
L����: Harvesting Idle Resources Safely and Timely in Serverless
Clusters

Hanfei Yu
hyu25@lsu.edu

Louisiana State University
Baton Rouge, LA, USA

Christian Fontenot
cfont85@lsu.edu

Louisiana State University
Baton Rouge, LA, USA

Hao Wang
haowang@lsu.edu

Louisiana State University
Baton Rouge, LA, USA

Jian Li
lij@binghamton.edu

SUNY-Binghamton University
Binghamton, NY, USA

Xu Yuan
xu.yuan@louisiana.edu

University of Louisiana at Lafayette
Lafayette, LA, USA

Seung-Jong Park
sjpark@lsu.edu

Louisiana State University
Baton Rouge, LA, USA

ABSTRACT
Serverless computing has been favored by users and infrastruc-
ture providers from various industries, including online services
and scienti�c computing. Users enjoy its auto-scaling and ease-of-
management, and providers own more control to optimize their
service. However, existing serverless platforms still require users
to pre-de�ne resource allocations for their functions, leading to fre-
quent miscon�guration by inexperienced users in practice. Besides,
functions’ varying input data further escalate the gap between
their dynamic resource demands and static allocations, leaving
functions either over-provisioned or under-provisioned. This paper
presents L����, a safe and timely resource harvesting framework
for multi-node serverless clusters. L���� makes precise harvest-
ing decisions to accelerate function invocations with harvested
resources and jointly improve resource utilization by pro�ling dy-
namic resource demands and availability proactively. Experiments
on OpenWhisk clusters with real-world workloads show that L��
��� reduces response latency by 39% and achieves 3⇥ resource
utilization compared to state-of-the-art solutions.

CCS CONCEPTS
• Computer systems organization ! Cloud computing.

KEYWORDS
serverless computing, resource harvesting

ACM Reference Format:
Hanfei Yu, Christian Fontenot, Hao Wang, Jian Li, Xu Yuan, and Seung-
Jong Park. 2023. L����: Harvesting Idle Resources Safely and Timely in
Serverless Clusters. In Proceedings of the 32nd International Symposium
on High-Performance Parallel and Distributed Computing (HPDC ’23), June
16–23, 2023, Orlando, FL, USA. ACM, New York, NY, USA, 14 pages. https:
//doi.org/10.1145/3588195.3592996

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
HPDC ’23, June 16–23, 2023, Orlando, FL, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0155-9/23/06. . . $15.00
https://doi.org/10.1145/3588195.3592996

1 INTRODUCTION
Motivation. Known as next-generation cloud computing, server-
less computing has attracted extensive attention from users and in-
frastructure providers. Thanks to its event-driven computing, auto-
scaling, and cost-e�ciency, serverless computing has shipped nu-
merous applications to resilient stateless functions, including video
processing [5, 19], scienti�c computing and HPC [7, 12, 34, 37, 39],
and machine learning [3, 11, 44], relieving users from cumbersome
infrastructure maintenance and resource management. In addi-
tion, serverless computing completely transfers the infrastructure
management work to service providers, leaving more �exibility to
providers to improve resource utilization and service quality. How-
ever, existing serverless platforms still require users to pre-de�ne
the resource allocations for each function. Unlike traditional cloud
computing running monolithic applications with homogeneous
virtual instances, serverless computing decomposes monolithic
applications into numerous types of functions1 and complex de-
pendencies, impeding even experts from con�guring each function
appropriately. User miscon�guration, unpredictable events, high
concurrency, and varying input data jointly make it a non-trivial
task to mitigate the gap between the user reserved resources and
invocations’ dynamic demands [2, 10, 22, 27, 35]. A recent report
reveals that most functions invoked on Alibaba Function Compute
can only utilize 20–60% of allocated resources, leaving considerable
resources idle—reserved but unused—during execution [42].
Limitation of State-of-the-arts. Existing studies attempting to
reduce idle resources in serverless computing can be classi�ed into
two categories: provider-side [29, 49] and user-side solutions [2,
18, 46]. Provider-side solutions utilize idle resources to accelerate
functions (e.g., OFC [29] and Freyr [49]). User-side solutions (e.g.,
Sizeless [18], and StepConf [46]) optimize function resource con�g-
urations to improve function e�ciency and resource utilization.

However, existing approaches fall short in addressing the fol-
lowing critical challenges raised by inappropriate resource allo-
cation and varying resource demands: First, neither user-de�ned
nor estimated function con�gurations [2, 18, 46, 49] can continu-
ously satisfy invocations’ dynamic resource demands, driven by
ad-hoc events and varying input data. Even for the same function,
input data may vary (e.g., sizes and contents), leading to �uctu-
ating resource consumption and execution time. Second, existing

1In this paper, a function refers to a code package deployed on a serverless platform,
and a function invocation is a running instance of the code package.

181

https://doi.org/10.1145/3588195.3592996
https://doi.org/10.1145/3588195.3592996
https://doi.org/10.1145/3588195.3592996
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3588195.3592996&domain=pdf&date_stamp=2023-08-07

HPDC ’23, June 16–23, 2023, Orlando, FL, USA Hanfei Yu, Christian Fontenot, Hao Wang, Jian Li, Xu Yuan, and Seung-Jong Park

provider-side solutions rely on non-trivial inspections that may
violate serverless nature, such as hand-crafted features [29], which
can hardly be generalized to various input data and function types.
Finally, orchestrating multiple worker nodes (or invokers) to serve
large-scale invocations and dynamic resource demands with light-
weight algorithms is a complicated scheduling problem unsolved
by existing methods [9, 48, 49]. Freyr [49] attempts to work around
these issues by learning optimal resource harvesting strategies with
Deep Reinforcement Learning (DRL) algorithms but still falls short
in 1) ignorance of timeliness—harvested resources’ availability may
expire, 2) no support to varying input sizes, and 3) lack of timely
release of harvested resources.
Key Insights andContributions. To address these challenges, this
paper proposes L����, a general provider-side solution that harvests
idle resources safely and timely to accelerate large-scale serverless
function invocations with varying inputs. L���� makes invocation
scheduling decisions with awareness of resource timeliness across
multiple worker nodes and accelerates under-provisioned invoca-
tions with idle resources carefully harvested from over-provisioned
invocations. Each worker maintains a pool tracking idle resources
harvested from over-provisioned invocations. We devise a new
metric—demand coverage—to quantify idle resource volume and
timeliness on each node for timeliness-aware scheduling (§6.2).
We justify whether an invocation is under-provisioned or over-
provisioned by comparing its user-de�ned resource allocation and
dynamic demands.

We summarize L����’s key contributions as follows:
• We develop a pro�ler that transparently estimates resource
demands and execution time of invocations upon varying
input data without access to input data content or user code.

• We propose a timeliness-aware and �ne-grained resource
harvesting mechanism that jointly accelerates invocations
and improves resource utilization.

• We design a decentralized sharding scheduler that maximizes
cluster-wide resource utilization with timely awareness of
idle resources across workers.

• We deploy L���� on real-world clusters and evaluate L��
��� using extensive experiments with industrial traces and
realistic applications. We compare L���� with multiple re-
source harvesting schemes (e.g., Freyr [49]) and scheduling
algorithms (e.g., Min-Worker-Set [50]). Experimental results
show that L���� reduces function response latency by 39%
and achieves up to 3⇥ resource utilization compared to the
state-of-the-art solutions.

Limitations of the proposed approach. We conclude two limita-
tions of L����’s design that can be improved. First, L����’s harvest-
ing and acceleration rely on resource demands and timeliness esti-
mated by machine learning (ML) models. Thus, mispredictions are
unavoidable due to the bursty, diversity, and �uctuation of server-
less workloads. However, L���� implements a safeguardmechanism
that e�ectively mitigates mispredictions and guarantees function
execution performance. Second, L����’s scheduler greedily serves
function invocations to reduce decision complexity, which may
result in sub-optimal objectives such as average function response
latency. We opt for such a greedy scheduler in L���� to accommo-
date the sub-second latency requirement of serverless functions.

La
te

nc
y

(s
)

0

5

C
PU

 C
or

es

0

5

Case 1 Case 2 Case 3

reduced latency

harvest

La
te

nc
y

(s
)

0
2
4
6

C
PU

 C
or

es

0

5

Case 1 Case 2 Case 3

La
te

nc
y

(s
)

0

5

R
AM

 (G
B)

0

1

Case 1 Case 2 Case 3

reduced latency

harvest

La
te

nc
y

(s
)

0

5

R
AM

 (G
B)

0

1

Case 1 Case 2 Case 3

DH utilized
VP utilized

VP latency
DH latency

Idle Res.
Harvested Res.

Reduced latency

(a) Default (b) Harvesting

Figure 1: Amotivating example of resource harvesting. Input
data (DH/VP): Case 1 (4K/video-1), Case 2 (100/video-2), and
Case 3 (10K/video-3).
2 BACKGROUND AND MOTIVATION
2.1 Resource Harvesting
Objectives. Cloud users are prone to over-provision their work-
loads, leaving signi�cant resources (e.g., CPU, memory, disk, and
even GPU) idle during running [16, 42]. Resource harvesting tech-
niques are a major solution to utilize such idle resources—reserved
but unused by users—with safety guarantees [4, 20, 32, 45]. In server-
less computing, safety is de�ned as harvesting resources must not
deteriorate function execution performance [29, 49]. For example, a
resource allocation strategy is not safe if leading to worse response
latency than user-de�ned resources.
Billing. Harvested resources can be used for various purposes.
Infrastructure-as-a-Service (IaaS) cloud platforms package harvested
resources as low-priority evictable VMs and resell them to users [20,
32, 45]. Serverless platforms utilize harvested resources to provide
transparent optimizations, such as function caching [29] and exe-
cution acceleration [49], which are ephemeral free lunch for users
but no guarantee.

2.2 The Necessity of Resource Harvesting
A serverless function is usually invoked with varying input data
sizes and contents, leading to �uctuating response latency and het-
erogeneous utilization of di�erent resource types (e.g., CPU and
memory) [10, 27, 49]. We explore the opportunities behind such �uc-
tuations and heterogeneity that motivate accurate harvesting and
reassignment of individual resource types by running two realistic
serverless applications: DH2 and VP3 on an Apache OpenWhisk
cluster [6]. The resource utilization and response latency of DH
is dominated by input sizes, whereas VP’s is dominated by data
contents. By decoupling CPU and memory allocation [28, 49], we
investigate the CPU and memory harvesting individually for DH
and VP: when adjusting the CPU (memory) allocation, we �x its
memory (CPU) to one GB (eight cores). We simultaneously invoke
DH and VP once with di�erent input data of three cases as shown

2Dynamic HTML (DH) generates a given number of HTML pages.
3Video Processing (VP) generates a GIF from the input video.

182

L����: Harvesting Idle Resources Safely and Timely in Serverless Clusters HPDC ’23, June 16–23, 2023, Orlando, FL, USA

A

OccupiedB
Idle
Released

In
vo

ca
tio

ns

Wall clock
<latexit sha1_base64="wJPLQRjpcdzDX4BkVbO4/SHYPeQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUY8FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKDzjwBuWKW3UXIOvEy0kFcjQH5a/+MGZpxBUySY3peW6CfkY1Cib5rNRPDU8om9AR71mqaMSNny1OnZELqwxJGGtbCslC/T2R0ciYaRTYzoji2Kx6c/E/r5dieONnQiUpcsWWi8JUEozJ/G8yFJozlFNLKNPC3krYmGrK0KZTsiF4qy+vk3at6l1V6/f1SqOWx1GEMziHS/DgGhpwB01oAYMRPMMrvDnSeXHenY9la8HJZ07hD5zPHwO2jZU=</latexit>

t1
<latexit sha1_base64="1DKwQYSKE0I+TDIAwYv8o/6IxBI=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUY8FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKDzioDcoVt+ouQNaJl5MK5GgOyl/9YczSiCtkkhrT89wE/YxqFEzyWamfGp5QNqEj3rNU0YgbP1ucOiMXVhmSMNa2FJKF+nsio5Ex0yiwnRHFsVn15uJ/Xi/F8MbPhEpS5IotF4WpJBiT+d9kKDRnKKeWUKaFvZWwMdWUoU2nZEPwVl9eJ+1a1buq1u/rlUYtj6MIZ3AOl+DBNTTgDprQAgYjeIZXeHOk8+K8Ox/L1oKTz5zCHzifPwU6jZY=</latexit>

t2
<latexit sha1_base64="ktXyLOUJtG0ESQ82hReYjnjeiYA=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4Kkkt6rHgxWNF+wFtKJvtpl262YTdiVBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR23TJxqxpsslrHuBNRwKRRvokDJO4nmNAokbwfj25nffuLaiFg94iThfkSHSoSCUbTSA/Yv+6WyW3HnIKvEy0kZcjT6pa/eIGZpxBUySY3pem6CfkY1Cib5tNhLDU8oG9Mh71qqaMSNn81PnZJzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieONnQiUpcsUWi8JUEozJ7G8yEJozlBNLKNPC3krYiGrK0KZTtCF4yy+vkla14l1Vave1cr2ax1GAUziDC/DgGupwBw1oAoMhPMMrvDnSeXHenY9F65qTz5zAHzifPwa+jZc=</latexit>

t3

Reassigned
<latexit sha1_base64="3Ww4GaMuzZhqhHC4JdvBQmJw8Kc=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUY8FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKDzioD8oVt+ouQNaJl5MK5GgOyl/9YczSiCtkkhrT89wE/YxqFEzyWamfGp5QNqEj3rNU0YgbP1ucOiMXVhmSMNa2FJKF+nsio5Ex0yiwnRHFsVn15uJ/Xi/F8MbPhEpS5IotF4WpJBiT+d9kKDRnKKeWUKaFvZWwMdWUoU2nZEPwVl9eJ+1a1buq1u/rlUYtj6MIZ3AOl+DBNTTgDprQAgYjeIZXeHOk8+K8Ox/L1oKTz5zCHzifPwhCjZg=</latexit>

t4
<latexit sha1_base64="moMq/0PU3K0axT+dOEa3xx78UOM=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lK/TgWvHisaGuhDWWz3bRLN5uwOxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkQKg6777RTW1jc2t4rbpZ3dvf2D8uFR28SpZrzFYhnrTkANl0LxFgqUvJNoTqNA8sdgfDPzH5+4NiJWDzhJuB/RoRKhYBStdI/9i3654lbdOcgq8XJSgRzNfvmrN4hZGnGFTFJjup6boJ9RjYJJPi31UsMTysZ0yLuWKhpx42fzU6fkzCoDEsbalkIyV39PZDQyZhIFtjOiODLL3kz8z+umGF77mVBJilyxxaIwlQRjMvubDITmDOXEEsq0sLcSNqKaMrTplGwI3vLLq6Rdq3qX1fpdvdKo5XEU4QRO4Rw8uIIG3EITWsBgCM/wCm+OdF6cd+dj0Vpw8plj+APn8wcJxo2Z</latexit>

t5
<latexit sha1_base64="hhysT1zuLpLaP8RI0YEpFS+R0Go=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKqR4LXjxWtLXQhrLZbtqlm03YnQgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgobm1vbO8Xd0t7+weFR+fikY+JUM95msYx1N6CGS6F4GwVK3k00p1Eg+WMwuZn7j09cGxGrB5wm3I/oSIlQMIpWusdBY1CuuFV3AbJOvJxUIEdrUP7qD2OWRlwhk9SYnucm6GdUo2CSz0r91PCEsgkd8Z6likbc+Nni1Bm5sMqQhLG2pZAs1N8TGY2MmUaB7Ywojs2qNxf/83ophtd+JlSSIldsuShMJcGYzP8mQ6E5Qzm1hDIt7K2EjammDG06JRuCt/ryOunUql6jWr+rV5q1PI4inME5XIIHV9CEW2hBGxiM4Ble4c2Rzovz7nwsWwtOPnMKf+B8/gALSo2a</latexit>

t6

Release due to
resource timeliness

Harvest & reassign

Figure 2: Harvested resources’ timeliness.

Invocation #3 for
Function k at t

Invo. 1 at t’ Invo. 2 at t’

Input data

Y
Is first-seen invocation?

N

Infer

…

Front End

Harvested Resource Pools
Worker Node m

Container

User-defined Func. k
Codebase

Resource Allocation
(user_cpu,user_mem)

2

1

3

4

user_* pred_*v.s.

5 Harvest or
Accelerate?

CPU
Mem

Y

N

Demand coverage

Sharding Scheduler #n

Hist.

ML

3d

3c

Node selection

Analyze Acc. & R23a

Model update

Profiler Workload
Duplicator

Different
input sizes Pilot run

observed_(cpu,
mem,duration)

Type: is input
size-related?

Y:(pre_cpu,pre_mem,dur,type)

X:input data, Y:(cpu,mem,duration)

X:(input data,type)3b

Figure 3: L����’s architecture.

in Fig. 1(a). In Case 1, with an input size of 4K, DH can only utilize
four cores (0.25 GB), leaving two cores (0.5 GB) idle, while VP has
fully utilized four cores (0.25 GB) with the �rst input video (video-1).
In Case 2, DH can only utilize one core (0.125 GB) with an input
size of 100, leaving �ve cores (0.625 GB) idle, while VP still reaches
full utilization with another video (video-2). In Case 3, both DH
and VP fully utilize user-allocated CPU cores (memory). Fig. 1(a)
illustrates over-provisioned and under-provisioned invocations and
their varying response latency due to di�erent input data, which
is aligned with the observation in Microsoft Azure Functions [36]
and Alibaba Function Compute [42].

However, we can seize the opportunity behind the �uctuation by
carefully harvesting the DH invocation’s idle resources and acceler-
ating the under-provisioned VP invocation without degrading DH’s
performance, as the Cases 1 and 2 in Fig. 1(b). Invocations utilize all
their resources in Case 3, leaving no idle resources for harvesting.
In a highly volatile serverless computing environment, resource
harvesting must be proactive and precise to seize the opportunity
to accelerate invocations e�ciently, timely, and safely.

3 AN OVERVIEW OF LIBRA
3.1 Timeliness of Harvested Resources
Resource harvesting can bene�t serverless computing signi�cantly
by improving resource utilization and function execution perfor-
mance. However, such resource reassignment in Fig. 1(b) is not
always feasible due to the natural resource timeliness in serverless
platforms. Timeliness indicates that an invocation’s resource allo-
cation is available for harvesting only during its execution time.
All resources allocated to an invocation will be released to the
serverless platform once the invocation is completed or terminated,

including harvested resources. Thus, an invocation utilizing har-
vested resources should follow the resource timeliness and release
the harvested resources anytime when the source function invoca-
tion is done or terminated.

Fig. 2 demonstrates how an invocation with harvested resources
should obey timeliness. We have two function invocations A and B
arriving at the platform. Invocation� con�gured with two resource
units starts at C1 but can only utilize one resource unit. Invocation
⌫ con�gured with one resource unit arrives at C2 while having an
appetite for two units. To accelerate Invocation ⌫ without degrading
�’s performance, we harvest one idle resource unit from � and
reassign it to ⌫. However, Invocation � �nishes at C4 and thus
releases its two resource units immediately. Though Invocation ⌫
is not �nished, it can no longer utilize the resource unit harvested
from�. Instead, Invocation ⌫ continues executing with its own one
unit until �nishing at C6.

The awareness of resource timeliness is the pivot to determine
when to harvest and release resources from which invocation, and
how to reassign the harvested resources for acceleration, making
it imperative to estimate function invocations’ execution time un-
der di�erent input data. Thus, we develop a pro�ler to estimate
the dynamic execution time and resource demands of individual
invocations (see §4).

3.2 Challenges
We design L���� to tackle three key challenges as follows:

How to estimate the resource demands and execution time
of invocations with varying input data transparently? Trans-
parent estimation of invocation resource demands and execution
time is a must, as user code and input data content are protected
from leakage. However, it’s challenging to precisely predict the dy-
namic resource demands and execution time of function invocations
under varying input data. We design a pro�ler that performs one-
time o�ine pro�ling and online updating for e�cient estimation
without peeking into user code or input data content (§4).

How to harvest idle resources safely at a �ne granularity?
Resource harvesting in serverless computing is treading as if on thin
ice since even slight over-harvesting easily deteriorates function
executions’ performance, particularly as resource allocation is �ne-
grained. We develop a harvest resource pool to manage harvested
resources at a �ne granularity (§5). Besides, a safeguard mechanism
is devised to avoid overly harvesting and protect the performance
of harvested functions (§5.2).

How tomaximize cluster-wide invocation acceleration and
idle resource utilization? Given the large scale of invocations, it
is non-trivial to instantly identify workers with �ne-grained idle
resources of satisfactory volume and availability for the invocations.
We design a decentralized sharing scheduler that timely utilizes
cluster-wide idle resources to accelerate function executions (§6).

Fig. 3 depicts L����’s architecture with a �ve-step work�ow:
Step 1 : Deployment. Developers �rst upload the codebase of a
function : to the serverless platform, and speci�es a �xed resource
allocation, such as, two CPU cores and 1,024 MB memory. User-
de�ned allocation is the upper bound of resources that invocations
to the function : can utilize.

183

HPDC ’23, June 16–23, 2023, Orlando, FL, USA Hanfei Yu, Christian Fontenot, Hao Wang, Jian Li, Xu Yuan, and Seung-Jong Park

Step 2 : Invocation. The function: is called by per-de�ned events
with varying input data. The front end accepts the function invoca-
tion and forwards it to the pro�ler for prediction.
Step 3 : Pro�ling. The pro�ler transparently pro�les the incom-
ing function invocations to estimate the actual resource demands
and execution duration (§4).
Step 4 : Scheduling. A worker node < is selected to execute
the incoming invocation based on a resource timeliness-aware
scheduling algorithm. To enable large-scale deployment, L����
leverages multiple decentralized sharding schedulers that schedule
function invocations concurrently (§6).
Step 5 : Harvesting or accelerating. The harvest resource pool
in the selected worker node< performs harvesting or acceleration
based on predictions of the current invocation. When the execu-
tion completes, L���� collects the actual resource utilization and
execution duration to update the corresponding pro�ling models
of function : (§5).

4 PROFILING
4.1 Pro�ling Work�ow
L���� pro�les functions o�ine to characterize the relationships
between input data and three metrics: CPU usage, memory usage,
and invocation execution time. The pro�ler is activated upon a
function’s �rst invocation. If the function is �rst-time invoked, L��
��� serves the very �rst invocation with user-con�gured resources
(Step 3a in Fig. 3).

Meanwhile, L���� leverages the input data to produce a dataset
for model training using workload duplicator. When the dataset is
ready, L���� trains ML models o�ine to predict the above three
function metrics. By analyzing the training metrics (i.e., accuracy
and '2 score), we can identify whether the function’s input sizes
dominate its resource demands and execution time. If the function’s
demands are input size-related, we use the trained ML models for
prediction (Step 3c); if the function’s demands are unrelated to
input sizes, we treat future invocations as black boxes and conser-
vatively predict the three metrics using histogram models from
historical information (Step 3d). If the invocation is not called at
the �rst time, and the pro�ler has already initialized the models
for this function, L���� calls either the ML or histogram models to
infer the three metrics (Step 3b).

After gathering three predicted metrics, the pro�ler forwards the
invocation and the prediction result to a worker node for execution.
For each function, the pro�ler builds the models by one-time train-
ing and analyzing whether input sizes dominate its demands and
execution time. Subsequent invocations can reuse the built models.

4.2 Workload Duplicator
The workload duplicator augments datasets for training and an-
alyzing the pro�ling model by duplicating input data. Upon the
�rst invocation, the pro�ler collects the data and inputs it to its
workload duplicator, where the data is duplicated uniformly to pro-
duce di�erent sizes of data points. After duplicating data points, the
pro�ler creates one invocation with su�cient resource allocation to
execute the function for each data point in parallel. L���� analyzes
results of all executions and obtains the actual CPU and memory

usage, and response latency. The pro�ler then uses those actual
results as ground truth to label each data point in the dataset. Thus,
L���� generates a complete dataset for training ML models, where
the ML models try to predict the three metrics and use the actual la-
bels to minimize errors. We analyze the training metrics to identify
whether input sizes dominate a function’s demands and execution
time. The ML models are used if the pro�led function is input size-
related (§4.3.1), otherwise we construct histogram models for input
size-unrelated functions (§4.3.2).

4.3 Demand Estimator
4.3.1 For Input Size-related Functions. We formulate the CPU and
memory usage prediction as a multi-class classi�cation problem,
where each allocation option is a separate class. Given a function
invocation, the pro�ler predicts the actual CPU/memory usage peak
based on the input data size. We de�ne the usage peak as the highest
number of busy cores or the highest amount of memory that can be
used during the execution for CPU and memory, respectively. For
the execution time prediction, L���� predicts a scalar value based on
input data size, which is a common regression problem. Hence, the
pro�ler trains and reserves three MLmodels per function, including
two classi�cation models and one regression model. Theoretically,
any prediction model can work for the pro�ler. After examining
di�erent models, we opt for Random Forest (RF) regarding the
prediction performance (§8.6).

The ML models cannot always capture a strong correlation be-
tween data size and CPU/memory peak and execution time. As
opposed to data size, the execution performance of many functions
is dominated by data content [10, 27]. L���� distinguishes between
input size-related and unrelated functions by analyzing the training
metrics of ML models (§8.6). Since serverless providers generally
have no access to the secured data content, we treat new invoca-
tions as black boxes and predict the three metrics using histogram
models constructed online from historical information.

4.3.2 For Input Size-unrelated Functions. Upon L���� identifying a
function being input size-unrelated at its �rst invocation, we start
to collect CPU/memory peak and execution time of the subsequent
invocations online. Due to lacking knowledge of a black-boxed
function, L���� requires a pro�ling window for collecting enough
historical information to construct a distribution. During the pro�l-
ing window, L���� serves the invocations with maximum allocation
to inspect the actual CPU/memory peak and execution times. L����
builds three histogram models for each function based on the infor-
mation collected during the window and continuously updates the
models after serving new invocations. The histogram data structure
tracks the distribution of CPU peak, memory peak, and execution
time for each function. To estimate the three metrics for future
invocations of a pro�led function, we calculate a tail percentile on
CPU/memory peak distribution and a head percentile on execution
time distribution from the histogram models for conservatively har-
vesting or acceleration. To exclude outliers, we follow the industrial
convention [36] and use the 99th- and 5th- percentiles to estimate
CPU/memory peak and execution time, respectively.

184

L����: Harvesting Idle Resources Safely and Timely in Serverless Clusters HPDC ’23, June 16–23, 2023, Orlando, FL, USA

Arrival
TimeHarvested

Resource Pool

<latexit sha1_base64="wJPLQRjpcdzDX4BkVbO4/SHYPeQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUY8FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKDzjwBuWKW3UXIOvEy0kFcjQH5a/+MGZpxBUySY3peW6CfkY1Cib5rNRPDU8om9AR71mqaMSNny1OnZELqwxJGGtbCslC/T2R0ciYaRTYzoji2Kx6c/E/r5dieONnQiUpcsWWi8JUEozJ/G8yFJozlFNLKNPC3krYmGrK0KZTsiF4qy+vk3at6l1V6/f1SqOWx1GEMziHS/DgGhpwB01oAYMRPMMrvDnSeXHenY9la8HJZ07hD5zPHwO2jZU=</latexit>

t1
<latexit sha1_base64="1DKwQYSKE0I+TDIAwYv8o/6IxBI=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUY8FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKDzioDcoVt+ouQNaJl5MK5GgOyl/9YczSiCtkkhrT89wE/YxqFEzyWamfGp5QNqEj3rNU0YgbP1ucOiMXVhmSMNa2FJKF+nsio5Ex0yiwnRHFsVn15uJ/Xi/F8MbPhEpS5IotF4WpJBiT+d9kKDRnKKeWUKaFvZWwMdWUoU2nZEPwVl9eJ+1a1buq1u/rlUYtj6MIZ3AOl+DBNTTgDprQAgYjeIZXeHOk8+K8Ox/L1oKTz5zCHzifPwU6jZY=</latexit>

t2
<latexit sha1_base64="ktXyLOUJtG0ESQ82hReYjnjeiYA=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4Kkkt6rHgxWNF+wFtKJvtpl262YTdiVBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR23TJxqxpsslrHuBNRwKRRvokDJO4nmNAokbwfj25nffuLaiFg94iThfkSHSoSCUbTSA/Yv+6WyW3HnIKvEy0kZcjT6pa/eIGZpxBUySY3pem6CfkY1Cib5tNhLDU8oG9Mh71qqaMSNn81PnZJzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieONnQiUpcsUWi8JUEozJ7G8yEJozlBNLKNPC3krYiGrK0KZTtCF4yy+vkla14l1Vave1cr2ax1GAUziDC/DgGupwBw1oAoMhPMMrvDnSeXHenY9F65qTz5zAHzifPwa+jZc=</latexit>

t3
<latexit sha1_base64="3Ww4GaMuzZhqhHC4JdvBQmJw8Kc=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUY8FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKDzioD8oVt+ouQNaJl5MK5GgOyl/9YczSiCtkkhrT89wE/YxqFEzyWamfGp5QNqEj3rNU0YgbP1ucOiMXVhmSMNa2FJKF+nsio5Ex0yiwnRHFsVn15uJ/Xi/F8MbPhEpS5IotF4WpJBiT+d9kKDRnKKeWUKaFvZWwMdWUoU2nZEPwVl9eJ+1a1buq1u/rlUYtj6MIZ3AOl+DBNTTgDprQAgYjeIZXeHOk8+K8Ox/L1oKTz5zCHzifPwhCjZg=</latexit>

t4

<latexit sha1_base64="3Ww4GaMuzZhqhHC4JdvBQmJw8Kc=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUY8FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKDzioD8oVt+ouQNaJl5MK5GgOyl/9YczSiCtkkhrT89wE/YxqFEzyWamfGp5QNqEj3rNU0YgbP1ucOiMXVhmSMNa2FJKF+nsio5Ex0yiwnRHFsVn15uJ/Xi/F8MbPhEpS5IotF4WpJBiT+d9kKDRnKKeWUKaFvZWwMdWUoU2nZEPwVl9eJ+1a1buq1u/rlUYtj6MIZ3AOl+DBNTTgDprQAgYjeIZXeHOk8+K8Ox/L1oKTz5zCHzifPwhCjZg=</latexit>

t4

<latexit sha1_base64="3Ww4GaMuzZhqhHC4JdvBQmJw8Kc=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUY8FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKDzioD8oVt+ouQNaJl5MK5GgOyl/9YczSiCtkkhrT89wE/YxqFEzyWamfGp5QNqEj3rNU0YgbP1ucOiMXVhmSMNa2FJKF+nsio5Ex0yiwnRHFsVn15uJ/Xi/F8MbPhEpS5IotF4WpJBiT+d9kKDRnKKeWUKaFvZWwMdWUoU2nZEPwVl9eJ+1a1buq1u/rlUYtj6MIZ3AOl+DBNTTgDprQAgYjeIZXeHOk8+K8Ox/L1oKTz5zCHzifPwhCjZg=</latexit>

t4(#1, ,)

get(2 units)
<latexit sha1_base64="ktXyLOUJtG0ESQ82hReYjnjeiYA=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4Kkkt6rHgxWNF+wFtKJvtpl262YTdiVBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR23TJxqxpsslrHuBNRwKRRvokDJO4nmNAokbwfj25nffuLaiFg94iThfkSHSoSCUbTSA/Yv+6WyW3HnIKvEy0kZcjT6pa/eIGZpxBUySY3pem6CfkY1Cib5tNhLDU8oG9Mh71qqaMSNn81PnZJzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieONnQiUpcsUWi8JUEozJ7G8yEJozlBNLKNPC3krYiGrK0KZTtCF4yy+vkla14l1Vave1cr2ax1GAUziDC/DgGupwBw1oAoMhPMMrvDnSeXHenY9F65qTz5zAHzifPwa+jZc=</latexit>

t3()
<latexit sha1_base64="3Ww4GaMuzZhqhHC4JdvBQmJw8Kc=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUY8FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKDzioD8oVt+ouQNaJl5MK5GgOyl/9YczSiCtkkhrT89wE/YxqFEzyWamfGp5QNqEj3rNU0YgbP1ucOiMXVhmSMNa2FJKF+nsio5Ex0yiwnRHFsVn15uJ/Xi/F8MbPhEpS5IotF4WpJBiT+d9kKDRnKKeWUKaFvZWwMdWUoU2nZEPwVl9eJ+1a1buq1u/rlUYtj6MIZ3AOl+DBNTTgDprQAgYjeIZXeHOk8+K8Ox/L1oKTz5zCHzifPwhCjZg=</latexit>

t4()

 (#2, ,)

current time
<latexit sha1_base64="3Ww4GaMuzZhqhHC4JdvBQmJw8Kc=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUY8FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKDzioD8oVt+ouQNaJl5MK5GgOyl/9YczSiCtkkhrT89wE/YxqFEzyWamfGp5QNqEj3rNU0YgbP1ucOiMXVhmSMNa2FJKF+nsio5Ex0yiwnRHFsVn15uJ/Xi/F8MbPhEpS5IotF4WpJBiT+d9kKDRnKKeWUKaFvZWwMdWUoU2nZEPwVl9eJ+1a1buq1u/rlUYtj6MIZ3AOl+DBNTTgDprQAgYjeIZXeHOk8+K8Ox/L1oKTz5zCHzifPwhCjZg=</latexit>

t4#3

<latexit sha1_base64="3Ww4GaMuzZhqhHC4JdvBQmJw8Kc=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUY8FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKDzioD8oVt+ouQNaJl5MK5GgOyl/9YczSiCtkkhrT89wE/YxqFEzyWamfGp5QNqEj3rNU0YgbP1ucOiMXVhmSMNa2FJKF+nsio5Ex0yiwnRHFsVn15uJ/Xi/F8MbPhEpS5IotF4WpJBiT+d9kKDRnKKeWUKaFvZWwMdWUoU2nZEPwVl9eJ+1a1buq1u/rlUYtj6MIZ3AOl+DBNTTgDprQAgYjeIZXeHOk8+K8Ox/L1oKTz5zCHzifPwhCjZg=</latexit>

t4Invocation #4Reassign

<latexit sha1_base64="3Ww4GaMuzZhqhHC4JdvBQmJw8Kc=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUY8FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKDzioD8oVt+ouQNaJl5MK5GgOyl/9YczSiCtkkhrT89wE/YxqFEzyWamfGp5QNqEj3rNU0YgbP1ucOiMXVhmSMNa2FJKF+nsio5Ex0yiwnRHFsVn15uJ/Xi/F8MbPhEpS5IotF4WpJBiT+d9kKDRnKKeWUKaFvZWwMdWUoU2nZEPwVl9eJ+1a1buq1u/rlUYtj6MIZ3AOl+DBNTTgDprQAgYjeIZXeHOk8+K8Ox/L1oKTz5zCHzifPwhCjZg=</latexit>

t4()
Harvest

<latexit sha1_base64="3Ww4GaMuzZhqhHC4JdvBQmJw8Kc=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUY8FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKDzioD8oVt+ouQNaJl5MK5GgOyl/9YczSiCtkkhrT89wE/YxqFEzyWamfGp5QNqEj3rNU0YgbP1ucOiMXVhmSMNa2FJKF+nsio5Ex0yiwnRHFsVn15uJ/Xi/F8MbPhEpS5IotF4WpJBiT+d9kKDRnKKeWUKaFvZWwMdWUoU2nZEPwVl9eJ+1a1buq1u/rlUYtj6MIZ3AOl+DBNTTgDprQAgYjeIZXeHOk8+K8Ox/L1oKTz5zCHzifPwhCjZg=</latexit>

t4()
Harvest

<latexit sha1_base64="3Ww4GaMuzZhqhHC4JdvBQmJw8Kc=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUY8FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKDzioD8oVt+ouQNaJl5MK5GgOyl/9YczSiCtkkhrT89wE/YxqFEzyWamfGp5QNqEj3rNU0YgbP1ucOiMXVhmSMNa2FJKF+nsio5Ex0yiwnRHFsVn15uJ/Xi/F8MbPhEpS5IotF4WpJBiT+d9kKDRnKKeWUKaFvZWwMdWUoU2nZEPwVl9eJ+1a1buq1u/rlUYtj6MIZ3AOl+DBNTTgDprQAgYjeIZXeHOk8+K8Ox/L1oKTz5zCHzifPwhCjZg=</latexit>

t4Invocation #1

Idle Busy More resources needed Estimated completion time <latexit sha1_base64="BdlBL0kUW+/NdugKupB/Ur3i0Ug=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4Kkkp6rHgxWML9gPaUDbbSbt2swm7G6GE/gIvHhTx6k/y5r9x2+agrQ8GHu/NMDMvSATXxnW/nY3Nre2d3cJecf/g8Oi4dHLa1nGqGLZYLGLVDahGwSW2DDcCu4lCGgUCO8Hkbu53nlBpHssHM03Qj+hI8pAzaqzUNINS2a24C5B14uWkDDkag9JXfxizNEJpmKBa9zw3MX5GleFM4KzYTzUmlE3oCHuWShqh9rPFoTNyaZUhCWNlSxqyUH9PZDTSehoFtjOiZqxXvbn4n9dLTXjrZ1wmqUHJlovCVBATk/nXZMgVMiOmllCmuL2VsDFVlBmbTdGG4K2+vE7a1Yp3Xak1a+V6NY+jAOdwAVfgwQ3U4R4a0AIGCM/wCm/Oo/PivDsfy9YNJ585gz9wPn8A3keM8Q==</latexit>t

<latexit sha1_base64="ktXyLOUJtG0ESQ82hReYjnjeiYA=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4Kkkt6rHgxWNF+wFtKJvtpl262YTdiVBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR23TJxqxpsslrHuBNRwKRRvokDJO4nmNAokbwfj25nffuLaiFg94iThfkSHSoSCUbTSA/Yv+6WyW3HnIKvEy0kZcjT6pa/eIGZpxBUySY3pem6CfkY1Cib5tNhLDU8oG9Mh71qqaMSNn81PnZJzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieONnQiUpcsUWi8JUEozJ7G8yEJozlBNLKNPC3krYiGrK0KZTtCF4yy+vkla14l1Vave1cr2ax1GAUziDC/DgGupwBw1oAoMhPMMrvDnSeXHenY9F65qTz5zAHzifPwa+jZc=</latexit>

t3()
Harvest <latexit sha1_base64="ktXyLOUJtG0ESQ82hReYjnjeiYA=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4Kkkt6rHgxWNF+wFtKJvtpl262YTdiVBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR23TJxqxpsslrHuBNRwKRRvokDJO4nmNAokbwfj25nffuLaiFg94iThfkSHSoSCUbTSA/Yv+6WyW3HnIKvEy0kZcjT6pa/eIGZpxBUySY3pem6CfkY1Cib5tNhLDU8oG9Mh71qqaMSNn81PnZJzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieONnQiUpcsUWi8JUEozJ7G8yEJozlBNLKNPC3krYiGrK0KZTtCF4yy+vkla14l1Vave1cr2ax1GAUziDC/DgGupwBw1oAoMhPMMrvDnSeXHenY9F65qTz5zAHzifPwa+jZc=</latexit>t3#2

(#3, ,)
<latexit sha1_base64="ktXyLOUJtG0ESQ82hReYjnjeiYA=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4Kkkt6rHgxWNF+wFtKJvtpl262YTdiVBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR23TJxqxpsslrHuBNRwKRRvokDJO4nmNAokbwfj25nffuLaiFg94iThfkSHSoSCUbTSA/Yv+6WyW3HnIKvEy0kZcjT6pa/eIGZpxBUySY3pem6CfkY1Cib5tNhLDU8oG9Mh71qqaMSNn81PnZJzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieONnQiUpcsUWi8JUEozJ7G8yEJozlBNLKNPC3krYiGrK0KZTtCF4yy+vkla14l1Vave1cr2ax1GAUziDC/DgGupwBw1oAoMhPMMrvDnSeXHenY9F65qTz5zAHzifPwa+jZc=</latexit>

t3

Figure 4: The harvest resource pool for tracking resources.

5 RESOURCE HARVESTING
5.1 Harvest Resource Pools
L���� maintains a harvest resource pool to track idle resources har-
vested from over-provisioned function invocations and record the
priority of harvested resources for reassignment. Fig. 4 illustrates
the harvest resource pool’s tracking mechanism for idle resources.
Each tracking object represents a harvested function invocation
using a tuple of three elements: (invo_id, hvst_resource_vol,
priority). The invo_id tracks the source function invocation of
harvested resources. The hvst_resource_vol denotes how many
resources (e.g., two CPU cores or 128 MB memory) are harvested,
and the priority indicates the order to utilize. We use the absolute
timestamp at the completion of execution as the priority, where
the timestamp equals to the sum of the current timestamp and
predicted execution duration.

In Fig. 4, Invocation 1 arrives at the platform at C1 with user-
de�ned two resource units. L����’s pro�ler predicts that Invocation
1 can only utilize one unit (rectangle in red), leaving another unit
idle (rectangle in green). L���� harvests the idle unit, takes the
estimated completion timestamp of Invocation 1 as the priority,
and issues a put operation to track the idle unit in the pool. The
same occurs to Invocations 2 and 3 upon their arrivals. At the same
time of Invocation 2’s arrival, Invocation 4 arrives at the platform
simultaneously, which has an appetite for four units but is only
con�gured with two. At C2, the pool has three available harvested
resource units: one from Invocation 1 completing at C4 and two
from Invocation 2 completing at C3. Note that Invocation 3 has not
arrived at the platform yet, thus there are only Invocations 1 and
2 in the pool at C2. L���� issues a get operation to borrow two
idle units from the pool to accelerate Invocation 4. The harvest
resource pool then provides one unit from Invocation 1 and one
unit from Invocation 2, as L���� prioritizes harvested resources that
can potentially be utilized longer. The reassignment takes e�ect
immediately when Invocation 4 starts execution.

The harvest resource pool’s features are as follows:
Essential operations. The harvest resource pool has two essential
operations inherited from a standard hash map: put and get. L����
puts a harvested resource into the pool by specifying the invocation
ID, the resource volume that is harvested, and the priority. To
accelerate invocations, L���� gets harvested resources from the
pool in a best-e�ort manner by specifying the desired volume.
Priority. L���� assigns a priority to each object in the pool for
tracking, where objects with larger priorities are utilized earlier to

accelerate other function invocations. We set the estimated com-
pletion timestamp of the harvested invocation as the resource’s
priority, where L���� estimates the completion timestamp of ex-
ecuting each function invocation using the predicted execution
time from the pro�ler. Intuitively, we design L���� to prioritize
harvested resources that potentially stay longer in the pool for
function acceleration.
Preemptive release. When the harvested function invocation
completes its execution, the harvested resources are no longer valid
for use in acceleration. Therefore, L���� must adopt a preemptive
release operation to free up the harvested resources in realtime
either from the harvest resource pool or other invocations that
are currently utilizing them. L���� can accelerate one function
invocation using harvested resources from multiple invocations
with varying timeliness. With harvested resource tracking, L����
can precisely release harvested resources in di�erent contexts and
avoid violating resource validity.
Re-harvesting. A typical accelerated function invocation possesses
two kinds of resources: resources owned by itself and resources
harvested from other invocations. When an accelerated invocation
completes the execution, the resources owned by itself are released.
However, the harvested resources are still available for accelerating
other function invocations. L���� re-harvests the resources and
stores them in the harvest resource pool for reassignment. When
re-harvesting the resources, we set the priorities to be the initial
estimated completion time for re-entering the pool.
Concurrency. Harvested resources can only be accessed by one
function invocation at a time, and thus the pool must maintain the
same view for all function invocations. Our harvest resource pool
achieves atomic resource operations with mutex exclusion.
Mitigating Out-of-Memory (OOM). We use several methods to
jointly mitigate the OOM problem during memory harvesting. First,
we set a lower bound of memory for each function so that L����
needs to reserve minimum memory for harvesting invocations.
Second, we use a safeguard (§4) for every container to detect the
memory usage bulk and try to release harvested memory back in
advance. Finally, we stop harvesting memory for functions that
frequently get safeguard triggered due to OOMproblems and retreat
to user-de�ned memory allocation.

5.2 Safeguard
L���� estimates the actual resource demands of an incoming func-
tion invocation using ML and histogram models. However, models’
potential misprediction might lead to performance degradation—
function invocations’ performance degrades due to resource over-
harvesting. L���� adopts a safeguard mechanism to avoid such
performance degradation. When detecting an approximated perfor-
mance drop from a function invocation with resource harvested,
L���� immediately returns all harvested resources to the invocation
using the preemptive release operation.

When receiving an incoming function invocation, L���� exe-
cutes the function using a container. During the execution, L����
continuously monitors the container’s resource usage in a monitor
window (e.g., 100 ms). If the usage approaches a certain threshold
(e.g., 80%), L���� immediately returns all resources harvested from
the invocation (either cached in the harvest resource pool or being
used by other function invocations) using preemptive release.

185

HPDC ’23, June 16–23, 2023, Orlando, FL, USA Hanfei Yu, Christian Fontenot, Hao Wang, Jian Li, Xu Yuan, and Seung-Jong Park

6 FUNCTION SCHEDULING
6.1 Complexity of Timeliness-aware Scheduling
L���� orchestrates multiple worker nodes and utilizes harvested
resources of each worker node to accelerate bursty and highly con-
current function invocations. The function scheduling problem for
L���� to fully utilize harvested resources across multiple worker
nodes can be simpli�ed and reduced to the dynamic bin-packing
problem [13], which is NP-hard in general. It is more challenging
to �nd an optimal solution in the case of online setting [8]. The
scheduling algorithm must be low-latency, lightweight, and timely
to accommodate the burstiness, high concurrency, and short life-
time of function invocations. Besides, to enable e�cient resource
timeliness-aware scheduling, the algorithm should be able to pro-
cess �ne-grained harvested resource information from a large scale
of worker nodes e�ciently. Hence, we opt for a heuristic algorithm
that greedily assigns a function to a worker node with themaximum
availability in both resource volume and timeliness.

6.2 Demand Coverage
The resource availability lies in two dimensions: volume and time-
liness. Thus, we use the product of resource volume and available
duration to indicate the resource availability (e.g., 2 CPU cores ⇥
10 seconds). We devise a new metric, demand coverage, which is
de�ned as the ratio of how much of the invocation’s resource de-
mands can be satis�ed by a worker node’s harvested resources. We
monitor the status of harvest resource pools in each worker node
and calculate a per-node demand coverage ratio for the invocation.
Fig. 5 shows an example to calculate demand coverage, where a
harvest resource pool tracks idle resource collections 0–4 harvested
from di�erent invocations, and an incoming invocation demands
two extra resource units from C3 to C7. We count the entire 3 from C3
to C5 and only part of 4 from C5 to C7 when calculating the demand
coverage for the invocation. We compute a separate CPU and mem-
ory demand coverage ratio for each harvest resource pool. Finally,
we calculate a weighted demand coverage⇡ := U⇥⇡2 +(1�U)⇥⇡< ,
where ⇡2 and ⇡< denote CPU and memory demand coverage, and
U 2 [0, 1] is the weight that controls the contribution of each type
of demand coverage. In general, we de�ne U > 0.5 to represent that
harvested idle CPU cores are more precious than memory.

6.3 Algorithm Design
The scheduler �rst classi�es incoming function invocations into two
categories based on their user-de�ned resources (i.e., user_cpu and
user_mem) and actual resource demands estimated by the pro�ler
(i.e., pred_cpu and pred_mem):

• Non-accelerable invocations, which cannot be accelerated
with any extra resources since their user-de�ned resources
can fully cover or beyond their actual demands.

• Accelerable invocations, which can be accelerated by extra
resources (CPU or memory) since their actual demands are
beyond their user-de�ned resources.

For non-accelerable invocations, the scheduler assigns a func-
tion’s invocations to the same worker node via a hashing algorithm,

Wall clockt1 t2 t4 t5 t6

d
e

Re
so

ur
ce

 u
nit

t3

1
2
3 Idle resources in pool

Invocation demands

Covered resources

t7

Demand coverage =

t8

1⇥ (t5 � t3) + 2⇥ (t7 � t5)

2⇥ (t7 � t3)

a
bc

Figure 5: An example of demand coverage calculation.
which reduces the cold-starts4 of invocations by reusing containers
on the same worker node. If the worker node does not have enough
available resources, the hashing algorithm will be executed again
to locate another available worker node, to which this function’s
upcoming invocations will be assigned.

For accelerable invocations, the scheduler �rst selects a set of
worker nodes with su�cient available resources to satisfy the in-
vocations’ user-de�ned resource demands. Then, the scheduler
calculates demand coverage ratios of CPU and memory for each
selected worker node. Finally, the scheduler greedily searches for a
worker node with the maximum weighted demand coverage ratio
to execute the invocation.

6.4 Decentralized Sharding Scheduler
To serve large-scale concurrent function invocations, the design
of L����’s scheduler must be low-latency (i.e., sub-second) and
e�cient. A centralized scheduler that handles invocations one by
one is impractical in production, which can easily pile up queued
invocations and become the bottleneck when a serverless cluster
scales to hundreds of worker nodes. We employ decentralized shard-
ing schedulers in L���� to extend scalability for large serverless
clusters. L���� manages a set of schedulers that distribute function
invocations to multiple worker nodes. The capacity (i.e., CPU and
memory) of a node is evenly sharded among all schedulers, meaning
that each scheduler has access to a slice of every worker node. For
example, if a node with 32 CPU cores and 32 GB is sharded between
four schedulers, each scheduler controls access to 8 cores and 8
GB on this node. Though the capacity of each node is horizontally
sharded, every scheduler can observe the same demand coverage
for a node as a whole, i.e., concurrent schedulers can accurately
capture the locality of harvested resources. The idea behind such de-
centralized sharding is simple—schedulers no longer need to share
any data for synchronization. Synchronizing shared states among
multiple schedulers is a costly operation for scheduling invocations
in serverless platforms. Querying every node when scheduling an
invocation is also impractical in large-scale clusters. Thus, L����
embeds the status information of harvest resource pool in nodes’
health ping messages. The piggyback trick signi�cantly reduces the
scheduling overhead—instead of querying every node, schedulers
only need to query their local data to compute the coverage for
selecting a node.

7 IMPLEMENTING LIBRA
L���� provides a general resource management service for func-
tions in serverless platforms. For concreteness, we describe its
implementation in the context of Apache OpenWhisk [6], and the
changes needed in OpenWhisk. We implement L���� using 2K lines
4Initialization delay of creating a container and installing dependencies for function
execution.

186

L����: Harvesting Idle Resources Safely and Timely in Serverless Clusters HPDC ’23, June 16–23, 2023, Orlando, FL, USA

of Python code for the pro�ler and user client, and 6K lines of Scala
code for OpenWhisk built-in components.
Frontend. OpenWhisk only allows users to de�ne the memory
limit of their functions and allocates CPU power proportionally
based on memory. To decouple CPU and memory, we add a CPU
argument and enable the front end to take user-input CPU and
memory con�gurations.
Pro�ler. We implement the pro�ler using Python. The workload
duplicator uses the multiprocessing library for parallel executing
functions and analyzing results. We build and train the pro�ler’s
ML models using the scikit-learn library [31].
Function scheduler. We implement L����’s timeliness-aware
scheduling algorithm and decentralized sharding schedulers based
on OpenWhisk’s built-in load balancer. We embed the status in-
formation of harvest resource pool in the invoker’s health ping
message. The controller periodically receives the pool status infor-
mation, which is further used to compute resource coverage when
serving an invocation.
Harvest resource pool. OpenWhisk runs a container pool on each
worker node to manage containers independently. We implement
the harvest resource pool in OpenWhisk’s container pool module.
We use the immutable hash map from Scala standard library to
implement the atomic access control for the harvest resource pool.
Preemptive release. We use docker-update API from the Docker
library to implement the preemptive release operation. The API can
update the CPU and memory con�guration for multiple containers
in real time [17]. Similar to OpenWhisk’s native Docker interfaces,
we wrap the docker-update using Scala code so that L���� can
call it asynchronously.
Safeguard. We implement the safeguard as a daemon process run-
ning inside OpenWhisk container runtimes. When a container
receives an invocation and starts execution, it �rst activates the
safeguarding process. If the resource usage exceeds the safeguard
threshold while executing the code, the daemon process immedi-
ately sends a request back to OpenWhisk’s container pool. The
container pool calls a preemptive release operation to return the
harvested resources. After the execution is done, the container de-
activates the daemon process. We employ Linux cgroups tools [25]
to monitor containers’ CPU and memory utilization at runtime.

8 EVALUATION
We implement a prototype of L���� using 2K lines of Python code
on the pro�ler and user client, and 6K lines of Scala code on other
components in OpenWhisk [6]. We deploy and evaluate L���� on
three clusters. L���� will be open-sourced after review.

8.1 Evaluation Metrics
We use two metrics to evaluate L����’s performance: function re-
sponse latency and system resource utilization.

Function response latency is the end-to-end response time
from invoking the function until receiving the execution result,
dictating serverless service user experience. Speci�cally, we use

speedup :=
Cuser � C libra

Cuser
(1)

as a uni�ed metric to quantize the performance of how L���� im-
proves a function invocation, where Cuser indicates the response

Table 1: Characterizations of serverless applications used in
OpenWhisk evaluation. (UL: Uploader, TN: Thumbnailer, CP:
Compression, DV: DNA Visualization, DH: Dynamic HTML,
VP: Video Processing, IR: Image Recognition, GP: Graph
Pagerank, GM: Graph Minimum-spanning-tree, GB: Graph
Breadth-�rst-search.)

Input Size Func. Description

Related

UL Upload input �les to storage
TN Thumbnail input images
CP Compress input �les
DV Visualize input DNA sequence �les
DH Generate HTMLs from input templates

Unrelated

VP Generate GIF of an input video
IR Recognize an input image
GP Pagerank a randomly generated graph
GM MST on a randomly generated graph
GB BFS on a randomly generated graph

latency of a function invocation executed with the user-de�ned
resource allocation AD , and C libra indicates the latency of an invo-
cation executed by L����. The speedup shows how L���� a�ects
the performance of a function invocation. Intuitively, a positive
speedup indicates the invocation is accelerated, a negative speedup
indicates the invocation is slowed down (e.g., due to inappropri-
ate resource harvesting), and a zero speedup indicates that the
invocation preserves its performance.

System resource utilizationmeasures how e�cient the server-
less computing platform can utilize the hardware resources, which
is calculated as

sys_util :=
utilized_resources
available_resources

, (2)

where utilized_resources and available_resources indicate the re-
sources utilized by function invocations and the total available
resources for users, respectively.

8.2 Experiment Setup
8.2.1 Testbeds. We evaluate L���� on three OpenWhisk clusters:
Single-node cluster: The single-node cluster has three nodes, in-
cluding one client for invoking functions, one controller that hosts
OpenWhisk components, and one worker with 72 Intel Xeon E5-
2670 CPU cores and 72 GB of memory for executing functions.
Multi-node cluster: A six-node cluster includes one client node,
one controller node, and four worker nodes. Each worker node
provides 32 Intel Xeon E5-2420 CPU cores and 32 GB memory for
executing functions.
Jetstream cluster: A 50-node cluster using Jetstream [40, 43], which
is a cloud computing environment for scienti�c research. Each
node has 24 Intel Xeon E5-2680 CPU cores and 24 GB memory for
executing functions.

8.2.2 Workloads. We sample eleven function invocation trace
sets from Azure Functions traces [36] for evaluation:

• One single trace set for single-node cluster evaluation. The
single set consists of 165 function invocations.

• Ten multi trace sets for multi-node cluster evaluation. The
ten multi sets consist of in total 1,050 function invocations
with invocation frequency increasing from 10 to 300 request
per minute (RPM). Note that 95% of the functions running

187

HPDC ’23, June 16–23, 2023, Orlando, FL, USA Hanfei Yu, Christian Fontenot, Hao Wang, Jian Li, Xu Yuan, and Seung-Jong Park

on Azure Functions have 60 RPM or less [36]. We assume
300 RPM is su�ciently high for realistic serverless traces.

We employ a real-world serverless benchmark suite, SeBS [14], to
conduct a realistic evaluation. Table 1 characterizes ten applications
from the SeBS benchmark suite. All functions are implemented in
Python. We set the initial resource con�guration of each function
according to the default settings from the suites. Since the SeBS
benchmark suite does not provide input datasets, we collect data
points from real-world datasets as input data for invoking the ten
functions. Speci�cally, we randomly sample 100 pictures from the
CIFAR-100 dataset [26] for TN and IR. We randomly sample 100
videos from the YouTube-8M dataset [1] for UL, CP, and VP. We
use genome sequences of Bacillus subtilis from NCBI dataset [47]
for DV. We randomly sample 100 di�erent graphs from igraph [15]
for GP, GM, and GB as input data.

8.2.3 L����’s se�ings. We implement ML models using two RF
classi�ers and one regressor with scikit-learn library [31], and his-
togram models with NumPy [24] in the pro�ler. Pro�ler’s workload
duplicator scales and duplicates the input data in a uniform distri-
bution with a maximum of 100 times. We use the created dataset to
train three initial RF models in L����’s pro�ler for prediction. The
models capture function-speci�c patterns such as resource usage
and execution time. Hence, the function (or application) code is
the same for evaluation and development since models are built
per function. However, the training data (e.g., function-speci�c pat-
terns for training) for model development and testing data (e.g.,
function-speci�c patterns during evaluation) for evaluation are dif-
ferent. We split the datasets into a 7:3 ratio for training and testing.
All the testing data (patterns) are not exposed during the model
development phase. The ten functions are con�gured with eight
CPU cores and 1,024 MB memory in o�ine pro�ling, which is the
maximum allocation for each function in our experimental envi-
ronment. We set the safeguard threshold to be 0.8 and the demand
coverage weight to be 0.9 for L���� in our evaluation.

8.3 E�ectiveness of L����’s Harvesting
We compare L���� with two existing resource managers for server-
less platforms and three variants of itself on the single-node cluster:
1) Default, the default resource management in OpenWhisk (also in
existing serverless platforms) that allocates user-de�ned resources
to functions. The resource allocation stays �xed during individual
function executions, and all invocations of the same function receive
a �xed amount of resources. 2) Freyr, a state-of-the-art serverless
resource management platform that uses DRL to harvest idle re-
sources and accelerate function executions [49]. We implemented
Freyr based on its open-sourced code repository and trained the
models following the algorithms described in its paper using the
same workloads in our evaluation. 3) L����-NS (No Safeguard). A
variant of L���� without safeguard mechanism. We turn o� the
safeguard daemon when L���� executes function invocations. 4)
L����-NP (No Pro�ler). A variant of L���� without pro�ler. This
variant does not have a pro�ler to predict three metrics (i.e., CPU us-
age peak, memory usage peak, and execution time). Instead, it uses
a moving window to determine three metrics. Every function has
a moving window for monitoring invocation history. The moving
window keeps track of = latest invocations and takes the maximum

C
D

F

0

0.5

1.0

Response Latency (s)
0 50 100

Default
Freyr
Libra
Libra-NSP
Libra-NS
Libra-NP

C
D

F

0

0.5

1.0

Speedup
−2 −1 0 1

(a) Response Latency (b) Speedup

Figure 6: CDFs of comparing L���� with two existing server-
less platforms and three variant.

Allocated Res.
Utilized Res.
Utilization

C
PU

 c
or

es

0
20
40
60
80 U

tilization

0

0.4

0.8

Wall Clock Time (s)
0 200 400

R
AM

 (M
B)

0k

5k

10k

U
tilization

0
0.2
0.4
0.6

Wall Clock Time (s)
0 200 400

C
PU

 c
or

es

0
20
40
60
80 U

tilization

0

0.4

0.8

Wall Clock Time (s)
0 200 400

R
AM

 (M
B)

0k

5k

10k

U
tilization

0
0.2
0.4
0.6

Wall Clock Time (s)
0 200 400

C
PU

 c
or

es
0

20
40
60
80 U

tilization

0

0.4

0.8

Wall Clock Time (s)
0 200 400

R
AM

 (M
B)

0k

5k

10k U
tilization

0
0.2
0.4
0.6

Wall Clock Time (s)
0 200 400

C
PU

 c
or

es

0
20
40
60
80 U

tilization

0

0.4

0.8

Wall Clock Time (s)
0 200 400

R
AM

 (M
B)

0k

5k

10k

U
tilization

0
0.2
0.4
0.6

Wall Clock Time (s)
0 200 400

C
PU

 c
or

es

0
20
40
60
80 U

tilization

0

0.4

0.8

Wall Clock Time (s)
0 200 400

R
AM

 (M
B)

0k

5k

10k

U
tilization

0
0.2
0.4
0.6

Wall Clock Time (s)
0 200 400

C
PU

 c
or

es

0
20
40
60
80 U

tilization

0

0.4

0.8

Wall Clock Time (s)
0 200 400

R
AM

 (M
B)

0k

5k

10k U
tilization

0
0.2
0.4
0.6

Wall Clock Time (s)
0 200 400

(a) Default

(b) Freyr

(c) Libra-NS

(d) Libra-NP

(e) Libra-NSP

(f) Libra

Figure 7: CPU and memory utilization of six platforms
through the experiment timeline.

CPU usage peak, memory usage peak, and execution time as the de-
cision for the next incoming invocation. We set the window size to
�ve for each function in the experiment. 5) L����-NSP (no Safeguard
and Pro�ler), a variant of L���� without safeguard mechanism and
the pro�ler. We run six platforms using the same single trace set
and present the results averaged over �ve times of experiments.

8.3.1 Comparisons with State-of-the-arts. We �rst compare
L����with two existing resource managers for serverless platforms,
default OpenWhisk and Freyr, to evaluate the performance.
Response latency. Fig. 6(a) shows the CDF of function response
latency of three platforms. L���� outperforms the other two plat-
forms because of carefully harvesting and accelerating function
invocations with resource timeliness awareness. L���� reduces the
99th-percentile of the same workload by 50% and 39% compared to
OpenWhisk default and Freyr, respectively.

188

L����: Harvesting Idle Resources Safely and Timely in Serverless Clusters HPDC ’23, June 16–23, 2023, Orlando, FL, USA

0

Default
Harvest

Accelerate
Safeguard

Sp
ee

du
p

Core × Sec
−1.0 −0.5 0 0.5 1.0

0

Sp
ee

du
p

MB × Sec
−1.0 −0.5 0 0.5 1.0

−1

0

Sp
ee

du
p

Core × Sec
−100 0 100 200 300

−1

0

Sp
ee

du
p

MB × Sec
−20,000 0

−0.5

0

0.5

Sp
ee

du
p

Core × Sec
0 200 400

−0.5

0

0.5

Sp
ee

du
p

MB × Sec
−20,000 0

0

0.2

0.4

0.6

Sp
ee

du
p

Core × Sec
0 200 400

0

0.2

0.4

0.6

Sp
ee

du
p

MB × Sec
−20,000 0

−1.5
−1.0
−0.5

0

Sp
ee

du
p

Core × Sec
0 200 400

−1.5
−1.0
−0.5

0

Sp
ee

du
p

MB × Sec
−20,000 0

0

0.5

Sp
ee

du
p

Core × Sec
0 200 400

0

0.5

Sp
ee

du
p

MB × Sec
−20,000 0

(a) Default

(b) Freyr

(c) Libra-NS

(d) Libra-NP

(e) Libra-NSP

(f) Libra

Figure 8: Performance of individual invocations processed by
six platforms. Default (•): invocations with user-requested
allocation. Accelerate (+): invocations accelerated by supple-
mentary allocation. Harvest (�): invocations with resource
harvested. Safeguard (⇥): safeguarded invocations.
Speedup and performance degradation. Fig. 6(b) shows the CDF
of execution speedup of three platforms. L���� outperforms the
other two by providing faster function invocation executions with-
out signi�cantly degrading performance. Invocations processed by
OpenWhisk default have no speedup or degradation due to default
is the baseline. L���� degrades invocation performance with 2% at
worst regarding response latency, whereas Freyr su�ers at worst
180% performance degradation.
Systemutilization andworkload completion time. Fig. 7 presents
the CPU and memory utilization of three platforms through the
experiment timeline. L���� utilizes CPU and memory more e�-
ciently than the other two platforms. Speci�cally, L���� achieves
3.82⇥/2.09⇥ and 2.93⇥/2.48⇥ average CPU/memory utilization com-
pared to OpenWhisk default and Freyr, respectively. Correspond-
ingly, L���� completes the workload 51% and 43% faster.
Harvesting and acceleration. Fig. 8 shows the resource reassign-
ment details of all invocations processed by three platforms. We
use a product of reassigned resources and occupied time to present

the two-dimensional impact of resource reallocation on each in-
vocation. OpenWhisk default has no resource adjustment during
workload processing. Freyr achieves poor performance on both har-
vesting and acceleration without awareness of harvested resource
timeliness. L���� o�ers careful harvesting and better acceleration
performance with higher speedups for invocations.

8.3.2 Ablation Study. We then perform an ablation study to
examine the e�ectiveness of two key components in L����: the
pro�ler and safeguard. We compare L���� with three variants:
L����-NS, L����-NP, and L����-NSP.
Response latency. Fig. 6(a) shows the function response latency
CDF of four L���� variants. L���� outperforms the other variants
due to being fully equipped with pro�ler and safeguard. L����
reduces the 99th-percentile of the same workload by 15%, 30%, and
34% compared to L����-NS, L����-NP, and L����-NSP, respectively.
Speedup and performance degradation. Fig. 6(b) shows the
execution speedup CDF of four variants. L���� outperforms the
other three variants by providing faster function invocation ex-
ecutions without signi�cantly degrading harvested invocations’
performance. L���� and L����-NP degrade execution performance
2% and 6% at worst regarding response latency. Compared to L����
and L����-NP, L����-NS and L����-NSP su�er at worst 42% and
197% performance degradation.
Systemutilization andworkload completion time. Fig. 7 shows
the CPU and memory utilization of four L���� variants through
the experiment timeline. L���� utilizes CPU and memory more ef-
�ciently than the other three variants. L���� achieves 1.21⇥/1.40⇥,
1.84⇥/1.60⇥, and 2.05⇥/2⇥ average CPU/memory utilization com-
pared to L����-NS, L����-NP, and L����-NSP, respectively. It com-
pletes the workload 17%, 30%, and 42% faster.
Harvesting and acceleration. Fig. 8 shows the performance of
all invocations processed by four variants. L���� and L����-NS
provides more precise harvesting and faster execution acceleration
(higher speedups) with pro�ler’s accurate predictions, whereas L��
���-NP and L����-NSP accelerates function invocations less (lower
speedups). Note that due to pro�ler’s predictions, L���� has less
safeguarded invocations than L����-NP. L���� and L����-NP have
some invocations protected by the safeguard daemon, resulting in
limited performance degradation. In contrast, invocations handled
by L����-NS and L����-NSP can experience serious performance
degradation without safeguard protection.

8.4 E�ectiveness of L����’s Scheduling
We then deploy L���� on the multi-node cluster to evaluate the ef-
fectiveness of its scheduling algorithm. We compare L����’s sched-
uling algorithm with four baselines: 1) Default. The default schedul-
ing algorithm inside OpenWhisk. OpenWhisk controller calculates
a unique hash key for each function and always schedules invoca-
tions under the same function to the same node. 2) Round Robin (RR).
A classic yet popular load balancing algorithm that distributes the
load by sending successive requests to di�erent invokers in a cycli-
cal manner. 3) Join-the-Shortest-Queue (JSQ) [23]. A well-known
load balancing algorithm that e�ectively reduces queueing time and
resource contention by sending incoming invocation to the node
with the least pending jobs. 4) Min-Worker-Set (MWS) [50]. A state-
of-the-art scheduling algorithm dynamically schedules invocations

189

HPDC ’23, June 16–23, 2023, Orlando, FL, USA Hanfei Yu, Christian Fontenot, Hao Wang, Jian Li, Xu Yuan, and Seung-Jong Park

Default
RR

JSQ
MWS

Libra

P9
9

La
te

nc
y

(s
)

0

50

100

Request per Min
0 50 100 150 200 250 300

Figure 9: 99th-percentile invocation end-to-end response la-
tency of �ve scheduling algorithms.

Default RR JSQ MWS Libra

To
ta

l T
im

e
(s

)

0

200

400

Request per Min
10 20 30 40 50 60 120 180 240 300

Id
le

 c
or

e
x

Se
c

0

2000

Request per Min
10 20 30 40 50 60 120 180 240 300

Id
le

 M
B

 x
 S

ec

2K
100K
200K
300K

Request per Min
10 20 30 40 50 60 120 180 240 300

(a) Workload completion time

(b) Idle CPU core x Idle time

(c) Idle memory x Idle time

Figure 10: Workload completion time and performance of
utilizing harvested resources of �ve scheduling algorithms.

Default
RR
JSQ

MWS
Libra

Av
g

C
PU

 (%
)

10

20

30

40

Request per Min
0 100 200 300

Pe
ak

 C
PU

 (%
)

20

40

60

80

100

Request per Min
0 100 200 300

Av
g

M
em

 (%
)

5

10

15

20

25

Request per Min
0 100 200 300

Pe
ak

 M
em

 (%
)

20

40

60

Request per Min
0 100 200 300

(a) Average CPU utilization (b) Peak CPU utilization

(c) Average mem uilization (d) Peak mem utilization

Figure 11: Average/peak CPU and memory utilization.
to the node with the least resource pressure. We enable the cluster
with L����’s function harvesting and acceleration when evaluating
all �ve algorithms for a fair comparison on scheduling. We evaluate
�ve algorithms by running the ten multi trace sets sequentially and
report the results averaged over �ve times of experiments.
P99 response latency. L���� consistently achieves the lowest P99
latency for all traces (Fig. 9).
System utilization. Fig. 11 reports the average/peak CPU and
memory utilization of �ve scheduling algorithms. L���� gener-
ally maintains the highest CPU and memory utilization among all
baselines for ten trace sets.
Workload completion time. We de�ne workload as a collection of
multiple incoming function invocations, and workload completion
time as the time from invoking the �rst invocation until the last
invocation completes. From Fig. 10(a), L���� outperforms the other
four algorithms by completing workloads faster.
Idle time of harvested resources. Our evaluation keeps track of
every harvested resource’s entry time and leave time in harvest
resource pools. We de�ne idle time as the time when harvested

1
2

3
4

C
om

pl
et

io
n

Ti
m

e
(s

)

150

200

250

300

of Nodes
10 20 30 40 50 C

om
pl

et
io

n
Ti

m
e

(s
)

140

160

180

200

of Nodes
10 20 30 40 50

Av
g

D
el

ay
 (m

s)

0.7

0.8

0.9

1.0

of Invocations
20

0
40

0
60

0
80

0
10

00

(a) Strong Scaling (b) Weak Scaling (c) Sched. Delay
Figure 12: L����’s scalability and scheduling overhead.

resources staying in the pool without any invocations actually
utilizing them. We then sum up the values of all the product of
harvested resources and their idle time to indicate the performance
of how a scheduling algorithm utilizes the harvested resources.
Intuitively, a lower value indicates a better utilization of harvested
resources for a scheduling system. Fig. 10(b) and (c) show that L����
generally maintains the lowest value among all algorithms for all
traces. It makes the best use of harvested resources.

8.5 Scalability
We study the strong scaling and weak scaling of decentralized shard-
ing schedulers in L���� using the Jetstream cluster. Strong scaling
evaluates L����’s performance on increasing worker nodes when
given a �xed total number of function invocations; and weak scal-
ing evaluates the performance on increasing worker nodes when
the average number of invocations distributed to each node is �xed.
We gradually increase the number of L����’s schedulers from one
to four to examine the e�ectiveness of increasing concurrent sched-
ulers. Note that one scheduler is exactly a centralized version. We
use the same workload that consists of ten real-world functions
used in previous experiments to measure the scalability of L����.
Each function has the number of invocations evenly divided from
the total number. We keep the initial resource con�guration the
same as the previous experimental setup. We enable L����’s har-
vesting and timeliness-aware scheduling to evaluate the scalability
in realistic scenarios.
Strong scaling. We launch 1000 concurrent invocations where
each function is invoked 100 times simultaneously. Fig. 12(a) shows
the performance of strong scaling when L���� gradually increases
the number of schedulers from one to four. The completion time of
workload decreases with the number of schedulers increasing.
Weak scaling. We set the average number of invocations assigned
to each worker as 20 and evaluate the weak scaling of L����, which
means that 200 concurrent invocations for 10 nodes and 1000 for
50 nodes. Fig. 12(b) shows the trend of completion time does not
rise signi�cantly when workload intensity increases.
Scheduling overhead. We de�ne the scheduling overhead of an
invocation as the time when a scheduler picks it up until sending it
to a node. We measure the scheduling overhead averaged over con-
current invocations using the 50-node cluster with four schedulers.
Fig. 12(c) shows the average overhead with workload intensity in-
creasing from 200 to 1000. L���� maintains the overhead under 1
ms consistently.

8.6 Pro�ler’s Model Analysis
Metrics. We adopt two metrics, accuracy and '2 score, to evalu-
ate the performance of multi-classi�cation and regression models,
respectively. For classi�cation problems, accuracy measures the

190

L����: Harvesting Idle Resources Safely and Timely in Serverless Clusters HPDC ’23, June 16–23, 2023, Orlando, FL, USA

Libra
Hist
ML

C
D

F

0

0.5

1.0

Speedup
0 1

Default
Freyr
Libra

C
D

F
0

0.5

1.0

Speedup
−1 0 1

Default
Freyr
Libra

C
D

F

0

0.5

1.0

Speedup
−1 0

(a) Model ablation study (b) Input size-related (c) Input size-unrelated
Figure 13: Model ablation study and input size sensitivity.

Sa
fe

gu
ar

d
R

at
io

 (%
)

0
20
40
60
80

Threshold
0 0.5 1.0

P9
9

La
te

nc
y

(s
)

60

80

100

120

Threshold
0 1

(a) (b)

Figure 14: Sensitivity analysis of safeguard thresholds.
fraction of predictions from models that are correct. A higher ac-
curacy generally means a better model. For regression problems,
'2 score measures the proportion of the variation in the dependent
variable that is predictable from the independent variable. An '2

score at 1.0 indicates two variables are perfectly correlated.
Models. We examine four popular ML models for each task. For
CPU/memory usage and execution time prediction, we evaluate
Logistic/Linear Regression (LR), Support Vector Machines (SVM),
Neural Networks (NN), and Random Forest (RF). All models are
tuned with hyperparameter searching from scikit-learn library [31].
We use the collected ten functions and realistic datasets in §8.2
to evaluate four models. The datasets are split in a 7:3 ratio for
training and testing.
Prediction performance. Table 2 reports the accuracy and '2

score of four models for each workload function. RF outperforms
the other three models for all tasks regarding average accuracy and
'2 score. Speci�cally, for CPU usage prediction, RF’s accuracy is 6%,
8%, and 2% higher than LR, SVM, and NN, respectively. Four models
show less variance for memory usage prediction, where RF’s accu-
racy is 1%, 1%, and 2% higher than LR, SVM, and NN, respectively.
For execution time prediction, RF’s '2 score is signi�cantly higher
than others and the closest to 1.0.
Input size-related and unrelated functions. Input size-related
and unrelated functions show a signi�cant di�erence. We can draw
a boundary between the two types by specifying a threshold on
the accuracy and '2 score. For example, we may use a 0.9 accuracy
and a 0.9 '2 score as indicators to distinguish whether a function
is input size-related.
Model ablation study. Fig. 13(a) presents the speedup CDF of
L���� and two variants, L���� with only histogram models (Hist)
and L���� with only ML models (ML), when running the workload
on the single-node cluster. L���� outperforms the two variants for
handling workloads that include both types of functions.
Prediction overhead. In our experiments, L����’s predictions
introduce an average prediction overhead of less than 2 ms. The
overhead is negligible compared to the execution time of most
serverless functions, as 75% of functions onAzure Functions execute
for at least 1 second [36].
Training time. The o�ine training to initialize a model takes less
than 120 ms, while the online training on an existing model takes
less than 1 ms. Both o�ine training and online training incur trivial
overhead compared to the execution times of most functions.

Table 2: Comparison on ten functions with four di�erent
machine learning models. Metrics include: CPU usage pre-
diction accuracy/Memory usage prediction accuracy/'2 score
of execution time prediction.

Func. LR SVM NN RF

UL 0.76/1.0/0.93 0.70/1.0/0.91 0.84/0.97/0.53 0.85/1.0/0.92
TN 0.91/0.92/0.92 0.94/0.96/0.77 0.97/0.96/0.22 0.98/0.97/0.93
CP 0.90/1.0/0.94 0.87/1.0/0.89 0.92/0.98/0.35 0.95/1.0/0.97
DV 1.0/0.99/0.89 1.0/0.98/-5.65 0.99/0.97/-0.36 1.0/1.0/0.95
DH 0.89/1.0/0.65 0.87/0.97/-475 0.93/1.0/-21 0.95/0.99/0.92

Avg. 0.89/0.98/0.86 0.87/0.98/-95 0.93/0.97/-4.14 0.95/0.99/0.94
VP 0.45/0.20/-2.29 0.52/0.52/-34 0.62/0.67/-15 0.58/0.63/-0.14
IR 0.47/0.42/-5.99 0.43/0.49/-254 0.49/0.57/-88 0.65/0.59/-4.40
GP 0.51/0.47/-0.07 0.53/0.59/-0.13 0.56/0.65/-0.08 0.61/0.69/-0.06
GM 0.52/0.46/-0.05 0.61/0.49/-0.05 0.58/0.46/-0.20 0.62/0.50/-0.04
GB 0.41/0.56/-0.02 0.47/0.46/-0.04 0.43/0.63/-0.07 0.47/0.66/-0.01

Avg. 0.47/0.42/-1.68 0.51/0.51/-57 0.53/0.60/-20 0.59/0.61/-0.93

8.7 Input Size Sensitivity
We investigate L����’s sensitivity of input sizes via the three types
of workloads: hybrid, input size-related, and input size-unrelated.
The hybrid workload includes all ten functions in Table 1, the input
size-related workload consists of �ve functions (UL, TN, CP, DV,
andDH), and the input size-unrelatedworkload consists of the other
�ve (VP, IR, GP, GM, and GB). All functions’ initial con�gurations
follow the same settings of experiments in §8.3.

Fig. 6(b), Fig. 13(b), and Fig. 13(c) show the speedup CDF of the
OpenWhisk default, Freyr, and L���� when running the hybrid,
input size-related, and input size-unrelated workloads, respectively.
L���� o�ers the best performance running the input size-related
workload, which accelerates 99th-percentile of invocations by 94%
and 58% over default and Freyr, respectively. For the hybrid work-
load, L���� accelerates 99th-percentile of invocations less by 50%
and 39% over default and Freyr, respectively. L���� provides the
least performance gain for the input size-unrelated workload, which
still improves by 13% and 12% over default and Freyr, respectively.
The more input size-related functions in a workload, the lower
is L����’s performance. Nevertheless, L���� still improves input
size-unrelated functions’ performance.

8.8 Parameter Sensitivity Analysis
Safeguard’s threshold. We set the default threshold value to be
0.8 in L����’s safeguard, allowing invocations to trigger safeguard
just before detecting a full utilization. We conduct a sensitivity
check by running L����with the single trace set on the single-node
cluster. Fig. 14(a) shows the ratio of invocations that safeguarded
by L���� with the threshold increasing from 0 to 1 in the step of
0.1. Fig. 14(b) shows the P99 function response latency of each run.
The safeguarded invocation ratio drops with threshold increasing
as L���� gradually harvests idle resources wildly. Due to degraded
performance and limited safeguarding, L���� performs worse for
thresholds beyond 0.8.
Demand coverage weight. We set the default weight to be 0.9 in
L����’s demand coverage calculation, letting CPU demand cover-
age contribute much larger than memory coverage. We conduct a
sensitivity check on the weight by running L���� using the multi
trace set with 120 RPM on the multi-node cluster. Fig. 16(a) shows

191

HPDC ’23, June 16–23, 2023, Orlando, FL, USA Hanfei Yu, Christian Fontenot, Hao Wang, Jian Li, Xu Yuan, and Seung-Jong Park

Frontend
Profiler
Scheduler
Havest Pool
Container Init.
Code Exec.

Fu
nc

tio
n

UL
TN
CP
DV
DH
VP
IR

GP
GM
GB

Latency (s)
0 2 4 6 8 10

Figure 15: L���� latency breakdown.
CPU Idle Mem Idle

Id
le

 c
or

es
 x

 S
ec

500
600
700
800

Idle M
B x Sec50K

60K

70K

Weight
0 1

P9
9

La
te

nc
y

(s
)

60

80

100

Weight
0 1

(a)
(b)

Figure 16: Sensitivity analysis of demand coverage weight.
the CPU/memory idle values with weight increasing from 0 to 1 in
the step of 0.1. Fig. 16(b) shows the P99 latency of each run. When
the weight increases, CPU coverage gradually contributes more to
the total weighted coverage, and memory coverage contributes less.
This results in CPU idle value decreasing and memory idle value
increasing. L���� with 0.9 coverage weight achieves the lowest P99
function response latency.

8.9 Latency Breakdown
Fig. 15 shows the latency breakdowns of ten functions in evaluation.
We run the ten functions in the same setting as multi-node experi-
ments. L����’s components incur negligible overhead compared to
the container initialization time and function execution time.

8.10 Overheads of L����’s Components
We measured the overheads of L����’s individual components
when running the same workloads from previous experiments on
themulti-node cluster (§8.2.1). The pro�ler incurs 1.0 core CPU over-
head and 268 MB memory overhead; the scheduler incurs 0.6 core
CPU overhead and 134 MB memory overhead; the harvest resource
pool incurs 0.2 core CPU overhead and 46 MB memory overhead.
Running the whole Libra incurs less than 3% (5%) CPU (memory)
overheads compared to the volume of harvested resources, which
are negligible. The overheads will be even lower if Libra handles
fewer function invocations.

9 RELATEDWORK
Resource harvesting. A few studies proposed to harvest VM’s idle
resources due to users’ static and inaccurate resource allocation.
SmartHarvest [45] proposed a VM resource harvesting algorithm
using online learning and o�ers a new low-priority VM service us-
ing harvested resources. Zhang et al. proposed an MWS scheduling
algorithm that uses Harvest VMs to serve serverless computing
[50]. In contrast, L���� harvests idle resources from function in-
vocations in �ne granularity and uses the harvested resources to
accelerate function executions. Freyr is the closest work to L����,
yet being outperformed due to three key di�erences: First, Freyr is
not aware of resource timeliness. Freyr can estimate the volume of
resources that a function invocation needs, but when it harvests
and reallocates resources from other functions, it ignores whether

the harvested resources would be available throughout the whole
execution. Second, Freyr’s prediction does not explicitly capture in-
put data size. Freyr uses a DRL agent to predict function invocation
demands, where the observed states lack of input size information.
Third, Freyr’s safeguard is not timely safe. Unlike L����’s preemp-
tive release, which returns harvested resources at function runtime,
Freyr only resumes the resource allocation to the user-de�ned value
for the next invocation, leaving the current invocation su�ering
from mis-prediction.
Caching. Faa$T [33] transparently scales caches based on data
access patterns to speed up function invocations. Instead of data
caching, L���� focuses on harvesting idle CPU and memory re-
sources to accelerate function executions. OFC [29] is the closest
work to L����. OFC needs to manually craft features for di�erent
data types and request access to input data content for memory
allocation estimation. However, L���� generalizes to di�erent data
types and requires no access to input content by optimizing function
invocations as black boxes. OFC only harvests memory, whereas
L���� jointly harvests CPU and memory and can be easily extended
to other resource types.
User-side function con�guration. Many studies optimized single
serverless function resource con�guration from the user side such
as [2, 18, 27, 30, 46]. L���� is a provider-side solution that provides
transparent resource reallocation from the view of providers instead
of tuning user con�guration.
Function invocation scheduling. Many existing studies aimed
to improve function execution performance [21, 38, 41, 48] and
resource utilization [9, 10, 50] by designing novel scheduling algo-
rithms for serverless computing. Existing scheduling solutions for
serverless computing consider no harvested resources. While no
existing scheduling solutions incorporate resource harvesting, we
show that L����’s scheduling outperforms state-of-the-arts.

10 CONCLUSION
This paper proposed L����, a new provider-side serverless comput-
ing technique that accelerates function invocations by harvesting
idle resources safely and timely. L���� achieves both low function
response latency and high resource utilization on real clusters with
realistic workloads. Experimental results showed that L���� re-
duces function response latency by 39% and achieves 3⇥ resource
utilization compared to state-of-the-art solutions.

11 ACKNOWLEDGMENTS
We thank the anonymous HPDC shepherd and reviewers for their
valuable input. The work of H. Yu, C. Fontenot, and H. Wang was
supported by NSF CRII-OAC-2153502 and the AWS Cloud Credit
for Research program. The work of J. Li was supported by NSF CRII-
CNS-NeTS-2104880, RINGS-2148309, ARO W911NF-23-1-0072, and
DOE DE-EE0009341. The work of X. Yuan was supported by NSF
1763620, 1948374, and 2146447. The work of S. Park was supported
by NSF 2120248. This work used JetStream at IU through allocation
CIS220024 from the Extreme Science and Engineering Discovery
Environment (XSEDE), which was supported by NSF grant number
1548562. Any opinions, �ndings, and conclusions or recommenda-
tions expressed in this material are those of the authors and do not
necessarily re�ect the views of the funding agencies.

192

L����: Harvesting Idle Resources Safely and Timely in Serverless Clusters HPDC ’23, June 16–23, 2023, Orlando, FL, USA

REFERENCES
[1] Sami Abu-El-Haija, Nisarg Kothari, Joonseok Lee, Paul Natsev, George Toderici,

Balakrishnan Varadarajan, and Sudheendra Vijayanarasimhan. 2016. Youtube-8m:
A Large-scale Video Classi�cation Benchmark. arXiv preprint arXiv:1609.08675
(2016).

[2] Nabeel Akhtar, Ali Raza, Vatche Ishakian, and Ibrahim Matta. 2020. COSE:
Con�guring Serverless Functions using Statistical Learning. In Proc. of the 2020
IEEE Conference on Computer Communications (INFOCOM).

[3] Ahsan Ali, Riccardo Pinciroli, Feng Yan, and Evgenia Smirni. 2020. BATCH:
Machine Learning Inference Serving on Serverless Platforms With Adaptive
Batching. In Proc. of the IEEE International Conference for High Performance
Computing, Networking, Storage and Analysis (SC). IEEE, 1–15.

[4] Pradeep Ambati, Íñigo Goiri, Felipe Frujeri, Alper Gun, Ke Wang, Brian Dolan,
Brian Corell, Sekhar Pasupuleti, Thomas Moscibroda, Sameh Elnikety, et al. 2020.
Providing SLOs for Resource-Harvesting VMs in Cloud Platforms. In Proceedings
of the 14th USENIX Conference on Operating Systems Design and Implementation
(OSDI).

[5] Lixiang Ao, Liz Izhikevich, Geo�reyMVoelker, and George Porter. 2018. Sprocket:
A Serverless Video Processing Framework. In Proc. of the ACM Symposium on
Cloud Computing (SoCC).

[6] Apache. 2018. Apache OpenWhisk: Open Source Serverless Cloud Platform.
https://openwhisk.apache.org. [Online; accessed 1-May-2018].

[7] Arda Aytekin and Mikael Johansson. 2019. Harnessing the Power of Serverless
Runtimes for Large-Scale Optimization. arXiv preprint arXiv:1901.03161 (2019).

[8] Yossi Azar and Danny Vainstein. 2019. Tight Bounds for Clairvoyant Dynamic
Bin Packing. ACM Transactions on Parallel Computing (TOPC) (2019).

[9] Bharathan Balaji, Christopher Kakovitch, and Balakrishnan Narayanaswamy.
2021. FirePlace: Placing Firecraker Virtual Machines with Hindsight Imitation.
Proc. of Machine Learning and Systems (MLSys) 3 (2021).

[10] Vivek M Bhasi, Jashwant Raj Gunasekaran, Aakash Sharma, Mahmut Taylan
Kandemir, and Chita Das. 2022. Cypress: Input Size-sensitive Container Provi-
sioning and Request Scheduling for Serverless Platforms. In Proceedings of the
13th Symposium on Cloud Computing (SoCC).

[11] Joao Carreira, Pedro Fonseca, Alexey Tumanov, Andrew Zhang, and Randy Katz.
2019. Cirrus: a Serverless Framework for End-to-end ML Work�ows. In Proc. of
the ACM Symposium on Cloud Computing (SoCC).

[12] Ryan Chard, Yadu Babuji, Zhuozhao Li, Tyler Skluzacek, Anna Woodard, Ben
Blaiszik, Ian Foster, and Kyle Chard. 2020. FuncX: A Federated Function Serv-
ing Fabric for Science. In Proc. of The 29th International Symposium on High-
Performance Parallel and Distributed Computing (HPDC). 65–76.

[13] Edward G Co�man, Jr, Michael R Garey, and David S Johnson. 1983. Dynamic
Bin Packing. SIAM J. Comput. (1983).

[14] Marcin Copik et al. 2020. SeBS: A Serverless Benchmark Suite for Function-as-a-
Service Computing. arXiv preprint arXiv:2012.14132 (2020).

[15] Gabor Csardi, Tamas Nepusz, et al. 2006. The igraph Software Package for
Complex Network Research. InterJournal, complex systems (2006).

[16] Christina Delimitrou and Christos Kozyrakis. 2014. Quasar: Resource-e�cient
and QoS-aware Cluster Management. ACM SIGPLAN Notices (2014).

[17] Docker. 2021. Docker Update API. https://docs.docker.com/engine/reference/
commandline/update/. [Online].

[18] Simon Eismann, Long Bui, Johannes Grohmann, Cristina Abad, Nikolas Herbst,
and Samuel Kounev. 2021. Sizeless: Predicting the Optimal Size of Serverless
Functions. In Proc. of the 22nd International Middleware Conference (MIDDLE-
WARE).

[19] Sadjad Fouladi, Riad SWahby, Brennan Shacklett, Karthikeyan Balasubramaniam,
William Zeng, Rahul Bhalerao, Anirudh Sivaraman, George Porter, and Keith
Winstein. 2017. Encoding, Fast and Slow: Low-Latency Video Processing Using
Thousands of Tiny Threads. In Proc. of USENIX NSDI.

[20] Alexander Fuerst, Stanko Novaković, Íñigo Goiri, Gohar Irfan Chaudhry, Prateek
Sharma, Kapil Arya, Kevin Broas, Eugene Bak, Mehmet Iyigun, and Ricardo
Bianchini. 2022. Memory-harvesting VMs in Cloud Platforms. In Proceedings of
the 27th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS).

[21] Alexander Fuerst and Prateek Sharma. 2022. Locality-aware Load-Balancing
For Serverless Clusters. In Proceedings of the 31st International Symposium on
High-Performance Parallel and Distributed Computing (HPDC).

[22] Jashwant Raj Gunasekaran, Prashanth Thinakaran, Nachiappan Chidambaram,
Mahmut T Kandemir, and Chita R Das. 2020. Fifer: Tackling Underutilization in
the Serverless Era. In Proc. the 21st International Middleware Conference (Middle-
ware).

[23] Varun Gupta, Mor Harchol Balter, Karl Sigman, andWardWhitt. 2007. Analysis of
Join-the-Shortest-Queue Routing for Web Server Farms. Performance Evaluation
(2007).

[24] Charles R Harris, K Jarrod Millman, Stéfan J Van Der Walt, Ralf Gommers,
Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg,
Nathaniel J Smith, et al. 2020. Array Programming with NumPy. Nature (2020).

[25] Heo, Tejun. 2021. Control Group v2. https://www.kernel.org/doc/Documentation/
cgroup-v2.txt. [Online; accessed 1-April-2022].

[26] Alex Krizhevsky, Geo�rey Hinton, et al. 2009. Learning Multiple Layers of
Features from Tiny Images. (2009).

[27] Ashraf Mahgoub, Li Wang, Karthick Shankar, Yiming Zhang, Huangshi Tian, Sub-
rata Mitra, Yuxing Peng, Hongqi Wang, Ana Klimovic, Haoran Yang, et al. 2021.
SONIC: Application-aware Data Passing for Chained Serverless Applications. In
Proc. of the 2021 USENIX Annual Technical Conference (USENIX ATC).

[28] Bilal Muhammad, Canini Marco, Fonseca Rodrigo, and Rodrigues Rodrigo. 2023.
With Great Freedom Comes Great Opportunity: Rethinking Resource Allocation
for Serverless Functions. In Proceedings of the European Conference on Computer
Systems (EuroSys).

[29] Djob Mvondo, Mathieu Bacou, Kevin Nguetchouang, Lucien Ngale, Stéphane
Pouget, Josiane Kouam, Renaud Lachaize, Jinho Hwang, Tim Wood, Daniel Hagi-
mont, et al. 2021. OFC: an Opportunistic Caching System for FaaS Platforms. In
Proceedings of the Sixteenth European Conference on Computer Systems (EuroSys).

[30] Jinwoo Park, Byungkwon Choi, Chunghan Lee, and Dongsu Han. 2021. GRAF: A
Graph Neural Network Based Proactive Resource Allocation Framework for SLO-
Oriented Microservices. In Proc. of the 17th International Conference on emerging
Networking EXperiments and Technologies (CONEXT).

[31] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research (JMLR) (2011).

[32] Benjamin Reidys, Jinghan Sun, Anirudh Badam, Shadi Noghabi, and Jian Huang.
2022. BlockFlex: Enabling Storage Harvesting with Software-De�ned Flash in
Modern Cloud Platforms. In 16th USENIX Symposium on Operating Systems Design
and Implementation (OSDI).

[33] Francisco Romero, Gohar Irfan Chaudhry, Íñigo Goiri, Pragna Gopa, Paul Batum,
Neeraja J Yadwadkar, Rodrigo Fonseca, Christos Kozyrakis, and Ricardo Bianchini.
2021. Faa$T: A Transparent Auto-Scaling Cache for Serverless Applications. In
Proceedings of the ACM Symposium on Cloud Computing (SoCC).

[34] Rohan Basu Roy, Tirthak Patel, Vijay Gadepally, and Devesh Tiwari. 2022.
Mashup: Making Serverless Computing Useful for HPC Work�ows via Hybrid
Execution. In Proceedings of the 27th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPoPP).

[35] Mohammad Shahrad, Jonathan Balkind, and David Wentzla�. 2019. Architectural
Implications of Function-as-a-Service Computing. In Proc. of IEEE/ACM MICRO.

[36] Mohammad Shahrad, Rodrigo Fonseca, Inigo Goiri, Gohar Chaudhry, Paul Batum,
Jason Cooke, Eduardo Laureano, Colby Tresness, Mark Russinovich, and Ricardo
Bianchini. 2020. Serverless in the Wild: Characterizing and Optimizing the
Serverless Workload at a Large Cloud Provider. In Proc. of USENIX ATC.

[37] Vaishaal Shankar, Karl Krauth, Kailas Vodrahalli, Qifan Pu, Benjamin Recht,
Ion Stoica, Jonathan Ragan-Kelley, Eric Jonas, and Shivaram Venkataraman.
2020. Serverless Linear Algebra. In Proc. of the 11th ACM Symposium on Cloud
Computing (SoCC).

[38] Arjun Singhvi, Arjun Balasubramanian, Kevin Houck, MohammedDanish Shaikh,
Shivaram Venkataraman, and Aditya Akella. 2021. Atoll: A Scalable Low-Latency
Serverless Platform. In Proc. of the ACM Symposium on Cloud Computing (SoCC).
138–152.

[39] Tyler J Skluzacek, Ryan Wong, Zhuozhao Li, Ryan Chard, Kyle Chard, and Ian
Foster. 2021. A Serverless Framework for Distributed Bulk Metadata Extraction.
In Proceedings of the 30th International Symposium on High-Performance Parallel
and Distributed Computing (HPDC).

[40] Craig A Stewart, Timothy M Cockerill, Ian Foster, David Hancock, Nirav Mer-
chant, Edwin Skidmore, Daniel Stanzione, James Taylor, Steven Tuecke, George
Turner, et al. 2015. Jetstream: a Self-provisioned, Scalable Science and Engi-
neering Cloud Environment. In Proc. of the 2015 XSEDE Conference: Scienti�c
Advancements Enabled by Enhanced Cyberinfrastructure (XSEDE).

[41] Amoghavarsha Suresh and Anshul Gandhi. 2021. ServerMore: Opportunistic
Execution of Serverless Functions in the Cloud. In Proc. of the ACM Symposium
on Cloud Computing (SoCC).

[42] Huangshi Tian, Suyi Li, Ao Wang, Wei Wang, Tianlong Wu, and Haoran Yang.
2022. Owl: Performance-aware Scheduling for Resource-e�cient Function-as-a-
Service Cloud. In Proc. of the 13th ACM Symposium on Cloud Computing (SoCC).

[43] John Towns, Timothy Cockerill, Maytal Dahan, Ian Foster, Kelly Gaither, Andrew
Grimshaw, Victor Hazlewood, Scott Lathrop, Dave Lifka, Gregory D Peterson,
et al. 2014. XSEDE: Accelerating Scienti�c Discovery. Computing in Science &
Engineering (2014).

[44] Hao Wang, Di Niu, and Baochun Li. 2019. Distributed Machine Learning with a
Serverless Architecture. In Proc. of IEEE INFOCOM.

[45] YawenWang, Kapil Arya, Marios Kogias, Manohar Vanga, Aditya Bhandari, Neer-
aja J Yadwadkar, Siddhartha Sen, Sameh Elnikety, Christos Kozyrakis, and Ricardo
Bianchini. 2021. SmartHarvest: Harvesting Idle CPUs Safely and E�ciently in
the Cloud. In Proc. of ACM EuroSys.

[46] Zhaojie Wen, Yishuo Wang, and Fangming Liu. 2022. StepConf: SLO-Aware
Dynamic Resource Con�guration for Serverless Function Work�ows. In Proc. of

193

https://openwhisk.apache.org
https://docs.docker.com/engine/reference/commandline/update/
https://docs.docker.com/engine/reference/commandline/update/
https://www.kernel.org/doc/Documentation/cgroup-v2.txt
https://www.kernel.org/doc/Documentation/cgroup-v2.txt

HPDC ’23, June 16–23, 2023, Orlando, FL, USA Hanfei Yu, Christian Fontenot, Hao Wang, Jian Li, Xu Yuan, and Seung-Jong Park

the IEEE International Conference on Computer Communications (INFOCOM).
[47] David L Wheeler, Tanya Barrett, Dennis A Benson, Stephen H Bryant, Kathi

Canese, Vyacheslav Chetvernin, Deanna M Church, Michael DiCuccio, Ron
Edgar, Scott Federhen, et al. 2007. Database Resources of the National Center for
Biotechnology Information. Nucleic Acids Research (2007).

[48] Hanfei Yu, Athirai A Irissappane, Hao Wang, and Wes J Lloyd. 2021. FaaS-
Rank: Learning to Schedule Functions in Serverless Platforms. In Proc. of IEEE
International Conference on Autonomic Computing and Self-Organizing Systems

(ACSOS).
[49] Hanfei Yu, Hao Wang, Jian Li, Xu Yuan, and Seung-Jong Park. 2022. Accelerating

Serverless Computing by Harvesting Idle Resources. In Proc. of the ACM Web
Conference (WWW).

[50] Yanqi Zhang, Íñigo Goiri, Gohar Irfan Chaudhry, Rodrigo Fonseca, Sameh El-
nikety, Christina Delimitrou, and Ricardo Bianchini. 2021. Faster and Cheaper
Serverless Computing on Harvested Resources. In Proc. of the ACM SIGOPS 28th
Symposium on Operating Systems Principles (SOSP).

194

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Resource Harvesting
	2.2 The Necessity of Resource Harvesting

	3 An Overview of Libra
	3.1 Timeliness of Harvested Resources
	3.2 Challenges

	4 Profiling
	4.1 Profiling Workflow
	4.2 Workload Duplicator
	4.3 Demand Estimator

	5 Resource Harvesting
	5.1 Harvest Resource Pools
	5.2 Safeguard

	6 Function Scheduling
	6.1 Complexity of Timeliness-aware Scheduling
	6.2 Demand Coverage
	6.3 Algorithm Design
	6.4 Decentralized Sharding Scheduler

	7 Implementing Libra
	8 Evaluation
	8.1 Evaluation Metrics
	8.2 Experiment Setup
	8.3 Effectiveness of Libra's Harvesting
	8.4 Effectiveness of Libra's Scheduling
	8.5 Scalability
	8.6 Profiler's Model Analysis
	8.7 Input Size Sensitivity
	8.8 Parameter Sensitivity Analysis
	8.9 Latency Breakdown
	8.10 Overheads of Libra's Components

	9 Related Work
	10 Conclusion
	11 Acknowledgments
	References

