Check for
Updates

LiBRA: Harvesting Idle Resources Safely and Timely in Serverless
Clusters

Hanfei Yu
hyu25@Isu.edu
Louisiana State University
Baton Rouge, LA, USA

Jian Li
lij@binghamton.edu
SUNY-Binghamton University
Binghamton, NY, USA

ABSTRACT

Serverless computing has been favored by users and infrastruc-
ture providers from various industries, including online services
and scientific computing. Users enjoy its auto-scaling and ease-of-
management, and providers own more control to optimize their
service. However, existing serverless platforms still require users
to pre-define resource allocations for their functions, leading to fre-
quent misconfiguration by inexperienced users in practice. Besides,
functions’ varying input data further escalate the gap between
their dynamic resource demands and static allocations, leaving
functions either over-provisioned or under-provisioned. This paper
presents LIBRA, a safe and timely resource harvesting framework
for multi-node serverless clusters. LIBRA makes precise harvest-
ing decisions to accelerate function invocations with harvested
resources and jointly improve resource utilization by profiling dy-
namic resource demands and availability proactively. Experiments
on OpenWhisk clusters with real-world workloads show that Li-
BRA reduces response latency by 39% and achieves 3x resource
utilization compared to state-of-the-art solutions.

CCS CONCEPTS

« Computer systems organization — Cloud computing.

KEYWORDS

serverless computing, resource harvesting

ACM Reference Format:

Hanfei Yu, Christian Fontenot, Hao Wang, Jian Li, Xu Yuan, and Seung-
Jong Park. 2023. LiBRA: Harvesting Idle Resources Safely and Timely in
Serverless Clusters. In Proceedings of the 32nd International Symposium
on High-Performance Parallel and Distributed Computing (HPDC ’23), June
16-23, 2023, Orlando, FL, USA. ACM, New York, NY, USA, 14 pages. https:
//doi.org/10.1145/3588195.3592996

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

HPDC °23, June 16-23, 2023, Orlando, FL, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0155-9/23/06....$15.00
https://doi.org/10.1145/3588195.3592996

Christian Fontenot
cfont85@Isu.edu
Louisiana State University
Baton Rouge, LA, USA

Xu Yuan
xu.yuan@louisiana.edu
University of Louisiana at Lafayette
Lafayette, LA, USA

181

Hao Wang
haowang@lsu.edu
Louisiana State University
Baton Rouge, LA, USA

Seung-Jong Park
sjpark@lsu.edu
Louisiana State University
Baton Rouge, LA, USA

1 INTRODUCTION

Motivation. Known as next-generation cloud computing, server-
less computing has attracted extensive attention from users and in-
frastructure providers. Thanks to its event-driven computing, auto-
scaling, and cost-efficiency, serverless computing has shipped nu-
merous applications to resilient stateless functions, including video
processing [5, 19], scientific computing and HPC [7, 12, 34, 37, 39],
and machine learning (3, 11, 44], relieving users from cumbersome
infrastructure maintenance and resource management. In addi-
tion, serverless computing completely transfers the infrastructure
management work to service providers, leaving more flexibility to
providers to improve resource utilization and service quality. How-
ever, existing serverless platforms still require users to pre-define
the resource allocations for each function. Unlike traditional cloud
computing running monolithic applications with homogeneous
virtual instances, serverless computing decomposes monolithic
applications into numerous types of functions! and complex de-
pendencies, impeding even experts from configuring each function
appropriately. User misconfiguration, unpredictable events, high
concurrency, and varying input data jointly make it a non-trivial
task to mitigate the gap between the user reserved resources and
invocations’ dynamic demands [2, 10, 22, 27, 35]. A recent report
reveals that most functions invoked on Alibaba Function Compute
can only utilize 20-60% of allocated resources, leaving considerable
resources idle—reserved but unused—during execution [42].
Limitation of State-of-the-arts. Existing studies attempting to
reduce idle resources in serverless computing can be classified into
two categories: provider-side [29, 49] and user-side solutions [2,
18, 46]. Provider-side solutions utilize idle resources to accelerate
functions (e.g., OFC [29] and Freyr [49]). User-side solutions (e.g.,
Sizeless [18], and StepConf [46]) optimize function resource config-
urations to improve function efficiency and resource utilization.
However, existing approaches fall short in addressing the fol-
lowing critical challenges raised by inappropriate resource allo-
cation and varying resource demands: First, neither user-defined
nor estimated function configurations [2, 18, 46, 49] can continu-
ously satisfy invocations’ dynamic resource demands, driven by
ad-hoc events and varying input data. Even for the same function,
input data may vary (e.g., sizes and contents), leading to fluctu-
ating resource consumption and execution time. Second, existing

!In this paper, a function refers to a code package deployed on a serverless platform,
and a function invocation is a running instance of the code package.

https://doi.org/10.1145/3588195.3592996
https://doi.org/10.1145/3588195.3592996
https://doi.org/10.1145/3588195.3592996
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3588195.3592996&domain=pdf&date_stamp=2023-08-07

HPDC ’23, June 16-23, 2023, Orlando, FL, USA

provider-side solutions rely on non-trivial inspections that may
violate serverless nature, such as hand-crafted features [29], which
can hardly be generalized to various input data and function types.
Finally, orchestrating multiple worker nodes (or invokers) to serve
large-scale invocations and dynamic resource demands with light-
weight algorithms is a complicated scheduling problem unsolved
by existing methods [9, 48, 49]. Freyr [49] attempts to work around
these issues by learning optimal resource harvesting strategies with
Deep Reinforcement Learning (DRL) algorithms but still falls short
in 1) ignorance of timeliness—harvested resources’ availability may
expire, 2) no support to varying input sizes, and 3) lack of timely
release of harvested resources.

Key Insights and Contributions. To address these challenges, this
paper proposes LIBRA, a general provider-side solution that harvests
idle resources safely and timely to accelerate large-scale serverless
function invocations with varying inputs. L1BRA makes invocation
scheduling decisions with awareness of resource timeliness across
multiple worker nodes and accelerates under-provisioned invoca-
tions with idle resources carefully harvested from over-provisioned
invocations. Each worker maintains a pool tracking idle resources
harvested from over-provisioned invocations. We devise a new
metric—demand coverage—to quantify idle resource volume and
timeliness on each node for timeliness-aware scheduling (§6.2).
We justify whether an invocation is under-provisioned or over-
provisioned by comparing its user-defined resource allocation and
dynamic demands.

We summarize LIBRA’s key contributions as follows:

e We develop a profiler that transparently estimates resource
demands and execution time of invocations upon varying
input data without access to input data content or user code.

e We propose a timeliness-aware and fine-grained resource
harvesting mechanism that jointly accelerates invocations
and improves resource utilization.

o We design a decentralized sharding scheduler that maximizes
cluster-wide resource utilization with timely awareness of
idle resources across workers.

e We deploy LiBrRA on real-world clusters and evaluate Li-
BRA using extensive experiments with industrial traces and
realistic applications. We compare LIBRA with multiple re-
source harvesting schemes (e.g., Freyr [49]) and scheduling
algorithms (e.g., Min-Worker-Set [50]). Experimental results
show that L1BrRA reduces function response latency by 39%
and achieves up to 3X resource utilization compared to the
state-of-the-art solutions.

Limitations of the proposed approach. We conclude two limita-
tions of L1BRA’s design that can be improved. First, LIBRA’s harvest-
ing and acceleration rely on resource demands and timeliness esti-
mated by machine learning (ML) models. Thus, mispredictions are
unavoidable due to the bursty, diversity, and fluctuation of server-
less workloads. However, LIBRA implements a safeguard mechanism
that effectively mitigates mispredictions and guarantees function
execution performance. Second, L1BRA’s scheduler greedily serves
function invocations to reduce decision complexity, which may
result in sub-optimal objectives such as average function response
latency. We opt for such a greedy scheduler in LiBRA to accommo-
date the sub-second latency requirement of serverless functions.

182

Hanfei Yu, Christian Fontenot, Hao Wang, Jian Li, Xu Yuan, and Seung-Jong Park

& DH utilized @ VP latency
@ VP utilized N DH latency

Idle Res. 7 Reduced latency
Harvested Res.

0 L (%]
o [o harvest
Q r \| Q = .
o 5] § osr-[Ef |B §
> [§ N ot E N
o N N ot 5 N
Oo; N N 00; N N
@ L o reduced latency
30 I I I zal gL
= r = r
2T 82
© L © L
a0 a0
Case1 Case2 Case3 Case1 Case2 Case3
~1F —~1
m) harvest
g 0| S1Eg (B4 B
c | N0 S8 Nd| =[N § NE
o- o-
o % . reduced latency
) 55 2
::55 ::55
L ¢ o
So So

Case2 Case3 Case1 Case2 Case3

(a) Default
Figure 1: A motivating example of resource harvesting. Input
data (DH/VP): Case 1 (4K/video-1), Case 2 (100/video-2), and
Case 3 (10K/video-3).

2 BACKGROUND AND MOTIVATION

2.1 Resource Harvesting

Case 1
(b) Harvesting

Objectives. Cloud users are prone to over-provision their work-
loads, leaving significant resources (e.g., CPU, memory, disk, and
even GPU) idle during running [16, 42]. Resource harvesting tech-
niques are a major solution to utilize such idle resources—reserved
but unused by users—with safety guarantees [4, 20, 32, 45]. In server-
less computing, safety is defined as harvesting resources must not
deteriorate function execution performance [29, 49]. For example, a
resource allocation strategy is not safe if leading to worse response
latency than user-defined resources.

Billing. Harvested resources can be used for various purposes.
Infrastructure-as-a-Service (IaaS) cloud platforms package harvested
resources as low-priority evictable VMs and resell them to users [20,
32, 45]. Serverless platforms utilize harvested resources to provide
transparent optimizations, such as function caching [29] and exe-
cution acceleration [49], which are ephemeral free lunch for users
but no guarantee.

2.2 The Necessity of Resource Harvesting

A serverless function is usually invoked with varying input data
sizes and contents, leading to fluctuating response latency and het-
erogeneous utilization of different resource types (e.g., CPU and
memory) [10, 27, 49]. We explore the opportunities behind such fluc-
tuations and heterogeneity that motivate accurate harvesting and
reassignment of individual resource types by running two realistic
serverless applications: DH? and VP? on an Apache OpenWhisk
cluster [6]. The resource utilization and response latency of DH
is dominated by input sizes, whereas VP’s is dominated by data
contents. By decoupling CPU and memory allocation [28, 49], we
investigate the CPU and memory harvesting individually for DH
and VP: when adjusting the CPU (memory) allocation, we fix its
memory (CPU) to one GB (eight cores). We simultaneously invoke
DH and VP once with different input data of three cases as shown

?Dynamic HTML (DH) generates a given number of HTML pages.
3Video Processing (VP) generates a GIF from the input video.

LiBrA: Harvesting Idle Resources Safely and Timely in Serverless Clusters

v g Occupied
_5 D D <—Release due to 7/ Idle
§ 1 resource timeliness -
<] 7 Released
Z A % <—Harvest & reassign .
- i |:| Reassigned
t1 b2 t3 ta t5 16 Wall clock
Figure 2: Harvested resources’ timeliness.
Invo. 1att” Invo.2att
' Input data !

Invocation #3 for
Functionk at't |

Front End
| observed_(cpu,
mem, duration)

User-defined Func. k urat
Codebase

user_x v.s. pred_x

Node selection | Demand coverage
I
Resource Allocation

(user_cpu,user_mem) @
i - Y:(pre_cpu,pre_mem,dur, type)
e v Y i N\

Infer
O IR S
N |Th Hist. N‘—|

Is first-seen invocation? Type: is input
size-related?
Y @ X:input data, Y:(cpu,mem,duration)

Analyze Acc. & R?
Workload

Duplicator

Model update iharding Scheduler #n

Different

input sizes ali # Piot run

Profiler
.

Figure 3: LIBRA’s architecture.

in Fig. 1(a). In Case 1, with an input size of 4K, DH can only utilize
four cores (0.25 GB), leaving two cores (0.5 GB) idle, while VP has
fully utilized four cores (0.25 GB) with the first input video (video-1).
In Case 2, DH can only utilize one core (0.125 GB) with an input
size of 100, leaving five cores (0.625 GB) idle, while VP still reaches
full utilization with another video (video-2). In Case 3, both DH
and VP fully utilize user-allocated CPU cores (memory). Fig. 1(a)
illustrates over-provisioned and under-provisioned invocations and
their varying response latency due to different input data, which
is aligned with the observation in Microsoft Azure Functions [36]
and Alibaba Function Compute [42].

However, we can seize the opportunity behind the fluctuation by
carefully harvesting the DH invocation’s idle resources and acceler-
ating the under-provisioned VP invocation without degrading DH’s
performance, as the Cases 1 and 2 in Fig. 1(b). Invocations utilize all
their resources in Case 3, leaving no idle resources for harvesting.
In a highly volatile serverless computing environment, resource
harvesting must be proactive and precise to seize the opportunity
to accelerate invocations efficiently, timely, and safely.

3 AN OVERVIEW OF LIBRA

3.1 Timeliness of Harvested Resources

Resource harvesting can benefit serverless computing significantly
by improving resource utilization and function execution perfor-
mance. However, such resource reassignment in Fig. 1(b) is not
always feasible due to the natural resource timeliness in serverless
platforms. Timeliness indicates that an invocation’s resource allo-
cation is available for harvesting only during its execution time.
All resources allocated to an invocation will be released to the
serverless platform once the invocation is completed or terminated,

183

HPDC ’23, June 16-23, 2023, Orlando, FL, USA

including harvested resources. Thus, an invocation utilizing har-
vested resources should follow the resource timeliness and release
the harvested resources anytime when the source function invoca-
tion is done or terminated.

Fig. 2 demonstrates how an invocation with harvested resources
should obey timeliness. We have two function invocations A and B
arriving at the platform. Invocation A configured with two resource
units starts at t; but can only utilize one resource unit. Invocation
B configured with one resource unit arrives at t; while having an
appetite for two units. To accelerate Invocation B without degrading
A’s performance, we harvest one idle resource unit from A and
reassign it to B. However, Invocation A finishes at #4 and thus
releases its two resource units immediately. Though Invocation B
is not finished, it can no longer utilize the resource unit harvested
from A. Instead, Invocation B continues executing with its own one
unit until finishing at 6.

The awareness of resource timeliness is the pivot to determine
when to harvest and release resources from which invocation, and
how to reassign the harvested resources for acceleration, making
it imperative to estimate function invocations’ execution time un-
der different input data. Thus, we develop a profiler to estimate
the dynamic execution time and resource demands of individual
invocations (see §4).

3.2 Challenges

We design L1BRA to tackle three key challenges as follows:

How to estimate the resource demands and execution time
of invocations with varying input data transparently? Trans-
parent estimation of invocation resource demands and execution
time is a must, as user code and input data content are protected
from leakage. However, it’s challenging to precisely predict the dy-
namic resource demands and execution time of function invocations
under varying input data. We design a profiler that performs one-
time offline profiling and online updating for efficient estimation
without peeking into user code or input data content (§4).

How to harvest idle resources safely at a fine granularity?
Resource harvesting in serverless computing is treading as if on thin
ice since even slight over-harvesting easily deteriorates function
executions’ performance, particularly as resource allocation is fine-
grained. We develop a harvest resource pool to manage harvested
resources at a fine granularity (§5). Besides, a safeguard mechanism
is devised to avoid overly harvesting and protect the performance
of harvested functions (§5.2).

How to maximize cluster-wide invocation acceleration and
idle resource utilization? Given the large scale of invocations, it
is non-trivial to instantly identify workers with fine-grained idle
resources of satisfactory volume and availability for the invocations.
We design a decentralized sharing scheduler that timely utilizes
cluster-wide idle resources to accelerate function executions (§6).

Fig. 3 depicts L1BRA’s architecture with a five-step workflow:
Step @: Deployment. Developers first upload the codebase of a
function k to the serverless platform, and specifies a fixed resource
allocation, such as, two CPU cores and 1,024 MB memory. User-
defined allocation is the upper bound of resources that invocations
to the function k can utilize.

HPDC ’23, June 16-23, 2023, Orlando, FL, USA

Step @: Invocation. The function k is called by per-defined events
with varying input data. The front end accepts the function invoca-
tion and forwards it to the profiler for prediction.

Step @: Profiling. The profiler transparently profiles the incom-
ing function invocations to estimate the actual resource demands
and execution duration (§4).

Step @: Scheduling. A worker node m is selected to execute
the incoming invocation based on a resource timeliness-aware
scheduling algorithm. To enable large-scale deployment, LIBRA
leverages multiple decentralized sharding schedulers that schedule
function invocations concurrently (§6).

Step @: Harvesting or accelerating. The harvest resource pool
in the selected worker node m performs harvesting or acceleration
based on predictions of the current invocation. When the execu-
tion completes, LIBRA collects the actual resource utilization and
execution duration to update the corresponding profiling models
of function k (§5).

4 PROFILING
4.1 Profiling Workflow

LiBra profiles functions offline to characterize the relationships
between input data and three metrics: CPU usage, memory usage,
and invocation execution time. The profiler is activated upon a
function’s first invocation. If the function is first-time invoked, Li-
BRA serves the very first invocation with user-configured resources
(Step in Fig. 3).

Meanwhile, LIBRA leverages the input data to produce a dataset
for model training using workload duplicator. When the dataset is
ready, LIBRA trains ML models offline to predict the above three
function metrics. By analyzing the training metrics (i.e., accuracy
and R? score), we can identify whether the function’s input sizes
dominate its resource demands and execution time. If the function’s
demands are input size-related, we use the trained ML models for
prediction (Step @); if the function’s demands are unrelated to
input sizes, we treat future invocations as black boxes and conser-
vatively predict the three metrics using histogram models from

historical information (Step). If the invocation is not called at
the first time, and the profiler has already initialized the models

for this function, L1BRra calls either the ML or histogram models to

infer the three metrics (Step).

After gathering three predicted metrics, the profiler forwards the
invocation and the prediction result to a worker node for execution.
For each function, the profiler builds the models by one-time train-
ing and analyzing whether input sizes dominate its demands and
execution time. Subsequent invocations can reuse the built models.

4.2 'Workload Duplicator

The workload duplicator augments datasets for training and an-
alyzing the profiling model by duplicating input data. Upon the
first invocation, the profiler collects the data and inputs it to its
workload duplicator, where the data is duplicated uniformly to pro-
duce different sizes of data points. After duplicating data points, the
profiler creates one invocation with sufficient resource allocation to
execute the function for each data point in parallel. LIBRA analyzes
results of all executions and obtains the actual CPU and memory

184

Hanfei Yu, Christian Fontenot, Hao Wang, Jian Li, Xu Yuan, and Seung-Jong Park

usage, and response latency. The profiler then uses those actual
results as ground truth to label each data point in the dataset. Thus,
LIBRA generates a complete dataset for training ML models, where
the ML models try to predict the three metrics and use the actual la-
bels to minimize errors. We analyze the training metrics to identify
whether input sizes dominate a function’s demands and execution
time. The ML models are used if the profiled function is input size-
related (§4.3.1), otherwise we construct histogram models for input
size-unrelated functions (§4.3.2).

4.3 Demand Estimator

4.3.1 For Input Size-related Functions. We formulate the CPU and
memory usage prediction as a multi-class classification problem,
where each allocation option is a separate class. Given a function
invocation, the profiler predicts the actual CPU/memory usage peak
based on the input data size. We define the usage peak as the highest
number of busy cores or the highest amount of memory that can be
used during the execution for CPU and memory, respectively. For
the execution time prediction, L1BRA predicts a scalar value based on
input data size, which is a common regression problem. Hence, the
profiler trains and reserves three ML models per function, including
two classification models and one regression model. Theoretically,
any prediction model can work for the profiler. After examining
different models, we opt for Random Forest (RF) regarding the
prediction performance (§8.6).

The ML models cannot always capture a strong correlation be-
tween data size and CPU/memory peak and execution time. As
opposed to data size, the execution performance of many functions
is dominated by data content [10, 27]. LiBrA distinguishes between
input size-related and unrelated functions by analyzing the training
metrics of ML models (§8.6). Since serverless providers generally
have no access to the secured data content, we treat new invoca-
tions as black boxes and predict the three metrics using histogram
models constructed online from historical information.

4.3.2 For Input Size-unrelated Functions. Upon L1BRA identifying a
function being input size-unrelated at its first invocation, we start
to collect CPU/memory peak and execution time of the subsequent
invocations online. Due to lacking knowledge of a black-boxed
function, L1BRaA requires a profiling window for collecting enough
historical information to construct a distribution. During the profil-
ing window, L1BRA serves the invocations with maximum allocation
to inspect the actual CPU/memory peak and execution times. LIBRA
builds three histogram models for each function based on the infor-
mation collected during the window and continuously updates the
models after serving new invocations. The histogram data structure
tracks the distribution of CPU peak, memory peak, and execution
time for each function. To estimate the three metrics for future
invocations of a profiled function, we calculate a tail percentile on
CPU/memory peak distribution and a head percentile on execution
time distribution from the histogram models for conservatively har-
vesting or acceleration. To exclude outliers, we follow the industrial
convention [36] and use the 99th_ and 5th- percentiles to estimate
CPU/memory peak and execution time, respectively.

LiBrA: Harvesting Idle Resources Safely and Timely in Serverless Clusters

Harvested Arival i1 tacurrent time 13 ty
Time
Resource Pool Harvest {73 WAL,
L8 B ty) e (B t1)
2, EH, t3) Harvest — #2 Bt
(& % ts)
#1,8, t) i
Harvesr{lnvocation #1 @ty
. (# t1) |
get(2 units) i :
(Ets) (E ta) Reassign {Invocation #4 Tt

¥ Idle | "} More resources needed [l Busy ¢ Estimated completion time

Figure 4: The harvest resource pool for tracking resources.

5 RESOURCE HARVESTING
5.1 Harvest Resource Pools

L1BRA maintains a harvest resource pool to track idle resources har-
vested from over-provisioned function invocations and record the
priority of harvested resources for reassignment. Fig. 4 illustrates
the harvest resource pool’s tracking mechanism for idle resources.
Each tracking object represents a harvested function invocation
using a tuple of three elements: (invo_id, hvst_resource_vol,
priority). The invo_id tracks the source function invocation of
harvested resources. The hvst_resource_vol denotes how many
resources (e.g., two CPU cores or 128 MB memory) are harvested,
and the priority indicates the order to utilize. We use the absolute
timestamp at the completion of execution as the priority, where
the timestamp equals to the sum of the current timestamp and
predicted execution duration.

In Fig. 4, Invocation 1 arrives at the platform at ¢; with user-
defined two resource units. L1BRA’s profiler predicts that Invocation
1 can only utilize one unit (rectangle in red), leaving another unit
idle (rectangle in green). LIBRA harvests the idle unit, takes the
estimated completion timestamp of Invocation 1 as the priority,
and issues a put operation to track the idle unit in the pool. The
same occurs to Invocations 2 and 3 upon their arrivals. At the same
time of Invocation 2’s arrival, Invocation 4 arrives at the platform
simultaneously, which has an appetite for four units but is only
configured with two. At #;, the pool has three available harvested
resource units: one from Invocation 1 completing at ¢4 and two
from Invocation 2 completing at t3. Note that Invocation 3 has not
arrived at the platform yet, thus there are only Invocations 1 and
2 in the pool at t3. LIBRA issues a get operation to borrow two
idle units from the pool to accelerate Invocation 4. The harvest
resource pool then provides one unit from Invocation 1 and one
unit from Invocation 2, as LIBRA prioritizes harvested resources that
can potentially be utilized longer. The reassignment takes effect
immediately when Invocation 4 starts execution.

The harvest resource pool’s features are as follows:

Essential operations. The harvest resource pool has two essential
operations inherited from a standard hash map: put and get. LiBrRA
puts a harvested resource into the pool by specifying the invocation
ID, the resource volume that is harvested, and the priority. To
accelerate invocations, LIBRA gets harvested resources from the
pool in a best-effort manner by specifying the desired volume.

Priority. LIBRA assigns a priority to each object in the pool for
tracking, where objects with larger priorities are utilized earlier to

185

HPDC ’23, June 16-23, 2023, Orlando, FL, USA

accelerate other function invocations. We set the estimated com-
pletion timestamp of the harvested invocation as the resource’s
priority, where L1BRA estimates the completion timestamp of ex-
ecuting each function invocation using the predicted execution
time from the profiler. Intuitively, we design LIBRA to prioritize
harvested resources that potentially stay longer in the pool for
function acceleration.

Preemptive release. When the harvested function invocation
completes its execution, the harvested resources are no longer valid
for use in acceleration. Therefore, LIBRA must adopt a preemptive
release operation to free up the harvested resources in realtime
either from the harvest resource pool or other invocations that
are currently utilizing them. LIBRA can accelerate one function
invocation using harvested resources from multiple invocations
with varying timeliness. With harvested resource tracking, LIBRA
can precisely release harvested resources in different contexts and
avoid violating resource validity.

Re-harvesting. A typical accelerated function invocation possesses
two kinds of resources: resources owned by itself and resources
harvested from other invocations. When an accelerated invocation
completes the execution, the resources owned by itself are released.
However, the harvested resources are still available for accelerating
other function invocations. LIBRA re-harvests the resources and
stores them in the harvest resource pool for reassignment. When
re-harvesting the resources, we set the priorities to be the initial
estimated completion time for re-entering the pool.
Concurrency. Harvested resources can only be accessed by one
function invocation at a time, and thus the pool must maintain the
same view for all function invocations. Our harvest resource pool
achieves atomic resource operations with mutex exclusion.
Mitigating Out-of-Memory (OOM). We use several methods to
jointly mitigate the OOM problem during memory harvesting. First,
we set a lower bound of memory for each function so that LIBRA
needs to reserve minimum memory for harvesting invocations.
Second, we use a safeguard (§4) for every container to detect the
memory usage bulk and try to release harvested memory back in
advance. Finally, we stop harvesting memory for functions that
frequently get safeguard triggered due to OOM problems and retreat
to user-defined memory allocation.

5.2 Safeguard

LiBRrA estimates the actual resource demands of an incoming func-
tion invocation using ML and histogram models. However, models’
potential misprediction might lead to performance degradation—
function invocations’ performance degrades due to resource over-
harvesting. LIBRA adopts a safeguard mechanism to avoid such
performance degradation. When detecting an approximated perfor-
mance drop from a function invocation with resource harvested,
LiBra immediately returns all harvested resources to the invocation
using the preemptive release operation.

When receiving an incoming function invocation, LIBRA exe-
cutes the function using a container. During the execution, LIBRA
continuously monitors the container’s resource usage in a monitor
window (e.g., 100 ms). If the usage approaches a certain threshold
(e.g., 80%), LiBrRA immediately returns all resources harvested from
the invocation (either cached in the harvest resource pool or being
used by other function invocations) using preemptive release.

HPDC ’23, June 16-23, 2023, Orlando, FL, USA

6 FUNCTION SCHEDULING

6.1 Complexity of Timeliness-aware Scheduling

LiBRrA orchestrates multiple worker nodes and utilizes harvested
resources of each worker node to accelerate bursty and highly con-
current function invocations. The function scheduling problem for
LiBRra to fully utilize harvested resources across multiple worker
nodes can be simplified and reduced to the dynamic bin-packing
problem [13], which is NP-hard in general. It is more challenging
to find an optimal solution in the case of online setting [8]. The
scheduling algorithm must be low-latency, lightweight, and timely
to accommodate the burstiness, high concurrency, and short life-
time of function invocations. Besides, to enable efficient resource
timeliness-aware scheduling, the algorithm should be able to pro-
cess fine-grained harvested resource information from a large scale
of worker nodes efficiently. Hence, we opt for a heuristic algorithm
that greedily assigns a function to a worker node with the maximum
availability in both resource volume and timeliness.

6.2 Demand Coverage

The resource availability lies in two dimensions: volume and time-
liness. Thus, we use the product of resource volume and available
duration to indicate the resource availability (e.g., 2 CPU cores X
10 seconds). We devise a new metric, demand coverage, which is
defined as the ratio of how much of the invocation’s resource de-
mands can be satisfied by a worker node’s harvested resources. We
monitor the status of harvest resource pools in each worker node
and calculate a per-node demand coverage ratio for the invocation.
Fig. 5 shows an example to calculate demand coverage, where a
harvest resource pool tracks idle resource collections a—e harvested
from different invocations, and an incoming invocation demands
two extra resource units from t3 to t;. We count the entire d from t3
to t5 and only part of e from ¢5 to t7 when calculating the demand
coverage for the invocation. We compute a separate CPU and mem-
ory demand coverage ratio for each harvest resource pool. Finally,
we calculate a weighted demand coverage D := aXD¢+(1—a) XDy,
where D, and Dy, denote CPU and memory demand coverage, and
a € [0,1] is the weight that controls the contribution of each type
of demand coverage. In general, we define & > 0.5 to represent that
harvested idle CPU cores are more precious than memory.

6.3 Algorithm Design

The scheduler first classifies incoming function invocations into two
categories based on their user-defined resources (i.e., user_cpu and
user_mem) and actual resource demands estimated by the profiler
(i.e., pred_cpu and pred_mem):

o Non-accelerable invocations, which cannot be accelerated
with any extra resources since their user-defined resources
can fully cover or beyond their actual demands.

e Accelerable invocations, which can be accelerated by extra
resources (CPU or memory) since their actual demands are
beyond their user-defined resources.

For non-accelerable invocations, the scheduler assigns a func-
tion’s invocations to the same worker node via a hashing algorithm,

186

Hanfei Yu, Christian Fontenot, Hao Wang, Jian Li, Xu Yuan, and Seung-Jong Park

Demand coverage =
1x (ts —t3) +2 % (t7 — t5)

= P

5 2 (tr —ta) 74 Idle resources in pool
@3 7

g ol . P Covered resources

o vy v e

7] e n .

8 1 v ;b/ d I:l Invocation demands

t1 to t3 ty t5 tg t7 ts Wall clockr

Figure 5: An example of demand coverage calculation.
which reduces the cold-starts* of invocations by reusing containers
on the same worker node. If the worker node does not have enough
available resources, the hashing algorithm will be executed again
to locate another available worker node, to which this function’s
upcoming invocations will be assigned.

For accelerable invocations, the scheduler first selects a set of
worker nodes with sufficient available resources to satisfy the in-
vocations’ user-defined resource demands. Then, the scheduler
calculates demand coverage ratios of CPU and memory for each
selected worker node. Finally, the scheduler greedily searches for a
worker node with the maximum weighted demand coverage ratio
to execute the invocation.

6.4 Decentralized Sharding Scheduler

To serve large-scale concurrent function invocations, the design
of LiBrA’s scheduler must be low-latency (i.e., sub-second) and
efficient. A centralized scheduler that handles invocations one by
one is impractical in production, which can easily pile up queued
invocations and become the bottleneck when a serverless cluster
scales to hundreds of worker nodes. We employ decentralized shard-
ing schedulers in LIBRA to extend scalability for large serverless
clusters. LIBRA manages a set of schedulers that distribute function
invocations to multiple worker nodes. The capacity (i.e., CPU and
memory) of a node is evenly sharded among all schedulers, meaning
that each scheduler has access to a slice of every worker node. For
example, if a node with 32 CPU cores and 32 GB is sharded between
four schedulers, each scheduler controls access to 8 cores and 8
GB on this node. Though the capacity of each node is horizontally
sharded, every scheduler can observe the same demand coverage
for a node as a whole, i.e., concurrent schedulers can accurately
capture the locality of harvested resources. The idea behind such de-
centralized sharding is simple—schedulers no longer need to share
any data for synchronization. Synchronizing shared states among
multiple schedulers is a costly operation for scheduling invocations
in serverless platforms. Querying every node when scheduling an
invocation is also impractical in large-scale clusters. Thus, LIBRA
embeds the status information of harvest resource pool in nodes’
health ping messages. The piggyback trick significantly reduces the
scheduling overhead—instead of querying every node, schedulers
only need to query their local data to compute the coverage for
selecting a node.

7 IMPLEMENTING LIBRA

L1BRA provides a general resource management service for func-
tions in serverless platforms. For concreteness, we describe its
implementation in the context of Apache OpenWhisk [6], and the
changes needed in OpenWhisk. We implement L1BRA using 2K lines

“Initialization delay of creating a container and installing dependencies for function
execution.

LiBrA: Harvesting Idle Resources Safely and Timely in Serverless Clusters

of Python code for the profiler and user client, and 6K lines of Scala
code for OpenWhisk built-in components.

Frontend. OpenWhisk only allows users to define the memory
limit of their functions and allocates CPU power proportionally
based on memory. To decouple CPU and memory, we add a CPU
argument and enable the front end to take user-input CPU and
memory configurations.

Profiler. We implement the profiler using Python. The workload
duplicator uses the multiprocessing library for parallel executing
functions and analyzing results. We build and train the profiler’s
ML models using the scikit-1learn library [31].

Function scheduler. We implement LiBRA’s timeliness-aware
scheduling algorithm and decentralized sharding schedulers based
on OpenWhisk’s built-in load balancer. We embed the status in-
formation of harvest resource pool in the invoker’s health ping
message. The controller periodically receives the pool status infor-
mation, which is further used to compute resource coverage when
serving an invocation.

Harvest resource pool. OpenWhisk runs a container pool on each
worker node to manage containers independently. We implement
the harvest resource pool in OpenWhisk’s container pool module.
We use the immutable hash map from Scala standard library to
implement the atomic access control for the harvest resource pool.
Preemptive release. We use docker-update API from the Docker
library to implement the preemptive release operation. The API can
update the CPU and memory configuration for multiple containers
in real time [17]. Similar to OpenWhisk’s native Docker interfaces,
we wrap the docker-update using Scala code so that LIBRA can
call it asynchronously.

Safeguard. We implement the safeguard as a daemon process run-
ning inside OpenWhisk container runtimes. When a container
receives an invocation and starts execution, it first activates the
safeguarding process. If the resource usage exceeds the safeguard
threshold while executing the code, the daemon process immedi-
ately sends a request back to OpenWhisk’s container pool. The
container pool calls a preemptive release operation to return the
harvested resources. After the execution is done, the container de-
activates the daemon process. We employ Linux cgroups tools [25]
to monitor containers’ CPU and memory utilization at runtime.

8 EVALUATION

We implement a prototype of L1BRA using 2K lines of Python code
on the profiler and user client, and 6K lines of Scala code on other
components in OpenWhisk [6]. We deploy and evaluate LIBRA on
three clusters. LiBrA will be open-sourced after review.

8.1 Evaluation Metrics

We use two metrics to evaluate LIBRA’s performance: function re-
sponse latency and system resource utilization.

Function response latency is the end-to-end response time
from invoking the function until receiving the execution result,
dictating serverless service user experience. Specifically, we use

puser _ tlibra

@

as a unified metric to quantize the performance of how LiBRrA im-
proves a function invocation, where t%*¢ indicates the response

speedup :=

tuser

187

HPDC ’23, June 16-23, 2023, Orlando, FL, USA

Table 1: Characterizations of serverless applications used in
OpenWhisk evaluation. (UL: Uploader, TN: Thumbnailer, CP:
Compression, DV: DNA Visualization, DH: Dynamic HTML,
VP: Video Processing, IR: Image Recognition, GP: Graph
Pagerank, GM: Graph Minimum-spanning-tree, GB: Graph
Breadth-first-search.)

Input Size Func. Description
UL Upload input files to storage
TN Thumbnail input images

Related CP Compress input files
DV Visualize input DNA sequence files
DH Generate HTMLs from input templates
VP Generate GIF of an input video
IR Recognize an input image

Unrelated GP Pagerank a randomly generated graph
GM MST on a randomly generated graph
GB BFS on a randomly generated graph

latency of a function invocation executed with the user-defined
resource allocation ry,, and tlibra jndicates the latency of an invo-
cation executed by L1BRA. The speedup shows how LiBra affects
the performance of a function invocation. Intuitively, a positive
speedup indicates the invocation is accelerated, a negative speedup
indicates the invocation is slowed down (e.g., due to inappropri-
ate resource harvesting), and a zero speedup indicates that the
invocation preserves its performance.

System resource utilization measures how efficient the server-
less computing platform can utilize the hardware resources, which
is calculated as

utilized_resources

@)

sys_util := ————————,
available_resources
where utilized resources and available_resources indicate the re-
sources utilized by function invocations and the total available
resources for users, respectively.

8.2 Experiment Setup

8.2.1 Testbeds. We evaluate L1BRA on three OpenWhisk clusters:
Single-node cluster: The single-node cluster has three nodes, in-
cluding one client for invoking functions, one controller that hosts
OpenWhisk components, and one worker with 72 Intel Xeon E5-
2670 CPU cores and 72 GB of memory for executing functions.
Multi-node cluster: A six-node cluster includes one client node,
one controller node, and four worker nodes. Each worker node
provides 32 Intel Xeon E5-2420 CPU cores and 32 GB memory for
executing functions.

Jetstream cluster: A 50-node cluster using Jetstream [40, 43], which
is a cloud computing environment for scientific research. Each
node has 24 Intel Xeon E5-2680 CPU cores and 24 GB memory for
executing functions.

8.2.2 Workloads. We sample eleven function invocation trace
sets from Azure Functions traces [36] for evaluation:

¢ One single trace set for single-node cluster evaluation. The
single set consists of 165 function invocations.

e Ten mullti trace sets for multi-node cluster evaluation. The
ten multi sets consist of in total 1,050 function invocations
with invocation frequency increasing from 10 to 300 request
per minute (RPM). Note that 95% of the functions running

HPDC ’23, June 16-23, 2023, Orlando, FL, USA

on Azure Functions have 60 RPM or less [36]. We assume
300 RPM is sufficiently high for realistic serverless traces.

We employ a real-world serverless benchmark suite, SeBS [14], to
conduct a realistic evaluation. Table 1 characterizes ten applications
from the SeBS benchmark suite. All functions are implemented in
Python. We set the initial resource configuration of each function
according to the default settings from the suites. Since the SeBS
benchmark suite does not provide input datasets, we collect data
points from real-world datasets as input data for invoking the ten
functions. Specifically, we randomly sample 100 pictures from the
CIFAR-100 dataset [26] for TN and IR. We randomly sample 100
videos from the YouTube-8M dataset [1] for UL, CP, and VP. We
use genome sequences of Bacillus subtilis from NCBI dataset [47]
for DV. We randomly sample 100 different graphs from igraph [15]
for GP, GM, and GB as input data.

8.2.3 LIBRA’s settings. We implement ML models using two RF
classifiers and one regressor with scikit-learn library [31], and his-
togram models with NumPy [24] in the profiler. Profiler’s workload
duplicator scales and duplicates the input data in a uniform distri-
bution with a maximum of 100 times. We use the created dataset to
train three initial RF models in L1BRA’s profiler for prediction. The
models capture function-specific patterns such as resource usage
and execution time. Hence, the function (or application) code is
the same for evaluation and development since models are built
per function. However, the training data (e.g., function-specific pat-
terns for training) for model development and testing data (e.g.,
function-specific patterns during evaluation) for evaluation are dif-
ferent. We split the datasets into a 7:3 ratio for training and testing.
All the testing data (patterns) are not exposed during the model
development phase. The ten functions are configured with eight
CPU cores and 1,024 MB memory in offline profiling, which is the
maximum allocation for each function in our experimental envi-
ronment. We set the safeguard threshold to be 0.8 and the demand
coverage weight to be 0.9 for LIBRA in our evaluation.

8.3 Effectiveness of LiBrRA’s Harvesting

We compare LIBRA with two existing resource managers for server-
less platforms and three variants of itself on the single-node cluster:
1) Default, the default resource management in OpenWhisk (also in
existing serverless platforms) that allocates user-defined resources
to functions. The resource allocation stays fixed during individual
function executions, and all invocations of the same function receive
a fixed amount of resources. 2) Freyr, a state-of-the-art serverless
resource management platform that uses DRL to harvest idle re-
sources and accelerate function executions [49]. We implemented
Freyr based on its open-sourced code repository and trained the
models following the algorithms described in its paper using the
same workloads in our evaluation. 3) LIBRA-NS (No Safeguard). A
variant of L1BRA without safeguard mechanism. We turn off the
safeguard daemon when LIBRA executes function invocations. 4)
LiBrA-NP (No Profiler). A variant of LiBra without profiler. This
variant does not have a profiler to predict three metrics (i.e., CPU us-
age peak, memory usage peak, and execution time). Instead, it uses
a moving window to determine three metrics. Every function has
a moving window for monitoring invocation history. The moving
window keeps track of n latest invocations and takes the maximum

188

Hanfei Yu, Christian Fontenot, Hao Wang, Jian Li, Xu Yuan, and Seung-Jong Park

1.0 1.0 . Default
[, Freyr

LM Libra i
L% Libra-NSP;/
0.5+ Libra-NS i/
L\ Libra-NP ; ;

CDF
CDF

05

g
. L
f I BRI R L L

0
0 50 100 -2
Response Latency (s) Speedup

(a) Response Latency (b) Speedup
Figure 6: CDFs of comparing L1BRA with two existing server-
less platforms and three variant.

et

| 1
-1 0 1

80 E
3 r Allocated Res.10.8 = & E 106 ~
5 60r ® Utlized Res. | = D ok Toa E
o (4 — Uil i B N = o TN
S 2o Utlization 0.4 23 s ;M A MR o2 &
5 i b S’IOKIWUIV \/L\,O E
0 200 400
(a) Default Wall Clock Time (s)
2 287 2108 ¢ 106 <
s Ot 1 E 04 £
S 4oy Joa B 1B
o 20 N/] <3 02 &
© 9 g S P
0 200 400 0 200 400
Wall Clock Time (s) (OEE Wall Clock Time (s)
80 [3
8 o[108 g @ 1ok 196 ¢
8 4ol fl/w 1,52 B, 104 §
2 453 KL Jo2 &
5 20 1 S & m I‘L"‘\“JI\“” 1°< 3
0 0 0Ok 0
0 200 400 0 200 400
Wall Clock Time (s) [SYiZEm] Wall Clock Time (s)
8 70-8g6§510kf— 106 ¢
S b S Bl —404 T
S joa B 5 sl log B
o 1 &< | gt/ M\x 402 5
© o © OkM—‘—J lg ~
0 200 400 0 200 400
Wall Clock Time (s) (d) Libra-NP Wall Clock Time (s)
80 E
» F 0.8 —~ F —0.6
Q 60 177 & Qokp 1 &
§ a0l ' 704§\§/) g 194§
=] r | A, Y = 5k (U MR 1 =3
2ol TRl s
0 Q 0 o]
0 200 400 0 200 400
Wall Clock Time (s) (e) Libra-NSP Wall Clock Time (s)
5 10.8 = o 10k - N ml;ﬁ : -0.6 =
8 o4 § § o« Emf'v“wm Joa §
5 ™ 1028
o !

1o
0 200 400 0 200
Wall Clock Time (s) (f) Libra Wall Clock Time (s)
Figure 7: CPU and memory utilization of six platforms

through the experiment timeline.

CPU usage peak, memory usage peak, and execution time as the de-
cision for the next incoming invocation. We set the window size to
five for each function in the experiment. 5) LiBra-NSP (no Safeguard
and Profiler), a variant of LIBRA without safeguard mechanism and
the profiler. We run six platforms using the same single trace set
and present the results averaged over five times of experiments.

8.3.1 Comparisons with State-of-the-arts. We first compare
LiBRrA with two existing resource managers for serverless platforms,
default OpenWhisk and Freyr, to evaluate the performance.
Response latency. Fig. 6(a) shows the CDF of function response
latency of three platforms. LiBRA outperforms the other two plat-
forms because of carefully harvesting and accelerating function
invocations with resource timeliness awareness. LIBRA reduces the
99th—percentile of the same workload by 50% and 39% compared to
OpenWhisk default and Freyr, respectively.

LiBrA: Harvesting Idle Resources Safely and Timely in Serverless Clusters

® Default + Accelerate
o| Harvest % Safeguard o F
3 3
3 8 o
Q. Q
(7] (7] L
TN AFNETENE AV AININE AR I AT YR AVANEN AR
-10 -05 0 05 1.0 -10 -05 0 05 1.0
Core x Sec () Default MB x Sec
S + S
o e
i [
(] (]
o Q
) (7]
-100 O 100 200 300
Core x Sec (b) Freyr

Speedup

Speedup

Speedup

|
200 400 -20,000

Core x Sec AN

0

+
Ey *4 g —=
o + f hel
D [
g Tog
(7] »
? 1 [
0 200 400 —20,000 0
Core x Sec (f) Libra MB x Sec

Figure 8: Performance of individual invocations processed by
six platforms. Default (e): invocations with user-requested
allocation. Accelerate (+): invocations accelerated by supple-
mentary allocation. Harvest (—): invocations with resource
harvested. Safeguard (x): safeguarded invocations.

Speedup and performance degradation. Fig. 6(b) shows the CDF
of execution speedup of three platforms. LIBRA outperforms the
other two by providing faster function invocation executions with-
out significantly degrading performance. Invocations processed by
OpenWhisk default have no speedup or degradation due to default
is the baseline. LiBrA degrades invocation performance with 2% at
worst regarding response latency, whereas Freyr suffers at worst
180% performance degradation.

System utilization and workload completion time. Fig. 7 presents
the CPU and memory utilization of three platforms through the
experiment timeline. LiBrA utilizes CPU and memory more effi-
ciently than the other two platforms. Specifically, LIBRA achieves
3.82X%/2.09% and 2.93%/2.48% average CPU/memory utilization com-
pared to OpenWhisk default and Freyr, respectively. Correspond-
ingly, LiBrRA completes the workload 51% and 43% faster.
Harvesting and acceleration. Fig. 8 shows the resource reassign-
ment details of all invocations processed by three platforms. We
use a product of reassigned resources and occupied time to present

189

HPDC ’23, June 16-23, 2023, Orlando, FL, USA

the two-dimensional impact of resource reallocation on each in-
vocation. OpenWhisk default has no resource adjustment during
workload processing. Freyr achieves poor performance on both har-
vesting and acceleration without awareness of harvested resource
timeliness. L1BRA offers careful harvesting and better acceleration
performance with higher speedups for invocations.

8.3.2 Ablation Study. We then perform an ablation study to
examine the effectiveness of two key components in LIBRA: the
profiler and safeguard. We compare L1BRA with three variants:
L1BRA-NS, L1BRA-NP, and L1BRA-NSP.

Response latency. Fig. 6(a) shows the function response latency
CDF of four L1BRA variants. LIBRA outperforms the other variants
due to being fully equipped with profiler and safeguard. LiBrRA
reduces the 99th—percentile of the same workload by 15%, 30%, and
34% compared to LIBRA-NS, LIBRA-NP, and LIBRA-NSP, respectively.
Speedup and performance degradation. Fig. 6(b) shows the
execution speedup CDF of four variants. LIBRA outperforms the
other three variants by providing faster function invocation ex-
ecutions without significantly degrading harvested invocations’
performance. LIBRA and L1BRA-NP degrade execution performance
2% and 6% at worst regarding response latency. Compared to LIBRA
and LiBRA-NP, L1BRA-NS and LiBRA-NSP suffer at worst 42% and
197% performance degradation.

System utilization and workload completion time. Fig. 7 shows
the CPU and memory utilization of four LIBRA variants through
the experiment timeline. L1BRA utilizes CPU and memory more ef-
ficiently than the other three variants. LIBRA achieves 1.21X/1.40X,
1.84%/1.60%, and 2.05%/2x average CPU/memory utilization com-
pared to LiBRA-NS, L1BRA-NP, and L1BRA-NSP, respectively. It com-
pletes the workload 17%, 30%, and 42% faster.

Harvesting and acceleration. Fig. 8 shows the performance of
all invocations processed by four variants. LIBRA and LiBRA-NS
provides more precise harvesting and faster execution acceleration
(higher speedups) with profiler’s accurate predictions, whereas Li-
BRA-NP and LiBRA-NSP accelerates function invocations less (lower
speedups). Note that due to profiler’s predictions, LIBRA has less
safeguarded invocations than LIBRA-NP. LiBrA and L1BRA-NP have
some invocations protected by the safeguard daemon, resulting in
limited performance degradation. In contrast, invocations handled
by LiBRA-NS and L1BRA-NSP can experience serious performance
degradation without safeguard protection.

8.4 Effectiveness of LIBRA’s Scheduling

We then deploy L1BRA on the multi-node cluster to evaluate the ef-
fectiveness of its scheduling algorithm. We compare L1BRA’s sched-
uling algorithm with four baselines: 1) Default. The default schedul-
ing algorithm inside OpenWhisk. OpenWhisk controller calculates
a unique hash key for each function and always schedules invoca-
tions under the same function to the same node. 2) Round Robin (RR).
A classic yet popular load balancing algorithm that distributes the
load by sending successive requests to different invokers in a cycli-
cal manner. 3) Join-the-Shortest-Queue (JSQ) [23]. A well-known
load balancing algorithm that effectively reduces queueing time and
resource contention by sending incoming invocation to the node
with the least pending jobs. 4) Min-Worker-Set (MWS) [50]. A state-
of-the-art scheduling algorithm dynamically schedules invocations

HPDC ’23, June 16-23, 2023, Orlando, FL, USA

2

= 100F

(&) -

g E s -

§ 500 — 1~ Default+ JsQ Libra
@ [- RR

)} 0\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
o 50 100 150 200 250 300

Request per Min
Figure 9: 99th-percentile invocation end-to-end response la-
tency of five scheduling algorithms.

- @ Default @ RR @Jisa BEwmws (I Libra

}g 400 [~(a) Workload completion time

E 200

] . oW |

|9 0 B B B =] B =]
10 20 30 40 50 60 120 180 240 300

9 Request per Min

ﬁ [(b) Idle CPU corex Idle time

© 2000 -

S L

o

o 0 - - - fm s Al =|

2 10 20 30 40 50 60 120 180 240 300

o Request per Min

@ 300K -

X 500K | (c) Idle memory x:ldle time g

o |

S 100K e

% 2K - - - B =) 2| =

= 10 20 30 40 50 60 120 180 240 300

Request per Min
Figure 10: Workload completion time and performance of

utilizing harvested resources of five scheduling algorithms.

0 - 100
g = | & e0f
> 30 z r
S T -+ Default = MWS| G 60
o 20;—,?“ ~+ RR Libra | % 4oL
< - JsQ e
0 100 200 300 0 100 200 300
Request per Min Request per Min
(a) Average CPU utilization (b) Peak CPU utilization
25¢ 60 -
L 20F 5 |2
£ E I £
1 H
g '8¢ g
o 103 x
g B
z k] o]
S T & TR FETETRTT PUETRR S
0 100 200 300 0 100 200 300

Request per Min
(c) Average mem uilization

Figure 11: Average/peak CPU and memory utilization.

Request per Min
(d) Peak mem utilization

to the node with the least resource pressure. We enable the cluster
with L1BRA’s function harvesting and acceleration when evaluating
all five algorithms for a fair comparison on scheduling. We evaluate
five algorithms by running the ten multi trace sets sequentially and
report the results averaged over five times of experiments.

P99 response latency. LIBRA consistently achieves the lowest P99
latency for all traces (Fig. 9).

System utilization. Fig. 11 reports the average/peak CPU and
memory utilization of five scheduling algorithms. LIBRA gener-
ally maintains the highest CPU and memory utilization among all
baselines for ten trace sets.

Workload completion time. We define workload as a collection of
multiple incoming function invocations, and workload completion
time as the time from invoking the first invocation until the last
invocation completes. From Fig. 10(a), LIBRA outperforms the other
four algorithms by completing workloads faster.

Idle time of harvested resources. Our evaluation keeps track of
every harvested resource’s entry time and leave time in harvest
resource pools. We define idle time as the time when harvested

190

Hanfei Yu, Christian Fontenot, Hao Wang, Jian Li, Xu Yuan, and Seung-Jong Park

NN 2 & 10

o 300 F gzoo— g2 L

F 250 - 52180754':‘?/(; 5 ¢

S ool § . ol* s *t* 1808

B 2001 S 160 o |

a L R o ra L K >

E 1501 58 Eq40l oA 1< o7

8 \‘\‘\‘\‘\8 I S B | QQQQQQQQQQ
10 20 30 40 50 10 20 30 40 50 V¥ oY,
of Nodes # of Nodes # of Invocations

(a) Strong Scaling (b) Weak Scaling (c) Sched. Delay
Figure 12: LIBRA’s scalability and scheduling overhead.

resources staying in the pool without any invocations actually
utilizing them. We then sum up the values of all the product of
harvested resources and their idle time to indicate the performance
of how a scheduling algorithm utilizes the harvested resources.
Intuitively, a lower value indicates a better utilization of harvested
resources for a scheduling system. Fig. 10(b) and (c) show that LIBRA
generally maintains the lowest value among all algorithms for all
traces. It makes the best use of harvested resources.

8.5 Scalability

We study the strong scaling and weak scaling of decentralized shard-
ing schedulers in L1BRA using the Jetstream cluster. Strong scaling
evaluates LIBRA’s performance on increasing worker nodes when
given a fixed total number of function invocations; and weak scal-
ing evaluates the performance on increasing worker nodes when
the average number of invocations distributed to each node is fixed.
We gradually increase the number of L1BRA’s schedulers from one
to four to examine the effectiveness of increasing concurrent sched-
ulers. Note that one scheduler is exactly a centralized version. We
use the same workload that consists of ten real-world functions
used in previous experiments to measure the scalability of LiBRrA.
Each function has the number of invocations evenly divided from
the total number. We keep the initial resource configuration the
same as the previous experimental setup. We enable L1BRA’s har-
vesting and timeliness-aware scheduling to evaluate the scalability
in realistic scenarios.

Strong scaling. We launch 1000 concurrent invocations where
each function is invoked 100 times simultaneously. Fig. 12(a) shows
the performance of strong scaling when LiBRA gradually increases
the number of schedulers from one to four. The completion time of
workload decreases with the number of schedulers increasing.
Weak scaling. We set the average number of invocations assigned
to each worker as 20 and evaluate the weak scaling of L1BRrA, which
means that 200 concurrent invocations for 10 nodes and 1000 for
50 nodes. Fig. 12(b) shows the trend of completion time does not
rise significantly when workload intensity increases.

Scheduling overhead. We define the scheduling overhead of an
invocation as the time when a scheduler picks it up until sending it
to a node. We measure the scheduling overhead averaged over con-
current invocations using the 50-node cluster with four schedulers.
Fig. 12(c) shows the average overhead with workload intensity in-
creasing from 200 to 1000. LIBRA maintains the overhead under 1
ms consistently.

8.6 Profiler’s Model Analysis

Metrics. We adopt two metrics, accuracy and R? score, to evalu-
ate the performance of multi-classification and regression models,
respectively. For classification problems, accuracy measures the

LiBrA: Harvesting Idle Resources Safely and Timely in Serverless Clusters

1.0 H\ Libra 7 1.0 =% Default -, -
[Hist -7 [, Freyr: ,
[P ML [M Librai ¢ L
é [// o LQL [] E [
o 05 7~ o 05p i o 051
L i ’.’ L I' L
Lo A oS
ol ol=C. ¥ . olel b
0 1 -1 0 1 -1 0
Speedup Speedup Speedup

(a) Model ablation study (b) Input size-related (c) Input size-unrelated

Figure 13: Model ablation study and input size sensitivity.

& F +120f
o 80Es. . (@ @120 (b)
= F >
€ 60 T 2100 3.5
o [2 roooea
g 4o ® S 8ol o
g or R g ol Sy
-S| S S B0
0.5 1.0
Threshold Threshold

Figure 14: Sensitivity analysis of safeguard thresholds.
fraction of predictions from models that are correct. A higher ac-
curacy generally means a better model. For regression problems,
R? score measures the proportion of the variation in the dependent
variable that is predictable from the independent variable. An R?
score at 1.0 indicates two variables are perfectly correlated.
Models. We examine four popular ML models for each task. For
CPU/memory usage and execution time prediction, we evaluate
Logistic/Linear Regression (LR), Support Vector Machines (SVM),
Neural Networks (NN), and Random Forest (RF). All models are
tuned with hyperparameter searching from scikit-learn library [31].
We use the collected ten functions and realistic datasets in §8.2
to evaluate four models. The datasets are split in a 7:3 ratio for
training and testing.

Prediction performance. Table 2 reports the accuracy and R?
score of four models for each workload function. RF outperforms
the other three models for all tasks regarding average accuracy and
R? score. Specifically, for CPU usage prediction, RF’s accuracy is 6%,
8%, and 2% higher than LR, SVM, and NN, respectively. Four models
show less variance for memory usage prediction, where RF’s accu-
racy is 1%, 1%, and 2% higher than LR, SVM, and NN, respectively.
For execution time prediction, RF’s R? score is significantly higher
than others and the closest to 1.0.

Input size-related and unrelated functions. Input size-related
and unrelated functions show a significant difference. We can draw
a boundary between the two types by specifying a threshold on
the accuracy and R? score. For example, we may use a 0.9 accuracy
and a 0.9 R? score as indicators to distinguish whether a function
is input size-related.

Model ablation study. Fig. 13(a) presents the speedup CDF of
LiBrA and two variants, LIBRA with only histogram models (Hist)
and LiBRA with only ML models (ML), when running the workload
on the single-node cluster. LIBRA outperforms the two variants for
handling workloads that include both types of functions.
Prediction overhead. In our experiments, LIBRA’s predictions
introduce an average prediction overhead of less than 2 ms. The
overhead is negligible compared to the execution time of most
serverless functions, as 75% of functions on Azure Functions execute
for at least 1 second [36].

Training time. The offline training to initialize a model takes less
than 120 ms, while the online training on an existing model takes
less than 1 ms. Both offline training and online training incur trivial
overhead compared to the execution times of most functions.

191

HPDC ’23, June 16-23, 2023, Orlando, FL, USA

Table 2: Comparison on ten functions with four different
machine learning models. Metrics include: CPU usage pre-
diction accuracy/Memory usage prediction accuracy/R? score
of execution time prediction.

Func. LR SVM NN RF

UL 0.76/1.0/0.93 0.70/1.0/0.91 0.84/0.97/0.53 0.85/1.0/0.92
N 0.91/0.92/0.92 0.94/0.96/0.77 0.97/0.96/0.22 0.98/0.97/0.93
Cp 0.90/1.0/0.94 0.87/1.0/0.89 0.92/0.98/0.35 0.95/1.0/0.97
DV 1.0/0.99/0.89 1.0/0.98/-5.65 0.99/0.97/-0.36 1.0/1.0/0.95
DH 0.89/1.0/0.65 0.87/0.97/-475 0.93/1.0/-21 0.95/0.99/0.92
Avg. 0.89/0.98/0.86 0.87/0.98/-95 0.93/0.97/-4.14 0.95/0.99/0.94
VP 0.45/0.20/-2.29 0.52/0.52/-34 0.62/0.67/-15 0.58/0.63/-0.14
IR 0.47/0.42/-5.99 0.43/0.49/-254 0.49/0.57/-88 0.65/0.59/-4.40
GP 0.51/0.47/-0.07 0.53/0.59/-0.13 0.56/0.65/-0.08 0.61/0.69/-0.06
GM 0.52/0.46/-0.05 0.61/0.49/-0.05 0.58/0.46/-0.20 0.62/0.50/-0.04
GB 0.41/0.56/-0.02 0.47/0.46/-0.04 0.43/0.63/-0.07 0.47/0.66/-0.01
Avg. 0.47/0.42/-1.68 0.51/0.51/-57 0.53/0.60/-20 0.59/0.61/-0.93

8.7 Input Size Sensitivity

We investigate LIBRA’s sensitivity of input sizes via the three types
of workloads: hybrid, input size-related, and input size-unrelated.
The hybrid workload includes all ten functions in Table 1, the input
size-related workload consists of five functions (UL, TN, CP, DV,
and DH), and the input size-unrelated workload consists of the other
five (VP, IR, GP, GM, and GB). All functions’ initial configurations
follow the same settings of experiments in §8.3.

Fig. 6(b), Fig. 13(b), and Fig. 13(c) show the speedup CDF of the
OpenWhisk default, Freyr, and L1BRA when running the hybrid,
input size-related, and input size-unrelated workloads, respectively.
LiBra offers the best performance running the input size-related
workload, which accelerates 99th—percentile of invocations by 94%
and 58% over default and Freyr, respectively. For the hybrid work-
load, L1BRA accelerates 99th—percentile of invocations less by 50%
and 39% over default and Freyr, respectively. LIBRA provides the
least performance gain for the input size-unrelated workload, which
still improves by 13% and 12% over default and Freyr, respectively.
The more input size-related functions in a workload, the lower
is L1BRA’s performance. Nevertheless, L1BRA still improves input
size-unrelated functions’ performance.

8.8 Parameter Sensitivity Analysis

Safeguard’s threshold. We set the default threshold value to be
0.8 in L1BRA’s safeguard, allowing invocations to trigger safeguard
just before detecting a full utilization. We conduct a sensitivity
check by running L1Bra with the single trace set on the single-node
cluster. Fig. 14(a) shows the ratio of invocations that safeguarded
by LiBrA with the threshold increasing from 0 to 1 in the step of
0.1. Fig. 14(b) shows the P99 function response latency of each run.
The safeguarded invocation ratio drops with threshold increasing
as L1BRA gradually harvests idle resources wildly. Due to degraded
performance and limited safeguarding, LiBrA performs worse for
thresholds beyond 0.8.

Demand coverage weight. We set the default weight to be 0.9 in
LiBrA’s demand coverage calculation, letting CPU demand cover-
age contribute much larger than memory coverage. We conduct a
sensitivity check on the weight by running L1BRA using the multi
trace set with 120 RPM on the multi-node cluster. Fig. 16(a) shows

HPDC ’23, June 16-23, 2023, Orlando, FL, USA

GB = 8 Frontend
GM o= : (D Profiler
GP > === Scheduler
S IR S 8 Havest Pool
= VP < == g Container Init.
§ DH mrzzzzzisssssss—— Code Exec.
o DV e
CP
TN S
uL ; ; : ; ; |
0 2 4 6 8 10
Latency (s)
Figure 15: L1BRA latency breakdown.
0* CPU Idle Mem Idle @ 1004 (0)
Jod = o bs
@ 800’;‘_*”& (a) }70K & é‘ L34
x L B St _ =7 o) L
x 700 gk =z 2 80 5
st L 60K T S 4.5 &
g600 gt Gl =3 34
o 5004 % 350K @ B 60l &
kel I Lo Lo L [¢] T T S Y S B 1
- 0 1 0 1
Weight Weight

Figure 16: Sensitivity analysis of demand coverage weight.

the CPU/memory idle values with weight increasing from 0 to 1 in
the step of 0.1. Fig. 16(b) shows the P99 latency of each run. When
the weight increases, CPU coverage gradually contributes more to
the total weighted coverage, and memory coverage contributes less.
This results in CPU idle value decreasing and memory idle value
increasing. L1BRA with 0.9 coverage weight achieves the lowest P99
function response latency.

8.9 Latency Breakdown

Fig. 15 shows the latency breakdowns of ten functions in evaluation.
We run the ten functions in the same setting as multi-node experi-
ments. LIBRA’s components incur negligible overhead compared to
the container initialization time and function execution time.

8.10 Overheads of LiBrRA’s Components

We measured the overheads of LiBrRA’s individual components
when running the same workloads from previous experiments on
the multi-node cluster (§8.2.1). The profiler incurs 1.0 core CPU over-
head and 268 MB memory overhead; the scheduler incurs 0.6 core
CPU overhead and 134 MB memory overhead; the harvest resource
pool incurs 0.2 core CPU overhead and 46 MB memory overhead.
Running the whole Libra incurs less than 3% (5%) CPU (memory)
overheads compared to the volume of harvested resources, which
are negligible. The overheads will be even lower if Libra handles
fewer function invocations.

9 RELATED WORK

Resource harvesting. A few studies proposed to harvest VM’s idle
resources due to users’ static and inaccurate resource allocation.
SmartHarvest [45] proposed a VM resource harvesting algorithm
using online learning and offers a new low-priority VM service us-
ing harvested resources. Zhang et al. proposed an MWS scheduling
algorithm that uses Harvest VMs to serve serverless computing
[50]. In contrast, LIBRA harvests idle resources from function in-
vocations in fine granularity and uses the harvested resources to
accelerate function executions. Freyr is the closest work to LIBRa,
yet being outperformed due to three key differences: First, Freyr is
not aware of resource timeliness. Freyr can estimate the volume of
resources that a function invocation needs, but when it harvests
and reallocates resources from other functions, it ignores whether

192

Hanfei Yu, Christian Fontenot, Hao Wang, Jian Li, Xu Yuan, and Seung-Jong Park

the harvested resources would be available throughout the whole
execution. Second, Freyr’s prediction does not explicitly capture in-
put data size. Freyr uses a DRL agent to predict function invocation
demands, where the observed states lack of input size information.
Third, Freyr’s safeguard is not timely safe. Unlike LIBRA’s preemp-
tive release, which returns harvested resources at function runtime,
Freyr only resumes the resource allocation to the user-defined value
for the next invocation, leaving the current invocation suffering
from mis-prediction.

Caching. Faa$T [33] transparently scales caches based on data
access patterns to speed up function invocations. Instead of data
caching, L1BRA focuses on harvesting idle CPU and memory re-
sources to accelerate function executions. OFC [29] is the closest
work to L1BRA. OFC needs to manually craft features for different
data types and request access to input data content for memory
allocation estimation. However, LIBRA generalizes to different data
types and requires no access to input content by optimizing function
invocations as black boxes. OFC only harvests memory, whereas
L1BRA jointly harvests CPU and memory and can be easily extended
to other resource types.

User-side function configuration. Many studies optimized single
serverless function resource configuration from the user side such
as [2, 18, 27, 30, 46]. L1BRA is a provider-side solution that provides
transparent resource reallocation from the view of providers instead
of tuning user configuration.

Function invocation scheduling. Many existing studies aimed
to improve function execution performance [21, 38, 41, 48] and
resource utilization [9, 10, 50] by designing novel scheduling algo-
rithms for serverless computing. Existing scheduling solutions for
serverless computing consider no harvested resources. While no
existing scheduling solutions incorporate resource harvesting, we
show that L1BRA’s scheduling outperforms state-of-the-arts.

10 CONCLUSION

This paper proposed LIBRA, a new provider-side serverless comput-
ing technique that accelerates function invocations by harvesting
idle resources safely and timely. Li1BRA achieves both low function
response latency and high resource utilization on real clusters with
realistic workloads. Experimental results showed that LIBRA re-
duces function response latency by 39% and achieves 3X resource
utilization compared to state-of-the-art solutions.

11 ACKNOWLEDGMENTS

We thank the anonymous HPDC shepherd and reviewers for their
valuable input. The work of H. Yu, C. Fontenot, and H. Wang was
supported by NSF CRII-OAC-2153502 and the AWS Cloud Credit
for Research program. The work of J. Li was supported by NSF CRII-
CNS-NeTS-2104880, RINGS-2148309, ARO W911NF-23-1-0072, and
DOE DE-EE0009341. The work of X. Yuan was supported by NSF
1763620, 1948374, and 2146447. The work of S. Park was supported
by NSF 2120248. This work used JetStream at IU through allocation
CIS220024 from the Extreme Science and Engineering Discovery
Environment (XSEDE), which was supported by NSF grant number
1548562. Any opinions, findings, and conclusions or recommenda-
tions expressed in this material are those of the authors and do not
necessarily reflect the views of the funding agencies.

LiBrA: Harvesting Idle Resources Safely and Timely in Serverless Clusters

REFERENCES

(1]

A

3

=

[4

flaa

=
=2

(11

[12]

[13]

[14

(15

[16]

[17

[18]

[19]

[20]

[21]

[22]

[23]

[24]

Sami Abu-El-Haija, Nisarg Kothari, Joonseok Lee, Paul Natsev, George Toderici,
Balakrishnan Varadarajan, and Sudheendra Vijayanarasimhan. 2016. Youtube-8m:
A Large-scale Video Classification Benchmark. arXiv preprint arXiv:1609.08675
(2016).

Nabeel Akhtar, Ali Raza, Vatche Ishakian, and Ibrahim Matta. 2020. COSE:
Configuring Serverless Functions using Statistical Learning. In Proc. of the 2020
IEEE Conference on Computer Communications (INFOCOM).

Ahsan Ali, Riccardo Pinciroli, Feng Yan, and Evgenia Smirni. 2020. BATCH:
Machine Learning Inference Serving on Serverless Platforms With Adaptive
Batching. In Proc. of the IEEE International Conference for High Performance
Computing, Networking, Storage and Analysis (SC). IEEE, 1-15.

Pradeep Ambati, fiiigo Goiri, Felipe Frujeri, Alper Gun, Ke Wang, Brian Dolan,
Brian Corell, Sekhar Pasupuleti, Thomas Moscibroda, Sameh Elnikety, et al. 2020.
Providing SLOs for Resource-Harvesting VMs in Cloud Platforms. In Proceedings
of the 14th USENIX Conference on Operating Systems Design and Implementation
(OSDI).

Lixiang Ao, Liz Izhikevich, Geoffrey M Voelker, and George Porter. 2018. Sprocket:
A Serverless Video Processing Framework. In Proc. of the ACM Symposium on
Cloud Computing (SoCC).

Apache. 2018. Apache OpenWhisk: Open Source Serverless Cloud Platform.
https://openwhisk.apache.org. [Online; accessed 1-May-2018].

Arda Aytekin and Mikael Johansson. 2019. Harnessing the Power of Serverless
Runtimes for Large-Scale Optimization. arXiv preprint arXiv:1901.03161 (2019).
Yossi Azar and Danny Vainstein. 2019. Tight Bounds for Clairvoyant Dynamic
Bin Packing. ACM Transactions on Parallel Computing (TOPC) (2019).
Bharathan Balaji, Christopher Kakovitch, and Balakrishnan Narayanaswamy.
2021. FirePlace: Placing Firecraker Virtual Machines with Hindsight Imitation.
Proc. of Machine Learning and Systems (MLSys) 3 (2021).

Vivek M Bhasi, Jashwant Raj Gunasekaran, Aakash Sharma, Mahmut Taylan
Kandemir, and Chita Das. 2022. Cypress: Input Size-sensitive Container Provi-
sioning and Request Scheduling for Serverless Platforms. In Proceedings of the
13th Symposium on Cloud Computing (SoCC).

Joao Carreira, Pedro Fonseca, Alexey Tumanov, Andrew Zhang, and Randy Katz.
2019. Cirrus: a Serverless Framework for End-to-end ML Workflows. In Proc. of
the ACM Symposium on Cloud Computing (SoCC).

Ryan Chard, Yadu Babuji, Zhuozhao Li, Tyler Skluzacek, Anna Woodard, Ben
Blaiszik, Ian Foster, and Kyle Chard. 2020. FuncX: A Federated Function Serv-
ing Fabric for Science. In Proc. of The 29th International Symposium on High-
Performance Parallel and Distributed Computing (HPDC). 65-76.

Edward G Coffman, Jr, Michael R Garey, and David S Johnson. 1983. Dynamic
Bin Packing. SIAM J. Comput. (1983).

Marcin Copik et al. 2020. SeBS: A Serverless Benchmark Suite for Function-as-a-
Service Computing. arXiv preprint arXiv:2012.14132 (2020).

Gabor Csardi, Tamas Nepusz, et al. 2006. The igraph Software Package for
Complex Network Research. InterJournal, complex systems (2006).

Christina Delimitrou and Christos Kozyrakis. 2014. Quasar: Resource-efficient
and QoS-aware Cluster Management. ACM SIGPLAN Notices (2014).

Docker. 2021. Docker Update APIL https://docs.docker.com/engine/reference/
commandline/update/. [Online].

Simon Eismann, Long Bui, Johannes Grohmann, Cristina Abad, Nikolas Herbst,
and Samuel Kounev. 2021. Sizeless: Predicting the Optimal Size of Serverless
Functions. In Proc. of the 22nd International Middleware Conference (MIDDLE-
WARE)

Sadjad Fouladi, Riad S Wahby, Brennan Shacklett, Karthikeyan Balasubramaniam,
William Zeng, Rahul Bhalerao, Anirudh Sivaraman, George Porter, and Keith
Winstein. 2017. Encoding, Fast and Slow: Low-Latency Video Processing Using
Thousands of Tiny Threads. In Proc. of USENIX NSDIL

Alexander Fuerst, Stanko Novakovi¢, Ifiigo Goiri, Gohar Irfan Chaudhry, Prateek
Sharma, Kapil Arya, Kevin Broas, Eugene Bak, Mehmet Iyigun, and Ricardo
Bianchini. 2022. Memory-harvesting VMs in Cloud Platforms. In Proceedings of
the 27th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS).

Alexander Fuerst and Prateek Sharma. 2022. Locality-aware Load-Balancing
For Serverless Clusters. In Proceedings of the 31st International Symposium on
High-Performance Parallel and Distributed Computing (HPDC).

Jashwant Raj Gunasekaran, Prashanth Thinakaran, Nachiappan Chidambaram,
Mahmut T Kandemir, and Chita R Das. 2020. Fifer: Tackling Underutilization in
the Serverless Era. In Proc. the 21st International Middleware Conference (Middle-
ware).

Varun Gupta, Mor Harchol Balter, Karl Sigman, and Ward Whitt. 2007. Analysis of
Join-the-Shortest-Queue Routing for Web Server Farms. Performance Evaluation
(2007).

Charles R Harris, K Jarrod Millman, Stéfan J Van Der Walt, Ralf Gommers,
Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg,
Nathaniel J Smith, et al. 2020. Array Programming with NumPy. Nature (2020).

193

[25

[26

[27

[28

[30

(31

[35

[36

[37

'w
&

[39

[40

[41]

=
)

[43

[44

[45

'S
Ko

HPDC ’23, June 16-23, 2023, Orlando, FL, USA

Heo, Tejun. 2021. Control Group v2. https://www.kernel.org/doc/Documentation/
cgroup-v2.txt. [Online; accessed 1-April-2022].

Alex Krizhevsky, Geoffrey Hinton, et al. 2009. Learning Multiple Layers of
Features from Tiny Images. (2009).

Ashraf Mahgoub, Li Wang, Karthick Shankar, Yiming Zhang, Huangshi Tian, Sub-
rata Mitra, Yuxing Peng, Hongqi Wang, Ana Klimovic, Haoran Yang, et al. 2021.
SONIC: Application-aware Data Passing for Chained Serverless Applications. In
Proc. of the 2021 USENIX Annual Technical Conference (USENIX ATC).

Bilal Muhammad, Canini Marco, Fonseca Rodrigo, and Rodrigues Rodrigo. 2023.
With Great Freedom Comes Great Opportunity: Rethinking Resource Allocation
for Serverless Functions. In Proceedings of the European Conference on Computer
Systems (EuroSys).

Djob Mvondo, Mathieu Bacou, Kevin Nguetchouang, Lucien Ngale, Stéphane
Pouget, Josiane Kouam, Renaud Lachaize, Jinho Hwang, Tim Wood, Daniel Hagi-
mont, et al. 2021. OFC: an Opportunistic Caching System for FaaS Platforms. In
Proceedings of the Sixteenth European Conference on Computer Systems (EuroSys).
Jinwoo Park, Byungkwon Choi, Chunghan Lee, and Dongsu Han. 2021. GRAF: A
Graph Neural Network Based Proactive Resource Allocation Framework for SLO-
Oriented Microservices. In Proc. of the 17th International Conference on emerging
Networking EXperiments and Technologies (CONEXT).

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research (JMLR) (2011).
Benjamin Reidys, Jinghan Sun, Anirudh Badam, Shadi Noghabi, and Jian Huang.
2022. BlockFlex: Enabling Storage Harvesting with Software-Defined Flash in
Modern Cloud Platforms. In 16th USENIX Symposium on Operating Systems Design
and Implementation (OSDI).

Francisco Romero, Gohar Irfan Chaudhry, Iiiigo Goiri, Pragna Gopa, Paul Batum,
Neeraja] Yadwadkar, Rodrigo Fonseca, Christos Kozyrakis, and Ricardo Bianchini.
2021. Faa$T: A Transparent Auto-Scaling Cache for Serverless Applications. In
Proceedings of the ACM Symposium on Cloud Computing (SoCC).

Rohan Basu Roy, Tirthak Patel, Vijay Gadepally, and Devesh Tiwari. 2022.
Mashup: Making Serverless Computing Useful for HPC Workflows via Hybrid
Execution. In Proceedings of the 27th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPoPP).

Mohammad Shahrad, Jonathan Balkind, and David Wentzlaff. 2019. Architectural
Implications of Function-as-a-Service Computing. In Proc. of IEEE/ACM MICRO.
Mohammad Shahrad, Rodrigo Fonseca, Inigo Goiri, Gohar Chaudhry, Paul Batum,
Jason Cooke, Eduardo Laureano, Colby Tresness, Mark Russinovich, and Ricardo
Bianchini. 2020. Serverless in the Wild: Characterizing and Optimizing the
Serverless Workload at a Large Cloud Provider. In Proc. of USENIX ATC.
Vaishaal Shankar, Karl Krauth, Kailas Vodrahalli, Qifan Pu, Benjamin Recht,
Ton Stoica, Jonathan Ragan-Kelley, Eric Jonas, and Shivaram Venkataraman.
2020. Serverless Linear Algebra. In Proc. of the 11th ACM Symposium on Cloud
Computing (SoCC).

Arjun Singhvi, Arjun Balasubramanian, Kevin Houck, Mohammed Danish Shaikh,
Shivaram Venkataraman, and Aditya Akella. 2021. Atoll: A Scalable Low-Latency
Serverless Platform. In Proc. of the ACM Symposium on Cloud Computing (SoCC).
138-152.

Tyler J Skluzacek, Ryan Wong, Zhuozhao Li, Ryan Chard, Kyle Chard, and Ian
Foster. 2021. A Serverless Framework for Distributed Bulk Metadata Extraction.
In Proceedings of the 30th International Symposium on High-Performance Parallel
and Distributed Computing (HPDC).

Craig A Stewart, Timothy M Cockerill, Ian Foster, David Hancock, Nirav Mer-
chant, Edwin Skidmore, Daniel Stanzione, James Taylor, Steven Tuecke, George
Turner, et al. 2015. Jetstream: a Self-provisioned, Scalable Science and Engi-
neering Cloud Environment. In Proc. of the 2015 XSEDE Conference: Scientific
Advancements Enabled by Enhanced Cyberinfrastructure (XSEDE).
Amoghavarsha Suresh and Anshul Gandhi. 2021. ServerMore: Opportunistic
Execution of Serverless Functions in the Cloud. In Proc. of the ACM Symposium
on Cloud Computing (SoCC).

Huangshi Tian, Suyi Li, Ao Wang, Wei Wang, Tianlong Wu, and Haoran Yang.
2022. Owl: Performance-aware Scheduling for Resource-efficient Function-as-a-
Service Cloud. In Proc. of the 13th ACM Symposium on Cloud Computing (SoCC).
John Towns, Timothy Cockerill, Maytal Dahan, Ian Foster, Kelly Gaither, Andrew
Grimshaw, Victor Hazlewood, Scott Lathrop, Dave Lifka, Gregory D Peterson,
et al. 2014. XSEDE: Accelerating Scientific Discovery. Computing in Science &
Engineering (2014).

Hao Wang, Di Niu, and Baochun Li. 2019. Distributed Machine Learning with a
Serverless Architecture. In Proc. of IEEE INFOCOM.

Yawen Wang, Kapil Arya, Marios Kogias, Manohar Vanga, Aditya Bhandari, Neer-
aja] Yadwadkar, Siddhartha Sen, Sameh Elnikety, Christos Kozyrakis, and Ricardo
Bianchini. 2021. SmartHarvest: Harvesting Idle CPUs Safely and Efficiently in
the Cloud. In Proc. of ACM EuroSys.

Zhaojie Wen, Yishuo Wang, and Fangming Liu. 2022. StepConf: SLO-Aware
Dynamic Resource Configuration for Serverless Function Workflows. In Proc. of

https://openwhisk.apache.org
https://docs.docker.com/engine/reference/commandline/update/
https://docs.docker.com/engine/reference/commandline/update/
https://www.kernel.org/doc/Documentation/cgroup-v2.txt
https://www.kernel.org/doc/Documentation/cgroup-v2.txt

HPDC ’23, June 16-23, 2023, Orlando, FL, USA

[47]

[48]

the IEEE International Conference on Computer Communications (INFOCOM).
David L Wheeler, Tanya Barrett, Dennis A Benson, Stephen H Bryant, Kathi
Canese, Vyacheslav Chetvernin, Deanna M Church, Michael DiCuccio, Ron
Edgar, Scott Federhen, et al. 2007. Database Resources of the National Center for
Biotechnology Information. Nucleic Acids Research (2007).

Hanfei Yu, Athirai A Irissappane, Hao Wang, and Wes J Lloyd. 2021. FaaS-
Rank: Learning to Schedule Functions in Serverless Platforms. In Proc. of IEEE
International Conference on Autonomic Computing and Self-Organizing Systems

194

Hanfei Yu, Christian Fontenot, Hao Wang, Jian Li, Xu Yuan, and Seung-Jong Park

[49

(ACSOS).

Hanfei Yu, Hao Wang, Jian Li, Xu Yuan, and Seung-Jong Park. 2022. Accelerating
Serverless Computing by Harvesting Idle Resources. In Proc. of the ACM Web
Conference (WWW).

Yanqi Zhang, Ifiigo Goiri, Gohar Irfan Chaudhry, Rodrigo Fonseca, Sameh El-
nikety, Christina Delimitrou, and Ricardo Bianchini. 2021. Faster and Cheaper
Serverless Computing on Harvested Resources. In Proc. of the ACM SIGOPS 28th
Symposium on Operating Systems Principles (SOSP).

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Resource Harvesting
	2.2 The Necessity of Resource Harvesting

	3 An Overview of Libra
	3.1 Timeliness of Harvested Resources
	3.2 Challenges

	4 Profiling
	4.1 Profiling Workflow
	4.2 Workload Duplicator
	4.3 Demand Estimator

	5 Resource Harvesting
	5.1 Harvest Resource Pools
	5.2 Safeguard

	6 Function Scheduling
	6.1 Complexity of Timeliness-aware Scheduling
	6.2 Demand Coverage
	6.3 Algorithm Design
	6.4 Decentralized Sharding Scheduler

	7 Implementing Libra
	8 Evaluation
	8.1 Evaluation Metrics
	8.2 Experiment Setup
	8.3 Effectiveness of Libra's Harvesting
	8.4 Effectiveness of Libra's Scheduling
	8.5 Scalability
	8.6 Profiler's Model Analysis
	8.7 Input Size Sensitivity
	8.8 Parameter Sensitivity Analysis
	8.9 Latency Breakdown
	8.10 Overheads of Libra's Components

	9 Related Work
	10 Conclusion
	11 Acknowledgments
	References

