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Quantitative Robustness for Signal Temporal Logic
with Time-Freeze Quantifiers

Bassem Ghorbel, and Vinayak S. Prabhu

Abstract—Signal Temporal Logic (STL) is a variant of Metric
Temporal Logic (MTL) which can express intricate temporal
requirements over signals, and has found wide adoption for
expressing requirements over complex control systems models.
A key factor in the success of STL has been that of quantitative
robustness, and the development of efficient algorithms for com-
puting the robustness values over traces. The real-valued quan-
titative robustness of a signal with respect to an STL property
quantifies the degree of satisfaction or violation of the property
by the signal. In this work we introduce a notion of robustness for
a more expressive logic, Timed Signal Temporal Logic (TSTL),
which can be seen as Timed Propositional Temporal Logic
(TPTL) with predicates defined over real-valued signals. This
logic can express many natural engineering requirements that
STL cannot. We also develop algorithms for computing this
robustness value over traces in the pointwise semantics. While the
robustness computation for general TSTL formulae is PSPACE-
hard due to the PSPACE-hardness of the monitoring problem
for TPTL, for the special case of one variable TSTL, a fragment
of TSTL which is still more expressive than STL, we develop an
optimized algorithm which computes robustness in time linear in
the length of the trace. Finally, we experimentally validate the
tractability of our algorithms with our prototype tool in Matlab.

I. INTRODUCTION

Temporal logics [5] are a rich formalism for rigorous
specification of properties used for describing and reasoning
about phenomena evolving over time; and are increasingly
being used in the context of Cyber-Physical Systems (CPS)
and Control [28], [39], [35]. Linear time temporal logics
such as LTL allow talking about sequences of events in a
given single execution with the help of temporal operators
such as “eventually”, denoted ♢, and “always”, denoted □.
A typical example of a property is □ (req → ♢ grant); this
property states that always, every request must eventually be
followed by a grant. In CPS where timing requirements cannot
be abstracted, temporal logics have been augmented with
constructs for timing constraints, giving rise to timed temporal
logics such as Metric Temporal Logic (MTL), Metric Interval
Temporal Logic (MITL), and TPTL. MTL and related logics
augment existing temporal modalities with timing constraints,
for example, our earlier formula could be enhanced with
timing constraints in MTL as: □ (req → ♢≤5 grant); which
says that every request must be eventually followed within 5
time units by a grant.

The algorithmic development of temporal logics was orig-
inally motivated by applications in Computer Science under
a Boolean semantics: either a system satisfies a property, or
it does not. In the context of Cyber-Physical Systems, such a
Boolean view is often restrictive – the mathematical models

Department of Computer Science, Colorado State University (USA); email:
bassem@colostate.edu, vinayak.prabhu@colostate.edu.
This material is based upon work supported by the National Science Founda-
tion under Grant No. 2240126.

of CPS which are used to reason about behaviors are only
an approximation of the actual systems, and hence asking for
exact adherence to a logical specification in the Boolean sense
is not in line with engineering practice where designers require
quantifying how well a system satisfies given specifications.
For example, quantitative analysis is a core component of
linear systems design [29]. Much work has been done in recent
years to lift formalisms which originated in the Boolean world-
view to a quantitative setting [22], [30], [23], [20], [17], [8],
[9], [7], [38], [4].

The development of quantitative semantics has opened up
new avenues. In the case of temporal logics, the introduction
of quantitative R-valued semantics of MTL [17] led to black-
box optimization based falsification testing of Signal Temporal
Logic (STL, a variant of MTL over signals) specifications for
complex industrial systems [17], [14], [13], [15], [37], [27],
[43], [26], with tools such as STaLiRo, Breach, FALSTAR, and
FalCAuN [18], [10], [16], [40]. A quantitative interpretation
of STL formulae gives us a robustness function ρ, which
for a formula φ, and a trace π, gives us a quantitative
measure ρ(φ, π) of how well the trace π satisfies/violates the
specification φ. A negative robustness value implies violation
of φ over π under the Boolean semantics, and a positive
value implies satisfaction. Given this ranking function, one
can employ black-box optimizers to search for a signal input
such that the corresponding system output will have a negative
robustness value for the STL specification. Efficient linear
time algorithms have been developed for computing the STL
robustness function over traces [13], [31], [10]. A strong point
of this approach is that it scales to complex industrial models
as models are viewed as black-boxes; as long as the model can
be simulated efficiently, and STL robustness can be computed
quickly, the framework can be used.

However, there are commonly occurring temporal properties
that cannot be expressed in MTL/STL. For example, consider
a property which says that whenever we have an e1, then
we must have a subsequent e2, and then e3, such that the
time gap between e1 and e3 is ≤ 0.8 time units. MTL/STL
either cannot express such requirements, or the requirement
encoding is complex and non-intuitive. The issue arises when
we have timing constraints with multiple temporal modalities
in between. The logic Timed Propositional Temporal Logic
(TPTL) [3] presented freeze quantifiers to express richer prop-
erties than MTL. Freeze quantifiers specifications subsume,
and are strictly more expressive than, specifications in MTL
containing only future temporal modalities; for example the
MTL formula □ (req → ♢≤5 grant) can be written in TPTL
as □ (req → x.♢ (grant ∧x ≤ 5)). The freeze quantifier ce-
ments the values of freeze variable to specific time values in
the given execution so that it can be used later in time compar-
ison predicates. While TPTL can express all of MTL, there
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are formulae in TPTL that MTL, with only future modalities,
cannot express [6], [24] (the situation is more nuanced when
both future and past modalities are allowed [25], [34]). For
the property we presented earlier, the corresponding TPTL
formula can be written simply with just one freeze vari-
able as □x. ((e1 → ♢ (e2 → ♢ (e3 ∧ x ≤ 0.8)))). The proof
in [6] which demonstrates that TPTL is more expressive than
MTL actually presents a one-variable TPTL formula that
MTL cannot express; thus showing that one-variable TPTL
is more expressive than MTL. Similar results hold for the
logic variants over R-valued signals rather than over atomic
propositions, i.e. Timed Signal Temporal Logic (TSTL) and
its one-variable fragment.

One can also take an automata theoretic approach for spec-
ifying requirements, typically this incurs an algorithmic cost
as automata can be more expressive [11]. In the timed setting,
timed automata are known to be strictly more expressive than
MTL [33], [2]. Recent work [21] presented a monitoring
algorithm for one clock timed automata that runs in time
linear in the trace length, but with a multiplicative factor of
2O(|A|) where |A| denotes the timed automaton size. This large
multiplicative factor makes a tractable implementation pro-
hibitive. Alternative monitoring procedures based on the zone
construction have been proposed for timed automata in [42],
[41]. While these procedures have exponential time bounds,
for the 1-clock examples in [42], the monitoring procedures
were efficient. Our work considers only space robustness and
not time robustness [14], [1], however time robustness notions
can be developed for TSTL in our framework.
Our Contributions. This work is in the pointwise semantics
where a timed execution is specified as a timed word: a
sequence of timed observations of the system. We present four
main contributions.
(I) We introduce and develop the notion of quantitative real-
valued robustness for Timed Signal Temporal Logic (TSTL),
the variant of TPTL over R-valued signals. This logic is
strictly more expressive than STL. Our robustness notion
coincides with that of the commonly used robustness function
for STL over the common fragment – given any STL formula
φ, there exists an equivalent TSTL formula φTSTL having
freeze quantifiers; for any trace π our robustness function
on the TSTL formula φTSTL gives the same value as the
commonly used robustness function from [31] on the STL
formula φ. Additionally, matching corresponding results from
STL, if the robustness value of a TSTL formula is positive,
then the trace satisfies the formula; and if the robustness value
is negative, the trace does not satisfy the TSTL formula.
(II) We present an offline algorithm for computing the robust-
ness values of TSTL formulae over traces. This algorithm runs
in time O

(︁
|π||V |+1|φ|

)︁
, where |π| is the trace length, |φ| is

the formula size, and |V | is the number of freeze variables.
The exponential dependence on |V | is not surprising given the
PSPACE hardness of the monitoring problem for TPTL [32].
(III) For the special case of 1-variable TSTL, which is already
more expressive than STL, we construct a novel algorithm
which relies on a careful mixing of divide and conquer,
and dynamic programming techniques to achieve robustness
computation in linear time, similar to the algorithm in [19].
The linear time bound holds provided the trace has at most
a constant number of sample points in any unit time interval,
e.g., for a trace obtained by a uniform time-sampling scheme.

Given a timed word π, and a one variable TSTL formula φ,
the complexity of our algorithm is O (|φ| · |π| · βmax), where
|φ| denotes the number of subformulae in φ, and |π| denotes
the number of timestamps in the timed word π, and βmax is the
maximum number of timestamps in a window of time duration
rmax, where rmax denotes the maximum time constant in the
formula (in case π has the integer timestamps 0, 1, 2, 3, . . . ,
we can take βmax to be rmax). Note that for long traces
which have a bounded skew, ensuring that only a constant
number of sample points can arise in any unit interval, we
have βmax << |π|, and βmax to be independent of |π|, thus
giving us a linear time bound on the algorithm. Our algorithm
borrows ideas from the quadratic time monitoring algorithm
of [12], our further developments and improvements lead to a
linear time complexity (in case of bounded skew).
(IV) We implemented our algorithms directly in Matlab and
not in C (on average, C is 50x faster than Matlab), and
we present experimental results. While the general robustness
computation procedure struggles over long words due to the
PSPACE hardness of the problem, we show that our optimized
algorithm for the one variable fragment of TSTL scales easily
to timed signal words having tens of thousands of samples.

II. TIMED SIGNAL TEMPORAL LOGIC (TSTL)
TSTL is a version of TPTL where instead of atomic

propositions, we have signal variable predicates of the form
s ≤ 5 for a signal variable s. In this section we present the
definitions pertaining to TSTL.
Signals,Traces. A Rn valued signal or a trace is a pair
(σ, τ), where σ = σ0, σ1, . . . , σ|π|−1 is a finite sequence of
elements from Rn, and τ = τ0, τ1, . . . , τ|π|−1 are the corre-
sponding timestamps from R+. The signal value at timestamp
τi is σi ∈ Rn. The j-th component of σi = ⟨a1, . . . , an⟩,
namely aj is denoted σi(j). In order to simplify presen-
tation, we sometimes assume a timed word to be of the
type (σ0, τ0), . . . (σ|π|−1, τ|π|−1). We require the times to be
monotonically increasing, that is τi < τi+1 for all i.

Definition 1 (TSTL Syntax). Given a signal arity n, and a
finite set V of freeze-time variables, the formulae of Timed
Signal Temporal Logic (TSTL) are defined by the grammar:

φ := sk ∼ rk | x ∼ r | ¬φ | φ1
∨
∧φ2 | □φ | ♢φ | φ1 U φ2 | x.φ

where sk ∈ {s1, . . . , sn} is a signal variable, x is a freeze-
time variable, r ∈ R+, and rk ∈ R, and ∼∈ {<,>,≤,≥,=}
is the standard comparison operator.

The quantifier “x.” is known as the freeze quantifier, and
binds variable x to the current time. We use the shorthand
z ∈ [a, b] to stand for (z ≥ a) ∧ (z ≤ b).
Definition 2 (Semantics). Let π = (σ0, τ0), (σ1, τ1), . . . ,
(σ|π|−1, τ|π|−1) be a finite timed signal of arity n. For a given
environment E : V → R+ binding freeze variables to time
values, and a given index position 0 ≤ i ≤ |π| − 1, the
satisfaction relation (π, i, E) |= φ for a TSTL formula φ of
arity n (with freeze variables in V ) is defined as follows.

• (π, i, E) |= sk∼rk iff σi(k) ∼ rk for signal variable sk.
• (π, i, E) |= ¬φ iff (π, i, E) ̸|= φ.
• (π, i, E) |= φ1

∨
∧φ2 iff (π, i, E) |= φ1

or
and (π, i, E) |= φ2.

• (π, i, E) |= ♢φ iff ∃j, i ≤ j < |π| such that (π, j, E) |= φ.
• (π, i, E) |= □φ iff ∀j, i ≤ j< |π|, we have (π, j, E) |= φ.
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• (π, i, E) |= φ1Uφ2 iff ∃j with i ≤ j ≤ |π|−1 s.t. (π, j, E)
|= φ2 and ∀k, i ≤ k < j, we have (π, k, E) |= φ1.

• (π, i, E) |= x ∼ r iff (τi − E(x)) ∼ r.
• (π, i, E) |= x.φ iff (π, i, E [x := τi]) |= φ; where E [x :=
τi] denotes the environment E ′ defined as E ′(y) = E(y)
for y ̸= x, and E ′(x) = τi.

We say the trace π satisfies a TPTL formula φ if (π, 0, E [≡
0]) |= π where E [≡0] denotes the freeze variable environment
where all variables are mapped to 0.

Given a signal of arity n, for the i-th timestamp τi, we refer
to the value of the k-th signal dimension as sk(τi), which has
the value σi(k).

Definition 3 (Free Variables). The set of free variables
Free(φ) in a TSTL formula φ are defined inductively as:

• Free(sk ∼ rk) = ∅, where sk is a signal variable.
• Free(x ∼ r) = {x}, where x is a freeze variable.
• Free(φ1

∨
∧φ2) = Free(φ1) ∪ Free(φ2).

• Free(¬φ) = Free(φ); Free
(︁
♢
□φ

)︁
= Free(φ).

• Free(φ1 U φ2) = Free(φ1) ∪ Free(φ2).
• Free(x.φ) = Free(φ) \ {x}.
It can be shown that the environment function E is only

relevant for the free variables in a TSTL formula when it
comes to the satisfaction relation (π, i, E) |= φ. Additionally,
if Free(φ) = ∅, then the environment function is irrelevant in
the satisfaction relation (π, i, E) |= φ.

Example 1. Consider the trace π of arity 2:
((100, 2), 0), ((100, 2), 1.1), ((100, 5), 3.5), ((100, 5), 4.5),
((100, 3), 5.1), ((100, 2), 5.5), ((100,−1), 6.1). The last
timestamp is 6.1, and the last signal value ∈ R2 is (100,−1).
The timed word does not satisfy the TSTL formula φ1 =
x.ψ1 = x. ((s1 ≥ 50)→ ♢ ((s2 < 0) ∧ (x ≤ 2))). This is
because (π, 0, E [x = 0]) ̸|= ψ1; as the signal predicate
s1 ≥ 50 is true at index 0 and there is no subsequent index i
such that τi − 0 ≤ 2 for which s2 < 0 is also true.

Example 2 (Running example). φ2 = x.(s1 ≥ 2 → ♢(s2 >
3∧ y.♢(s3 > 1∧x ≤ 5∧ y ≤ 2))). The requirement of φ2 is:
“If s1 ≥ 2 at the start, then s2 > 3 should happen in future,
and s3 > 1 should happen in future after s2 > 3, and the
duration between s2 > 3 and s3 > 1 should be equal or less
than 2 and the duration between s1 ≥ 2 and s3 > 1 should
be equal or less than 5 .” In this formula, Free(φ2) = ∅.

III. QUANTITATIVE ROBUSTNESS FOR TSTL
In this section we define the quantitative semantics for

TSTL via a robustness function ρ which gives a measure of
how well a trace satisfies or violates a given formula. We then
explore properties related to our quantitative semantics.

Definition 4 (Quantitative Semantics). Let π = (σ0, τ0),
(σ1, τ1), . . . , (σ|π|−1, τ|π|−1) be a finite timed signal of arity n.
For a given environment E : V → R+ binding freeze variables
to time values, and a given index position 0 ≤ i ≤ |π|−1, the
robustness function valuation ρ(φ, π, i, E) ∈ R ∪ {+∞,−∞}
for a TSTL formula φ of arity n is defined as

• ρ(sk{≥, >}rk, π, i, E)=σi(k)−rk for signal variables sk.
• ρ(sk{≤, <}rk, π, i, E)=rk−σi(k) for signal variables sk.
• ρ(¬φ, π, i, E) = −ρ(φ, π, i, E).
• ρ(φ1 ∧ φ2, π, i, E) = min(ρ(φ1, π, i, E), ρ(φ2, π, i, E)).

• ρ(φ1 ∨ φ2, π, i, E) = max(ρ(φ1, π, i, E), ρ(φ2, π, i, E)).
• ρ(□φ, π, i, E) = min

|π|>i′≥i
(ρ(φ, π, i′, E)).

• ρ(♢φ, π, i, E) = max
|π|>i′≥i

(ρ(φ, π, i′, E)).
• ρ(φ1 U φ2, π, i, E) =

max
i′≥i

min

(︃
ρ(φ2, π, i

′, E), min
i′′∈[i,i′]

ρ(φ1, π, i
′′, E)

)︃
.

• ρ(x.φ, π, i, E) = ρ(φ, π, i, E [x := τi]); where E [x := τi]
denotes the environment E ′ defined as E ′(y) = E(y) for
y ̸= x, and E ′(x) = τi.

• ρ(x ∼ r, π, i, E) = TRUE if τi − E(x) ∼ r;
FALSE otherwise for freeze variables x.

For the time constraint formula, x ∼ r (the last point in the
definition), we consider TRUE = +∞ and FALSE = −∞. If φ
has no free variables, we refer to the robustness value of φ over
a trace π, denoted ρ(φ, π), as the value ρ(φ, π, 0, E [≡0]).

The time constraint can be seen as an indicator function
of the time constraint. We slightly edit the definition of an
indicator function, 1A(x) = TRUE if an element x belongs to
the subset A, and 1A(x) = FALSE if x does not belong to
A. Since the TRUE/FALSE values are considered as infinity, it
will “restrict” the satisfaction values of the subformulas to be
true only inside the interval of the time constraint.

The next lemma will be used to simplify robustness ex-
pressions. Consider the cases for the temporal operators in
Definition 4; these involve max,min over time indices tied
to the corresponding temporal operator. The ranges of the
time indices depend on the time index “i” in Definition 4.
Orthogonally, the time-freeze predicates x ∼ r are also present
in formulae, and function to restrict the interval in which signal
predicates are considered. For example, consider a formula
x.♢ ((x ∈ [2, 4]) ∧ (s1 ≥ 22) ∧ θ). The robustness expression
for the formula is ρ(φ, π, i = 0, E) (assuming τ0 = 0):

max
0≤j<|π|

min ((τj ∈ [2, 4]), (s1(τj)− 22), ρ(θ, π, j, E [x := 0]))

where we interpret the constraint predicate (τj ∈ [2, 4]) as
+∞, i.e., TRUE if the constraint holds, and as −∞, i.e., FALSE
otherwise. As the j-th time-stamp is τj , we can rewrite the
above over the time domain, rather than the time index domain:

max
0≤τj<τ|π|

min ((τj ∈ [2, 4]), (s1(τj)− 22), ρ(θ, π, j, E [x := 0])) .

(1)
This is a typical form of robustness expressions. Such ex-
pressions can be simplified if the time-freeze constraint (τj ∈
[2, 4]) can be combined with the temporal operator constraint
0 ≤ τj < τ|π|, effectively constrainting the time-range of the
temporal operator contraint, reflecting the intention of the
time-freeze constraint. The robustness expression in Equation
(1) can be seen to be equivalent to:

max
τj∈[2,4]

min ((s1(τj)− 22), ρ(θ, π, j, E [x := 0])) .

The next lemma formalizes such simplyfying
reductions in the general case. Consider an expression
max{constr(u), expr1(u), . . . , exprm(u)} of the sort as in
Equation (1), where we interpret constr(u) as +∞, i.e.,
TRUE if the constraint predicate constr(u) is true, and −∞,
i.e., FALSE otherwise.
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Lemma 1. Consider the expression:

ψ1 = max
u∈I

min

(︃
expr1(u), . . . , exprm(u),
constr(u)

)︃
where, I is a non empty closed bounded subset of R, expri(u)
are expressions over u and other variables, with expressions
values in R ∪ {−∞,+∞}; and constr(u) is a constraint
predicate over u. The expression ψ1 is equivalent to

ψ1 = max
(u∈I)∧constr(u)

min (expr1(u), . . . , exprm(u)) (2)

where if (u ∈ I)∧constr(u) is not satisfiable, then we interpret
max∅() as FALSE, i.e., −∞. Similarly,

ψ2 = min
u∈I

max

(︃
expr1(u), . . . , exprm(u),
constr(u)

)︃
= min

(u∈I)∧¬ constr(u)
max (expr1(u), . . . , exprm(u))

(3)

where if (u ∈ I) ∧ ¬ constr(u) is not satisfiable, then we
interpret min∅() as TRUE, i.e., +∞.

Let Θ(u) = max(expr1(u), . . . , exprm(u), constr(u)). We
have ψ2 = min

u∈I
Θ(u). If constr(u) = TRUE, then Θ(u) =

+∞. Hence, Equation 3 follows. Equation 2 results from
similar reasoning.

Theorem 1. Let φ be a TSTL formula, π a trace, i a
timestamp index, and E a freeze variable environment.

1) If ρ(φ, π, i, E) > 0 then (π, i, E) |= φ.
2) If ρ(φ, π, i, E) < 0 then (π, i, E) ̸|= φ.

If ρ(φ, π, i, E) = 0, we can not conclude.

In STL, timing intervals I over temporal operators such
as ♢I are not a cause of formula violation by themselves so
long as I ̸= ∅, and we have a sufficiently long trace. That
is, every trace which is long enough will have timestamps
that satisfy the timing constraints of I . In TSTL however,
one can write formulae for which no trace will satisfy
the timing requirements. Consider for example, a formula
□ (x1.ψ1 ∧ ♢ (x2.ψ2 ∧ ♢ (x1 ∈ [1, 5] ∧ x2 ∈ [7, 9] ∧ ψ3))).
No trace will satisfy this formula due to the timing constraint
requirements. The next lemma formalizes this observation.

Proposition 1. If a TSTL formula φ with no free variables
gives an infinite robustness value over a given trace π, i.e.,
ρ(φ, π, 0, E) = TRUE | FALSE, then φ will give the same
infinite robustness value over any other trace π′ having the
same timestamps, i.e., ρ(φ, π′, 0, E) = TRUE | FALSE.

Proof. The way we defined the TSTL semantics makes
TRUE/FALSE values appear in the time constraints first (this is
true if our TSTL formula φ does not have any concrete TRUE’s
or FALSE’es). So, if a TSTL formula φ gives a TRUE/FALSE
robustness value, the origin of that value will remain no
matter what the signal values are in φ. In other words, the
time constraint will give the same robustness values for the
different timestamps for any signal inputs and the robustness
of the time constraints will “overwrite” the robustness of the
signal: the TRUE/FALSE values will spread and appear in
the final robustness value ρ(φ, π, i, E) for any π with the
same timestamps. The intuition behind this proposition will
be easier to see once we introduce the monitoring table later
on (Subsection IV-B).

A result of this proposition is that such formulas, giving
TRUE/FALSE robustness values, are not good TSTL formulae
and should be avoided because they “ignore” the signal values.
Some example templates are of the form φ1 = □(time
constraint∧φ′), or φ2 = ♢(time constraint∨φ′) where φ′ is a
TSTL formula and the time constraint is not identically TRUE
or FALSE, that is, the time constraint should hold for some
timestamps, and not for others. Here ρ(φ1, π, 0, E) = FALSE
for any π because our time constraint will not be TRUE for all
timestamps. Similarly, ρ(φ2, π, 0, E) = TRUE.

Proposition 1 also gives a procedure for checking whether
the timing constraints are good with respect to a time-stamp
sequence τ0, . . . , τα: one can pick arbitrary but finite signal
values at these timestamps, and compute the robustness values
for this random trace. If the robustness value is not finite,
then the formula time constraints are not satisfiable over this
timestamp sequence.

We next present three examples, over traces of length 7,
where τi = i.

Example 3. φ3 = x.♢(s1 ≥ 0 ∧ x ∈ [1, 5] ∧ □(x ∈ [1, 2] →
s2 ≥ 0)). This formula says that in the interval [1, 5], we must
have a time t such that at that time s1 ≥ 0 and additionally if
t ∈ [1, 2] when this happens then we must also have s2 ≥ 0.
The robustness expression of φ3 is:

ρ(φ3, π, 0, E) = max
t∈[0,6]

min

⎛⎜⎝ s1(t),
t ∈ [1, 5],

min
t′∈[t,6]

max

(︃
t′ /∈ [1, 2],
s2(t

′)

)︃
⎞⎟⎠ .

This can be understood as follows. The outermost x. freezes x
to 0, thus future occurrences of x refer to the trace timestamps.
First, we have the ♢ operator which translates to max

t∈[0,6]
. Then,

we have a min coming from two ∧ operators that we consid-
ered as a single operator. This operator will give the min value
between s1(t), t ∈ [1, 5] and φ1

3 = □(x ∈ [1, 5]→ s2 ≥ 0).
The robustness value of φ1

3 at t is ρ(φ1
3, t, E [x := 0]) =

min
t′∈[t,6]

max (t′ /∈ [1, 2], s2(t
′)), the min

t′∈[t,6]
comes from the □

operator and max corresponds to the → operator.
Now, we will explain how we get the robustness sub-

expressions t ∈ [1, 5] and t′ /∈ [1, 2] from the corresponding
freeze time constraints x ∈ [1, 5] and x ∈ [1, 2] respectively.
We have φ3 = x.φ2

3 where φ2
3 = ♢(s1 ≥ 0 ∧ x ∈ [1, 5] ∧

□(x ∈ [1, 2] → s2 ≥ 0)). From the Definition 4, we have
ρ(x.φ2

3, π, i, E) = ρ(φ2
3, π, i, E [x := τi]), as we are interested

in timestamp τ0, we consider i = 0. This definition freezes x to
0. Then, we have ♢.φ3

3 where φ3
3 = s1 ≥ 0∧x ∈ [1, 5]∧□(x ∈

[1, 2] → s2 ≥ 0). This ♢ will take the maximum value of
ρ(φ3

3, π, i, E) for all 0 ≤ i ≤ |π| − 1 (to simplify notation, we
considered t = τi). From the last point in Definition 4, for each
i, x ∈ [1, 5] is written as τi − E(x) ∈ [1, 5] ⇔ t − 0 ∈ [1, 5].
Similarly, the second time constraint is t′ /∈ [1, 2].

Now, we will simplify the robustness expression of φ3. In
a first step, we apply Lemma 1.

ρ(φ3, π, 0, E) = max
t∈[0,6]

min

⎛⎝ s1(t),
t ∈ [1, 5],
min

t′∈[t,2]
s2(t

′)

⎞⎠ .

Then, we apply Lemma 1 again and end up with

ρ(φ3, π, 0, E) = max
t∈[1,5]

min

(︄
s1(t),
min

t′∈[t,2]
s2(t

′)

)︄
.
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For particular signal ranges, further simplification of robust-
ness expressions is often possible. For example, let us assume
that the trace signal values have the following ranges for all
timestamps: s1 ∈ [−9,−5] and s2 ∈ [−1,−3].

If we go back to the expression of the robustness that we
obtained in the previous analysis, and considering the new
constraints that we have on the values of the signals, we have
a new simpler expression of the robustness:

ρ(φ3, π, 0, E) = max
t∈[0,6]

min (s1(t), t ∈ [1, 5]) .

This is because for all t we have the expression
mint′∈[t,6] max (t′ /∈ [1, 2], s2(t

′)) to be always more than
s1(t) for the given trace as any s2 value is more than any s1
value; and we have an outer min in the original expression
in which s1(t) dominates. This expression can be further
simplified using Lemma 1 to maxt∈[1,5] s1(t).

Example 4. φ4 = x.□(s1 ≥ 0 ∧ x ∈ [1, 5] ∧ ♢(x ∈ [1, 2] →
s2 ≥ 0)). This example is quite similar to the first one, we
just swapped the temporal operators. The new expression of
the robustness is:

ρ(φ4, π, 0, E) = min
t∈[0,6]

min

⎛⎜⎝ s1(t),
t ∈ [1, 5],

max
t′∈[t,6]

max

(︃
t′ /∈ [1, 2],
s2(t

′)

)︃
⎞⎟⎠ .

We obtained this expression of robustness the same way as in
example 1, we just swapped the max and min corresponding
to the ♢ and □. Here, in this example, we can tell that the
robustness value of this formula is equal to FALSE. In fact,
the time constraint x ∈ [1, 5] will not be always TRUE for
all timestamps τi, i ∈ [0, 6], in particular, for i = 0. That
time constraint with the two ∧ operators inside the □ will
return FALSE. This example is one of the “bad” examples we
introduced after lemma 2.

Example 5. Let us consider Example 2 [Running example].
φ2 can be written as x.ψ2 where ψ2 = s1 ≥ 2 → ♢(s2 >
3 ∧ y.♢(s3 > 1 ∧ x ≤ 5 ∧ y ≤ 2)). The robustness expression
of φ2 is: ρ(φ2, π, 0, E [≡0]) = ρ(ψ2, π, 0, E [x := 0]) =

max

⎛⎜⎜⎜⎝
−(s1(0)− 2),

max
t∈[0,6]

min

⎛⎜⎜⎝
s2(t)− 3,

max
t′∈[t,6]

min

⎛⎝ s3(t
′)− 1,

t′ ≤ 5,
t′ − t ≤ 2

⎞⎠
⎞⎟⎟⎠
⎞⎟⎟⎟⎠ .

Now, we analyze this expression. First, we have the max
corresponding to the → operator. Second, we have a ♢
operator which is represented by a max over the whole trace.
The min afterwards is the ∧ operator. After that we have
another ♢ which covers the remaining trace starting from t.
And finally, we have two ∧ represented by a single min.

If we apply Lemma 1, the expression ρ(ψ2, π, 0, E [x :=
0]) = can be simplified to:

max

⎛⎜⎝ −(s1(0)− 2),

max
t∈[0,6]

min

(︄
s2(t)− 3,

max
t′∈[t,5]∧t′−t≤2

s3(t
′)− 1

)︄ ⎞⎟⎠ .

Next, we present the TSTL fragment in which at most one
freeze variable is free at any time instant. This fragment is
already more expressive than STL, and we show later, admits
very efficient algorithms.

Definition 5 (Subformulae). Given a TSTL formula φ, the

corresponding subformulae Sub(φ) are defined inductively as:
• Sub(sk ∼ rk) = {sk ∼ rk} for signal predicate sk ∼ rk.
• Sub(x ∼ r) = {x ∼ r} for time constraint x ∼ r.
• Sub(¬φ) = {¬φ} ∪ Sub(φ).
• Sub (φ1

∨
∧φ2) = {φ1

∨
∧φ2} ∪ Sub(φ1) ∪ Sub(φ2).

• Sub(φ1 U φ2) = {φ1 U φ2} ∪ Sub(φ1) ∪ Sub(φ2).
• Sub

(︁
♢
□φ

)︁
=

{︁
♢
□φ

}︁
∪ Sub(φ).

• Sub(x.φ) = {x.φ} ∪ Sub(φ).

Definition 6 (TSTL1 fragment). A TSTL formula φ is a
TSTL1 formula provided all of the following conditions hold.

1) For every subformula ψ ∈ Sub(φ), we have |Free(ψ)| ≤
1, i.e., every subformula can have at most one free
variable; and

2) Corresponding to every subformula x.ψ ∈ Sub(φ)
involving a freeze quantifier x., we have Free(ψ) to be
either ∅, or {x}, that is if x.ψ is a subformula of φ, then
ψ cannot have any free variables apart from x.

3) All freeze quantifiers are over unique variables.

Intuitively, a TSTL1 formula is one in which only freeze
variable is “active” (by being free) in any given subformula.
For instance the formula ♢y.(y > 50∧□(x.(a∨x ∈ [10, 20])))
is a TSTL1 formula, but ♢y.(y > 50∧□(x.(a∨x ∈ [10, 20]∨
y ∈ [60, 80]))) is not, as it has the subformula (a ∨ x ∈
[10, 20] ∨ y ∈ [60, 80]) which has two free variables. Also,
all the formulas we introduced in the previous examples are
TSTL1 formulas except for φ4 in Example 2. Every TSTL1

formula can be transformed into an equivalent TSTL formula
with just one freeze variable, with multiple freezing instances.

Proposition 2. For any STL formula φ
1) There is an equivalent TSTL1 formula φTSTL1

.
2) The TSTL robustness value ρ(φTSTL1

, π) for φTSTL1

according to Definition 4 gives the same value as the
STL robustness value ρ(φ, π) for φ from [14].

IV. ROBUSTNESS COMPUTATION ALGORITHM FOR TSTL
A. Syntax Trees

Each TSTL (or TSTL1) formula has a corresponding
syntax tree which depicts the hierarchical syntactic structure
of the formula. Our monitoring procedure will depend on this
syntax tree.

Definition 7 (Syntax Tree). Given a TSTL formula φ, the
associated abstract syntax tree AST(φ) is defined as follows.

• The nodes of the syntax tree are Sub(φ).
• The root node is φ.
• The edges in the tree are defined by the operator structure:

– If ¬ψ ∈ Sub(φ), then ¬ψ has the child ψ.
– If x.ψ ∈ Sub(φ), then x.ψ has the child ψ.
– If opψ ∈ Sub(φ), for op ∈ {⃝,□,♢},

then opψ has the child ψ.
– If ψ1 opψ2 ∈ Sub(φ), for op ∈ {∧,∨,→, U }, then
ψ1 opψ2 has the two children ψ1, ψ2.

In order to check whether a timed word satisfies a TSTL1

formula φ, we build on the insight of [12] which noted
that we can compute the satisfaction relation for subformulae
involving only one free variable (for various word position
indices), and after this computation, use these values akin to
values computed had the subformula been an STL formula
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(without any freeze variables). The basic structure over which
our algorithm will operate will be subtrees corresponding to
various freeze variables.

Definition 8 (Sub-trees for Freeze Variables). Let φ be a
TSTL1 formula with the freeze variable set V ̸= ∅. Consider
the reverse topological sort of the nodes of its syntax tree
AST(φ), and consider the ordering of the nodes of the form
x.ψ in this sort. Let x1, . . . , x|V | be an ordering of the freeze
variables in φ consistent with the variable ordering indicated
by x.ψ in the reverse topological sort. We define subtrees
SubTreeφ(xj) for xj ∈ V in a bottom up fashion as follows.
Let AST(φ, θ) denote the subtree of AST(φ) rooted at θ for
θ ∈ Sub(φ).

• SubTreeφ(x1) is the subtree AST(φ,ψ1) where x1.ψ1

is a subformula of φ corresponding to the freeze variable
x1. Note that in our formulae, each freeze operator must
correspond to a unique freeze variable.

• SubTreeφ(xj) for j > 1 is the subgraph (this subgraph
can be shown to be a subtree):

AST(φ,ψj) \

⎛⎝ ⋃︂
1≤i<j

SubTreeφ(xi)

⎞⎠
where xj .ψj is the subformula of φ corresponding to

the freeze variable xj .
We also have a subtree at the “top” which need not

correspond to any freeze variable, e.g., if the root node of
AST(φ) is not a freeze operator node. We call this subtree
the top subtree, TopSubTree(φ), defined as

TopSubTree(φ) = AST(φ) \

⎛⎝ ⋃︂
1≤i≤|V |

SubTreeφ(xi)

⎞⎠ .

Each SubTreeφ(xj) which is not a TopSubTree has
a parent and a root: (a) the root node, denoted as
SubTreeφ(xj).root, is the node for which the parent in
AST(φ) does not belong to SubTreeφ(xj); (b) the parent
node SubTreeφ(xj).parent of the subtree SubTreeφ(xj) is
the parent of node SubTreeφ(xj).root in AST(φ).

In the above definition, we note that if the root node
of AST(φ) is a freeze operator node x.ψ, the top subtree,
TopSubTree(φ) has only one node: x.ψ.

Example 6. Consider the formula from Example 2 ([Running
example]), and its associated syntax tree in Figure 1. The
formula subscripts correspond to a reverse topological sort of
the syntax tree. The freeze variable ordering given by a reverse
topological sort is y <revtop x. The nodes in SubTreeφ(y)
are {φ8, φ9, φ10, φ11, φ12}. The nodes in SubTreeφ(x) are
{φ2, φ3, φ4, φ5, φ6, φ7}; and in TopSubTreeφ are {φ1}.
Also, SubTreeφ(y).root = φ8, SubTreeφ(y).parent = φ7,
SubTreeφ(x).root = φ2 and SubTreeφ(x).parent = φ1.

B. Monitoring Table

The monitoring table of a TSTL formula φ is a table that
has the subformulas of ϕ as its rows as showing in the syntax
tree AST(φ), and the time stamps τi for i ∈ [0, |π| − 1] of a
trace π as its columns. We use the algorithms below to fill the
monitoring table in order to get the robustness of φ. Tables I
and II correspond to φ2 in Example 2 [Running example].

ϕ11 : x ≤ 5 ϕ12 : y ≤ 2ϕ10 : s3 > 1

ϕ9 : ∧

ϕ8 :

ϕ7 : y.ϕ6 : s2 > 3

ϕ5 : ∧

ϕ4 :ϕ3 : s1 ≥ 2

ϕ2 :→

ϕ1 : x.

SubTreeϕ(y)

SubTreeϕ(x)

TopSubTreeϕ

SubTreeϕ(x).parent

SubTreeϕ(x).root

SubTreeϕ(y).parent

SubTreeϕ(y).root

Reverse topological sort: ϕ12 <r ϕ11 <r ... <r ϕ1

Variable ordering according to reverse topological sort: y <r x

Fig. 1: Syntax Tree for Example 2 [Running example].

C. Algorithm Overview

The main level algorithm TSTL Monitor Algorithm 2
computes the robustness by calling the recursive procedure
Rec-TSTL in Algorithm 3. This procedure Rec-TSTL (1, 0)
essentially considers all possible freeze bindings τ0 = x1 ≤
x2 ≤ . . . xn ≤ τ|π|−1 via its recursive call chain, and
for all such bindings it computes the values of all the
subformulae in the syntax tree by repeated calls to a sub-
procedure ComputeRobustness 1. ComputeRobustness in turn
computes all the robustness values of the subformulae in a
subtree SubTreeφ(xk) in a bottom up fashion, for each freeze
binding environment provided the robustness values for all
subformulae y.ψy have been computed for all freeze variables
y such that y <revtop x, where <revtop denotes a reverse
topological ordering of the freeze variables in the syntax
tree for φ. Rec-TSTL calls also ensure that when the root
node robustness for a freeze variable subtree SubTreeφ(xk)
has been computed, it is copied over to its parent subtree
SubTreeφ(xk−1) appropriately.

For a freeze variable order x|V | < . . . < xk . . . < x1, at a
particular point k in the call chain: (1) the algorithm fixes the
values of the freeze variables x1 through xk; then (2) com-
putes the values of all subtrees SubTreeφ(xk+1) through
SubTreeφ(x|V |) for all possible values of xk+1 through x|V |;
next (3) computes the values of all the nodes in SubTreeφ(xk)
in a bottom up fashion which can now be done since we
have the values of all subtrees SubTreeφ(xk+1) through
SubTreeφ(x|V |) for all possible values of xk+1 through x|V |.
It then picks different values for x1 through xk and repeats
the process.

D. Algorithm Details

1) ComputeRobustness (Algorithm 1): ComputeRobustness
computes the robustness values of the TSTL subformulas
in a subtree SubTreeφ(xi) provided the robustness values
of the leaves have been precomputed. It does this by filling
up table entries from the last timestamp in a backwards
fashion as in the LTL monitoring algorithm of [36]. The
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interesting case is the until operator which can be understood
as follows. (π, i, E) |= ψ1 U ψ2 iff either (a) (π, i, E) |= ψ2;
or (b) (π, i, E) |= ψ1, and additionally (π, i + 1, E) |=
ψ1 U ψ2 which translates to ρ(ψ1 U ψ2, π, i, E) =
max(ρ(ψ2, π, i, E),min(ρ(ψ1, π, i, E), ρ(ψ1 U ψ2, π, i +
1, E))) in the robustness world.

Algorithm 1: ComputeRobustness
Input: φj , u,M|φ|×|π|
Output: M|φ|×|π| // Only entry M [j, u] is changed.

1 if φj ≡ ¬φm then return −M [m,u]
2 else if φj ≡ φm ∧ φn then return min(M [m,u],M [n, u])
3 else if φj ≡ φm ∨ φn then return max(M [m,u],M [n, u])
4 else if φj ≡ □φm then
5 if u = |π| − 1 then return M [m,u]
6 else return min(M [m,u],M [j, u+ 1])

7 else if φj ≡ ♢φm then
8 if u = |π| − 1 then return M [m,u]
9 else return max(M [m,u],M [j, u+ 1])

10 else if φj ≡ φmUφn then
11 if u = |π| − 1 then return M [n, u]
12 else return max(M [n, u],min(M [m,u],M [j, u+ 1]))

13 else if φj ≡ xk ∼ r OR φj ≡ s ∼ r then
14 return M [j, u] // Already computed by

calling function

2) TSTL Monitor Algorithm (Algorithm 2): The first line
of the TSTL Monitor Algorithm calculates the values of the
signal predicates s{≤, <,≥, >}r for the different timestamps
τi for i ∈ [0, |π| − 1]. The second line calls the algorithm
Rec-TSTL to calculate the values of SubTreeφ(xk) for every
freeze variable xk in φ. The remaining lines in the algorithm
(3 to 6) calculate the values of TopSubTree(φ), this is the
case when all the subformulae of type x.φ have been com-
puted. Finally, the algorithm returns M [1, 0] which indicates
the robustness of the TSTL formula φ at 0. Note that if
|TopSubTree(φ)| = 1, then the top subtree has only one
node x.ψ, and the robustness value of ψ for the environment
E [x := 0] has already been computed by Rec-TSTL so there
is nothing to do.

Algorithm 2: TSTL Monitor Algorithm
Input: φ, π = (σ0, τ0), . . . , (σT , τT ), Θ = Syntax Tree for

φ; Global Table: M|φ|×|π|
Output: M [1, 0].

1 Initialize all rows in M|φ|×|π| corresponding to predicates
φj ≡ s ∼ r with real values according to
∀0 ≤ i ≤ |π| − 1,M [j, i] = ∓(s(τi)− r)

2 Rec-TSTL(1,0)
3 if |TopSubTree(φ)| ≥ 2 then
4 for i← |π| − 1 down to 0 do
5 for j ← TopSubTree(φ).max down to

TopSubTree(φ).min do
6 M [j, i]← ComputeRobustness(φj , i,M|φ|×|π|)

7 return M [1, 0]

3) Rec-TSTL(k, t) overview (Algorithm 3): This function
Rec-TSTL(k, t) calculates the values of all the sub-trees
SubTreeφ(xj), j ≥ k for the different instantiations of xk
to τi for i ∈ [t, |π| − 1].

4) Technical details: Rec-TSTL(k, t): This subsection can
be omitted on the first reading. The pre-condition for a func-

tion call Rec-TSTL(k, t) is that all the time-constraints xl ∼ r
for l < k have already been computed for xl instantiated to τt
and assigned to the appropriate table locations in M . Before
going through a technical explanation, let us give an intuitive
idea on how the algorithm works. Rec-TSTL(1, 0) is called
in line 2 of Algorithm 2. This call will result in the calculation
of ρ(φ, π, 0, E). Let us take an example and suppose our
TSTL formula φ is of the form φ = ...x1.(...x2.(...x3.(...)))
where the dots can be any operators and φ has 3 freeze time
variables. The first call Rec-TSTL(1, 0) will calculate the
time constraints corresponding to x1 for the instantiation τ0.
Then, Rec-TSTL(1, 0) will call Rec-TSTL(2, 0) to calculate
the time constraints corresponding to x2 for the instantiation
τ0, and afterwards, Rec-TSTL(3, 0) is called to calculate the
time constraints corresponding to x3 for the instantiation τ0.
Since x3 is the last freeze variable in φ, Rec-TSTL(3, 0) will
continue to calculate SubTreeφ(x3) for all the instantiation of
x3 to τi for i ∈ [0, |π| − 1]. Once that is done, we go back
to Rec-TSTL(2, 0) to calculate SubTreeφ(x2) corresponding
to x2 instantiated to τ0. Then, for i = 1 in Rec-TSTL(2, 0),
we calculate the time constraints corresponding to x2 for the
instantiation τ1 and call Rec-TSTL(3, 1) which will calculate
SubTreeφ(x3) again but this time for all instantiations of x3
starting from τ1 and so on...

This is how Rec-TSTL is called : Rec-TSTL(1, 0) →
Rec-TSTL(2, 0) → Rec-TSTL(3, 0) →
Rec-TSTL(3, 1) . . . → Rec-TSTL(3, |π| − 1) →
Rec-TSTL(2, 1) → Rec-TSTL(3, 1) →
Rec-TSTL(3, 2) . . . → Rec-TSTL(3, |π| − 1) . . . →
Rec-TSTL(2, |π| − 1)→ Rec-TSTL(3, |π| − 1).

In general, for the instantiation of xk to τi = τt (Line 1),
we calculate the values of the time constraints φj = xk ∼ r
for all timestamps τu for u ∈ [i, |π| − 1]. Then, in a recursive
way, the algorithm calculates the values of the time constraints
φj = xk′ ∼ r for all the remaining freeze variables xk′ , k ≤
k′ ≤ |V | instantiated to τi (Line 6). Once the algorithm
reaches the final freeze variable x|V |, we already have all the
time constraints of the different freeze variables calculated
corresponding to all freeze variable instantiated to τi, and
the algorithm calculates the values of SubTreeφ(x|V |) for the
different timestamps τu, u ∈ [i, |π|−1] (Lines 7-9) and copies
M [SubTreeφ(x|V |).root, i] to M [SubTreeφ(x|V |).parent, i].
Then, it instantiates x|V | to the next timestamp, calculates
SubTreeφ(x|V |) for the different timestamps τu, u ∈ [i +
1, |π| − 1] and copies M [SubTreeφ(x|V |).root, i + 1] to
M [SubTreeφ(x|V |).parent, i + 1] and so on until we finish
with all the instantiations of x|V | (Line 1). Once that is done,
we go back to the previous call of Rec-TSTL(|V | − 1, i)
and calculate the values of SubTreeφ(x|V |−1) for the different
timestamps τu, u ∈ [i, |π| − 1]. Then, x|V |−1 is instantiated to
i+1 and we call Rec-TSTL(|V |, i+1) and so on. While it may
look complicated, the idea behind the Rec-TSTL algorithm is
simple: in order to calculate SubTreeφ(xk) at the instantia-
tion i, we calculate SubTreeφ(xk+1) at the instantiations i′,
i′ ∈ [i, |π| − 1].

We run TSTL Monitor Algorithm on φ4 from Example
2, Table I shows the monitoring table of φ4 after the first
instantiation of x, i.e., for x = 0 after all the instantiations of y
have finished (for x = 0). Table II shows the final snapshot of
the monitoring table. The values of the robustness monitoring
table will always have the signal predicate robustness values
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Algorithm 3: Rec-TSTL(k, t)
1 for i← t to |π| − 1 do
2 for u← i to |π| − 1 do
3 for each φj = xk ∼ r do
4 if τu − τi ∼ r then M [j, u]← TRUE;
5 else M [j, u]← FALSE;

6 if k < |V | then Rec-TSTL (k + 1, i);
7 for u← |π| − 1 down to i do
8 for j ← SubTreeφ(xk).max down to

SubTreeφ(xk).min do
9 M [j, u]← ComputeRobustness(φj , u,M|φ|×|π|)

10 M [SubTreeφ(xk).parent, i]←M [SubTreeφ(xk).root, i]

(∓(s(τi) − r)), or TRUE/FALSE (due to the freeze variable
constraints). Since the only operators used to fill up new table
entries are max /min, no new values will be generated.

ψi

τi 0 1 2 3 4 5 6

φ2 = x.ψ2 5

ψ2 = ψ3 → ψ4 5 5 5 6 8 -2 -9
ψ3 = s1 ≥ 2 3 5 1 -6 -8 2 9
ψ4 = ♢ψ5 5 5 5 -1 -2 -4 F
ψ5 = ψ6 ∧ ψ7 -3 -4 5 -1 -2 -4 F
ψ6 = s2 > 3 -3 4 5 -1 -2 -4 2
ψ7 = y.ψ8 1 -4 7 7 7 4 F
ψ8 = ♢ψ9 1 -4 7 7 7 4 F
ψ9 = ψ10 ∧ ψ11 ∧ ψ12 1 -5 -5 -4 7 4 F
ψ10 = s3 > 1 1 -5 -5 -4 7 4 8
ψ11 = x ≤ 5 T T T T T T F
ψ12 = y ≤ 2 T T T T T T T

TABLE I: Monitoring table of φ2 [Running example] after
first instantiation of x.

ψi

τi 0 1 2 3 4 5 6

φ2 = x.ψ2 5 5 5 6 8 2 2

ψ2 = ψ3 → ψ4 5 5 5 6 8 2 2
ψ3 = s1 ≥ 2 3 5 1 -6 -8 2 9
ψ4 = ♢ψ5 5 5 5 2 2 2 2
ψ5 = ψ6 ∧ ψ7 -3 -4 5 -1 -2 -4 2
ψ6 = s2 > 3 -3 4 5 -1 -2 -4 2
ψ7 = y.ψ8 1 -4 7 7 8 8 8
ψ8 = ♢ψ9 1 -4 7 7 8 8 8
ψ9 = ψ10 ∧ ψ11 ∧ ψ12 1 -5 -5 -4 7 4 8
ψ10 = s3 > 1 1 -5 -5 -4 7 4 8
ψ11 = x ≤ 5 T T T T T T T
ψ12 = y ≤ 2 T T T T T T T

TABLE II: Final snapshot of the monitoring table of φ2

[Running example].

V. LINEAR TIME ROBUSTNESS COMPUTATION
ALGORITHM FOR TSTL1

The complexity of the robustness computation procedure in
Section IV is exponential in the number of freeze variables (the
exponent being over the trace length). A careful analysis shows
that in the case of just one freeze variable, i.e., for formulae
from TSTL1, the running time is quadratic in the length of the

trace. In this section, for the special case of TSTL1 formulae,
we develop an optimized robustness computation procedure
which runs in time linear in the trace length.

A. Algorithm Overview

The general idea is the same as in Section IV. The main
level procedure is the TSTL1 Monitor Algorithm 4 which con-
siders all possible freeze bindings for the single freeze variable
present in any subtree SubTreeφ(xk), computes the robustness
values for all subformulae in this subtree in a bottom up
fashion and then moves to the parent subtree. We improve the
complexity to be linear from quadratic in the trace length, by
tightening the coupling between freeze variable bindings, and
subsequent LTL type computation phases. We show that for
each subsequent binding for x, after the satisfaction relation
has been computed for the first binding x = τ0 the LTL type
computation can be done in time independent of the word
length by carefully keeping track of what timing constraint
predicates and hence robustness values for subformulae can
change in going from x = τi to x = τi+1, and reusing stored
robustness values from x = τi. This result is made possible by
the fact that TSTL only allows base freeze variable constraints
of the from x ∼ r where ∼∈ {≤,≥, <,>,=} which behave
in a monotonic fashion with increasing timestamp values.

B. TSTL1 Monitor Algorithm (Algorithm 4)

Data Structures: The main data structures used in the TSTL1

monitor algorithm are:
(a) A SubTreeφ(xk) 8 for each freeze time variable xk.
(b) The monitoring table as described in section IV-B.
(c) A vector α of |AST(φ)| items, where each item αj is
the position of the timestamp where the time constraint φj

changed its value from TRUE to FALSE or the opposite (since
we only have a low number of time constraints compared to
the size of AST(φ), most of the items of α are actually not
used). The values of α depend on instantiations of the freeze
variables to the various timestamps.
(d) Two vectors c and d of |AST(φ)| items each, where dj
is the position of the largest timestamp where subformula φj

changed its values from TRUE to FALSE (or the opposite) and
cj is the position of the smallest timestamp where subformula
φj changed its values from TRUE to FALSE (or the opposite).
(e) An integer t that represents the time index corresponding
to the current environment E(xk := τt).
Algorithm Logic: Figure 2 gives an overview of the algorithm
steps (lines 18 to 22 are not included). Now. we will go over
the main steps of TSTL1 monitor algorithm. For each freeze
time variable xk (line 3), our main algorithm can be split into
3 main phases:
Phase (i). Lines 4-7: this part corresponds to the first in-
stantiation of the freeze variable xk. This corresponds to
box numbers 1 and 2 in Figure 2. Initially, the monitoring
table is empty and contains only the values of the signal
predicates s ∼ r for ∼∈ {≤, <,≥, >} for the different
timestamps (line 2). Line 4 calculates the values of the signals
for each timestamp corresponding to the first instantiation.
Then, lines 5-7 will calculate the values of the subformulas of
the subtree SubTreeφ(xk) for all the timestamps by calling
ComputeRobustness (Algorithm 1).
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Fig. 2: Algorithm overview

Phase (ii). Lines 9-17. This corresponds to box numbers
3.1 and 3.2 in Figure 2. Here, the while loop in line 9
corresponds to the different instantiations of xk starting from
the 2nd one. Once the condition in this while loop is no
longer satisfied, the algorithm stops with the instantiations
of xk: there is no point in doing the calculations for the
remaining instantiations since the time constraints values
will no longer update thus no changes will be made in
the whole SubTreeφ(xk) (the first position in the vector α
where a time constraint changes its value is out of the trace).
Based on the instantiation of xk to τt, Line 11 updates the
time constraints and the loop in lines 13-14 updates the
subformulas in the subtree SubTreeφ(xk). Variables c and
d are used as inputs for ComputeSubFormula 5 in order to
reduce the number of values updated for each subformula
(Instead of calculating the values of each subformula for
all the timestamps, ComputeSubFormula only updates the
values of that subformula at a reduced number of timestamps.
Further details can be found later on in section V-G3. Then,
t is incremented for the next instantiation.
The loop in lines 16-17 copies the values of
SubTreeφ(xk).root to SubTreeφ(xk).parent so that it
can be used in SubTreeφ(xk+1).
Phase (iii). Lines 18-21: this part (not depicted in Figure 2)
calculates the values of TopSubTree(φ).

And Finally, the algorithm returns M [1, 0] which indicates
the robustness of our TSTL1 formula at time 0.

C. ComputeInitialTimeConstraint (Algorithm 6)
ComputeInitialTimeConstraint(φ, xk, π,M|φ|×|π|)

corresponds to the first instantiation of the freeze variable xk
to 0. It evaluates the whole time constraints rows (for each
τi for i ∈ [0, |π| − 1]) into TRUE/FALSE. In fact, for each
time constraint, the algorithm evaluates the corresponding

Algorithm 4: TSTL1 Monitor Algorithm

1

Input: φ, π = (σ0, τ0), . . . , (σ|π|−1, τ|π|−1), Θ = Syntax Tree for φ;
Global Table: M|φ|×|π|

Output: M [1, 0].
2 Initialize all rows in M|φ|×|π| corresponding to predicates φj ≡ s ∼ r

with real values according to ∀0 ≤ i ≤ |π|,M [j, i] = ∓(s(τi)− r)
3 for k ← 1 to |V | do // |V |: number of freeze variables
4 [α,M ]← ComputeInitialT imeConstraint(φ, xk, π,M|φ|×|π|)

5 for i← |π| − 1 down to 0 do
6 for j ← SubTreeφ(xk).max down to SubTreeφ(xk).min

do // SubTreeφ(xk).max (SubTreeφ(xk).min)
is the maximum (minimum) index of
subformulas in the subtree SubTreeφ(xk)

7 M [j, i]← ComputeRobustness(φj , i,M|φ|×|π|)

8 t← 1
9 while min(α) < |π| do

10 c← α
11 [α,M ]← ComputeT imeConstraint(φ, xk, π, t,M|φ|×|π|, α)

12 d← α− 1
13 for j←SubTreeφ(xk).max down to SubTreeφ(xk).min do
14 [c, d,M ]← ComputeSubFormula(φj , c, d, t,M|φ|×|π|)

15 t← t+ 1

16 for i← 0 to |π| − 1 do
17 M [SubTreeφ(xk).parent, i]←M [SubTreeφ(xk).root, i]

18 if |TopSubTree(φ)| ≥ 2 then
19 for i← |π| − 1 down to 0 do
20 forj←TopSubTree(φ).max down toTopSubTree(φ).mindo
21 M [j, i]← ComputeRobustness(φj , i,M|φ|×|π|)

22 return M [1, 0]

row depending on the operator. More details can be found in
Section V-G1.

D. ComputeTimeConstraint (Algorithm 7)
ComputeTimeConstraint(φ, xk, π, t,M|φ|×|π|, α) evaluates

the values of time constraints rows for each τi for i ∈
[t, |π| − 1]) where t represents the timestamp index of the
current environment for xk, namely E(xk := τt). In fact, it
only recalculates the values that changed from the previous
instantiation of xk for a given time constraint and returns the
new value of α. More details can be found in Section V-G2.

E. ComputeSubFormula (Algorithm 5)
ComputeSubFormula(φj , c, d, t,M|φ|×|π|) ensures M [j, i]

has the correct robustness value ρ(φj , π, i, E) for i in range
[t, |π| − 1]. In order to do this, it leverages the work done
in ComputeSubFormula(φj , c, d, t − 1,M|φ|×|π|) for φj in
the previous instantiation of x, i.e., for the environment
E [x := τt−1]. In the worst case, it may need to update
the M [j, i] table entries (that contained values based on the
previous instantiations (π, i, E [x := τt−1]) |= φj from index
τt till τdj

(we are guaranteed that the robustness values of φj

for the timestamps τi for i ∈ [τdj
, τ|π|−1] will not change).

However, in practice fewer entries in the table need to be
updated since we use while loops in ComputeSubFormula
(lines 14 and 21) as an early exit condition. More details can
be found in Section V-G3.
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Algorithm 5: ComputeSubFormula

Input: φj , t, c, d,M|φ|×|π|
Output: c, d,M|φ|×|π|

1 switch φj do
2 case ¬φm do
3 dj ← dm; cj ← cm
4 for k ← dj down to cj do
5 M [k, j]← ComputeRobustness(φj , k,M|φ|×|π|)

6 case φm ∧ φn, φm ∨ φn do
7 dj ← max(dm, dn); cj ← min(cm, cn)
8 for k ← dj down to cj do
9 M [k, j]← ComputeRobustness(φj , k,M|φ|×|π|)

10 case □φm,♢φm do
11 dj ← dm; cj ← cm
12 for k ← dj down to cj do
13 M [j, k]← ComputeRobustness(φj , k,M|φ|×|π|)

14 while (M [j, cj − 1] ̸=
ComputeRobustness(φj , cj − 1,M|φ|×|π|) AND
cj − 1 ≥ t) do

15 M [j, cj − 1]←
ComputeRobustness(φj , cj − 1,M|φ|×|π|)

16 cj ← cj − 1

17 case φm U φn do
18 dj ← max(dm, dn); cj ← min(cm, cn)
19 for k ← dj down to cj do
20 M [j, k]← ComputeRobustness(φj , k,M|φ|×|π|)

21 while (M [j, cj − 1] ̸=
ComputeRobustness(φj , cj − 1,M|φ|×|π|) AND
cj − 1 ≥ t) do

22 M [j, cj − 1]←
ComputeRobustness(φj , cj − 1,M|φ|×|π|)

23 cj ← cj − 1

24 otherwise do nothing /* leaf nodes of subtree;
already taken care of */

25

26 return c, d,M|φ|×|π|

F. Example

We will use an example to describe Algorithm 4. Consider:

φ1 = □x.♢(((x ≥ 4) ∧ s2 ≤ 5) ∨ y.♢((y ≤ 2) ∧ s1 ≥ 0))

In the first step (Table III), the monitoring algorithm 4 sets the
monitoring table entries of the corresponding signal predicates
φ12 : s1 ≥ 0 and φ8 : s2 ≤ 5, then, for the first freeze variable
y, ComputeInitialTimeConstraint will evaluate the time con-
straint y ≤ 2 corresponding to the instantiation of y to τ0 = 0.
After that, the main algorithm calls ComputeRobustness to
compute the robustness values of the frozen subformulas of
the subtree SubTreeφ1

(y) = {φ9, φ10, φ11, φ12}.

φi

τi 0 1 2 3 4 5

φ8 = s2 ≤ 5 -3 2 4 -1 1 -6
φ9 = ♢φ10 2 -1 -1 F F F
φ10 = φ11 ∧ φ12 2 -2 -1 F F F
φ11 = y ≤ 2 T T T F F F
φ12 = s1 ≥ 0 2 -2 -1 3 -4 7

TABLE III: Monitoring table after instantiating y to τ0 = 0
(only SubTreeφ1

(y) entries shown).

Then, in Table IV, y will be instantiated to τ1 = 1 and
the time constraint row is updated by calculating y − 1 ≤ 2.
Note here, our algorithm will not recalculate the value of the
time constraint for each time sample between τ1 and τ5 (as
in [12]). It will only calculate one value corresponding to the
time sample τ3 since it knows that the remaining values will
not change. Then, the values of the subformulas of the subtree
SubTreeφ(y) are updated for each time sample between τ1
and τ5 by calling ComputeSubFormula. Again, our monitoring
algorithm will only recalculate the values that can change.
Note that values marked in blue in Table IV are the values
calculated for this instantiation.

φi

τi 0 1 2 3 4 5

φ8 = s2 ≤ 5 -3 2 4 -1 1 -6
φ9 = ♢φ10 2 3 3 3 F F
φ10 = φ11 ∧ φ12 2 -2 -1 3 F F
φ11 = y ≤ 2 T T T T F F
φ12 = s1 ≥ 0 2 -2 -1 3 -4 7

TABLE IV: Monitoring table after instantiating y to τ1 = 1.

Similarly, the TSTL1 monitor algorithm will follow the
same steps for the instantiations of y to τ2 and τ3, and for
the remaining instantiations (τ4 and τ5), there will be no
changes in the time constraint (when the algorithm finishes
with the instantiation τ3, the row corresponding to the time
constraint φ11 will only have T ’s and will remain like that for
τ4 and τ5) and the algorithm will not be calculating any values
(exit condition for the while loop in line 9 of the TSTL1

algorithm), the monitoring table will remain the same as in
the instantiation of y to τ3.

Once the robustness value of the root frozen subformulas is
resolved for each timestamp, this row is copied to the parent
to be used by higher level subformulas (Lines 13 and 14). In
our example, φ9 will be copied into φ6 (Table V).

φi

τi 0 1 2 3 4 5

φ6 = y.φ9 2 3 3 7 7 7
φ7 = x ≥ 4
φ8 = s2 ≤ 5 -3 2 4 -1 1 -6
φ9 = ♢φ10 2 3 3 7 7 7
φ10 = φ11 ∧ φ12 2 -2 -1 3 -4 7
φ11 = y ≤ 2 T T T T T T
φ12 = s1 ≥ 0 2 -2 -1 3 -4 7

TABLE V: Monitoring table after the final instantiation of y
to τ5 = 5, and copying entries for the root of SubTreeφ(y) to
its parent, to start processing on SubTreeφ1

(x).

For the second and final iteration of the For loop in line 3 (
k = 2 = |V |) of the TSTL1 monitor algorithm, the algorithm
will go through the same steps but with the variable x this
time in the subtree SubTreeφ(x).

Finally, the TSTL1 monitor algorithm computes the robust-
ness value of the highest set of subformulas TopSubTree(φ)
using lines 18-21. Table VI shows the final monitoring table
snapshot after finishing with all instantiations of x, copying
entries for the root of SubTreeφ(x) to its parent and evaluating
the TopSubTree(φ) = φ1. The TSTL1 monitor algorithm
returns the first value of the first row (indicated in brown).



11

φi

τi 0 1 2 3 4 5

φ1 = □φ2 7 7 7 7 7 7
φ2 = x.φ3 8 7 7 7 7 7
φ3 = ♢φ4 8 7 7 7 7 7
φ4 = φ5 ∨ φ6 2 3 3 7 7 7
φ5 = φ7 ∧ φ8 F F F F F F
φ6 = y.φ9 2 3 3 7 7 7
φ7 = x ≥ 4 F F F F F F
φ8 = s2 ≤ 5 -3 2 4 -1 8 -6
φ9 = ♢φ10 2 3 3 7 7 7
φ10 = φ11 ∧ φ12 2 -2 -1 3 -4 7
φ11 = y ≤ 2 T T T T T T
φ12 = s1 ≥ 0 2 -2 -1 3 -4 7

TABLE VI: Final snapshot of the monitoring table

G. Technical Details

This section presents technical details for ComputeInitial-
TimeConstraint, ComputeTimeConstraint, and ComputeSub-
Formula that were skipped in Subsections V-C, V-D, and V-E.

1) Technical details: ComputeInitialTimeConstraint (Algo-
rithm 6): This algorithm corresponds to the first instantiation
of freeze variable xk to 0. It evaluates whole time constraints
rows (for each τi for i ∈ [0, |π| − 1]) into TRUE/FALSE. For
each time constraint, Algorithm 6 evaluates the corresponding
row depending on the time comparison operator. It takes as
inputs the formula φ, the time variable xk, the trace π and the
monitoring table M|φ|×|π| and outputs the vector α where αj

is the position of the timestamp where the time constraint φj

changed its value from TRUE to FALSE or the opposite (for
example, if the value of a time constraint φ9 is FALSE for the
first 5 timestamps and TRUE for the rest than α9 ← 5).

Algorithm 6: ComputeInitialTimeConstraint
Input: φ, xk, π,M|φ|×|π|
Output: α,M|φ|×|π|

1 α← 0
2 for each φj ≡ xk∼r where j is the index of xk∼r in M do
3 switch ∼ do
4 case < (resp. ≤) do
5 while ταj − τ0 < (resp. ≤) r do
6 M [j, αj ]← T ; αj ← αj + 1

7 for i← αj to |π| − 1 do M [j, i]← F

8 case > (resp. ≥) do
9 while ταj − τ0 ≤ (resp. <) r do

10 M [j, αj ]← F ; αj ← αj + 1

11 for i← αj to |π| − 1 do M [j, i]← T

12 case = do
13 while ταj − τ0 < r do
14 M [j, αj ]← F ; αj ← αj + 1

15 if ταj − τ0 = r then M [j, αj ]← T
16 for i← αj + 1 to |π| − 1 do M [j, i]← F

17 return α,M|φ|×|π|

2) Technical details: ComputeTimeConstraint
(Algorithm 7): The inputs are: formula φ, a freeze variable xk,
trace π, monitoring table M|φ|×|π|, and timestamp position
integer t (t ≥ 1) where τt can be seen as the environment
value E(xk := τt) for the instantiation τt of freeze variable
xk, and a vector α. This algorithm evaluates the values of

time constraints rows for each τi for i ∈ [t, |π| − 1]). In fact,
it only recalculates the values that changed from the previous
instantiation of xk for a given time constraint and returns the
new value of α.

• case φj = xk ≤ r (respectively φj = xk < r): we are
sure that the condition xk−τt ≤ r (resp. xk−τt < r) will
remain TRUE if it was TRUE in the previous instantiation
of xk. In fact, xk − τt < xk − τt−1 ≤ r (resp. xk − τt <
xk − τt−1 < r). So, we can start checking the values of
the time constraint xk − τt ≤ r from the first timestamp
(ταj

) when it was FALSE in the previous instantiation.
Once τi−τt > r (resp. τi−τt ≥ r), we can stop because
we are sure that the remaining values are already FALSE
from the previous instantiation: xk − τt−1 > xk − τt > r
(resp. xk − τt−1 > xk − τt ≥ r).

• case φj = xk = r: we are sure that the condition xk −
τt = r will remain FALSE if xk−τt−1 < r in the previous
instantiation of x. In fact, xk − τt < xk − τt−1 < r. So,
we can start checking the values of the time constraint
x−τt = r from the last timestamp (ταj

) where xk−τt−1

is no longer less than r.
Once xk − τt > r, we can stop because we are sure that
the remaining values are already FALSE from the previous
instantiation (xk − τt−1 > xk − τt > r).

• case φj = xk ≥ r or xk > r: similar to the first case.

Algorithm 7: ComputeTimeConstraint
Input: φ, xk, π, t,M|φ|×|π|, α
Output: α,M|φ|×|π|

1 for each φj ≡ xk∼r where j is the index of xk∼r in M do
2 switch ∼ do
3 case < (resp. ≤) do
4 while ταj − τt < (resp. ≤) r do
5 M [j, αj ]← T ; αj ← αj + 1

6 case > (resp. ≥) do
7 while ταj − τt ≤ (resp. <) r do
8 M [j, αj ]← F ; αj ← αj + 1

9 case = do
10 while ταj − τt < r do
11 M [j, αj ]← F ; αj ← αj + 1

12 if ταj − τt = r then M [j, αj ]← T

13 return α,M|φ|×|π|

3) Technical details: ComputeSubFormula (Algorithm 5):
Inputs are a subformula φj , t (t ≥ 1) that represents the
timestamp index of the current time binding of xk, a mon-
itoring table M|φ|×|π| and 2 vectors c and d. The variable dj
is the position of the largest timestamp where the subformula
φj changed its values from TRUE to FALSE (or the opposite)
in the current instantiation of the freeze variable compared
to the previous one and cj is the position of the smallest
timestamp where the subformula φj changed its values from
TRUE to FALSE (or the opposite) in the current instantiation of
the freeze variable compared to the previous one. Compute-
Subformula ensures M [j, i] has the correct robustness value
ρ(φj , π, i, E) for i in range [t, |π| − 1]. In order to do this,
it leverages the work done in ComputeSubformula for φj

in the previous instantiation of x, i.e., for the environment
E [x = τt−1]. In the worst case, it may need to update
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the M [j, i] table entries (that contained values based on the
previous instantiations (π, i, E [x = τt−1] |= φj) from index
τt till τdj

(we are guaranteed that the robustness values
of φj for the timestamps τi for i ∈ [τdj

, τ|π|−1] will not
change). However, in practice fewer entries in the table need
to be updated since we use while loops in (lines 14 and 21)
ComputeSubFormula as an early exit condition.

• If φj is φm∧φn or φm∨φn (resp. ¬φm): these Boolean
operators depend only on the current timestamp, so, in or-
der to calculate the robustness value of φj at a timestamp
τi, the algorithm only needs the values of the subformulas
φm and φn (resp. φm) at τi. The algorithm uses the
interval [min(cm, cn),max(dm, dn)] (resp. [cm, dm]) to
keep track of where the robustness values of φm and φn

(resp. φm) could have changed in the current instantiation
of xk. The robustness value of φj can change only inside
that interval. The algorithm updates the values of φj

between τcj and τdj
and the new interval τcj and τdj

can
be used later when ComputeSubFormula is called again
for another φj′ in the current instantiation of xk.

• If φj is φm U φn (resp. □φm or ♢φm): For these
operators,
fact: The value of the formula φj at τi depends on the
values of φm and φn (resp. φm) at the current timestamp
τi and the value of φj at the following timestamp τi+1.
Same as the previous operators, the algorithm will cal-
culate the values of φj for the timestamps [τcj , τdj

]
and then proceeds to check the value of φj at τcj−1: if
the robustness value of φj changes compared to value of
the previous instantiation of xk to τt−1, ρ(φj , π, cj −
1, E [x := τt]) ̸= ρ(φj , π, cj − 1, E [x := τt−1]), the
algorithm will update it and decrement cj ← cj − 1, and
proceeds to check the value of φj at the new τcj−1 and
so on until the value of φj does not change at some point.
If the value did not change, we know by the fact, that
the values of the subformula φj for all the remaining
timestamps τi for i in [t, cj ] will not change as well.
Otherwise, if it changes every time, then the algorithm
will stop at τt and that is the worst case scenario.

Once the algorithm is done updating the values of a subfor-
mula φj , it returns the vectors c and d to be used for the
remaining subformulas in SubTreeφ(xk).

VI. RUNNING TIME OF ALGORITHMS

A. TSTL Monitor Algorithm
The complexity of TSTL Monitor algorithm is

O(|SubTreeφ(x|V |)| · |π||V |+1))

where |SubTreeφ(x|V ||) is the size of the SubTreeφ(x|V |),
|V | is the number of freeze variables and |π| is the number
of timestamps in the trace π. In fact, each instantiation of the
freeze variable x|V | takes O(|SubTreeφ(x|V |)|·|π|)) (lines 7-
9 in Rec-TSTL) and we have |π|−1−t = O(|π|) instantiations
(line 1 in Rec-TSTL). And, Rec-TSTL (|V |, t) (for any t) is
called |π||V |−1 times.

B. TSTL1 Monitor Algorithm
Let the input timed word be π, and the TSTL1 formula

φ. Suppose rmin, rmax are the minimum and maximum time

constants in φ. The upper bound of the time complexity of
the monitoring algorithm is

O
(︁
|φ| · βmax · (|π| − βmin)

)︁
, (4)

where |φ| is the total number of subformulas in the TSTL
formula (|φ| can also be seen as the number of rows of
the monitoring table), βmax denotes the maximum number of
timestamps in any time interval of duration rmax+1 within π,
and βmin denotes the minimum number of timestamps in any
rmin − 1 duration time interval within π. For the special case
where φ does not have any time constraints, the complexity
can be reduced to O(|φ| · |π|).

The complexity can also be expressed in terms of the
SubTreeφ(xk) subtrees as

O

(︃
|V | ·max

k

(︁(︁
|SubTreeφ(xk)| · βk

max

)︁
·
(︁
|π| − βk

min

)︁)︁)︃
where |V | is the number of time variables, |SubTreeφ(xk)|
is the number of subformulas in subtree SubTreeφ(xk) and
βk
max, β

k
min are the same as before, but this time exclusive

for the time variable xk. Our use of the variables c, d and the
while condition in line 9 of Algorithm 4 (the TSTL1 Monitor
Algorithm) ensures the lowering of the complexity from |π2|
to βkmax ·

(︁
|π| − βk

min

)︁
. In addition, our algorithm uses the

following heuristic to reduce the running time further – we use
a while loop for early exit in the loops of Algorithm Compute-
SubFormula. In the worst case, ComputeSubFormula for each
instantiation xk = τj may have to update βk

max entries from
columns j through j + βk

max. However, using the checks in
the while loop at lines 14 and 21 in ComputeSubFormula, the
algorithm goes through a possibly reduced number of columns
(depending on π and φ) for each instantiation xk = τj , instead
of all the columns of the monitoring table.

Note that ComputeRobustness is O(1) complexity, Com-
puteInitialTimeConstraint is O(|π|) complexity for a single
time constraint (each case of the switch statement has |π|
iterations), the complexity of ComputeTimeConstraint with
the while loop in line 9 of the main algorithm for a single
time constraint is O(|π|−βk

min)) (ComputeTimeConstraint will
update (|π|−βk

min) values of the time constraint row at most.
Finally, the complexity of ComputeSubFormula is O(βk

max):
each case of the switch statement can have at most βk

max =
dj − t+1 iterations (for the xk instantiation xk = τt). In fact,
the algorithm loops from dj down to t in the worst case (that
is the maximum number of iterations which can be seen in the
for loop and the while loop combined in Lines 10-16 or 17-
23). Originally, the loop is from dj down to cj , however the
value of cj can decrease but it will never go lower than t, also,
the value of dj does not change or increase. The number of
iterations in ComputeSubFormula will always be less or equal
to βk

max. In practice, ComputeSubFormula will go through a
much more lower numbers of iterations.

For the main TSTL monitor algorithm:

• The complexity of lines 4-7 is O(|SubTreeφ(xk)| · |π|)
as follows: line 4 is O(|π|), we have |π| iterations in line
5 and O(|SubTreeφ(xk)|) for lines 6 and 7 combined.

• The complexity of lines 9-15 is
O
(︁
|SubTreeφ(xk)| · βk

max) ·
(︁
|π| − βk

min

)︁)︁
as follows:

we have (|π| − βk
min) iterations in line 9 and

O(|SubTreeφ(xk)| · βk
max) for lines 13 and 14.
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• The complexity of lines 16-17 is O(|π|)
Considering the for loop in line 3, and since lines 9-15 has
the highest complexity inside this loop, it brings us to a
O
(︁
|V | ·maxk

(︁
|SubTreeφ(xk)| · βk

max ·
(︁
|π| − βk

min

)︁)︁)︁
com-

plexity for lines 3-17 combined and that is the full algo-
rithm complexity (the complexity of lines 18-21 is only
O(|TopSubTree(φ)| · |π|)).

VII. EXPERIMENTS

Our experiments were conducted on a 64-bit Intel(R)
Core(TM) i5-9300H CPU @ 2.40GHz with 16-GB RAM and
we implemented all algorithms in Matlab, without using any
special libraries and compared the performance. The traces
used are uniformly sampled with a sampling rate of 1 second,
the signal predicates values are randomly generated to integer
values in [−50, 50], and each experiment is executed 10 times
with 10 different generated traces in order to obtain the
mean and variance values. As the timestamps are integers
0, 1, . . . |π| − 1, the constants βmin, βmax in the algorithm
running time bounds can be taken to be rmin − 1, rmax + 1,
where rmin, rmax are the minimum and maximum constants
in the formulas.

In Table VII, we run the TSTL monitor algorithm on
4 different TSTL formulas with different number of freeze
variables and different length of traces. The formulas are:

• φ1 = x.(s1 ≥ 2→ ♢(s2 > 3 ∧ ♢(s3 > 1 ∧ x ≤ 5)))
• φ2 = x.(s1 ≥ 2→ ♢(s2 > 3 ∧□(x ≤ 5→ s3 > 1)))
• φ3 = x.(s1 ≥ 2→ ♢(s2 > 3∧y.♢(s3 > 1∧x ≤ 5∧y ≤ 2)))

[Running example]
• φ4 = x.(s1≥2→ ♢(s2>3∧y.□((x ≤ 5∧y ≤ 2)→ s3>1)))

|π| = 100 |π| = 200 |π| = 500
φ |V | Mean Var Mean Var Mean Var
φ1 1 3.18 0.01 12.42 0.01 86.31 0.52
φ2 1 3.16 0.01 12.33 0.02 85.83 0.59
φ3 2 65.92 0.27 654.3 1.70 − −
φ4 2 67.17 0.37 661.2 1.91 − −

TABLE VII: Running times for different |π| and |φ| values.

As we discussed in the complexity section, the experiment
results prove that the time complexity of the TSTL monitor
algorithm that we presented is exponential to the number of
freeze variables. Once we exceed two freeze variables and we
use a large trace, this algorithm will no longer be useful. For
|π| = 500, we encountered a timeout for φ3 and φ4 after one
hour and 5 minutes.

In Table VIII, we run the TSTL1 monitor algorithm on
7 different TSTL1 formulas with different number of freeze
variables and different number of subformulas. For a formula
ϕ, we define the number of subformulas |ϕ| as the number
of operators in ϕ (□,♢ and → each count as one operator)
plus the number of time constraints (x ∈ [a, b] count as three:
x ≥ a ∧ x ≤ b). The number of subformule does not include
the number of signal predicates s ∼ r. For example |ϕ1| below
is equal to 3: x > 8, → and □. The running time variances
for |π|=1000 and |π|=2500 are≤ 0.01. The formulas are:

• ϕ1 = □x.(x > 8→ s1 ≤ 10)
• ϕ2 = x.(s1 > −5→ □(s2 ≥ 0 ∧ ♢(s3 > 5U x ≤ 12)))
• ϕ3 = x.(s1>7→ □(s2 ≥ 0∧x ≥ 4)∧(♢y.(s3>0U y ≤ 8)))
• ϕ4 = □x.(y.(s1>2→ ♢(s2>5∧y≤4))∧♢(s3<0∧x≤ 12))
• ϕ5 = z.((x.(s1 < 20 → □(¬s2 ≤ 20 ∧ x ≤ 4)) ∧ ♢y.(s3 ≥

10U y ≤ 8)) ∧ z ≤ 12)
• ϕ6 = z.(x.(s1 ≤ 15 → □(s2 ≤ 20 ∧ x ≤ 4) ∧ ♢y.(s3 ≥

10U y ≤ 8)) ∨□w.(s4 ≥ 5 ∧ w ≥ 5)) ∧ z ≤ 12)

• ϕ7 = ♢z.(x.(¬s1>3 → □(s2≥2 ∧ x ≤ 4) ∧ ♢y.(s1>16 ∧
s3≥−50U y ≤ 8))∨□w.(s4≥5∧w ≥ 5))∧(s5≥0∧z ≤ 12))

|π| = 1000 |π| = 2500 |π| = 5000 |π| = 10000
ϕ |ϕ| Mean Mean Mean Var Mean Var
ϕ1 3 0.84 2.01 4.06 0.01 8.23 0.04
ϕ2 6 2.96 7.43 14.97 0.03 29.40 0.02
ϕ3 8 3.51 8.91 17.63 0.06 34.91 0.02
ϕ4 9 3.48 8.55 17.12 0.04 34.31 0.02
ϕ5 11 4.31 10.60 21.31 0.06 42.77 0.04
ϕ6 14 5.68 14.32 28.71 0.03 57.91 0.05
ϕ7 18 7.25 18.09 36.31 0.02 72.76 0.11

TABLE VIII: Running times for different |π| and |ϕ| values.

The obtained experimental results conforms with our com-
plexity analysis and our algorithm proves to be practical for
industrial applications with its running time which is linear in
the length of the trace. We also see that the TSTL1 algorithm
far outperforms the general TSTL algorithm over TSTL1

formulae.
In Table IX, we use the same TSTL1 formula with different

time constraint intervals. The formulas are :
• θ1 = ♢y.(y > 50 ∧□(x.(x ∈ [10, 20]→ s1 ≥ 0)))
• θ2 = ♢y.(y > 50 ∧□(x.(x ∈ [20, 30]→ s1 ≥ 0)))
• θ3 = ♢y.(y > 50 ∧□(x.(x ∈ [10, 30]→ s1 ≥ 0)))
• θ4 = ♢y.(y > 50 ∧□(x.(x ∈ [10, 50]→ s1 ≥ 0)))

|π| = 1000 |π| = 2500 |π| = 5000 |π| = 10000
θ Mean Mean Mean Var Mean Var
θ1 3.08 7.80 15.77 0.01 31.30 0.04
θ2 3.10 7.79 15.84 0.01 31.51 0.05
θ3 5.47 13.42 26.97 0.02 54.86 0.04
θ4 8.69 22.20 44.45 0.05 89.07 0.09

TABLE IX: Different time constraint interval results.

Table IX shows that, since the intervals in the time constraint
directly affects the length of the interval [τmin(c), τmax(d)] in
our algorithm, the bigger the interval in the time constraint the
higher the running time. In fact, an interval is basically two
time constraints φ1 and φ2 with ∧ operator: φj = φ1 ∧ φ2

and when updating the time constraints values using Compute-
TimeConstraint, this algorithm returns positions αj where each
time constraint flips its value. Since, cj and dj are initiated
respectively to min(c1, c2) and max(d1, d2), their values have
a dependence on the time constraint interval length. We know
that our algorithm has to calculate all the values between
[τcj , τdj

] for every instantiation and that explains the running
times shown in Table IX. We can see, based on the results
from θ1 and θ2, that for the same interval length, we basically
have the same running time, even though the largest formula
constant in θ2 is larger.

VIII. CONCLUSION

In this work we developed a quantitative theory of ro-
bustness for TPTL over signals. This logic, TSTL, with
the presence of time-freeze quantifiers can express many
natural engineering properties that STL cannot. We explored
properties of our developed robustness function, such as how
it can be used to identify “bad” formulae which are identically
true or false purely due to the time constraints in the formula,
irrespective of the signal values (Proposition 1), and the
connection to the Boolean semantic (Theorem 1). We also
developed two robustness computation algorithms. The first,
for general TSTL formulae, and the second for a fragment –
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TSTL1– which is also more expressive than STL. This second
algorithm is linear in the size of the trace (assuming a bounded
sampling skew), and thus can be employed over long traces.
Our algorithms avoid the use of complicated data structures
or libraries, and instead rely on careful use of divide and
conquer, and dynamic programming techniques to work over
a table to compute the robustness values. We envision the use
of simple data structures will facilitate efficient development
and deployment on diverse platforms. Our present work and
developed algorithms open up use of TSTL specifications for
industrial Cyber-Physical Systems in black-box optimization
based falsification approaches.
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