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REPRESENTING TOPOLOGICAL FULL GROUPS IN STEINBERG
ALGEBRAS AND C*-ALGEBRAS

BECKY ARMSTRONG, LISA ORLOFF CLARK, MAHYA GHANDEHARI, EUN JI KANG,
AND DILIAN YANG

ABSTRACT. We study the natural representation of the topological full group of an ample
Hausdorff groupoid in the groupoid’s complex Steinberg algebra and in its full and reduced
C*-algebras. We characterise precisely when this representation is injective and show that
it is rarely surjective. We then restrict our attention to discrete groupoids, which provide
unexpected insight into the behaviour of the representation of the topological full group in
the full and reduced groupoid C*-algebras. We show that the image of the representation
is not dense in the full groupoid C*-algebra unless the groupoid is a group, and we provide
an example showing that the image of the representation may still be dense in the reduced
groupoid C*-algebra even when the groupoid is not a group.

1. INTRODUCTION

Topological full groups of ample Hausdorff groupoids were introduced by Matui [16] as
a generalisation of the topological full groups studied by Giordano, Putnam, and Skau in
the context of Cantor minimal systems [8]. Matui showed in [17, Theorem 3.10] that for
any two minimal effective Hausdorff étale groupoids whose unit spaces are Cantor sets, the
groupoids are isomorphic if and only if their topological full groups are isomorphic. This
is equivalent to there being a diagonal-preserving isomorphism of the Steinberg algebras of
the groupoids; see [1, Theorem 3.1]. It is therefore clear that there are strong connections
between the topological full groups and Steinberg algebras of ample Hausdorff groupoids.

In addition to being a groupoid invariant, topological full groups have enticing connections
to some infamous open questions. For example, they give presentations of Thompson’s
groups [13, 15, 17, 28], and have already been used to solve several important problems
in group theory; see [2, 11, 12, 20, 26]. Recent results also reveal interesting connections
between topological full groups and the elusive simplicity problem for group C*-algebras;
see [3, 14, 24]. It is this latter problem that motivates our study.

For every ample Hausdorff groupoid G with compact unit space, there are natural rep-
resentations of the topological full group of G in the complex Steinberg algebra of G and
in the full and reduced C*-algebras of G. It is known that these representations often fail
to be injective. We make this statement precise by showing that the representation of the
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topological full group taking values in the Steinberg algebra of the groupoid is almost never
injective. In particular, we show in Theorem 3.2 that injectivity fails when

(1) the groupoid is all isotropy and has at least 2 nontrivial isotropy groups; or
(2) the groupoid is not all isotropy and has at least 3 non-unit elements.

We then show that this representation is almost never surjective as a map into the complex
Steinberg algebra. In fact, we show in Corollary 4.4 that the representation is surjective
onto the Steinberg algebra if and only if G is a group. However, strangely, the image of
the representation of the topological full group may still be dense in the full or reduced
groupoid C*-algebras. For example, density of the image holds for the representation of the
topological full group associated to the Cuntz groupoid (that is, the boundary-path groupoid
of the directed graph with a single vertex and two edges) into the Cuntz algebra Oy; see [3,
Remark 4.7] and [10, Proposition 5.3]. Example 5.5 provides another such example.

Our proof techniques for the results in Sections 3 and 4 were developed by first consid-
ering these questions for discrete groupoids. The arguments in our proof of Theorem 3.2 in
particular are quite combinatorial in nature.

In Section 5 we demonstrate that surprising things can happen in the setting of discrete
groupoids. In Theorem 5.3, we show that the image of the representation of the topological
full group of a discrete groupoid with finite unit space is dense in the full groupoid C*-algebra
if and only if the groupoid is a group. (Note that the Cuntz groupoid mentioned above is
not discrete, and thus this result does not hold for ample Hausdorff groupoids in general;
see Remark 5.4.) In Example 5.5 we demonstrate that it is possible for the image of the
representation of the topological full group of a discrete groupoid to be dense in the reduced
groupoid C*-algebra even when the groupoid is not a group. Finally, in Corollary 5.6 we
combine our results from Sections 3, 4, and 5 to show that the representation of the topolog-
ical full group of an ample Hausdorff groupoid G with compact unit space is an isomorphism
into the Steinberg algebra of G if and only if G is a group, and that when G is discrete with
finite unit space, the same result holds for the extension of this representation to the full
C*-algebra.

2. PRELIMINARIES

2.1. Groupoids. A groupoid G is a small category in which every morphism v € G has a
unique inverse y~! € G. Throughout, we assume that all groupoids are nonempty. We define
the range and source of each v € G by r(7y) == vy~! and s(v) := v~ ', respectively, where
composition is read from right to left. We write

G? = {(a,8) € G x G| s(a) =r(B)}

for the set of composable pairs in G, and we write GO = r(G) = s(G) for the unit space of G.
Note that a groupoid G is a group if and only if G is a singleton. A topological groupoid is
a groupoid endowed with a topology under which composition and inversion are continuous.
A Hausdorff groupoid is a topological groupoid with a locally compact Hausdorff topology.
If G is a Hausdorff groupoid, then G(© is closed in G. A topological groupoid G is étale if the
range and source maps r,s: G — G are local homeomorphisms. A subset B C G is called
a bisection of G if r|p and s|p are injective. If B is an open bisection of an étale groupoid G,
then 7|z and s|z are homeomorphisms onto open subsets of G(¥. Every étale groupoid has
a basis consisting of open bisections; see [6, Proposition 3.5]. We say that an étale groupoid
is ample if it has a basis of compact open bisections. By [7, Proposition 4.1], a Hausdorff
étale groupoid is ample if and only if its unit space is totally disconnected. If G is an étale
groupoid, then the unit space G is open in G, and for all u,v € G, each of the sets

g4 = r_l(u)’ g, = S_1<"U), and QZ}‘ =G"NgG,
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is discrete with respect to the relative topology induced by G. The isotropy group of a unit
u € GO is the group
Gy ={reglr(v) =s() =u},

and the isotropy subgroupoid of G is the collection

Iso(G):= |J Gi={veg|r(y)=s(m}
uEg(O)

Let G be a Hausdorff étale groupoid. For each continuous function f: G — C, we define
supp(f) = {y € G : f(y) # 0}. We write C.(G) for the collection of continuous compactly
supported complex-valued functions on G. This is a x-algebra with respect to the convolution
product

(fx9)(0) =D fl@)g(B)
af=y
and s-involution f*(v) = f(y~!) for f,g € C.(G) and v € G. Given a Hilbert space H,
we write B(H) for the C*-algebra of bounded linear operators on H. The full groupoid
C*-algebra C*(G) is the completion of C.(G) with respect to the full C*-norm

| fll e = sup{llm(f)|| | m: Ce(G) — B(H) is a x-representation for some H}.

For each u € G, there is a *-representation m,: C.(G) — B(€*(G,)), called the regular
representation of C.(G) associated to u, such that

mu(f)6y = > f(a)day for f € Cu(G)and y € G,
aEGr(y)
The reduced groupoid C*-algebra C¥(G) is the completion of C.(G) with respect to the reduced
C*-norm

£l = sup{[|m. ()] | w € GO}
See [23, Chapter II] or [25, Chapter 9] for details.
The (complex) Steinberg algebra of an ample Hausdorff groupoid G is the collection
A(G) = span{ly: G — C | U is a compact open bisection of G}
={f € C.(9) | f is locally constant}

equipped with the convolution product and *-involution defined above. If G is discrete, then

A(G) = C.(G). In general, A(G) is dense in C.(G) with respect to both the full and reduced
C*-norms (see [4, Proposition 4.2]), and for all f € A(G), we have

| fll e = sup{llw(f)|| | 7: A(G) — B(H) is a x-representation for some H} (2.1)

(see [5, Theorem 7.1]). Note that a discrete group G may be viewed as an ample Hausdorff
groupoid, and in this case the singletons in G are all compact open bisections, and so the
Steinberg algebra A(G) is just the complex group ring CG, which is generated by the point-
mass functions d, = 1y, for g € G. See [4, 27] for further details on Steinberg algebras.

2.2. Topological full groups. Let G be an ample groupoid with compact unit space G©.
We write B®(G) for the inverse semigroup of compact open bisections of G, and we say that
a bisection B of G is full if r(B) = s(B) = G». We define the topological full group of G to
be the (discrete) group
F(G) ={B € B®“(G) | B is full}

equipped with the operations

AB = {af | (a,8) € (Ax B)NG?} and B™':={y'|ye B}
for all A, B € F(G). Note that if G is a discrete group, then

F(G)=B*(G) ={{g} g€} =0
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See [19, 21] for further details on topological full groups.
Let G be an ample Hausdorff groupoid with compact unit space. Given compact open
bisections U and V' of G, we have
1U * 1\/ = ]-UV and (1(])* = ]_Ufl.
It follows that there is a *-homomorphism 7: CF(G) — A(G) satistying 7(dy) = 1y, which
we call the representation of F(G) in A(G). This representation is studied extensively in [3],

as are the C*-completions W(CF(Q))”‘”H}&X and W(CF(Q))'m of its image. In this paper we
investigate the necessary and sufficient conditions under which 7 is injective and surjective.

Remark 2.1. In [22, Definition 3.2] Nyland and Ortega define the topological full group of
an (effective) ample Hausdorff groupoid with a unit space that is not necessarily compact.
Since the Steinberg algebra of an ample Hausdorff groupoid G is unital (with unit 1gw)) if
and only if the unit space G(©) is compact, it is impossible to represent the topological full
group of G in A(G) (or in C*(G) or C*(G)) unless G is compact. It is for this reason that we
restrict our attention in this paper to ample Hausdorff groupoids with compact unit space.

3. LACK OF INJECTIVITY FOR AMPLE HAUSDORFF GROUPOIDS

In this section we characterise precisely when the representation 7: dy — 1y of CF(G)
in A(G) is injective. In particular, we show in Theorem 3.2 that 7 is injective if and only
if either G consists entirely of isotropy and has at most one nontrivial isotropy group, or G
contains exactly 2 non-unit elements outside its isotropy.

Proposition 3.1. Let G be an ample Hausdorff groupoid with compact unit space G©.
Suppose that either
(1) G = Iso(G) and G has at least two nontrivial isotropy groups; that is, there erist
u,v € GO such that u # v and |G¥|,|G?| > 1; or
(2) G #Iso(G) and |G\ G| > 3.
Then the representation m: CF(G) — A(G) is not injective.
Proof. We first assume that condition (1) holds. Fix y1,7, € G\ G® such that r(71) # r(72).

Since G is Hausdorff and G is all isotropy, we can find disjoint compact open bisections By
and By containing v, and 79, respectively, such that

r(By) = s(By), 1r(B)=s(B2), and r(B;)Nr(Bsy)=ga.
Set R := GO\ (r(B1) Ur(B,)), and note that R is a compact open bisection of G. Consider
the following disjoint unions:
Uy =B Ur(By) UR,
Uy = By Ur(B;) UR, and
Us =B, UByUR.
It is straightforward to verify that Uy, Us, and Us are distinct elements of F(G). Define
a = 0y, + 0y, — 0y, — Ogy. Then
m(a) = 1y, + 1y, — 1y, — g = LyBy) + Loy + 1r — 1go = 0,

and so 0 # a € ker . Hence 7 is not injective.
We now assume that condition (2) holds instead. Then there exist

71 €G\GY and v, € G\ Iso(G) such that v, # 75 and v, # 7, . (3.1)

For any =, 7, satisfying condition (3.1), we have r(y2) # s(72), and either v; ¢ Iso(G) or
71 € Iso(G). By replacing v, with v, or 75 with 75! if necessary, we can summarise all
possible cases as follows:
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(1) 71 ¢ Iso(G) and s(v1) = r(72) and s(72) # 7(n);
(ii) 71 ¢ Iso(G) and r(v1), s(11), r(72), and s(72) are all distinct;
(ili) 71 € Iso(G) and s(y1), 7(72), and s(72) are all distinct;
(iv) 7 € Iso(G) and s(y1) = 7(72); and
(v) 1 € Iso(G) and s(y1) = r(72) and s(72) = r(m).
7
! 72 Y2
G S o
7 % 7

FIGURE 1. From left to right: cases (i), (iv), and (v).

Moreover, we can reduce case (v) to case (iv) by replacing v; with 497y;. Therefore, it suffices
to show that ker 7 is nontrivial in each of the cases (i) to (iv).

Case (i): Suppose that the hypotheses of case (i) hold, and let B; and By be compact
open bisections containing 7, and 7, respectively. Since G is Hausdorff and since r(7;),
s(71), and s(e) are all distinct, we may assume that r(By), s(B;), and s(Bs) are mutually
disjoint by shrinking B; and B, if necessary. Moreover, since s(;) = r7(72), we can replace
By with By (s(B1)Nr(Bs)) and B, with (s(B;)Nr(Bs)) B, and thus without loss of generality
we may assume that s(Bj) = r(Bs). Set R := G\ (r(B;) U s(B;) U s(Bs>)), and note that
R is a compact open bisection of G. Consider the following disjoint unions that are distinct
elements of F(G):

U:= B UB,U (B By) "UR,
U'l=B'UB,'U(BBy) UR,
Uy =B, UB;'Us(By) UR,
Us = B UBy' Ur(B;) UR, and
Us = BB, U (B1By) ' Us(B;)UR.
Define a = 5(] -+ 5U*1 — 5U1 — (5(]2 — 5(]3 + 59(0). Then

m(a) =1y + 1y — 1y, — Ly, — luy + g0 = —1lgmy) — Lrsy) — Les) — 1lr + 1go =0,
and so a € ker7\{0}. Hence 7 is not injective.

Case (ii): Now suppose that the hypotheses of case (ii) hold, and let By and Bs be
compact open bisections containing v, and 7s, respectively. Since G(© is Hausdorff and since
(1), s(1), r(72), and s(vs) are all distinct, we may assume that r(By), s(B;), r(Bs), and
s(By) are mutually disjoint by shrinking B; and By if necessary. Set

R=G"\ (T<Bl) Us(B1) Ur(Bs) U 3(32))7

and note that R is a compact open bisection of G. Consider the following disjoint unions
that are distinct elements of F/(G):

Uy =B UB;"Ur(By)Us(By) UR,

Uy = ByUB; ' Ur(B;)Us(B;)UR, and

Us:=B UB'UB,UB,' UR.
It is straightforward to verify that a := dy, + du, — dy, — dg) € kerm\{0}, and hence 7 is
not injective.

Case (iii): Next, suppose that the hypotheses of case (iii) hold, and let B} and B be
compact open bisections containing v; and 7., respectively. Since G is Hausdorff and
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since s(71), 7(72), and s(y2) are all distinct, we may assume that s(Bj]), r(Bz), and s(B>)
are mutually disjoint by shrinking Bj and B, if necessary. Let V = r(B}) N s(B}), and
define By = VB{V. Then B; is a compact open bisection containing v;, because G is an
ample Hausdorff groupoid and r(y;) = s(y1) € V. Suppose that 7(B;) # s(By). Then
there exists o € Bj such that r(a) ¢ s(B;) or s(a) ¢ r(By). In either case, a ¢ Iso(G)
and r(a),s(a) € V C s(B}). Thus, since v, € G\ Iso(G) and 7(72), s(72) € GO\s(B}), we
deduce that o # v, and a # v, ', and that r(a), s(a), r(72), and s(v2) are all distinct.
So if r(B1) # s(B1), then case (iii) can be reduced to case (ii) by replacing 7, with «.
Now suppose that r(B;) = s(By). Since r(B;) C V C s(B]), we know that r(B;), r(B2),
and s(Bs) are mutually disjoint. Set R := G\ (r(By) Ur(B) U s(B,)), and note that R
is a compact open bisection of G. Consider the following disjoint unions that are distinct
elements of F(G):

U1 = T(Bl) UBQUB;I UR,
Uy = By Ur(By) Us(By) UR, and
Us =B, UB,UB;'UR.

It is straightforward to verify that a := 6y, + 0y, — duy, — dg € kerm\{0}, and hence 7 is
not injective in this case either.

Case (iv): Finally, suppose that the hypotheses of case (iv) hold, and let B] and B} be
compact open bisections containing v, and 7s, respectively. Since G(©) is Hausdorff and since
r(72) # s(72), we may assume that r(B5) N s(By) = &. Let W = r(B]) N s(B}) Nr(BY),
and define By = WB{W and Bs = s(B;)B). Then B; and B, are compact open bisections
containing y; and s, respectively, because G is an ample Hausdorff groupoid and r(v;) =
s(y1) = r(vy2) € W. Since s(By) C W C r(B)), we have r(By) = s(By) Nr(Bj)) = s(By).
Suppose that r(B;) # s(Bj). Then there exists a € By such that r(«) ¢ s(By) or s(a) ¢
r(Bp). In either case, o ¢ Iso(G) and r(a),s(a) € W C r(Bj), so there exists § € B)
such that 7(3) = s(a) € W. Since s(8) € s(B) € GO\r(B,) C GO\W, we know that
5(8) # (), s(8) # s(a), and s(8) # r(B). Thus B € G\ Iso(G), a # f, and a # 5. So
if r(By) # s(Bj), then case (iv) can be reduced to case (i) by replacing v, and 7, with «
and f3, respectively. Now suppose that r(By) = s(By) = r(Bz). Since r(By) C r(B)) and
s(By) C s(Bj), we know that r(Bz) N s(Bs) = @. Set R == GO\ (r(Bs) Us(By)), and note
that R is a compact open bisection of G. Consider the following disjoint unions that are
elements of F/(G):

Uy = By U(BBy) ' UR,

Uy = BB UB; ' UR,

Us = By U By UR, and

Uy = BB,U(B,By) ' UR.
To see that Uy, Uy, Us, and Uy are distinct elements of F(G), note that since vy, ¢ G, we have
Y2 # Y172, and hence o ¢ BB, because 717, is the unique element of the bisection By By

with source s(7,). It is straightforward to verify that a = oy, + 0y, — v, — Iy, € ker w\{0},
and hence 7 is not injective. |

We conclude this section by proving that the converse of Proposition 3.1 also holds.

Theorem 3.2. Let G be an ample Hausdorff groupoid with compact unit space. The repre-
sentation m: CF(G) — A(G) is injective if and only if

(1) G =1s0(G) and G has at most one nontrivial isotropy group; or

(2) G #1Is0(G) and |G\ GO < 3.
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Proof. If 7 is injective, then the result follows by the contrapositive of Proposition 3.1. For
the converse, first suppose that condition (1) holds. If G = G then F(G) = {G¥}, and so
CF(G) = C, and hence 7 is injective. Suppose that G # G(®). Then there exists a nontrivial
discrete group I' with identity er such that G = I' U X, where X = GO\{er}. Since G is
Hausdorff and étale, X = (G\{er}) NG is open in G. We claim that X is compact. To see
this, first observe that since G is Hausdorff, G(¥) is closed, and so I'\{er} = G\G is open in
G. Thus, since G is étale, {ep} = r(I'\{er}) is open in G, and so X = (G\{er})NG is closed.
Now, since X C G(© and G is compact by hypothesis, X must also be compact, as claimed.
For each v € I, choose a compact open bisection U, of G containing . Then U, NI" = {7}.
Since X = G\ {er} is compact and open in G, we have V, == U, UX = {y} U X € F(G),
and it follows that F(G) = {{y} UX | y € I'}. Now, let f € kerm C CF(G). Then for some
m € N, there exist ¢i,...,¢, € Cand 74,...,7, € I' such that v; # v; whenever ¢ # j, and
f=>" cidpux. Since m(f) = 0, we have

o= (D el + (X ) 1x ) () = m(F) () = 0
i=1 i=1
for each k € {1,...,m}, and so f = 0. Thus 7 is injective.

Now suppose that condition (2) holds. Since G # Iso(G), there exists v € G \ Iso(G),
and it follows that 7 and 77! are distinct elements of G\ G©©. Thus |G\ G| = 2, and
so G = GO U {y,9'}. In particular, G is compact. Since G is Hausdorff, G is closed,
and so {7,77 '} =G\ G is open. Thus {r(v),s(y)} = r({7,7"'}) is open since G is étale.
Therefore, U := G\ {r(7), s(7)} is a closed subset of G, and by the compactness of G it follows
that U is a full compact open bisection containing v and v~!. In fact, given V € F(G) with
v € V, we must have r(v),s(y) ¢ V, and so V = U. It follows that F(G) = {U,G"}.
Suppose that f = ady + bogo) € ker(mw) for some a,b € C. Then a = 7(f)(y) = 0 and
b=m(f)(r(y)) =0, and so f = 0. Thus 7 is injective. O

4. LACK OF SURJECTIVITY FOR AMPLE HAUSDORFF GROUPOIDS

In this section we study the image of the representation 7: 6y +— 1y of CF(G) in A(G).
In particular, we show in Corollary 4.4 that 7 is surjective if and only if G is a group.

We begin by proving certain properties for elements of the image of . Recall (for instance,
from [18, Section 2.2]) that there are linear maps 7., s.: A(G) — A(G®) given by

rof(u) = Z f(y) and s.f(u) = Z f(7), forall f e A(G) and u € G¥;
’yeg“ ’Yegu
and there is a linear map 6;: A(G) — A(g<0>) given by d; = s, — 7,.
Proposition 4.1. Let G be an ample Hausdorff groupoid with compact unit space G©. Then

(a) T(CF(G)) C{f € AG) | ruf(u) = s.f(v) for all u,v € GO} C kerd;; and
(b) r.(m(CF(G))) = Clgw = s.(m(CF(G))).

Proof. For part (a), fix f € 7(CF(G)). Then there exist Uy, ..., U, € F(G) and ¢1,...,¢p, €

C such that . .
f = W(ZCZ‘ (5(]1) = ZcilUi‘

i=1 i=1
Fix u,v € GO, For each i € {1,...,m}, the sets U; N G* and U; N G, are singletons because
U; is a full bisection of G. Thus

rif(u) = Zf(W’) = Z Z ¢ = Zci = Z Z ¢ = Zf(’)’) = s.f(v).

yEGH yEGY i:yeU; YEGy :yeU; YEGy
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It follows that r, f(z) = s, f(z) for all z € GO, and so 6,(f) = 0.

We now prove part (b). Routine calculations show that for all B € B®(G), we have
(1) = L) and s.(15) = 14py. Thus, for all B € F(G), we have ,(15) = 150 = 5.(1p).
Since 7y, sS4, and 7 are all linear maps, it follows that

r.(m(CF(G))) = Clgwo = s.(m(CF(G))). O

In order to prove Corollary 4.4, we first utilise Proposition 4.1(b) to prove the following
result. We thank the anonymous referee for suggesting this simple proof.

Proposition 4.2. Let G be an ample Hausdorff groupoid with compact unit space G©. If B
is a nonempty compact open bisection of G such that 15 € m1(CF(G)), then B € F(G).

Proof. Let B is a nonempty compact open bisection of G such that 15 € n(CF(G)). By
Proposition 4.1(b), we know that 1,3y = r.(1p) and 14y = s.(1p) are both nonzero
elements of Clg. It follows that r(B) = G = s(B), and hence B € F(G). O

The following result is an immediate corollary of Proposition 4.2, because A(G) is the span
of characteristic functions on compact open bisections of G.

Corollary 4.3. Let G be an ample Hausdorff groupoid with compact unit space GO . If there
exists a nonempty compact open bisection B of G such that B ¢ F(G), then the representation
m: CF(G) — A(G) is not surjective.

As the following corollary shows, it turns out that the hypothesis of Corollary 4.3 is very
easily satisfied, as it holds whenever G is not a group.

Corollary 4.4. Let G be an ample Hausdorff groupoid with compact unit space G, The
representation w: CF(G) — A(G) is surjective if and only if G is a group.

Proof. 1f G is a group, then F(G) = G, so CF(G) = A(G), and 7: CF(G) — A(G) is the
identity map and hence is surjective. For the converse, suppose that G is not a group, and
fix distinct units v,v € G, Since G is an ample Hausdorff groupoid, there exist disjoint
compact open sets U,V C G containing u and v, respectively. But then v ¢ U, so U €
B(G)\F(G), and hence Corollary 4.3 implies that 7: CF(G) — A(G) is not surjective. [J

5. REPRESENTATIONS OF TOPOLOGICAL FULL GROUPS OF DISCRETE GROUPOIDS

In this section we restrict our attention to discrete groupoids, and to the images of the
representations of their topological full groups in the full and reduced groupoid C*-algebras.
In particular, we prove an analogue of Corollary 4.4 for the extension of the representation
7 with respect to the full C*-norm (see Theorem 5.3), and we show in Example 5.5 that
Theorem 5.3 does not hold in the reduced setting. We conclude the section by connecting
our results from Sections 3, 4, and 5 in Corollary 5.6.

Let G be a discrete groupoid with finite unit space G(* = {ay,...,a,}. Recall that, for
a groupoid G and a,b € G we define G¢ == {y € G | r(y) = a and s(y) = b}. Thus
Pg = {gg;; D) € {1,...,n}} is a partition of G into disjoint sets. For v € G, write
L, =1 € A(G). Given f € A(G) and i,j € {1,...,n}, we define a map f; ;: G — C by

fi,j(’}/) — {f(’Y) if v € gg;

R otherwise.

Then each f;; € A(G), and since Pg is a partition of G, it follows that f = Z fij-

ij=1
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Define T': A(G) — M,,(C) by
= Z f(v), foreachi,je{l,...,n}.

v€Ga

We will use this map T" to study the image of the representation 7: CF(G) — A(G). We
first show that 7" is a *-representation of A(G).

Lemma 5.1. Let G be a discrete groupoid with finite unit space G© = {a1,...,a,}. The
map T: A(G) — M, (C) defined above is a x-representation of A(G).

Proof. 1t is straightforward to verify that T is linear. Fix f,g € A(G). For all i,j €
{1,...,n}, we have

T(fx9)i= Y, (Fxa)() =D Y. fla)g(h)

v€Ga} v€Gqt aB=y
=Y > fl@) Y 9B =) T(NaT(ghs = (T(HT(9)),,
k=1 aegii pegal =l
and
= > =210 = Y] f) =T = (T(f)),,
V€G! v€Gq! n€Gs)
Thus T'(f xg) =T (f)T(g) and T(f*) = T(f)*, and so T is a *-homomorphism. O

The following result is a corollary of Proposition 4.1(a).

Corollary 5.2. Let G be a discrete groupoid with finite unit space G == {a,,...,a,}. Then
m(CF(G)) C {f € A(G) | 3¢s € C such that all row and column sums of T(f) are cs}.

Proof. Fix [ = Z fij € m(CF(G)). Then, for each 7,5 € {1,...,n},

ij=1
thez’throwsumofT(f)—Z Zk—ZZf Zf ) = 1o f(a;),
k=1 k=1 yegli ~eGai
and
the ' column sum of T(f) = Y T(f)r; = Z Z fly Z f(y) = s f(ay).
k=1 k=1 yegah =

By Proposition 4.1(a), it follows that for all i, € {1,...,n},
the i row sum of T(f) = the j* column sum of T'(f). O

We now use Corollary 5.2 to study the completions of 7(CF(G)) in the full and reduced
groupoid C*-algebras. In Theorem 5.3 we prove that for a discrete groupoid G, an analogue
of Corollary 4.4 holds for the full groupoid C*-algebra C*(G).

Theorem 5.3. Let G be a discrete groupoid with finite unit space G, Then

W”'“max — C*(G)
if and only if G is a group.



10 ARMSTRONG, CLARK, GHANDEHARI, KANG, AND YANG
Proof. 1f G is a group, then F(G) = G, so CF(G) = A(G), and hence
Wll'l\max _ mﬂ'\\max — C*(Q).

Suppose that G is not a group. We show that 7r(<CF(g))”'”max # C*(G) by proving an
even stronger result: that 1, ¢ W(CF(Q))”.H"‘M for each v € G. Write G = {ay,...,a,},
and note that n > 2 since G is not a group. Fix v € G, and suppose for contradiction that

€ W(CF(Q))”'H"‘“. Then there exists a sequence (¢,,)>°_, of functions in 7(CF(G)) such
that ||¢m — 1,||, .. — 0asm — oo. By Lemma 5.1, T': A(G) — M,(C) is a *-representation
of A(G), and hence equation (2.1) on page 3 implies that 7" is bounded. Thus

1T (pm) — T(H)HJ\@(@) = T (em — 1w)||Mn((c) — 0 asm — oo. (5.1)

Let £ and k be the unique elements of {1,...,n} such that v € G*. Note that each T'(y,,)
has n > 2 rows, and it follows from equation (5.1) that for each ¢ € {1,...,n}, we have

th th 1 ifi=V¢
' tT(pm) — @ f7(1 T(1 T(1,)ix =

i row sum of T'(p,,) i TOW sum o Z )ik {0 otherwise
as m — o0o. But this contradicts Corollary 5.2, which says that for each m € N; all of the

row (and column) sums of T'(¢,,) are equal. So we must have 1., ¢ WH'””‘“‘, O

Remark 5.4. It is known that Theorem 5.3 does not hold for ample Hausdorff groupoids
in general. For example, if G is the Cuntz groupoid (that is, the boundary-path groupoid of
the directed graph with a single vertex and two edges), then F'(G) is Thompson’s group V5,
and the representation 7: C(F(G)) — A(G) extends to a surjective representation of F'(G)
in the Cuntz algebra Os; see [3, Remark 4.7] and [10, Proposition 5.3].

It turns out that Theorem 5.3 does not hold in the reduced setting. We provide an example
demonstrating this fact below.
Example 5.5. Let G = Fo UFy. Then each element of G is of the form (g, k), where g € F,
and k € {1,2} identifies whether g belongs to the first or the second copy of Fy. Since
G is not a group, we know by Theorem 5.3 that W(CF(g))”'”m“ # C*(G). We show that
despite this, we still have W(CF(Q))MT = C*(G). To do so, it suffices to show that for
each g € Fy, we have 1,1y € W(CF(Q))MT, because a symmetric argument then shows that

Lig2) € W((CF(Q))H'HT'. Fix t € Fy, and for each m € N, let E,, denote the set of (reduced)
elements of Fy with length m. List elements of Fy in increasing order of their lengths; that
is, write Fy = {¢1, 92,93, ...}, with |g;| < |gis1| for all @ > 1. Now define a sequence of
funct1ons (Pn)2, C7(CF(G)) C A(G) by

Qb _77-( t,1) +Z 6(912)>_]—t1 (Zlgz )
We claim that ¢,, — 1,1y in C(G). Since the map 1y, = 1(4,2) extends to an embedding of
C*(Fy) in C*(G), it suffices to show that ¢, == — (Z 1%) 0 in C*(Fy).

By [9, Lemma 1.5], we know that for all f € C, (IFQ)

10, < 2 (D16 (1+1s) . (5.2)

sclfy

[
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For each m > 1, we have |E,,| = 4 x 3™, Thus, for each n > 1, we have

[logg n] [logg n] logs n
4(3Messml — 1) 4(n—1)
En| = |Eo| +4 3t =1 > 14— >n,
mZ::O |Em| = [Eo| + mz:; + T > 1+ 5 >n
and it follows that supp(v,,) = {g1,.-.,9n} C Uﬂog3 "B,
Now, for each n > 1, inequality (5.2) imphes that
[logg n] 1
2
el < 2 (D" n()” (14 Isf* ) 2( 3 WP (1+15))
s€lfy m=0 secFE,,
[logs n] 1 [logg ] m—1 4 1
|Em‘ 4y \ 2 4x3 X 2m*\ 3
SQ(Z n2 (1—i—m)> SQ(Z n? )
m=0 m=0
8[logs n]* s 3 8[loggn]* (38! — 3) >
xSy o 2
n? n?(3—-1)

4[logs n]* ks (32+1o8a) : _ 12 [logs n]? |

n v

— 0 as n — oo, we deduce that ¢, — 0 in C(F3), as required.

<

12[logs n]?
NLD

We conclude the paper with a corollary of Theorem 3.2, Corollary 4.4, and Theorem 5.3.

Since

Corollary 5.6. Let G be an ample Hausdorff groupoid with compact unit space G. The
representation w: CF(G) — A(G) is an isomorphism if and only if G is a group. Similarly,
if G is discrete, then the extension Tymax: C*(F(G)) — C*(G) of m is an isomorphism if and
only if G is a group.

Proof. If G is a group, then G satisfies condition (1) of Theorem 3.2, so Theorem 3.2
and Corollary 4.4 together imply that 7: CF(G) — A(G) is an isomorphism. If G is not
a group, then Corollary 4.4 implies that 7 is not an isomorphism. Now suppose that G
is discrete. Since m: CF(G) — C*(G) is a *-homomorphism, it extends uniquely to a
s-homomorphism Tyax: C*(F(G)) — C*(G). If G is a group, then F(G) = G, so the represen-
tation 7: CF(G) — A(G) is the identity map, and thus the extension 7,y is an isomorphism.
If G is not a group, then Theorem 5.3 implies that 7. is not an isomorphism. 0
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