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Discovering Structure From Corruption for
Unsupervised Image Reconstruction

Oscar Leong ", Member, IEEE, Angela F. Gao

Abstract—We consider solving ill-posed imaging inverse prob-
lems without access to an image prior or ground-truth examples.
An overarching challenge in these inverse problems is that an
infinite number of images, including many that are implausible, are
consistent with the observed measurements. Thus, image priors are
required to reduce the space of possible solutions to more desirable
reconstructions. However, in many applications it is difficult or
potentially impossible to obtain example images to construct an im-
age prior. Hence inaccurate priors are often used, which inevitably
result in biased solutions. Rather than solving an inverse problem
using priors that encode the spatial structure of any one image, we
propose to solve a set of inverse problems jointly by incorporating
prior constraints on the collective structure of the underlying
images. The key assumption of our work is that the underlying
images we aim to reconstruct share common, low-dimensional
structure. We show that such a set of inverse problems can be solved
simultaneously without the use of a spatial image prior by instead
inferring a shared image generator with a low-dimensional latent
space. The parameters of the generator and latent embeddings
are found by maximizing a proxy for the Evidence Lower Bound
(ELBO). Once identified, the generator and latent embeddings can
be combined to provide reconstructed images for each inverse prob-
lem. The framework we propose can handle general forward model
corruptions, and we show that measurements derived from only a
small number of ground-truth images (< 150) are sufficient for
image reconstruction. We demonstrate our approach on a variety
of convex and non-convex inverse problems, including denoising,
phase retrieval, and black hole video reconstruction.

Index Terms—Inverse problems, computational imaging, prior
models, generative networks, Bayesian inference.
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I. INTRODUCTION

N IMAGING inverse problems, the goal is to recover an
I underlying image from corrupted measurements, where the
measurements and image are related via an understood for-
ward model: y = f(z) + n. Here, y are measurements, z is
the underlying image, f is a known forward model, and 7 is
noise. Such problems are ubiquitous and include denoising [6],
[20], super-resolution [7], compressed sensing [8], [19], phase
retrieval [21], and deconvolution [35]. Due to corruption by the
forward model and noise, these problems are often ill-posed:
there are many images that are consistent with the observed
measurements, including ones that are implausible.

To combat the ill-posedness in imaging problems, solving
for an image traditionally requires imposing additional struc-
tural assumptions to reduce the space of possible solutions.
We encode these assumptions in an image generation model
(IGM), whose goal is to capture the desired properties of
an image’s spatial structure. IGMs are general; they encom-
pass probabilistic spatial-domain priors (e.g., that encourage
smoothness or sparsity), but also include deep image generators
that are not necessarily probabilistic but are trained to primarily
sample a certain class of images.

In order to define an IGM, it is necessary to have knowledge
of the underlying image’s structure. If images similar to the
underlying image are available, then an IGM can be learned
directly [4], [44], [56]. However, an abundance of clean images
is not available for many scientific imaging modalities (e.g., geo-
physical imaging and astronomical imaging). Collecting images
in these domains can be extremely invasive, time-consuming,
expensive, or even impossible. For instance, how should we
define an IGM for black hole imaging without having ever seen
a direct image of a black hole or knowing what one should look
like? Moreover, classical approaches that utilize hand-crafted
IGMs, such as total variation [26] or sparsity in a wavelet
basis [37], are prone to human bias [34].

In this work, we show how one can solve a set of ill-posed
image reconstruction tasks in an unsupervised fashion, i.e.,
without prior information about an image’s spatial structure
or access to clean, example images. The key insight of our
work is that knowledge of common structure across multiple
diverse images can be sufficient regularization alone. In partic-
ular, suppose we have access to a collection of noisy measure-
ments {y( } N, that are observed through (potentially different)
forward models y*) := £ (2(")) + ("), The core assumption
we make is that the different underlying images {w(i)}ij\il are
drawn from the same distribution (unknown a priori) and share
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common, low-dimensional structure. Thus, our “prior” is not at
the spatial-level, but rather exploits the collective structure of
the underlying images. This assumption is satisfied in a number
of applications where there is no access to an abundance of
clean images. For instance, although we might not know what
a black hole looks like, we might expect it to be similar in
appearance over time. We show that under this assumption, the
image reconstruction posteriors p(m\y(i)) can be learned jointly
from a small number of examples {3(")} Y| due to the common,
low-dimensional structure of the collection {z(V}¥,. Specifi-
cally, our main result is that one can capitalize on this common
structure by jointly solving for 1) a shared image generator G¢
and 2) N low-dimensional latent distributions IYOR such that
the distribution induced by the push-forward of g, through
Gy approximately captures the image reconstruction posterior
p(z|y®) for each measurement example i € [N].

A. Our Contributions

We outline the main contributions of our work, which extends
our prior work presented in [22]:

1) We solve a collection of ill-posed inverse problems with-
out prior knowledge of an image’s spatial structure by
exploiting the common, low-dimensional structure shared
across images. This common structure is exploited when
inferring a shared IGM with a low-dimensional latent
space.

2) Toinfer this IGM, we define aloss inspired by the evidence
lower bound (ELBO). We motivate this loss by showing
how it aids in unsupervised image reconstruction by help-
ing select one IGM from a collection of candidate IGMs
using a single measurement example.

3) We apply our approach to convex and non-convex in-
verse problems, such as denoising, black hole compressed
sensing, and phase retrieval. We establish that we can
solve inverse problems without spatial-level priors and
demonstrate good performance with only a small number
of independent measurement examples (e.g., < 150).

4) Wetheoretically analyze the inferred IGM in linear inverse
problems under a linear image model to show that in
this setting the inferred IGM performs dimensionality
reduction akin to PCA on the collection of measurements.

II. BACKGROUND AND RELATED WORK

We now discuss related literature in model selection and
learning-based IGMs. In order to highlight our key contributions,
we emphasize the following assumptions in our framework:

1) We do not have access to a set of images from the same

distribution as the underlying images.

2) We only have access to a collection of measurement
examples, where each example comes from a different
underlying image. The number of examples N is small,
e.g., NV < 150.

3) For each underlying image () we wish to reconstruct,
we only have access to a single measurement example
y@ = f@O () 4 5 That is, we do not have multiple

observations of the same underlying image. Note each f(*)
can be potentially different.

A. Model Selection

Model selection techniques seek to choose a model that
best explains data by balancing performance and model com-
plexity. In supervised learning problems with sufficiently large
amounts of data, this can be achieved simply by evaluating the
performance of different candidate models using reserved test
data [50]. However, in image reconstruction or other inverse
problems with limited data, one cannot afford to hold out data.
In these cases, model selection is commonly conducted using
probabilistic metrics. The simplest probabilistic metric used
for linear model selection is adjusted R? [40]. It re-weights
the goodness-of-fit by the number of linear model parameters,
helping reject high-dimensional parameters that do not improve
the data fitting accuracy. Similar metrics in nonlinear model
selection are Bayesian Information Criterion (BIC) [46] and
Akaike Information Criterion (AIC) [1]. AIC and BIC com-
pute different weighted summations of a model’s log-likelihood
and complexity, offering different trade-offs between bias and
variance to identify the best model for a given dataset.

In our work, we consider the use of the ELBO as a model
selection criterion. In [10], [11], the use of the ELBO as a
model selection criterion is theoretically analyzed and rates
of convergence for variational posterior estimation are shown.
Additionally, [52] proposes a generalized class of evidence lower
bounds leveraging an extension of the evidence score. In [51],
the ELBO is used for model selection to select a few, discrete
parameters modeling a physical system (e.g., parameters that
govern the orbit of an exoplanet). A significant difference in
our context, however, is that we use the ELBO as a model
selection criterion in a high-dimensional imaging context, and
we optimize the ELBO over a continuous space of possible
parameters.

B. Learning IGMs

With access to a large corpus of example images, it is possible
to directly learn an IGM to help solve inverse problems. Seminal
work along these lines utilizing generative networks showcased
that a pre-trained Generative Adversarial Network (GAN) can
be used as an IGM in the problem of compressed sensing [4]. To
solve the inverse problem, the GAN was used to constrain the
search space for inversion. This approach was shown to outper-
form sparsity-based techniques with 5-10x fewer measurements.
Since then, this idea has been expanded to other inverse prob-
lems, including denoising [25], super-resolution [39], magnetic
resonance imaging (MRI) [2], [48], and phase retrieval [23],
[47]. However, the biggest downside to this approach is the
requirement of a large dataset of example images similar to
the underlying image, which is often difficult or impossible to
obtain in practice. Hence, we consider approaches that are able
to directly solve inverse problems without example images.

Methods that aim to learn an IGM from only noisy measure-
ments have been proposed. The main four distinctions between
our work and these methods are that these works either: 1)
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require multiple independent observations of the same under-
lying image, 2) can only be applied to certain inverse problems,
3) require significantly more observations (either through more
observations of each underlying image or by observing more
underlying images), or 4) require significant hyperparameter
tuning based on knowledge of example images.

Noise2Noise (N2N) [33] learns to denoise images by training
on a collection of noisy, independent observations of the same
image. To do so, N2N learns a neural network ®» whose goal is
to map between noisy images y and denoised images x. Since it
has no denoised image examples to supervise training, it instead
employs a loss that maps between noisy examples of the same
underlying image. This objective is as follows:

N
argming > E oy, B [L(@(ut)),08")], (1)
i=1

where yj(-i)

corresponds to a noisy observation of the ¢-th un-
derlying image (), and Y; is a distribution of noisy images
where E,y, [y] = . This N2N objective requires at least two
observations of the same image and is limited by the assumption
that the expected value of multiple observations of a single
image is the underlying image. Thus, N2N is only applicable
to denoising problems where the forward model is the identity
matrix with independent noise on each pixel. Additionally, in
practice N2N requires thousands of underlying images (i.e.,
N = O(1000)) to perform well. Thus, N2N’s main distinctions
with our work are distinctions 1), 2), and 3).

Regularization by Artifact Removal (RARE) [36] general-
izes N2N to perform image reconstruction from measurements
under linear forward models. That is, the objective in (1) is
modified to include a pseudo-inverse. Nonetheless, multiple
observations of the same underlying image are required, such
that E,y[A'y] = z for the pseudo-inverse matrix Af. Thus,
RARE suffers from the same limiting distinctions as N2N (i.e.,
1), 2), and 3)).

Noise2Void [30] and Noise2Self [3] assume that the image
can be partitioned such that the measurement noise in one subset
of the partition is independent conditioned on the measurements
in the other subset. This is true for denoising, but not applicable
to general forward models. For example, in black hole and MRI
compressed sensing, it is not true that the measurement noise
can be independently partitioned since each measurement is a
linear combination of all pixels. While this makes Noise2Void
and Noise2Self more restrictive in the corruptions they can
handle compared to RARE, they also don’t require multiple
observations of the same underlying image. Hence the main
differences between these works and our own are distinctions 2)
and 3).

AmbientGAN [5] and other similar approaches based on
GANs [28] and Variational Autoencoders (VAEs) [38], [41] have
been proposed to learn an IGM directly from noisy measure-
ments. For instance, AmbientGAN aims to learn a generator
whose images lead to simulated measurements that are indis-
tinguishable from the observed measurements; this generator
can subsequently be used as a prior to solve inverse problems.
However, AmbientGAN requires many measurement examples

IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 9, 2023

(on the order of 10,000) to produce a high quality generator. We
corroborate this with experiments in Section IV to show that
they require many independent observations and/or fine tuning
of learning parameters to achieve good performance. Thus, the
main distinctions between AmbientGAN and our work are 3)
and 4).

Deep Image Prior (DIP) [55] uses a convolutional neural
network as an implicit “prior”. DIP has shown strong perfor-
mance across a variety of inverse problems to perform image
reconstruction without explicit probabilistic priors. However, it
is prone to overfitting and requires selecting a specific stopping
criterion. While this works well when example images exist, se-
lecting this stopping condition from noisy measurements alone
introduces significant human bias that can negatively impact
results. Thus, the main distinction between DIP and our work is
4).

We would also like to highlight additional work done to
improve certain aspects of the DIP. While the original DIP
method used a U-Net architecture [45], other works such as the
Deep Decoder [24] and ConvDecoder [17] used a decoder-like
architecture that progressively grows a low-dimensional random
tensor to a high-dimensional image. When underparameterized,
such architectures have been shown to avoid overfitting and the
need for early stopping. Other works mitigating early stopping
include [9], which takes a Bayesian perspective to the DIP by
using Langevin dynamics to perform posterior inference over
the weights to improve performance and show this does not lead
to overfitting.

III. APPROACH

In this work, we propose to solve a set of inverse problems
without prior access to an IGM by assuming that the set of
underlying images have common, low-dimensional structure.
We motivate the use of optimizing the ELBO to infer an IGM
by showing that it is a good criterion for generative model
selection in Section III-A. Then, by optimizing the ELBO, we
show in Section III-B that one can directly infer an IGM from
corrupted measurements alone by parameterizing the image
model as a deep generative network with a low-dimensional
latent distribution. The IGM network weights are shared across
all images, capitalizing on the common structure present in the
data, while the parameters of each latent distribution are learned
jointly with the generator to model the image posteriors for each
measurement example. See Fig. 1 for a method overview.

A. Motivation for ELBO as a Model Selection Criterion

In order to accurately infer an IGM, we motivate the use of the
ELBO as aloss by showing that it provides a principled criterion
for selecting an IGM to use as a prior model. Suppose we are
given noisy measurements from a single image: y = f(z) + 7.
In order to reconstruct the image x, we traditionally first require
an IGM G that captures the distribution = was sampled from. A
natural approach would be to find or select the model G that max-
imizes the model posterior distribution p(Gly) x p(y|G)p(G).
That is, conditioned on the noisy measurements, find the IGM
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Unsupervised image reconstruction by...
selecting an image model (Section Ill.A) inferring an image model (Section [l1.B)

Inputs Outputs Inputs Outputs

1 inverse problem IGM N inverse problems N posteriors
Gy Gi Gy Gj 1 1 |GM
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N
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Fig. 1. Method overview. In this paper we tackle ill-posed image reconstruction problems when a traditional image prior is not available or cannot be derived
from example images. The key idea of our work is that image reconstruction is possible when one has access to only corrupted measurement examples and the
underlying images share common, low-dimensional structure. We explore such ideas in this work in the following two ways: Left: Given a single measurement
example (with the corresponding forward model) and a set of candidate image generation models (IGMs), we use our proposed criterion to select the best IGM from
the measurements alone and then recover an image posterior under that IGM. The criterion we use for model selection is an approximation of the evidence lower
bound (i.e., ELBOProxy in (3)) (see Section III-A). Right: Building off of this, we consider the setting where we must infer the IGM from noisy measurements
alone (see Sec. III-B). In this case, we solve [N inverse problems simultaneously. The inputs of this method are /N measurement examples with their known forward

G HHA

models, and the outputs are a single inferred IGM and N latent embeddings that, when combined, lead to /N image reconstruction posteriors.

of highest likelihood. Unfortunately computing p(y|G) is in-
tractable, as it requires marginalizing and integrating over all
x encompassed by the IGM G. However, we show that this
quantity can be well approximated using the ELBO.

To motivate our discussion, we first consider estimating the
image posterior p(z|y, G) by learning the parameters ¢ of a
variational distribution h4 (). Observe that the definition of the
KL-divergence followed by an application of Bayes’ theorem
gives

Dy (ho(@) || plaly. G)) = Epmpy (o) [logphm ]

(zly, G)

_ _he(@)p(y|G)

= Bavho@ o8 0 G>p<x|G>}

= —Esn, () llogp(ylz, G) + log p(z|G) — log hy(z)]
+log p(y|G).

The ELBO of an IGM G given measurements y under variational
distribution hg is defined by

ELBO(G, hg;y) := Epp, (2)[log p(y|z, G)
+logp(z|G) —log hg(x)].  (2)

Rearranging the previous equation, we see that by the non-
negativity of the KL-divergence that

log p(y|G) = Dxu (he(z) || p(z]y, G))
+ ELBO(G, hy; )
> ELBO(G, hg; y).
Thus, we can lower bound the model posterior as
log p(Gly) = ELBO(G, hg;y) + log p(G) — log p(y).

Note that log p(y) is independent of the parameters of interest, ¢.
If the variational distribution h(z) is a good approximation to
the posterior p(z|y, G), Dk1. = 0. Thus, maximizing log p(G|y)
with respect to G is approximately equivalent to maximizing
ELBO(G, hy;y) + logp(G).

Each term in the ELBO objective encourages certain prop-
erties of the IGM G. In particular, the first term in the ELBO,
Eqhy (o) [log p(y|x, G)], requires that G should lead to an image
estimate that is consistent with our measurements . The second
term, E, .1, (o) [log p(|G)], encourages images sampled from
hg () to have high likelihood under our model G. The final term
is the entropy term, E, .1, (»)[— log he ()], which encourages
a G that leads to “fatter” minima that are less sensitive to small
changes in likely images x under G.

1) ELBOProxy: Some IGMs are explicit, which allows for
direct computation of log p(x|G). For example, if our IGM mod-
els x as isotropic Gaussian with variance A, then — log p(z|G)
A7 H|z|%. In this case, we can optimize the ELBO defined
in Equation (2) directly and then perform model selection.
However, an important class of IGMs that we are interested
in are those given by deep generative networks. Such IGMs
are not probabilistic in the usual Bayesian interpretation of
a prior, but instead implicitly enforce structure in the data.
A key characteristic of many generative network architectures
(e.g., VAEs and GANs) that we leverage is that they generate
high-dimensional images from low-dimensional latent represen-
tations. Bottlenecking helps the network learn global character-
istics of the underlying image distribution while also respecting
the low intrinsic dimensionality of natural images. However, this
means that we can only compute log p(z|G) directly if we have
an injective map [29]. This architectural requirement limits the
expressivity of the network.

We instead consider a proxy of the ELBO that is especially
helpful for deep generative networks. That is, suppose our IGM
is of the form x = G(z). Introducing a variational family for
our latent representations z ~ ¢, (2) and choosing a latent prior
distribution log pz (2| G), we arrive at the following proxy of the
ELBO:

ELBOProxy (G, s y) := E.q, (=) [log p(y|G(2))
+logpz(2|G) —logqe(2)].  (3)

In our experiments, we chose pz(z|G) to be an isotropic Gaus-
sian prior. This is acommon choice in many generative modeling
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frameworks and has shown to be a good choice of prior in the
latent space.

To motivate this proxy, it is instructive to consider the case
where our variational distribution hy := Gfige is the push-
forward of a latent distribution ¢, through an injective or invert-
ible function G. To be precise, recall the following definition of
the push-forward measure.

Definition 1: Let G : R¥ — R™ be a measurable function and
suppose p is a distribution (or, more generally, a measure) on
R*. Then the push-forward measure . := Gfp is the measure
on R"™ that satisfies the following: for all Borel sets A of R,
p(A) = p(G1(A)) where G~1(A) denotes the preimage of A
with respect to G.

The push-forward measure essentially characterizes how a
distribution p changes when passed through a function G. It
follows from the definition of the push-forward that z ~ Giqy
if and only if = G(z) where z ~ g4. In the case hy = Gigy
for an injective function G, the ELBO and ELBOProxy are
equivalent, as shown in the following proposition:

Proposition 1. Suppose G : R*¥ — R™ is continuously differ-
entiable and injective. For two probability distributions p and
e on R¥, define the measures p(-|G) = Gfpz and hy = Giqy.
Then

ELBO(G, hg;y) = ELBOProxy(G, g¢; y) Yy € R™.
Proof: Tt suffices to show
Eyhy(x)[log p(z|G) — log hy ()]
=E.q,()[logpz(2|G) — log g4 (2)]

Let Jg(z) € R™** denote the Jacobian of G at an input z €
R*. Since G is injective and continuously differentiable with
p(-|G) = Gpz, we can compute the likelihood of any point
x € range(G) [29] via

log p(z16) = log (G (2)/G)
— 5108 detl g (G (1) Jo (G ()]

where G is the inverse of G on its range. This is essentially
the classical change-of-variables formula specialized to the case
when G is injective and we wish to access likelihoods on the
range of GG. Note that this equation is only valid for points in the
range of the injective function G. Likewise, since hy = Glqy,
we can compute the entropy of hy for any point = € range(G)
as

log hy () = log q4(G'(z))
— Slog | det[Ja(G1 () o(G ()]

Now observe that for z ~ hg, = € range(G) as hy is the push-
forward of g4 through G Thus, for z ~ h, we have that

log p(z|G) — log hy ()
=log pz(G'(2)|G) — log g4 (G'(x)).

By the definition of the push-forward measure, we have that
x ~ hg implies v = G(z) for some z ~ ¢4. Using our previous
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formulas, we can compute the expectation over the difference
log p(z|G) — log he () with respect to hy as

Bihy(@)log p(z|G) — log hy ()]

= Epn, () [log pz(GT(2)|G) — log g4(G'(2))]

= E.oy, () [log 2(GT(G(2))|G) —log g4(GT(G(2)))]
=E.q,(»)[logpz(2|G) —log g (2)].

O

An important consequence of this result is that for injective
generators (G, the inverse of G (on its range) is not required
for computing the ELBO. In this case, the ELBOProxy is in fact
equivalent to the ELBO. While not all generators G will be injec-
tive, quality generators are largely injective over high likelihood
image samples. In Section III-A2 and Fig. 3, we experimentally
show that this proxy can aid in selecting potentially non-injective
generative networks from corrupted measurements.

2) Toy Example: To illustrate the use of the ELBOProxy
as a model selection criterion, we conduct the following ex-
periment that asks whether the ELBOProxy can identify the
best model from a given set of image generation models. For
this experiment, we use the MNIST dataset [32] and consider
two inverse problems: denoising and phase retrieval. We train
a generative model G on each class ¢ € {0,1,2,...,9} using
the clean MNIST images directly. Hence, G generates images
from class ¢ via G.(z) where z ~ N(0, I). Then, given noisy
measurements y. from a single image from class ¢, we ask
whether the generative model G, from the appropriate class
would achieve the best ELBOProxy. Each G.. is the decoder of a
VAE with a low-dimensional latent space, with no architectural
constraints to ensure injectivity. For denoising, our measure-
ments are y. = . + 7. where 1. ~ N(0,02I) and o = +/0.5.
For phase retrieval, y. = |F(z.)| + 7. where F is the Fourier
transform and 7. ~ N'(0,021) with ¢ = /0.05.

We construct 10 x 10 arrays for each problem, where in the
t-th row and j-th column, we compute the negative ELBOProxy
obtained by using model GG;_ to reconstruct images from class
j — 1. We calculate ELBOProxy (G, g4, ; Y. ) by parameterizing
ge. with a Normalizing Flow [18] and optimizing network
weights ¢. to maximize (3). The expectation in the ELBOProxy
is approximated via Monte Carlo sampling. Results from the
first 5 classes are shown in Fig. 3 and the full arrays are shown
in the supplemental materials. We note that all of the correct
models are chosen in both denoising and phase retrieval. We
also note some interesting cases where the ELBOProxy values
are similar for certain cases, such as when recovering the 3 or
4 image. For example, when denoising the 4 image, both G4
and Gy achieve comparable ELBOProxy values. By carefully
inspecting the noisy image of 4, one can see that both models
are reasonable given the structure of the noise.

B. Simultaneously Solving Many Inverse Problems

As the previous section illustrates, the ELBOProxy provides
a good criterion for choosing an appropriate IGM from noisy
measurements. Here, we consider the task of directly inferring
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‘We propose to solve a collection of NV ill-posed inverse problems by exploiting the common, low-dimensional structure of the underlying images. Given

a set of N measurement examples {y(i) }f\; ; from N different underlying images, we propose to model each image posterior as the output of a shared IGM with a
low-dimensional latent space. In particular, each posterior is approximated by Gtlq POF the push-forward of ¢ (D) through G, where G is the shared, common

generator to all N examples and ¢ () is a low-dimensional, variational distribution particular to the ¢-th example. The parameters, 6 and {¢(i)}

ﬁ\; 1» are colored

in blue and are jointly inferred. That is, such parameters are inferred specifically for the measurements {y(i) }f\’: ;- The loss we use is the negative ELBOProxy,
which is denoted by £ and given by (5). Note that there is no notion of a training set and test set as we aim to solve the inverse problems jointly from all available

measurements.

the IGM from a collection of measurement examples y(*) =
fO(z@) 7@ for i € [N], where the parameters are found
by optimizing the ELBOProxy. The key assumption we make
is that common, low-dimensional structure is shared across
the underlying images {x(")},. We propose to find a shared
generator GGy with weights 6 along with latent distributions
g4 that can be used to reconstruct the full posterior of each
image 2(*) from its corresponding measurement example (%),
This approach is illustrated in Fig. 2. Having the generator be
shared across all images helps capture their common collective
structure. Each forward model corruption, however, likely in-
duces its own complicated image posteriors. Hence, we assign
each measurement example y(*) its own latent distribution to
capture the differences in their posteriors. Note that because we
optimize a proxy of the ELBO, the inferred distribution may
not necessarily be the true image posterior, but it still captures a
distribution of images that fit to the observed measurements.

a) Inference approach: More explicitly, given a collection
of measurement examples {y(i) M |, wejointly infer a generator
G and a set of variational distributions {q, } ., by optimizing
a Monte Carlo estimate of the ELBOProxy from (3), described
by:

{é7¢g(l);"'7$(N)} € argmax L 4)
0.{6(}N

where

N

1 4
L= N Z:IELBOPTOXY(GG,qu');y(l)) +logp(Gg). (5)

In terms of choices for log p(Gy), we can add additional regu-
larization to promote particular properties of the IGM Gy, such
as having a small Lipschitz constant. Here, we consider having
sparse neural network weights as a form of regularization and
use dropout [49] during training to represent log p(Gp).

Once a generator G and variational parameters gg(i) have
been inferred, we solve the ¢-th inverse problem by simply sam-

pling &) = Gy(21)) where 20 ~ g, (")) or computing an
average 7 = L ST Gé(ét(l)). Producing samples for each
inverse problem can help visualize the range of uncertainty
under the learned IGM Gé, while the expected value of the
distribution empirically provides clearer estimates with better
metrics in terms of PSNR or MSE. We report PSNR outputs
in our subsequent experiments and also visualize the standard
deviation of our reconstructions.

IV. EXPERIMENTAL RESULTS

We now consider solving a set of inverse problems via the
framework described in III-B. For each of these experiments,
we use a multivariate Gaussian distribution to parameterize each
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Fig.3. We consider two inverse problems: denoising and phase retrieval. Top:
the two topmost rows correspond to the ground-truth image x. and the noisy
measurements .. Center: in each column, we show the means of the distribution
induced by the push-forward of G; and each latent distribution z ~ qg; for

j €{0,...,9}. Bottom: each column of the array corresponds to the negative
ELBOProxy achieved by each model in reconstructing the images. Here, lower
is better. Boxes highlighted in green correspond to the best negative ELBOProxy
values in each column. In all these examples, the correct model was chosen.

of the posterior distributions Qi) and a Deep Decoder [24]
with 6 layers, 150 channels in each layer, a latent size of 40,
and a dropout of 10~* as the IGM. The multivariate Gaussian
distributions are parameterized by means and covariance ma-
trices {u, AW = U, UL +eI}Y,, where el with ¢ = 1073
is added to the covariance matrix to help with stability of the
optimization. We choose to parameterize the latent distributions
using Gaussians for memory considerations. Note that the same
hyperparameters are used for all experiments demonstrating our
proposed method.

In our experiments, we also compare to the following base-
line methods: AmbientGAN [5], Deep Image Prior (DIP) [54],
and regularized maximum likelihood using total variation
(TV-RML). AmbientGAN is most similar to our setup, as it
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constructs an IGM directly from measurement examples; how-
ever, it doesn’t aim to estimate image reconstruction posteriors,
but instead aims to learn an IGM that samples from the full
underlying prior. TV-RML uses an explicit total variation regu-
larization, while DIP uses implicit convolutional neural network
“prior”. As we will show, all these baseline methods require fine-
tuning hyperparameters to each set of measurements in order to
produce their best results. All methods can also be applied to a
variety of inverse problems, making them appropriate choices
as baselines.

A. Denoising

We show results on denoising a collection of noisy images of
8’s from the MNIST dataset in Fig. 4 and denoising a collection
of noisy images of a single face from the PubFig [31] dataset
in Fig. 5. The measurements for both datasets are defined by
y = x + 1 where n ~ N(0, 02I) with an SNR of ~-3 dB for the
MNIST digits and an SNR of ~15 dB for the faces. Our method
is able to remove much of the added noise and recovers small
scale features, even with only 10’s of observations. As shown
in Fig. 4, the reconstructions achieved under the learned IGM
improves as the number of independent observations increases.
Our reconstructions also substantially outperform the baseline
methods, as shown in Fig. 6. Unlike DIP, our method does not
overfit and does not require early stopping. Our method does not
exhibit noisy artifacts like those seen in all baselines methods,
despite such methods being fine-tuned. We show quantitative
comparisons in Table I.

In Fig. 7 we show additional multi-noise denoising exper-
iments where we have 75 noisy images, which have 3 dif-
ferent noise levels. More formally, y*) = () + 7 where 7 €
{n1,m2,m3} and n; ~ N(0,02I). In Experiment 1, the noise
levels have a wide range, and we use standard deviations of
{01,02,03} = {0.01,0.1,0.5}. In Experiment 2, the noise lev-
els are much closer together, and we use standard deviations of
{01,02,03} = {0.2,0.3,0.5}. When the SNRs are similar (as
in Experiment 2), the reconstructions match the true underlying
images well. However, when the measurements have a wide
range of SNRs (i.e., Experiment 1), the reconstructions from
low SNR measurements exhibit bias and poorly reconstruct the
true underlying image, as shown in Fig. 7. This is likely because
the high SNR measurements influence the inferred IGM more
strongly than the low SNR measurements. The full set of results
are available in the supplemental materials.

B. Phase Retrieval

Here we consider solving non-convex inverse problems, and
demonstrate our approach on phase retrieval. Our measurements
are described by y = | F ()| + n where F () is a linear operator
and 17 ~ N(0,02I). We consider two types of measurements,
one where F(-) is the Fourier transform and the other when
F(-) is an m x n complex Gaussian matrix with m = [0.1n].
Since each measurement is the magnitude of complex linear
measurements, there is an inherent phase ambiguity in the
problem. Additionally, flipping and spatial-shifts are possible
reconstructions when performing Fourier phase retrieval. Due to
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Fig. 4. Improvement with an increasing number of noisy observations. We demonstrate our method of inferring an IGM to perform denoising for an increasing
number of noisy MNIST images (5, 75, and 150 images from left to right). We showcase results on three randomly selected examples that appear in each collection
of inverse problems. In each panel, we include the ground-truth, noisy measurements, mean of the posterior, and standard deviation of the posterior. We also include
the residual error divided by the empirical standard deviation for N = 150. On the far right, we visualize reconstructions using an IGM trained on the full clean
MNIST 8’s class (6000 images). We observe that the mean reconstructions and standard deviations from our low-data IGMs become more similar to the full-data
IGM with increasing data. Our residual errors are largely within 3 standard deviations.

-]

Fig. 5. Denoising 95 images of celebrity A. We demonstrate our method described in III-B using 95 noisy images of a celebrity. Here we show the underlying
image (row 1), noisy measurements (row 2), mean reconstruction (row 3), and residual error (row 4) for a subset of the 95 different noisy images. Our reconstructions
are much less noisy than the measurements and recover sharp features that are hard to discern in the noisy images. We visualize the residual error normalized by the
empirical standard deviation, which indicates errors are largely within 3 standard deviations (refer to the colorbar in Fig. 4). Note that no explicit spatial-domain
prior/regularizer was used in denoising.

Truth Meas. Ours Ambient- DIP DIP TV-RML TV-RML

GAN 100 epochs 300 epochs A = 3e4 A =5e4
Fewer epochs Many epochs  Lower 2 Higher &

PSNR . 22.87 25.56 25.35 26.23

Fig. 6. Denoising baseline comparisons. We compare to various baselines (AmbientGAN, Deep Image Prior (DIP), and regularized maximum likelihood using
TV (TV-RML) with weight 1), and we report the average PSNR across all 95 reconstructions. We show both early stopping and full training results using DIP.
Our method exhibits higher PSNR than all other baselines. We also include results for baselines that require fine-tuning to demonstrate sensitivity to subjective
stopping conditions.
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TABLE I
QUANTITATIVE COMPARISONS TO BASELINES

Baselines
Forward model | Ours | AmbGAN DIP DIP TV TV
Dataset N y=f(z)+n fine-tuned  fewer epochs  many epochs lower A  higher A
celeb. A 95 y=x+mn 27.0 22.9 25.6 25.4 26.2 26.9
celeb. B 95 y=x+n 26.2 19.7 24.4 25.2 25.9 26.4
MNIST 8’s 150 | y=z+n 21.1 18.0 18.8 13.3 16.4 18.2
MB87* (target) | 60 y=Ax+n 29.3 25.7 29.0 28.6 243 25.9

We show the mean PSNR between the reconstructions of different methods (ours, AmbientGAN [5], DIP [54], and TV-RML) with either the true
underlying image or the target in the case of black hole compressed sensing. The highest PSNR for each set of measurements is in bold. We fix
the hyperparameters of the baselines across each forward model, empirically selecting them for good performance on each type of problem. Note
that the range in performance depends on the choice of hyperparameters. For denoising, the DIP results corresponds to 100 and 300 epochs for
the fewer and many epochs baselines, respectively, and the lower and higher \’s are 1e3 and le4, respectively. For black hole compressed
sensing, the DIP results corresponds to 1000 and 3000 epochs for the fewer and many epochs baselines, respectively, and the lower and higher
N's are le2 and 1e3, respectively. Visual examples of celeb B. are shown in the supplemental materials.
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Multi-noise denoising. We demonstrate our method described in Section III-B to perform denoising on measurement collections experiencing different

noise levels. For each experiment, we use 75 measurement examples, which are defined by y("') =z 4 n where 7 € {n1,7n2,m3} and n; ~ N (0, 01.2]). In
Experiment 1, we use noisy measurement examples that have additive noise with standard deviations of 0.01, 0.1, and 0.5. In Experiment 2, we use noisy

measurement examples that have additive noise with standard deviations of 0.2, 0.3

, and 0.5. We visualize the true underlying images, the measurement used for

each experiment, and the mean of the image reconstruction posterior. Most of the reconstructions recover the primary features of the true image. However, in
Experiment 1, the reconstructions of the low SNR measurements exhibit bias and do not match the true images well. This is likely because in Experiment 1, the high
SNR measurements influence the inferred IGM more strongly than low SNR measurements, leading to biased reconstructions for the reconstructions highlighted

in the red box.

the severe ill-posedness of the problem, representing this com-
plicated posterior that includes all spatial shifts is challenging.
Thus, we incorporate an envelope (i.e., a centered rectangular
mask) as the final layer of Gy to encourage the reconstruction
to be centered. Nonetheless, flipping and shifts are still possible
within this enveloped region.

We show results from a set of N = 150 noisy phase retrieval
measurements from the MNIST 8’s class with a SNR of ~52 dB.
We consider three settings: 1) all measurements arise from a
Gaussian measurement matrix, 2) all measurements arise from
Fourier measurements, and 3) half of the measurements are
Gaussian and the other half are Fourier. We show qualitative
results for cases 1 and 2 in Fig. 8. In the Gaussian case, we
note that our mean reconstructions are nearly identical to the
true digits and the standard deviations exhibit uncertainty in

regions we would expect (e.g., around edges). In the Fourier
case, our reconstructions have features similar to the digit 8§,
but contain artifacts. These artifacts are only present in the
Fourier case due to additional ambiguities, which lead to a more
complex posterior [27]. We also show the average PSNR of our
reconstructions for each measurement model in Table II. For
more details on this experiment, please see Section XII-C of the
supplemental materials.

C. Black Hole Imaging

We consider a real-world inverse problem for which ground-
truth data would be impossible to obtain. In particular, we
consider a compressed sensing problem inspired by astronom-
ical imaging of black holes with the Event Horizon Telescope

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on March 29,2024 at 23:33:06 UTC from IEEE Xplore. Restrictions apply.



LEONG et al.: DISCOVERING STRUCTURE FROM CORRUPTION FOR UNSUPERVISED IMAGE RECONSTRUCTION

Gaussian
Mean Std

Fourier
Mode 1 Mode 2

Truth

Fig.8. Phaseretrieval from MNIST 8’s. We demonstrate our method described
in I1I-B to perform phase retrieval on 150 images. For the Fourier phase retrieval
setting, we show examples from the two observed modes of the posterior. For
the Gaussian phase retrieval setting, we show the mean and standard deviation
of our reconstructions.

TABLE II
PHASE RETRIEVAL PSNRS FOR DIFFERENT MEASUREMENT OPERATORS

Measurement Operator(s)
Gaussian  Fourier  Both
Gaussian 30.8 — 30.2
Fourier — 13.6 194

Each column corresponds to the type of measurements
that the method was given (a total of N = 150). In the case
of “Both”, 75 Gaussian measurements and 75 Fourier
measurements were given. We then show the average
PSNR for our reconstructions given the specific measure-
ment operator (either Fourier or Gaussian). Note that
when given both Gaussian and Fourier measurement
examples our method exhibits a higher PSNR on the
recovered images from Fourier examples than when
given only Fourier measurements. Additionally, there is
only a slight decrease in performance on the Gaussian
measurement reconstructions as compared to given
entirely Gaussian examples.

(EHT): suppose we are given access to N measurement ex-
amples of the form y() = Az 4 () where A € C™*"
is a low-rank compressed sensing matrix arising from interfer-
ometric telescope measurements and 1(?) denotes noise with
known properties (e.g., distributed as a zero-mean Gaussian
with known covariance). The collection of images {z(V} N,
are snapshots of an evolving black hole target. This problem is
ill-posed and requires the use of priors or regularizers to recover
a reasonable image [13]. Moreover, it is impossible to directly
acquire example images of black holes, so any pixel-level prior
defined a priori will exhibit human bias. Recovering an image,
or movie, of a black hole with as little human bias as possible
is essential for both studying the astrophysics of black holes as
well as testing fundamental physics [12], [15]. We show how our
proposed method can be used to tackle this important problem. In
particular, we leverage knowledge that, although the black hole
evolves, it will not change drastically from minute-to-minute
or day-to-day. We study two black hole targets: the black hole
at the center of the Messier 87 galaxy (M87") and the black
hole at the center of the Milky Way galaxy — Sagattarius A*
(Sgr A").
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Fig.9. Visualization of the intrinsic resolution of the EHT compressed sensing
measurements. The EHT measures sparse spatial frequencies of the image
(i.e., components of the image’s Fourier transform). In order to generate the
underlying image (c), all frequencies in the entire domain of (a) must be used.
Restricting spatial frequencies to the ones in (a) and (b)’s green circle generates
the target (d), where (b) is a zoom in of (a). The EHT samples a subset of the
interior of the green circle, indicated by the sparse black samples in (b). Naively
recovering an image using only these frequencies results in the dirty image
(e), which is computed by Ay. The 2D spatial Fourier frequency coverage
represented with (u, v) positions is referred to as the UV coverage.

a) Imaging M87* using the current EHT array: We first
consider reconstructing the black hole at the center of the
Messier 87 galaxy, which does not evolve noticeably within the
timescale of a single day. The underlying images are from a sim-
ulated 60 frame video with a single frame for each day. We show
results on N = 60 frames from an evolving black hole target
with a diameter of ~40 microarcseconds, as was identified as the
diameter of M87 according to [14], [42] in Fig. 10. In particular,
the measurements are given by {y(*) = Az 4 5 MY |, where
2 is the underlying image on day i, A is the forward model
that represents the telescope array, which is static across different
days, and the noise (") ~ N/(0, ©) has a covariance of ¥, which
is a diagonal matrix with realistic variances based on the tele-
scope properties.! Measurements are simulated from black hole
images with a realistic flux of 1 Jansky [57]. We also visualize a
reference “target” image, which is the underlying image filtered
with a low-pass filter that represents the maximum resolution
achievable with the telescope array used to collect measurements
—inthis case the EHT array consisting of 11 telescopes (see Fig. 9
and Section IX in the supplemental materials).

As seen in Fig. 10, our method is not only able to reconstruct
the large scale features of the underlying image without any
aliasing artifacts, but also achieves a level of super-resolution
(see Table III in the supplemental materials). Our reconstruc-
tions also achieve higher super-resolution as compared to our
baselines (i.e., AmbientGAN, TV-RML, and DPI) in Fig. 10
and do not exhibit artifacts evident in the reconstructions from
these baselines. The two AmbientGAN settings were qualita-
tively chosen to show that the final result is sensitive to the

'We leave the more challenging atmospheric noise that appears in measure-
ments for future work.
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Fig. 10.

Recovering a 60-day video of the M87 black hole with the EHT telescope array. Left: We demonstrate our method described in III-B using simulated

measurements from 60 frames of an evolving black hole target with the forward model described in Fig. 9. Here we show the underlying images, dirty images
(AH 4y, see Fig. 9), and mean reconstruction, respectively. Additionally, we show the unwrapped space x time image, which is taken along the overlaid white ring
illustrated in the day 1 underlying image. The bright-spot’s temporal trajectory of our reconstruction matches that of the truth. Right: We compare our method to
various baselines methods. Our results are much sharper and exhibit less artifacts than AmbientGAN and TV-RML with weight A. Note that we include results

using AmbientGAN with both default parameters and fine-tuned parameters.

choice of hyperparameters. The default AmbientGAN param-
eters produce poor results, and even with fine-tuning to best
fit the underlying images (i.e., cheating with knowledge of the
ground-truth), the results still exhibit substantial artifacts. We
outperform the baselines in terms of PSNR when compared to
the target image (see Table I). Our results demonstrate that we
are able to capture the varying temporal structure of the black
hole, rather than just recovering a static image. It is important to
note that there is no explicit temporal regularization introduced;
the temporal smoothness is implicitly inferred by the constructed
IGM.

b) Imaging Sgr A* from multiple forward models: The
framework we introduce can also be applied to situations in
which the measurements themselves are induced by differ-
ent forward models. In particular, the measurements {y(*) =
F@ (@) 4+ 7DYN | are given by an underlying image 2, a
forward model f () that is specific to that observation, and noise
7 with known properties.

As an illustrative example, we consider the problem of recon-
structing a video of the black hole at the center of the Milky
Way — Sagittarius A* (Sgr A*). Unlike M87%, Sgr A* evolves
on the order of minutes. Therefore, we can only consider that
the black hole is static for only a short time when only a subset
of telescopes are able to observe the black hole. This results in
a different measurement forward model for each frame of the
black hole “movie” [16]. In particular, the measurements are
givenby {y = AW2® 4 N where x(?) is the underly-
ing image at time 7, A(%) is the forward model that incorporates
the telescope configuration at that time, and () ~ A/(0, X(*))
is noise where X(¥) is a diagonal matrix with realistic standard
deviations derived from the telescopes’ physical properties. The
measurement noise is consistent with a black hole with a flux of
2 Janskys. The measurement operator is illustrated in Fig. 11.

We show examples of reconstructing 60 frames of Sgr A* with
a diameter of ~50 microarcseconds using measurements simu-
lated from a proposed future next-generation EHT (ngEHT) [43]
array, which consists of 23 telescopes. These results are shown
in Fig. 12. Our reconstructions remove much of the alias-
ing artifacts evident in the dirty images and reconstructs the
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Fig. 11.  Visualization of the EHT forward model of Sgr A* over time. The

spatial frequency space coordinates of Sgr A* from an ngEHT [43] array
measured over a course of one night is shown on the top. Snapshots of the
coordinates that are measured at different times are shown on the bottom. Note
that the location and sparsity of the measurement coordinates change over time.

primary features of the underlying image without any form of
temporal regularization. These results have high fidelity espe-
cially considering that the measurements are very sparsely sam-
pled. Although these results come from simulated measurements
that do not account for all forms of noise we expect to encounter,
the high-quality movie reconstructions obtained without the use
of a spatio-temporal prior show great promise towards scientific
discovery that could come from a future telescope array paired
with our proposed reconstruction approach.

V. THEORY FOR LINEAR IGMs

We now introduce theoretical results on the inferred IGM for
linear inverse problems. Specifically, we consider the case when
the IGM Gy is linear and the latent variational distributions are
Gaussian. The goal of this section is to develop intuition for
the inferred IGM in a simpler setting. While our results may not
generalize to non-linear generators parameterized by deep neural
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Recovering a video of the Sgr A* black hole with a futuristic telescope array over the course of a night. We demonstrate our method described in I1I-B

to perform video reconstruction on 60 frames of a video, where the measurements for each frame are generated by different forward models given by imaging Sgr
A*. Here we show the underlying image, the dirty image (A ), and the mean of the reconstructed posterior. Additionally, we show the unwrapped space x time
image, which is taken along the white ring illustrated in the 4:00 UTC underlying image. The bright-spot’s temporal trajectory of our reconstruction matches that
of the truth. The measurement noise is consistent with a black hole having a flux of 2 Janskys.

networks, our results aim to provide an initial understanding on
the inferred generator.

More concretely, suppose we are given /N measurement ex-
amples of noisy linear measurements of the form

Y@ = Az 4@ O~ A0, 02T)

where A4 € R™*" with m < n and (Y € R, We aim to in-
fer Gg € R"** with k < n and latent distributions Qpiy =
N (i, U;UT) where ¢ = {p;, U;}, i € R¥, and U; € RF*F
by minimizing the negative ELBOProxy:

_ 1 < .
L(Gy, {Qs(l)}) = N Z Ez~q¢(i)(z) [ logp(y(l) |Go(2))

i=1
—logpz(2[Gp) +1og g4 (2)]- ()

We characterize the generator GG, and latent parameters (;SQ) =
{uy, U;} that are stationary points of (6). The result is proven
in Section X:

Theorem 2: Fix o >0 and let y» = Az(® 4 5 ¢ R?
for i € [N] where (") ~ N(0,06%I) and A € R™*™ has k <
rank(A4) = m < n. Define the sample covariance of the mea-
surements Yy := & S y@ (y®)T. Then, with probability
1, Gy, p;, and U that satisfy

AG, = E(Ly — 0*1)'/?R,
pi = (GTATAG, + 0*1)7'GT ATy and
Ui = o(GTATAG, + o*1) /R,

for i € [N] are stationary points of the objective (6) over
R™F x (RF x GL(k,R))" where GL(k, R) denotes the set of
real invertible k& x k matrices. Here, E), € R™** denotes the
matrix whose columns correspond to the top-min{rank(Yy), k}
eigenvectors of Yy, Lp € R**¥ contains the corresponding
eigenvalues of Yy, and R, R € R¥** are arbitrary orthogonal
matrices. If rank(Yy) < k, then for rank(Yy) < ¢ < k, the i-th
column of Ej, can be arbitrary and Ly, ;; = o2,

The Theorem establishes the precise form of stationary points
of the objective (6). In particular, it shows that this inferred
IGM performs dimensionality reduction akin to PCA [53] on the
collection of measurement examples. To gain further intuition
about the Theorem, in Section X-B of the supplemental mate-
rials, we analyze this result in a context where the underlying
images we wish to reconstruct explicitly lie in alow-dimensional
subspace. We show that, in that setting, our estimator returns
an approximation of the solution found via MAP estimation,
which can only be computed with complete prior knowledge
of the underlying image structure. While the Theorem focused
on linear IGMs, it would be interesting to theoretically analyze
non-linear IGMs parameterized by deep networks. We leave this
for future work.

VI. CONCLUSION

In this work we showcased how one can solve a set of inverse
problems without a pre-defined IGM (e.g., a traditional spatial
image prior) by leveraging common structure present across
a collection of diverse underlying images. We demonstrated
that even with a small set of corrupted measurements, one can
jointly solve these inverse problems by directly inferring an
IGM that maximizes a proxy of the ELBO. We demonstrate
our method on a number of convex and non-convex imaging
problems, including the challenging problem of black hole video
reconstruction from interferometric measurements. Overall, our
work showcases the possibility of solving inverse problems in a
completely unsupervised fashion, free from significant human
bias typical of ill-posed image reconstruction. We believe our
approach can aid in automatic discovery of novel structure from
scientific measurements, potentially paving the way to new
avenues of exploration.
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