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Abstract

Recent study in K-stability suggests that Kawamata log terminal (klt)
singularities whose local volumes are bounded away from zero should
be bounded up to special degeneration. We show that this is true in
dimension three, or when the minimal log discrepancies of Kollár com-
ponents are bounded from above. We conjecture that the minimal log
discrepancies of Kollár components are always bounded from above, and
verify it in dimension three when the local volumes are bounded away
from zero. We also answer a question from Han, Liu, and Qi on the
relation between log canonical thresholds and local volumes.

1. Introduction

In recent years, tremendous progress has been made towards the bound-

edness of Fano varieties in many different contexts, see for example [HMX14,

Bir19,Bir21, Jia20]. In contrast, much less is known about the boundedness

of Kawamata log terminal (klt) singularities, often viewed as the local analog

of Fano varieties. Certainly, one needs to be more careful about what bound-

edness means in the local situation, as in general a (nonisolated) singularity

can have an infinite dimensional versal deformation space. As a remedy, one

considers boundedness up to special degeneration, see Definition 2.18; roughly

speaking, a class of klt singularities is bounded up to special degeneration (or

specially bounded) if they degenerate to a bounded family of klt singularities.

Typically, we expect a class of singularities to be specially bounded after

fixing some interesting invariants. One example, studied in [Mor21,HLS], is

the class of (ε, δ)-lc singularities. These are ε-lc singularities that admit δ-plt

blowups (see Definition 2.3), and they are known to be bounded up to special
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degeneration [HLM20]. Another invariant that has attracted a lot of attention

is the local volume of a klt singularity, originally introduced in [Li18] in the

context of K-stability. It is expected that these two types of invariants are

closely related: a positive lower bound on the local volumes would force the

singularities to be (ε, δ)-lc for some fixed ε, δ > 0 and in particular they should

be bounded up to special degeneration. Since the minimal log discrepancy is

always bounded from below by the local volume up to a positive dimensional

constant [LLX20, Theorem 6.13], the main question is the existence of δ-plt

blowup. The following is a precise formulation of the conjecture.

Conjecture 1.1 ([HLQ23, Conjectures 1.6 and 8.9]). Let n ∈ N∗ and let

ε, η > 0. Then there exists some δ > 0 depending only on n, ε, η such that: if

x ∈ (X,Δ =
∑m

i=1 aiΔi) is an n-dimensional klt singularity such that

(1) ai ≥ η for all i,

(2) each Δi is an effective Weil divisor, and

(3) v̂ol(x,X,Δ) ≥ ε,

then x ∈ (X,Δ) admits a δ-plt blowup. Moreover, the set of such singularities

is log bounded up to special degeneration.

The special boundedness part of Conjecture 1.1 is also supported by the

Stable Degeneration Conjecture [Li18,LX18] from the local K-stability theory

of klt singularities. It predicts that every klt singularity admits a volume

preserving special degeneration to a K-semistable log Fano cone singularity,

and differential geometric considerations (see [SS17]) suggest that the set of K-

semistable log Fano cone singularities may be bounded when the local volume

is bounded from below. The recent proof [LXZ22] of the Higher Rank Finite

Generation Conjecture further suggests that Conjecture 1.1 will be a crucial

ingredient towards the proof of the Stable Degeneration Conjecture.1 Despite

these heuristics, Conjecture 1.1 is only known in dimension two, in some

special cases in dimension three, and when x ∈ X is already analytically

bounded [HLQ23, Theorems 1.7 and 1.8].

The first result of this paper is the solution of Conjecture 1.1 in dimension

three.

Theorem 1.2 (=Corollary 6.12). Conjecture 1.1 holds in dimension three.

In the course of the proof, we also discover the following statement.

Theorem 1.3 (=Theorem 3.1). For any n ∈ N∗, there exists some con-

stant c = c(n) > 0 depending only on n such that for any n-dimensional

1Postscript note: the local version of the Higher Rank Finite Generation Conjecture is

later settled in [XZ]. Combined with earlier works [Blu18,LX18,LWX21,Xu20,XZ21], the
proof of the Stable Degeneration Conjecture is now complete.
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Q-Gorenstein klt singularity x ∈ (X,Δ) we have

lctx(X,Δ;Δ) ≥ c(n) · v̂ol(x,X,Δ).

This gives a positive answer to [HLQ23, Question 8.1] as well as further

evidence for Conjecture 1.1. Indeed, if we allow the above constant c > 0

to also rely on the local volume, then the statement is essentially implied by

Conjecture 1.1 and the lower semi-continuity of log canonical thresholds.

Our approach to Conjecture 1.1 is through another invariant of the singu-

larity: the minimal log discrepancy of Kollár components.

Definition 1.4. Let (X,Δ) be a klt pair and let η ∈ X (not necessarily

a closed point). The minimal log discrepancy of Kollár components, denoted

by mldK(η,X,Δ), is the smallest log discrepancy AX,Δ(E) among all Kollár

components E over η ∈ (X,Δ).

It is not hard to see (Lemma 4.2) that in order for a class of singularities

to admit δ-plt blowups, their mldK are necessarily bounded from above. Our

next result is the following converse.

Theorem 1.5 (=Theorem 4.1). Let n be a positive integer, let ε, A > 0,

and let I ⊆ [0, 1] ∩ Q be a finite set. Then there exists some constant δ =

δ(n, ε, A, I) > 0 such that any n-dimensional klt singularity x ∈ (X,Δ) with

v̂ol(x,X,Δ) ≥ ε, mldK(x,X,Δ) ≤ A and Coef(Δ) ⊆ I admits a δ-plt blowup.

As a direct application, we also obtain the toric case of Conjecture 1.1,

proven independently by [MS] using convex geometry.

Corollary 1.6 (=Proposition 4.6). Let n ∈ N∗ and let ε > 0. Then there

are only finitely many toric singularities x ∈ X (up to isomorphism) that

support a klt singularity x ∈ (X,Δ) with v̂ol(x,X,Δ) ≥ ε (for some effective

Q-divisor Δ).

If we compare Theorem 1.5 with Conjecture 1.1, it is natural to expect that

the assumption on mldK(x,X,Δ) in Theorem 1.5 is redundant. This leads us

to make Conjecture 1.7.

Conjecture 1.7 (BDD for mldK when v̂ol ≥ ε). Let n ∈ N∗, ε > 0 and let

I ⊆ [0, 1] ∩Q be a finite set. Then there exists some A = A(n, ε, I) such that

mldK(η,X,Δ) ≤ A

for any n-dimensional klt pair (X,Δ) with Coef(Δ) ⊆ I and any (not neces-

sarily closed point) η ∈ X with v̂ol(η,X,Δ) ≥ ε.

We will show that Conjecture 1.7 holds in dimensions up to three (Corol-

lary 6.11), and in any dimension it implies Conjecture 1.1 (Theorem 4.8).

Together with Theorem 1.5 they constitute the three major steps in the proof

of Theorem 1.2.
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Shokurov has conjectured that the set of minimal log discrepancies (mld)

satisfies the ascending chain condition (ACC) [Sho04]. In particular, there

should be an upper bound on the mlds that only depends on the dimension.

This is known as the boundedness (BDD) conjecture for mld. On the other

hand, in the local study of klt singularities it is often more natural to consider

Kollár components rather than general exceptional divisors. Therefore, we are

also tempted to propose the following stronger conjecture, although we are

only able to partially verify it at codimension two points (Proposition 6.4).

Conjecture 1.8 (BDD for mldK). Let n ∈ N∗ and let I ⊆ [0, 1] be a DCC

set. Then there exists some constant A = A(n, I) depending only on n and I

such that

mldK(η,X,Δ) ≤ A

for any klt pair (X,Δ) with Coef(Δ) ⊆ I and any point η ∈ X of codimension

n.

1.1. Outline of proofs. One of the technical steps in proving Theorem

1.2 is to verify Conjecture 1.7 in dimension three. While it is well known that

mld(x,X,Δ) ≤ 3 for any 3-dimensional klt singularity x ∈ (X,Δ), the divisors

that compute the mld are usually not Kollár components, thus bounding mldK

from above presents a very different problem. In fact, as Example 7.1 shows,

already on smooth surfaces mldK can be arbitrarily large if we allow the

boundary Δ to vary.

Certainly, the advantage of working in dimension three is that we have a

classification result for terminal singularities [Mor85]. Thus we need to find

ways to reduce to the terminal case and to take care of the additional bound-

ary. The first observation is that every Kollár component is an lc place of a

bounded complement [Bir19]. If we take a bounded complement D of a klt

singularity x ∈ X and a terminal modification π : Y → X, the lc places of

(X,D) are the same as lc places of (Y, π∗D), so we may hope to find Kollár

components over X with bounded log discrepancy by taking suitable Kollár

components over Y that are lc places of (Y, π∗D). In general, Kollár compo-

nents over a birational model do not descend to Kollár components over the

singularity, but this is the case if they are lc places of special complements, a

notion that first appears in the recent proof of the higher rank finite genera-

tion conjecture [LXZ22]. Therefore, a key step in our proof of Conjecture 1.7

is the construction of bounded special complements. This step works in any

dimension and allows us to reduce Conjecture 1.7 to the terminal singularity

case (with boundary). Another technical observation (see Section 5.3) involv-

ing special complements further reduces the question to the case where the

terminal pair (X,Δ) has a reduced complement. From there we are able to

use classification results to conclude Conjecture 1.7 in dimension three.
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To achieve the bounded part of the special complements, we need uniform

control of various invariants of the singularity, and this is where Theorem 1.3

plays a crucial role. The key to the proof of Theorem 1.3 is a uniform Izumi

type estimate. Recall that the usual Izumi type inequality states that for any

klt singularity x ∈ (X,Δ), there exists some constant c > 0 such that

lctx(X,Δ;D) ≥
c

multxD

for any effective Q-Cartier divisor D on X (see, e.g., [Li18, Theorem 3.1]).

However, the constant c in general depends on the singularity x ∈ (X,Δ).

Our discovery is that a uniform constant can be achieved if we replace multx
by the minimizing valuation of the normalized volume function (Corollary

3.5). In particular, we can compare both sides of the inequality in Theorem

1.3 through the minimizing valuation.

Finally we make a few remarks on the proof of Theorem 1.5. The idea is to

show that the Kollár components that have bounded log discrepancy belong

to a bounded family of log Fano pairs, which is the case if the Cartier indices

are bounded on the corresponding plt blowup. Using the finite degree formula

proved in [XZ21], this boils down to a few estimates of local volumes on the

plt blowup, see Section 4.

2. Preliminaries

2.1. Notation and conventions. Throughout this paper, we work over

an algebraically closed field of characteristic 0. We follow the standard ter-

minology from [KM98,Kol13].

A singularity x ∈ (X,Δ) consists of a pair (X,Δ) (i.e., a normal variety

X together with an effective Q-divisor Δ) and a closed point x ∈ X. We

will always assume that X is affine and x ∈ Supp(Δ) (whenever Δ �= 0). In

general, when we discuss local properties of a pair (X,Δ) at a (not necessarily

closed) point η, we will freely shrink X around η.

Suppose that X is a normal variety. A prime divisor F on some birational

model π : Y → X (where Y is normal and π is proper) of X is called a divisor

over X. Its center, denoted CX(F ), is the generic point of its image in X.

A valuation v on X is an R-valued valuation v : K(X)× → R (where K(X)

denotes the function field of X) such that v has a center on X and v|k× = 0.

The set of valuations on X is denoted as ValX .

For a valuation v on X and m ∈ N, its valuation ideal sheaf am(v) is

am(v) := {f ∈ OX | v(f) ≥ m}.
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When we refer to a constant A as A = A(n, ε, · · · ) we mean it only depends

on n, ε, · · · .

2.2. Kollár components.

Definition 2.1. Let (X,Δ) be a subpair (i.e., Δ need not be effective)

and let F be a divisor over X. We will say F is a divisor over η ∈ (X,Δ) if η

is the center of F . When F is a divisor on X we write Δ = Δ1 + aF where

F �⊆ Supp(Δ1); otherwise let Δ1 = Δ.

(1) F is said to be primitive over X if there exists a projective birational

morphism π : Y → X such that Y is normal, F is a prime divisor on

Y and −F is a π-ample Q-Cartier divisor. We call π : Y → X the

associated prime blowup (it is uniquely determined by F ).

(2) F is said to be of plt (resp. lc) type over (X,Δ) if it is primitive over

X and the pair (Y,ΔY + F ) is plt (resp. lc) in a neighbourhood of

F , where π : Y → X is the associated prime blowup and ΔY is the

strict transform of Δ1 on Y . When (X,Δ) is klt (resp. lc) and F is

exceptional over X, π is called a plt (resp. lc) blowup over X. If in

addition (Y,ΔY +F ) is δ-plt in a neighbourhood of F for some δ > 0,

we say that π is a δ-plt blowup.

The following result from [BCHM10] will be frequently used.

Lemma 2.2. Let (X,Δ) be a klt pair and let E be a divisor over X.

Assume that there exists an effective Q-Cartier Q-divisor D such that (X,Δ+

D) is lc and AX,Δ+D(E) = 0. Then E is of lc type.

Proof. Since (X,Δ+ (1− ε)D) is klt and 0 < AX,Δ+(1−ε)D(E) 	 1 when

0 < ε 	 1, we know that E is primitive by [BCHM10, Corollary 1.4.3] and the

basepoint free theorem. Let π : Y → X be the associated prime blowup. By

assumption we also have π∗(KX +Δ+D) ≥ KY +ΔY +E. Since (X,Δ+D)

is lc, it follows that (Y,ΔY + E) is lc, i.e., E is of lc type. �

Definition 2.3 (Kollár components). Let (X,Δ) be a klt pair and let

η ∈ X (not necessarily a closed point). A divisor over η ∈ (X,Δ) is called a

Kollár component over η ∈ (X,Δ) if it’s of plt type over (U,Δ|U ) for some

neighbourhood U ⊆ X of η. We say that η ∈ (X,Δ) admits a δ-plt blowup

(for some δ > 0) if it has a Kollár component whose associated prime blowup

is a δ-plt blowup.

By [Xu14], every klt singularity has a Kollár component. More precisely

we have:

Lemma 2.4. Let (X,Δ) be a klt pair and let D be an effective Q-Cartier

Q-divisor such that (X,Δ+D) is strictly lc. Let π : (Y,Γ) → (X,Δ) be a dlt

modification, where KY +Γ = π∗(KX +Δ+D). Then at least one component

of 
Γ� is of plt type over (X,Δ).
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Proof. This follows from the proof of [Xu14, Lemma 1] (cf. [LX20, Proposi-

tion 2.10]). The point is that if W → X is a log resolution of (X,Δ+D) then

some prime divisor on W that is an lc place of (X,Δ+D) will be of plt type

over (X,Δ). The resolution can be chosen as a blowup of Y along non-SNC

locus of (Y,Γ), and the dlt assumption ensures that none of the exceptional

divisors are lc places of (Y,Γ). Thus the plt type divisor on W has to be a

component of 
Γ�. �

We next describe a criterion which will be used to verify certain weighted

blowups on hypersurfaces singularities provide Kollár components.

Lemma 2.5. Let X = (f(x1, · · · , xn) = 0) ⊆ An be a hypersurface

singularity. Let E be the exceptional divisor of the weighted blowup with

wt(xi) = ai > 0. Assume that the hypersurface X0 = (in(f) = 0) ⊆ An

has only canonical singularity at the origin. Then E is a Kollár component

over 0 ∈ X.

Here in(f) denotes the sum of the monomials in f with lowest weights. Note

that for nondegenerate hypersurfaces this is proved in [IP01, Proposition 3.3].

We essentially follow the same argument.

Proof. Let f0 = in(f) and let π : Y → X be the weighted blowup. Then

E ∼= (f0 = 0) ⊆ P(a1, · · · , an). Since f0 is irreducible by assumption, we see

that E is a primitive divisor on Y . It remains to show that (Y,E) is plt. By

inversion of adjunction, this is equivalent to showing that (E,DiffE(0)) is klt.

Note that X0 admits a good Gm-action with t · xi = taixi, hence X0 \ {0}

is a Seifert Gm-bundle in the sense of [Kol]. A direct calculation shows that

its orbifold base is exactly (E,DiffE(0)). Since X0 has canonical singularities

(hence is klt) in a neighbourhood of the origin, using the Gm-action we see

that X0 is klt everywhere. Hence by [Kol, Proposition 19], the local orbifold

covers of (E,DiffE(0)) are all klt, hence (E,DiffE(0)) is klt as well. This

finishes the proof. �

2.3. Local volumes. Given a pair (X,Δ), the log discrepancy function

AX,Δ : ValX → R ∪ {+∞}

is defined as in [JM12] and [BdFFU15, Theorem 3.1]. It is possible that

AX,Δ(v) = +∞ for some v ∈ ValX , see, e.g., [JM12, Remark 5.12]. For a

closed point x ∈ X, we denote by Val∗X,x the set of valuations v ∈ ValX with

center x and AX,Δ(v) < +∞.

Definition 2.6. Let X be an n-dimensional normal variety and let x ∈ X

be a closed point. The volume of a valuation v ∈ Val∗X,x is defined as

vol(v) = volX,x(v) = lim sup
m→∞

�(OX,x/am(v))

mn/n!
.

Thanks to [ELS03,LM09,Cut13], the above limsup is actually a limit.
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We now briefly recall the definition of the volumes of klt singularities [Li18].

Definition 2.7. Let x ∈ (X,Δ) be an n-dimensional klt singularity. For

any v ∈ Val∗X,x, we define the normalized volume of v as

v̂olX,Δ(v) := AX,Δ(v)
n · volX,x(v).

The local volume of x ∈ (X,Δ) is defined as

v̂ol(x,X,Δ) := inf
v∈Val∗

X,x

v̂olX,Δ(v).

By [Blu18], the above infimum is a minimum. In fact, the minimizer is

unique up to rescaling [XZ21], and is a quasi-monomial valuation [Xu20], but

we do not need these facts in the sequel.

Since we also study the singularities at nonclosed points, we extend Defi-

nition 2.7 to those cases as follows.

Definition 2.8. Let (X,Δ) be a klt pair and let η be the generic point of

a subvariety W ⊆ X. The local volume of (X,Δ) at η is defined to be

v̂ol(η,X,Δ) := v̂ol(w,X,Δ),

where w ∈ W is a general closed point. This is well-defined since the local

volume function x �→ v̂ol(x,X,Δ) is constructible [Xu20].

We will frequently use the fact that the volume function x �→ v̂ol(x,X,Δ)

is lower semi-continuous [BL21]. We recall a few more useful properties of

local volumes.

Lemma 2.9. Let x ∈ (X,Δ) be a klt singularity of dimension n and let D

be a Q-Cartier Weil divisor on X. Then the Cartier index of D is at most
nn

v̂ol(x,X,Δ)
.

Proof. This follows directly from [XZ21, Corollary 1.4]. �

Lemma 2.10. Let π : (Y,ΔY ) → (X,Δ) be a proper birational morphism

between klt pairs. Assume that KY +ΔY ≤ π∗(KX+Δ). Then v̂ol(y, Y,ΔY ) ≥

v̂ol(x,X,Δ) for any x ∈ X and any y ∈ π−1(x).

Proof. This follows from the same proof of [LX19, Lemma 2.9(2)], which

tackles the boundary-free case. �

Lemma 2.11 ([HLQ23, Lemma 2.16]). Let x ∈ (X,Δ) be a klt singularity

of dimension n, let λ > 0, and let D be an effective Q-Cartier divisor on X

such that (X,Δ+ (1 + λ)D) is lc. Then

v̂ol(x,X,Δ+D) ≥

(
λ

1 + λ

)n

v̂ol(x,X,Δ).

Proof. By assumption, for any v ∈ Val∗X,x, we have AX,Δ(v) ≥ (1+λ)v(D),

thus

AX,Δ+D(v) = AX,Δ(v)− v(D) ≥

(
1−

1

1 + λ

)
AX,Δ(v)
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and hence

AX,Δ+D(v)n · vol(v) ≥

(
λ

1 + λ

)n

AX,Δ(v)
n · vol(v).

Taking the infimum over all v ∈ Val∗X,x, the lemma follows. �

2.4. Complements. In this subsection we recall some results about com-

plements of singularities. A DCC set is a subset of R that satisfies the de-

scending chain condition.

Definition 2.12. A Q-complement of an lc pair (X,Δ) is an effective Q-

divisor D ∼Q −(KX + Δ) such that (X,Δ + D) is lc. A Q-complement of

η ∈ (X,Δ) is an effective Q-Cartier Q-divisor D such that (X,Δ+D) is lc at η

and has η as the generic point of an lc center.2 In either case, a Q-complement

D is called an N-complement for N ∈ N∗ if N(KX +Δ+D) ∼ 0.

Lemma 2.13. Let n ∈ N∗ and let I = Ī ⊆ [0, 1] ∩ Q be a DCC set.

Then there exists some integer N > 0 depending only on n and I such that if

(X,Δ) is a klt pair of dimension n with Coef(Δ) ⊆ I and η ∈ X, then any

Kollár component E over η ∈ (X,Δ) is an lc place of some N-complement.

In particular, every such η ∈ (X,Δ) has an N-complement.

Proof. This should be well known to experts but we provide a proof for

the readers’ convenience. We may assume that 1 ∈ I. Let π : Y → X be the

plt blowup that extracts E. Since E is a Kollár component, (Y,ΔY + E) is

plt, −(KY + ΔY + E) is π-ample and hence Y is of Fano type over X. By

[HLS, Theorem 1.10] (which builds on [Bir19, Theorem 1.8]), after possibly

replacing X by a neighbourhood of η, there exists an integer N > 0 that only

depends on n and I, and an effective Q-Cartier Q-divisor DY on Y such that

N(ΔY +DY ) has integer coefficients, (Y,ΔY + E +DY ) is lc, and

N(KY +ΔY + E +DY ) ∼ 0.

It follows that if we letD = π∗DY , then KY +ΔY +E+DY = π∗(KX+Δ+D)

and hence (X,Δ + D) is lc with E as an lc place. Since η is the center of

E, this implies that D is a Q-complement of η ∈ (X,Δ). Moreover, the line

bundle N(KY +ΔY +E+DY ) descends to the line bundle N(KX+Δ+D) by

Shokurov’s basepoint-free theorem (see, e.g., [KM98, Theorem 3.3]). Thus D

is also an N -complement. Since every klt singularity has a Kollár component,

this finishes the proof. �

Lemma 2.14. Let f :
(
y ∈ (Y,ΔY )

)
→

(
x ∈ (X,Δ)

)
be a finite morphism

between lc singularities such that f∗(KX + Δ) = KY + ΔY . Let D be a

2Morally speaking, this should be called a strictly lc Q-complement since we also require

that the complement has an lc center at η. For simplicity, we drop the phrase “strictly lc”
when we talk about complement if the center η is specified.
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divisor on X. Then D is a Q-complement of x ∈ (X,Δ) if and only if f∗D

is a Q-complement of y ∈ (Y,ΔY ).

Proof. This is a direct consequence of the proof of [KM98, Proposition

5.20(2)]. �

2.5. Index one covers. The index one cover of a Q-Cartier Weil divisor

D ⊆ X [KM98, Definition 5.19] is a cyclic cover

X̃ = Spec
⊕

0≤m≤r−1

OX(mD),

where r is the Cartier index of D. It has the property that the preimage of

D becomes Cartier. We will need a similar construction for multiple divisors.

Lemma-Definition 2.15. Let x ∈ X be a normal singularity and let

D1, · · · , Dm be Q-Cartier Weil divisors on X. Let H be the subgroup of the

local class group of x ∈ X generated by all the Di’s and consider

X̃ := Spec
⊕

D∈H

OX(D).

It comes with a natural quasi-étale Galois morphism π : X̃ → X with abelian

covering group Ĥ := Hom(H,C∗). The preimage π−1(x) consists of a single

point x̃ and π∗Di is Cartier for all 1 ≤ i ≤ m. We call x̃ ∈ X̃ the (simultane-

ous) index one cover of D1, · · · , Dm.

Proof. The only nontrivial statement is that π−1(x) consists of a single

point x̃ and π∗Di is Cartier. The first claim can be proved as in [Kol13,

2.48(1)]: the evaluation map OX(D) ⊗ OX(−D) → OX/m is zero for all

D ∈ H \ {0}, thus every f ∈
⊕

D∈H\{0} OX(D) is nilpotent in OX̃/mOX̃ and

this implies that the preimage of x is a single point in X̃. To see the other

claim, note that the map π : X̃ → X factors through the index one cover of

Di, thus π
∗Di is Cartier. �

2.6. Family of singularities and special boundedness. In this sub-

section, we recall the definition for special boundedness of singularities, fol-

lowing [HLQ23].

Definition 2.16. We call B ⊆ (X ,D) → B a Q-Gorenstein family of klt

singularities (over a normal but possibly disconnected base B) if

(1) X is flat over B, and B ⊆ X is a section of the projection,

(2) For any closed point b ∈ B, Xb is connected, normal and is not con-

tained in Supp(D),

(3) KX/B + D is Q-Cartier and b ∈ (Xb,Db) is a klt singularity for any

b ∈ B.
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Given a Q-Gorenstein family B ⊆ X → B of klt singularities and a klt

singularity x ∈ X, we denote by (x ∈ Xan) ∈ (B ⊆ X an → B), if ÔX,x
∼=

ÔXb,b for some closed point b ∈ B.

Definition 2.17. A special test configuration of a klt singularity x ∈

(X,Δ) is a Q-Gorenstein family A1 ⊆ (X ,D) → A1 of klt singularities over

A1, together with a Gm-action on (X ,D) that commutes with the standard

Gm-action on A1, such that (t ∈ (Xt,Dt)) ∼= (x ∈ (X,Δ)) for all t ∈ A1 \ {0}.

Its central fiber 0 ∈ (X0,D0) is called a special degeneration of x ∈ (X,Δ).

Definition 2.18. A set P of klt singularities is said to be log bounded up

to special degeneration if there is a log bounded set C of pairs, such that the

following holds.

For any klt singularity x ∈ (X,Δ) in P, there exist a special degeneration

x0 ∈ (X0,Δ0) of x ∈ (X,Δ), a pair (Y,D) ∈ C and a closed point y ∈ Y , such

that (y ∈ (Y, Supp(D))) ∼= (x0 ∈ (X0, Supp(Δ0))) in some neighbourhoods of

y ∈ Y and x0 ∈ X0 respectively.

When P is log bounded and the coefficients set I ⊆ Q is finite, we will

simply say that P is bounded up to special degeneration, since in this case

there is a Q-Gorenstein family of klt singularities such that every x ∈ (X,Δ)

in P specially degenerates to at least one of them.

The following result is useful when showing that a class of klt singularities

is log bounded up to special degeneration.

Lemma 2.19. Let n ∈ N∗ and let ε, δ, c > 0. Then the set of n-dimensional

ε-lc singularities x ∈ (X,Δ) with Coef(Δ) ≥ c that admits a δ-plt blowup is

log bounded up to special degeneration.

Proof. This is essentially [HLM20, Theorem 4.1], at least when X is Q-

Gorenstein. In general, let π : Y → X be a δ-plt that extracts a Kollár

component E, and let L = −E|E be the Q-divisor defined by [HLS, Definition

A.4]. Then there is a special degeneration of x ∈ (X,Δ) to the orbifold cone

over (E,ΔE := DiffE(ΔY )) with polarization L (see, e.g., [LX20, Section

2.4] or [LZ22, Proposition 2.10]). Thus it suffices to show that the triple

(E, Supp(ΔE), L) is bounded.

Since (Y,E) is δ-plt, there exists some integer m depending only on δ such

that mE is Cartier away from a codimension two set in E (it suffices to inspect

the codimension one points of E as in the proof of [HLM20, Theorem 4.1]).

Thus mL has integer coefficients. By adjunction, we also see that (E,ΔE) is

δ-klt and log Fano, and Coef(ΔE) ≥ c
m . By [Bir21, Theorem 1.1], we first

deduce that E belongs to a bounded family. But as Coef(ΔE) ≥ c
m and

−KE −ΔE is ample, we further see that the degree of Supp(ΔE) is bounded

from above, thus (E, Supp(ΔE)) is log bounded. Finally −(KE + ΔE) ∼Q
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AX,Δ(E) · L ≥ εL, thus the Weil divisor mL also has bounded degree, hence

the triple (E, Supp(ΔE), L) is bounded as desired. �

3. Comparison between lct and volume

In this section we prove the following statement which gives a positive

answer to [HLQ23, Question 8.1]. It will play an important role in many of

the reduction steps that we will carry out in the next few sections.

Theorem 3.1. For any n ∈ N∗, there exists some constant c(n) > 0

depending only on n such that for any n-dimensional Q-Gorenstein klt singu-

larity x ∈ (X,Δ) we have

lctx(X,Δ;Δ) ≥ c(n) · v̂ol(x,X,Δ).

The proof will be divided into several steps, but first we shall consider an

interpolation (based on a construction from [XZ21]) of the Q-divisor Δ and

the valuation ideals of the minimizing valuations of the normalized volume

function. For this purpose we first revisit some results from [XZ21].

3.1. A multiplicity formula. Let x ∈ (X,Δ) be a singularity of dimen-

sion n and let a•, b• be two graded sequence of ideals. Following [XZ21, Sec-

tion 3.3], we define a• � b• to be the graded sequence of ideals with

(a• � b•)m =

m∑

i=0

ai ∩ bm−i.

In this section, we give slight generalizations of some results from [XZ21,

Section 3.3].

Lemma 3.2. Assume that x ∈ (X,Δ) is klt. Then lctx(a• � b•) ≤

lctx(a•) + lctx(b•).

Proof. This follows from the same proof of [XZ21, Theorem 3.11]: the mx-

primary assumption there is only used to ensure that all the lct are taken at

x. �

Assume next that both sequences a•, b• are decreasing and that a• is mx-

primary. Note that the latter condition implies that a•�b• is also mx-primary.

We will give a formula for the multiplicity of a• � b•. Let Rm := OX,x/am.

The decreasing sequence b• induces an N-filtration F on all Rm:

FjRm := (bj + am)/am,

which also induces a filtration (still denoted as F) on the subspaces am−1/am⊆

Rm. It is not hard to check that Fj(am−1/am) ∼= am−1 ∩ bj/am ∩ bj . We

further assume that:
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(†) the limit

vol(a•; b
t
•) := lim

m→∞

�(FmtRm)

mn/n!

exists for all t > 0.

Note that under this assumption, the function t �→ vol(a•; b
t
•) is decreasing

and hence continuous at almost all t.

Lemma 3.3. Under the above assumptions, we have

mult(a• � b•) = mult(a•)− (n+ 1)

∫ ∞

0

vol(a•; b
t
•)

(1 + t)n+2
dt.

Proof. This follows from the same proof of [XZ21, Lemma 3.13]. We sketch

the main steps for the reader’s convenience. Let R = OX,x and let c• = a•�b•.

We have

mult(c•) = lim
m→∞

�(R/cm)

mn/n!
= lim

m→∞

∑m
j=1 �(R/cj)

mn+1/(n+ 1)!
.

From the short exact sequence

0 →
aj−�−1 ∩ b�+1

aj−� ∩ b�+1
→

R
∑�

i=0 aj−i ∩ bi

→
R

∑�+1
i=0 aj−i ∩ bi

→ 0

for all �, we get

�(R/cj) = �(R/aj)−

j∑

i=1

�(F i(aj−i/aj−i+1)).

Summing over j = 0, 1, · · · ,m we obtain

m∑

j=1

�(R/cj) =
m∑

j=1

�(R/aj)−
m∑

i=1

�(F i(R/am−i+1)).

Note that lim
m→∞

�(F�my�(R/am−�my�+1))

mn/n! = (1 − y)nvol(a•; b
y

1−y

• ) for almost all

0 < y < 1 (i.e., wherever the right hand side is continuous). Thus after

dividing the above equality by mn+1

(n+1)! and using the dominated convergence

theorem, we get

mult(c•) = mult(a•)− (n+ 1)

∫ 1

0

(1− y)nvol(a•; b
y

1−y

• )dy

= mult(a•)− (n+ 1)

∫ ∞

0

vol(a•; b
t
•)

(1 + t)n+2
dt

as desired. �
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3.2. Izumi inequality. The next ingredient in the proof of Theorem 3.1

is an Izumi type inequality as follows.

Lemma 3.4. Let x ∈ (X,Δ) be an n-dimensional klt singularity, and let

v0 ∈ Val∗X,x be a valuation. Then there exists some constant c0 = c0(n) > 0

depending only on n such that

lctx(X,Δ;D) ≥ c0 ·
v̂ol(x,X,Δ)

v̂olX,Δ(v0)
·
AX,Δ(v0)

v0(D)

for any effective Q-Cartier divisor D on X.

As an immediate corollary, we have

Corollary 3.5. Let n ∈ N∗. Then there exists some constant c0 > 0

depending only on n such that for any n-dimensional klt singularity x ∈ (X,Δ)

and any effective Q-Cartier divisor D on X, we have

lctx(X,Δ;D) ≥ c0 ·
AX,Δ(v0)

v0(D)
,

where v0 is the minimizing valuation of the normalized volume function, i.e.,

v̂olX,Δ(v0) = v̂ol(x,X,Δ).

This can be seen as a uniform Izumi type estimate. Recall that the classical

Izumi inequality (see, e.g., [Laz04, Proposition 9.5.13]) says that if x ∈ X is a

smooth point and D is an effective divisor on X, then lctx(X;D) ≥ 1
multxD

.

More generally, for any klt singularity x ∈ (X,Δ), there exists some constant

c > 0 such that

lctx(X,Δ;D) ≥
c

multxD

for any effective Q-Cartier divisor D on X (see, e.g., [Li18, Theorem 3.1]).

However, the constant c in general depends on the singularity x ∈ (X,Δ).

Therefore, Corollary 3.5 asserts that a uniform constant can be achieved if we

replace multx by the minimizing valuation of the normalized volume function.

Similarly, Lemma 3.4 suggests that the constant in the Izumi inequality tends

to get worse if we choose a valuation that’s further away from the normalized

volume minimizer.

Proof of Lemma 3.4. After rescaling the coefficient, we may assume that

D = (f = 0) is Cartier. For ease of notation, we will abbreviate lctx(X,Δ; ·)

as lct(·). Let a• = a•(v0) be the graded sequence of valuation ideals of v0, i.e.,

am = {s ∈ OX,x | v0(s) ≥ m}. For each t > 0, we also set bm,t = (f)�
m
t
� and

c•,t = a•(v0) � b•,t. Roughly speaking, cm,t is generated by s ∈ OX,x such

that v0(s) + t · ordD(s) ≥ m, so as t varies they interpolate between a•(v0)

and the ideals OX(−mD) (m ∈ N). The idea of the proof is to analyze the

inequality (see [Liu18, Theorem 27])

lct(c•,t)
n ·mult(c•,t) ≥ v̂ol(x,X,Δ)
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for some suitably chosen value of t. Note that lct(b•,t) = t · lct(D) and

lct(a•) ≤ AX,Δ(v0) (the latter follows from the fact that v0(a•(v0)) = 1). We

take

t =
AX,Δ(v0)

lct(D)
> 0

and write b•,t, c•,t simply as b•, c• from now on. We then have

(3.1) lct(c•) ≤ lct(a•) + lct(b•) ≤ 2AX,Δ(v0)

by Lemma 3.2 and the above discussions. We claim that

(3.2)
mult(c•)

vol(v0)
= 1− (n+ 1)

∫ 1/c

0

(1− cu)n

(1 + u)n+2
du,

where c = v0(D)
t = lct(D) ·

(
AX,Δ(v0)
v0(D)

)−1

. Granting this for the moment,

let us finish the proof of the lemma. To this end, denote the right hand

side of (3.2) by S(c) and treat it as a function of c > 0. Note that S(c) ≥

1 −
∫ 1/c

0
n+1

(1+u)n+2 du =
∫ +∞

1/c
n+1

(1+u)n+2 du, hence S(c) > 0 and lim
c→∞

S(c) = 1.

We also have

(3.3) lim
c→0

S(c)

c
= 1.

Indeed, we have

S(c) = 1− (n+ 1)

∫ 1/c

0

(1 + c− c(1 + u))n

(1 + u)n+2
du

= 1− (n+ 1)
n∑

i=0

∫ 1/c

0

(
n
i

)
(1 + c)n−i(−c)i

(1 + u)n+2−i
du

= 1− (n+ 1)

∫ 1/c

0

(
1 + cn

(1 + u)n+2
−

cn

(1 + u)n+1

)
du+O(c2),

from which (3.3) follows easily (after a direct calculation). It then follows that

there exists some constant M > 0 depending only on n such that S(c) ≤ M ·c

for all c > 0.

On the other hand, by (3.1) and (3.2) we have

v̂ol(x,X,Δ) ≤ lct(c•)
n ·mult(c•) ≤ 2nS(c) · v̂olX,Δ(v0) ≤ 2nMc · v̂olX,Δ(v0).

Therefore,

c ≥
1

2nM
·
v̂ol(x,X,Δ)

v̂olX,Δ(v0)
.

Recall that c = lct(D) ·
(

AX,Δ(v0)
v0(D)

)−1

, this gives the statement of the lemma

with c0 = 1
2nM (which only depends on the dimension n).
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It remains to prove the multiplicity formula (3.2) using Lemma 3.3. First

let us verify that the assumption (†) in Lemma 3.3 is satisfied. Recall that

(using the notation in Lemma 3.3)

FjRm = (bj + am)/am ∼= bj/(bj ∩ am).

Since bj = (f)�
j

t
� and am = {s ∈ R | v0(s) ≥ m}, we see that s ∈ bj ∩ am if

and only if s = f� j

t
� · s1 for some s1 ∈ R with v0(s1) ≥ m− � j

t �v0(f). Thus

FjRm
∼= (f)�

j

t
�/(f)�

j

t
� · am−� j

t
�v0(f)

∼= R/am−� j
t
�v0(f)

.

It is then clear that

lim
m→∞

�(FmuRm)

mn/n!
= max{0, (1− cu)n} · vol(v0),

hence Lemma 3.3 applies and gives

mult(c•) = mult(a•)− (n+ 1)

∫ 1/c

0

(1− cu)n · vol(v0)

(1 + u)n+2
du.

As mult(a•) = vol(v0), this is exactly (3.2). The proof is now complete. �

3.3. Completion of the proof. We are now ready to give the proof of

Theorem 3.1.

Proof of Theorem 3.1. By [LX19, Lemma A.1], there exists some v0 ∈

Val∗X,x such that v̂olX(v0) ≤ nn. Since (X,Δ) is klt, we have v0(Δ) < AX(v0).

Clearly we also have AX,Δ(v0) ≤ AX(v0). Hence by Lemma 3.4 we have

lctx(X,Δ;Δ) ≥ c0(n) ·
v̂ol(x,X,Δ)

v̂olX,Δ(v0)
·
AX,Δ(v0)

v0(Δ)

=
c0(n)

AX,Δ(v0)n−1 · v0(Δ) · vol(v0)
· v̂ol(x,X,Δ)

≥
c0(n)

AX(v0)n−1 ·AX(v0) · vol(v0)
· v̂ol(x,X,Δ)

=
c0(n)

v̂olX(v0)
· v̂ol(x,X,Δ)

≥
c0(n)

nn
· v̂ol(x,X,Δ)

for some c0(n) > 0 that only depends on n. Thus the theorem holds with

c(n) = c0(n)
nn . �



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

BOUNDEDNESS OF SINGULARITIES 537

4. Boundedness of singularities

In this section, we study the boundedness of klt singularities using the min-

imal log discrepancies of their Kollár components. The first result is Theorem

4.1, which gives a criterion for special boundedness of singularities.

Theorem 4.1. Let ε, A > 0, let n be a positive integer, and let I ⊆

[0, 1]∩Q be a finite set. Then there exists some constant δ = δ(n, ε, A, I) > 0

such that any n-dimensional klt singularity x ∈ (X,Δ) with v̂ol(x,X,Δ) ≥ ε,

mldK(x,X,Δ) ≤ A and Coef(Δ) ⊆ I admits a δ-plt blowup.

Let us first note that having bounded mldK is a necessary condition for the

above conclusion.

Lemma 4.2. Let n ∈ N∗ and let δ > 0. Then there exists some A =

A(n, δ) > 0 such that mldK(x,X,Δ) ≤ A for any n-dimensional klt singularity

x ∈ (X,Δ) that admits a δ-plt blowup.

Proof. By [HLS, Proposition 4.3(1)], there exists some constant A =

A(n, δ) > 0 such that for any δ-plt blowup π : Y → X of an n-dimensional klt

singularity x ∈ (X,Δ) with exceptional divisor E, we have AX,Δ(E) ≤ A. In

particular, mldK(x,X,Δ) ≤ A. �

The key to the proof of Theorem 4.1 is to bound the Cartier index of divisors

on the plt blowups that extract the Kollár components. Using [XZ21], this

essentially boils down to the following volume estimate.

Lemma 4.3. Let (X,Δ) be a klt pair of dimension n and let π : Y → X

be an lc blowup with exceptional divisor E. Then

v̂ol(y, Y,ΔY ) ≥
v̂ol(π(y), X,Δ)

max{1, AX,Δ(E)n}

for all y ∈ Y , where ΔY = π−1
∗ Δ.

Proof. Let a = AX,Δ(E)− 1 and let x = π(y). If a ≤ 0, then KY +ΔY ≤

π∗(KX + Δ), hence by Lemma 2.10, we get v̂ol(y, Y,ΔY ) ≥ v̂ol(x,X,Δ) for

all y ∈ E. Thus we may assume that a > 0. Let m > 0 be a sufficiently

divisible integer, and let a = π∗OY (−mE). We further let D = 1
mp ({f1 =

0} + · · · + {fp = 0}) for some sufficiently large integer p and some general

f1, · · · , fp ∈ a. Since (Y,ΔY + E) is lc by assumption, and

KY +ΔY + E = π∗(KX +Δ+ a
a+1
m ),

we see that lct(X,Δ;D) = lct(X,Δ; a1/m) ≥ a+1 and lct(X,Δ; aD) ≥ 1+ 1
a .

By Lemma 2.11 we obtain

v̂ol(x,X,Δ+ aD) ≥
v̂ol(x,X,Δ)

AX,Δ(E)n
.
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Notice that π∗(KX +Δ+ aD) = KY +ΔY + aDY where DY = π−1
∗ D, hence

another application of Lemma 2.10 implies

v̂ol(y, Y,ΔY ) ≥ v̂ol(y, Y,ΔY + aDY )

≥ v̂ol(x,X,Δ+ aD) ≥ AX,Δ(E)−n · v̂ol(x,X,Δ)

for all y ∈ E. This proves the lemma. �

Proof of Theorem 4.1. Without loss of generality we may assume that A ≥

1. By assumption, there exists a Kollár component E over x ∈ (X,Δ) such

that AX,Δ(E) ≤ A. Let π : Y → X be the corresponding plt blowup and let

ΔY be the strict transform of Δ. By Lemma 4.3, we have

(4.1) v̂ol(y, Y,ΔY ) ≥
ε

An

for all y ∈ π−1(x) = E. Thus by Lemma 2.9, we deduce that there exists a

positive integer N depending only on ε, n,A and the coefficient set I such that

NΔ has integer coefficients and ND is Cartier for any Q-Cartier Weil divisor

D on Y . In particular, N2(KY + ΔY + E) is Cartier. Since (Y,ΔY + E) is

plt, this implies that it is 1
N2 -plt and we are done. �

Using Lemma 2.19, this immediately implies:

Corollary 4.4. Let ε, A > 0, n ∈ N∗ and let I ⊆ [0, 1] ∩Q be a finite set.

Then the set of n-dimensional klt singularities x ∈ (X,Δ) with v̂ol(x,X,Δ) ≥

ε, mldK(x,X,Δ) ≤ A and Coef(Δ) ⊆ I is bounded up to special degeneration.

For toric singularities we have the following uniform bound on mldK. As

an application, we get the boundedness of toric singularities whose volumes

are bounded from below.

Lemma 4.5. Let x ∈ (X,Δ) be a klt toric singularity of dimension n.

Then there exists a torus invariant Kollár component E such that AX,Δ(E) ≤

n. In particular,

mldK(x,X,Δ) ≤ n.

Proof. This follows from two well-known results:

(1) mld(x,X,Δ) ≤ n for toric singularities (see [Bor97,Amb06]) and the

mld can be computed by some torus invariant divisor over x ∈ (X,Δ);

(2) every torus invariant divisor over x ∈ (X,Δ) is a Kollár component.

For the reader’s convenience we sketch the proof. We refer to [Ful93] for basics

on toric varieties. We have X = X(σ) for some rational convex polyhedral

cone σ ⊆ NR = Rn. Let ρi ∈ N = Zn be the primitive generator of the

1-dimensional faces of σ. We may write Δ =
∑

aiΔi where the Δi’s are torus

invariant prime divisors corresponding to ρi. The pair (X,Δ) is klt if and

only if 0 ≤ ai < 1 for all i and there exists a linear function f : NR → R such

that f(ρi) = 1− ai. Every torus invariant divisor Ew over x ∈ (X,Δ) comes
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from a primitive vector w ∈ N ∩ int(σ) and the corresponding log discrepancy

is AX,Δ(Ew) = f(w). In particular, if w is the primitive generator in the

direction ρ1+· · ·+ρn then clearly AX,Δ(Ew) = f(w) ≤ f(ρ1)+· · ·+f(ρn) ≤ n.

Next, let E be a torus invariant divisor over x ∈ (X,Δ) that corresponds

to w ∈ N ∩ int(σ). After adding the vertex w, any simplicial subdivision of σ

gives rise to a birational morphism Y1 → X such that Y1 isQ-factorial and E is

the only exceptional divisor (since C≥0 ·w is the only 1-dimensional face that’s

new). Let Y be the ample model of −E over X, i.e., Y1 ��� Y is a birational

contraction over X and −E is π-ample (where π : Y → X); in other words,

Y is the outcome of the (−E)-MMP over X followed by the corresponding

relative ample model (we can run any MMP on toric varieties). Note that the

toric pair (Y,ΔY + E) is plt (where ΔY = π−1
∗ Δ) since Coef(ΔY + E) ≤ 1

and E is the only prime divisor with coefficient 1. It follows that E is a Kollár

component. This completes the proof. �

Proposition 4.6. Let n ∈ N∗ and let ε > 0. Then there are only finitely

many toric singularities x ∈ X (up to isomorphism) that supports a klt sin-

gularity x ∈ (X,Δ) with v̂ol(x,X,Δ) ≥ ε (for some effective Q-divisor Δ).

Note that we do not require the boundary Δ to be torus invariant.

Proof. First we treat the Δ = 0 case, i.e., when x ∈ X itself is Q-Gorenstein

and v̂ol(x,X) ≥ ε. By the proof of Theorem 4.1 and Lemma 4.5, we see that

there exists some δ > 0 depending only on n, ε such that x ∈ X admits a δ-plt

toric blowup. If E is the corresponding torus invariant Kollár component,

then by adjunction (E,DiffE(0)) is δ-klt. By [BB92], there are only finitely

many such variety E. As in the proof of Lemma 2.19, the divisor E induces a

degeneration of x ∈ X to the orbifold cone over E. But E is torus invariant,

so the degeneration is trivial (the corresponding test configuration is X ×A1

with a diagonal Gm-action), thus X itself is an orbifold cone over E. The

finiteness of E then implies the finiteness of x ∈ X as in proof of Lemma 2.19.

For the general case, let π : Y → X be a small birational modification such

that −KY is Q-Cartier and π-ample. Such modification exists and is torus

equivariant by Lemma 4.7. Let y ∈ π−1(x) be a torus invariant closed point.

By Lemma 2.10, we have v̂ol(y, Y ) ≥ v̂ol(y, Y,ΔY ) ≥ v̂ol(x,X,Δ) ≥ ε, thus

from the boundary-free case treated above we know that there are only finitely

many such toric singularities y ∈ Y . Hence there exists some constant M � 0

depending only on n, ε and some torus invariant divisor E over y ∈ Y such

that AY (E) ≤ M and volY,y(ordE) ≤ M .

We now view E as a divisor over x ∈ X. Let Γ be the sum of all torus

invariant prime divisors on X, and let ϕ : Z → X be the associated blowup

that extracts the divisor E. Note that KX + Γ ∼ 0 and E is an lc place of

(X,Γ). Since E is torus invariant, we know from the same proof above that
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x ∈ X is an orbifold cone over E. We aim to show that there exists some

integer N > 0 depending only on n, ε such that N · E is Cartier on Z. Since

−E|E is ample and (−E|n−1
E ) = volX,x(ordE) ≤ volY,y(ordE) ≤ M (the first

inequality comes from [LX19, Lemma 2.9(1)]), it would follow that there are

only finitely many such toric varieties E, and we get the finiteness of x ∈ X.

To this end, we choose some sufficiently divisible integer m, let DY =
1
mD0 ∼Q −KY for some generalD0 ∈ |−mKY |, and let G = M−1

M Γ+ 1
M π∗DY .

Then KX +G ∼Q 0 and by Bertini theorem we know that (Y,ΓY +DY ) is lc

(as usual ΓY etc. denotes the strict transform of Γ etc. on Y ), hence for any

valuation v ∈ Val∗X,x, we get

AY,GY
(v) ≥ AY (v)−

M − 1

M
v(ΓY +DY ) ≥

1

M
AY (v)

(the first inequality holds as long as M ≥ 2). It follows that AX,G(v) =

AY,GY
(v) ≥ 1

MAY (v) ≥
1
MAX,Δ(v), thus v̂ol(x,X,G) ≥ M−nv̂ol(x,X,Δ) ≥

M−nε as in Lemma 2.11. On the other hand, recall that E is an lc place

of (Y,ΓY ), hence AX,G(E) = AY,GY
(E) ≤ AY,M−1

M
ΓY

(E) = 1
MAY (E) ≤ 1 by

our choice of M . This means that KZ+GZ ≤ ϕ∗(KX+G), and an application

of Lemma 2.10 gives v̂ol(z, Z,GZ) ≥ M−nε for all z ∈ E. By Lemma 2.9 we

deduce that the Cartier index of E on Z is bounded from above by some

constant that only depends on n, ε. As explained earlier, this concludes the

proof. �

The following result is used in the above proof, and will be needed again

in the proof of Theorem 4.8.

Lemma 4.7. Let (X,Δ) be a klt pair and let D be a Weil Q-divisor on X.

Then there exists a unique small birational modification π : Y → X such that

the strict transform DY = π−1
∗ D is Q-Cartier and π-ample.

Proof. The uniqueness part follows from the existence since we necessarily

have

Y = ProjX

⊕

m∈N

π∗OY (mrDY ) = ProjX

⊕

m∈N

OX(mrD)

for some sufficiently divisible r ∈ N. Every Weil divisor D onX can be written

as D = A − B where A is effective and B is Cartier. Since π−1
∗ (A − B) =

π−1
∗ A−π∗B is π-ample if and only if π−1

∗ A is π-ample, we may assume that D

is effective. Let π1 : Y1 → X be a small Q-factorial modification of X, which

exists by [BCHM10, Corollary 1.4.3] (and the remarks thereafter). Let Δ1

(resp. D1) be the strict transform of Δ (resp. D). Note that (Y1,Δ1) is klt

(it is crepant to (X,Δ)), thus the pair (Y1,Δ1+εD1) is also klt for 0 < ε 	 1.

By [BCHM10, Theorem 1.2(2)], it has a log canonical model over X, i.e., there

exists a birational contraction Y1 ��� Y over X such that KY +ΔY + εDY is

ample over X (where ΔY , DY are the strict transforms of Δ, D). Denote the
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map Y → X by π. Clearly it is a small birational contraction (as π1 is), and

hence KY +ΔY = π∗(KX +Δ) and

KY +ΔY + εDY ∼π,Q εDY .

It follows that DY is also π-ample and we finish the proof. �

We next show that Conjecture 1.7 and Theorem 4.1 together imply Conjec-

ture 1.1. The main ingredients come from Theorem 3.1 and Kollár’s effective

basepoint-free theorem [Kol93].

Theorem 4.8. Assume that Conjecture 1.7 holds in dimension n. Then

for any ε > 0 and any n-dimensional klt singularity x ∈ (X,Δ =
∑m

i=1 aiΔi)

such that

(1) ai ≥ ε for all i,

(2) each Δi is an effective Weil divisor, and

(3) v̂ol(x,X,Δ) ≥ ε,

there exists some δ = δ(n, ε) > 0 such that x ∈ (X,Δ) admits a δ-plt blowup.

In particular, the set of such singularities is log bounded up to special degen-

eration.

Proof. We focus on the existence of δ-plt blowup, since the special bound-

edness would then follow from Lemma 2.19. If Δ+ ≥ Δ and (X,Δ+) is klt,

then any δ-plt blowup of (X,Δ+) is also a δ-plt blowup of (X,Δ). By Con-

jecture 1.7 and Theorem 4.1, if rΔ+ has integral coefficients for some integer

r > 0 and v̂ol(x,X,Δ+) ≥ ε0 for some ε0 > 0, then we may choose δ to only

depend on n, r and ε0. So our goal is to prove that we can find Δ+, r and ε0
as above such that r, ε0 only depends on n, ε.

To this end, let γ = c(n) · ε where c(n) > 0 is the constant from Theorem

3.1. Let � = � 2+γ
εγ �, and let

Δ′ =

m∑

i=1

1

�

⌊
(1 + γ)�ai
1 + γ

2

⌋
Δi.

Using the assumption that ai ≥ ε, it is not hard to check that Δ ≤ Δ′ and

(4.2)
(
1 +

γ

2

)
Δ′ ≤ (1 + γ)Δ.

If both KX and Δ′ were Q-Cartier, we could simply take r = �, Δ+ = Δ′: by

Theorem 3.1, the pair (X, (1+γ)Δ) is klt, hence so is (X, (1+ γ
2 )Δ

′) by (4.2).

By Lemma 2.11 (with λ = γ
2 ), we get v̂ol(x,X,Δ′) ≥

(
γ

γ+2

)n

v̂ol(x,X,Δ) ≥

ε0 for some constant ε0 that depends only on n, ε. In other words, the desired

conditions on r,Δ+ := Δ′ and ε are satisfied.

To deal with the general case, the idea is to find another divisor D ≥ 0

such that (X,Δ′ +D) is klt (in particular, KX +Δ′ +D is Q-Cartier), while
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keeping the coefficients in a fixed finite set. To this end, we take a Q-factorial

modification π : Y → X such that −(KY +Δ′
Y ) is π-nef where Δ′

Y = π−1
∗ Δ′.

Such map exists by Lemma 4.7: first take a small birational modification such

that the strict transform of −(KX +Δ′) is ample over X, then take a further

small Q-factorial modification using [BCHM10, Corollary 1.4.3]. We also set

ΔY = π−1
∗ Δ. The strict transform of the sought divisor D should be in the

Q-linear system | − (KY + Δ′
Y )|Q. To control the coefficient of D we first

proceed to verify the effective basepoint-freeness of this linear system. Since

(Y,ΔY ) is crepant to (X,Δ), we have

v̂ol(y, Y,ΔY ) ≥ v̂ol(π(y), X,Δ) ≥ ε

for all y ∈ Y by Lemma 2.10. Since �Δ′
Y has integer coefficients, we deduce

from Lemma 2.9 that there exists a positive integer N0 depending only on

n and ε such that L := −N0(KY + Δ′
Y ) is Cartier. Note that L and L −

(KY + Δ′
Y ) are both π-nef and π-big by our construction of Y , therefore

by Kollár’s effective base-point-free theorem [Kol93, Theorem 1.1] (see also

[Fuj09, Theorem 1.3] for the relative version), there exists another positive

integer m0 depending only on the dimension n such that m0L is π-generated.

In particular, we get an integer r0 = m0N0 which only depends on n and ε

such that −r0(KY +Δ′
Y ) is Cartier and π-generated. By the same argument as

in the special case above (where KX and Δ′ are assumed to be Q-Cartier), we

also know that (Y, (1+ γ
2 )Δ

′
Y ) is klt. Thus by Bertini’s theorem, we can choose

some effective Q-divisor DY ∼π,Q −(KY +Δ′
Y ) such that 2r0DY has integral

coefficients and the pair (Y, (1 + γ0

2 )(Δ′
Y +DY )) is klt for γ0 = min{1, γ}.

As KY +Δ′
Y +DY ∼π,Q 0, we have

KY +Δ′
Y +DY = π∗(KX +Δ′ +D),

where D = π∗DY . Note that (X,Δ′ + D) is klt since the same holds for

(Y,Δ′
Y + DY ). We also know that 2r0�(Δ

′ + D) has integral coefficients by

our construction. According to the discussion at the beginning of the proof,

it remains to check that v̂ol(x,X,Δ′ + D) ≥ ε0 for some constant ε0 > 0

that only depends on n and ε. But by construction, it is not hard to see that

Δ′+D−Δ is Q-Cartier and that (X,Δ+(1+ γ0

2 )(Δ′+D−Δ)) is klt: indeed,

the strict transform of the boundary on Y is at most (1 + γ0

2 )(Δ′
Y + DY ).

Hence by Lemma 2.11 (with λ = γ0

2 ) we obtain

v̂ol(x,X,Δ′ +D) ≥

(
γ0

2 + γ0

)n

v̂ol(x,X,Δ) ≥ ε0

for some constant that only depends on n and ε (as the same holds for γ0).

This finishes the proof. �
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Remark 4.9. While the results in this paper are stated for pairs with

rational coefficients, the general real coefficient case can often be reduced to

the rational case by perturbing the coefficients. In Conjecture 1.7 we can

even relax the assumption that Coef(Δ) belongs to a fixed finite set I to

Coef(Δ) ≥ ε and get an equivalent conjecture. The reason is as follows: by

perturbation, we may further assume Coef(Δ) ⊆ Q; if the original version of

Conjecture 1.7 holds, then by Theorem 4.8 and Lemma 4.2, for any klt pair

(X,Δ) with Coef(Δ) ≥ ε and any η ∈ X with v̂ol(η,X,Δ) ≥ ε, we have

mldK(η,X,Δ) ≤ A for some constant A = A(n, ε) > 0.

Using [HLS], we can also extend Theorem 4.1 to the real coefficient case.

Indeed, given any finite set I ⊆ [0, 1] (not necessarily ⊆ Q), by [HLS, Theorem

5.6] we can find a finite set I ′ ⊆ [0, 1] ∩ Q such that: for any n-dimensional

klt singularity x ∈ (X,Δ) with Coef(Δ) ⊆ I, there exists some effective Q-

divisor Δ′ ≥ Δ on X with Coef(Δ′) ⊆ I ′, such that x ∈ (X,Δ′) is klt,

v̂ol(x,X,Δ′) ≥ 2−nv̂ol(x,X,Δ) and mldK(x,X,Δ′) ≤ 2 · mldK(x,X,Δ) (cf.

[Zhu, Lemma 2.17]). Since Δ′ ≥ Δ, any δ-plt blowup of (X,Δ′) is also a δ-plt

blowup of (X,Δ). The real coefficient case of Theorem 4.1 then follows from

the rational case applied to the coefficient set I ′.

5. Reduction steps

In this section, we work out some reduction steps for Conjectures 1.7 and

1.8 which apply in any dimension. They will be combined with classification

results in the next section to prove both conjectures in low dimensions.

5.1. Special complements. One of our main tools is the notion of spe-

cial complements. It helps us descend Kollár components over birational

models of the singularity to Kollár components of the singularity itself. This

notion was introduced in [LXZ22] to prove the Higher Rank Finite Generation

Conjecture, here we need a slight variant.

Definition 5.1. Let (X,Δ) be a klt pair and let π : Y → X be a proper

birational morphism. A Q-complement Γ of (X,Δ) is said to be special (with

respect to π) if for any y ∈ Ex(π), there exists some effective Q-Cartier π-

ample Q-divisor G ≤ π∗Γ such that y �∈ Supp(G).

Lemma 5.2. Let (X,Δ) be a klt pair, let π : Y → X be a proper birational

morphism and let (Y,ΔY ) be the crepant pullback of (X,Δ). Let Γ be a special

Q-complement with respect to π, and let E be an lc place of (X,Δ+Γ). Assume

that E is of plt type over (Y,ΔY ). Then E is also of plt type over (X,Δ).

Proof. This basically follows from the same proof of [LXZ22, Lemma 3.5],

which we provide here for reader’s convenience. By Lemma 2.4 it suffices to
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find an effective divisor D such that E is the unique lc place of (X,Δ+ λD),

where λ = lct(X,Δ;D).

Let ρ : Z → Y be the plt blowup of E. By assumption, there exists an

effective π-ample Q-divisor G on Y such that π∗Γ ≥ G and ρ(E) �⊆ Supp(G).

Let H be a sufficiently ample divisor on X such that G + π∗H is ample.

Since −E is ρ-ample, there exists some rational number ε > 0 such that

ρ∗(G + π∗H) − εE is ample on Z. Let G1 be a general divisor in the Q-

linear system |ρ∗(G+ π∗H)− εE|Q and consider the effective divisor D on X

satisfying ρ∗π∗D = ρ∗(π∗Γ − G) + G1 + εE (this is possible since the right

hand side is ∼Q 0 over X). We claim that this divisor D satisfies the desired

condition.

Let KZ +ΔZ = ρ∗(KY +ΔY ) be the crepant pullback. We first note that

the above claim is a consequence of the following two properties:

(1) (Y,ΔY + π∗Γ−G) is sub-lc and E is an lc place of this subpair;

(2) E is the only divisor that computes lct(Y,ΔY ; ρ∗(G1 + εE)).

This is because, (1) implies that

AX,Δ(F ) = AY,ΔY
(F ) ≥ ordF (π

∗Γ−G)

for divisor F over X, and the equality holds when F = E; on the other hand,

if we let μ = lct(Y,ΔY ; ρ∗(G1 + εE)) > 0, then (2) implies that

AX,Δ(F ) = AY,ΔY
(F ) ≥ μ · ordF (ρ∗(G1 + εE)),

and equality holds if and only if F = E. Combining the two inequalities we

have

ordF (π
∗D) = ordF (π

∗Γ−G+ ρ∗(G1 + εE)) ≤ (1 + μ−1)AX,Δ(F ),

and equality holds if and only if F = E. In particular, lct(X,Δ;D) = 1
1+μ−1

and E is the unique lc place that computes this lct, which is exactly what we

want.

It remains to prove the two properties above. Point (1) is quite straightfor-

ward since by assumption E is an lc place of the sub-lc subpair (Y,ΔY +π∗Γ)

and G does not contain the center of E. To see point (2), we note that by

assumption the subpair (Z,ΔZ ∨ E) is plt. Here we denote by D1 ∨ D2 the

smallest Q-divisor D such that D ≥ Di for i = 1, 2. Let t =
AY,ΔY

(E)

ε . Then

ρ∗(KY +ΔY + tρ∗(G1 + εE)) = KZ +ΔZ ∨ E + tG1

by construction. Since G1 is general, the pair (Z,ΔZ ∨ E + tG1) is also plt.

This implies that lct(Y,ΔY ; ρ∗(G1 + εE)) = t and E is the only divisor that

computes the lct. In particular (2) holds. The proof is now complete. �

As an application, we have:
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Lemma 5.3. Let (X,Δ) be a klt pair, let π : Y → X be an lc blowup with

exceptional divisor E, and let ΔY = π−1
∗ Δ. Then any lc place of (Y,ΔY +E)

that is of plt type over (Y,ΔY ) is also of plt type over (X,Δ).

Proof. By assumption (Y,ΔY +E) is lc and its lc centers are contained in E,

thus (Y,ΔY ) is klt. Let c = AX,Δ(E) > 0 and let Γ = ΔY +(1−c)E < ΔY +E.

Let F be an lc place of (Y,ΔY +E) that is of plt type over (Y,ΔY ). Since Γ

is a convex combination of ΔY and ΔY +E, by interpolation we know that F

is also of plt type over (Y,Γ). Note that KY + Γ = π∗(KX +Δ). By Lemma

5.2, it suffices to show that F is an lc place of some special complement with

respect to π. Since −E is π-ample, by Bertini theorem we can choose some

general effective Q-divisor Di ∼π,Q −E (i = 1, · · · , n = dimX) on Y such

that (Y,ΔY +E+cDi) remains lc for all i and that for any y ∈ Ex(π) we have

y �∈ Supp(Di) for some i ∈ {1, · · · , n}. Let DY = 1
n (D1 + · · ·+Dn) ∼π,Q −E

and let D = π∗DY . Then π∗D = DY + E and hence π∗(KX + Δ + cD) =

KY +ΔY +cDY +E. By construction, locally on X the divisor cD is a special

Q-complement that has F as an lc place, hence we are done. �

In the rest of this subsection, we include two auxiliary results that will be

useful later.

Lemma 5.4. Let (X,Δ) be a klt pair, let D be a Q-complement of (X,Δ)

and let W ⊆ X be a minimal lc center of (X,Δ +D). Let E be an lc place

of (X,Δ+D) with center W . Assume that E is of plt type over (X,Δ) in a

neighbourhood of the generic point of W . Then E is of plt type over (X,Δ).

Proof. Let π : Y → X be the prime blowup of E (which exists by Lemma

2.2). Since E is an lc place of the lc pair (X,Δ+D), we have

KY +ΔY +DY + E = π∗(KX +Δ+D)

and (Y,ΔY + DY + E) is lc. In particular, the pair (Y,ΔY + E) is also lc.

By assumption, it is also plt over the generic point of W . If it is not plt

everywhere, then it has some lc center that does not dominate W . However,

any such lc center of (Y,ΔY + E) is also an lc center of (Y,ΔY + DY + E)

and therefore maps to an lc center of (X,Δ+D) that is strictly contained in

W . This contradicts the assumption that W is a minimal lc center. Hence

(Y,ΔY + E) is plt. �

Lemma 5.5. Let n ∈ N∗ and let I ⊆ [0, 1]∩Q be a finite set. Let (X,Δ) be

an lc pair of dimension n, let D be a Q-complement of (X,Δ) and let W ⊆ X

be an lc center of (X,Δ + D). Assume that Coef(Δ),Coef(D) ⊆ I. Then

there exists some rational number ε0 ∈ (0, 1) depending only on n and I such

that every lc type divisor over (X,Δ+ (1− ε0)D) with center W is also an lc

place of (X,Δ+D).
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Proof. 3 We may assume that 1 ∈ I. By the ACC of log canonical thresh-

olds [HMX14], there exists some ε0 ∈ (0, 1) such that if (X0,Δ0) is an n-

dimensional lc pair and D0 is an effective Q-Cartier divisor such that

Coef(Δ0) ∪ Coef(D0) ⊆ I

and (X0,Δ0 + (1 − ε0)D0) is lc, then (X0,Δ0 + D0) is also lc. Let us show

that this ε0 satisfies the statement of the lemma. Let E be an lc type divisor

over (X,Δ+ (1− ε0)D) with center W and let π : Y → X be the associated

prime blowup. Then (Y,ΔY + (1 − ε0)DY + E) is lc. By our choice of ε0,

this implies that (Y,ΔY +DY + E) is lc. Suppose that E is not an lc place

of (X,Δ+D). Then we have

KY +ΔY +DY + λE = π∗(KX +Δ+D)

for some λ < 1. In particular, (Y,ΔY +DY +λE) is lc. Moreover, E contains

some lc center of (Y,ΔY + DY + λE) since π(E) = W is an lc center of

(X,Δ + D). As λ < 1, it follows that (Y,ΔY + DY + E) cannot be lc, a

contradiction. Thus E is an lc place of (X,Δ+D) as desired. �

5.2. Plt type lc place of bounded complements. The goal of this

subsection is to reduce Conjecture 1.7 to the following special case, whose

statement is motivated by Lemma 2.13.

Conjecture 5.6. Let n,N ∈ N∗ and let ε > 0. Then there exists some

A = A(n,N, ε) such that for any N-complement D of an n-dimensional klt

variety X and any lc center W of (X,D) such that v̂ol(η,X) ≥ ε (where η is

the generic point of W ), there exists a Kollár component E over η ∈ X such

that

AX,D(E) = 0, and AX(E) ≤ A.

Roughly speaking, we expect that all bounded complements have plt type

lc places of bounded log discrepancy. Its connection with Conjecture 1.7 is

given by the following result.

Proposition 5.7. For any fixed dimension n, Conjecture 1.7 and Conjec-

ture 5.6 are equivalent.

As the first step towards the proof, we show that Conjecture 1.7 can be

reduced to the Q-Gorenstein case.

Proposition 5.8. Fix the dimension n. Assume that Conjecture 1.7 holds

when X is Q-Gorenstein. Then it holds in general.

Proof. Starting with any klt pair (X,Δ) in dimension n whose coefficients

lie in a finite set I and any η ∈ X with v̂ol(η,X,Δ) ≥ ε, our plan is to

find a small birational modification π : Y → X such that Y is Q-Gorenstein,

together with an N -complement D of η ∈ (X,Δ) that is special with respect

3The author learned this argument from Yuchen Liu.
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to π, where the integer N only depends on n, I and ε. Let us first explain

why this is enough.

After shrinking X, we may assume that η (the closure of η) is the minimal

lc center of (X,Δ + D). Let ΔY (resp. DY ) be the strict transform of Δ

(resp. D), let W ⊆ π−1(η) be a minimal lc center of (Y,ΔY + DY ) and

let ξ be the generic point of W . Note that Coef(ΔY ) = Coef(Δ) ⊆ I and

Coef(DY ) ⊆
1
NZ ∩ [0, 1]. By Lemma 5.5, there exists some rational number

ε0 ∈ (0, 1) depending only on n, I and N such that if E is a Kollár component

over ξ ∈ (Y,ΔY +(1−ε0)DY ), then it is also an lc place of (Y,ΔY +DY ). By

Lemma 5.4, we further deduce that E is of plt type over (Y,ΔY +(1−ε0)DY )

and hence also over (Y,ΔY ). By Lemma 5.2, E is a Kollár component over

η ∈ (X,Δ). Note that as N only depends on n, I, ε so does ε0. On the other

hand, by Lemma 2.10 we have v̂ol(ξ, Y,ΔY ) ≥ v̂ol(η,X,Δ) ≥ ε. By Lemma

2.11 we further obtain

v̂ol(ξ, Y,ΔY + (1− ε0)DY ) ≥

(
ε0

1 + ε0

)n

v̂ol(ξ, Y,ΔY ) ≥ C1

for some constant C1 > 0 that only depends on n, I, ε. Since we assume

Conjecture 1.7 to hold for Q-Gorenstein singularities, the Kollár component

E above can be chosen so that

AY,ΔY +(1−ε0)DY
(E) ≤ A0

for some constant A0 that only depends on n, I, ε (a priori it also depends

on ε0 and C1 but these two constants only depend on n, I and ε). As E is

automatically a Kollár component over η ∈ (X,Δ) and an lc place of (Y,ΔY +

DY ) from the above discussion, we get

AY,ΔY +(1−ε0)DY
(E) = ε0 ·AY,ΔY

(E)+(1−ε0)AY,ΔY +DY
(E) = ε0 ·AY,ΔY

(E),

hence mldK(η,X,Δ) ≤ AX,Δ(E) = AY,ΔY
(E) ≤ A0

ε0
. Since the right hand

side only depends on n, I, ε, this proves Conjecture 1.7 in the general (non-

Q-Gorenstein) case.

We now return to construct the map π : Y → X and the N -complement

D. The argument is very similar to that for Theorem 4.8. Let π : Y → X

be a small birational modification such that KY is Q-Cartier and π-ample

(existence is guaranteed by Lemma 4.7). In particular, Y is Q-Gorenstein.

By Lemma 2.10 we have v̂ol(y, Y,ΔY ) ≥ ε for all y ∈ Y . Thus by Theorem

3.1, there exists some rational number γ > 0 depending only on n, ε such that

(Y, (1 + γ)ΔY ) is klt. In addition:

• By Lemma 2.9, there exists a positive integer N0 depending only on

n and ε such that L := N0 ·KY is Cartier.
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• By Kollár’s effective base-point-free theorem, there exists another pos-

itive integer m0 depending only on the dimension n such that m0L is

π-generated.

Putting these two facts together with Bertini’s theorem, we deduce that there

exists an integer r0 = nm0N0 that only depends on n, ε, and an effective

divisor DY ∼π,Q KY such that

• r0DY has integer coefficients,

• (Y, (1 + γ)ΔY + γDY ) is klt, and

• for any y ∈ Ex(π) there exists some irreducible component of DY

that’s Q-Cartier and ample over X such that y is not contained in its

support.

For example, one can take DY = 1
r0
(D1 + · · · + Dn) where D1, · · · , Dn are

general members of |m0N0KY |. Note that by construction,

KY + (1 + γ)ΔY + γDY ∼π,Q (1 + γ)(KY +ΔY ) ∼π,Q 0,

thus KY +(1+γ)ΔY +γDY = π∗(KX+(1+γ)Δ+γD) where D = π∗DY , and

the pair (X, (1+γ)Δ+γD) is also klt. Since the coefficients of (1+γ)Δ+γD

are contained in a finite set that only depends on n, I and ε, by Lemma 2.13

we see that η ∈ (X, (1 + γ)Δ + γD) admits an N -complement G for some

integer N that only depends on n, I, ε. The divisor Γ = γ(Δ+D)+G is then

an N -complement of η ∈ (X,Δ). It remains to show that Γ is special with

respect to π. But as Γ ≥ γD, this is clear from our choice of DY . �

We now return to the proof of Proposition 5.7.

Proof of Proposition 5.7. By Proposition 5.8, it suffices to show that Con-

jecture 5.6 is equivalent to the Q-Gorenstein case of Conjecture 1.7. First

assume that Conjecture 5.6 holds. Let (X,Δ) be an n-dimensional klt pair

whereX isQ-Gorenstein and let η ∈ X be such that v̂ol(η,X,Δ) ≥ ε. By The-

orem 3.1, there exists some constant c = c(n, ε) > 0 such that (X, (1 + c)Δ)

is still klt. We may assume that c ∈ Q. By Lemma 2.13, there exists an

integer N depending only on n and Coef(Δ) such that η ∈ (X, (1 + c)Δ)

has an N -complement D (a priori N also depends on c but we already know

that c only depends on n and ε). Since Conjecture 5.6 holds, we see that

there exist some A = A(n,N, ε) and some Kollár component E over η ∈ X

such that AX,(1+c)Δ+D(E) = 0 and AX(E) ≤ A. In particular, the constant

A only depends on n, ε and Coef(Δ), and clearly AX,Δ(E) ≤ AX(E) ≤ A.

Thus to prove Conjecture 1.7 for Q-Gorenstein singularities it suffices to show

that E is also a Kollár component over x ∈ (X,Δ). But this is straightfor-

ward: if π : Y → X is the plt blowup that extracts E, then (Y,E) is plt and

(Y,E+(1+c)ΔY +DY ) is lc (because E is an lc place of (X, (1+c)Δ+D)). By
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interpolation, it follows that (Y,E+ΔY ) is also plt and thus E is also a Kollár

component over η ∈ (X,Δ). This proves one direction of the equivalence.

Next assume that Conjecture 1.7 holds. Let X,D,W, η be as in Conjecture

5.6. By Lemma 5.5, there exists some rational ε0 ∈ (0, 1) depending only on

N such that every Kollár component over η ∈ (X, (1 − ε0)D) is also an lc

place of (X,D). Since v̂ol(η,X, (1 − ε0)D) ≥
(

ε0
1+ε0

)n

v̂ol(η,X) ≥
εn0 ε

(1+ε0)n

by Lemma 2.11, and Conjecture 1.7 holds by assumption, we see that there

exists some constant A > 0 depending only on n,N and ε and some Kollár

component E over η ∈ (X, (1− ε0)D) such that AX,(1−ε0)D(E) ≤ A (a priori

A also depends on ε0 and Coef(D), but these only depend on n,N, ε by the

above construction). From the above discussion, we have AX,D(E) = 0. Thus

AX(E) =
AX,(1−ε0)D(E)

ε0
≤ A

ε0
is bounded from above by some constant that

only depends on n,N and ε. This proves the other direction of the desired

equivalence. �

5.3. Further reduction. We further break Conjecture 5.6 into two small-

er parts. The first part is the following weaker version of Conjecture 5.6 (the

difference is that we don’t require the lc place of the complement to be of

plt type over the singularity). Note that it is a special case of the uniform

boundedness conjecture of mlds [HLL, Conjecture 7.2], which has been verified

in dimension two [HL23].

Conjecture 5.9. Let n,N ∈ N∗ and let ε > 0. Then there exists some

A0 = A0(n,N, ε) such that for any N-complement D of an n-dimensional klt

variety X and any lc center W of (X,D) such that v̂ol(η,X) ≥ ε (where η is

the generic point of W ), there exists a divisor E over η ∈ X such that

AX,D(E) = 0, and AX(E) ≤ A0.

The other part is Conjecture 5.6 for reduced complement. More precisely:

Lemma 5.10. Fix the dimension n. Assume that Conjecture 5.9 holds

and that Conjecture 5.6 holds when the complement D is reduced (i.e., all its

coefficients are 1). Then Conjecture 5.6 (equivalently: Conjecture 1.7) holds.

Proof. We use the notation and assumptions in Conjecture 5.9. Let E be

a divisor over X with center W such that E is an lc place of (X,D) and

AX(E) ≤ A0 := A0(n,N, ε). We may assume that A0 ≥ 1. By Lemma

2.2, there exists a birational morphism π : Y → X such that E is the unique

exceptional divisor and −E is ample. Since E is an lc place of (X,D) we have

π∗(KX +D) = KY +DY +E ≥ KY +E, hence (Y,E) is lc and any lc place of

(Y,E) is also an lc place of (X,D). By Lemma 4.3, we have v̂ol(y, Y ) ≥ A−n
0 ε

for all y ∈ Y . If (Y,E) is already plt then there is nothing to prove. Otherwise

let Z ⊆ Y be a minimal lc center of (Y,E) and let ξ be the generic point of

Z. Note that π(ξ) = η. Since Conjecture 5.6 holds for ξ ∈ Y with the
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reduced complement E by assumption, and v̂ol(ξ, Y ) ≥ A−n
0 ε, we see that

there exists some Kollár component F over ξ ∈ Y such that AY,E(F ) = 0

and AY (F ) ≤ A1 for some constant A1 = A1(n,A0, ε) = A1(n,N, ε) > 0. In

particular, F is an lc place of (Y,E) and hence is also an lc place of (X,D).

Since π∗KX = KY + (1 − AX(E))E, it follows that AX(F ) = AY (F ) +

(AX(E) − 1) · ordF (E) = AX(E) · AY (F ) ≤ A0A1. Since Z is a minimal lc

center of (Y,E), Lemma 5.4 implies that F is of plt type over (Y,E). By

Lemma 5.3, F is a Kollár component over X. Thus Conjecture 5.6 holds with

A(n,N, ε) = A0A1. �

6. Boundedness of mldK

In this section, we study Conjecture 1.8 in codimension two, as well as

Conjecture 1.7 (equivalently: Conjecture 5.6) in dimension 3. In particular, we

confirm the special boundedness of threefold klt singularities whose volumes

are bounded from below. As a preliminary step, we first show that Conjecture

5.6 holds for singularities x ∈ X that belong to an analytically bounded family.

Lemma 6.1. Let N be a positive integer and let B ⊆ X → B be a Q-

Gorenstein family of klt singularities. Then there exists some A > 0 depending

only on N and the family B ⊆ X → B such that for any klt singularity x ∈ X

with (x ∈ Xan) ∈ (B ⊆ X an → B) and any N-complement D of x ∈ X, there

exists some Kollár component E over x ∈ X such that

AX,D(E) = 0, and AX(E) ≤ A.

Proof. By assumption, Coef(D) ⊆ 1
NN ∩ [0, 1]. Thus by Lemma 5.5 there

also exists some ε0 > 0 depending only on N and n = dimX such that every

Kollár component E over x ∈ (X, (1 − ε0)D) is automatically an lc place of

(X,D) and in particular we have

AX,(1−ε0)D(E) = AX(E)− (1− ε0)ordE(D)

= AX(E)− (1− ε0)AX(E) = ε0AX(E).

Therefore, to prove the lemma, it suffices to show that mldK(x,X, (1− ε0)D)

is bounded from above by some constant that only depends on N and B ⊆

X → B.

Since the volume function is constructible [Xu20, Theorem 1.3], there exists

some ε > 0 depending only on the family B ⊆ X → B such that v̂ol(x,X) ≥ ε.

By Lemma 2.11, we then deduce that v̂ol(x,X, (1 − ε0)D) ≥ εn0 v̂ol(x,X) ≥

εn0 ε. By [HLQ23, Theorem 1.7] and Lemma 4.2, this further implies that there

exists some A = A(n, ε0, ε) > 0 such that mldK(x,X, (1−ε0)D) ≤ A. Tracing
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back the proof, we see that the constant A only depends on N and the family

B ⊆ X → B. �

6.1. Codimension two case. We next prove Conjecture 1.8 in codimen-

sion 2 when Ī ⊆ Q. This result is also needed when we prove Conjecture 1.7

for threefold singularities.

After localizing at the codimension two point, we immediately reduce to

the surface case, albeit over a nonalgebraically closed field. Thus, throughout

this subsection, all the objects (singularities, divisors, etc.) we consider are

defined over a field k of characteristic 0 that is not necessarily algebraically

closed. The main technical result is the following:

Proposition 6.2. Let N ∈ N∗ and let x ∈ X be a smooth surface germ.

Then there exists some constant A1 > 0 depending only on N such that for

any G ⊆ Aut(x ∈ X) and any G-invariant N-complement D of x ∈ X, there

exists a G-invariant divisor E (defined over k) over x ∈ X with AX,D(E) = 0

and AX(E) ≤ A1.

Note that when k = k̄ and G is trivial, this is already given by Lemma

6.1, so it remains to check that the corresponding Kollár component can be

chosen so that it is G-invariant and descends to the base field k. The key is

the following uniqueness result.

Lemma 6.3. Let x ∈ X be a smooth surface germ over k̄ and let D be

a Q-complement of x ∈ X. Then the log discrepancy AX(E) of divisorial lc

places of x ∈ (X,D) is minimized by a unique divisor E. In particular, if

x ∈ (X,D) is defined over k then E is also defined over k and it is invariant

under Aut(x ∈ (X,D)).

Proof. Every divisor E over x ∈ X can be extracted via successive blowups

of its centers (in particular, the sequence of blowups is canonical):

(6.1) E ⊆ Xm → · · · → X1 := BlxX → X0 := X.

For any such sequence, if Ei is the exceptional divisor of Xi → Xi−1, then

CXi
(Ei+1) ∈ Ei and hence AX(Ei+1) > AX(Ei) for all i. We denote by

�(E) := m the number of blowups in this sequence and let

�(x,X,D) := min{�(E) |CX(E) = {x}, E is an lc place of (X,D)}.

We say that a divisor E over x ∈ X dominates another E′, if E′ appears as

an exceptional divisor in the canonical sequence (6.1) of blowups associated

to E. By the above discussion, AX(E) > AX(E′) if E dominates E′ and

E �= E′. Thus it suffices to show that there exists a divisor over x ∈ (X,D)

that is an lc place of (X,D) and that at the same time is dominated by all

other divisorial lc place of (X,D).



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

552 ZIQUAN ZHUANG

We prove this stronger statement by induction on �(x,X,D). Let E be a

divisorial lc place of (X,D) that computes �(x,X,D), i.e., �(E) = �(x,X,D).

Let E1 be the exceptional divisor of the ordinary blowup π1 : X1 = BlxX →

X. When �(E) = 1, we have E = E1 and it is dominated by all divisorial

lc place of (X,D), since all blowup sequence has to begin with the ordinary

blowup. Thus the statement holds when �(x,X,D) = 1. If �(E) > 1, then

E1 is not an lc place of (X,D). Since x is an lc center of (X,D), we have

multxD > 1 (otherwise (X,D) is canonical by [KM98, Theorem 4.5] and the

lc centers would have dimension one) and π∗
1(KX + D) = KX1

+D1, where

D1 = π−1
1∗ D + (multxD − 1)E1 ≥ 0. By assumption E1 is not an lc place of

(X1, D1), thus the lc center W of (X1, D1) intersects E1 at a finite number of

points. By Kollár-Shokurov connectedness [KM98, Theorem 5.48], we deduce

that W ∩ E = {x1} consists of a single point (as a set). It follows that

�(x,X,D) = �(x1, X1, D1) + 1 and all lc places of x ∈ (X,D) dominate the

ordinary blowup of x1 on X1. The result now follows by induction. �

Proof of Proposition 6.2. Let (Xk̄, Dk̄) := (X,D) ×k k̄. By Lemma 6.1,

there exists some constant A1 > 0 depending only on N and some divisorial

lc place F of x ∈ (Xk̄, Dk̄) such that AX
k̄
(F ) ≤ A1. By Lemma 6.3, the

log discrepancy of divisorial lc places of x ∈ (Xk̄, Dk̄) is minimized by some

G-invariant divisor E that’s defined over k. In particular, AX(E) ≤ A1. This

proves the statement of the proposition. �

We are now ready to prove a version of Conjecture 1.8 at codimension two

points.

Proposition 6.4. Let I = Ī ⊆ [0, 1] ∩Q be a DCC set. Then there exists

some constant A depending only on I such that

mldK(η,X,Δ) ≤ A

for any klt pair (X,Δ) with Coef(Δ) ⊆ I and any codimension two point

η ∈ X.

Proof. After localizing at η ∈ X, we may assume that η is a closed point x

and x ∈ (X,Δ) is a surface klt singularity (over a field k that’s not necessarily

algebraically closed). By Lemma 2.13, there exists an N -complement D of

x ∈ (X,Δ) for some integer N that only depends on the coefficient set I. Let

π : (x̃ ∈ X̃) → (x ∈ X) be the universal cover. Let D̃ = π∗D and Δ̃ = π∗Δ.

Then x̃ ∈ X̃ is a smooth surface germ and D̃ + Δ̃ is an N -complement of

x̃ ∈ X̃ by Lemma 2.14.

First consider a special case, i.e., when D is reduced. If (X,D) is not plt,

then x is an lc center of (X,D) and Δ = 0. In this case D̃ is a 1-complement of

x̃ ∈ X̃, thus it is nodal and the exceptional divisor Ẽ of the ordinary blowup

of x̃ is an lc place of (X̃, D̃). Clearly Ẽ descends to a Kollár component E
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over x ∈ X and AX(E) ≤ AX̃(Ẽ) ≤ 2 by [KM98, Proof of Proposition 5.20].

If (X,D) is plt, then D̃ is smooth, X = X̃/μm for some m ∈ N, and we can

choose coordinates u, v at x̃ ∈ X̃ that diagonalize the μm-action and with

D̃ = (u = 0). Since x̃ is an lc center of (X̃, Δ̃+ D̃), by adjunction we see that

(D̃, Δ̃|D̃) is strictly lc, hence Δ̃|D̃ = x̃. Since Δ̃ + D̃ is an N -complement of

x̃ ∈ X̃ and in particular NΔ̃ has integer coefficients, we deduce from Δ̃|D̃ = x̃

that the local defining equation of NΔ̃ has the form vN + uφ(u, v) = 0 for

some φ ∈ k[[u, v]]. Note that φ �= 0 since (X̃, Δ̃) is klt.

We seek a weighted blowup up with wt(u) = a, wt(v) = b that provides a

Kollár component over x̃ ∈ (X̃, Δ̃) which is also an lc place of (X̃, Δ̃+D̃). For

this we look at the Newton polygon (denoted as Q) of vN + uφ(u, v), i.e., the

convex hull of the union of (p, q) + R2
≥0 where (p, q) ∈ N2 varies among pairs

for which upvq has nonzero coefficients in vN+uφ(u, v). Certainly (0, N) ∈ Q.

Let (r, s) ∈ Q be the vertex that lies on the same edge as (0, N). We choose the

weights a, b so that gcd(a, b) = 1, ar+bs = bN . In particular, a ≤ N−s ≤ N .

It is not hard to check that the corresponding exceptional divisor Ẽ is a Kollár

component over x̃ ∈ (X̃, Δ̃) (essentially because it induces a degeneration of

x̃ ∈ (X̃, Δ̃) to the klt singularity x̃ ∈ (X̃, 1
N (vN + urvs = 0)), cf. Lemma

2.5). Since the coordinates u, v diagonalize the μm-action, the divisor Ẽ is

μm-invariant, hence it descends to a Kollár component over x ∈ (X,Δ) by

[LX20, Lemma 2.13]. By [KM98, Proposition 5.20] and a direct calculation,

we then have AX,Δ(E) ≤ AX̃,Δ̃(Ẽ) = a ≤ N . As N only depends on I, we

conclude the proof in the case when the Q-complement D is reduced.

In the general case, we apply Proposition 6.2 to get a constant A1 that

only depends on N (thus it depends on I only), and an Aut(x̃ ∈ X̃)-invariant

divisor Ẽ over x̃ ∈ X̃ such that AX̃,Δ̃+D̃(Ẽ) = 0 and AX̃(Ẽ) ≤ A1. By

[KM98, Proposition 5.20], the divisor Ẽ induces a divisor E over x ∈ X that

is an lc place of (X,Δ + D) and still satisfies AX(E) ≤ A1. In particular,

AX,Δ(E) ≤ AX(E) ≤ A1 and E is of lc type over (X,Δ). If E is already

a Kollár component then we are done. Otherwise, if Y → X is the prime

blowup of E then the minimal lc centers of (Y,ΔY +E) are 0-dimensional and

supported on 
DiffE(ΔY )�. But as −(KY +ΔY +E)|E = −(KE+DiffE(ΔY ))

is ample, we see that E ∼= P1 and deg
DiffE(ΔY )� = 1, hence the minimal lc

center of (Y,ΔY + E) is a k-rational closed point y ∈ Y . Note that E is a

reduced N -complement of (Y,ΔY ), thus by the special case treated above we

may choose a Kollár component E over y ∈ (Y,ΔY ) such that AY,ΔY
(E) ≤ A0

for some constant A0 that only depends on I. By Lemma 5.3, we know that

E is also a Kollár component over x ∈ (X,Δ). As in the proof of Lemma 5.10,
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we also have AX,Δ(E) ≤ A0A1. Since both constants A0, A1 only depend on

I, we are done. �

Corollary 6.5. Conjecture 5.6 holds at codimension 2 points.

Proof. This is an immediate by Proposition 6.4 and the proof of Proposition

5.7. �

6.2. Threefold singularities. In this subsection, we will prove Conjec-

ture 1.7 in dimension 3. Note that it suffices to consider the case when η ∈ X

is a closed point, since we already proved Conjecture 1.8 at codimension two

points. According to Proposition 5.7 and Lemma 5.10, the first step is to

verify Conjecture 5.9 for 3-dimensional klt singularities.

Proposition 6.6. Let N ∈ N∗ and let ε > 0. Then there exists some

A0 = A0(3, N, ε) such that for any 3-dimensional klt singularity x ∈ X with

v̂ol(x,X) ≥ ε and any N-complement D of x ∈ X, there exists some divisor

E over x ∈ X such that

AX,D(E) = 0, and AX(E) ≤ A0.

In other words, Conjecture 5.9 holds in dimension 3.

We first consider the terminal singularity case. Eventually we will reduce

the proof to this special case.

Lemma 6.7. Let N ∈ N∗ and let ε > 0. Then there exists some A1 =

A1(3, N, ε) such that for any 3-dimensional terminal singularity x ∈ X with

v̂ol(x,X) ≥ ε and any N-complement D of x ∈ X, there exists some divisor

E over x ∈ X such that

AX,D(E) = 0, and AX(E) ≤ A1.

Proof. Certainly the plan is to use the classification of terminal singularities

[Mor85] (see also [Rei87, Section 6]). Assume that x ∈ X has index r and let

p : (x̃ ∈ X̃) → (x ∈ X) be the index 1 cover. By [XZ21, Theorem 1.3] and

Lemma 2.9, we have r ≤ 27
ε and v̂ol(x̃, X̃) = r · v̂ol(x,X) ≥ ε. Let D̃ = p∗D.

By assumption, ND̃ has integer coefficient; another application of Lemma 2.9

then gives an integer N1 depending only on N, ε such that N1D̃ is Cartier.

By [Rei87, Theorem in (6.1)], there exists a linear μr-action on A4 and an

eigenfunction f ∈ OA4,0 such that analytically locally x ∈ X is isomorphic to

0 ∈ (f = 0)/μr. Since the statement of the lemma is analytically local, we may

assume that (x ∈ X) = (0 ∈ (f = 0)/μr). In particular X̃ ∼= (f = 0) ⊆ A4.

Since N1D̃ is Cartier and μr-invariant, we may also write N1D̃ = (g = 0)|X̃
for some eigenfunction g ∈ OA4,0.

Let Δ̃ = (g = 0) ⊆ A4 and consider the pair y ∈ (Y,Δ) := 0 ∈ (A4, X̃ +
1
N1

Δ̃)/μr, namely Y = A4/μr and if q : A4 → Y is the quotient map then the

divisor Δ is chosen such that KA4 +X̃+ 1
N1

Δ̃ = q∗(KY +Δ). By Lemma 2.14,
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D̃ is a Q-complement of x̃ ∈ X̃. By inversion of adjunction (see, e.g., [Kol13,

Theorem 4.9]), this implies that (A4, X̃ + 1
N1

Δ̃) is lc in a neighbourhood of

X̃. Since X̃ is clearly an lc center of this pair, and the origin is an lc center

of (X̃, D̃), we see that the minimal lc center of (A4, X̃ + 1
N1

Δ̃) is the origin.

Hence X̃ + 1
N1

Δ̃ is a Q-complement of 0 ∈ A4, and Δ is a Q-complement of

y ∈ Y (again by Lemma 2.14).

Note that Coef(Δ) ⊆ 1
rN1

Z ∩ [0, 1] and Δ = X + Γ for some effective

divisor Γ such that Γ|X = D. Since r ≤ 27
ε and for each r ∈ N there are only

finitely many nonisomorphic linear actions of μr on A4, the singularities y ∈ Y

that arise from the above construction belong to a bounded family, hence

by Lemma 6.1 we deduce that there exist some constant A1 = A1(r,N1) =

A1(ε,N) > 0 and some Kollár component F over y ∈ Y that is also an lc place

of (Y,Δ) such that AY (F ) ≤ A1. Let π : Y
′ → Y be the associated plt blowup

and let X ′,Γ′ be the strict transform of X,Γ on Y ′. Let E be an irreducible

component of F |X′ . By adjunction, E is an lc place of (X,Γ|X) = (X,D).

We claim that E is the sought divisor. Clearly E is centered at x ∈ X. Since

F is an lc place of (Y,Δ) we have KY ′ + F +X ′ +Γ′ = π∗(KY +Δ) and the

pair (Y ′, F +X ′ + Γ′) is lc. By the classification of lc surface pairs (see, e.g.,

[Kol13, Example 3.28]), it follows that X ′ is normal at the generic point of E

and multE(F |X′) ≤ 1. We also haveKY ′+F+X ′ = π∗(KY +X)+AY,X(F )·F

which by adjunction gives AX(E) = AY,X(F ) ·multE(F |X′) ≤ AY (F ) ≤ A1.

This completes the proof. �

We now prove the general case of Proposition 6.6 by reducing it to the

terminal case.

Proof of Proposition 6.6. Let π : Y → X be a terminal modification of

x ∈ X (whose existence is given by e.g., [Kol13, Theorem 1.33]). It has the

property that π∗KX = KY + Γ for some effective exceptional divisor Γ, Y is

Q-Gorenstein and has only terminal singularities. Moreover, by Lemma 2.10

we have v̂ol(y, Y ) ≥ v̂ol(x,X) ≥ ε for all y ∈ Y . Let DY = Γ + π∗D. Since

KY +DY = π∗(KX +D) and D is an N -complement of x ∈ X, we see that

DY is an N -complement of Y , the pair (Y,DY ) is strictly log canonical, and

it has a minimal lc center W that’s contained in π−1(x). If dimW = 2, then

we may take E = W as AX(W ) = AY,Γ(W ) ≤ 1. If dimW = 1 then it

has codimension 2 in Y . By Corollary 6.5, there exist some constant A1 > 0

depending only on N and some divisor E over x ∈ X (in fact it has center

W on Y ) such that AX,D(E) = AY,DY
(E) = 0 and AX(E) = AY,Γ(E) ≤

AY (E) ≤ A1. Finally if dimW = 0 then W = {y} for some y ∈ Y . Since

y ∈ Y has terminal singularity, we know by Lemma 6.7 that there exist another

constant A2 > 0 (depending only on N and ε) and a divisor E over y ∈ Y
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such that AX,D(E) = AY,DY
(E) = 0 and AX(E) = AY,Γ(E) ≤ AY (E) ≤ A2.

Therefore, the proposition holds with A0 = max{1, A1, A2}. �

Going back to the proof of Conjecture 1.7, the second step is to verify

Conjecture 5.6 for reduced Q-complements.

Proposition 6.8. Let ε > 0. Then there exists some constant A > 0

depending only on ε such that for any 3-dimensional klt singularity x ∈ X

with v̂ol(x,X) ≥ ε and any reduced Q-complement D, there exists some Kollár

component E over x ∈ X such that

AX,D(E) = 0, and AX(E) ≤ A.

In other words, Conjecture 5.6 holds for reduced Q-complements in dimension

3.

Again we first treat a special case. Recall that a singularity x ∈ X is called

a cDV singularity if by taking general complete intersections of hypersurfaces

that contains x one gets a Du Val singularity.

Lemma 6.9. Proposition 6.8 holds when the simultaneous index one cover

of KX and D (see Section 2.5) is a cDV singularity.

Proof. Let x̃ ∈ X̃ be the simultaneous index one cover of KX and D so that

(x ∈ X) ∼= (x̃ ∈ X̃)/H for some finite abelian group H. By Lemma 2.9, we

have |H| ≤ 27
ε . Let D̃ ⊆ X̃ be the preimage of D. Then D̃ is a Cartier divisor

and we may write D̃ = (g = 0) for some g ∈ m (where m ⊆ OX̃,x̃ denotes the

maximal ideal). We divide the proof into the following three cases:

(1) x̃ ∈ X̃ is a smooth point.

(2) x̃ ∈ X̃ is singular and g ∈ m
2.

(3) x̃ ∈ X̃ is singular and g �∈ m
2.

Case 1. x̃ ∈ X̃ is a smooth point. Then analytically (x ∈ X) ∼= (0 ∈

A3)/H belongs to a bounded family of singularities (since the size of H is

bounded from above and for each choice of H there are only finitely many

nonisomorphic actions of H on 0 ∈ A3). By Lemma 6.1, we see that there

exists some constant A1 > 0 that only depends on ε (since the upper bound

of the index r only relies on ε) and some Kollár component E over x ∈ X

such that AX,D(E) = 0 and AX(E) ≤ A1. Thus the lemma holds in this case.

Case 2. x̃ ∈ X̃ is singular and g ∈ m
2. Since x̃ ∈ X̃ is a cDV singularity,

analytically we may identify it with 0 ∈ (f = 0) ⊆ A4 for some f ∈ ÔA4,0

with mult(f) = 2. Moreover, since H is abelian, we can assume that it acts

diagonally on the coordinates y, z, w, t of A4, all monomials in f have the

same eigenvalue, and the isomorphism X̃ ∼= (f = 0) is H-equivariant. Since

(X̃, D̃) is lc, we also know that (X̃,m2) is lc and any lc place of (X̃,m2) is

also an lc place of (X̃, D̃). Therefore, it suffices to find an H-invariant lc

place of (X̃,m2) with bounded log discrepancy that is a Kollár component.
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By adjunction [Kol13, Theorem 4.9], we see that a general plane section of

X has semi-log canonical singularities, hence is a nodal curve. It follows that

the quadratic part in the Taylor expansion of f has rank at least 2.

First assume that the rank is at least 3. Let Ẽ be the exceptional divisor

of the ordinary blowup of x̃ ∈ X̃. It is straightforward to check that Ẽ is an

lc place of (X̃,m2), AX̃(Ẽ) = 2, and Ẽ is a Kollár component (Ẽ is a quadric

surface and in particular has klt singularities). Clearly Ẽ is H-invariant (in

fact it is invariant under Aut(x̃ ∈ X̃)), thus by [LX20, Lemma 2.13] it descends

to a Kollár component E over x ∈ X with AX,D(E) = 0 and AX(E) ≤ 2.

Hence the lemma holds in this case.

Assume next that the rank of the quadratic part of f is two. We claim

that there exists a finite group G ⊆ Aut(x̃ ∈ X̃) of order at most 2|H|4

containing H such that W := X̃/G belongs to an analytically bounded family

of singularities (that depends only on ε). If f contains the monomial t2,

then after an H-equivariant change of variables (cf. the proof of [Rei87, Page

395, Proposition], especially [Rei87, Page 394, Rule III]), we may assume

that f = t2 + h(y, z, w) for some mult(h) ≥ 2. Let τ be the involution

(y, z, w, t) �→ (y, z, w,−t) and let G ⊆ Aut(x̃ ∈ X̃) be the (abelian) subgroup

generated by H and τ . Clearly |G| ≤ 2|H| and X̃/τ is a smooth point, thus

X̃/G = (X̃/τ )/(G/τ ) is a quotient singularity. Since |G/τ | ≤ |H| ≤ 27
ε we

see that there are only finitely many nonisomorphic quotients as before and

hence W = X̃/G belongs to an analytically bounded family of singularities.

If f does not contain any of y2, z2, w2, t2, then as its quadratic part has rank

2 we have f = yz + h(w, t) after a change of variable (again by [Rei87, Page

395, Proposition]). This time let τ be the involution (y, z, w, t) �→ (z, y, w, t)

and let G ⊆ Aut(x̃ ∈ X̃) be the subgroup generated by H and τ . It is not hard

to see that for every ϕ ∈ G either ϕ or τϕ acts diagonally on (y, z, w, t) with

order at most |H|, hence |G| ≤ 2|H|4. Let G0 < G be the subgroup generated

by all the conjugates of τ ; it is also the smallest normal subgroup that contains

τ . By a theorem of Chevalley, A4/G0
∼= A4 and in fact it is not hard to check

that the quotient map is given by (y, z, w, t) �→ (yr0 + zr0 , yz, w, t) for some

r0 ∈ N∗. It then follows from the equation of f that (x̃ ∈ X̃)/G0 is a smooth

point and X̃/G = (X̃/G0)/(G/G0) is a quotient singularity. As |G/G0| is

at most |H|4 ≤ 274

ε4 , we conclude as before that there are only finitely many

nonisomorphic quotients and W = X̃/G belongs to an analytically bounded

family of singularities which only depends on ε. This proves the claim.

Let (W,ΔW +a) be the crepant G-quotient of (X̃,m2), where a is a Q-ideal.

Note that (X̃,m2) is strictly lc, thus the same holds for (W,ΔW + a). By

construction the coefficients of ΔW +a lie in 1
|G|N. By Lemma 6.1, there exist
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some constant A′
2 > 0 depending only on ε and a Kollár component Ẽ over W

that is an lc place of (W,ΔW +a) such that AW (Ẽ) ≤ A′
2. By [LX20, Lemma

2.13], it pulls back to a G-invariant Kollár component over X̃ and hence also

induces a Kollár component E over X. By [KM98, Proposition 5.20] we know

that E is an lc place of (X,D) and AX(E) ≤ |G| ·AW,ΔW
(Ẽ) ≤ A2 for some

constant A2 > 0 that only depends on ε. Therefore we are done in this case.

Case 3. x̃ ∈ X̃ is singular and g �∈ m
2. Then up to a change of coordinate

we may assume that g = t and X̃ ∼= (f = 0) ⊆ A4 with mult(f) = 2. We may

write f = tf1(y, z, w, t) + h(y, z, w) and in particular D̃ ∼= (h = 0) ⊆ A3. By

adjunction, the surface D̃ has slc singularity and the origin is an lc center.

Thus 2 ≤ mult(h) ≤ 3.

Suppose first that mult(h) = 3. Let h1 be the homogeneous term of de-

gree 3 in h. Let q : D̃′ → D̃ be the ordinary blowup of the origin. Then

q∗KD̃ = KD̃′ + F where F ∼= (h1(y, z, w) = 0) ⊆ P2 is the q-exceptional

divisor. Since D̃ is slc, so is the pair (D̃′, F ), thus by adjunction we know

that the cubic curve F is at most nodal (for us it is enough to know that h1

is irreducible). Note that mult(f1) = 1 since mult(f) = 2. If the linear term

in f1 is not proportional to t, then we may apply an H-equivariant change

of coordinates between y, z, w so that f1 = ay + bt + (mult ≥ 2) (a �= 0).

Consider the weighted blowup with wt(y, z, w, t) = (1, 1, 1, 2). By Lemma

2.5, the exceptional divisor E is a Kollár component, since the corresponding

initial term ayt + h1(y, z, w) gives a cA-type singularity. Note that E is an

H-invariant lc place of (X,D) and AX(E) = 2.

The other possibility is that the linear term in f1 is proportional to t,

i.e., f1 = at + (mult ≥ 2) (a �= 0). Consider the weighted blowup with

wt(y, z, w, t) = (2, 2, 2, 3). The corresponding initial term gives the hypersur-

face (at2 + h1(y, z, w) = 0) ⊆ A4 which is of cD-type by Lemma 6.10. Thus

the exceptional divisor E of the weighted blowup is a Kollár component by

Lemma 2.5. It is also an H-invariant lc place of (X,D) and AX(E) = 3.

Next suppose that mult(h) = 2. Then the quadratic part of h has rank 1,

otherwise D̃ is either a union of two planes or has Am singularity for some

m ∈ N∗, contradicting the assumption that the origin is an lc center of D̃.

Thus we may choose coordinates so that h = y2 + h0(z, w) and mult(h0) ≥ 3.

By Weierstrass preparation theorem (applied to f), we then have f = (unit) ·

(y2 + ay + b) for some a, b ∈ (z, w, t) ⊆ C[[z, w, t]], which can be turned

into f = (unit) · (y2 + c(z, w, t)) with another change of variable y �→ y − a
2

which leaves t fixed. Here we need to further justify that our application

of the Weierstrass preparation theorem is H-equivariant. Indeed, one way to

prove the Weierstrass preparation theorem is through the Weierstrass division

theorem: there exist some unique s1 ∈ C[[y, z, w, t]] and s2 ∈ C[[z, w, t]][y]
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such that y2 = f · s1 + s2 and the degree of y in s2 is ≤ 1; one then checks

that s1 is a unit and if s2 = −ay − b then we get the desired form f =

(unit) · (y2 + ay + b). Since all monomials in f have the same eigenvalues

under the H-action, the same holds for both s1 and s2 by their uniqueness.

Thus with an H-equivariant change of coordinates we may assume that f

has the form f = y2 + c(z, w, t) and at the same time g = t. We can now

argue as in Case 2: if τ is the involution (y, z, w, t) �→ (−y, z, w, t) then it

leaves D̃ invariant and X̃/τ is a smooth point. Hence if G ⊆ Aut(x̃ ∈ X̃)

is the (abelian) subgroup generated by H and τ , then |G/τ | ≤ |H| ≤ 27
ε

and W := X̃/G = (X̃/τ )/(G/τ ) is a quotient singularity and belongs to an

analytically bounded family of singularities. The crepant G-quotient (W,ΔW )

of (X̃, D̃) has coefficients in 1
|G|N and therefore as in Case 2 we get some

constant A3 that depends only on ε and some Kollár component E over x ∈ X

that is an lc place of (X,D) and satisfies AX(E) ≤ A3.

Putting Cases 1–3 together, we see that the proof of the lemma is finished

by setting A = max{3, A1, A2, A3}. �

The following result is used in the above proof.

Lemma 6.10. Let n ≥ 3 and let f ∈ C[[x2, · · · , xn]]. Assume that

mult(f) = 3 and let f3 be the leading term of f . Then the hypersurface

singularity (x2
1 + f(x2, · · · , xn) = 0) ⊆ An is of cD-type if and only if its

singular locus has codimension at least 2 and f3 is not a cube.

Proof. The conditions are preserved by taking general hyperplane sections

of the form a2x2 + · · · + anxn = 0. Thus we may assume that n = 3, where

the statement follows from [KM98, Step 4 on Page 126]. �

Proof of Proposition 6.8. Let N = 
 27
ε �!. By Lemma 2.9, we know that

D is an N -complement. Let A1 (resp. A2) be the constant from Corollary

6.5 (resp. Lemma 6.9). We will show that the proposition holds with A =

max{A1, A2}. We do this by induction on d(x,X), the number of divisors E

over x ∈ X such that AX(E) ≤ 1. By [KM98, Proposition 2.36(2)], d(x,X) <

+∞. Let x̃ ∈ X̃ be the simultaneous index one cover of KX and D so that

(x ∈ X) ∼= (x̃ ∈ X̃)/H for some finite abelian group H. Let D̃ ⊆ X̃ be

the preimage of D. Then x̃ ∈ X̃ is a Gorenstein canonical singularity and

D̃ is Cartier. If X̃ is a cDV singularity, then the statement already follows

from Lemma 6.9. In particular, the proposition holds when d(x,X) = 0 (i.e.,

when x ∈ X is terminal), since the index one cover of a threefold terminal

singularity is cDV. If x̃ ∈ X̃ is not a cDV singularity, then by [KM98, Lemma

5.30 and Theorem 5.35] there exists an H-invariant divisor F̃ over x̃ ∈ X̃

with AX̃(F̃ ) = 1. Since D̃ is Cartier, we obtain ordF̃ (D̃) ≥ 1 and hence

AX̃,D̃(F̃ ) ≤ 0. As (X̃, D̃) is lc, it follows that F̃ is an lc place of (X̃, D̃).

Let F be the induced divisor over X. Then by [KM98, Proposition 5.20] we
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have AX(F ) ≤ 1 and AX,D(F ) = 0. By Lemma 2.2, there exists a birational

morphism π : Y → X with a unique exceptional divisor F such that −F

is π-ample. Let DY = π−1
∗ D. Since F is an lc place of (X,D), any lc

place E of (Y, F ) is also an lc place of (X,D). Moreover, if E is of plt

type over Y , then it is a Kollár component over x ∈ X by Lemma 5.3. By

construction, KY ≤ π∗KX , hence AX(E) ≤ AY (E) for any divisor E over

Y . Thus it suffices to find an lc place E of (Y, F ) that is of plt type over Y

and has log discrepancy AY (E) ≤ A. If the minimal lc center of (Y, F ) has

codimension ≤ 2 this follows from Corollary 6.5 and our choice of the constant

A. Otherwise F is a reduced Q-complement of y ∈ Y for some y ∈ π−1(x).

By Lemma 2.10, we have v̂ol(y, Y ) ≥ ε. From the definition we also have

d(y, Y ) ≤ d(x,X)− 1, hence in this case the result follows from the induction

hypothesis and we are done. �

Corollary 6.11. Conjecture 1.7 holds in dimension three.

Proof. This is a combination of Proposition 6.4, Lemma 5.10, Proposition

6.6 and Proposition 6.8. �

Corollary 6.12. Conjecture 1.1 holds in dimension three.

Proof. This is a combination of Theorem 4.8 and Corollary 6.11. �

7. Examples and discussions

In general one should be more careful when making analogy between mldK

and the usual mld. In this section, we give some examples that illustrate

the difference between them, and discuss some related questions. Our first

example shows that mldK can be arbitrarily large in a given dimension, and

may fail to be lower semi-continuous.

Example 7.1. Let 1 < a < b be coprime positive integers. Consider the

klt surface singularity 0 ∈ (X = A2
xy,Δ = 1

a (x
a + yb = 0)) and the weighted

blowup π : Y → X with wt(x) = b and wt(y) = a. The exceptional divisor

E is a Kollár component and by adjunction one can check that DiffE(ΔY ) =

(1 − 1
a )P + (1 − 1

b )Q + 1
aR where P and Q are the two singular points of Y

and R �= P,Q is a smooth point. It is then not hard to see that the alpha

invariant α(E,DiffE(ΔY )) = 1 and hence E is the only Kollár component

over 0 ∈ (X,Δ) by [Pro00, Theorem 4.3]. It follows that

mldK(0, X,Δ) = AX,Δ(E) = a.

By [LX20, Theorem 1.3], we also have v̂ol(x,X,Δ) = AX,Δ(E)2 ·(−(E2)) = a
b .

Thus unlike the boundedness conjecture for mld, the upper bound on mldK

in Conjecture 1.7, if exists, necessarily depends on the coefficient set I. Note
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also that mldK(x,X,Δ) ≤ 2 when x �= 0. Hence the example also shows that

mldK is not lower semi-continuous.

When X is a surface and Δ = 0, one can check that mldK(x,X) coin-

cides with the usual minimal log discrepancy mld(x,X) (see [LX]). Exam-

ple 7.2 shows that starting in dimension three mldK(x,X,Δ) differs from

mld(x,X,Δ), even when Δ = 0.

Example 7.2. Let n ≥ 3 and consider the canonical hypersurface singu-

larity

0 ∈ (xn+1
0 + xn

1 + xn
2 · · ·+ xn

n = 0) ⊆ Cn+1.

It can be resolved by the ordinary blow up, and the corresponding exceptional

divisor E is the only divisor that computes the mld. But E is not a Kollár

component: it has a singular point of multiplicity n, in particular it’s not klt.

Although Example 7.1 shows that mldK does not satisfy lower semi-contin-

uity, we may still ask if it satisfies the other conjectural property of the mld,

i.e., the ascending chain condition (ACC).

Question 7.3. Let n ∈ N∗ and let I ⊆ [0, 1] be a DCC set. Does the set

{mldK(x,X,Δ) | dimX = n, Coef(Δ) ∈ I, and x ∈ (X,Δ) is klt }

satisfy the ACC?

Recall that the Weil index of a Fano variety X is the largest integer q

such that −KX ∼Q qA for some Weil divisor A on X. A Fano variety X

is said to be weakly special if (X,D) is log canonical for every effective Q-

divisor D ∼Q −KX . If Conjecture 1.8 were true, it would imply Conjecture

7.4; otherwise the orbifold cone construction will produce counterexamples to

Conjecture 1.8.

Conjecture 7.4. Let n ∈ N∗. Then there exists some constant N > 0

depending on n such that the Weil index of any n-dimensional weakly special

Fano variety is at most N .

We suspect that Conjecture 7.4 may hold even for K-semistable Fano va-

rieties. Our main intuition comes from toric examples: while a weighted

projective space can have arbitrarily large Weil index, it is K-semistable only

when it’s Pn. If this is true, it may provide strong evidence towards Shokurov’s

boundedness conjecture for mld, since by [XZ21] every klt singularity admits

a unique K-semistable valuation.
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also grateful to the anonymous referees for many valuable suggestions.

References

[Amb06] Florin Ambro, The set of toric minimal log discrepancies, Cent. Eur. J. Math.
4 (2006), no. 3, 358–370, DOI 10.2478/s11533-006-0013-x. MR2233855

[BB92] A. A. Borisov and L. A. Borisov, Singular toric Fano three-

folds (Russian), Mat. Sb. 183 (1992), no. 2, 134–141, DOI
10.1070/SM1993v075n01ABEH003385; English transl., Russian Acad. Sci. Sb.
Math. 75 (1993), no. 1, 277–283. MR1166957

[BCHM10] Caucher Birkar, Paolo Cascini, Christopher D. Hacon, and James McKer-
nan, Existence of minimal models for varieties of log general type, J. Amer.
Math. Soc. 23 (2010), no. 2, 405–468, DOI 10.1090/S0894-0347-09-00649-3.
MR2601039

[BdFFU15] S. Boucksom, T. de Fernex, C. Favre, and S. Urbinati, Valuation spaces and

multiplier ideals on singular varieties, Recent advances in algebraic geome-
try, London Math. Soc. Lecture Note Ser., vol. 417, Cambridge Univ. Press,
Cambridge, 2015, pp. 29–51. MR3380442

[Bir19] Caucher Birkar, Anti-pluricanonical systems on Fano varieties, Ann. of Math.

(2) 190 (2019), no. 2, 345–463, DOI 10.4007/annals.2019.190.2.1. MR3997127
[Bir21] Caucher Birkar, Singularities of linear systems and boundedness of Fano va-

rieties, Ann. of Math. (2) 193 (2021), no. 2, 347–405, DOI 10.4007/an-
nals.2021.193.2.1. MR4224714

[BL21] Harold Blum and Yuchen Liu, The normalized volume of a singularity is lower

semicontinuous, J. Eur. Math. Soc. (JEMS) 23 (2021), no. 4, 1225–1256, DOI
10.4171/jems/1032. MR4228279

[Blu18] Harold Blum, Existence of valuations with smallest normalized volume, Com-
pos. Math. 154 (2018), no. 4, 820–849, DOI 10.1112/S0010437X17008016.
MR3778195

[Bor97] Alexandr Borisov, Minimal discrepancies of toric singularities, Manuscripta
Math. 92 (1997), no. 1, 33–45, DOI 10.1007/BF02678179. MR1427666

[Cut13] Steven Dale Cutkosky, Multiplicities associated to graded families of

ideals, Algebra Number Theory 7 (2013), no. 9, 2059–2083, DOI
10.2140/ant.2013.7.2059. MR3152008

[ELS03] Lawrence Ein, Robert Lazarsfeld, and Karen E. Smith, Uniform approximation

of Abhyankar valuation ideals in smooth function fields, Amer. J. Math. 125
(2003), no. 2, 409–440. MR1963690

[Fuj09] Osamu Fujino, Effective base point free theorem for log canonical pairs—

Kollár type theorem, Tohoku Math. J. (2) 61 (2009), no. 4, 475–481, DOI
10.2748/tmj/1264084495. MR2598245

[Ful93] William Fulton, Introduction to toric varieties, Annals of Mathematics Studies,

vol. 131, Princeton University Press, Princeton, NJ, 1993. The William H.
Roever Lectures in Geometry, DOI 10.1515/9781400882526. MR1234037



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

BOUNDEDNESS OF SINGULARITIES 563

[HL23] Jingjun Han and Yujie Luo, On boundedness of divisors computing minimal log

discrepancies for surfaces, J. Inst. Math. Jussieu 22 (2023), no. 6, 2907–2930,
DOI 10.1017/s1474748022000299. MR4653762

[HLL] Jingjun Han, Jihao Liu, and Yujie Luo, ACC for minimal log discrepancies of

terminal threefolds, arXiv:2202.05287, 2022.
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