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Abstract
In response to COVID-19, many countries have mandated social distancing and banned 
large group gatherings in order to slow down the spread of SARS-CoV-2. These social 
interventions along with vaccines remain the best way forward to reduce the spread 
of SARS CoV-2. In order to increase vaccine accessibility, states such as Virginia have 
deployed mobile vaccination centers to distribute vaccines across the state. When choosing 
where to place these sites, there are two important factors to take into account: accessibil-
ity and equity. We formulate a combinatorial problem that captures these factors and then 
develop efficient algorithms with theoretical guarantees on both of these aspects. Further-
more, we study the inherent hardness of the problem, and demonstrate strong impossibility 
results. Finally, we run computational experiments on real-world data to show the efficacy 
of our methods.
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1  Introduction

The COVID-19 pandemic continues to cause immense social, health, and economic impact 
globally. As of writing this paper, the U.S. alone has seen over 850,000 deaths and over 65 
million confirmed cases; see [1] for the latest numbers. Vaccines have proven to be very 
effective in reducing the health burden of the pandemic and continue to be the best strategy 
to control disease spread and potentially end the pandemic in its current form. Despite the 
effectiveness, administering COVID-19 vaccines to all eligible individuals in the popula-
tion continues to be a challenge. As of February 2022, only 64% of the eligible population 
is fully vaccinated in the United States [2]. Furthermore, there is a significant disparity 
in vaccination rates between demographics—the rate among Whites was 1.2 times that of 
African Americans and 1.1 times that of Hispanic people. The reasons why some people 
have not been vaccinated include distrust and skepticism regarding COVID-19, accessibil-
ity issues, and concerns about the cost [3]. Lottery schemes, mandates, vaccine clinics, 
and other strategies have been implemented to increase the vaccination rate with varying 
levels of success. Since cost and accessibility remain a challenge for a fraction of the popu-
lation, especially minorities and people in poorer neighborhoods, mobile vaccine clinics 
have been an important part of the public health response strategy of government agencies. 
In this paper, we study the problem of deploying mobile vaccine administration sites with 
the goal of improving the accessibility of vaccines to individuals.

Deploying vaccination clinics is a form of a facility location problem [4, 5], which is a 
family of problems where we have largely autonomous agents—people in a population—
who desire high-quality service for themselves (e.g., in the form of easily-accessible vac-
cination services); we balance this with the global constraint of a budget on the number 
of vaccination facilities, as well as through the notion of equity across the agents and the 
demographic groups they belong to. Our problem is referred to as the k-supplier problem, 
in which a limited set of k facilities needs to be placed so that every person (i.e., a client) 
is “close” to a facility; a common metric to measure closeness is the maximum distance 
between a client and their closest facility, though many other notions have been studied. 
Facility location problems are well understood, and efficient approximation algorithms 
and practical heuristics exist. However, deploying vaccine clinics leads to a novel facility 
location problem (referred to as the mobilevaccclinic problem) since people (clients) are 
mobile rather than stationary. Suppose each person p visits a set Sp of locations during the 
day; then it suffices to deploy a clinic close to at least one location in Sp . Our contributions 
are the following:

•	 We formalize the mobilevaccclinic problem for modeling the deployment of mobile 
vaccine clinics in a way that takes into account human mobility patterns (by consider-
ing the distance to a facility from any of the locations visited by a person), fairness (by 
requiring that at least a fraction of people in each demographic group have a nearby 
clinic), outliers (by allowing partial coverage), capacity constraints (by restricting the 
number of people assigned to each clinic), and fault tolerance (by requiring each client 
to be served by multiple facilities). We show that this problem is much harder than the 
standard k-supplier problem and getting any bounded polynomial-time approximation 
to the minimum distance is not possible, thus motivating bicriteria and fixed-parameter 
tractable algorithms.

•	 We design two approximation algorithms. The first is a fixed-parameter tractable algo-
rithm that gives a 3-approximation, where the parameterization is on the number u of 
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locations where people travel. Note that even this is non-trivial, since the possible loca-

tions S where we can place facilities is still variable, so there are still 
(
n

k

)
 possible 

solutions. The second algorithm, based on covering problems, is a (1, log n + 1)-bicrite-
ria one, where n is the number of people. This means that if we violate the budget on 
the number of vaccine centers by a log n + 1 multiplicative factor, we can find a solu-
tion that is optimal. Finally, we extend both of our algorithms to satisfy many practical 
considerations related to vaccine distribution including outliers, fairness, capacity; we 
also extend our bicriteria algorithm to be fault tolerant.

•	 We evaluate our algorithms for a realistic population of a county in Virginia. We find 
that our algorithms generally give a significant improvement over natural baselines, 
even when limiting the amount of travel information available to the algorithms. In par-
ticular, we see many shortcomings of only considering a client’s home (rather than their 
entire travelling route), emphasizing the importance of our problem formulation. Addi-
tionally, our algorithms allow us to compute a tradeoff between the maximum distance 
to a clinic and the number of clinics; this naturally enables us to give a recommendation 
to the government on the most cost-effective budget policy. Finally, we find that the 
solutions computed by our algorithms have a useful “kernel” property—as the budget is 
increased, the locations which were picked for a lower budget are still part of the solu-
tion. This implies that an incrementally constructed solution (which is how such facili-
ties would be deployed in practice since the budget is not known ahead of time) will 
still be good.

We remark that though our framework is motivated by the current COVID-19 pandemic, it 
can be generally applied to both epidemiological and non-epidemiological settings. Exam-
ples within healthcare include placing testing and treatment units (as deployed during the 
Ebola crisis) and delivering healthcare in rural settings for resource-limited countries. 
Beyond healthcare, the placement of mobile distribution centers arises in disaster-manage-
ment settings. For instance, shelters need to be set up for individuals evacuating during a 
hurricane or forest fire, who might need food and other basic survival kits. During such 
large events, mobile sites are also used to place security posts and information kiosks.

2 � Preliminaries

Recall that we wish to place vaccination centers such that vaccines are more accessible to 
the population. This question is often formulated as an appropriate variant of the facility 
location problem, which is well-studied in the operations research literature (see Related 
Work). In our paper, we introduce a new variant that follows a recent line of work on inte-
grating the mobility patterns of the population into disease models [6–8]. As is standard, 
we will use the distance from a vaccination center as the metric for defining accessibility. 
The key change, however, is that clients will be represented by a set of locations that they 
visit (within a time period) instead of just one point. Though this will make the problem 
much harder to solve efficiently, it will more strongly correlate with the likelihood of a per-
son going to a vaccine center (Fig. 1).

Problem Statement We are given a set of locations C in a metric space characterized 
by the distance function d ∶ C × C ↦ ℝ

≥0 . We additionally have a set of n individuals/
clients P . Each individual p ∈ P is associated with a set Sp ⊆ C , which we can interpret 
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as the set of locations p visits throughout the day. Finally, the input also includes a posi-
tive integer k constraining the number of facilities we can place, and a set S ⊆ C contain-
ing the locations where we are allowed to place facilities. The goal of mobilevaccclinic 
is to choose a set F ⊆ S with |F| ≤ k to place facilities, such that for every p ∈ P we have 
d(Sp,F) ≤ R , for the minimum R possible. Here, we use the standard notation where 
d(S,F) = minj∈S,j�∈F d(j, j

�) . Intuitively, this objective tries to minimize the maximum 
distance between the set of facilities placed and the locations visited by any client. Since 
agents have varied preferences and behaviors, we also consider a few natural extensions in 
order to take these into account:

•	 Outliers in order to achieve herd immunity, we only need to vaccinate a large portion 
of the population (rather than every single person). Additionally, a few outliers in client 
set may have an disproportionate impact on the facility placement. In order to coun-
teract this, we can take as input a parameter q, and seek to provide for only ⌊qn⌋ of the 
clients, ignoring the remaining ones. Formally, the new objective is to minimize R such 
that �{p ∈ P ∶ d(Sp,F) ≤ R}� ≥ ⌊qn⌋.

•	 Fairness many studies have shown that COVID-19 disproportionately affects some 
demographic groups [9]. To counteract this, we seek to guarantee that different demo-
graphic groups have similar accessibilities to vaccines. As an example, when we solve 
the outliers formulation, we can guarantee that we are covering the same proportion of 
each demographic group when deciding the facility placements.

•	 Capacity it is natural to assume that the number of vaccines that can be stored in each 
mobile facility is limited. To take this into account, we consider the capacitated mobi-
levaccclinic where take in as input the capacity L and need to guarantee that every 
chosen facility will have at most L people assigned to it.

•	 Priority some people have cars while some people can only walk or use public 
transportation, so traveling the same distance may require significantly different 
travel times. If we use the same notion of distance for every person, this would treat 

Fig. 1   An example of mobilevaccclinic. The different colors represent different people and the circles rep-
resent the locations they visit (with the bottom three being their homes). In this case, the blue location in 
the middle is an optimal location to place a vaccination center. If we instead only considered homes in the 
problem formulation, we would place the vaccination center in the green circle marked with a star, which 
would require people to deviate from their normal travels much more when getting a vaccine (Color figure 
online)
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people without cars unfairly. To counteract this, we consider a weighted (or prior-
ity) variant of the problem where our objective is to minimize maxp∈P wp ⋅ d(Sp,F) . 
For people p who don’t have cars, we can set their weight wp to be higher to force 
facilities to be placed closer to these people.

•	 Fault Tolerance unpredictable emergencies may cause some facilities to be unable 
to provide vaccines (such as traffic accidents or family emergencies). In order to 
prevent such unforeseen circumstances from effecting whether or not the clients can 
be vaccinated, we can take an input � and require that each client is served by at 
least � facilities within radius R, for the minimum R possible.

3 � Related work

Due to its applications in a large number of domains, facility location and broader 
location theory is a very well-studied area; see, e.g., the surveys [4, 5, 10]. The general 
goal in this family of problems is to deploy facilities to provide the best possible ser-
vice to a set of clients. A huge number of objectives have been considered, along with 
a plethora of variations such as fairness variants and online or stochastic versions. The 
mobilevaccclinic problem we study here is a generalization of the well-known k-center 
problem, where the goal is to open at most k centers while minimizing the maximum 
distance of a point to its closest center. For this simple clustering setting, there exist 
efficient 2-approximation algorithms [11, 12]. Furthermore, it is shown that unless 
P=NP this is the best achievable approximation ratio [13].

In a recent related work [8], we studied the problem from a practical perspective and 
gave data driven heuristics for real-time placement of distribution sites. The key idea 
in that work is the use of near-real-time mobility data to decide dynamic placement of 
the sites. The focus of this work was to provide strategies that take into account weekly 
changes in traffic patterns. One of the baselines we compare to in Sect. 6 is inspired by 
the work in this paper. Recently, other authors have also studied the facility location 
problem for vaccine distribution; see [14–18]. The paper by [16] considers a possible 
placement of the distribution sites at CVS stores across a region. The work by [14] 
considers the problem at a national level and is based on simulating the disease pro-
gression using a compartmental model combined with placement algorithm. Finally, 
the work of [17] is similar to our work in [8] in that it develops data driven strategies 
for allocating vaccine distribution sites.

Location theory problems have also been considered in the more general area of 
healthcare, e.g., [10, 19–21]. A lot of this work has been focused on placing mobile 
clinics or temporary facilities to ensure good service, especially in resource-poor coun-
tries. As mentioned in [10], the healthcare domain poses new challenges for location 
theory, such as uncertainty, reliability, operation efficiency, patient safety, and cost-
effectiveness. Overall, prior work has generally not considered the mobility of clients 
at a detailed scale, which provides more flexibility in deploying facilities. Our formu-
lation of mobilevaccclinic explicitly models human mobility, thus providing a realistic 
framework for public health agencies in their response efforts. In concurrent and inde-
pendent work, [15] formulate a related problem to mobilevaccclinic with a slightly dif-
ferent objective; however, they approach the problem heuristically via a mixed-integer 
linear programming approach so our results are largely complementary.
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4 � Hardness result

For our hardness result, we use the following problem studied in [22], called �-Color-
ful k-Center or �CkC for short. This problem is a generalization of the outliers version 
of k-center — in addition to the classical constraints, colors (representing demographic 
groups) are assigned to each client and the problem requires that a sufficient number of 
points of each color is covered. The formal definition is given below:

Definition 1  Let � ∈ ℤ
≥1 be the number of colors, k ∈ ℤ

≥1 be the budget, C be a set of 
points in a metric space, and d ∶ C × C �→ ℝ

≥0 be the distance function on C . For each 
� ∈ [�] , let C

�
⊆ C be the points with color � and let m

�
∈ ℤ

≥1 be the number of points 
with color � which need to be covered. �CkC asks for the minimum radius R together with 
a set F ⊆ C with |F| ≤ k , such that at least m

�
 points of C

�
 are covered within distance 

R by F. Formally, if B(F,R) = {j ∈ C ∶ d(j,F) ≤ R} then we want |B(F,R)∩C
�
| ≥ m

�
 for 

every � ∈ [�].

In [22] the authors prove the following hardness result, which we use to prove a hard-
ness result for our problem later on.

Lemma 1  When � is not a constant, there exist instances of �CkC with m
�
= 1 for all 

� ∈ [�] , such that if R∗ is the optimal value of the instance, the following hold:

•	 For any 𝜌 > 0 , it is NP-hard to find F ⊆ C with |F| ≤ k and |B(F, �R∗) ∩ C
�
| ≥ m

�
 for 

all � . In words, it is NP-hard to devise any approximation algorithm for �CkC.
•	 For any 𝜌 > 0 and � ∈ (0, 1) , it is NP-hard to find F ⊆ C with |F| ≤ (1 − �) ln � ⋅ k and 

|B(F, �R∗) ∩ C
�
| ≥ m

�
 for every � ∈ [�] (i.e., it is NP-hard to devise any bicriteria 

approximation for �CkC, whose chosen centers will be at most (1 − �) ln � ⋅ k).
•	 These problematic instances consist of points on a line.

Remark 1  Regarding the second statement in Lemma 1, the authors of [22] show a bicrite-
ria hardness result in terms of log |C| and not ln � . However, a closer look into their proof 
reveals that the claim mentioned above follows trivially. We choose to present this form of 
the claim because it better fits our narrative later on in the paper.

Theorem 2  There exists a bicriteria preserving reduction of the problematic instances of �
CkC described in Lemma 1 to instances of mobilevaccclinic with |P| = � . Specifically, any 
(�, �)-bicriteria approximation for mobilevaccclinic translates to a (�, �)-bicriteria approxi-
mation for the problematic instances of �CkC.

Proof  Let (C,C1,… ,C� , k,m1,… ,m� ) be a problematic instance of �CkC as described in 
Lemma 1, and recall that this instance has m

�
= 1 for all � ∈ [�] . We will now construct an 

instance of mobilevaccclinic as follows. The metric space for mobilevaccclinic will be the 
same as in the �CkC problem. That is, we assume we have points C with a distance func-
tion d on them. For every � ∈ [�] construct a client p

�
 , and set Sp

�
= C

�
 . The set of loca-

tions S for mobilevaccclinic where we can place facilities will be the set of locations C of �
CkC, and the value k will stay the same for the two problems.
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Consider now the optimal solution F∗ of the �CkC instance and its corresponding 
value R∗ . We claim that F∗ is a feasible solution for the constructed mobilevaccclinic 
instance, and its value for that is exactly the same. This is easy to see because |F∗| ≤ k , 
|B(F∗,R∗) ∩ C

�
≥ 1 for every � ∈ [�] , and C

�
 are exactly the locations visited by client p

�
 . 

Hence if ROPT is the value of the optimal solution to the the constructed mobilevaccclinic 
instance, we have ROPT ≤ R∗.

Take now any (�, �)-bicriteria solution F for mobilevaccclinic. At first we trivi-
ally have |F| ≤ �k . Moreover, for every � we can express d(F, Sp

�
) ≤ �ROPT (the condi-

tion guaranteed by the (�, �)-bicriteria solution F for mobilevaccclinic) since we know 
|B(F, �ROPT ) ∩ C

�
| ≥ 1 . Finally, because ROPT ≤ R∗ , we have B(F, 𝜌ROPT ) ⊆ B(F, 𝜌R∗) . 

Hence, we can conclude |B(F, �R∗) ∩ C
�
| ≥ |B(F, �ROPT ) ∩ C

�
| ≥ 1 for every � ∈ [�] . The 

latter completes the bicriteria preserving reduction. 	�  ◻

Corollary 3  Even when the metric space is the Euclidean line, we have the following for 
mobilevaccclinic (unless P =NP): 

1.	 No approximation algorithm exists.
2.	 Any bicriteria approximation algorithm must use at least k ln n facilities.

5 � Algorithms

In this section, we introduce efficient methods which give (approximately) optimal facility 
placements, despite the hardness results. We also show how to extend each of our algo-
rithms to incorporate outliers, fairness constraints, capacity constraints, and fault-tolerance.

5.1 � Fixed‑parameter tractability

Let U =
⋃

p∈P Sp denote the set of all the locations visited by the set of clients and u = |U| 
be the number of locations in this set. Due to potential privacy concerns, we can assume 
that the client locations we have access to only include large public areas in the county 
such as malls, shopping centers, etc. Hence, it is reasonable to conclude that u is a fixed 
parameter, which we assume ranges from 15 − 30 . Given this fixed parameter, we develop 
an efficient algorithm for our problem.

The main observation here is the following: consider an instance of mobilevaccclinic 
and let F∗ be its optimal solution, whose maximum radius we denote by R∗ . For each 
p ∈ P , we know that d(F∗, Sp) ≤ R∗ , and hence there must exist a location ip ∈ Sp with 
d(ip,F

∗) ≤ R∗ . See now that {ip | p ∈ P} ⊆ U , and therefore |{ip | p ∈ P}| ≤ u . The latter 
implies that we can guess, via an exhaustive search, the set {ip | p ∈ P} in time at most 2u 
(recall that since u is considered a fixed parameter, 2u is thought of as a small constant). 
Let A be the correct guess for that set; we can think of A as the set of locations through 
which the optimal solution covers every client within distance R∗ . Given A, we see that the 
problem of computing F∗ reduces in a straightforward manner to the well-known k-supplier 
problem [11].

In k-supplier we have a set of points X and a set of locations Y in a metric space with 
distance function d. The goal is to choose C ⊆ Y with |C| ≤ k , such that the maximum 
distance of any point in X to its closest location of S is minimized. Hence, after correctly 
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guessing A, we create an instance of k-supplier where the points are the ones in A, and the 
set of locations Y is S . The previous discussion shows that F∗ is a solution for this k-sup-
plier instance, and its maximum radius will again be R∗ . Moreover, any �-approximate 
solution to the k-supplier instance will trivially be a �-approximate solution for mobilevac-
cclinic. Using the 3-approximation algorithm from [11] proves the following theorem.

Theorem 4  Algorithm 1 yields a 3-approximation algorithm for mobilevaccclinic and runs 
in time 2u poly(n, |C|).

Moving forward, we see that the same approach of guessing the correct set of client 
locations A will also apply in different settings. In fact, the only thing that may differ is the 
need for an alternative k-supplier algorithm that can incorporate the specific constraints of 
each unique setting; we survey some of these settings below.

Outliers To modify our algorithm so that it only considers some fraction q of the popu-
lation, we only need to change the objective value evaluated in line 3 of Algorithm 1. To 
improve efficiency, we can also only consider guesses A that contain locations from at least 
⌊qn⌋ clients since the correct guess A contains locations from at least ⌊qn⌋ clients. If we 
then feed A to the k-supplier algorithm in the exact same manner as before, we will get a 
3-approximation.

Corollary 5  After changing the objective evaluated in line 3 to the partial objective, Algo-
rithm 1 gives a 3-approximation for mobilevaccclinic with outliers.

Fairness Although our algorithm provides an upper bound guarantee for the maximum 
distance to a facility, the facility placement may significantly differ between individuals, 
with some having a facility right next to them, while others need to travel the whole 3R∗ 
guarantee. Luckily, the vaccine centers can vary from week to week or even day to day. 
Thus, we can use a randomized algorithm such as the one given in [23], to guarantee that 
the re-provisioning of facilities over the course of many tries will provide an improved per-
point guarantee on expectation. Hence, we treat the clients stochastically fairly.

Corollary 6  When using the algorithm from [23] for k-supplier, Algorithm  1 out-
puts a distribution Ω̃ such that ∀p ∈ P , we have �F∼Ω̃[d(Sp,F)] ≤ (1 + 2∕e)R∗ and 
Pr[d(Sp,F) ≤ 3R∗] = 1.
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Capacity In this case, we assume that each facility we use has a capacity L, i.e., at 
most L clients can be assigned to it in any solution. Once again, the FPT process we 
described earlier suffices to solve the problem. Specifically, we can think of the set A 
as the locations through which the clients of P receive their service. Hence, as we did 
for the regular case, we can create an instance of k-supplier where the points requiring 
service are those of A, but this time each location of Y for the k-supplier instance will 
have a capacity L. In other words, this will be an instance of capacitated k-supplier. 
Furthermore, the optimal solution of capacitated mobilevaccclinic will be a solution 
of the same value for the capacitated k-supplier instance. Finally, it is also trivial to 
see that any �-approximate solution for capacitated k-supplier instance, will yield a �
-approximate solution to capacitated mobilevaccclinic.
Corollary 7  When using the algorithm from [24] instead of a simple k-supplier algorithm, 
Algorithm 1 is an 11-approximation for capacitated mobilevaccclinic.

5.2 � Covering algorithm

In Corollary 3, we show that any bicriteria algorithm needs to open at least k ln n facili-
ties in order to give a bounded approximation guarantee. Here, we show that this is 
essentially tight: we give an algorithm that outputs a set of locations of size at most 
k(ln n + 1) , while guaranteeing that the objective value is at most that of an optimal 
solution.

Consider the related problem, which we call clientcover, in which instead of opti-
mizing the radius R given a budget k, we are given a target radius R and want to choose 
a set F ⊆ S which minimizes |F| and guarantees that d(Sp,F) ≤ R for each p ∈ P . Notice 
that this is just a standard Set Cover problem, where the sets are {p ∈ P ∶ d(Sp, j) ≤ R} 
for each j ∈ S and the universe consists of the clients P . Using a known greedy algo-
rithm for Set Cover [25], we have an Hn-approximation algorithm for clientcover, 
where Hn ≤ ln n + 1 is the n-th harmonic number.

For generality, we will show how any �-approximation algorithm for Set Cover 
yields an (1, �)-bicriteria algorithm for mobilevaccclinic via a reduction to client-
cover. First, note that the optimal radius R∗ for an instance of mobilevaccclinic is 
always the distance between some j ∈ C and some i ∈ S . Hence, there are at most pol-
ynomially many options for it, specifically |C| ⋅ |S| . For each such option R, we create 
the corresponding instance of clientcover and run the set cover algorithm on it. The 
final guarantees follow from the iteration when R = R∗ . Observe at this point that we 
can speed up the whole process by performing a binary search in order to find R∗ , and 
thus avoid the previously described exhaustive search.



	 Autonomous Agents and Multi-Agent Systems (2023) 37:31

1 3

31  Page 10 of 19

Theorem 8  Given an �-approximation algorithm for set cover, Algorithm 2 gives an (1, �)
-bicriteria algorithm for mobilevaccclinic.

Proof  Let R∗ be the objective value for the optimal solution F∗ ⊆ S of mobilevaccclinic, 
where |F∗| ≤ k . We wish to show that clientcover Search finds a radius R in the list such 
that |FR| ≤ � ⋅ k and R ≤ R∗ . Consider an iteration of the binary search where the radius 
guess is R. Suppose R ≥ R∗ ; then there must exist a solution of clientcover of size at most 
k. The �-approximation algorithm will therefore output a set FR with FR ≤ � ⋅ k and R will 
decrease. If R < R∗ , then we either find a solution with FR ≤ � ⋅ k , or we increase R and 
move closer to R∗ . Finally, since R∗ is in the list {d(i, j) ∶ j ∈ C, i ∈ S} , the binary search 
necessarily finds some R ≤ R∗ with FR ≤ � ⋅ k . 	�  ◻

As in the case of our fpt algorithm, we can easily extend Algorithm 2 in order to accom-
modate different settings. The only difference here lies at step 3, where instead of a classic 
Set Cover algorithm we can run a different algorithm.

Outliers In order to modify our algorithm to only consider some fraction q ∈ (0, 1) of 
the population, we can use some �-approximation algorithm for the Partial Set Cover prob-
lem, where the goal is to cover at least a q-fraction of the universe elements. Hence, we 
naturally consider a variant of clientcover, which we call Partial clientcover, that requires 
only ⌊qn⌋ points to be covered by balls of radius R∗ . Trivially, Partial clientcover is a spe-
cial case of Partial Set Cover. Then the approach we described previously remains the 
same: we can guess the optimal radius R∗ and obtain an �-approximate solution FR∗ for the 
corresponding Partial clientcover instance. This solution will be optimal for mobilevacc-
clinic with outliers, while placing at most �k facilities. In particular, we have the following 
corollary of Theorem 8.

Corollary 9  When using the greedy algorithm for Partial Set Cover [25], Algorithm 2 gives 
a (1,H⌊qn⌋)-bicriteria algorithm for mobilevaccclinic with outliers.

Fairness When solving mobilevaccclinic with outliers, the algorithm may view some 
demographic groups as outliers more often than others. To mitigate such possibilities, we 
can use an algorithm for the Partition Set Cover problem [26] to guarantee that a large 
proportion of each demographic group gets coverage. Formally, the Partition Set Cover 
problem takes in as input a Set Cover instance (U, S) and r (not necessarily disjoint) color 
classes and requires that pt elements in each color class is covered. For example, we can 
guarantee that the algorithm considers a proportional number of people from each (demo-
graphic) group when choosing the vaccine center locations. The following approximation 
guarantee will then follow directly from [26] and the outliers reduction before.

Corollary 10  Let Ct ⊆ P for t ∈ [r] be (not necessarily disjoint) demographic classes and 
let 0 ≤ pt ≤ |Ct| be the coverage requirements for each class. Using the algorithm of [26] 
at step 3, Algorithm 2 gives a (1,O(log n) + log r)-bicriteria algorithm while satisfying the 
coverage constraints.

Capacity As before, we assume that each facility we use has capacity L. We see that our 
general framework is still applicable: we can modify our algorithm to satisfy these capac-
ity constraints by replacing the Set Cover algorithm in clientcover with an algorithm for 
Capacitated Set Cover, which requires each set in the universe to only be assigned to cover 
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L elements. It is clear that the capacity constraints on the sets in Capacitated Set Cover 
corresponds to the capacity constraints on facilities in our problem. Thus, the greedy algo-
rithm given in [27], which gives a Hn-approximation algorithm in this more general case, 
directly yields to the following corollary:

Corollary 11  When using the greedy algorithm given in [27] for Capacitated Set Cover, 
Algorithm 2 gives a (1,Hn)-bicriteria algorithm while satisfying the capacity constraints.

Priority To take into account the weights for the priority version of our problem, we can 
still use the general framework of clientcover. In Line 1 of Algorithm 2, we now need to 
binary search on {d(i, j) ⋅ wp ∶ j ∈ C, i ∈ S, p ∈ P} to guess the optimal (weighted) radius. 
Given a guess R, we now construct the corresponding set system FR as follows: for each 
facility location i ∈ S , add the set {p ∈ P ∶ d(Sp, j) ≤ R∕wp} to the set system. It is easy to 
see that when R = R∗ is guessed correctly, we can cover the clients using exactly k facili-
ties. Thus, we have the following corollary with a proof analogous to that of Theorem 8:

Corollary 12  When creating the set cover instance as described above, Algorithm 1 is a 
(1,Hn)-approximation for priority mobilevaccclinic.

Fault Tolerance To make sure each client is served at � ≤ k different facilities during its 
travels, we can continue using the general clientcover framework. We create the set cover 
instance as before, but now our requirement is that each element is covered at least � times 
by some facility. This corresponds to the problem of Set Multi-Cover, which additionally 
takes in as input the number of times each element needs to be covered. Using the stand-
ard greedy algorithm for this problem [28], we get the same guarantees for Fault-Tolerant 
mobilevaccclinic:

Corollary 13  When using the greedy algorithm for Set Multi-cover [28], Algorithm 1 is a 
(1,Hn)-approximation for fault-tolerant mobilevaccclinic.

Budget In the previous algorithms which solve clientcover as a subroutine, we violate 
the budget constraint k on the number of facilities by a non-trivial multiplicative factor, 
which is a practical consideration that needs to be addressed. Luckily, it has been shown 
that the greedy algorithm and other heuristics for Set Cover have very small approximation 
ratios in practice [29]. In fact, many real-life instances of Set Cover are solved optimally 
or near optimally by the greedy algorithm [30]. Given this empirical result (which we also 
validate for our instances of the Set Cover problem), we get � = 1 in our experiments when 
running clientcover Search. In particular, if we solve the clientcover problem using a 
commercial mixed-integer linear program (MILP) solver [31, 32], we can solve the original 
problem to optimality. We emphasize that this is a non-trivial contribution: directly formu-
lating mobilevaccclinic as an MILP requires Θ(n3) constraints, and we cannot even initial-
ize the solver using or-tools. In contrast, the Set Cover MILP only has Θ(n) constraints, 
which can be solved efficiently using commercial solvers. Hence, when using an MILP 
solver to solve clientcover, Algorithm 2 yields a practical solution for solving mobilevac-
cclinic optimally.
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6 � Experiments

6.1 � Experimental setup

Data We run our experiments on the mobility data from Charlottesville City and Albe-
marle County in Virginia. For these counties, we use synthetic data constructed from 
the 2019 U.S. population pipeline (see [33, 34] for details). This dataset was constructed 
by tracking the week-long activity of county residents. Each resident is represented by a 
sequence of activities, where each activity is described by duration, type, and location in 
the county. The locations are given in geodetic coordinates and are categorized as either a 
residential or activity (non-residential) location. From this dataset, we can extract the loca-
tions visited by individuals residing in the county and set all activity locations as potential 
facility placements. A summary of the dataset is given in Table 1.

Baselines We compare our algorithms with two heuristics: homecenters and mostac-
tive. In mostactive, we open vaccination centers at the k most visited locations. We set 
mostactive as the baseline because it is related to the current heuristic used by the Virginia 
Department of Health. In homecenters, we run k-supplier to place facilities at locations 
that minimize the maximum distance from client homes. We compare with this baseline 
in order to show the importance of considering mobility when placing the vaccination 
centers.

Objective Recall that our objective is to minimize the maximum distance any client 
needs to deviate from their path to reach some facility. Since our location data is given in 
the geographic coordinate system, we approximate the Earth as a sphere and use geodesic 
distance as our metric. In Sect. 6.2, we notice that there is a sharp drop in the objective 
value if we only consider 99% of the population. As a result, we also evaluate the objective 
value of our algorithms when 5% of the people are considered outliers.

FPT details When using fpt in our experiments, we pick u = 15 locations that cover 
the largest portion of the population (as given by the greedy algorithm for the Maximum 
Coverage problem). We then run fpt using only knowledge of these u locations. The loca-
tions chosen are all popular public activity locations, so we have a limited amount of pri-
vacy violation. As a result, the performance of fpt is weaker on the full objective, but 
remains strong on partial coverage (the outliers formulation). It is important to note that 
even though we limit the knowledge of client-visited locations, fpt can still choose to place 
facilities at any activity location in the dataset. For more details on our implementation of 
FPT and the experiments, see our GitHub1.

Table 1   Network information

Clients Activity locations Residential 
locations

Maximum activity Measured 
diameter 
(km)

Charlottesville City 33,156 5660 10,038 9952 8.12
Albemarle County 74,253 9619 32,981 24506 61.62

1  https://​github.​com/​gzli9​29/​Mobil​eVacc​Clinic.

https://github.com/gzli929/MobileVaccClinic
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6.2 � Client coverage performance analysis

We begin by directly comparing the performances between our algorithms and the base-
lines. Because our objective value is defined by the maximum distance any client must 
travel to reach their closest facility, it does not give good insight into the distribution of 
travel distances for the entire set of clients. For this reason, we also assess how the service 
cost for the closest p-fraction of the clients (i.e., the outliers objective for our solution) var-
ies when we let p range between 0.8 and 1.0.

As seen in Fig. 2, facility placements from homecenters and clientcover result in bet-
ter full objectives while facility placements from mostactive and fpt result in better partial 
objectives. This has a simple explanation: the former two algorithms are forced to provide 
service to outliers since they directly optimize the objective while the latter two optimize 
over only a portion of the population by design. As a result, it makes sense to compare 
homecenters with clientcover and fpt with mostactive in the subsequent experiments. We 
note that if we instead used the outliers version of homecenters and clientcover, we may 
not see this disparity.

6.3 � Tradeoff between radius and budget

In addition to evaluating the performance of our algorithms at the current budget, it is 
important to evaluate the sensitivity of our algorithms to an increase in budget. That is, we 
want to know how much the objective value would decrease if the county allocated more 
resources to deploy a greater number of mobile facilities. This knowledge can influence 
policy decisions: when an increase budget yields a sharp decrease in objective, the govern-
ment has more incentive to fund additional vaccination centers.

As seen in Fig. 3, there is generally a sharp decrease in the objective value when the 
budget is less than 6 facilities for Charlottesville and 9 facilities for Albemarle. As the 
budget increases past those thresholds, the marginal returns become so diminished that 
increasing the budget hardly changes the objective value. This is especially prominent in 

Fig. 2   A comparison of the algorithms and baseline heuristics for various coverage requirements 
p ∈ [0.8, 1.0] in the outliers objective of our problem. The budget is set to 10 for Charlottesville and 20 for 
Albemarle
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the full objective performance of fpt and mostactive. Hence, it is natural to recommend 
budgets of 6 and 9 facilities to the Charlottesville and Albemarle government, respectively.

A seemingly weird result from the experiment is the tradeoff curve for homecenters. 
Though there is a general downward trend in the objective value as the budget increases, 
there are cases in each county where increasing the budget results in an increase in the 
objective value. This contradictory phenomenon is caused by the limited correlation 
between the distance to homes and our objective; as a result, noise/luck has a considerable 
effect. The noisiness of homecenters emphasizes the importance of our work of modeling 
mobile populations.

6.4 � A kernel property

Through our experiments, we notice a nice (empirical) property of the vaccine center loca-
tions selected by some of our algorithms. Imagine a case where we (the government) have 
the funds to place five mobile vaccine centers and we use our algorithms to pick the five 
locations to place them. Then, after two weeks, the government decides that the disease 
is causing too much economic devastation and, in turn, funds three more mobile vaccine 
centers. When we ask our algorithms to place the eight vaccine centers (approximately) 
optimally, it turns out that the eight chosen locations will often contain the original five 
chosen locations as a subset. The original five locations are then called a kernel.

In order to determine the presence of a kernel for each of our algorithms, we calcu-
late the number of facilities chosen with budget k − 1 that are not also chosen with budget 
k. These values populate Tables 2 and 3, where the leftmost column denotes the budgets 
compared. By definition, mostactive has the kernel property since it is a greedy algorithm. 

Fig. 3   Tradeoff between maximum distance needed to travel and the number of vaccine centers placed. In 
the 95% objective plots, clientcover and homecenters are run with the outliers formulation
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Our fpt algorithm also (approximately) satisfies the kernel property while maintaining 
a stronger performance than the baseline. The remaining two algorithms do not exhibit 
the property: both homecenters and clientcover pick (almost) completely different loca-
tions upon increasing the budget. Because they require less relocation, mostactive and 
fpt have advantageous properties when the budget is adaptive and vaccine distribution is 
time-consuming.

We recognize that this is not necessarily applicable to our experimental setting, COVID-
19, since transportation of vaccines is (relatively) easy in Virginia. However, for the Ebola 
outbreak in 2014, the kernel property was recognized as an important property to have 
since vaccine distribution was a much more costly process. Furthermore, we note that our 
algorithms are not explicitly designed to have this property; it is only empirically verified.

6.5 � Information constraints

In our previous experiments with clientcover, we assumed that we had full knowledge 
of the locations each person visited throughout a day. Next, we wish to understand how 
fine-grained this data needs to be in order for clientcover to outperform our other algo-
rithms; this also addresses privacy concerns raised when using the exact mobility data of 

Table 2   Investigating the kernel 
property for the four algorithms 
on Charlottesville

Most active Home center tpf Client cover

3 → 4 0 1 1 3
4 → 5 0 1 1 3
5 → 6 0 2 1 5
6 → 7 0 3 2 6
7 → 8 0 0 1 5
8 → 9 0 0 1 8
9 → 10 0 3 1 6

Table 3   Investigating the kernel 
property for the four algorithms 
on Albemarle

Most active Home center fpt Client cover

6 → 7 0 3 1 5
7 → 8 0 1 2 6
8 → 9 0 1 2 7
9 → 10 0 1 1 8
10 → 11 0 4 3 5
11 → 12 0 1 1 9
12 → 13 0 1 2 4
13 → 14 0 0 1 7
14 → 15 0 5 2 7
15 → 16 0 1 1 8
16 → 17 0 1 0 12
17 → 18 0 7 0 8
18 → 19 0 2 1 7
19 → 20 0 0 0 8
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individuals. In order to model loss of detailed movement patterns, we cluster the locations 
within a given radius r together and apply clientcover on the resulting cluster centers. 
The details of the clustering algorithm can be found in our code, but the general idea is to 
define each location to be a potential cluster center and then use the greedy set cover algo-
rithm to pick a minimum set of clusters centers that cover all original locations with radius 
r. Using this clustering method for both Charlottesville and Albemarle, we vary the cluster-
ing radius r between 100 and 600 ms to see how much privacy clientcover can preserve 
while maintaining a superior performance over the baselines.

As we see in Fig.  4, our algorithms gradually degrade in effectiveness as the data 
becomes more and more coarse-grained with a sharp loss in objective for Charlottesville 
and Albemarle at a clustering radius of 0.48km and 0.35km, respectively. Even with the 
approximate travel data, the solutions produced have significantly smaller objective value 
than that of mostactive at 2.39km and fpt at 2.52km. Furthermore, even by clustering the 
data with a radius that is 45% of the original clientcover objective, we can still perform 
better than the homecenters baseline. From this experiment, we can conclude that even 
when giving reasonable privacy to individuals, clientcover still performs much better than 
fpt, mostactive, and homecenters.

6.6 � Only using home and work

In the previous subsection, we observed that clientcover was successful in preserving a 
reasonable amount of client privacy while maintaining a strong performance in objective 
value. We will now explore if this is still true in the extreme case when only the home and 
work location data are available when running clientcover. In general, the location of your 
home and work are known to the government so this doesn’t constitute a strong privacy 
violation. Surprisingly, we see in Fig. 5 that clientcover still (relatively) consistently out-
performs homecenters even when using very little additional information. This suggests 
that any additional mobility information can play a large role in reducing the distance cli-
ents need to travel to obtain a vaccine. In particular, this greatly highlights the importance 
of our problem formulation: our clientcover algorithm can take advantage of any amount 
of additional travel data to outperform the standard k-supplier algorithm.

Fig. 4   Analyzing how clientcover degrades as we lose fine-grained information about travel patterns. The 
budget is set to 10 for Charlottesville and 20 for Albemarle
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7 � Conclusion

We introduced a generalization of the classical k-supplier problem where we consider the 
mobility of populations when placing facilities. We showed that designing an approxi-
mation algorithm for this variant is NP-Hard. Fixed-parameter tractability and bicriteria 
approximation algorithms were studied to overcome the intractability results. Finally, we 
carried out computational experiments to demonstrate that the algorithms do well in prac-
tice as compared to natural baseline algorithms.

We conclude with a few directions for further research. First, having demonstrated the 
importance of modeling mobile populations, a natural next step is to extend other variants 
of the facility location problem to the mobile population setting as well. Second, in practice 
individuals have weekly schedule and thus the visits to the locations follow temporal pat-
tern; formulations that capture that naturally and obtain provable approximations will be 
of interest. Finally, it would be interesting to explore how the framework can be extended 
to make more realistic choices for agents. For example, agents can decide which distribu-
tion centers to visit based on their personal profiles and the policymakers, with limited 
knowledge of the agents’ preferences, needs to choose the facility locations to maximize 
the number of vaccinations.
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