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ON BOUNDEDNESS OF SINGULARITIES
AND MINIMAL LOG DISCREPANCIES
OF KOLLAR COMPONENTS

ZIQUAN ZHUANG

Abstract

Recent study in K-stability suggests that Kawamata log terminal (klt)
singularities whose local volumes are bounded away from zero should
be bounded up to special degeneration. We show that this is true in
dimension three, or when the minimal log discrepancies of Kolldr com-
ponents are bounded from above. We conjecture that the minimal log
discrepancies of Kolldr components are always bounded from above, and
verify it in dimension three when the local volumes are bounded away
from zero. We also answer a question from Han, Liu, and Qi on the
relation between log canonical thresholds and local volumes.

1. Introduction

In recent years, tremendous progress has been made towards the bound-
edness of Fano varieties in many different contexts, see for example [HMX14,
Birl9, Bir21, Jia20]. In contrast, much less is known about the boundedness
of Kawamata log terminal (klt) singularities, often viewed as the local analog
of Fano varieties. Certainly, one needs to be more careful about what bound-
edness means in the local situation, as in general a (nonisolated) singularity
can have an infinite dimensional versal deformation space. As a remedy, one
considers boundedness up to special degeneration, see Definition 2.18; roughly
speaking, a class of klt singularities is bounded up to special degeneration (or
specially bounded) if they degenerate to a bounded family of klt singularities.

Typically, we expect a class of singularities to be specially bounded after
fixing some interesting invariants. One example, studied in [Mor21, HLS], is
the class of (e, §)-lc singularities. These are e-lc singularities that admit d-plt
blowups (see Definition 2.3), and they are known to be bounded up to special
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522 ZIQUAN ZHUANG

degeneration [HLM20]. Another invariant that has attracted a lot of attention
is the local volume of a klt singularity, originally introduced in [Li18] in the
context of K-stability. It is expected that these two types of invariants are
closely related: a positive lower bound on the local volumes would force the
singularities to be (g, §)-lc for some fixed €, > 0 and in particular they should
be bounded up to special degeneration. Since the minimal log discrepancy is
always bounded from below by the local volume up to a positive dimensional
constant [LLX20, Theorem 6.13], the main question is the existence of d-plt
blowup. The following is a precise formulation of the conjecture.

Conjecture 1.1 ([HLQ23, Conjectures 1.6 and 8.9]). Let n € N* and let
g,n > 0. Then there exists some § > 0 depending only on n,e,n such that: if
re (X,A=3",a;l;) is an n-dimensional kit singularity such that

(1) a; = for all i,
(2) each A; is an effective Weil divisor, and
(3) vol(z, X,A) > ¢,

then x € (X, A) admits a §-plt blowup. Moreover, the set of such singularities
1s log bounded up to special degeneration.

The special boundedness part of Conjecture 1.1 is also supported by the
Stable Degeneration Conjecture [Li18,LX18] from the local K-stability theory
of klt singularities. It predicts that every klt singularity admits a volume
preserving special degeneration to a K-semistable log Fano cone singularity,
and differential geometric considerations (see [SS17]) suggest that the set of K-
semistable log Fano cone singularities may be bounded when the local volume
is bounded from below. The recent proof [LXZ22] of the Higher Rank Finite
Generation Conjecture further suggests that Conjecture 1.1 will be a crucial
ingredient towards the proof of the Stable Degeneration Conjecture.! Despite
these heuristics, Conjecture 1.1 is only known in dimension two, in some
special cases in dimension three, and when = € X is already analytically
bounded [HLQ23, Theorems 1.7 and 1.8].

The first result of this paper is the solution of Conjecture 1.1 in dimension
three.

Theorem 1.2 (=Corollary 6.12). Conjecture 1.1 holds in dimension three.

In the course of the proof, we also discover the following statement.

Theorem 1.3 (=Theorem 3.1). For any n € N*, there exists some con-
stant ¢ = ¢(n) > 0 depending only on n such that for any n-dimensional

1Postscript note: the local version of the Higher Rank Finite Generation Conjecture is
later settled in [XZ]. Combined with earlier works [Blul8, LX18, LWX21, Xu20,XZ21], the
proof of the Stable Degeneration Conjecture is now complete.
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Q-Gorenstein kit singularity x € (X, A) we have
leto (X, A;A) > e(n) - vol(z, X, A).

This gives a positive answer to [HLQ23, Question 8.1] as well as further
evidence for Conjecture 1.1. Indeed, if we allow the above constant ¢ > 0
to also rely on the local volume, then the statement is essentially implied by
Conjecture 1.1 and the lower semi-continuity of log canonical thresholds.

Our approach to Conjecture 1.1 is through another invariant of the singu-
larity: the minimal log discrepancy of Kollar components.

Definition 1.4. Let (X, A) be a kit pair and let n € X (not necessarily
a closed point). The minimal log discrepancy of Kolldr components, denoted
by mld¥ (7, X, A), is the smallest log discrepancy Ax a(F) among all Kolldr
components E over 1 € (X, A).

It is not hard to see (Lemma 4.2) that in order for a class of singularities
to admit 6-plt blowups, their mld¥ are necessarily bounded from above. Our
next result is the following converse.

Theorem 1.5 (=Theorem 4.1). Let n be a positive integer, let €, A > 0,
and let I C [0,1]NQ be a finite set. Then there exists some constant 6 =
d(n,e, A, I) > 0 such that any n-dimensional kit singularity © € (X, A) with
@(x,X, A) > e, mldK(x, X,A) < A and Coef(A) C I admits a d-plt blowup.

As a direct application, we also obtain the toric case of Conjecture 1.1,
proven independently by [MS] using convex geometry.

Corollary 1.6 (=Proposition 4.6). Let n € N* and let € > 0. Then there
are only finitely many toric singularities x € X (up to isomorphism) that
support a klt singularity x € (X, A) with \a(x,X, A) > € (for some effective
Q-divisor A).

If we compare Theorem 1.5 with Conjecture 1.1, it is natural to expect that
the assumption on mldK(Jc, X, A) in Theorem 1.5 is redundant. This leads us
to make Conjecture 1.7.

Conjecture 1.7 (BDD for mld® when vol > ). Letn € N*, ¢ > 0 and let
IC0,1]NQ be a finite set. Then there exists some A = A(n,e,I) such that

mld®(n, X, A) < A

for any n-dimensional klt pair (X, A) with Coef(A) C I and any (not neces-
sarily closed point) n € X with \7(;1(7),X, A)>e.

We will show that Conjecture 1.7 holds in dimensions up to three (Corol-
lary 6.11), and in any dimension it implies Conjecture 1.1 (Theorem 4.8).
Together with Theorem 1.5 they constitute the three major steps in the proof
of Theorem 1.2.
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Shokurov has conjectured that the set of minimal log discrepancies (mld)
satisfies the ascending chain condition (ACC) [Sho04]. In particular, there
should be an upper bound on the mlds that only depends on the dimension.
This is known as the boundedness (BDD) conjecture for mld. On the other
hand, in the local study of klt singularities it is often more natural to consider
Kollar components rather than general exceptional divisors. Therefore, we are
also tempted to propose the following stronger conjecture, although we are
only able to partially verify it at codimension two points (Proposition 6.4).

Conjecture 1.8 (BDD for mld¥). Let n € N* and let I C [0,1] be a DCC
set. Then there exists some constant A = A(n,I) depending only on n and I
such that

mld®(n, X, A) < A

for any kit pair (X, A) with Coef(A) C I and any point n € X of codimension
n.

1.1. Outline of proofs. One of the technical steps in proving Theorem
1.2 is to verify Conjecture 1.7 in dimension three. While it is well known that
mld(z, X, A) < 3 for any 3-dimensional klt singularity € (X, A), the divisors
that compute the mld are usually not Kollar components, thus bounding mld¥
from above presents a very different problem. In fact, as Example 7.1 shows,
already on smooth surfaces mld¥ can be arbitrarily large if we allow the
boundary A to vary.

Certainly, the advantage of working in dimension three is that we have a
classification result for terminal singularities [Mor85]. Thus we need to find
ways to reduce to the terminal case and to take care of the additional bound-
ary. The first observation is that every Kollar component is an lc place of a
bounded complement [Birl9]. If we take a bounded complement D of a klt
singularity z € X and a terminal modification 7: ¥ — X, the lc places of
(X, D) are the same as lc places of (Y, 7*D), so we may hope to find Kolldr
components over X with bounded log discrepancy by taking suitable Kollar
components over Y that are lc places of (Y, 7*D). In general, Kolldr compo-
nents over a birational model do not descend to Kolldr components over the
singularity, but this is the case if they are lc places of special complements, a
notion that first appears in the recent proof of the higher rank finite genera-
tion conjecture [LLXZ22]. Therefore, a key step in our proof of Conjecture 1.7
is the construction of bounded special complements. This step works in any
dimension and allows us to reduce Conjecture 1.7 to the terminal singularity
case (with boundary). Another technical observation (see Section 5.3) involv-
ing special complements further reduces the question to the case where the
terminal pair (X,A) has a reduced complement. From there we are able to
use classification results to conclude Conjecture 1.7 in dimension three.
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BOUNDEDNESS OF SINGULARITIES 525

To achieve the bounded part of the special complements, we need uniform
control of various invariants of the singularity, and this is where Theorem 1.3
plays a crucial role. The key to the proof of Theorem 1.3 is a uniform Izumi
type estimate. Recall that the usual Izumi type inequality states that for any
klt singularity = € (X, A), there exists some constant ¢ > 0 such that

Cc

mult, D

for any effective Q-Cartier divisor D on X (see, e.g., [Lil8, Theorem 3.1]).
However, the constant ¢ in general depends on the singularity x € (X, A).
Our discovery is that a uniform constant can be achieved if we replace mult,

let, (X, A; D) >

by the minimizing valuation of the normalized volume function (Corollary
3.5). In particular, we can compare both sides of the inequality in Theorem
1.3 through the minimizing valuation.

Finally we make a few remarks on the proof of Theorem 1.5. The idea is to
show that the Kollar components that have bounded log discrepancy belong
to a bounded family of log Fano pairs, which is the case if the Cartier indices
are bounded on the corresponding plt blowup. Using the finite degree formula
proved in [XZ21], this boils down to a few estimates of local volumes on the
plt blowup, see Section 4.

2. Preliminaries

2.1. Notation and conventions. Throughout this paper, we work over
an algebraically closed field of characteristic 0. We follow the standard ter-
minology from [KM98, Kol13].

A singularity « € (X, A) consists of a pair (X,A) (i.e., a normal variety
X together with an effective Q-divisor A) and a closed point x € X. We
will always assume that X is affine and x € Supp(A) (whenever A # 0). In
general, when we discuss local properties of a pair (X, A) at a (not necessarily
closed) point 7, we will freely shrink X around 7.

Suppose that X is a normal variety. A prime divisor F' on some birational
model m: Y — X (where Y is normal and  is proper) of X is called a divisor
over X. Tts center, denoted C'x (F), is the generic point of its image in X.

A valuation v on X is an R-valued valuation v : K(X)* — R (where K(X)
denotes the function field of X') such that v has a center on X and v|gx = 0.
The set of valuations on X is denoted as Valx.

For a valuation v on X and m € N, its valuation ideal sheaf a,,(v) is

am(v) == {f € Ox | v(f) = m}.
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When we refer to a constant A as A = A(n, ¢, --) we mean it only depends
on n,e,---.

2.2. Kollar components.

Definition 2.1. Let (X, A) be a subpair (i.e., A need not be effective)
and let F' be a divisor over X. We will say F is a divisor over n € (X, A) if n
is the center of F. When F is a divisor on X we write A = Ay + aF" where
F ¢ Supp(A,); otherwise let A; = A.

(1) F is said to be primitive over X if there exists a projective birational
morphism 7 : Y — X such that Y is normal, F' is a prime divisor on
Y and —F is a m-ample Q-Cartier divisor. We call 7 : ¥ — X the
associated prime blowup (it is uniquely determined by F).

(2) F is said to be of plt (resp. lc) type over (X, A) if it is primitive over
X and the pair (Y, Ay + F) is plt (resp. lc) in a neighbourhood of
F, where m : Y — X is the associated prime blowup and Ay is the
strict transform of Ay on Y. When (X, A) is kit (resp. lc) and F' is
exceptional over X, 7 is called a plt (resp. lc) blowup over X. If in
addition (Y, Ay + F') is §-plt in a neighbourhood of F' for some § > 0,
we say that 7 is a J-plt blowup.

The following result from [BCHM10] will be frequently used.

Lemma 2.2. Let (X,A) be a kit pair and let E be a divisor over X.
Assume that there exists an effective Q-Cartier Q-divisor D such that (X, A+
D) islc and Ax a+p(E) = 0. Then E is of lc type.

Proof. Since (X,A 4 (1 —¢)D) is klt and 0 < Ax a4(1-)p(E) < 1 when
0 < e < 1, we know that E is primitive by [BCHM10, Corollary 1.4.3] and the
basepoint free theorem. Let w: Y — X be the associated prime blowup. By
assumption we also have 7*(Kx + A+ D) > Ky + Ay + E. Since (X,A+ D)
is lc, it follows that (Y, Ay + E) is lc, i.e., F is of lc type. O

Definition 2.3 (Kolldr components). Let (X, A) be a klt pair and let
n € X (not necessarily a closed point). A divisor over n € (X, A) is called a
Kolldr component over n € (X,A) if it’s of plt type over (U, Aly) for some
neighbourhood U C X of . We say that n € (X, A) admits a J-plt blowup
(for some 6 > 0) if it has a Kolldr component whose associated prime blowup
is a d-plt blowup.

By [Xul4], every klt singularity has a Kolldr component. More precisely
we have:

Lemma 2.4. Let (X, A) be a kit pair and let D be an effective Q-Cartier
Q-divisor such that (X, A + D) is strictly lc. Let w: (Y,T) — (X, A) be a dlt
modification, where Ky +T' = 7*(Kx + A+ D). Then at least one component
of |I'| is of plt type over (X, A).
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Proof. This follows from the proof of [Xul4, Lemma 1] (cf. [LX20, Proposi-
tion 2.10]). The point is that if W — X is a log resolution of (X, A+ D) then
some prime divisor on W that is an lc place of (X, A + D) will be of plt type
over (X, A). The resolution can be chosen as a blowup of Y along non-SNC
locus of (Y,I'), and the dlt assumption ensures that none of the exceptional
divisors are lc places of (Y,T'). Thus the plt type divisor on W has to be a
component of |T'|. O

We next describe a criterion which will be used to verify certain weighted
blowups on hypersurfaces singularities provide Kollar components.

Lemma 2.5. Let X = (f(z1,-+,zn) = 0) C A" be a hypersurface
singularity. Let E be the exceptional divisor of the weighted blowup with
wt(z;) = a; > 0. Assume that the hypersurface Xo = (in(f) = 0) C A"
has only canonical singularity at the origin. Then E is a Kolldr component
over 0 € X.

Here in(f) denotes the sum of the monomials in f with lowest weights. Note
that for nondegenerate hypersurfaces this is proved in [IP01, Proposition 3.3].
We essentially follow the same argument.

Proof. Let fo = in(f) and let 7: Y — X be the weighted blowup. Then
E > (fo=0) CP(a, - ,a,). Since fy is irreducible by assumption, we see
that E is a primitive divisor on Y. It remains to show that (Y, E) is plt. By
inversion of adjunction, this is equivalent to showing that (E, Diff g(0)) is klt.
Note that X, admits a good G,,-action with ¢ - z; = t*xz;, hence Xy \ {0}
is a Seifert G,,-bundle in the sense of [Kol]. A direct calculation shows that
its orbifold base is exactly (F,Diffg(0)). Since X has canonical singularities
(hence is klt) in a neighbourhood of the origin, using the G,,-action we see
that X, is klt everywhere. Hence by [Kol, Proposition 19], the local orbifold
covers of (E,Diff5(0)) are all klt, hence (F,Diff5(0)) is klt as well. This
finishes the proof. (I

2.3. Local volumes. Given a pair (X, A), the log discrepancy function

AX,A: ValX —RU {+OO}

is defined as in [JM12] and [BAFFU15, Theorem 3.1]. It is possible that
Ax a(v) = +oo for some v € Valx, see, e.g., [JM12, Remark 5.12]. For a
closed point x € X, we denote by Valy , the set of valuations v € Valx with
center x and Ax A(v) < +o0.

Definition 2.6. Let X be an n-dimensional normal variety and let z € X
be a closed point. The volume of a valuation v € Valy , is defined as

_ i U(Ox x/am(v))
vol(v) = volx ,(v) = h;njllop oy .

Thanks to [ELS03,LMO09, Cut13], the above limsup is actually a limit.
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We now briefly recall the definition of the volumes of klt singularities [Li18].
Definition 2.7. Let x € (X, A) be an n-dimensional kIt singularity. For
any v € Valy ,, we define the normalized volume of v as

volx a(v) == Ax A(v)" - volx o (v).
The local volume of x € (X, A) is defined as
\751(:6,X, A):= inf \7(;1X7A(v).
vEVa]}}ym
By [Blulg], the above infimum is a minimum. In fact, the minimizer is
unique up to rescaling [XZ21], and is a quasi-monomial valuation [Xu20], but
we do not need these facts in the sequel.
Since we also study the singularities at nonclosed points, we extend Defi-
nition 2.7 to those cases as follows.
Definition 2.8. Let (X, A) be a klt pair and let 7 be the generic point of
a subvariety W C X. The local volume of (X, A) at 7 is defined to be

\781(77,X,A) = \H(w,X,A),

where w € W is a general closed point. This is well-defined since the local
volume function x +— \7(;1($, X, A) is constructible [Xu20].

We will frequently use the fact that the volume function x — \781(95, X, A)
is lower semi-continuous [BL21]. We recall a few more useful properties of
local volumes.

Lemma 2.9. Let z € (X, A) be a kit singularity of dimension n and let D
be a Q-Cartier Weil divisor on X. Then the Cartier index of D is at most

n"

vol(z, X,A)
Proof. This follows directly from [XZ21, Corollary 1.4]. d

Lemma 2.10. Let 7: (Y, Ay) — (X, A) be a proper birational morphism
between klt pairs. Assume that Ky +Ay < 7*(Kx+A). Then \7(;1(3/, Y, Ay) >
;(;l(x,X, A) for any x € X and any y € 7 1(z).

Proof. This follows from the same proof of [LX19, Lemma 2.9(2)], which
tackles the boundary-free case. O

Lemma 2.11 ([HLQ23, Lemma 2.16]). Let z € (X, A) be a kit singularity
of dimension n, let A > 0, and let D be an effective Q-Cartier divisor on X
such that (X, A+ (1+ \)D) is lc. Then

vol(z, X, A+ D) > (%) vol(z, X, A).

Proof. By assumption, for any v € Valy ., we have Ax a(v) > (1+\)v(D),
thus

AX,A+D('U) = AX7A(U) — U(D) > <1 — H%) AX,A(U)
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and hence
)\ n
Ax a+p(v)" - vol(v) > (1—#—/\) Ax a(v)" - vol(v).
Taking the infimum over all v € Valy ,, the lemma follows. g

2.4. Complements. In this subsection we recall some results about com-
plements of singularities. A DCC set is a subset of R that satisfies the de-
scending chain condition.

Definition 2.12. A Q-complement of an lc pair (X, A) is an effective Q-
divisor D ~q —(Kx + A) such that (X,A + D) is le. A Q-complement of
n € (X, A) is an effective Q-Cartier Q-divisor D such that (X, A+ D) islc at n
and has 7 as the generic point of an lc center.? In either case, a Q-complement
D is called an N-complement for N € N* if N(Kx + A+ D) ~ 0.

Lemma 2.13. Let n € N* and let [ = I C [0,1]NQ be a DCC set.
Then there exists some integer N > 0 depending only on n and I such that if
(X,A) is a kit pair of dimension n with Coef(A) C I and n € X, then any
Kolldr component E over n € (X,A) is an lc place of some N-complement.
In particular, every such n € (X,A) has an N-complement.

Proof. This should be well known to experts but we provide a proof for
the readers’ convenience. We may assume that 1 € I. Let 7: Y — X be the
plt blowup that extracts E. Since E is a Kolldr component, (Y, Ay + E) is
plt, —(Ky + Ay + E) is m-ample and hence Y is of Fano type over X. By
[HLS, Theorem 1.10] (which builds on [Birl9, Theorem 1.8]), after possibly
replacing X by a neighbourhood of 5, there exists an integer N > 0 that only
depends on n and I, and an effective Q-Cartier Q-divisor Dy on Y such that
N(Ay + Dy) has integer coefficients, (Y, Ay + FE + Dy ) is lc, and

N(Ky + Ay + E+ Dy) ~0.

It follows that if we let D = 7, Dy, then Ky +Ay +E+Dy = 7*(Kx+A+D)
and hence (X,A + D) is lc with E as an lc place. Since 7 is the center of
E, this implies that D is a Q-complement of n € (X, A). Moreover, the line
bundle N(Ky + Ay + E+ Dy ) descends to the line bundle N(Kx +A+ D) by
Shokurov’s basepoint-free theorem (see, e.g., [KM98, Theorem 3.3]). Thus D
is also an N-complement. Since every klt singularity has a Kollar component,
this finishes the proof. O

Lemma 2.14. Let f: (y € (Y,Ay)) = (z € (X,A)) be a finite morphism
between lc singularities such that f*(Kx + A) = Ky + Ay. Let D be a

2Morally speaking, this should be called a strictly lc Q-complement since we also require
that the complement has an lc center at . For simplicity, we drop the phrase “strictly 1c”
when we talk about complement if the center 7 is specified.
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divisor on X. Then D is a Q-complement of x € (X, A) if and only if f*D
is a Q-complement of y € (Y, Ay).

Proof. This is a direct consequence of the proof of [KM98, Proposition
5.20(2)]. O

2.5. Index one covers. The index one cover of a Q-Cartier Weil divisor
D C X [KM98, Definition 5.19] is a cyclic cover

X = Spec @ Ox(mD),

0<m<r—1

where r is the Cartier index of D. It has the property that the preimage of
D becomes Cartier. We will need a similar construction for multiple divisors.

Lemma-Definition 2.15. Let z € X be a normal singularity and let
Dy, .-+, Dy, be Q-Cartier Weil divisors on X. Let H be the subgroup of the
local class group of x € X generated by all the D;’s and consider

X := Spec @ Ox (D).

DeH

It comes with a natural quasi-étale Galois morphism =: X — X with abelian
covering group H:= Hom(H,C*). The preimage 7~ !(z) consists of a single
point & and 7*D; is Cartier for all 1 <i <m. We call T € X the (simultane-
ous) index one cover of Dy, -+, Dy,.

Proof. The only nontrivial statement is that 7—!(z) consists of a single
point Z and 7*D; is Cartier. The first claim can be proved as in [Koll3,
2.48(1)]: the evaluation map Ox(D) ® Ox(—D) — Ox/m is zero for all
D € H\ {0}, thus every f € @ pe oy Ox (D) is nilpotent in O g /mOx and
this implies that the preimage of z is a single point in X. To see the other
claim, note that the map 7: X — X factors through the index one cover of
D;, thus 7*D; is Cartier. O

2.6. Family of singularities and special boundedness. In this sub-
section, we recall the definition for special boundedness of singularities, fol-
lowing [HLQ23].

Definition 2.16. We call B C (X,D) — B a Q-Gorenstein family of klt
singularities (over a normal but possibly disconnected base B) if

(1) X is flat over B, and B C X is a section of the projection,

(2) For any closed point b € B, A} is connected, normal and is not con-
tained in Supp(D),

(3) Kx/p + D is Q-Cartier and b € (A}, Dy) is a klt singularity for any
be B.
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Given a Q-Gorenstein family B C X — B of klt singularities and a klt
singularity * € X, we denote by (x € X*") € (B C X*" — B), if Ox, =
O, » for some closed point b € B.

Definition 2.17. A special test configuration of a klt singularity = €
(X,A) is a Q-Gorenstein family A C (X, D) — Al of kIt singularities over
Al together with a G,,-action on (X,D) that commutes with the standard
Gm-action on A, such that (t € (X;,Dy)) = (z € (X,A)) for all t € AL\ {0}.
Its central fiber 0 € (X, Dy) is called a special degeneration of x € (X, A).

Definition 2.18. A set P of kit singularities is said to be log bounded up
to special degeneration if there is a log bounded set C of pairs, such that the
following holds.

For any klt singularity « € (X, A) in P, there exist a special degeneration
xo € (Xo,Ap) of z € (X, A), a pair (Y, D) € C and a closed point y € Y, such
that (y € (Y, Supp(D))) = (z¢ € (Xo, Supp(Ayp))) in some neighbourhoods of
y € Y and ¢ € X( respectively.

When P is log bounded and the coefficients set I C Q is finite, we will
simply say that P is bounded up to special degeneration, since in this case
there is a Q-Gorenstein family of klt singularities such that every x € (X, A)
in P specially degenerates to at least one of them.

The following result is useful when showing that a class of klt singularities
is log bounded up to special degeneration.

Lemma 2.19. Letn € N* and lete,§,c > 0. Then the set of n-dimensional
e-le singularities x € (X, A) with Coef(A) > ¢ that admits a 0-plt blowup is
log bounded up to special degeneration.

Proof. This is essentially [HLM20, Theorem 4.1], at least when X is Q-
Gorenstein. In general, let 7: Y — X be a -plt that extracts a Kollar
component F, and let L = —FE|g be the Q-divisor defined by [HLS, Definition
A.4]. Then there is a special degeneration of = € (X, A) to the orbifold cone
over (E,Ag := Diffg(Ay)) with polarization L (see, e.g., [LX20, Section
2.4] or [LZ22, Proposition 2.10]). Thus it suffices to show that the triple
(E,Supp(Ag), L) is bounded.

Since (Y, E) is 0-plt, there exists some integer m depending only on § such
that mFE is Cartier away from a codimension two set in E (it suffices to inspect
the codimension one points of E as in the proof of [HLM20, Theorem 4.1]).
Thus mL has integer coefficients. By adjunction, we also see that (F,Ag) is
0-klt and log Fano, and Coef(Ag) > =. By [Bir21, Theorem 1.1], we first
deduce that E belongs to a bounded family. But as Coef(Ag) > < and
—Kpg — Apg is ample, we further see that the degree of Supp(Ag) is bounded
from above, thus (E,Supp(Ag)) is log bounded. Finally —(Kg + Ag) ~g
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Ax aA(E)- L > €L, thus the Weil divisor mL also has bounded degree, hence
the triple (E,Supp(Ag), L) is bounded as desired. O

3. Comparison between Ict and volume

In this section we prove the following statement which gives a positive
answer to [HLQ23, Question 8.1]. It will play an important role in many of
the reduction steps that we will carry out in the next few sections.

Theorem 3.1. For any n € N*, there exists some constant c¢(n) > 0
depending only on n such that for any n-dimensional Q-Gorenstein klt singu-
larity x € (X, A) we have

lety (X, A; A) > e(n) - vol(z, X, A).

The proof will be divided into several steps, but first we shall consider an
interpolation (based on a construction from [XZ21]) of the Q-divisor A and
the valuation ideals of the minimizing valuations of the normalized volume
function. For this purpose we first revisit some results from [XZ21].

3.1. A multiplicity formula. Let x € (X, A) be a singularity of dimen-
sion n and let a,, be be two graded sequence of ideals. Following [XZ21, Sec-
tion 3.3], we define a, H b, to be the graded sequence of ideals with

(a0 Bbo)m = > a; M byi.
i=0
In this section, we give slight generalizations of some results from [XZ21,
Section 3.3].

Lemma 3.2. Assume that © € (X,A) is klt. Then lcty,(ae B by) <
lcty (aq) + ety (be).

Proof. This follows from the same proof of [XZ21, Theorem 3.11]: the m,-
primary assumption there is only used to ensure that all the lct are taken at
T. U

Assume next that both sequences a,, b, are decreasing and that a, is m,-
primary. Note that the latter condition implies that a,Hb, is also m,-primary.
We will give a formula for the multiplicity of ae B be. Let Ry, := Ox ,/ap.
The decreasing sequence b, induces an N-filtration F on all R,,:

FIR,, = (b; + am)/am,

which also induces a filtration (still denoted as F) on the subspaces ., —1/a,, C
R,,. It is not hard to check that F/(am,—1/a,) = ay,-1 Nb;j/a, Nb;. We
further assume that:
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() the limit

UF™R,,)
. t . . m
vol(da,; by) = mlgnOo “inl
exists for all ¢ > 0.
Note that under this assumption, the function ¢ — vol(a,;b%) is decreasing
and hence continuous at almost all .

Lemma 3.3. Under the above assumptions, we have
* vol(a,; b?)
mult(a. H b.) = mult(a.) - (n =+ 1) A W

Proof. This follows from the same proof of [XZ21, Lemma 3.13]. We sketch
the main steps for the reader’s convenience. Let R = Ox , and let cq = a,Hb,.
We have

dt.

o URJe,) . ST URJ)
malt(e) = lim = = T T DT

From the short exact sequence
aj_p—1 Nbepq 5 R R

0— —
Ay N bZJrl Zf:o aj—; n bl Zfié aj—i n bl

— 0

for all ¢, we get

J

U(R/cj) = L(R/a;) = Y U(F'(aj-i/aj_it1)).

i=1
Summing over j = 0,1, -- ,m we obtain
m m m )
Y _UR/e) =) UR[a;) = UF (R/am—i1)).
j=1 j=1 i=1
e(f(myw (R/Gm—[my1+1)) =

Note that lim

m—00 m™ /n!

0 < y < 1 (i.e., wherever the right hand side is continuous). Thus after

= (1 — y)"vol(ae; be *) for almost all

dividing the above equality by % and using the dominated convergence
theorem, we get

1 Y
mult(ce) = mult(as) — (1 + 1) / (1 —y)"vol(ae; ba™" )dy
0
B *° vol(as; b?)
= mult(as) — (n + 1)/0 Wdt
as desired. 0
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3.2. Izumi inequality. The next ingredient in the proof of Theorem 3.1
is an Izumi type inequality as follows.

Lemma 3.4. Let x € (X,A) be an n-dimensional kit singularity, and let
vy € Val})x be a valuation. Then there exists some constant co = co(n) > 0
depending only on n such that

let, (X, A; D) > ¢ - vgl\(x,X,A) . Ax.a(vo)
VOIX,A (’U()) Vo (D)
for any effective Q-Cartier divisor D on X.

As an immediate corollary, we have

Corollary 3.5. Let n € N*. Then there exists some constant cg > 0
depending only on n such that for any n-dimensional kit singularity x € (X, A)

and any effective Q-Cartier divisor D on X, we have

~Ax,a(vo)

vo(D)
where vy s the minimizing valuation of the normalized volume function, i.e.,
;(;IX,A(’U()) = \70\1(.%', X, A)

This can be seen as a uniform Izumi type estimate. Recall that the classical

let, (X, A; D) > ¢

Izumi inequality (see, e.g., [Laz04, Proposition 9.5.13]) says that if x € X is a
smooth point and D is an effective divisor on X, then lct,(X; D) > ﬁ
More generally, for any klt singularity = € (X, A), there exists some constant

¢ > 0 such that
c

mult,. D
for any effective Q-Cartier divisor D on X (see, e.g., [Lil8, Theorem 3.1]).
However, the constant ¢ in general depends on the singularity z € (X, A).
Therefore, Corollary 3.5 asserts that a uniform constant can be achieved if we
replace mult, by the minimizing valuation of the normalized volume function.
Similarly, Lemma 3.4 suggests that the constant in the Izumi inequality tends
to get worse if we choose a valuation that’s further away from the normalized
volume minimizer.

Proof of Lemma 3.4. After rescaling the coefficient, we may assume that
D = (f =0) is Cartier. For ease of notation, we will abbreviate lct, (X, A;-)
as lct(+). Let ae = aq(vg) be the graded sequence of valuation ideals of vy, i.e.,
4y = {s € Ox.|vo(s) > m}. For each t > 0, we also set b,,; = (f)/%! and
et = 0o(vg) H be . Roughly speaking, ¢, is generated by s € Ox , such
that vo(s) + ¢ - ordp(s) > m, so as t varies they interpolate between aq(vg)
and the ideals Ox(—mD) (m € N). The idea of the proof is to analyze the
inequality (see [Liul8, Theorem 27])

let, (X, A; D) >

lct(ce )™ - mult(ces) > vol(z, X, A)
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for some suitably chosen value of t. Note that lct(be;) = ¢ - lct(D) and
let(as) < Ax a(vo) (the latter follows from the fact that vo(ae(vg)) =1). We

take
A
_ Axalv) _
let(D)

and write be t, ce+ simply as b,, ¢e from now on. We then have
(3.1) let(ce) <let(ae) + lct(be) < 2Ax A(vo)
by Lemma 3.2 and the above discussions. We claim that

mult(c, ) e (1 —cu)n
3.2 —=1- 1 ——d
(32 e = [ s

t ’U()(D)
let us finish the proof of the lemma. To this end, denote the right hand
side of (3.2) by S(c) and treat it as a function of ¢ > 0. Note that S(c) >

vo(D) Ax.a(wo)) ! : .
where ¢ = = let(D) - (7> . Granting this for the moment,

1/c n .
L= o/ qisbmdu = [} 5k du, hence S(c) > 0 and lim S(c) = 1.
We also have
S
(3.3) im 20 _
c—0 ¢

Indeed, we have

Ve (14 ec—c(l+u)"

5(0)21—(n+1)/0 (1+u)n+2 du

1/c ? —f-C" z( C)i
—1—7’L+1Z/ +un+22 du

1/e 1+cn cn
=1- 1 - du + O(c?
(n+ )/0 ((1+u)”+2 (1+u)n+1> u+0(c%),
from which (3.3) follows easily (after a direct calculation). It then follows that
there exists some constant M > 0 depending only on n such that S(c¢) < M -¢
for all ¢ > 0.
On the other hand, by (3.1) and (3.2) we have

vol(z, X, A) < let(c,)" - mult(cq) < 275(c) - volx a (vo) < 2"Me - volx, a (o).

Therefore,

1 vol(z, X, A)
c> - — .
2nM VO]X’A(’U())

—1
Recall that ¢ = lct(D) - (A;(A(Al(;;o)) , this gives the statement of the lemma

with ¢g = 557 (which only depends on the dimension n).

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



536 ZIQUAN ZHUANG

It remains to prove the multiplicity formula (3.2) using Lemma 3.3. First
let us verify that the assumption (f) in Lemma 3.3 is satisfied. Recall that
(using the notation in Lemma 3.3)

FIRpm = (bj + am)/am = b;/(b; Nay).

Since b; = (f)[%] and a,, = {s € R|vo(s) > m}, we see that s € b; N a, if
and only if s = %1 . s; for some s; € R with vy(s1) > m — [%]vo(f). Thus

FIRy = (N /O 0 ri1000p) = RO 170000)-
It is then clear that
lim E—(]: )

m— 00 mn/n| = maX{07 (1 - cu)n} . VOI(’Uo),

hence Lemma 3.3 applies and gives

du.

e (1 = cu)™ - vol(v
mult(ce) = mult(ae) — (n + 1)/0 a 1 _: u)n+l( o)

As mult(ae) = vol(vg), this is exactly (3.2). The proof is now complete. [
3.3. Completion of the proof. We are now ready to give the proof of
Theorem 3.1.
Proof of Theorem 3.1. By [LX19, Lemma A.1], there exists some vy €

Val’ , such that volx (vg) < n". Since (X, A) is klt, we have vo(A) < Ax (vo).
Clearly we also have Ax a(vo) < Ax(vp). Hence by Lemma 3.4 we have

vol(z, X,A)  Ax.a(vo)

lety (X, Ay A) > ¢p(n) - —
( ) o(n) volx a(vo) vo(A)

- ol olte
~ Ax a(vo)™1 - vo(A) - vol(vp) I(z, X, A)
ST vel(z, X, A)

= Ax (vg)" 1+ Ax(vg) - vol(vg)

> ) i x, A)

for some ¢o(n) > 0 that only depends on n. Thus the theorem holds with
c(n) = @) O

nn
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4. Boundedness of singularities

In this section, we study the boundedness of klt singularities using the min-
imal log discrepancies of their Kollar components. The first result is Theorem
4.1, which gives a criterion for special boundedness of singularities.

Theorem 4.1. Let ¢, A > 0, let n be a positive integer, and let I C
[0,1]NQ be a finite set. Then there exists some constant § = §(n,e, A, I) >0
such that any n-dimensional klt singularity x € (X, A) with \781(:3, X,A) > ¢,
mld¥ (z, X, A) < A and Coef(A) C I admits a §-plt blowup.

Let us first note that having bounded mld¥ is a necessary condition for the
above conclusion.

Lemma 4.2. Let n € N* and let § > 0. Then there exists some A =
A(n,8) > 0 such that mld¥ (z, X, A) < A for any n-dimensional kit singularity
x € (X,A) that admits a §-plt blowup.

Proof. By [HLS, Proposition 4.3(1)], there exists some constant A =
A(n,d) > 0 such that for any é-plt blowup 7: ¥ — X of an n-dimensional klt
singularity = € (X, A) with exceptional divisor E, we have Ax A(E) < A. In
particular, mldK(x,X, A) < A. O

The key to the proof of Theorem 4.1 is to bound the Cartier index of divisors
on the plt blowups that extract the Kolldr components. Using [XZ21], this
essentially boils down to the following volume estimate.

Lemma 4.3. Let (X,A) be a klt pair of dimension n and let 7: Y — X
be an lc blowup with exceptional divisor E. Then

vol(m(y), X, A)

vol(y, Y, Ay) >
vo (y7 ,Ay) > max{l,AX,A(E)n}

for ally € Y, where Ay = A,

Proof. Let a = Ax A(E) — 1 and let = w(y). If a <0, then Ky + Ay <
7 (Kx + A), hence by Lemma 2.10, we get ﬁ(y,Y,Ay) > ;gl(x,X,A) for
all y € E. Thus we may assume that a > 0. Let m > 0 be a sufficiently
divisible integer, and let a = 7,0y (—mFE). We further let D = ﬁ({ﬁ =
0} + --- + {f, = 0}) for some sufficiently large integer p and some general
fi,---, fp € a. Since (Y, Ay + E) is lc by assumption, and

Ky-l—Ay—i—E:ﬂ*(KX—i—A-ya%)’

we see that let(X, A; D) = lct(X, A;a'/™) > a+1 and let(X, A;aD) > 1+ %
By Lemma 2.11 we obtain

—~ \70\1(:1: X, A)
vol(z, X,A+aD) > ——————~,
( )2 Aa®y
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Notice that 7*(Kx + A+ aD) = Ky + Ay + aDy where Dy = ;' D, hence
another application of Lemma 2.10 implies

vol(y, Y, Ay) > vol(y, Y, Ay + aDy)
> vol(z, X, A+ aD) > Ax A(E)™" - vol(z, X, A)

for all y € E. This proves the lemma. O

Proof of Theorem 4.1. Without loss of generality we may assume that A >
1. By assumption, there exists a Kolldr component E over = € (X, A) such
that Ax A(E) < A. Let m: Y — X be the corresponding plt blowup and let
Ay be the strict transform of A. By Lemma 4.3, we have
(4.1) vol(y, Y, Ay) > —
for all y € 7~ !(z) = E. Thus by Lemma 2.9, we deduce that there exists a
positive integer N depending only on ¢, n, A and the coefficient set I such that
NA has integer coefficients and N D is Cartier for any Q-Cartier Weil divisor
D on Y. In particular, N?(Ky + Ay + E) is Cartier. Since (Y,Ay + E) is
plt, this implies that it is #—plt and we are done. (I

Using Lemma 2.19, this immediately implies:

Corollary 4.4. Lete,A >0, n € N* and let I C [0,1]NQ be a finite set.
Then the set of n-dimensional klt singularities x € (X, A) with \7(;1(33, X,A) >
e, mld®(z, X, A) < A and Coef(A) C I is bounded up to special degeneration.

For toric singularities we have the following uniform bound on mld®. As
an application, we get the boundedness of toric singularities whose volumes
are bounded from below.

Lemma 4.5. Let © € (X,A) be a kit toric singularity of dimension n.
Then there exists a torus invariant Kolldr component E such that Ax a(E) <
n. In particular,

mld® (z, X, A) <n.
Proof. This follows from two well-known results:

(1) mld(z, X, A) < n for toric singularities (see [Bor97, Amb06]) and the
mld can be computed by some torus invariant divisor over z € (X, A);
(2) every torus invariant divisor over z € (X, A) is a Kolldr component.

For the reader’s convenience we sketch the proof. We refer to [Ful93] for basics
on toric varieties. We have X = X (o) for some rational convex polyhedral
cone 0 C Ng = R". Let p; € N = Z" be the primitive generator of the
1-dimensional faces of o. We may write A = > a;A; where the A;’s are torus
invariant prime divisors corresponding to p;. The pair (X, A) is kit if and
only if 0 < a; < 1 for all 4 and there exists a linear function f: Ng — R such
that f(p;) = 1 — a;. Every torus invariant divisor E,, over x € (X, A) comes

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



BOUNDEDNESS OF SINGULARITIES 539

from a primitive vector w € N Nint(o) and the corresponding log discrepancy
is Ax A(Ey) = f(w). In particular, if w is the primitive generator in the
direction p1+- - -+py, then clearly Ax a(Ey) = f(w) < f(p1)+- -+ f(pn) <n.

Next, let E be a torus invariant divisor over z € (X, A) that corresponds
to w € NNint(c). After adding the vertex w, any simplicial subdivision of &
gives rise to a birational morphism Y; — X such that Y; is Q-factorial and E is
the only exceptional divisor (since Csg-w is the only 1-dimensional face that’s
new). Let Y be the ample model of —F over X, i.e., Y7 --» Y is a birational
contraction over X and —F is m-ample (where 7: Y — X); in other words,
Y is the outcome of the (—FE)-MMP over X followed by the corresponding
relative ample model (we can run any MMP on toric varieties). Note that the
toric pair (Y, Ay + E) is plt (where Ay = 77 !A) since Coef(Ay + E) < 1
and F is the only prime divisor with coeflicient 1. It follows that F is a Kollar
component. This completes the proof. O

Proposition 4.6. Let n € N* and let € > 0. Then there are only finitely
many toric singularities x € X (up to isomorphism) that supports a kit sin-
gularity x € (X, A) with \751(30, X,A) > e (for some effective Q-divisor A).

Note that we do not require the boundary A to be torus invariant.

Proof. First we treat the A = 0 case, i.e., when z € X itself is Q-Gorenstein
and \781(:1:, X) > e. By the proof of Theorem 4.1 and Lemma 4.5, we see that
there exists some § > 0 depending only on n, € such that x € X admits a §-plt
toric blowup. If E is the corresponding torus invariant Kollar component,
then by adjunction (E,Diff g(0)) is d-klt. By [BB92], there are only finitely
many such variety E. As in the proof of Lemma 2.19, the divisor E induces a
degeneration of € X to the orbifold cone over E. But F is torus invariant,
so the degeneration is trivial (the corresponding test configuration is X x A!
with a diagonal Gy,-action), thus X itself is an orbifold cone over E. The
finiteness of E then implies the finiteness of z € X as in proof of Lemma 2.19.

For the general case, let 7: Y — X be a small birational modification such
that — Ky is Q-Cartier and m-ample. Such modification exists and is torus
equivariant by Lemma 4.7. Let y € 7~ !(z) be a torus invariant closed point.
By Lemma 2.10, we have \7c71(y,Y) > \a(y,KAy) > @(m,X, A) > ¢, thus
from the boundary-free case treated above we know that there are only finitely
many such toric singularities y € Y. Hence there exists some constant M > 0
depending only on n,ec and some torus invariant divisor E over y € Y such
that Ay (E) < M and voly,,(ordg) < M.

We now view E as a divisor over z € X. Let I' be the sum of all torus
invariant prime divisors on X, and let ¢: Z — X be the associated blowup
that extracts the divisor . Note that Kx + ' ~ 0 and F is an lc place of
(X,T). Since E is torus invariant, we know from the same proof above that
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x € X is an orbifold cone over . We aim to show that there exists some
integer N > 0 depending only on n, e such that N - E is Cartier on Z. Since
—FE|p is ample and (—E|% ") = volx ,(ordg) < voly,(ordg) < M (the first
inequality comes from [LX19, Lemma 2.9(1)]), it would follow that there are
only finitely many such toric varieties F, and we get the finiteness of x € X.

To this end, we choose some sufficiently divisible integer m, let Dy =
%Do ~g —Ky for some general Dy € |—-mKy |, and let G = %F%—ﬁﬂ'*Dy.
Then Kx + G ~g 0 and by Bertini theorem we know that (Y,T'y + Dy ) is lc
(as usual 'y etc. denotes the strict transform of T' etc. on Y'), hence for any
valuation v € Valy ,, we get

Ay, (v) 2 Ay (0) - S oy + Dy) 2 1Ay ()

(the first inequality holds as long as M > 2). It follows that Ax g(v) =
Ay, (v) > 374y (v) > 4 Ax,a(v), thus ;(;l(x,X, G) > M_";(;l(a:,X, A) >
M~"¢ as in Lemma 2.11. On the other hand, recall that F is an lc place
of (Y,T'y), hence Ax g(E) = Ay g, (E) < AY,%FY(E) = LAy (E) <1by
our choice of M. This means that Kz +Gz < ¢*(Kx+G), and an application
of Lemma 2.10 gives \751(z, Z,Gz) > M~ "¢ for all z € E. By Lemma 2.9 we
deduce that the Cartier index of F on Z is bounded from above by some
constant that only depends on n,e. As explained earlier, this concludes the
proof. (I

The following result is used in the above proof, and will be needed again

in the proof of Theorem 4.8.

Lemma 4.7. Let (X, A) be a kit pair and let D be a Weil Q-divisor on X.
Then there exists a unique small birational modification w: Y — X such that
the strict transform Dy = 71D is Q-Cartier and m-ample.

Proof. The uniqueness part follows from the existence since we necessarily
have

Y =Projy €P 7.0y (mrDy) = Projy @) Ox(mrD)
meN meN
for some sufficiently divisible r € N. Every Weil divisor D on X can be written
as D = A — B where A is effective and B is Cartier. Since 7, 1(A — B) =
7 Y A—7*B is m-ample if and only if 77! A is m-ample, we may assume that D
is effective. Let 7 : Y7 — X be a small Q-factorial modification of X, which
exists by [BCHM10, Corollary 1.4.3] (and the remarks thereafter). Let A;
(resp. D7) be the strict transform of A (resp. D). Note that (Y1, A;) is kit
(it is crepant to (X, A)), thus the pair (Y1, A1 +eD;) is also klt for 0 < ¢ < 1.
By [BCHM10, Theorem 1.2(2)], it has a log canonical model over X, i.e., there
exists a birational contraction Y; --+ Y over X such that Ky + Ay +eDy is
ample over X (where Ay, Dy are the strict transforms of A, D). Denote the
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map Y — X by w. Clearly it is a small birational contraction (as m is), and
hence Ky + Ay = 7*(Kx + A) and

Ky + Ay +eDy ~zr0 €Dy.

It follows that Dy is also m-ample and we finish the proof. O

We next show that Conjecture 1.7 and Theorem 4.1 together imply Conjec-
ture 1.1. The main ingredients come from Theorem 3.1 and Kollar’s effective
basepoint-free theorem [Kol93].

Theorem 4.8. Assume that Conjecture 1.7 holds in dimension n. Then
for any e > 0 and any n-dimensional kit singularity x € (X, A =31", a;A;)
such that

(1) a; > ¢ for all i,

(2) each A; is an effective Weil divisor, and

(3) vol(z, X, A) > ¢,
there exists some § = d(n,e) > 0 such that x € (X, A) admits a §-plt blowup.
In particular, the set of such singularities is log bounded up to special degen-
eration.

Proof. We focus on the existence of §-plt blowup, since the special bound-
edness would then follow from Lemma 2.19. If AT > A and (X,A™T) is klt,
then any d-plt blowup of (X, AT) is also a §-plt blowup of (X, A). By Con-
jecture 1.7 and Theorem 4.1, if rA™ has integral coefficients for some integer
r > 0 and \70\1(3:,X, AT) > gg for some g > 0, then we may choose § to only
depend on n,r and 9. So our goal is to prove that we can find A™, r and ¢
as above such that 7, e¢ only depends on n, €.

To this end, let v = ¢(n) - € where ¢(n) > 0 is the constant from Theorem
3.1. Let £ = (24;7], and let

15

=1 2
Using the assumption that a; > €, it is not hard to check that A < A’ and
(4.2) (1 + %) A < (1+9)A.

If both Kx and A’ were Q-Cartier, we could simply take r = £, AT = A’: by
Theorem 3.1, the pair (X, (147)A) is klt, hence so is (X, (1+3)A’) by (4.2).

By Lemma 2.11 (with A = %), we get vol(z, X, A") > (ﬁ)n;o\l(x,X, A) >
o for some constant ¢g that depends only on n,e. In other words, the desired
conditions on 7, AT := A’ and ¢ are satisfied.

To deal with the general case, the idea is to find another divisor D > 0

such that (X, A’ + D) is klt (in particular, Kx + A’ + D is Q-Cartier), while
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keeping the coeflicients in a fixed finite set. To this end, we take a Q-factorial
modification 7: Y — X such that —(Ky + A},) is m-nef where A}, = 7 1A’
Such map exists by Lemma 4.7: first take a small birational modification such
that the strict transform of —(Kx + A’) is ample over X, then take a further
small Q-factorial modification using [BCHM10, Corollary 1.4.3]. We also set
Ay = 7 'A. The strict transform of the sought divisor D should be in the
Q-linear system | — (Ky + A} )|g. To control the coefficient of D we first
proceed to verify the effective basepoint-freeness of this linear system. Since
(Y, Ay) is crepant to (X, A), we have

vol(y, Y, Ay) > vol(m(y), X, A) > ¢

for all y € Y by Lemma 2.10. Since A} has integer coefficients, we deduce
from Lemma 2.9 that there exists a positive integer Ny depending only on
n and € such that L := —Ny(Ky + A} ) is Cartier. Note that L and L —
(Ky + AY) are both m-nef and m-big by our construction of Y, therefore
by Kollar’s effective base-point-free theorem [Ko0l93, Theorem 1.1] (see also
[Fujo9, Theorem 1.3] for the relative version), there exists another positive
integer mo depending only on the dimension n such that mgL is m-generated.
In particular, we get an integer rg = myNy which only depends on n and ¢
such that —ro(Ky +A},) is Cartier and 7-generated. By the same argument as
in the special case above (where Kx and A’ are assumed to be Q-Cartier), we
also know that (Y, (1+3)AY,) is klt. Thus by Bertini’s theorem, we can choose
some effective Q-divisor Dy ~, g —(Ky + A} ) such that 2roDy has integral
coefficients and the pair (Y, (1 + Z)(Aj} 4+ Dy)) is klt for 7o = min{1,~}.
As Ky + A}y + Dy ~z g 0, we have

Ky + Ay + Dy = 7*(Kx + A" + D),

where D = 7w, Dy. Note that (X,A’ + D) is klt since the same holds for
(Y, Al + Dy). We also know that 2rgf(A’ + D) has integral coefficients by
our construction. According to the discussion at the beginning of the proof,
it remains to check that \751(35,X, A’ 4+ D) > gg for some constant g9 > 0
that only depends on n and €. But by construction, it is not hard to see that
A4 D — A'is Q-Cartier and that (X, A4 (14 % )(A’+D—A)) is klt: indeed,
the strict transform of the boundary on Y is at most (1 + 4)(A} + Dy ).
Hence by Lemma 2.11 (with A = %) we obtain

vol(z, X, A’ + D) > (2107 ) vol(z, X, A) > &g
0

for some constant that only depends on n and e (as the same holds for vp).
This finishes the proof. O
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Remark 4.9. While the results in this paper are stated for pairs with
rational coefficients, the general real coefficient case can often be reduced to
the rational case by perturbing the coefficients. In Conjecture 1.7 we can
even relax the assumption that Coef(A) belongs to a fixed finite set I to
Coef(A) > ¢ and get an equivalent conjecture. The reason is as follows: by
perturbation, we may further assume Coef(A) C Q; if the original version of
Conjecture 1.7 holds, then by Theorem 4.8 and Lemma 4.2, for any klt pair
(X, A) with Coef(A) > ¢ and any n € X with \7(;1(17,X,A) > ¢, we have
mld”® (, X, A) < A for some constant A = A(n,e) > 0.

Using [HLS], we can also extend Theorem 4.1 to the real coefficient case.
Indeed, given any finite set I C [0, 1] (not necessarily C Q), by [HLS, Theorem
5.6] we can find a finite set I’ C [0,1] N Q such that: for any n-dimensional
klt singularity = € (X, A) with Coef(A) C I, there exists some effective Q-
divisor A" > A on X with Coef(A’) C I', such that z € (X,A’) is klt,
vol(z, X, A’) > 27"vol(z, X, A) and mld®(z, X, A’) < 2 mld®(z, X, A) (cf.
[Zhu, Lemma 2.17]). Since A’ > A, any d-plt blowup of (X, A’) is also a d-plt
blowup of (X, A). The real coefficient case of Theorem 4.1 then follows from
the rational case applied to the coefficient set I'.

5. Reduction steps

In this section, we work out some reduction steps for Conjectures 1.7 and
1.8 which apply in any dimension. They will be combined with classification
results in the next section to prove both conjectures in low dimensions.

5.1. Special complements. One of our main tools is the notion of spe-
cial complements. It helps us descend Kollar components over birational
models of the singularity to Kollar components of the singularity itself. This
notion was introduced in [LXZ22] to prove the Higher Rank Finite Generation
Conjecture, here we need a slight variant.

Definition 5.1. Let (X, A) be a klt pair and let 7: Y — X be a proper
birational morphism. A Q-complement I" of (X, A) is said to be special (with
respect to 7) if for any y € Ex(r), there exists some effective Q-Cartier -
ample Q-divisor G < 7*T" such that y & Supp(G).

Lemma 5.2. Let (X, A) be a kit pair, let m: Y — X be a proper birational
morphism and let (Y, Ay ) be the crepant pullback of (X, A). Let T be a special
Q-complement with respect to 7, and let E be an lc place of (X, A+T). Assume
that E is of plt type over (Y, Ay). Then E is also of plt type over (X, A).

Proof. This basically follows from the same proof of [LXZ22, Lemma 3.5],
which we provide here for reader’s convenience. By Lemma 2.4 it suffices to
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find an effective divisor D such that F is the unique lc place of (X, A + AD),
where A = let(X, A; D).

Let p: Z — Y be the plt blowup of E. By assumption, there exists an
effective m-ample Q-divisor G on Y such that 7*T" > G and p(E) € Supp(G).
Let H be a sufficiently ample divisor on X such that G + 7#*H is ample.
Since —F is p-ample, there exists some rational number € > 0 such that
p*(G+ n*H) — ¢F is ample on Z. Let G be a general divisor in the Q-
linear system |p*(G + n*H) — eF|g and consider the effective divisor D on X
satisfying p*n*D = p*(n*T — G) + G1 + ¢E (this is possible since the right
hand side is ~g 0 over X). We claim that this divisor D satisfies the desired
condition.

Let Kz + Az = p*(Ky + Ay) be the crepant pullback. We first note that
the above claim is a consequence of the following two properties:

(1) (Y,Ay +7*T' — G) is sub-lc and E is an lc place of this subpair;
(2) E is the only divisor that computes let(Y, Ay; p.(G1 + €E)).
This is because, (1) implies that

AX7A(F) = AY,AY (F) Z OI‘dF(ﬂ'*F — G)

for divisor F' over X, and the equality holds when F' = E; on the other hand,
if we let p = lct(Y, Ay; po(G1 + €E)) > 0, then (2) implies that

Ax A(F) = Ay,ay (F) > p-ordp(p«(G1 + €E)),

and equality holds if and only if F = E. Combining the two inequalities we
have

ordp(7*D) = ordp (7T — G + pu(G1 +eE)) < (1 + p~ ) Ax A (F),

and equality holds if and only if F' = E. In particular, lct(X, A; D) = ﬁ
and F is the unique lc place that computes this lct, which is exactly what we
want.

It remains to prove the two properties above. Point (1) is quite straightfor-
ward since by assumption E is an lc place of the sub-lc subpair (Y, Ay +7*T")
and G does not contain the center of E. To see point (2), we note that by
assumption the subpair (Z, Az V E) is plt. Here we denote by D; V D5 the

smallest Q-divisor D such that D > D, for ¢ =1,2. Let t = AY%Y(E). Then
P (Ky + Ay + tp*(G1 +€E)) =Kz;+AzVE+1tG

by construction. Since G is general, the pair (Z, Az V E + tGy) is also plt.

This implies that lct(Y, Ay; p.(G1 + €FE)) =t and E is the only divisor that

computes the lct. In particular (2) holds. The proof is now complete. O
As an application, we have:

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



BOUNDEDNESS OF SINGULARITIES 545

Lemma 5.3. Let (X, A) be a kit pair, let 7: Y — X be an lc blowup with
exceptional divisor E, and let Ay = w7 *A. Then any lc place of (Y, Ay + E)
that is of plt type over (Y, Ay) is also of plt type over (X, A).

Proof. By assumption (Y, Ay +FE) is Ic and its lc centers are contained in F,
thus (Y, Ay) isklt. Let c = Ax a(E) > 0andletI' = Ay+(1—c)E < Ay +E.
Let F be an lc place of (Y, Ay + E) that is of plt type over (Y, Ay). Since T
is a convex combination of Ay and Ay + E, by interpolation we know that F’
is also of plt type over (Y,T'). Note that Ky + ' = 7*(Kx + A). By Lemma
5.2, it suffices to show that F' is an lc place of some special complement with
respect to m. Since —F is m-ample, by Bertini theorem we can choose some
general effective Q-divisor D; ~zq —FE (i = 1,--- ,n = dim X) on Y such
that (Y, Ay 4+ E+¢D;) remains lc for all ¢ and that for any y € Ex(7) we have
y & Supp(D;) for some i € {1,--- ,n}. Let Dy = 2(Dy+ -+ Dy) ~r g —F
and let D = m,Dy. Then 7*D = Dy + E and hence 7*(Kx + A 4+ ¢D) =
Ky + Ay +c¢Dy + E. By construction, locally on X the divisor ¢D is a special
Q-complement that has F' as an lc place, hence we are done. ([

In the rest of this subsection, we include two auxiliary results that will be
useful later.

Lemma 5.4. Let (X,A) be a kit pair, let D be a Q-complement of (X, A)
and let W C X be a minimal lc center of (X,A+ D). Let E be an lc place
of (X, A+ D) with center W. Assume that E is of plt type over (X,A) in a
neighbourhood of the generic point of W. Then E is of plt type over (X, A).

Proof. Let w: Y — X be the prime blowup of E (which exists by Lemma
2.2). Since F is an lc place of the lc pair (X, A + D), we have

Ky + Ay +Dy + E=7"(Kx + A+ D)

and (Y,Ay + Dy + E) is lc. In particular, the pair (Y, Ay + E) is also lc.
By assumption, it is also plt over the generic point of W. If it is not plt
everywhere, then it has some lc center that does not dominate W. However,
any such lc center of (Y, Ay + E) is also an lc center of (Y, Ay + Dy + E)
and therefore maps to an lc center of (X, A + D) that is strictly contained in
W. This contradicts the assumption that W is a minimal lc center. Hence
(Y, Ay + E) is plt. O

Lemma 5.5. Letn € N* and let I C [0,1]NQ be a finite set. Let (X, A) be
an lc pair of dimension n, let D be a Q-complement of (X,A) and let W C X
be an lc center of (X,A + D). Assume that Coef(A),Coef(D) C I. Then
there exists some rational number g9 € (0,1) depending only on n and I such
that every lc type divisor over (X, A+ (1 —eq)D) with center W is also an lc
place of (X,A+ D).
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Proof. > We may assume that 1 € I. By the ACC of log canonical thresh-
olds [HMX14], there exists some gy € (0,1) such that if (Xo,A) is an n-
dimensional lc pair and Dy is an effective Q-Cartier divisor such that

Coef(Ap) U Coef(Dy) C I

and (Xo,Ag + (1 —&9)Dy) is lc, then (Xo, Ag + Dy) is also lc. Let us show
that this e satisfies the statement of the lemma. Let £ be an lc type divisor
over (X, A+ (1 —¢go)D) with center W and let 7: Y — X be the associated
prime blowup. Then (Y, Ay + (1 — e9)Dy + E) is le. By our choice of &,
this implies that (Y, Ay + Dy + E) is lc. Suppose that E is not an lc place
of (X,A + D). Then we have

Ky+Ay+Dy+)\E=7T*(Kx+A+D)

for some A\ < 1. In particular, (Y, Ay + Dy + AFE) is lc. Moreover, E contains
some lc center of (Y,Ay + Dy + AE) since w(E) = W is an lc center of
(X, A+ D). As A < 1, it follows that (Y,Ay + Dy + E) cannot be Ic, a
contradiction. Thus F is an lc place of (X, A + D) as desired. O

5.2. Plt type lc place of bounded complements. The goal of this
subsection is to reduce Conjecture 1.7 to the following special case, whose
statement is motivated by Lemma 2.13.

Conjecture 5.6. Let n, N € N* and let € > 0. Then there exists some
A = A(n, N,e) such that for any N-complement D of an n-dimensional klt
variety X and any lc center W of (X, D) such that \7(;1(77, X) > e (where n is
the generic point of W), there exists a Kolldr component E over n € X such
that

AX7D(E):O, and Ax(E)SA

Roughly speaking, we expect that all bounded complements have plt type
lc places of bounded log discrepancy. Its connection with Conjecture 1.7 is
given by the following result.

Proposition 5.7. For any fized dimension n, Conjecture 1.7 and Conjec-
ture 5.6 are equivalent.

As the first step towards the proof, we show that Conjecture 1.7 can be
reduced to the Q-Gorenstein case.

Proposition 5.8. Fiz the dimension n. Assume that Conjecture 1.7 holds
when X is Q-Gorenstein. Then it holds in general.

Proof. Starting with any klt pair (X, A) in dimension n whose coefficients
lie in a finite set I and any n € X with \781(77,X,A) > &, our plan is to
find a small birational modification 7: Y — X such that Y is Q-Gorenstein,
together with an N-complement D of n € (X, A) that is special with respect

3The author learned this argument from Yuchen Liu.
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to m, where the integer N only depends on n,I and . Let us first explain
why this is enough.

After shrinking X, we may assume that 77 (the closure of 1) is the minimal
le center of (X, A + D). Let Ay (resp. Dy) be the strict transform of A
(resp. D), let W C 771(7) be a minimal lc center of (Y, Ay + Dy) and
let € be the generic point of W. Note that Coef(Ay) = Coef(A) C I and
Coef(Dy) C +ZN[0,1]. By Lemma 5.5, there exists some rational number
o € (0,1) depending only on n, I and N such that if E is a Kolldr component
over £ € (Y, Ay + (1 —&()Dy), then it is also an lc place of (Y, Ay 4+ Dy). By
Lemma 5.4, we further deduce that F is of plt type over (Y, Ay + (1 —¢¢)Dy)
and hence also over (Y, Ay). By Lemma 5.2, E is a Kolldr component over
n € (X, A). Note that as N only depends on n, I, e so does 9. On the other
hand, by Lemma 2.10 we have \751(5,}/, Ay) > \7(;1(77, X,A) > e. By Lemma
2.11 we further obtain

vol(€, Y, Ay + (1 — £9)Dy) > <1 iog ) vol(€,Y, Ay) > C
0
for some constant C7; > 0 that only depends on n,I,c. Since we assume
Conjecture 1.7 to hold for Q-Gorenstein singularities, the Kollar component
E above can be chosen so that

Ay Ay +(1—c0)Dy (F) < Ao

for some constant A, that only depends on n,I,e (a priori it also depends
on ¢g and C; but these two constants only depend on n, I and ). As E is
automatically a Kolldr component over n € (X, A) and an lc place of (Y, Ay +
Dy) from the above discussion, we get

Ay Ay +(1-e0)Dy (B) = €0- Ay, ay (E)+(1—€0)Ay,ay +Dy (E) = €0 Ay a, (E),

hence mld™ (5, X, A) < Ax aA(E) = Aya, (E) < ?—g. Since the right hand
side only depends on n, I, e, this proves Conjecture 1.7 in the general (non-
Q-Gorenstein) case.

We now return to construct the map n: ¥ — X and the N-complement
D. The argument is very similar to that for Theorem 4.8. Let 7: Y — X
be a small birational modification such that Ky is Q-Cartier and m-ample
(existence is guaranteed by Lemma 4.7). In particular, Y is Q-Gorenstein.
By Lemma 2.10 we have \a(y, Y,Ay) > ¢ for all y € Y. Thus by Theorem
3.1, there exists some rational number v > 0 depending only on n, ¢ such that

(Y, (1 +7)Ay) is klt. In addition:

e By Lemma 2.9, there exists a positive integer Ny depending only on
n and ¢ such that L := Ny - Ky is Cartier.
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e By Kollar’s effective base-point-free theorem, there exists another pos-
itive integer mo depending only on the dimension n such that mgL is
m-generated.

Putting these two facts together with Bertini’s theorem, we deduce that there
exists an integer rg = nmgNy that only depends on n,e, and an effective
divisor Dy ~ g Ky such that

e 79Dy has integer coefficients,

e (Y,(14+~)Ay 4+ ~vDy) is klt, and

e for any y € Ex(m) there exists some irreducible component of Dy
that’s Q-Cartier and ample over X such that y is not contained in its
support.

For example, one can take Dy = r_lo(Dl +---+ D,) where Dy,---, D, are
general members of |moNyKy|. Note that by construction,

Ky +(1+79)Ay + 9Dy ~z0 Q1 +9)(Ky + Ay) ~z 00,

thus Ky +(14+v)Ay +vDy = 7*(Kx +(14+v)A+~D) where D = 7, Dy, and
the pair (X, (1+7)A++D) is also klt. Since the coefficients of (14 )A+~D
are contained in a finite set that only depends on n, I and ¢, by Lemma 2.13
we see that n € (X, (1 +v)A 4+ vD) admits an N-complement G for some
integer N that only depends on n, I, e. The divisor I' = y(A+ D)+ G is then
an N-complement of n € (X, A). It remains to show that I' is special with
respect to m. But as I' > D, this is clear from our choice of Dy . (I

We now return to the proof of Proposition 5.7.

Proof of Proposition 5.7. By Proposition 5.8, it suffices to show that Con-
jecture 5.6 is equivalent to the Q-Gorenstein case of Conjecture 1.7. First
assume that Conjecture 5.6 holds. Let (X,A) be an n-dimensional klt pair
where X is Q-Gorenstein and let 7 € X be such that \751(77, X,A) > e. By The-
orem 3.1, there exists some constant ¢ = ¢(n,e) > 0 such that (X, (14 ¢)A)
is still klt. We may assume that ¢ € Q. By Lemma 2.13, there exists an
integer N depending only on n and Coef(A) such that n € (X, (1 + ¢)A)
has an N-complement D (a priori N also depends on ¢ but we already know
that ¢ only depends on n and €). Since Conjecture 5.6 holds, we see that
there exist some A = A(n, N,e) and some Kolldr component F over n € X
such that Ax (14¢)a+p(F) =0 and Ax(E) < A. In particular, the constant
A only depends on n,e and Coef(A), and clearly Ax A(E) < Ax(E) < A.
Thus to prove Conjecture 1.7 for Q-Gorenstein singularities it suffices to show
that F is also a Kolldr component over z € (X, A). But this is straightfor-
ward: if 7: Y — X is the plt blowup that extracts F, then (Y, E) is plt and
(Y, E4+(14c)Ay+Dy) is lc (because E is an lc place of (X, (1+¢)A+D)). By
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interpolation, it follows that (Y, E+ Ay) is also plt and thus F is also a Kollar
component over n € (X, A). This proves one direction of the equivalence.
Next assume that Conjecture 1.7 holds. Let X, D, W, n be as in Conjecture
5.6. By Lemma 5.5, there exists some rational £y € (0, 1) depending only on
N such that every Kolldr component over n € (X, (1 —eg)D) is also an lc

place of (X, D). Since vol(n, X, (1 — g9)D) > ( £o )n;(;l(n,X) > _cuc

1+eo (1+e0)™
by Lemma 2.11, and Conjecture 1.7 holds by assumption, we see that there

exists some constant A > 0 depending only on n, N and ¢ and some Kollar
component E over 1 € (X, (1 —&g)D) such that Ax 1., p(E) < A (a priori
A also depends on gy and Coef(D), but these only depend on n, N,e by the
above construction). From the above discussion, we have Ax p(F) = 0. Thus

Ax(E) = AX’“+0°’D(E) < % is bounded from above by some constant that
only depends on n, N and ¢. This proves the other direction of the desired
equivalence. O

5.3. Further reduction. We further break Conjecture 5.6 into two small-
er parts. The first part is the following weaker version of Conjecture 5.6 (the
difference is that we don’t require the lc place of the complement to be of
plt type over the singularity). Note that it is a special case of the uniform
boundedness conjecture of mlds [HLL, Conjecture 7.2], which has been verified
in dimension two [HL23].

Conjecture 5.9. Let n,N € N* and let € > 0. Then there exists some
Ao = Ag(n, N,e) such that for any N-complement D of an n-dimensional klt
variety X and any le center W of (X, D) such that \751(77, X) > e (where n is
the generic point of W), there ezists a divisor E over nn € X such that

Ax,p(E)=0, and Ax(E)< Ao.

The other part is Conjecture 5.6 for reduced complement. More precisely:

Lemma 5.10. Fiz the dimension n. Assume that Conjecture 5.9 holds
and that Conjecture 5.6 holds when the complement D is reduced (i.e., all its
coefficients are 1). Then Conjecture 5.6 (equivalently: Conjecture 1.7) holds.

Proof. We use the notation and assumptions in Conjecture 5.9. Let E be
a divisor over X with center W such that F is an lc place of (X, D) and
Ax(E) < Ag := Ap(n,N,e). We may assume that Ay > 1. By Lemma
2.2, there exists a birational morphism 7: Y — X such that E is the unique
exceptional divisor and —F is ample. Since E is an lc place of (X, D) we have
7 (Kx+D)=Ky+Dy+FE > Ky +F, hence (Y, E) is lc and any lc place of
(Y, E) is also an lc place of (X, D). By Lemma 4.3, we have ;gl(y, Y)> Ag"e
forally e Y. If (Y, E) is already plt then there is nothing to prove. Otherwise
let Z CY be a minimal lc center of (Y, F) and let £ be the generic point of
Z. Note that w(§) = n. Since Conjecture 5.6 holds for £ € Y with the
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reduced complement FE by assumption, and x?gl(ﬁ,Y) > Ay "e, we see that
there exists some Kollar component F over & € Y such that Ay g(F) = 0
and Ay (F) < A; for some constant A; = Ay(n, Ag,e) = A1(n,N,e) > 0. In
particular, F is an lc place of (Y, E) and hence is also an lc place of (X, D).
Since m*Kx = Ky + (1 — Ax(E))E, it follows that Ax(F) = Ay (F) +
(Ax(E) — 1) -ordp(E) = Ax(E) - Ay (F) < ApA;. Since Z is a minimal lc
center of (Y, E), Lemma 5.4 implies that F is of plt type over (Y, E). By
Lemma 5.3, F is a Kolldr component over X. Thus Conjecture 5.6 holds with
A(n,N, E) = A()Al. Il

6. Boundedness of mld¥

In this section, we study Conjecture 1.8 in codimension two, as well as
Conjecture 1.7 (equivalently: Conjecture 5.6) in dimension 3. In particular, we
confirm the special boundedness of threefold klt singularities whose volumes
are bounded from below. As a preliminary step, we first show that Conjecture
5.6 holds for singularities € X that belong to an analytically bounded family.

Lemma 6.1. Let N be a positive integer and let B C X — B be a Q-
Gorenstein family of klt singularities. Then there exists some A > 0 depending
only on N and the family B C X — B such that for any kit singularity x € X
with (x € X*") € (B C X* — B) and any N-complement D of x € X, there
exists some Kollar component E over x € X such that

AX’D(E‘):O7 and Ax(E) SA

Proof. By assumption, Coef(D) € £NN[0,1]. Thus by Lemma 5.5 there
also exists some ¢y > 0 depending only on N and n = dim X such that every
Kolldr component E over z € (X, (1 — g¢)D) is automatically an lc place of
(X, D) and in particular we have

AX7(1_50)D(E) = Ax(E) - (1 - Eo)OI'dE(D)
= Ax(E) — (1 — 50)AX(E) = EoAx(E).

Therefore, to prove the lemma, it suffices to show that mldK(x, X,(1—¢0)D)
is bounded from above by some constant that only depends on N and B C
X — B.

Since the volume function is constructible [Xu20, Theorem 1.3], there exists
some ¢ > 0 depending only on the family B C X — B such that \7(;1(30, X) > e
By Lemma 2.11, we then deduce that \To\l(x,X, (1—-¢e9)D) > 56‘\781(12,)() >
ege. By [HLQ23, Theorem 1.7] and Lemma 4.2, this further implies that there
exists some A = A(n,eq,e) > 0 such that mld® (z, X, (1—eo)D) < A. Tracing
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back the proof, we see that the constant A only depends on N and the family
BC X — B. O

6.1. Codimension two case. We next prove Conjecture 1.8 in codimen-
sion 2 when I C Q. This result is also needed when we prove Conjecture 1.7
for threefold singularities.

After localizing at the codimension two point, we immediately reduce to
the surface case, albeit over a nonalgebraically closed field. Thus, throughout
this subsection, all the objects (singularities, divisors, etc.) we consider are
defined over a field k of characteristic 0 that is not necessarily algebraically
closed. The main technical result is the following:

Proposition 6.2. Let N € N* and let x € X be a smooth surface germ.
Then there exists some constant A1 > 0 depending only on N such that for
any G C Aut(z € X) and any G-invariant N-complement D of x € X, there
exists a G-invariant divisor E (defined over k) over x € X with Ax p(E) =0
and Ax(E) < A;.

Note that when k = k and G is trivial, this is already given by Lemma
6.1, so it remains to check that the corresponding Kollar component can be
chosen so that it is G-invariant and descends to the base field k. The key is
the following uniqueness result.

Lemma 6.3. Let x € X be a smooth surface germ over k and let D be
a Q-complement of x € X. Then the log discrepancy Ax(E) of divisorial lc
places of x € (X, D) is minimized by a unique divisor E. In particular, if
x € (X, D) is defined over k then E is also defined over k and it is invariant
under Aut(z € (X, D)).

Proof. Every divisor E over x € X can be extracted via successive blowups
of its centers (in particular, the sequence of blowups is canonical):

(6.1) ECX,, = — X, :=BLX = X, := X.

For any such sequence, if F; is the exceptional divisor of X; — X,;_1, then
Cx,(Ei+1) € E; and hence Ax(F;+1) > Ax(E;) for all i. We denote by
£(E) :=m the number of blowups in this sequence and let

Lz, X, D) :=min{l(E)|Cx(F) = {z}, E is an lc place of (X, D)}.

We say that a divisor F over z € X dominates another E’, if E/ appears as
an exceptional divisor in the canonical sequence (6.1) of blowups associated
to E. By the above discussion, Ax(F) > Ax(E’) if E dominates E’ and
E # E'. Thus it suffices to show that there exists a divisor over z € (X, D)
that is an lc place of (X, D) and that at the same time is dominated by all
other divisorial lc place of (X, D).
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We prove this stronger statement by induction on ¢(z, X, D). Let E be a
divisorial lc place of (X, D) that computes £(z, X, D), i.e., £(F) = {(z, X, D).
Let E; be the exceptional divisor of the ordinary blowup 7: X; = Bl, X —
X. When {(E) = 1, we have E = FE; and it is dominated by all divisorial
le place of (X, D), since all blowup sequence has to begin with the ordinary
blowup. Thus the statement holds when £(z, X, D) = 1. If £(E) > 1, then
E; is not an lc place of (X, D). Since z is an lc center of (X, D), we have
mult, D > 1 (otherwise (X, D) is canonical by [KM98, Theorem 4.5] and the
lc centers would have dimension one) and 7i(Kx + D) = Kx, + Dy, where
D, = 7r1_*1D + (mult, D — 1)E; > 0. By assumption Ej is not an lc place of
(X1, D1), thus the lc center W of (X7, D;) intersects E; at a finite number of
points. By Kolldr-Shokurov connectedness [KM98, Theorem 5.48], we deduce
that W N E = {z1} consists of a single point (as a set). It follows that
Uz, X,D) = l(x1,X1,D1) + 1 and all lc places of x € (X, D) dominate the
ordinary blowup of z; on X;. The result now follows by induction. O

Proof of Proposition 6.2. Let (Xg, Dg) := (X,D) xi k. By Lemma 6.1,
there exists some constant A; > 0 depending only on N and some divisorial
lc place F' of x € (X, Dg) such that Ax (F) < A;. By Lemma 6.3, the
log discrepancy of divisorial lc places of x € (X, Dg) is minimized by some
G-invariant divisor F that’s defined over k. In particular, Ax(F) < A;. This
proves the statement of the proposition. ([l

We are now ready to prove a version of Conjecture 1.8 at codimension two
points.

Proposition 6.4. Let [ =1 C[0,1]NQ be a DCC set. Then there exists
some constant A depending only on I such that

mld®(n, X,A) < A

for any klt pair (X, A) with Coef(A) C I and any codimension two point
neX.

Proof. After localizing at n € X, we may assume that 7 is a closed point x
and z € (X, A) is a surface klt singularity (over a field k that’s not necessarily
algebraically closed). By Lemma 2.13, there exists an N-complement D of
z € (X, A) for some integer N that only depends on the coefficient set I. Let
7: (F € X) — (# € X) be the universal cover. Let D = 7*D and A = 7*A.
Then # € X is a smooth surface germ and D+ Ais an N- complement of
ieX by Lemma 2.14.

First consider a special case, i.e., when D is reduced. If (X, D) is not plt,
then x is an lc center of (X, D) and A = 0. In this case D is a 1-complement of
T € X thus it is nodal and the exceptional divisor E of the ordinary blowup
of T is an lc place of (X, D). Clearly E descends to a Kolldr component E
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over z € X and Ax(E ) < Ag(E E) <2 by [KM98 Proof of Proposition 5.20].
If (X, D) is plt, then D is smooth, X = X /p,, for some m € N, and we can
choose coordinates u,v at @ € X that diagonalize the pp-action and with
D= - (u=0). Since Z is an lc center of (X, A+ D) by adjunction we see that
(D, A|D) is strictly lc, hence A| = Z. Since A + D is an N-complement of
Z € X and in particular N A has 1nteger coeflicients, we deduce from A| =z
that the local defining equation of NA has the form vV + up(u,v) = 0 for
some ¢ € k[[u,v]]. Note that ¢ # 0 since (X, A) is Klt.

We seek a weighted blowup up with wt(u) = a, wt(v) = b that provides a
Kolldr component over = € (X A) which is also an lc place of (X A—i—D) For
this we look at the Newton polygon (denoted as Q) of vV + u¢(u,v), i.e., the
convex hull of the union of (p, q) + R2, where (p, q) € N? varies among pairs
for which uPv9 has nonzero coefficients in v +up(u,v). Certainly (0, N) € Q.
Let (1, s) € @ be the vertex that lies on the same edge as (0, N). We choose the
weights a, b so that ged(a,b) = 1, ar+bs = bN. In particular, a < N —s < N.
It is not hard to check that the corresponding exceptional divisor E is a Kollar
component over T € ()~( JA) (essentially because it induces a degeneration of

€ (X,A) to the kit singularity 7 € (X, + (WY +u"v* = 0)), cf. Lemma
2.5). Since the coordinates u,v diagonalize the ,um—actlon7 the divisor E is
Um-invariant, hence it descends to a Kolldr component over z € (X, A) by
[LX20, Lemma 2.13]. By [KM98, Proposition 5.20] and a direct calculation,
we then have Ax A (F) < A§7£(E) =a < N. As N only depends on I, we
conclude the proof in the case when the Q-complement D is reduced.

In the general case, we apply Proposition 6.2 to get a constant A; that
only depends on N (thus it depends on I only), and an Aut(z € X)-invariant
divisor E over # € X such that Az A+D( ) =0 and Ag (N) < A;. By

[KM98, Proposition 5.20], the divisor E induces a divisor E over z € X that
is an lc place of (X, A + D) and still satisfies Ax(E) < A;. In particular,
Ax a(E) < Ax(E) < Ay and F is of lc type over (X,A). If E is already
a Kollar component then we are done. Otherwise, if Y — X is the prime
blowup of F then the minimal lc centers of (Y, Ay + FE) are 0-dimensional and
supported on |Diff g(Ay)|. But as —(Ky +Ay +E)|g = —(Kg+Diff g(Ay))
is ample, we see that E = P! and deg|Diffz(Ay)] = 1, hence the minimal lc
center of (Y, Ay + E) is a k-rational closed point y € Y. Note that E is a
reduced N-complement of (Y, Ay ), thus by the special case treated above we
may choose a Kollar component E over y € (Y, Ay) such that Ay a, (E) < Ay
for some constant Ag that only depends on I. By Lemma 5.3, we know that
E is also a Kollar component over = € (X, A). As in the proof of Lemma 5.10,
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we also have Ax a(F) < AgA;. Since both constants Ao, A; only depend on
I, we are done. [l

Corollary 6.5. Conjecture 5.6 holds at codimension 2 points.

Proof. This is an immediate by Proposition 6.4 and the proof of Proposition
5.7. O

6.2. Threefold singularities. In this subsection, we will prove Conjec-
ture 1.7 in dimension 3. Note that it suffices to consider the case when n € X
is a closed point, since we already proved Conjecture 1.8 at codimension two
points. According to Proposition 5.7 and Lemma 5.10, the first step is to
verify Conjecture 5.9 for 3-dimensional klt singularities.

Proposition 6.6. Let N € N* and let ¢ > 0. Then there exists some
Ao = Ao(3, N, e) such that for any 3-dimensional kit singularity x € X with
;(;l(x,X) > e and any N-complement D of x € X, there exists some divisor
E over x € X such that

AX,D(E) = 0, and Ax(E) S Ao.

In other words, Conjecture 5.9 holds in dimension 3.

We first consider the terminal singularity case. Eventually we will reduce
the proof to this special case.

Lemma 6.7. Let N € N* and let € > 0. Then there erists some A; =
A1(3,N,¢e) such that for any 3-dimensional terminal singularity x € X with
;(;l(x,X) > € and any N-complement D of x € X, there exists some divisor
E over x € X such that

AX,D(E):O; and Ax(E) SAl

Proof. Certainly the plan is to use the classification of terminal singularities
[Mor85] (see also [Rei87, Section 6]). Assume that z € X has index r and let
p: (T € X) = (z € X) be the index 1 cover. By [XZ21, Theorem 1.3] and
Lemma 2.9, we have r < 2 and Vol(a: X)=r- Vol(x X) >e. Let D =p*D.
By assumption, NV D has 1nteger coeflicient; another application of Lemma 2.9
then gives an integer N; depending only on N, e such that Nlﬁ is Cartier.
By [Rei87, Theorem in (6.1)], there exists a linear y,-action on A% and an
eigenfunction f € Oy ¢ such that analytically locally € X is isomorphic to
0 € (f = 0)/u,. Since the statement of the lemma is analytically local, we may
assume that (z € X) = (0 € (f =0)/u). In particular X = (f = 0) C A%,
Since N1 D is Cartier and p,-invariant, we may also write Ny D = (9=0)|%
for some eigenfunction g € Oy .

Let A = (g = 0) € A* and consider the pair y € (Y,A) := 0 € (A%, X +
i&)/ur, namely Y = A*/pu, and if ¢: A* — Y is the quotient map then the
divisor A is chosen such that K44 +X+ N%Z = ¢*(Ky+A). By Lemma 2.14,
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Disa Q-complement of T € X. By inversion of adjunction (see, e.g., [Kol13,
Theorem 4.9]), this implies that (A%, X + N%A) is lc in a neighbourhood of

X. Since X is clearly an Ic center of this pair, and the origin is an lc center
of (X, D), we see that the minimal lc center of (A%, X + N%E) is the origin.
Hence X + N%ﬁ is a Q-complement of 0 € A%, and A is a Q-complement of
y € Y (again by Lemma 2.14).

Note that Coef(A) C ﬁZ N[0,1] and A = X + T for some effective
divisor I such that I'|x = D. Since r < 2?7 and for each r € N there are only
finitely many nonisomorphic linear actions of p, on A%, the singularities y € Y’
that arise from the above construction belong to a bounded family, hence
by Lemma 6.1 we deduce that there exist some constant Ay = A;(r, Ny) =
A1(e, N) > 0 and some Kolldr component F over y € Y that is also an lc place
of (Y, A) such that Ay (F) < A;. Let m: Y’ — Y be the associated plt blowup
and let X’ T be the strict transform of X,T" on Y’. Let E be an irreducible
component of F|x/. By adjunction, F is an lc place of (X,T'|x) = (X, D).
We claim that E is the sought divisor. Clearly E is centered at x € X. Since
F is an lc place of (Y,A) we have Ky + F + X' +T" = 7*(Ky + A) and the
pair (Y', F + X’ +T") is lc. By the classification of lc surface pairs (see, e.g.,
[Kol13, Example 3.28]), it follows that X’ is normal at the generic point of F
and mult g(F|x ) < 1. We also have Ky +F+ X' = 7*(Ky + X)+ Ay x (F)-F
which by adjunction gives Ax(E) = Ay x(F) - multg(F|x/) < Ay (F) < A;.
This completes the proof. (I

We now prove the general case of Proposition 6.6 by reducing it to the
terminal case.

Proof of Proposition 6.6. Let m: Y — X be a terminal modification of
x € X (whose existence is given by e.g., [Kol13, Theorem 1.33]). It has the
property that 7*Kx = Ky + I for some effective exceptional divisor I'; Y is
Q-Gorenstein and has only terminal singularities. Moreover, by Lemma 2.10
we have \7(;l(y,Y) > \70\1(33,)() >cecforally €Y. Let Dy =T 4 7*D. Since
Ky + Dy = 7*(Kx + D) and D is an N-complement of z € X, we see that
Dy is an N-complement of Y, the pair (Y, Dy) is strictly log canonical, and
it has a minimal lc center W that’s contained in 7= *(z). If dim W = 2, then
we may take E = W as Ax(W) = Ayr(W) < 1. If dimW = 1 then it
has codimension 2 in Y. By Corollary 6.5, there exist some constant A; > 0
depending only on N and some divisor FE over x € X (in fact it has center
W on Y) such that AX,D(E) e AY,DY (E) = 0 and Ax(E) e AY,F(E) <
Ay(E) < A;y. Finally if dimW = 0 then W = {y} for some y € Y. Since
y € Y has terminal singularity, we know by Lemma 6.7 that there exist another
constant As > 0 (depending only on N and ¢) and a divisor E over y € Y
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such that AX’D(E) = AY,Dy (E) =0 and Ax(E) = AY’F(E) S Ay(E) S Ag.
Therefore, the proposition holds with Ay = max{1, A, As}. O

Going back to the proof of Conjecture 1.7, the second step is to verify
Conjecture 5.6 for reduced Q-complements.

Proposition 6.8. Let ¢ > 0. Then there exists some constant A > 0
depending only on € such that for any 3-dimensional kit singularity © € X
with \7(;1(x, X) > € and any reduced Q-complement D, there exists some Kolldr
component E over x € X such that

AX7D(E):0, and Ax(E)gA

In other words, Conjecture 5.6 holds for reduced Q-complements in dimension
3.

Again we first treat a special case. Recall that a singularity z € X is called
a cDV singularity if by taking general complete intersections of hypersurfaces
that contains x one gets a Du Val singularity.

Lemma 6.9. Proposition 6.8 holds when the simultaneous index one cover
of Kx and D (see Section 2.5) is a ¢cDV singularity.

Proof. Let x € X be the simultaneous index one cover of Ky and D so that
(z€ X))~ (7 e X) /H for some finite abelian group H. By Lemma 2.9, we
have |H| < 27 . Let D C X be the preimage of D. Then D is a Cartier divisor
and we may erte D = (g =0) for some g € m (where m C Ox - denotes the
maximal ideal). We divide the proof into the following three cases:

(1) € X is a smooth point.
(2) T € X is singular and g € m2.
3) e X is singular and g ¢ m?.

Case 1. 7 € X is a smooth point. Then analytically (z € X) = (0 €
A3)/H belongs to a bounded family of singularities (since the size of H is
bounded from above and for each choice of H there are only finitely many
nonisomorphic actions of H on 0 € A®). By Lemma 6.1, we see that there
exists some constant A; > 0 that only depends on ¢ (since the upper bound
of the index 7 only relies on €) and some Kolldr component E over z € X
such that Ax p(E) = 0 and Ax(E) < A;. Thus the lemma holds in this case.

Case 2. 7 € X is singular and g € m?. Since 7 € X is a cDV smgularlty,
analytically we may identify it with 0 € (f = 0) C A* for some f € OA470
with mult(f) = 2. Moreover, since H is abelian, we can assume that it acts
diagonally on the coordinates y,z,w,t of A%, all monomials in f have the
same eigenvalue, and the isomorphism X (f=0)is H- equivariant. Since
(X, D) is lc, we also know that (X, m?) is lc and any lc place of (X, m?) is
also an lc place of ()N( 7l~)) Therefore, it suffices to find an H-invariant lc
place of ()N( ,m?) with bounded log discrepancy that is a Kolldr component.
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By adjunction [Kol13, Theorem 4.9], we see that a general plane section of
X has semi-log canonical singularities, hence is a nodal curve. It follows that
the quadratic part in the Taylor expansion of f has rank at least 2.

First assume that the rank is at least 3. Let E be the exceptional divisor
of the ordinary blowup of 7€ X. It is straightforward to check that E is an
lc place of (X, m?2), AX(E) =2, and E is a Kolldr component (E is a quadric
surface and in particular has klt singularities). Clearly E is H-invariant (in
fact it is invariant under Aut(Z € X)), thus by [LX20, Lemma 2.13] it descends
to a Kolldr component E over z € X with Ax p(E) = 0 and Ax(E) < 2.
Hence the lemma holds in this case.

Assume next that the rank of the quadratic part of f is two. We claim
that there exists a finite group G C Aut(Z € X) of order at most 2|H|*
containing H such that W := X /G belongs to an analytically bounded family
of singularities (that depends only on ¢). If f contains the monomial #2,
then after an H-equivariant change of variables (cf. the proof of [Rei87, Page
395, Proposition], especially [Rei87, Page 394, Rule III]), we may assume
that f = t2 + h(y, z,w) for some mult(h) > 2. Let 7 be the involution
(y, z,w,t) — (y,z,w,—t) and let G C Aut(z € )A(;) be the (abelian) subgroup
generated by H and 7. Clearly |G| < 2|H| and X /7 is a smooth point, thus
X/G = (X/7)/(G/7) is a quotient singularity. Since |G/7| < [H| < 2 we
see that there are only finitely many nonisomorphic quotients as before and
hence W = X /G belongs to an analytically bounded family of singularities.

If f does not contain any of y2, 22, w?, t2, then as its quadratic part has rank
2 we have f = yz + h(w,t) after a change of variable (again by [Rei87, Page
395, Proposition]). This time let 7 be the involution (y, z,w,t) — (z,y,w,t)
and let G C Aut(z € X’) be the subgroup generated by H and 7. It is not hard
to see that for every ¢ € G either ¢ or Ty acts diagonally on (y, z, w, t) with
order at most |H|, hence |G| < 2|H|*. Let Gy < G be the subgroup generated
by all the conjugates of 7; it is also the smallest normal subgroup that contains
7. By a theorem of Chevalley, A*/G = A* and in fact it is not hard to check
that the quotient map is given by (y,z,w,t) — (y™ + 2™, yz,w,t) for some
ro € N*. It then follows from the equation of f that (Z € X)/Gy is a smooth
point and X/G = (X/Go)/(G/Gy) is a quotient singularity. As |G/Gol is
at most |H|* < 25L44’ we conclude as before that there are only finitely many
nonisomorphic quotients and W = X /G belongs to an analytically bounded
family of singularities which only depends on e. This proves the claim.

Let (W, Aw +a) be the crepant G-quotient of ()N(, m?), where a is a Q-ideal.
Note that (X, m?2) is strictly lc, thus the same holds for (W, Ay + a). By
construction the coefficients of Ay + a lie in ﬁN. By Lemma 6.1, there exist
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some constant A, > 0 depending only on e and a Kollar component E over W
that is an lc place of (W, Ay +a) such that Ay (E) < A} By [LX20, Lemma
2.13], it pulls back to a G-invariant Kolldr component over X and hence also
induces a Kolldr component E over X. By [KM98, Proposition 5.20] we know
that E is an lc place of (X, D) and Ax (E) < |G|- Aw.a, (E) < Ay for some
constant Ay > 0 that only depends on €. Therefore we are done in this case.

Case 3. 7 € X is singular and g € m2. Then up to a change of coordinate
we may assume that g =t and X = (f = 0) C A* with mult(f) = 2. We may
write f = tf1(y, z,w,t) + h(y, z,w) and in particular D= (h=0) C A3. By
adjunction, the surface D has slc singularity and the origin is an lc center.
Thus 2 < mult(h) < 3.

Suppose first that mult(h) = 3. Let h; be the homogeneous term of de-
gree 3 in h. Let g: D' — D be the ordinary blowup of the origin. Then
¢*Kp = Kp, + F where F = (hy(y,z,w) = 0) C P? is the g-exceptional
divisor. Since D is sle, so is the pair (ﬁ’,F), thus by adjunction we know
that the cubic curve F' is at most nodal (for us it is enough to know that hq
is irreducible). Note that mult(f;) = 1 since mult(f) = 2. If the linear term
in f; is not proportional to ¢, then we may apply an H-equivariant change
of coordinates between y, z,w so that fi = ay + bt + (mult > 2) (a # 0).
Consider the weighted blowup with wt(y,z,w,t) = (1,1,1,2). By Lemma
2.5, the exceptional divisor F is a Kollar component, since the corresponding
initial term ayt + hq(y, z,w) gives a cA-type singularity. Note that E is an
H-invariant lc place of (X, D) and Ax(F) = 2.

The other possibility is that the linear term in f; is proportional to ¢,
ie, fi = at + (mult > 2) (a # 0). Consider the weighted blowup with
wt(y, z,w,t) = (2,2,2,3). The corresponding initial term gives the hypersur-
face (at? + hi(y, z,w) = 0) C A* which is of eD-type by Lemma 6.10. Thus
the exceptional divisor E of the weighted blowup is a Kolldr component by
Lemma 2.5. It is also an H-invariant lc place of (X, D) and Ax(E) = 3.

Next suppose that mult(h) = 2. Then the quadratic part of h has rank 1,
otherwise D is either a union of two planes or has A, singularity for some
m € N*, contradicting the assumption that the origin is an lc center of D.
Thus we may choose coordinates so that h = y? + ho(z,w) and mult(hg) > 3.
By Weierstrass preparation theorem (applied to f), we then have f = (unit) -
(y* + ay + b) for some a,b € (z,w,t) C C|[[z,w,t]], which can be turned
into f = (unit) - (y? + ¢(z, w,t)) with another change of variable y — y — %
which leaves ¢ fixed. Here we need to further justify that our application
of the Weierstrass preparation theorem is H-equivariant. Indeed, one way to
prove the Weierstrass preparation theorem is through the Weierstrass division
theorem: there exist some unique s1 € C[[y, z,w,t]] and sy € C[[z, w, ]][y]
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such that y?> = f - s1 + so and the degree of y in sy is < 1; one then checks
that s; is a unit and if ss = —ay — b then we get the desired form f =
(unit) - (y* + ay + b). Since all monomials in f have the same eigenvalues
under the H-action, the same holds for both s; and s; by their uniqueness.
Thus with an H-equivariant change of coordinates we may assume that f
has the form f = y? + c(z,w,t) and at the same time g = t. We can now
argue as in Case 2: if 7 is the involution (y,z,w,t) — (—y,z,w,t) then it
leaves D invariant and X /7 is a smooth point. Hence if G C Aut(Z € X)
is the (abelian) subgroup generated by H and 7, then |G/7| < |H| < 2L
and W := X/G = (X/7)/(G/7) is a quotient singularity and belongs to an
analytically bounded family of singularities. The crepant G-quotient (W, Ay/)
of ()~( 7l~)) has coefficients in %IN and therefore as in Case 2 we get some
constant Az that depends only on € and some Kolliar component E over z € X
that is an lc place of (X, D) and satisfies Ax (F) < As.

Putting Cases 1-3 together, we see that the proof of the lemma is finished

by setting A = max{3, A1, As, A3}. O
The following result is used in the above proof.
Lemma 6.10. Let n > 3 and let f € Clze,- - ,x,]]. Assume that

mult(f) = 3 and let f5 be the leading term of f. Then the hypersurface
singularity (2 + f(xe, -+ ,2,) = 0) C A" is of cD-type if and only if its
singular locus has codimension at least 2 and f3 is not a cube.

Proof. The conditions are preserved by taking general hyperplane sections
of the form asxs + - - + anx, = 0. Thus we may assume that n = 3, where
the statement follows from [KM98, Step 4 on Page 126]. O

Proof of Proposition 6.8. Let N = L%J' By Lemma 2.9, we know that
D is an N-complement. Let A; (resp. As) be the constant from Corollary
6.5 (resp. Lemma 6.9). We will show that the proposition holds with A =
max{A;, A2}. We do this by induction on d(z, X ), the number of divisors £
over z € X such that Ax(E) < 1. By [KM98, Proposition 2.36(2)], d(z, X) <
+00. Let T € X be the simultaneous index one cover of Kx and D so that
(zx € X) = (z € X)/H for some finite abelian group H. Let D C X be
the preimage of D. Then ¥ € X is a Gorenstein canonical singularity and
D is Cartier. If X is a cDV singularity, then the statement already follows
from Lemma 6.9. In particular, the proposition holds when d(z, X) =0 (i.e.,
when z € X is terminal), since the index one cover of a threefold terminal
singularity is ¢cDV. If € X is not a cDV singularity, then by [KM98, Lemma
5.30 and Theorem 5.35] there exists an H-invariant divisor Fover 7 € X
with Ag(ﬁ) = 1. Smce D is Cartier, we obtain ord (~) > 1 and hence
Ag 5(?) < 0. As (X,D) is lc, it follows that F is an lc place of (X, D).
Let F be the induced lelbOI‘ over X. Then by [KM98, Proposition 5.20] we
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have Ax(F) <1 and Ax p(F)=0. By Lemma 2.2, there exists a birational
morphism 7: Y — X with a unique exceptional divisor F' such that —F
is m-ample. Let Dy = n;'D. Since F is an lc place of (X, D), any lc
place E of (Y, F) is also an lc place of (X, D). Moreover, if E is of plt
type over Y, then it is a Kolldr component over x € X by Lemma 5.3. By
construction, Ky < n*Kx, hence Ax(F) < Ay (F) for any divisor F over
Y. Thus it suffices to find an lc place E of (Y, F) that is of plt type over Y
and has log discrepancy Ay (F) < A. If the minimal lc center of (Y, F') has
codimension < 2 this follows from Corollary 6.5 and our choice of the constant
A. Otherwise F is a reduced Q-complement of y € Y for some y € 7~ 1(x).
By Lemma 2.10, we have \7(;1(y,Y) > e. From the definition we also have
d(y,Y) <d(xz,X)—1, hence in this case the result follows from the induction
hypothesis and we are done. O

Corollary 6.11. Conjecture 1.7 holds in dimension three.

Proof. This is a combination of Proposition 6.4, Lemma 5.10, Proposition

6.6 and Proposition 6.8. |
Corollary 6.12. Conjecture 1.1 holds in dimension three.
Proof. This is a combination of Theorem 4.8 and Corollary 6.11. O

7. Examples and discussions

In general one should be more careful when making analogy between mld¥
and the usual mld. In this section, we give some examples that illustrate
the difference between them, and discuss some related questions. Our first
example shows that mld¥ can be arbitrarily large in a given dimension, and
may fail to be lower semi-continuous.

Example 7.1. Let 1 < a < b be coprime positive integers. Consider the
klt surface singularity 0 € (X = Aﬁy, A= %(x“ +y® =0)) and the weighted
blowup 7: Y — X with wt(z) = b and wt(y) = a. The exceptional divisor
E is a Kollar component and by adjunction one can check that Diff g(Ay) =
(1-1HP+(1-1)Q+ LR where P and Q are the two singular points of ¥
and R # P,Q is a smooth point. It is then not hard to see that the alpha
invariant a(E,Diff g(Ay)) = 1 and hence E is the only Kolldr component
over 0 € (X, A) by [Pro00, Theorem 4.3]. It follows that

mld®(0, X,A) = Ax A(F) = a.

By [LX20, Theorem 1.3], we also have vol(z, X, A) = Ax A (E)?-(—(E?)) = .
Thus unlike the boundedness conjecture for mld, the upper bound on mld®
in Conjecture 1.7, if exists, necessarily depends on the coefficient set I. Note
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also that mldK(gc7 X,A) <2 when z # 0. Hence the example also shows that
mld® is not lower semi-continuous.

When X is a surface and A = 0, one can check that mld®(z, X) coin-
cides with the usual minimal log discrepancy mld(z, X) (see [LX]). Exam-
ple 7.2 shows that starting in dimension three mld™(z, X, A) differs from
mld(z, X, A), even when A = 0.

Example 7.2. Let n > 3 and consider the canonical hypersurface singu-
larity

0 (et +al +ay---+2" =0) CC"h

It can be resolved by the ordinary blow up, and the corresponding exceptional
divisor F is the only divisor that computes the mld. But E is not a Kollar
component: it has a singular point of multiplicity n, in particular it’s not klt.

Although Example 7.1 shows that mld® does not satisfy lower semi-contin-
uity, we may still ask if it satisfies the other conjectural property of the mld,
i.e., the ascending chain condition (ACC).

Question 7.3. Let n € N* and let I C [0, 1] be a DCC set. Does the set
{mld¥(z, X, A)| dim X = n, Coef(A) € I, and z € (X, A) is kit }

satisfy the ACC?

Recall that the Weil index of a Fano variety X is the largest integer ¢
such that —Kx ~g ¢A for some Weil divisor A on X. A Fano variety X
is said to be weakly special if (X, D) is log canonical for every effective Q-
divisor D ~p —Kx. If Conjecture 1.8 were true, it would imply Conjecture
7.4; otherwise the orbifold cone construction will produce counterexamples to
Conjecture 1.8.

Conjecture 7.4. Let n € N*. Then there exists some constant N > 0
depending on n such that the Weil index of any n-dimensional weakly special
Fano variety is at most N.

We suspect that Conjecture 7.4 may hold even for K-semistable Fano va-
rieties. Our main intuition comes from toric examples: while a weighted
projective space can have arbitrarily large Weil index, it is K-semistable only
when it’s P™. If this is true, it may provide strong evidence towards Shokurov’s
boundedness conjecture for mld, since by [XZ21] every klt singularity admits
a unique K-semistable valuation.
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