-side event.

In this article, the notions of sub-Gaussian and sub-exponential random variables and the relation
between them are used, in particular, in the following format.

PrOPOSITION Appendix A.7. Let X be a random variable with zero mean. Suppose there exists o > 0
such that for all s > 0, we have

P(X > s) <exp(—s°/20%) and P(X < —s) <exp (— s°/207).

Then X is a sub-Gaussian random variable with parameter 2v/20. Moreover, the random variable
X2 —E(X?) is a sub-exponential random variable with parameters (8v/202,8052).

30



Proof. We observe that P(|X| > s) < 2 exp ( — s?/20?), thus, we have

E(X2%) = /0 P(X2k>s)ds_/0 P(|X| > s7F) ds

IN

2/ exp (— s%/202) ds = 2k+1k02k/ th=Yexp(—t) dt = 2" 1o k),
0 0

where we have used the change of variable S* /202 =t in the penultimate equality. So,

(20)%k k!

2k
R(X) < S

(A.3)
which implies that (iii) of Theorem Appendix A.2 holds, when § = 20. Now from the proof of
implication (iii) = (i) of Theorem Appendix A.2 (see e.g. Page 46 of [Wail9]), we conclude that X is
a sub-Gaussian random variable with parameter at most 24/2¢.

To prove the second statement, let Z = X? — E(X?). Note that for every k € N, convexity of
f(z) = 2% together with the triangle inequality, implies that | X2 —E(X?2)F < 2k-1(X 2k 4 (E(X2))F).
Moreover, Jensen’s inequality guarantee that (E(X?2))* <E(X?*). So, we have

AJk2k
E(e)\Z) S ‘)\Z‘ _1+Z | E’XQ Z' | X2k
|)\|k2k k k S k
< 1+Z (28102l = 14+ 2(4|M0?)? Y (4|A0?)F,
k=0

where we have used the bound in (A.3) for E(X?¥). Since the sum Y ;2 (4|A|o?)* is bounded by 2
when 4[A|o? < 1, we get

E(e*?) < 1+ 4(4|A\[0%)? < %" % whenever |A| < 352
g

that is, Z is sub-exponential with parameters (8v/202,802). O
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