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Abstract

In response to COVID-19, many countries have mandated social distancing and banned
large group gatherings in order to slow down the spread of SARS-CoV-2. These social
interventions along with vaccines remain the best way forward to reduce the spread
of SARS CoV-2. In order to increase vaccine accessibility, states such as Virginia have
deployed mobile vaccination centers to distribute vaccines across the state. When choosing
where to place these sites, there are two important factors to take into account: accessibil-
ity and equity. We formulate a combinatorial problem that captures these factors and then
develop efficient algorithms with theoretical guarantees on both of these aspects. Further-
more, we study the inherent hardness of the problem, and demonstrate strong impossibility
results. Finally, we run computational experiments on real-world data to show the efficacy
of our methods.
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1 Introduction

The COVID-19 pandemic continues to cause immense social, health, and economic impact
globally. As of writing this paper, the U.S. alone has seen over 850,000 deaths and over 65
million confirmed cases; see [1] for the latest numbers. Vaccines have proven to be very
effective in reducing the health burden of the pandemic and continue to be the best strategy
to control disease spread and potentially end the pandemic in its current form. Despite the
effectiveness, administering COVID-19 vaccines to all eligible individuals in the popula-
tion continues to be a challenge. As of February 2022, only 64% of the eligible population
is fully vaccinated in the United States [2]. Furthermore, there is a significant disparity
in vaccination rates between demographics—the rate among Whites was 1.2 times that of
African Americans and 1.1 times that of Hispanic people. The reasons why some people
have not been vaccinated include distrust and skepticism regarding COVID-19, accessibil-
ity issues, and concerns about the cost [3]. Lottery schemes, mandates, vaccine clinics,
and other strategies have been implemented to increase the vaccination rate with varying
levels of success. Since cost and accessibility remain a challenge for a fraction of the popu-
lation, especially minorities and people in poorer neighborhoods, mobile vaccine clinics
have been an important part of the public health response strategy of government agencies.
In this paper, we study the problem of deploying mobile vaccine administration sites with
the goal of improving the accessibility of vaccines to individuals.

Deploying vaccination clinics is a form of a facility location problem [4, 5], which is a
family of problems where we have largely autonomous agents—people in a population—
who desire high-quality service for themselves (e.g., in the form of easily-accessible vac-
cination services); we balance this with the global constraint of a budget on the number
of vaccination facilities, as well as through the notion of equity across the agents and the
demographic groups they belong to. Our problem is referred to as the k-supplier problem,
in which a limited set of k facilities needs to be placed so that every person (i.e., a client)
is “close” to a facility; a common metric to measure closeness is the maximum distance
between a client and their closest facility, though many other notions have been studied.
Facility location problems are well understood, and efficient approximation algorithms
and practical heuristics exist. However, deploying vaccine clinics leads to a novel facility
location problem (referred to as the MOBILEVACCCLINIC problem) since people (clients) are
mobile rather than stationary. Suppose each person p visits a set S, of locations during the
day; then it suffices to deploy a clinic close to at least one location in S,. Our contributions
are the following:

e We formalize the MOBILEVACCCLINIC problem for modeling the deployment of mobile
vaccine clinics in a way that takes into account human mobility patterns (by consider-
ing the distance to a facility from any of the locations visited by a person), fairness (by
requiring that at least a fraction of people in each demographic group have a nearby
clinic), outliers (by allowing partial coverage), capacity constraints (by restricting the
number of people assigned to each clinic), and fault tolerance (by requiring each client
to be served by multiple facilities). We show that this problem is much harder than the
standard k-supplier problem and getting any bounded polynomial-time approximation
to the minimum distance is not possible, thus motivating bicriteria and fixed-parameter
tractable algorithms.

e We design two approximation algorithms. The first is a fixed-parameter tractable algo-
rithm that gives a 3-approximation, where the parameterization is on the number u of
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locations where people travel. Note that even this is non-trivial, since the possible loca-
n

k
solutions. The second algorithm, based on covering problems, is a (1,logn + 1)-bicrite-
ria one, where n is the number of people. This means that if we violate the budget on
the number of vaccine centers by a logn + 1 multiplicative factor, we can find a solu-
tion that is optimal. Finally, we extend both of our algorithms to satisfy many practical
considerations related to vaccine distribution including outliers, fairness, capacity; we
also extend our bicriteria algorithm to be fault tolerant.

e We evaluate our algorithms for a realistic population of a county in Virginia. We find
that our algorithms generally give a significant improvement over natural baselines,
even when limiting the amount of travel information available to the algorithms. In par-
ticular, we see many shortcomings of only considering a client’s home (rather than their
entire travelling route), emphasizing the importance of our problem formulation. Addi-
tionally, our algorithms allow us to compute a tradeoff between the maximum distance
to a clinic and the number of clinics; this naturally enables us to give a recommendation
to the government on the most cost-effective budget policy. Finally, we find that the
solutions computed by our algorithms have a useful “kernel” property—as the budget is
increased, the locations which were picked for a lower budget are still part of the solu-
tion. This implies that an incrementally constructed solution (which is how such facili-
ties would be deployed in practice since the budget is not known ahead of time) will
still be good.

tions S where we can place facilities is still variable, so there are still ) possible

We remark that though our framework is motivated by the current COVID-19 pandemic, it
can be generally applied to both epidemiological and non-epidemiological settings. Exam-
ples within healthcare include placing testing and treatment units (as deployed during the
Ebola crisis) and delivering healthcare in rural settings for resource-limited countries.
Beyond healthcare, the placement of mobile distribution centers arises in disaster-manage-
ment settings. For instance, shelters need to be set up for individuals evacuating during a
hurricane or forest fire, who might need food and other basic survival kits. During such
large events, mobile sites are also used to place security posts and information kiosks.

2 Preliminaries

Recall that we wish to place vaccination centers such that vaccines are more accessible to
the population. This question is often formulated as an appropriate variant of the facility
location problem, which is well-studied in the operations research literature (see Related
Work). In our paper, we introduce a new variant that follows a recent line of work on inte-
grating the mobility patterns of the population into disease models [6—8]. As is standard,
we will use the distance from a vaccination center as the metric for defining accessibility.
The key change, however, is that clients will be represented by a set of locations that they
visit (within a time period) instead of just one point. Though this will make the problem
much harder to solve efficiently, it will more strongly correlate with the likelihood of a per-
son going to a vaccine center (Fig. 1).

Problem Statement We are given a set of locations C in a metric space characterized
by the distance function d : Cx C — R,,. We additionally have a set of n individuals/
clients P. Each individual p € P is associated with a set Sp C C, which we can interpret
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Fig. 1 An example of moBILEvacccLINic. The different colors represent different people and the circles rep-
resent the locations they visit (with the bottom three being their homes). In this case, the blue location in
the middle is an optimal location to place a vaccination center. If we instead only considered homes in the
problem formulation, we would place the vaccination center in the green circle marked with a star, which
would require people to deviate from their normal travels much more when getting a vaccine (Color figure
online)

as the set of locations p visits throughout the day. Finally, the input also includes a posi-
tive integer k constraining the number of facilities we can place, and a set S C C contain-
ing the locations where we are allowed to place facilities. The goal of MOBILEVACCCLINIC
is to choose a set F C S with |F| < k to place facilities, such that for every p € P we have
d(Sp,F ) <R, for the minimum R possible. Here, we use the standard notation where
d(S,F) = rIlin_ieSJ,e rd(@,j"). Intuitively, this objective tries to minimize the maximum
distance between the set of facilities placed and the locations visited by any client. Since
agents have varied preferences and behaviors, we also consider a few natural extensions in
order to take these into account:

e Qutliers in order to achieve herd immunity, we only need to vaccinate a large portion
of the population (rather than every single person). Additionally, a few outliers in client
set may have an disproportionate impact on the facility placement. In order to coun-
teract this, we can take as input a parameter ¢, and seek to provide for only | gn | of the
clients, ignoring the remaining ones. Formally, the new objective is to minimize R such
that[{p € P : d(S,,F) < R}| > |gn].

e Fairness many studies have shown that COVID-19 disproportionately affects some
demographic groups [9]. To counteract this, we seek to guarantee that different demo-
graphic groups have similar accessibilities to vaccines. As an example, when we solve
the outliers formulation, we can guarantee that we are covering the same proportion of
each demographic group when deciding the facility placements.

e Capacity it is natural to assume that the number of vaccines that can be stored in each
mobile facility is limited. To take this into account, we consider the capacitated MOBI-
LEVACCCLINIC where take in as input the capacity L and need to guarantee that every
chosen facility will have at most L people assigned to it.

e Priority some people have cars while some people can only walk or use public
transportation, so traveling the same distance may require significantly different
travel times. If we use the same notion of distance for every person, this would treat
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people without cars unfairly. To counteract this, we consider a weighted (or prior-
ity) variant of the problem where our objective is to minimize max,ep w,, - d(S,,, F).
For people p who don’t have cars, we can set their weight w,, to be higher to force
facilities to be placed closer to these people.

e Fault Tolerance unpredictable emergencies may cause some facilities to be unable
to provide vaccines (such as traffic accidents or family emergencies). In order to
prevent such unforeseen circumstances from effecting whether or not the clients can
be vaccinated, we can take an input a and require that each client is served by at
least a facilities within radius R, for the minimum R possible.

3 Related work

Due to its applications in a large number of domains, facility location and broader
location theory is a very well-studied area; see, e.g., the surveys [4, 5, 10]. The general
goal in this family of problems is to deploy facilities to provide the best possible ser-
vice to a set of clients. A huge number of objectives have been considered, along with
a plethora of variations such as fairness variants and online or stochastic versions. The
MOBILEVACCCLINIC problem we study here is a generalization of the well-known k-center
problem, where the goal is to open at most k centers while minimizing the maximum
distance of a point to its closest center. For this simple clustering setting, there exist
efficient 2-approximation algorithms [11, 12]. Furthermore, it is shown that unless
P=NP this is the best achievable approximation ratio [13].

In a recent related work [8], we studied the problem from a practical perspective and
gave data driven heuristics for real-time placement of distribution sites. The key idea
in that work is the use of near-real-time mobility data to decide dynamic placement of
the sites. The focus of this work was to provide strategies that take into account weekly
changes in traffic patterns. One of the baselines we compare to in Sect. 6 is inspired by
the work in this paper. Recently, other authors have also studied the facility location
problem for vaccine distribution; see [14—18]. The paper by [16] considers a possible
placement of the distribution sites at CVS stores across a region. The work by [14]
considers the problem at a national level and is based on simulating the disease pro-
gression using a compartmental model combined with placement algorithm. Finally,
the work of [17] is similar to our work in [8] in that it develops data driven strategies
for allocating vaccine distribution sites.

Location theory problems have also been considered in the more general area of
healthcare, e.g., [10, 19-21]. A lot of this work has been focused on placing mobile
clinics or temporary facilities to ensure good service, especially in resource-poor coun-
tries. As mentioned in [10], the healthcare domain poses new challenges for location
theory, such as uncertainty, reliability, operation efficiency, patient safety, and cost-
effectiveness. Overall, prior work has generally not considered the mobility of clients
at a detailed scale, which provides more flexibility in deploying facilities. Our formu-
lation of MoBILEVACccLINIC explicitly models human mobility, thus providing a realistic
framework for public health agencies in their response efforts. In concurrent and inde-
pendent work, [15] formulate a related problem to MOBILEVACCCLINIC with a slightly dif-
ferent objective; however, they approach the problem heuristically via a mixed-integer
linear programming approach so our results are largely complementary.
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4 Hardness result

For our hardness result, we use the following problem studied in [22], called y-Color-
ful k-Center or yCkC for short. This problem is a generalization of the outliers version
of k-center — in addition to the classical constraints, colors (representing demographic
groups) are assigned to each client and the problem requires that a sufficient number of
points of each color is covered. The formal definition is given below:

Definition 1 Let y € Z,, be the number of colors, k € Z, be the budget, C be a set of
points in a metric space, and d : CxX C- R, be the distance function on C. For each
¢ € [y], let C, C C be the points with color # and let m, € Z, be the number of points
with color # which need to be covered. yCkC asks for the minimum radius R together with
a set F' C C with |F| <k, such that at least m, points of C, are covered within distance
R by F. Formally, if B(F,R) = {j € C : d(j, F) < R} then we want |B(F,R)NC,| > m, for
every 7 € [y].

In [22] the authors prove the following hardness result, which we use to prove a hard-
ness result for our problem later on.

Lemma 1 When y is not a constant, there exist instances of yCkC with m, = 1 for all
¢ € [y], such that if R* is the optimal value of the instance, the following hold:

e For any p > 0, it is NP-hard to find F' C C with |F| < k and |B(F, pR*) n C,| > m,, for
all 7. In words, it is NP-hard to devise any approximation algorithm for yCkC.

e Foranyp>0ande € (0, 1), itis NP-hard to find F C Cwith|F| < (1 —¢)Iny - k and
|B(F, pR*) n C,| > m, for every ¢ € [y] (i.e., it is NP-hard to devise any bicriteria
approximation for yCkC, whose chosen centers will be at most (1 — €)Iny - k).

e These problematic instances consist of points on a line.

Remark 1 Regarding the second statement in Lemma 1, the authors of [22] show a bicrite-
ria hardness result in terms of log |C| and not In y. However, a closer look into their proof
reveals that the claim mentioned above follows trivially. We choose to present this form of
the claim because it better fits our narrative later on in the paper.

Theorem 2 There exists a bicriteria preserving reduction of the problematic instances of y
CkC described in Lemma 1 to instances of MoBILEVACCCLINIC with |P| = y. Specifically, any
(p, @)-bicriteria approximation for MOBILEVACCCLINIC translates to a (p, a)-bicriteria approxi-
mation for the problematic instances of yCkC.

Proof Let (C,C,, ..., Cy, k,my, ... ,my) be a problematic instance of yCkC as described in
Lemma 1, and recall that this instance has m, = 1for all # € [y]. We will now construct an
instance of MOBILEVACCCLINIC as follows. The metric space for MOBILEvacccLINIC will be the
same as in the yCkC problem. That is, we assume we have points C with a distance func-
tion d on them. For every £ € [y] construct a client p,, and set Spf = C,. The set of loca-
tions S for MoBILEvAcccLINIC where we can place facilities will be the set of locations C of y
CkC, and the value k will stay the same for the two problems.
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Consider now the optimal solution F* of the yCkC instance and its corresponding
value R*. We claim that F* is a feasible solution for the constructed MOBILEVACCCLINIC
instance, and its value for that is exactly the same. This is easy to see because |F*| < k,
|[B(F*,R*) N C, > 1for every ¢ € [y], and C, are exactly the locations visited by client p,.
Hence if R,py is the value of the optimal solution to the the constructed MOBILEVACCCLINIC
instance, we have R,pr < R*

Take now any (p, a)-bicriteria solution F for MOBILEVACCCLINIC. At first we trivi-
ally have |F| < ak. Moreover, for every £ we can express d(F,S f) < pRypr (the condi-
tion guaranteed by the (p, a)-bicriteria solution F' for MOBILEVACCCLINIC) since we know
|B(F, pRopr) N C,| > 1. Finally, because R,pr < R*, we have B(F, pR,pr) € B(F, pR*).
Hence, we can conclude |B(F, pR*) N C,| > |B(F, pRppy) N C,| > 1for every £ € [y]. The
latter completes the bicriteria preserving reduction. a

Corollary 3 Even when the metric space is the Euclidean line, we have the following for
MOBILEVACCCLINIC (unless P=NP):

1. No approximation algorithm exists.
2. Any bicriteria approximation algorithm must use at least k1n n facilities.

5 Algorithms

In this section, we introduce efficient methods which give (approximately) optimal facility
placements, despite the hardness results. We also show how to extend each of our algo-
rithms to incorporate outliers, fairness constraints, capacity constraints, and fault-tolerance.

5.1 Fixed-parameter tractability

LetU = Upep S, denote the set of all the locations visited by the set of clients and u = |U|
be the number of locations in this set. Due to potential privacy concerns, we can assume
that the client locations we have access to only include large public areas in the county
such as malls, shopping centers, etc. Hence, it is reasonable to conclude that u is a fixed
parameter, which we assume ranges from 15 — 30. Given this fixed parameter, we develop
an efficient algorithm for our problem.

The main observation here is the following: consider an instance of MOBILEVACCCLINIC
and let F* be its optimal solution, whose maximum radius we denote by R*. For each
p € P, we know that d(F*,S, ) < R*, and hence there must exist a location ip e Sp with
d(i,, F*) < R*. See now that {i, | p € P} C U, and therefore |{i, | p € P}| < u. The latter
implies that we can guess, via an exhaustive search, the set {i, | p € P} in time at most 2"
(recall that since u is considered a fixed parameter, 2 is thought of as a small constant).
Let A be the correct guess for that set; we can think of A as the set of locations through
which the optimal solution covers every client within distance R*. Given A, we see that the
problem of computing F* reduces in a straightforward manner to the well-known k-supplier
problem [11].

In k-supplier we have a set of points X and a set of locations Y in a metric space with
distance function d. The goal is to choose C C'Y with |C| < k, such that the maximum
distance of any point in X to its closest location of § is minimized. Hence, after correctly
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guessing A, we create an instance of k-supplier where the points are the ones in A, and the
set of locations Y is S. The previous discussion shows that F* is a solution for this k-sup-
plier instance, and its maximum radius will again be R*. Moreover, any p-approximate
solution to the k-supplier instance will trivially be a p-approximate solution for MOBILEVAC-
ccLinic. Using the 3-approximation algorithm from [11] proves the following theorem.

Theorem 4 Algorithm 1 yields a 3-approximation algorithm for MOBILEVACCCLINIC and runs
in time 2" poly(n, |C|).

Algorithm 1 FPT

1: for Ae2V 1 |ANS,|#0,Yp € P do
2: Obtain locations F4 by running the k-supplier algorithm on the
appropriate instance discussed above.
Calculate the objective value for Fjy.
4: end for
5: Pick the F4 with the smallest objective value.

Moving forward, we see that the same approach of guessing the correct set of client
locations A will also apply in different settings. In fact, the only thing that may differ is the
need for an alternative k-supplier algorithm that can incorporate the specific constraints of
each unique setting; we survey some of these settings below.

Outliers To modify our algorithm so that it only considers some fraction ¢ of the popu-
lation, we only need to change the objective value evaluated in line 3 of Algorithm 1. To
improve efficiency, we can also only consider guesses A that contain locations from at least
Lgn| clients since the correct guess A contains locations from at least |gn| clients. If we
then feed A to the k-supplier algorithm in the exact same manner as before, we will get a
3-approximation.

Corollary 5 After changing the objective evaluated in line 3 to the partial objective, Algo-
rithm 1 gives a 3-approximation for MOBILEVACCCLINIC with outliers.

Fairness Although our algorithm provides an upper bound guarantee for the maximum
distance to a facility, the facility placement may significantly differ between individuals,
with some having a facility right next to them, while others need to travel the whole 3R*
guarantee. Luckily, the vaccine centers can vary from week to week or even day to day.
Thus, we can use a randomized algorithm such as the one given in [23], to guarantee that
the re-provisioning of facilities over the course of many tries will provide an improved per-
point guarantee on expectation. Hence, we treat the clients stochastically fairly.

Corollary 6 When using the algorithm from [23] for k-supplier, Algorithm 1 out-

puts a distribution € such that Np € P, we have Ep_gld(S,, F)] <(1+2/e)R* and
Pr[d(Sp,F) <3R*]=1
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Capacity In this case, we assume that each facility we use has a capacity L, i.e., at
most L clients can be assigned to it in any solution. Once again, the FPT process we
described earlier suffices to solve the problem. Specifically, we can think of the set A
as the locations through which the clients of P receive their service. Hence, as we did
for the regular case, we can create an instance of k-supplier where the points requiring
service are those of A, but this time each location of Y for the k-supplier instance will
have a capacity L. In other words, this will be an instance of capacitated k-supplier.
Furthermore, the optimal solution of capacitated MOBILEvAccCLINIC will be a solution
of the same value for the capacitated k-supplier instance. Finally, it is also trivial to
see that any p-approximate solution for capacitated k-supplier instance, will yield a p
-approximate solution to capacitated MOBILEVACCCLINIC.

Corollary 7 When using the algorithm from [24] instead of a simple k-supplier algorithm,
Algorithm 1 is an 11-approximation for capacitated MOBILEVACCCLINIC.

5.2 Covering algorithm

In Corollary 3, we show that any bicriteria algorithm needs to open at least k Inn facili-
ties in order to give a bounded approximation guarantee. Here, we show that this is
essentially tight: we give an algorithm that outputs a set of locations of size at most
k(Inn + 1), while guaranteeing that the objective value is at most that of an optimal
solution.

Consider the related problem, which we call CLIENTCOVER, in which instead of opti-
mizing the radius R given a budget k, we are given a target radius R and want to choose
a set F C S which minimizes |F| and guarantees that d(S,, F) < R for each p € P. Notice
that this is just a standard Set Cover problem, where the sets are {p € P : d(S,,)) < R}
for each j € S and the universe consists of the clients P. Using a known greedy algo-
rithm for Set Cover [25], we have an H, -approximation algorithm for CLIENTCOVER,
where H, <Inn + 1is the n-th harmonic number.

For generality, we will show how any a-approximation algorithm for Set Cover
yields an (1, @)-bicriteria algorithm for MOBILEvAccCLINIC via a reduction to CLIENT-
cover. First, note that the optimal radius R* for an instance of MOBILEVACCCLINIC is
always the distance between some j € C and some i € S. Hence, there are at most pol-
ynomially many options for it, specifically |C| - |S|. For each such option R, we create
the corresponding instance of CLIENTCOVER and run the set cover algorithm on it. The
final guarantees follow from the iteration when R = R*. Observe at this point that we
can speed up the whole process by performing a binary search in order to find R*, and
thus avoid the previously described exhaustive search.

Algorithm 2 CLIENTCOVER Search

1: Binary search on the sorted list {d(7, j) : j € C,i € S}, and let the current
guess be R:

Use R to create the proper instance of CLIENTCOVER.

Obtain a-approximate solution Fr for that instance.

If |Fgr| > « - k, increase R; else, decrease R.
: Output Fr for the minimum R such that Fr < « - k.
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Theorem 8 Given an a-approximation algorithm for set cover, Algorithm 2 gives an (1, a)
-bicriteria algorithm for MOBILEVACCCLINIC.

Proof Let R* be the objective value for the optimal solution F* C S of MOBILEVACCCLINIC,
where |F*| < k. We wish to show that cLIENTCOVER Search finds a radius R in the list such
that |Fg| < a - k and R < R*. Consider an iteration of the binary search where the radius
guess is R. Suppose R > R*; then there must exist a solution of CLIENTCOVER of size at most
k. The a-approximation algorithm will therefore output a set Fj, with Fp < @ - k and R will
decrease. If R < R*, then we either find a solution with Fr < a - k, or we increase R and
move closer to R*. Finally, since R* is in the list {d(i,j) : j € C,i € S}, the binary search
necessarily finds some R < R* with Fp < a - k. O

As in the case of our FpT algorithm, we can easily extend Algorithm 2 in order to accom-
modate different settings. The only difference here lies at step 3, where instead of a classic
Set Cover algorithm we can run a different algorithm.

Outliers In order to modify our algorithm to only consider some fraction g € (0, 1) of
the population, we can use some a-approximation algorithm for the Partial Set Cover prob-
lem, where the goal is to cover at least a g-fraction of the universe elements. Hence, we
naturally consider a variant of CLIENTCOVER, which we call Partial CLIENTCOVER, that requires
only |gn] points to be covered by balls of radius R*. Trivially, Partial CLIENTCOVER is a spe-
cial case of Partial Set Cover. Then the approach we described previously remains the
same: we can guess the optimal radius R* and obtain an a-approximate solution Fj. for the
corresponding Partial cLIENTCOVER instance. This solution will be optimal for MoBILEvVACC-
cLINIC with outliers, while placing at most ak facilities. In particular, we have the following
corollary of Theorem 8.

Corollary 9 When using the greedy algorithm for Partial Set Cover [25], Algorithm 2 gives
a (1, H\,, )»-bicriteria algorithm for MOBILEVACCCLINIC with outliers.

Fairness When solving MoBILEVAcccLINIC with outliers, the algorithm may view some
demographic groups as outliers more often than others. To mitigate such possibilities, we
can use an algorithm for the Partition Set Cover problem [26] to guarantee that a large
proportion of each demographic group gets coverage. Formally, the Partition Set Cover
problem takes in as input a Set Cover instance (U, S) and r (not necessarily disjoint) color
classes and requires that p, elements in each color class is covered. For example, we can
guarantee that the algorithm considers a proportional number of people from each (demo-
graphic) group when choosing the vaccine center locations. The following approximation
guarantee will then follow directly from [26] and the outliers reduction before.

Corollary 10 Let C, C P for t € [r] be (not necessarily disjoint) demographic classes and

let 0 < p, < |C,| be the coverage requirements for each class. Using the algorithm of [26]

at step 3, Algorithm 2 gives a (1, O(log n) + log r)-bicriteria algorithm while satisfying the
coverage constraints.

Capacity As before, we assume that each facility we use has capacity L. We see that our
general framework is still applicable: we can modify our algorithm to satisfy these capac-
ity constraints by replacing the Set Cover algorithm in CLIENTCOVER with an algorithm for
Capacitated Set Cover, which requires each set in the universe to only be assigned to cover
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L elements. It is clear that the capacity constraints on the sets in Capacitated Set Cover
corresponds to the capacity constraints on facilities in our problem. Thus, the greedy algo-
rithm given in [27], which gives a H,-approximation algorithm in this more general case,
directly yields to the following corollary:

Corollary 11 When using the greedy algorithm given in [27] for Capacitated Set Cover,
Algorithm 2 gives a (1, H,)-bicriteria algorithm while satisfying the capacity constraints.

Priority To take into account the weights for the priority version of our problem, we can
still use the general framework of cLIENTCOVER. In Line 1 of Algorithm 2, we now need to
binary search on {d(i,j) - w, : j € C,i € S,p € P} to guess the optimal (weighted) radius.
Given a guess R, we now construct the corresponding set system Fj as follows: for each
facility location i € S, add the set {p € P : d(S,,,j) < R/w,} to the set system. It is easy to
see that when R = R* is guessed correctly, we can cover the clients using exactly k facili-
ties. Thus, we have the following corollary with a proof analogous to that of Theorem 8:

Corollary 12 When creating the set cover instance as described above, Algorithm 1 is a
(1, H,)-approximation for priority MOBILEVACCCLINIC.

Fault Tolerance To make sure each client is served at a < k different facilities during its
travels, we can continue using the general cLIENTCOVER framework. We create the set cover
instance as before, but now our requirement is that each element is covered at least a times
by some facility. This corresponds to the problem of Set Multi-Cover, which additionally
takes in as input the number of times each element needs to be covered. Using the stand-
ard greedy algorithm for this problem [28], we get the same guarantees for Fault-Tolerant
MOBILEVACCCLINIC:

Corollary 13 When using the greedy algorithm for Set Multi-cover [28], Algorithm 1 is a
(1, H,)-approximation for fault-tolerant MOBILEVACCCLINIC.

Budget In the previous algorithms which solve CLIENTCOVER as a subroutine, we violate
the budget constraint k on the number of facilities by a non-trivial multiplicative factor,
which is a practical consideration that needs to be addressed. Luckily, it has been shown
that the greedy algorithm and other heuristics for Set Cover have very small approximation
ratios in practice [29]. In fact, many real-life instances of Set Cover are solved optimally
or near optimally by the greedy algorithm [30]. Given this empirical result (which we also
validate for our instances of the Set Cover problem), we get @ = 1 in our experiments when
running CLIENTCOVER Search. In particular, if we solve the CLIENTCOVER problem using a
commercial mixed-integer linear program (MILP) solver [31, 32], we can solve the original
problem to optimality. We emphasize that this is a non-trivial contribution: directly formu-
lating MOBILEVACCCLINIC as an MILP requires ®(n?) constraints, and we cannot even initial-
ize the solver using or-tools. In contrast, the Set Cover MILP only has ®(#n) constraints,
which can be solved efficiently using commercial solvers. Hence, when using an MILP
solver to solve CLIENTCOVER, Algorithm 2 yields a practical solution for solving MOBILEVAC-
CCLINIC optimally.
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Table 1 Network information

Clients Activity locations Residential ~ Maximum activity Measured

locations diameter
(km)
Charlottesville City 33,156 5660 10,038 9952 8.12
Albemarle County 74,253 9619 32,981 24506 61.62

6 Experiments
6.1 Experimental setup

Data We run our experiments on the mobility data from Charlottesville City and Albe-
marle County in Virginia. For these counties, we use synthetic data constructed from
the 2019 U.S. population pipeline (see [33, 34] for details). This dataset was constructed
by tracking the week-long activity of county residents. Each resident is represented by a
sequence of activities, where each activity is described by duration, type, and location in
the county. The locations are given in geodetic coordinates and are categorized as either a
residential or activity (non-residential) location. From this dataset, we can extract the loca-
tions visited by individuals residing in the county and set all activity locations as potential
facility placements. A summary of the dataset is given in Table 1.

Baselines We compare our algorithms with two heuristics: HOMECENTERS and MOSTAC-
TIVE. In MOSTACTIVE, we open vaccination centers at the k most visited locations. We set
MOSTACTIVE as the baseline because it is related to the current heuristic used by the Virginia
Department of Health. In HOMECENTERS, we run k-supplier to place facilities at locations
that minimize the maximum distance from client homes. We compare with this baseline
in order to show the importance of considering mobility when placing the vaccination
centers.

Objective Recall that our objective is to minimize the maximum distance any client
needs to deviate from their path to reach some facility. Since our location data is given in
the geographic coordinate system, we approximate the Earth as a sphere and use geodesic
distance as our metric. In Sect. 6.2, we notice that there is a sharp drop in the objective
value if we only consider 99% of the population. As a result, we also evaluate the objective
value of our algorithms when 5% of the people are considered outliers.

FPT details When using FPT in our experiments, we pick u = 15 locations that cover
the largest portion of the population (as given by the greedy algorithm for the Maximum
Coverage problem). We then run FpT using only knowledge of these u locations. The loca-
tions chosen are all popular public activity locations, so we have a limited amount of pri-
vacy violation. As a result, the performance of FpT is weaker on the full objective, but
remains strong on partial coverage (the outliers formulation). It is important to note that
even though we limit the knowledge of client-visited locations, FpT can still choose to place
facilities at any activity location in the dataset. For more details on our implementation of
FPT and the experiments, see our GitHub'.

! https://github.com/gz1i929/MobileVaccClinic.

@ Springer


https://github.com/gzli929/MobileVaccClinic

Autonomous Agents and Multi-Agent Systems (2023) 37:31 Page 130f19 31

Charlottesville City Albemarle County
2.5
20
£20
& 15
o
% 1.5
>
> 10
210
(9]
2
Q
os| __———————or——r 5
0.0 0
80.0 825 850 875 90.0 925 950 97.5 100.0 80.0 825 850 875 90.0 925 950 97.5 100.0
Percentile of Clients Covered Percentile of Clients Covered
—— HomeCenter —— MostActive — FPT15 —— ClientCover

Fig.2 A comparison of the algorithms and baseline heuristics for various coverage requirements
p € [0.8,1.0]in the outliers objective of our problem. The budget is set to 10 for Charlottesville and 20 for
Albemarle

6.2 Client coverage performance analysis

We begin by directly comparing the performances between our algorithms and the base-
lines. Because our objective value is defined by the maximum distance any client must
travel to reach their closest facility, it does not give good insight into the distribution of
travel distances for the entire set of clients. For this reason, we also assess how the service
cost for the closest p-fraction of the clients (i.e., the outliers objective for our solution) var-
ies when we let p range between 0.8 and 1.0.

As seen in Fig. 2, facility placements from HOMECENTERS and CLIENTCOVER result in bet-
ter full objectives while facility placements from MOSTACTIVE and FpT result in better partial
objectives. This has a simple explanation: the former two algorithms are forced to provide
service to outliers since they directly optimize the objective while the latter two optimize
over only a portion of the population by design. As a result, it makes sense to compare
HOMECENTERS With CLIENTCOVER and FPT with MOSTACTIVE in the subsequent experiments. We
note that if we instead used the outliers version of HOMECENTERS and CLIENTCOVER, we may
not see this disparity.

6.3 Tradeoff between radius and budget

In addition to evaluating the performance of our algorithms at the current budget, it is
important to evaluate the sensitivity of our algorithms to an increase in budget. That is, we
want to know how much the objective value would decrease if the county allocated more
resources to deploy a greater number of mobile facilities. This knowledge can influence
policy decisions: when an increase budget yields a sharp decrease in objective, the govern-
ment has more incentive to fund additional vaccination centers.

As seen in Fig. 3, there is generally a sharp decrease in the objective value when the
budget is less than 6 facilities for Charlottesville and 9 facilities for Albemarle. As the
budget increases past those thresholds, the marginal returns become so diminished that
increasing the budget hardly changes the objective value. This is especially prominent in
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Fig.3 Tradeoff between maximum distance needed to travel and the number of vaccine centers placed. In
the 95% objective plots, CLIENTCOVER and HOMECENTERS are run with the outliers formulation

the full objective performance of FpT and mMosTacTIVE. Hence, it is natural to recommend
budgets of 6 and 9 facilities to the Charlottesville and Albemarle government, respectively.

A seemingly weird result from the experiment is the tradeoff curve for HOMECENTERS.
Though there is a general downward trend in the objective value as the budget increases,
there are cases in each county where increasing the budget results in an increase in the
objective value. This contradictory phenomenon is caused by the limited correlation
between the distance to homes and our objective; as a result, noise/luck has a considerable
effect. The noisiness of HOMECENTERS emphasizes the importance of our work of modeling
mobile populations.

6.4 Akernel property

Through our experiments, we notice a nice (empirical) property of the vaccine center loca-
tions selected by some of our algorithms. Imagine a case where we (the government) have
the funds to place five mobile vaccine centers and we use our algorithms to pick the five
locations to place them. Then, after two weeks, the government decides that the disease
is causing too much economic devastation and, in turn, funds three more mobile vaccine
centers. When we ask our algorithms to place the eight vaccine centers (approximately)
optimally, it turns out that the eight chosen locations will often contain the original five
chosen locations as a subset. The original five locations are then called a kernel.

In order to determine the presence of a kernel for each of our algorithms, we calcu-
late the number of facilities chosen with budget k — 1 that are not also chosen with budget
k. These values populate Tables 2 and 3, where the leftmost column denotes the budgets
compared. By definition, MOSTACTIVE has the kernel property since it is a greedy algorithm.
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Table 2 Investigating the kernel

property for the four algorithms Most active Home center TPF Client cover

on Charlottesville 34 0 ) ) ;
45 0 1 1 3
556 0 2 1 5
6—7 0 3 2 6
7-38 0 0 1 5
8—-9 0 0 1 3
9-10 0 3 1 6

Table 3 Investigating the l_(ernel Most active F—— — T—

property for the four algorithms

on Albemarle 627 0 R ) ;
7-38 0 1 2 6
8§-9 0 1 2 7
9-10 0 1 1 8
10— 11 0 4 3 5
11-12 0 1 1 9
12-13 0 1 2 4
1314 0 0 | 7
1415 0 5 2 7
15->16 0 1 1 3
16-17 0 1 0 12
17— 18 0 7 0 8
18— 19 0 2 1 7
19 - 20 0 0 0

Our rpr algorithm also (approximately) satisfies the kernel property while maintaining
a stronger performance than the baseline. The remaining two algorithms do not exhibit
the property: both HOMECENTERS and CLIENTCOVER pick (almost) completely different loca-
tions upon increasing the budget. Because they require less relocation, MOSTACTIVE and
FPT have advantageous properties when the budget is adaptive and vaccine distribution is
time-consuming.

We recognize that this is not necessarily applicable to our experimental setting, COVID-
19, since transportation of vaccines is (relatively) easy in Virginia. However, for the Ebola
outbreak in 2014, the kernel property was recognized as an important property to have
since vaccine distribution was a much more costly process. Furthermore, we note that our
algorithms are not explicitly designed to have this property; it is only empirically verified.

6.5 Information constraints

In our previous experiments with CLIENTCOVER, we assumed that we had full knowledge
of the locations each person visited throughout a day. Next, we wish to understand how
fine-grained this data needs to be in order for CLIENTCOVER to outperform our other algo-
rithms; this also addresses privacy concerns raised when using the exact mobility data of
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Fig.4 Analyzing how cLIENTCOVER degrades as we lose fine-grained information about travel patterns. The
budget is set to 10 for Charlottesville and 20 for Albemarle

individuals. In order to model loss of detailed movement patterns, we cluster the locations
within a given radius r together and apply CLIENTCOVER on the resulting cluster centers.
The details of the clustering algorithm can be found in our code, but the general idea is to
define each location to be a potential cluster center and then use the greedy set cover algo-
rithm to pick a minimum set of clusters centers that cover all original locations with radius
r. Using this clustering method for both Charlottesville and Albemarle, we vary the cluster-
ing radius r between 100 and 600 ms to see how much privacy CLIENTCOVER can preserve
while maintaining a superior performance over the baselines.

As we see in Fig. 4, our algorithms gradually degrade in effectiveness as the data
becomes more and more coarse-grained with a sharp loss in objective for Charlottesville
and Albemarle at a clustering radius of 0.48km and 0.35km, respectively. Even with the
approximate travel data, the solutions produced have significantly smaller objective value
than that of MosTACTIVE at 2.39km and FpT at 2.52km. Furthermore, even by clustering the
data with a radius that is 45% of the original CLIENTCOVER objective, we can still perform
better than the HOMECENTERS baseline. From this experiment, we can conclude that even
when giving reasonable privacy to individuals, CLIENTCOVER still performs much better than
FPT, MOSTACTIVE, and HOMECENTERS.

6.6 Only using home and work

In the previous subsection, we observed that CLIENTCOVER was successful in preserving a
reasonable amount of client privacy while maintaining a strong performance in objective
value. We will now explore if this is still true in the extreme case when only the home and
work location data are available when running CLIENTCOVER. In general, the location of your
home and work are known to the government so this doesn’t constitute a strong privacy
violation. Surprisingly, we see in Fig. 5 that CLIENTCOVER still (relatively) consistently out-
performs HOMECENTERS even when using very little additional information. This suggests
that any additional mobility information can play a large role in reducing the distance cli-
ents need to travel to obtain a vaccine. In particular, this greatly highlights the importance
of our problem formulation: our CLIENTCOVER algorithm can take advantage of any amount
of additional travel data to outperform the standard k-supplier algorithm.
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Fig.5 Observing the performance of cLIENTCOVER when only using home and work locations of clients. We
compare this with the full information CLIENTCOVER and HOMECENTERS under various budgets Charlottesville
and Albemarle

7 Conclusion

We introduced a generalization of the classical k-supplier problem where we consider the
mobility of populations when placing facilities. We showed that designing an approxi-
mation algorithm for this variant is NP-Hard. Fixed-parameter tractability and bicriteria
approximation algorithms were studied to overcome the intractability results. Finally, we
carried out computational experiments to demonstrate that the algorithms do well in prac-
tice as compared to natural baseline algorithms.

We conclude with a few directions for further research. First, having demonstrated the
importance of modeling mobile populations, a natural next step is to extend other variants
of the facility location problem to the mobile population setting as well. Second, in practice
individuals have weekly schedule and thus the visits to the locations follow temporal pat-
tern; formulations that capture that naturally and obtain provable approximations will be
of interest. Finally, it would be interesting to explore how the framework can be extended
to make more realistic choices for agents. For example, agents can decide which distribu-
tion centers to visit based on their personal profiles and the policymakers, with limited
knowledge of the agents’ preferences, needs to choose the facility locations to maximize
the number of vaccinations.
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