

First phylogenetic analysis of the Nearctic madicolous midges of the genus *Androprosopa* Mik (Diptera: Thaumaleidae)

Robert J. Pivar ^a, John K. Moulton ^{a,*}, Bradley J. Sinclair ^b

^a The University of Tennessee, Department of Entomology and Plant Pathology, 2505 E.J. Chapman Drive, 370 Plant Biotechnology Building, Knoxville, TN 37996, USA

^b Canadian National Collection of Insects and Canadian Food Inspection Agency, K.W. Neatby Building, C.E.F., 960 Carling Avenue, Ottawa, Ontario K1A 0C6, Canada

ARTICLE INFO

Keywords:
 Diptera
 Thaumaleidae
 Nearctic
Androprosopa
 Phylogeny
 Molecular

ABSTRACT

Molecular phylogenetic analyses were conducted to infer relationships between the eastern and western Nearctic *Androprosopa* Mik and amongst the considerably more diverse western Nearctic species. Fresh, molecular-grade material was obtained for all Nearctic *Androprosopa* species except two Mexican species, *An. sonorensis* (Arnaud & Boussy) and *An. zempoala* Sinclair & Huerta, that eluded capture. Molecular sequences from two nuclear protein-coding genes, big zinc finger (BZF) and molybdenum cofactor sulfurase (MCS), were sampled from representatives of several outgroup and ingroup taxa and analyzed phylogenetically using maximum likelihood criteria to confirm identifications of females and immatures using a barcoding approach, test species boundaries among morphologically similar species, and infer relationships among more morphologically disparate groups. Resulting phylogenies suggest the following with significant node (bootstrap) support: (1) the eastern Nearctic *Androprosopa* species form the sister group to the lineage comprised of all sampled Palearctic thaumaleids, i.e., *An. larvata* (Mik), *An. striata* (Okada), and *Thaumalea testacea* Ruthe; (2) the aforementioned lineage is the sister group to the clade comprised of western Nearctic *Androprosopa* species; (3) the western Nearctic *Androprosopa* species form three multispecies lineages, two of which can be further divided into three or more well founded species groups. Our results suggest that *Androprosopa* as currently defined is paraphyletic. Additionally, we propose several new species groups within the western Nearctic *Androprosopa* based on molecular and morphological data.

1. Introduction

Thaumaleidae, or madicolous midges, are a family of aquatic Diptera. They are small (2–5 mm), stocky flies that are typically brown or black, though some may be dark orange or shiny yellow. They are found worldwide on all continents except Antarctica (Vaillant 1977; Sinclair & Saigusa 2002). Thaumaleidae includes 202 described species, currently classified within seven genera (Sinclair et al. 2022). The immature stages are morphologically specialized and restricted to madicolous habitats (Vaillant 1956; Sinclair & Marshall 1987; Sinclair & Stuckenbergh 1995). These habitats are characterized by thin films (2 mm or less) of flowing water over various substrates (e.g., rock, mud, moss or leaves) (Vaillant 1956; Mackie 2004; Pivar et al. 2021). Examples of such habitats include rock-face seepages, cascading streams, splash zones near waterfalls, and boulders in fast moving streams (Sinclair 2000).

Due to their restricted habitat and weak dispersal ability of the

adults, thaumaleids are a rarely encountered and thus understudied group. The best and most efficient method for collecting adult Thaumaleidae is to sweep riparian vegetation near the madicolous substrate. If sweeping is unsuccessful, inspect the madicolous substrate for adults resting on moss, in cracks and crevices, or on the rock face itself, where they may be aspirated. Larvae may be removed from the substrate using forceps or washed into a white pan (Sinclair & Saigusa 2002).

The Nearctic Region includes three genera (*Androprosopa* Mik, *Thaumalea* Ruthe and *Trichothaumalea* Edwards) and 32 described species (Pivar et al. 2018). *Androprosopa* is the most speciose genus in the Nearctic Region, with 28 species. The earliest taxonomic work on Nearctic Thaumaleidae dates to Bezz (1913), in which he described the first Nearctic species, *Androprosopa americana* (Bezz) from Ithaca, New York. The two remaining eastern Nearctic species are *An. thornburghae* (Vaillant) and *An. vaillantiana* Sinclair, which were revised by Sinclair (1996) including keys and descriptions of life stages.

Androprosopa is far more diverse in the western Nearctic Region with

* Corresponding author.

E-mail addresses: rpivar@vols.utk.edu (R.J. Pivar), jmoulton@utk.edu (J.K. Moulton), bradley.sinclair@inspection.gc.ca (B.J. Sinclair).

25 described species (Pivar et al. 2018). Arnaud & Boussy (1994) described 17 new species, while Pivar et al. (2018) added three additional species and provided updated distribution maps, an identification key to males, and proposed six new species groups based on male genitalic characters. Females, larvae and pupae have been described for only a small number of species, but they still pose a problem for identification as they lack distinguishing characters (Arnaud & Boussy 1994; Gillespie et al. 1994). Species determination of females and immatures by association is problematic, as often times habitats support multiple species (Pivar et al. 2018).

Relationships amongst the Nearctic species of *Androprosopa* remain uncertain. The eastern species are characterized by short, blunt apical gonostylar spines, tapered gonostyli, and dense setae on the inner face of the gonocoxites, features shared with *An. ericfisheri* (Arnaud & Boussy) (Sinclair 1996). All western Nearctic species groups have tapered gonostyli terminating in apical or subapical claw-like setae, except for the *An. anolo* group (Pivar et al., 2018). Despite all of the studies on Nearctic Thaumaleidae, they remain an under collected and understudied group with much still to be learned about diversity and relationships at all levels of classification.

In Europe, the division of Thaumaleidae into species groups based on male terminalia was first attempted by Edwards (1929), who recognized two European genera and three broad groupings. Species groups and generic definitions were reinvestigated by Vaillant (1978), who recognized four European genera and proposed five species groups for the genus *Thaumalea*. More recently, Wagner (2002) recognized three European genera and divided the genus *Thaumalea* into 13 species groups, along with several provisional groups. Haubrock et al. (2017) included species from seven of these 13 species groups, and based on this limited dataset, two species groups were found to be non-monophyletic. Much work remains to investigate the monophyly of the European fauna and their relationship to other segregates within the family.

Over the past 170 + years, knowledge about thaumaleids has grown primarily through descriptive work and little has been done with regard to exploring evolutionary relationships. The only phylogenetic analysis within the family is that of Haubrock et al. (2017), which examined divergence and dispersal of 14 European species. Arnaud & Boussy (1994) made reference to species they hypothesized may be closely related to one another in the species diagnoses, but they did not investigate relationships formally. Sinclair (1996) proposed hypotheses about the affinities between certain Nearctic taxa, but again, scope was narrow, encompassing only a few species. Pivar et al. (2018) proposed species groups on the basis of male genitalic characters. The purpose of this paper is to report results from the first comprehensive phylogenetic analysis of Nearctic species of *Androprosopa*. Widespread species, like *An. gillespieae* (Arnaud & Boussy) and *An. americana*, occur in disparate habitat types across their ranges, which often indicates species complexes (Moulton & Adler 1995). By sampling multiple individuals of these and other morphospecies across their known ranges, we were able to test species limits and infer inter-species relationships, including assessment of whether the eastern Nearctic fauna is more closely related to the Palearctic or western Nearctic faunas. Both of the genes utilized here are also well suited to function as barcode fragments useful in associating unknown or currently inseparable life stage of any Nearctic species to almost exclusively name-bearing males.

2. Materials and methods

2.1. Taxon sampling

Field collection over the past decade has yielded molecular grade material for all but two species, *An. sonorensis* (Arnaud & Boussy) and *An. zempoala* Sinclair & Huerta, of described Nearctic *Androprosopa*. Upon collection, specimens were placed immediately into 95% ethanol and later stored frozen at -20°C until use. At least one exemplar for each available species was used for molecular study (Table 1). Wherever

possible or appropriate, specimens of each morphospecies were sequenced from disparate populations to capture intraspecific variation and potentially detect cryptic species. When possible, the type locality of each species was collected to obtain topotypical material.

Distal outgroups (Table 2) included members of Culicidae and representatives from the Simuliidae, the sister group to Thaumaleidae (Moulton 2000; Bertone et al. 2008; Borkent 2012). Proximal outgroups included *Afrothaumalea stuckenbergi* Sinclair, *Trichothaumalea elakalensis* Sinclair and *Thaumalea testacea* Ruthe. Additionally, two Palearctic species of *Androprosopa*, *An. larvata* Mik and *An. striata* (Okada), were included.

2.2. Genomic sampling

Gene regions from two nuclear-coding loci — big zinc finger (BZF) and molybdenum cofactor sulfurase (MCS) — were chosen to infer phylogenetic relationships. These loci were chosen due to their presence as single copies, large size, high levels of nonsynonymous divergence, and demonstrated ability to reconstruct relationships within comparable taxonomic groups (Senatore et al. 2014; Winkler et al. 2015). In lieu of an obviously more powerful but prohibitively costly phylogenomic approach employing dozens or more loci, this study relies upon weighing topological concordance and nonparametric bootstrap node support across natural partitions of these two powerful markers.

2.2.1. Big zinc finger (BZF)

The potential of BZF as a phylogenetic marker was first demonstrated by Senatore et al. (2014), who utilized it to reconstruct a molecular phylogeny within the *Simulium jenningsi* species group (Moulton & Adler 1995). Given its success within the closely related family Simuliidae, BZF seemed an ideal choice for use in this project. Dipterans are one of several eukaryotic organisms that have single copies of BZF, a rapidly evolving DNA-binding transcriptional regulator (Senatore et al. 2014). Although BZF exceeds three kilobases of coding region, primers used herein focused on the distal two-thirds of the gene, resulting in a roughly 2-kilobase region containing only a single intron in thaumaleids.

2.2.2. Molybdenum cofactor sulfurase (MCS)

MCS was used for its high degree of phylogenetic informativeness when compared against several other nuclear genes, as illustrated by Winkler et al. (2015) and Blaschke et al. (2018). Primers were designed to amplify and sequence a roughly 2.5-kb pair region of the gene. This region, with 7 introns present in thaumaleids, was more intron burdened than optimal, leading to direct sequencing difficulties resulting from intron length polymorphisms in several taxa. This was remedied using complimentary internal sequencing primers designed from adjacent exonic regions or simply truncation if difficult introns were located near the 5' or 3' end of the amplicon.

2.3. Laboratory methods

Specimens of each taxon (either whole or terminalia only) were used to extract total DNA using either Thermo Scientific's GeneJET Genomic DNA Purification Kit #K0722 (ThermoScientific, Waltham, MA) or Omega Bio-tek's E.Z.N.A.® Insect DNA Kit #D0926-02 (Omega Bio-tek, Inc., Norcross, Georgia) following the manufacturers' suggested protocol except for reducing the final elution volume to a total of 100 μL . The resulting gDNA was stored at -20°C and the cleared voucher specimen stored in 70% ethanol. Amplifications were performed in GenePro (Bioer Technology Co., Hangzhou, China) thermal cyclers, using 50 μL PCR reactions filled with TaKaRa Ex Taq Hotstart DNA polymerase (Takara Bio, Shiga, Japan) kit components per the manufacturer's suggested protocol, with 1.5 μL of template DNA, and 3 μL of 20 μM custom forward and reverse primers (Table 3). Less to completely nondegenerate taxon- or clade-specific internal primers were sometimes designed and used to obtain sufficient yields of DNA via reamplification. These

Table 1

Ingroup exemplars of Nearctic *Androprosopa* Mik studied with species name, geographical source data, genomic sampling, GenBank accession numbers, and fragment size in analyzed data matrix.

Species	Specimen Locality Information	Locality Coordinates	Genbank Accession # and # of base pairs (bp)
		BZF	MCS
<i>Androprosopa americana</i> (Bezzi)	USA: GA: Towns Co.: Brasstown Bald, seep near waterfall USA: MS: Tishomingo Co.: Tishomingo State Park, Outcroppings Trail, waterfall CAN: ON: Owen Sound, Inglis Falls Conservation Area, springs/seeps	34°51'36"–83°48'09" 34°36'32"–88°10'31" 44°31'37"–80°56'07"	MK190468 2848 bp 1255 bp N/A MK206973 2020 bp N/A MK206975 2111 bp
<i>An. anolo</i> (Schmid)	USA: OR: Marion Co.: Willamette N.F., French Crk. Rd, trib. USA: WA: Mt. Rainier N.P., E. of Christine Falls, roadside seep	44°46'58"–122°11'12" 46°46'47"–121°46'21"	MK190490 851 bp 2049 bp MK190489 N/A 1865 bp
<i>An. apache</i> Pivar & Moulton	USA: AZ: Apache Co.: Apache-Sitgreaves N.F., Greer, Squirrel Spring	34°02'27"–109°27'32"	MK190503 2624 bp 2031 bp
<i>An. arnaudi</i> Pivar	USA: AZ: Graham Co.: Graham Mtns., Wet Canyon	32°39'06"–109°48'48"	MK190502 2652 bp 1916 bp
<i>An. becca</i> (Arnaud & Boussy)	CAN: BC: East Kootenay, Hwy. 3/95, roadcut seep USA: MT: Lincoln Co.: Hwy. 37, roadcut seeps USA: WA: Mt. Rainier N.P., small falls E of Christine Falls next to road	49°10'18"–116°00'31" 48°41'24"–115°18'49" 46°46'51.2"–121°46'45"	MK190481 2068 bp 2052 bp MK190482 N/A 886 bp N/A MK206985 2048 bp
<i>An. brothersi</i> (Arnaud & Boussy)	USA: CA: Santa Clara Co.: Uvas Canyon County Park, ex. sweeps along Swanson Crk. USA: CO: Mineral Co.: San Juan N.F., Hwy. 160, Falls Crk. nr. parking lot USA: SD: Pennington Co.: Black Hills N.F., Eleven Hour Gulch	37°05'03"–121°47'34" 37°26'31"–106°52'37" 44°23'38"–103°54'42"	MK190475 2167 bp 2077 bp MK190477 484 bp 967 bp MK190476 1970 bp 1984 bp
<i>An. buckae</i> (Arnaud & Boussy)	USA: CA: Humboldt Co.: Trinidad State Beach, sea cliff face USA: CA: Sierra Co.: Big Spring Falls, seepage area USA: CA: Siskiyou Co.: Hedge Crk., splash zones in crk.	41°03'25"–120°36'38" 39°35'48"–122°16'09" 41°14'14"–122°16'09"	MK190497 2048 bp 1962 bp MK190495 N/A 1929 bp MK190496 908 bp 2026 bp
<i>An. chandlerorum</i> (Arnaud & Boussy)	USA: CA: Nevada Co.: Carpenter Ridge, Cirque Lake and stream	39°25'01"–120°18'33"	MK190491 2675 bp 1955 bp
<i>An. coloradensis</i> (Arnaud & Boussy)	USA: CO: San Juan Co.: San Juan N.F., Hwy. 550, ex. Coal Crk. waterfalls on W side of road	37°42'29"–107°46'17"	MK190478 2744 bp 1977 bp
<i>An. conftracta</i> (Arnaud & Boussy)	USA: OR: Linn Co.: Santiam S.F., Monument Peak Rd., 820 m USA: WA: Mt. Baker-Snoqualmie N.F., Marblemount, Cascade R. Rd., roadside seep	44°42'34"–122°22'16" 48°32'10"–121°17'47"	MK190473 1928 bp 1948 bp MK190474 784 bp N/A
<i>An. elnora</i> (Dyar & Shannon)	USA: WA: Spokane Co.: Mt. Spokane SP Deadman Crk., 1325 m USA: WA: Mt. Rainier N.P., below Comet Falls, streams/seeps	47°54'20"–117°06'35" 46°47'29"–121°46'55"	MK190470 2715 bp 2055 bp MK190471 N/A 897 bp
<i>An. ericfisheri</i> (Arnaud & Boussy)	CAN: BC: Golden, Quartz Crk. Rd., trickling stream	51°27'55"–117°21'03"	MK190469 2786 bp 1877 bp
<i>An. falciformis</i> (Arnaud & Boussy)	USA: ID: Latah Co.: Moscow Mt., 1000 m, ex. cascading str.	46°47'43"–116°54'05"	MK190484 2055 bp 2018 bp
<i>An. fusca</i> (Garrett)	CAN: BC: Columbia-Shuswap, crk.	51°12'29"–118°12'09"	MK190488 2017 bp 1882 bp
<i>An. gillespieae</i> (Arnaud & Boussy)	CAN: BC: Hwy 23, 13 km N Revelstoke, 600 m USA: CO: Lake Co.: Black Cloud Crk., splash zones USA: UT: Utah Co.: Mt. Timpanogos alpine loop Rd., above Sundance, ex. cascading stream next to road USA: WA: Mt. Rainier N.P., Sunrise Bridge	51°04'03"–118°10'31" 39°04'10"–106°26'12" 40°23'41"–111°34'56" 46°54'27"–121°32'32"	MK190508 2772 bp 1969 bp MK190506 663 bp 2044 bp MK190507 2641 bp 1962 bp MK190505 872 bp 1958 bp
<i>An. idahoensis</i> (Arnaud & Boussy)	USA: ID: Nez Perce Co.: Juliaetta Falls USA: CA: Tahoe N.F., waterfall 4 miles E of Downieville	46°31'22"–116°44'49" 39°33'31"–120°45'40"	MK190493 1957 bp 1950 bp MK190494 N/A 839 bp
<i>An. lindsayorum</i> (Arnaud & Boussy)	USA: CA: Del Norte Co.: Redwood N.P., Enderts beach, sea cliff seep USA: WA: Mt. Rainier N.P., E of Nisqually R. bridge, roadcut seeps	41°42'21"–124°08'33" 46°46'48"–121°45'43"	MK190480 N/A 892 bp MK190479 2580 bp 2013 bp
<i>An. melanderi</i> (Arnaud & Boussy)	USA: CA: Nevada Co.: Culvert along Sagehen Crk.	39°26'04"–120°16'52"	MK190472 2043 bp 1792 bp
<i>An. palouse</i> (Arnaud & Boussy)	CAN: BC: Cranbrook, Gold Creek Rd, ex. small crk., splash zone	49°27'06"–115°41'15"	MK190500 2022 bp 1860 bp

(continued on next page)

Table 1 (continued)

Species	Specimen Locality Information	Locality Coordinates	Genbank Accession # and # of base pairs (bp)
		BZF	MCS
	USA: CO: Clear Creek Co.: Cascade Crk.	39°42'28" -105°36'35"	MK190499 874 bp
	USA: ID: Nez Perce Co.: Lake Waha & Craig Mtn., stream	46°11'41" -116°49'12"	MK190501 866 bp
	USA: WY: Bridger-Teton N.F., creek	42°32'46" -110°44'18"	MK190498 1980 bp
<i>An. rainierensis</i> Pivar & Sinclair	USA: WA: Pierce Co.: Mt. Rainier N.P., Narada Falls to Reflection Lake tr., small stream	46°46'15" -121°44'44"	MK190483 1989 bp
<i>An. santaclaraensis</i> (Brothers)	USA: CA: Santa Clara Co.: Uvas Canyon County Park, sweeps along Swanson Crk.	37°05'03" -121°47'34"	MK190492 2013 bp
<i>An. schmidiana</i> (Arnaud & Boussy)	USA: CA: Nevada Co.: Big Culvert along Sagehen Crk., Malaise trap	39°26'04" -120°16'52"	MK190510 2049 bp
	USA: CA: Nevada Co.: Tahoe N.F., River Rd. Hwy. 89, crk. above waterfall	39°15'56" -120°12'37"	MK190511 2739 bp
	USA: CA: Santa Clara Co.: Uvas Canyon County Park, sweeps along Swanson Crk.	37°05'03" -121°47'34"	MK190509 1714 bp
	USA: CA: Sierra Co.: Hwy. 49, crk.	39°34'00" -120°39'50"	MK190512 854 bp
	USA: CA: Siskiyou Co.: Beaver Crk., splash zones	41°56'13" -122°49'18"	MK190513 1999 bp
	USA: NV: White Pine Co.: Great Basin N.P., Baker Crk., ex. splash zones at trailhead	38°58'36" -114°14'44"	MK190504 1964 bp
<i>An. thornburghae</i> (Vaillant)	USA: GA: Towns Co.: Brasstown Bald, seep near waterfall	34°51'36" -83°48'09"	MK190466 2655 bp
<i>An. vaillantiana</i> Sinclair	USA: NC: Swain Co.: Great Smoky Mountains N.P., Clingmans Dome, seep at parking lot	35°33'24" -83°29'39"	MK190467 1896 bp
<i>An. waha</i> (Arnaud & Boussy)	USA: WA: Spokane Co.: Mt. Spokane S.P., Deadman Crk., 1325 m	47°54'20" -117°06'35"	MK190486 2780 bp
	USA: CA: San Bernardino Co.: Forest Falls, along Falls Crk., 1873 m	34°05'07" -116°53'44"	MK190487 906 bp
<i>An. zelmae</i> (Arnaud & Boussy)	USA: WA: Mt. Rainier N.P., Comet Falls Tr., before falls overlook, 1456 m, seep	46°47'39" -121°46'45"	MK190485 2005 bp

Table 2

Exemplars of outgroup taxa studied with species name, geographical source data, genomic sampling, GenBank accession numbers and fragment size in analyzed data matrix.

Family	Species	Specimen Locality Information	Genbank Accession # and # of base pairs (bp)	BZF	MCS
Culicidae	<i>Aedes aegypti</i> (Linnaeus)	N/A	XM_001654141.2 1195 bp		N/A
	<i>Anopheles gambiae</i> Giles	N/A	XM_319733.4 1269 bp		XM_310528.5 1857 bp
	<i>Culex quinquefasciatus</i> Say	N/A	XM_001861745.1 1239 bp		XM_001870703.1 1905 bp
Simuliidae	<i>Cnephia ornithophila</i> Davies, Peterson & Wood	USA: VA: Blackwater River	N/A		MK207013 2010 bp
	<i>Greniera humeralis</i> Currie, Adler & Wood	USA: CA: Lake Co.	N/A		MK207014 1958 bp
	<i>Parahelodon gibsoni</i> (Twinn)	CAN: ON: Algonquin Park	N/A		MK207015 900 bp
	<i>Parasimulium stonei</i> Peterson	USA: OR: Aufderheide Rt. 19	MK190514 2281 bp		N/A
	<i>Parasimulium crosskeyi</i> Peterson	USA: OR: Multnomah Falls	MK190515 2463 bp		N/A
	<i>Simulium donovani</i> Vargas	USA: AZ: Pima Co.	N/A		MK207017 909 bp
	<i>Simulium krebserum</i> Moulton & Adler	USA: SC: Harman Mill Pond	JX847702 2645 bp		MK207016 938 bp
Thaumaleidae	<i>Afrothaumalea stuckenbergi</i> Sinclair	RSA: Western Cape: Cederberg Wilderness, Duiwelsgat, 693 m	MK190516 2713 bp		MK207018 1981 bp
	<i>Androprosopa larvata</i> (Mik)	DEU: Hesse: Rhon Biosphere Reserve, N. slope of Heidelstein	MK190518 2545 bp		MK207020 2031 bp
	<i>Androprosopa striata</i> (Okada)	JPN: Kyushu, Kusatsu godomari	MK190519 2715 bp		MK207021 2022 bp
	<i>Thaumalea testacea</i> Ruthe	FRA: Vosges, Bussang	MK190520 2714 bp		MK207022 2033 bp
	<i>Trichothaumalea elakalensis</i> Sinclair	USA: WV: Blackwater Falls S.P., Elakala Falls	MK190517 2902 bp		MK207019 2000 bp

Table 3
Primers^a used in this study.

Gene	Primer	F/R	Sequence (5' → 3') ^b	Length
BZF	90F	F	GARTGYGARGTNACNGARGART	23-mer
	94F (111F) ^c	F	GARGARGTNATHACNGAYGAYTGG	24-mer
	1.5F	F	CCNAACNGAYCARGAYGARTA	20-mer
	Thaum 99F	F	GGNGARGARTGYGTNGARGT	20-mer
Piece 2	Thaum P1R	R	TGYGATCGWTGTGGYATGKCNNT	23-mer
	385F (330F) ^c	F	CCNTTYGTNTGYCARCARTGYGG	23-mer
	Thaum P2F	F	TGYGGT GARATGTTY TGGGAYCG	23-mer
	Int2F	F	ACNTGYGGNGAWATGTTY TGGGA	23-mer
	Int2F Rpl	F	GATTNCNCNTTGARTGYGA	20-mer
	765R	R	TGYTGGAAARGCNTTNGCNGAYGG	23-mer
	777R	R	AARCARGARCCNATHACAYACNGG	23-mer
	787R	R	GARAARCCRTAYGTRTGYTCSATNTG	26-mer
Piece 3	787R Rpl1	R	TGYCCWCGKGCDTTCAAYCAAMG	23-mer
	Thaum 787R Rpl2	R	CAYCAYTCRGRCRMRGAYACNGT	23-mer
	Thaum P3F	F	TAYGGYTGYCGYTTYTGYTGG	21-mer
	New Thaum P3F	F	CARATHCAYATHCGYATYCAYAC	23-mer
MCS	Thaum 1203R (1101R) ^c	R	TTNACNGNGARCGNAGDATYTTCYC	26-mer
	New Thaum P3R	R	GAYAARTAYATGGAYAARTAYAAYAG	26-mer
Piece 1	55F(Y) ^d	F	TGYTAYYTNGAYCAYGYGG	20-mer
	55F(R) ^d	F	TGYTAYYTNGAYCAYGCRGG	20-mer
	78F	F	TNWWYTGYAAYCCNCAYAC	19-mer
	Thaum P1R	R	CAYATTGTTGGYGATTCTMAAYGA	23-mer
	446F ^e	F	TTYGTNGGNNTTYGYCYGARGT	20-mer
	463F ^e	F	YCTNCGNACNGGNNTGYTTYTGYAA	24-mer
	464F	F	ACRGGRTGYTTYTGYAAYCC	20-mer
	838R ^e	R	TGYCARATGATHGYATHGAYCA	23-mer
Piece 2	840R ^d	R	ATGATHGYATHGAYCARRSNACNGG	26-mer

^a Sequences for additional, less degenerate, clade-specific PCR and sequencing primers used in this study are available upon request.

^b R = A/G; Y = C/T; S = C/G; W = A/T; K = G/T; M = A/C; H = A/C/T; D = A/G/T; V = A/C/G; N = A/T/G/C.

^c Primer names published by Senatore et al. (2014).

^d Primer names published by Winkler et al. (2015).

^e Primer names published by Blaschke et al. (2018), although slightly redesigned to better suit Thaumaleidae.

primer sequences are available from the authors upon request. The following PCR regimen was used: Initial 90 s denaturing step at 94 °C, then 4 cycles of 30 s at 94 °C, 30 s at 56 °C and 75 s at 72 °C, followed by 4 cycles of 30 s at 94 °C, 25 s at 52 °C and 75 s at 72 °C, 9 cycles of 30 s at 94 °C, 20 s at 48 °C and 75 s at 72 °C and finally, 38 cycles of 30 s at 94 °C, 20 s at 45 °C and 75 s at 72 °C. Once all cycling is complete the program ends with a 5 min 72 °C soak and 15 °C hold. PCR products were electrophoresed in a 1% agarose gel at 115 V for 30 min. Silica column-based gel purified PCR products served as template for Sanger® sequencing in both directions in 20 µL reactions using 20-fold diluted (=0.4 µL) BigDye® v3.1 terminators (Applied Biosystems, Carlsbad, California) utilizing a 5X dilution buffer blend containing ABI 5X dilution buffer, BDX-64 (MCLAB Products, South San Francisco, CA), and BetterBuffer (GelCompany, San Francisco, CA) and a cycling regimen that included a three-temperature (47, 45, 43 °C) touchdown annealing protocol. Sequencing reactions were cleaned using Centrisep columns (Princeton Separations, Adelphia, NJ) and dried in a Centrifrap Concentrator (LABCONCO, Kansas City, MO). Dried samples were sent to the University of Tennessee, Knoxville, Genomics Core for sequencing. Sequences from opposing strands were reconciled and verified for accuracy using Sequencher 4.7 (Gene Codes Corp., Ann Arbor, MI). The GT-AG rule was followed to determine exon-intron boundaries (Rogers & Wall 1980) ensuring the presence of a resultant continuous open reading frame. Introns were excised in Sequencher prior to alignment and phylogenetic analysis. All generated sequences are deposited in GenBank as genomic DNA, i.e., introns included (accession numbers appear below).

2.4. DNA alignment and phylogenetic analysis

Reconciled, unaligned, and intron-free nucleotide sequences were exported from Sequencher as Nexus-formatted (Maddison et al. 1997) files for subsequent alignment using Mesquite 2.72 (Maddison &

Maddison 2011). Alignments were created for each gene and a concatenated data set. For each, nucleotide sequences were translated to amino acids that were subsequently aligned using Opal 2.1.0 (Wheeler & Kececioglu 2007) as a plug-in. Using the align DNA to AA feature, amino acid alignments were used as a guide to create correspondingly aligned DNA matrices. Before analysis, natural partitions, i.e., codon positions, within each of the three data sets were designated. Phylogenetic analyses consisted of maximum likelihood analyses as implemented in IQ-TREE2 (Nguyen et al. 2015) and were performed on entire and third position-free nucleotide alignments of each gene and the concatenated data set. Models were chosen using IQ-TREE ModelFinder (Kalyaanamoorthy et al. 2017) according to AICc values. We assessed node support using Ultrafast bootstrap (UBS) (Hoang et al. 2018). Considering the risk of overestimating branch supports with UBS, parameter hill-climbing nearest neighbor interchange (-bnni) was implemented to reduce overestimation (Minh et al. 2020).

3. Results

3.1. Data set properties

3.1.1. Big zinc finger (BZF)

The final aligned matrix included 59 terminal taxa, including six distal outgroups representing three culicid (*Aedes*, *Anopheles*, *Culex*) and two simuliid (*Parasimulium*, *Simulium*) genera and 53 thaumaleids representing all proximal outgroup and successfully acquired ingroup taxa, eleven of the latter multiply sampled. Sequences ranged in length from 484 to 2902 nucleotides (Tables 1 & 2), with short-length sequences, i.e., those less than 1000 bp, originating from ingroup specimens barcoded for identification purposes. Generated BZF sequences were deposited in GenBank under accession numbers MK190468–MK190515.

Table 4

Maximum likelihood nonparametric bootstrap node support observed for each clade appearing in Fig. 1 and conflicting topologies observed from inferences of all six data sets (concatenated BZF & MCS all codon positions; concatenated BZF & MCS first & second codon positions only; BZF all codon positions; BZF first & second codon positions only; MCS all codon positions; MCS first & second codon positions only) analyzed. N/A Taxon sampling in data set precluded recovery of specified clade. Node numbers and bootstrap support formatted similarly in style and color to corresponding ones in aforementioned figure.

Node	Conc All	Conc 1 + 2	BZF all	BZF 1 + 2	MCS all	MCS 1 + 2	Node	Conc All	Conc 1 + 2	BZF all	BZF 1 + 2	MCS all	MCS 1 + 2
1	75	100	100	100	N/A	N/A	33	100	98	100	96	N/A	N/A
2	—	60	50	65	N/A	N/A	34	100	84	100	83	99	88
3	100	100	100	100	100	100	35	97	40	N/A	N/A	N/A	N/A
4	78	100	98	100	100	100	36	100	100	100	100	66	100
5	100	100	100	100	N/A	N/A	37	94	—	—	—	100	—
6	93	55	N/A	N/A	N/A	N/A	38	100	—	79	—	100	100
7	41	64	N/A	N/A	N/A	N/A	39	100	89	100	45	99	90
8	54	63	N/A	N/A	N/A	N/A	40	98	100	72	—	N/A	N/A
9	100	100	N/A	N/A	100	100	41	100	99	95	—	100	99
10	100	100	100	100	100	100	42	93	N/A	93	—	N/A	N/A
11	92	87	*	*	100	100	43	100	100	100	100	100	100
12	100	100	98	100	100	100	44	100	100	100	100	100	100
14	99	95	91	92	95	66	45	100	87	100	99	99	99
15	100	100	100	100	100	100	46	100	—	100	—	N/A	N/A
16	100	100	100	97	100	100	47	100	81	98	—	100	100
17	100	100	100	100	100	100	48	94	—	—	42	N/A	N/A
18	100	100	N/A	N/A	100	97	49	100	100	95	****	100	100
19	87	95	N/A	N/A	85	81	50	100	100	96	****	100	100
20	98	68	84	78	97	100	51	100	79	100	61	N/A	N/A
21	100	100	100	98	100	100	52	91	—	70	—	68	—
22	100	100	100	100	N/A	N/A	53	100	—	100	—	100	—
23	100	98	94	82	98	95	54	100	—	100	—	100	—
24	100	100	100	75	100	100	55	100	100	100	46	100	97
25	100	100	100	100	100	100	56	41	—	—	—	—	48
26	**	**	72	**	56	**	57	100	—	68	—	100	98
27	100	100	100	100	NA	N/A	58	62	—	—	—	62	63
28	100	100	100	95	100	100	59	72	—	—	—	54	—
29	100	100	100	62	100	99	60	89	85	—	—	28	—
30	100	100	100	99	100	99	61	95	—	—	—	—	—
31	56	90	81	58	***	75	62	95	85	—	95	72	—
32	100	100	100	96	100	100	63	84	—	—	—	81	89

N/A Taxon sampling in data set precluded recovery of specified clade.

— Alternative poorly supported topologies observed.

*Alternate topology: *Afrothaumalea stuckenbergi* sister to *Trichothaumalea elakalensis* (98% and 94% bootstrap support in BZFall and BZFnt1 + 2 analyses, respectively).

**Alternate topology: *An. melanderi* sister to *An. brothersi* (ConAll & Connt1 + 2, 42% & 79% bootstrap support, respectively; MCSnt1 + 2, 95% bootstrap support).

**Alternate topology: *An. melanderi* sister to *An. confracta* and *An. brothersi* (BZFall, 67% bootstrap support).

***Alternate topology: *An. coloradensis* sister to blue clade (66% bootstrap support).

****Alternate topology: *An. santaclaraensis* sister to *An. palouse* BC (86% bootstrap support).

3.1.2. *Molybdenum cofactor sulfurase* (MCS)

The final aligned matrix included 54 terminal taxa, including seven distal outgroups representing three culicid (*Anopheles*, *Culex*) and four simuliid (*Cnephia*, *Greneria*, *Parahelodon*, *Simulium*) genera and 47 thaumaleids representing the three proximal outgroups, the two Palearctic *Androprosopa* species, and all successfully acquired Nearctic *Androprosopa* species, seven of the latter multiply sampled. Sequences ranged in length from 900 to 2111 nucleotides (Tables 1 & 2), with short-length sequences, i.e., those less than 1000 bp, originating from specimens within ingroup species barcoded for identification purposes. Generated MCS sequences were deposited in GenBank under accession numbers MK206973–MK207013.

3.1.3. Concatenated data set

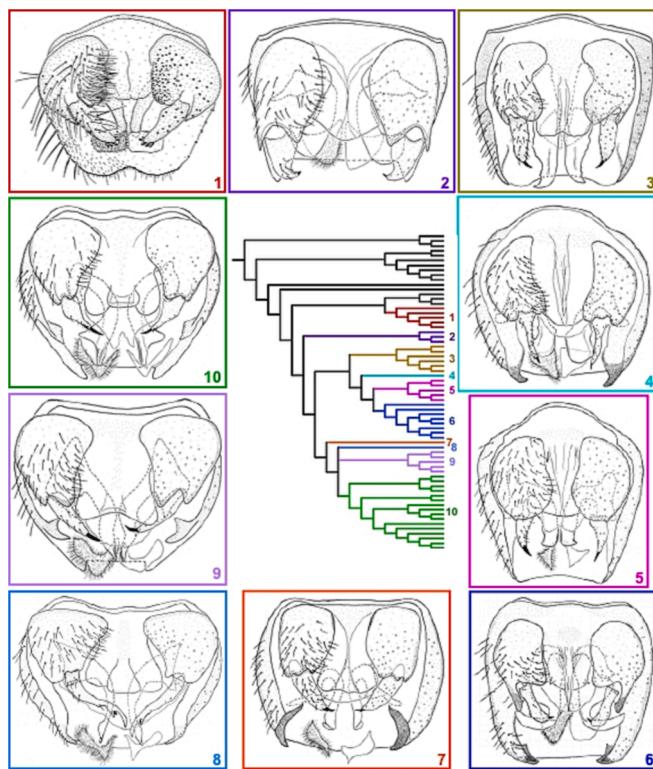
The final aligned matrix included 66 terminal taxa, including 10 distal outgroups representing three culicid (*Aedes*, *Anopheles*, *Culex*) and five simuliid (*Cnephia*, *Greneria*, *Parahelodon*, *Parasimulium*, *Simulium*) genera and 56 thaumaleids representing all successfully acquired proximal outgroup and ingroup taxa. Thirteen *Androprosopa* species, mostly western Nearctic species, were multiply sampled. The concatenated alignment, with gene partitions designated, is available from the authors upon request.

3.2. Phylogenetic analysis

Phylogenetic analysis of entire individual genes and nonsynonymous sites yielded largely congruent topologies generally lacking strongly supported discordance, prompting us to undertake a total evidence approach, which resulted in trees possessing enhanced node support in most circumstances compared to those from individual gene trees. The maximum likelihood tree ($\ln(L) = -71361.962$; Selected model and parameters = TPM2{1.8594, 3.98293} + FQ + I{0.130344} + G4 {0.985918}; Length = 6537) inferred from all codon positions of concatenated BZF and MCS sequences, with *An. santaclaraensis* (Brothers) dropped into an unresolved polytomy with two other clades due to conflicting resolutions, is presented as the best current hypothesis of relationships (Fig. 1). Differences in topology and node support between this tree and ones recovered from other analyses are summarized in Table 4 and are discussed below. Bootstrap support (BS) values of $\geq 70\%$ were considered significant support.

Rooting recovered phylogenies with Culicidae yields a strongly supported Simuliidae (78–100%). Limited taxon sampling and differences in genomic sampling within Simuliidae preclude discussion about inter-relationships other than for those of the concatenated data, where trees show *Parasimulium* as sister to the remaining Simuliidae, with significant support (NS = 93%) found only with all positions considered. Neither tree recovered from analyses of the concatenated data supports

Fig. 1. Hypothesized phylogenetic relationships of Nearctic *Androprosopa* based on maximum likelihood analysis of all codon positions of the concatenated big zinc finger (BZF) and molydenum cofactor sulfurase (MCS) data sets with proposed morphological synapomorphies. *Androprosopa santaclaraensis* was dropped into polytomy to show discordance observed among inferences from various data sets. Black branches represent outgroup taxa while colored branches indicate ingroup taxa. State and provincial abbreviations or names of specific localities are provided for multiply sampled taxa. Bootstrap support observed for each node across all six analyses conducted is provided as Table 4. Inset (top right) is a phylogram of the maximum likelihood tree with taxon names removed and major clades similarly color-coded.


the current hypothesis of tribal splits within Simuliinae (Moulton, 2000; Adler et al., 2004).

Within Thaumaleidae, reconstructed trees differ most notably in the relationship between *Tr. elakalensis* and *Af. stuckenbergi* to one another and to the remaining Thaumaleidae, the relationship of *An. santaclaraensis* to the *An. buckae* and *An. gillespieae* species groups defined below, and finally, inter- and intraspecific relationships among exemplars within morphologically similar species groups, particularly those including *An. anolo* (Schmid), *An. buckae* (Arnaud & Boussy), *An. gillespieae*, and *An. melanderi* (Arnaud & Boussy). These discrepant topologies, their supporting data (by gene and partition) and node support are further discussed below.

Analyses of the concatenated data and MCS alone recovered *Af. stuckenbergi* as sister to *Tr. elakalensis* plus the remaining sampled Thaumaleidae with node support ranging from 87 to 100%. In analyses of BZF nucleotides, however, *Af. stuckenbergi* and *Tr. elakalensis* strongly (NS = 94 to 98%) pair and form the sister group to a maximally supported (NS = 100) clade comprising all remaining sampled Thaumaleidae.

All analyses recovered a clade comprised of *An. larvata* as sister to *An. striata* plus *Thaumalea testacea*, all of which in turn formed the sister group to the eastern Nearctic species in the following branching order: *An. thornburghae* + (*An. americana* + *An. vallantiana*). Node support for each node in this clade was highly robust (90%) in most analyses, except ones of BZF alone where the node supporting the entire clade was 57% (all sites) and 69% (nonsynonymous sites). In all reconstructions this entire clade formed the strongly supported (NS = 90 to 100%) sister group to the Western Nearctic *Androprosopa* species.

Monophyly of the western Nearctic *Androprosopa* clade ranged from 48 to 100% bootstrap support, the weakest from nonsynonymous sites of MCS. Interestingly, including third positions of MCS increases node support to 98%. The Western Nearctic *Androprosopa* clade is comprised of three well-supported subclades encompassing six designated species groups (Fig. 2) (Pivar et al. 2018). The *An. elnora* group, comprised of *An. elnora* (Arnaud & Boussy) and *An. ericfisheri*, was recovered with absolute support and consistently placed as the sister group to the remaining western species, with node support ranging from 82 to 100%. The remaining western Nearctic species comprise two maximally

Fig. 2. Maximum likelihood tree (topology only, with *Androprosopa santaclarae* dropped into polytomy) with male terminalia (ventral view) of the nominal species for each currently recognized Nearctic species group provided: 1, *An. americana*; 2, *An. elnora*; 3, *An. brothersi*; 4, *An. coloradensis*; 5, *An. becca*; 6, *An. anolo*; 7, *An. chandlerorum*; 8, *An. santaclarae*; 9, *An. buckae*; 10, *An. gillespieae*. Illustration of *An. americana* reproduced from Sinclair (1996); remaining illustrations reproduced from Pivar et al. (2018).

supported (i.e., NS = 100% across all analyses) sister clades as follows: *An. brothersi* group (*brothersi* (Arnaud & Boussy), *conftracta* (Arnaud & Boussy), *melanderi* + [*An. coloradensis* (Arnaud & Boussy) + [*An. becca* group (*becca* (Arnaud & Boussy), *lindsayorum* (Arnaud & Boussy)) + *An. anolo* group (*anolo*, *falciformis* (Arnaud & Boussy), *fusca* (Garrett), *rainierensis* Pivar & Sinclair, *waha* (Arnaud & Boussy), *zelmae* (Arnaud & Boussy)]]) forming the sister group to *An. chandlerorum* (Arnaud & Boussy) + [*An. buckae* group (*buckae*, *idahoensis* (Arnaud & Boussy)) + *An. gillespieae* group (*apache* Pivar & Moulton, *arnaudi* Pivar, *gillespieae*, *palouse* (Arnaud & Boussy), *schmidiana* (Arnaud & Boussy))]. The *An. brothersi* and *becca* groups had robust node support in all analyses. *Androprosopa coloradensis* was strongly supported as the sister to the *An. becca* and *An. anolo* groups in all analyses except that of all MCS sites, where it weakly paired (66%) with the *anolo* group. Fig. 2 depicts the male terminalia of ten species that encompass the range of structural diversity observed among Nearctic *Androprosopa*.

Androprosopa chandlerorum was invariably recovered with maximum node support as sister to the clade comprised of *An. santaclarae* and the *An. buckae* and *An. gillespieae* groups. Placement of *An. santaclarae* was the most contentious among all *Androprosopa* species. It was weakly recovered as sister to the *An. buckae* group in the analysis of all sites (NS = 40%) and all MCS sites (NS = 52%) and as sister to the *An. gillespieae* group in the analysis of all nonsynonymous sites (NS = 53%) and all BZF sites (NS = 62%). It was strongly placed as the sister to the *An. buckae* and *An. gillespieae* groups in the analysis of MCS nonsynonymous sites (NS = 100%) and as sister to only one (*An. palouse*-BC) of four exemplars included for this species in the analysis of BZF nonsynonymous sites (NS = 86%). This topological uncertainty coupled with a lack of compelling morphological evidence, resulted in our

relegation of *An. santaclarae* into an unresolved polytomy with the *An. buckae* and *An. gillespieae* groups. Relationships between multiple exemplars of *An. gillespieae* and *An. schmidiana* were the most problematic among analyses. In fact, the total evidence tree is the only one in which these two species were recovered as monophyletic, weakly so with 41% and 72% bootstrap scores, respectively.

4. Discussion

4.1. Eastern Nearctic *Androprosopa* and Palearctic *thaumaleids*

The eastern Nearctic species were strongly supported as a monophyletic clade, with *An. americana* + *An. vaillantiana* placed as sister species, and *An. thornburghae* as sister to them in all analyses. The *An. americana* + *An. vaillantiana* grouping is supported by the lack of posterolateral processes on the epandrium in males (Fig. 2.1) and stout gonostyli, shorter than length of gonocoxae, whereas *An. thornburghae* has posterolateral processes on the male epandrium and the gonostyli are narrow, distinctly tapered, longer than the gonocoxites. Monophyly of the Eastern Nearctic *Androprosopa* species is supported on the basis of the following synapomorphies: larva lacking conical protuberances on the head capsule (Sinclair 1992; Sinclair 1996) and gonostyli of the male terminalia with blunt, apical spines and inner face of gonocoxites clothed with dense setae (Sinclair 1996).

The Eastern Nearctic *Androprosopa* clade was robustly supported as the sister group to a clade comprised of all three European species sampled, the latter arranged as follows: *An. laryata* as sister to *An. striata* plus the non-congener *Thaumalea testacea*. *Thaumalea* was intended to be the proximal outgroup in this study due to morphological similarities with *Androprosopa*. Its placement here, rendering *Androprosopa* as paraphyletic, is intriguing but not unprecedented. Haubrock et al. (2017) sequenced cytochrome oxidase I and the wingless gene from an array of European thaumaleid species and observed a polyphyletic *Androprosopa*, with *An. algira* (Vaillant), treated therein as a member of *Protothaumalea*, nested within *Thaumalea*. A large-scale study employing additional markers and Palearctic species of both genera is necessary to further assess relationships among species of these two genera.

4.2. Western Nearctic clade

A monophyletic western Nearctic clade was consistently recovered with strong support. The western species are characterized by having long, pointed, apical gonostylar claw-like spines, and, for the most part, less dense setae on the inner face of the gonocoxites, contrasting with the character states for the eastern Nearctic species of *Androprosopa*. Six distinct species groups hypothesized by Pivar et al. (2018) were consistently recovered with strong support for each analysis. The six groups belong to three distinct clades: (1) the *An. elnora* group; (2) the cylindrical/spherical epandrium group; and (3) the quadrate epandrium group (Fig. 1).

4.2.1. *An. elnora* group (Clade 1)

The *An. elnora* species group consists of *An. elnora* + *An. ericfisheri* and was always recovered with maximum node support. Each analysis found this group to be the sister to the remaining western Nearctic clades. These species are both yellow-orange in colour (especially evident in fresh material) (Pivar et al. 2018, fig.), contrasting with the remaining Nearctic fauna, which tend toward brown and black. Another character shared between both species is the strongly tapered and anteriorly recurved gonostyli, most readily observed in lateral view (Pivar et al. 2018, figs 13, 14) (Fig. 2.2). They have been collected in cascading streams and creeks in the Pacific Northwest, particularly in the Columbia Mountains and Plateau.

4.2.2. Cylindrical/spherical epandrium group (Clade 2)

This group consists of species that have reniform or “bean-shaped” gonocoxites. Species in this group lack thin, posterolateral epandrial

processes (except *An. coloradensis*), and the apical epandrial process is at most, a small tooth-like projection. This clade comprises three species groups: (1) *An. brothersi* group; (2) *An. becca* group; and (3) *An. anolo* group.

4.2.2.1. *An. brothersi* group. The *An. brothersi* group was consistently placed as sister to the remaining species of Clade 2 with strong support. This species group comprises three species: *An. brothersi*, *An. conftracta*, and *An. melanderi*. This group is defined on the basis of the parameres being curved laterally at the apex, usually with some degree of serration on the outer margin (Fig. 2.3). In addition, the gonostyli are long and gently tapered and the epandrium has four small tooth-like projections along the apical margin (Pivar et al. 2018, figs 54, 56). Members of this group are most commonly collected from streams and more rarely from seepages.

4.2.2.2. *An. coloradensis* group. Males of *An. coloradensis* exhibit unique genitalic morphology, with very narrow gonostyli and broadly flattened parameres (Fig. 2.4). Pivar et al. (2018) suggested that it be included in the *An. becca* group, primarily on the basis of the shape of the paramere; however, the molecular analyses herein strongly support its position as sister to the *An. becca* + *An. anolo* groups. *Androprosopa coloradensis* has the most developed posterolateral epandrial process in the cylindrical/spherical epandrium group.

4.2.2.3. *An. becca* group. Molecular data strongly support the monophyly of a clade containing *Androprosopa becca*, *An. lindsayorum*, and *An. sonorensis*. Although *An. sonorensis* could not be included in this study, characters of the male terminalia definitively place it within this group. All members share the derived conditions of parameres possessing a subapical process and gonostyli bearing large, apical claw-like seta(e) (Pivar et al. 2018, figs. 43, 44) (Fig. 2.5). *Androprosopa becca* has a single apical gonostylar seta that is the longest of all the Nearctic thaumaleid species. *Androprosopa lindsayorum* possesses a cluster of 3–4 long apical setae per gonostylus, much like *An. sonorensis*. Due to its resemblance to *An. lindsayorum*, *An. sonorensis* is likely its sister species, with *An. becca* sister to that pair. This is a commonly encountered group found in a variety of madicolous habitats, mainly in the Pacific Northwest. *Androprosopa sonorensis* is only known from the type locality in Sonora, Mexico, and collections in southern California and Arizona failed to recover it.

4.2.2.4. *An. anolo* group. This well supported group was recovered in all analyses and consists of the following species: *An. anolo*, *An. falciformis*, *An. fusca*, *An. rainierensis*, *An. waha* and *An. zelmae*. Members of this species group possess atypical gonostyli, ones with medial ornamentation, as in *An. rainierensis* and *An. falciformis*, or ones that are flattened, expanded, and almost devoid of setae, such as in *An. waha* and *An. zelmae*. All species, except *An. rainierensis*, have strongly recurved parameres, a synapomorphy linking them to the exclusion of their putative sister species, *An. rainierensis* (Fig. 2.6). The prolongation of the outer posterior corner of the gonocoxite serves as a synapomorphy grouping *An. anolo*, *An. fusca*, *An. waha* and *An. zelmae* to the exclusion of their putative sister species, *An. falciformis*. The *An. anolo* species group is generally restricted to the Pacific Northwest, mainly throughout the Cascade Range and the Columbia Plateau, although *An. waha* has been collected as far south as San Bernardino, CA and east to Rocky Mountain National Park (Colorado) (Pivar et al. 2018). They are typically collected in cascading mountain streams and creeks, although *An. anolo* has also been collected from roadcut seeps.

4.2.3. *Quadrata epandrium* group (Clade 3)

Species included in this group have a quadrata epandrium and conical gonocoxites. All species have a developed posterolateral epandrial process and a broad apical epandrial process. This clade contains

four species groups: (1) *An. chandlerorum* group; (2) *An. santaclaraensis* group; (3) *An. buckae* group; and (4) *An. gillespieae* group.

4.2.3.1. *An. chandlerorum* group. *Androprosopa chandlerorum* was consistently recovered within Clade 3 as the sister to all remaining species in the group. Pivar et al. (2018) placed it within the *An. buckae* group based on the presence of a bifurcated posterolateral epandrial process and a bilobed gonocoxal plate (Fig. 2.7). The molecular placement at the base of Clade 3 is supported by its more spherical epandrium, reminiscent of members of Clade 2, rather than the quadrate epandria found in all other species of Clade 3, suggesting the quadrate form is synapomorphic for the group exclusive of *An. chandlerorum*. Furthermore, the gonocoxites are not conical, the apical epandrial process is absent, and the gonostyli possess four subapical setae. The confounding mix of plesiomorphic (Clade 2) and apomorphic (Clade 3) character states found in *An. chandlerorum* are perhaps close to what one might expect in a species branching between clades 2 and 3.

4.2.3.2. *An. santaclaraensis* group. The unique morphology of *An. santaclaraensis* supports placement on its own. It has unique gonostyli that appear raptorial in ventral view (Fig. 2.8) and corkscrew-like in lateral view (Pivar et al. 2018, fig. 18). The posterolateral epandrial process and hind margin of the epandrium are similar to those of *An. chandlerorum*, as both form a rather straight line in lateral view, whereas the *An. buckae* group members have a distinct C-shaped indentation formed where the posterolateral epandrial process and apical epandrial process meet along the laterad (Pivar et al. 2018). *Androprosopa buckae* group members also have a bilobed gonocoxal plate, while it is distinctly trilobed in *An. santaclaraensis* (Fig. 2.8). These morphological characters lend some credence to *An. santaclaraensis* being an intermediate species between *An. chandlerorum* and the *An. buckae* group, which is supported strongly (100%) solely by analysis of MCS nonsynonymous sites. *Androprosopa santaclaraensis* also exhibits characteristics of the *An. gillespieae* group, including a trilobed gonocoxal plate. Pivar et al. (2018) hypothesized that *An. santaclaraensis* might belong to the *An. gillespieae* group on the basis of these characters, and while this relationship was recovered in three analyses (BZF and MCS nonsynonymous concatenated, BZF all codon positions and BZF nonsynonymous sites), support for this placement was generally low. This again supports the placement of this enigmatic species on its own.

4.2.3.3. *An. buckae* group. The *An. buckae* group consists of sister species *An. buckae* and *An. idahoensis*. It was consistently recovered throughout all analyses with strong support. Male genitalic synapomorphies uniting them include the bilobed distal margin of the gonocoxal plate and gonostyli bearing two dorsal subapical setae (Pivar et al. 2018) (Fig. 2.9). In addition, Arnaud & Bousy (1996) hypothesized that these two species were closely related based upon the similarities of the shape of the apex of the paramere and epandrial indentation. Gillespie et al. (1994) described immatures of several species of Nearctic *Androprosopa* and concluded that *An. buckae* and *An. idahoensis* were closely related based upon similarities in pupal abdominal chaetotaxy. Although this supports the species group, pupal descriptions from other species are too sparse to allow conveyance of convincing support. Members of this group have been collected in the Cascade, California Coastal and Sierra Nevada ranges, and east to the Columbia Plateau.

4.2.3.4. *An. gillespieae* group. The molecular data places the following species in the *An. gillespieae* group: *An. apache*, *An. arnaudi*, *An. gillespieae*, *An. palouse* and *An. schmidiana*. *Androprosopa palouse* was always recovered as sister to the remaining species. Both Arizona species, *An. apache* and *An. arnaudi* were repeatedly recovered as sister species. Monophyly of *An. gillespieae* and, to a lesser extent, *An. schmidiana* was weakly supported, being simultaneous observed only in the total

evidence tree; the latter was also monophyletic in the analysis of combined nonsynonymous sites and all MCS sites. The placements of *An. gillespiei* WA and *An. schmidiana* NV appear to be the cause for this uncertainty. These results are perhaps indicative of incomplete lineage sorting or introgression. Pivar et al. (2018) hypothesized this species group based upon the presence of a simple posterolateral epandrial process, trilobed gonocoxal plate, and gonostylus with two ventrolateral subapical setae (Fig. 2.10). Based on these characters Pivar et al. (2018) included *An. zempoala* in this group (no specimens available for molecular analysis). This species group has a wide geographic range, spanning all western mountain ranges, from southern British Columbia, south to central Mexico and east to the Colorado Rockies. Members of this group have been collected in all types of madicolous habitats.

4.3. Species complexes

Several Nearctic species of *Androprosopa* exhibit wide distributions in varying habitats, perhaps indicating the possibility of species complexes or cryptic species. *Androprosopa americana*, *An. brothersi*, *An. gillespiei*, *An. palouse*, *An. schmidiana* and *An. waha* all have particularly wide distributions spanning several states, provinces and mountain ranges, however, intraspecific variation is extremely low. In fact, divergence between species within the species groups tend to be quite small (Fig. 1 inset). The *An. gillespiei* group, for example, has very few molecular changes between species; however, when coupled with morphology, clear species delimitations can be discerned.

The stem of the *An. ethora* group clade is the longest branch within the western Nearctic fauna (Fig. 1, inset), suggesting it might be the oldest of the species groups. The remaining species groups arise from very short branches comparatively, suggestive of more recent and/or rapid divergence. The quadrate epandrium group (Clade 3), in particular, appears to have radiated quickly. The branch length between eastern Nearctic species and the sampled Palearctic fauna is relatively long, perhaps reflective of under-sampling of the later.

4.4. Future considerations

This study is the first phylogenetic analysis of Nearctic *Androprosopa*. Although intended to be as comprehensive as possible, gaps remain. Molecular data is missing for *An. sonorensis* and *An. zempoala* due to our inability to obtain DNA-grade material. Their absence did not appear to adversely affect the overall integrity of the study, however, as evidenced by corroborative male genitalic structures for recovered clades. Increased genomic and taxon sampling, particularly of Palearctic species, and inclusion of morphological data, especially larval and pupal characters, would strengthen the veracity of tests of *Androprosopa* and *Thaumalea* monophyly. *Thaumaleidae* remain a vastly understudied family, and continued work at molecular and morphological levels will undoubtedly yield new discoveries.

CRediT authorship contribution statement

Robert J. Pivar: Investigation, Formal analysis, Data curation, Writing – original draft. **John K. Moulton:** Conceptualization, Funding acquisition, Project administration, Supervision, Resources, Formal analysis, Writing – review & editing. **Bradley J. Sinclair:** Conceptualization, Funding acquisition, Supervision, Resources, Writing – review & editing.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgments

We thank C.J. Borkent, S.E. Brooks, J.M. Cumming, A.H. Kirk-Spriggs, R.I. Madriz, T. Saigusa and R. Wagner for providing specimens, and two anonymous reviewers for their constructive comments. The United States National Park Service provided collecting permits for Mt. Rainier National Park (Permit #: MORA-2016-SCI-0026) and Rocky Mountain National Park (ROMO-2016-SCI-0028). Cycle sequencing products were analyzed by University of Tennessee Genomics Core staff through an ABI3730 DNA Analyzer using Sequencing Analysis software 5.3.1. This research was supported by United States National Science Foundation awards DEB-0933218 and DEB-1949813 and United States Department of Agriculture National Institute of Food and Agriculture Hatch Project TEN00558.

References

Adler, P.H., D.C. Currie, Wood, D.M., 2004. Chapter 9. Phylogeny and Classification of Holarctic Black Flies. Pp. 125–160. The Black Flies (Simuliidae) of North America. Cornell University Press. 941 pp.

Arnaud Jr., P.H., Boussy, I.A., 1994. The adult Thaumaleidae (Diptera: Culicomorpha) of Western North America. *Myia* 5, 41–152.

Bertone, M.A., Courtney, G.W., Wiegmann, B.M., 2008. Phylogenetic and temporal diversification of the earliest true flies (Insecta: Diptera) based on multiple nuclear genes. *Syst. Entomol.* 33, 668–687. <https://doi.org/10.1111/j.1365-3113.2008.00437.x>.

Bezzi, M., 1913. Taumaleidi (Ornithophilidi) italiani con descrizione di nuove specie. *Bol. Zool. Sc. Sup. Portici* 7, 227–266.

Blaschke, J.D., Stireman III, J.O., O'Hara, J.E., Cerretti, P., Moulton, J.K., 2018. Molecular phylogenetics and piercer evolution in the bug-killing flies (Diptera: Tachinidae: Phasiinae). *Syst. Entomol.* 43, 218–238. <https://doi.org/10.1111/syen.12272>.

Borkent, A., 2012. The pupae of Culicomorpha - morphology and a new phylogenetic tree. *Zootaxa* 3396, 1–98. <https://doi.org/10.11646/zootaxa.3396.1.1>.

Edwards, F.W., 1929. A revision of the Thaumaleidae (Dipt.). *Zool. Anz.* 82, 121–142.

Gillespie, J.M., Barr, W.F., Elliott, S.T., 1994. Taxonomy and biology of the immature stages of species of *Thaumalea* occurring in Idaho and California (Diptera: Thaumaleidae). *Myia* 5, 153–193.

Haubrock, P.J., Kvifte, G.M., Langguth, H., Wagner, R., 2017. Glacial and postglacial species divergence and dispersal of European tricke midges (Diptera: Thaumaleidae). *Arthropod Syst. Phylo.* 75 (3), 523–534. <https://doi.org/10.3897/asp.75.e31920>.

Hoang, D.T., Chernomor, O., von Haeseler, A., Minh, B.Q., Vinh, L.S., 2018. UFBoot2: Improving the ultrafast bootstrap approximation. *Mol. Biol. Evol.* 35, 518–522. <https://doi.org/10.1093/molbev/msx281>.

Kalyaanamoorthy, S., Minh, B.Q., Wong, T.K.F., von Haeseler, A., Jermiin, L.S., 2017. ModelFinder: fast model selection for accurate phylogenetic estimates. *Nat. Methods* 14, 587–589. <https://doi.org/10.1038/nmeth.4285>.

Mackie, G.L., 2004. Applied Aquatic Ecosystem Concepts, Second Edition. Kendall Hunt Publishing, Dubuque, Iowa, p. 374.

Maddison, W.P., Maddison, D.R., 2011. Mesquite: a modular system for evolutionary analysis. Accessed 24 August 2018 Version 2, 75. <http://mesquiteproject.org>.

Maddison, D.R., Swofford, D.L., Maddison, W.P., 1997. NEXUS: An extensible file format for systematic information. *Syst. Biol.* 46, 590–621. <https://doi.org/10.1093/sysbio/46.4.590>.

Minh, B.Q., Schmidt, H.A., Chernomor, O., Schrempf, D., Woodhams, M.D., von Haeseler, A., Lanfear, R., 2020. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. *Mol. Biol. Evol.* 37, 1530–1534. <https://doi.org/10.1093/molbev/msaa015>.

Moulton, J.K., 2000. Molecular sequence data resolves basal divergences within Simuliidae (Diptera). *Syst. Entomol.* 25, 95–113. <https://doi.org/10.1046/j.1365-3113.2000.00097.x>.

Moulton, J.K., Adler, P.H., 1995. Revision of the *Simulium jenningsi* species-group (Diptera: Simuliidae). *Trans. Am. Entomol. Soc.* 121, 1–57.

Nguyen, L.-T., Schmidt, H.A., von Haeseler, A., Minh, B.Q., 2015. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum likelihood phylogenies. *Mol. Biol. Evol.* 32, 268–274. <https://doi.org/10.1093/molbev/msu300>.

Pivar, R.J., Moulton, J.K., Sinclair, B.J., 2018. Revision of the western Nearctic *Androprosopa* (Diptera: Thaumaleidae) and descriptions of three new species. *Insect Syst. Evol.* 2019 (50), 346–406. <https://doi.org/10.1163/1876312X-00002189>.

Pivar, R.J., Sinclair, B.J., Moulton, J.K., 2021. Revision of the genus *Niphta* (Diptera: Thaumaleidae) Theischinger of South America, with descriptions of nine new species and a new immature morphotype. *ZooKeys*. 1063, 49–104. <https://doi.org/10.3897/zookeys.1063.71180>.

Rogers, J., Wall, R., 1980. A mechanism for RNA splicing. *Proc. Natl. Acad. Sci. U.S.A.* 77, 1877–1879. <https://doi.org/10.1073/pnas.77.4.1877>.

Senatore, G.L., Alexander, E.A., Adler, P.H., Moulton, J.K., 2014. Molecular systematics of the *Simulium jenningsi* species group (Diptera: Simuliidae), with three new fast-evolving nuclear genes for phylogenetic inference. *Mol. Phylogenet. Evol.* 75, 138–148. <https://doi.org/10.1016/j.ympev.2014.02.018>.

Sinclair, B.J., 1992. A new species of *Trichothaumalea* (Diptera: Thaumaleidae) from eastern North America and a discussion of male genitalic homologies. *Can. Entomol.* 124, 491–499. <https://doi.org/10.4039/Ent124491-3>.

Sinclair, B.J., 1996. A review of the Thaumaleidae (Diptera: Culicomorpha) of eastern North America, including a redefinition of the genus *Androprosopa* Mik. *Entomol. Scand.* 27, 361–376.

Sinclair, B.J., 2000. Immature stages of Australian *Austrothaumalea* Tonnoir and *Niphta* Theischinger (Diptera: Thaumaleidae). *Aust. J. Entomol.* 39, 171–176. <https://doi.org/10.1046/j.1440-6055.2000.00162.x>.

Sinclair, B.J., Marshall, S.A., 1987. The madicolous fauna in southern Ontario. *Proc. Entomol. Soc. Ontario.* 1986 (117), 9–14.

Sinclair, B.J., Pivar, R.J., Arnaud Jr., P.H., 2022. World catalogue of the family Thaumaleidae (Diptera: Culicomorpha). *Zootaxa.* 5225, 1–66. <https://doi.org/10.11646/zootaxa.5225.1.1>.

Sinclair, B.J., Saigusa, T., 2002. A new species of the seepage midge genus *Trichothaumalea* Edwards from Japan. *Insect Syst. Evol.* 33, 175–184.

Sinclair, B.J., Stuckenber, B.R., 1995. Review of the Thaumaleidae (Diptera) of South Africa. *Ann. Natal Mus.* 36, 209–214.

Vaillant, F., 1956. Recherches sur la faune madicole (hygropétriques s.l.) de France, de Corse et d'Afrique du Nord. *Ann. Mus. Hist. Nat. Paris. Nouvelle série A, Zoologie* 11, 258 pp.

Vaillant, F., 1977. Les Diptères Thaumaleidae d'Europe. *Ann. Soc. Entomol. Fr.* 13 (4), 695–710. <https://doi.org/10.1080/21686351.1977.12278667>.

Vaillant, F., 1978. Les diptères Thaumaleidae d'Europe. *Annls. Soc. ent. Fr. (N.S.)* (1977), 13, 695–710.

Wagner, R., 2002. Insecta: Diptera: Thaumaleidae. *Süßwasserfauna von Mitteleuropa.* 21 (11), 39–110.

Wheeler, T.J., Kececioglu, J.D., 2007. Multiple alignments by aligning alignments. *Bioinformatics.* 23, 559–568. <https://doi.org/10.1093/bioinformatics/btm226>.

Winkler, I.S., Blaschke, J.D., Davis, J.D., Stireman III, J.O., O'Hara, J.E., Cerretti, P., Moulton, J.K., 2015. Explosive radiation or uninformative genes? Origin and early diversification of tachinid flies (Diptera: Tachinidae). *Mol. Phylogenet. Evol.* 88, 38–54. <https://doi.org/10.1016/j.ympev.2015.03.021>.