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In this paper, we study a sampling problem where a source takes samples from a Wiener process and
transmits them through a wireless channel to a remote estimator. Due to channel fading, interference, and
potential collisions, the packet transmissions are unreliable and could take random time durations. Our
objective is to devise an optimal causal sampling policy that minimizes the long-term average mean square
estimation error. This optimal sampling problem is a recursive optimal stopping problem, which is generally
quite difficult to solve. However, we prove that the optimal sampling strategy is, in fact, a simple threshold
policy where a new sample is taken whenever the instantaneous estimation error exceeds a threshold. This
threshold remains a constant value that does not vary over time. By exploring the structure properties of
the recursive optimal stopping problem, a low-complexity iterative algorithm is developed to compute the
optimal threshold. This work generalizes previous research by incorporating both transmission errors and
random transmission times into remote estimation. Numerical simulations are provided to compare our
optimal policy with the zero-wait and age-optimal policies.
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1 INTRODUCTION

Several applications in real-time control of systems involving sensor networks, such as autonomous
driving, military networks, intelligent manufacturing, etc., involve sampling and remote estimation
of information. For example, in military systems, status information about the instantaneous speed
and position of the vehicles, channel conditions, and targets changes over time. In order to ensure
that the system performs efficiently, reliably, and safely, the controller(s) has to obtain accurate
estimates of the current status of the system from nearby sensors. This involves judicious sampling
of the information in order to minimize the estimation error. Designing an optimal sampling
strategy is a hard problem, because some easy strategies, such as continuous sampling, are
infeasible due to the limited energy resources and can be far from optimality due to the
transmission delay, limited channel capacity, etc.
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Fig. 1. System model.
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To that end, in this paper, we aim to embark on a sampling problem of a wireless network, as is
illustrated in Fig. 1. The sampler takes the sample of a continuous-time source process and
transmits the sample to a remote estimator. The continuous-time source process is modeled as
the Wiener process Plz, which helps describe the dynamics of sensors measuring quantities like
movement, providing insights into how these quantities change over time. The Wiener process,
also commonly referred to as Brownian motion [18], is one of the best known Lévy process, that
features stationary and independent increments. It finds widespread applications in various fields
such as pure and applied mathematics, economics, quantitative finance, evolutionary biology, and
physics. The Wiener process Pz has the following key properties: (i) Blo = 0; (ii) Blais continuous; (iii)
has independent increments; (iv) Bz -Fla ~N (0,2 - B) for 0 < B < B, where N denotes the normal
distribution. The remote estimator, in turn, provides a minimum mean square estimation error

(MMSE) estimate B gbased on the received samples. The core objective is to control the sequence

of sampling times to minimize the estimation error Bz - g, specifically, aiming at optimizing the
long term average of MMSE.

Organized according to the sampling strategies and optimization metrics, our review of related
works encompasses three distinct perspectives.

1.1 Related Works

. . . . . There have been several studies on sam-
Signal-aware sampling with reliable transmissions.

pling for remote estimation, e.g., in [19, 21, 30—32], where the sampling times depend on the
source process (signal-aware). A nice survey paper is included in [13]. In [30], the authors consider
the

Wiener process as the source process and provide an exact solution to minimize the estimation
error. According to the optimal solution, the sampler should wait until the instantaneous
estimation error exceeds a threshold, and the threshold is given explicitly. A similar result was
developed in [21] by extending [30] from the Wiener process to the Ornstein Uhlenbeck (OU)
process. The optimal threshold retains its simplicity, remaining a root of a closed-form equation.
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Further exploration, as in [32], delves into an asymmetric sensor-controller remote system. In
this scenario, there are random transmission times in both directions. At the sensor, the sampling
time is a stopping time based on the evolution of the Wiener process, and at the controller, the
sampling time depends on the information sent from the sensor. The authors yield precise
optimal solutions, noting the potential existence of multiple thresholds for the sensor’s optimal
stopping time. Joint optimality designs on the sampling and the estimation, concerning the
Wiener process or the autoregressive process, is investigated in [6, 11].

To summarize, except [6], these previous studies on sampling assume reliable transmissions.
However, in a variety of wireless systems, channel errors may occur due to fading, and the
transmission times of a packet could be random. While packet drops are considered in [6], a time-
slotted system is considered, which assumes that the total transmission time is the same as the
transmission instance (one time slot). In contrast, in this paper, our model allows for both packet
errors and random transmission times. Moreover, we enable the selection of real-valued
transmission

instances.

Signal-agnostic sampling. When the sampling times are independent of the Wiener process
(signal-agnostic), the MMSE is equal to the age of information [30]. More generally, the MMSE is
a function of the age of information under a linear time invariant system [7, 15]. Thus, our study
is closely related to numerous studies on age-based sampling, e.g., in [1, 2, 12, 17, 2224, 28].
Age of information, or simply age, is a metric to evaluate data freshness. Age at current time Bl is
defined as A(R) = @ - B (B), where B (B) is the generation time of the latest delivered sample. Age
has gained much popularity in the recent decade and has contributed to various remote control
systems such as sensor networks, UAV navigation, and semantic communication. A recent
literature review on the age is provided in [35].

In [2], the paper studies sampling energy harvesting sources with a unit battery buffer under an
erasure channel. In the case of a single source, it provides an optimal sampling policy without
feedback. With perfect feedback, an optimal policy is offered among the policies that may wait
only when the previous transmission is successful. In [1], the paper solves explicit optimal solutions
for an energy harvesting source with finite buffer sizes, where the arrived energy can fill up the
whole buffer or fill up incrementally. In [28], the authors relate autocorrelation, remote estimation,
and mutual information to the nonlinear age penalty functions, and provide an optimal sampling
policy under sampling rate constraint. In [24], when the source process is a multidimensional
Gaussian diffusion process, and the estimator is the Kalman Filter, the expected square estimation
error is an increasing function of the age. For a general non-decreasing age penalty function, the
optimal sampling policy has a threshold structure under unreliable channel conditions and random
transmission delay. An extended sampling scenario where the sampler can transmit the sample
before receiving the feedback is studied in [17].

However, compared to the signal-aware sampling policies, signal-agnostic counterparts exhibit
suboptimal performance in terms of minimizing the estimation error. Numerical results in [30]
validate that the optimal signal-aware sampling policy can achieve less than half of the long term
average MMSE than that of the age-optimal sampling policy. This is intuitive, due to the criticality
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of the content of information within remote monitoring systems, such as the pedestrian intentions
in vehicular networks or target locations in UAV navigations.
Aoll-optimal scheduling. Recently, researchers have studied signal-aware policies to optimize

a new metric: the age of incorrect information (Aoll) [8, 14, 16]. Aoll incorporates both the content
of information (estimation error) and the freshness of information (data freshness). Aoll was first
advanced in [16], serving as a cornerstone for subsequent research. In the context of a finite
symmetric Markov source, [16] provides the transmission strategy with a focus on minimizing the
Aoll, displaying low computational complexity. In [14], the authors employ dynamic programming
to minimize the Aoll under a binary Markovian source and exponential channel delay distribution.
Meanwhile, the paper in [8] extends [14] to a general transmission time distribution, showing that
it is optimal to always transmit whenever the channel is idle and the Aoll is not zero.

Although these studies focus on content-aware transmission strategies, they all focus on a
finite state Markov source under a discrete-time system. These scenarios restrict transmission
choices between transmit and idle at the beginning of each time slot. Instead, we consider an
unbounded and continuous-time Markov process, enabling the selection of real-valued
transmission instances.

1.2 Our Contributions

In comparison to these three prevailing perspectives, in this paper, we consider a scenario of
minimizing the estimation error of the Wiener process. Specifically, we (i) embrace a signal-aware
sampling policy and (ii) accommodate an unreliable channel with a random transmission time. Our
contributions expand on [30] by considering an unreliable channel, and [24] by allowing sampling
time dependence on the content of the Wiener process. Our problem belongs to a semi-Markov
decision problem and is difficult to solve. There have been solutions for some special cases. In the
first case where the channel is reliable (e.g., [21, 28, 30, 32]), the original problems are reduced to
a single sample problem, which can be further solved by convex optimizations or optimal stopping
rules. However, these methods do not hold in our case because our new problem is decoupled to

a recursive optimal stopping problems with multiple samples . Similarly, our work is different from
1

[24], because this problem is decoupled to a discounted MDP, and each action of the MDP is not
a stopping time. Nonetheless, we are able to circumvent these challenges and solve the optimal
sampling problem. The main contributions of this paper are stated as follows:

e We provide an exact solution to our optimal sampling problem. The optimal sampling
strategy has a simple structure: each sampling time is a stopping time that takes the sample
when the instantaneous estimation error exceeds a threshold. The optimal threshold
remains the same, independent of the Wiener process value and whether the last
transmission failed or not. Moreover, the optimal threshold can be solved efficiently, e.g.,
by using a two layer bisection search algorithm. Our results hold for general distributions of
the transmission delay and arbitrary probability of the i.i.d. transmission failure. To solve our
recursive optimal stopping problems, we developed new approaches. We provide an exact
value function to the value iteration problem. Specifically, we solve a sequence of optimal
stopping problems, where the action value function implies taking an action at the first
sample and taking the optimal stopping times at the remaining samples. The technical tools
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used to establish the results include (a) the strong Markov property and Martingale
properties of the Wiener process, (b) Shiryaev’s free boundary method for solving optimal
stopping problems.

e When the sampling time does not depend on the Wiener process, the expected square
estimation error is equal to the age [30], and our original problem is equivalent to an age
minimization problem. We provide the exact solution as well. The sampler takes the sample
when the age first exceeds a threshold. This result also improves [24, Theorem 1] by
removing the assumption of the regenerative process.

e Numerical simulations are provided to validate our results. An interesting observation is that
when the channel is highly unreliable, our optimal policy still performs much better than the
age-optimal and zero-wait policies.

2 MODEL AND FORMULATION

2.1 System Model and MMSE Estimator

We consider a continuous-time status update system as is depicted in Fig. 1, where a sampler takes
the sample from the Wiener process Bz and transmits to a destination through an unreliable

channel. The destination provides an estimate based on the samples that have been

successfully delivered. The extended setting from a reliable channel to an unreliable channel is one
of the key features of our study.

We use B €{% 2, ...} to indicate the number of samples generated by the sampler. The Bth
sample is generated at time Pz and is transmitted through the unreliable channel. The sample
contains the sampling time Pz and the sample value Pz . The unreliable channel has an i.i.d.
transmission failure, and we denote B € [0, 1) as the probability of failure (i.e., the channel

condition is OFF).

2
The channel also has an i.i.d. transmission time Bz, and we have E[Bz] < o. The transmission

time and the channel condition are mutually independent. In this paper, we also assume that the

1 Also, our problem is significantly different from that with instantaneous transmission time, e.g., [11], because even if
there is no sampling rate constraint, the zero-wait sampling policy is not optimal.
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Fig. 2. A sample path of the Wiener process Flgand the MMSE Bz over time B. At By, B3, Fla, the sample is

successfully delivered, soflz is updated to bell, Fps, Pzg, respectively. At B, the sample is not successfully

delivered, so Bl remains unchanged.

transmission time is lower bounded, i.e., there exists @ > 0 (which can be sufficiently small) such
that Bz 2 B. The Bth sample is delivered to the destination at time Bz, where Blz = Bz + Flza. At the
delivery time Blg, the destination knows the outcome of the transmission of the Bith sample. Only
if the transmission was successful, the destination receives the sample message (g, Blzz). In
addition, at B, the destination then sends an acknowledgment back to the sampler, informing
whether the transmission of the Elith sample was successful or not. We assume that the
transmission process of the acknowledgment is instantaneous and error free. Note that the
sampler always generates a sample after it receives feedback, i.e., Bz+1 > Blz. Otherwise, the
generated sample will be queued for waiting to be transmitted, and the queued sample is staled

compared to the fresh sample.

The estimator (destination) also provides a minimum mean square error (MMSE) estimator

based on the successfully received samples until time &.

We denote the random variable-B as the index of the latest sample that is successfully
delivered to the destination by the time . In the special case of a reliable channel, each sample
is successfully delivered, so we have B =; otherwise, B < . The latest (and thus freshest) sample
the destination

has received during B € [P, Flz+1) is (Plg,Plen ). Using the strong Markov property of the Wiener
Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 3, Article 60. Publication date: December 2023.
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process [25, Eq. (4.3.27)], the MMSE estimator B gis expressed as

B =E[Pla | Plg,Plze | =E[Pla | Plee | = Flew, 2l € [Py, Pla+1). (1)

A sample path of Blz, B &, and the estimation error Ple-P zare depicted in Fig. 2. In this figure, the

2nd sample is not successfully delivered. Thus, when B € [&,, B3), the estimator is still Bla1, not
Flz2. In other words, Bl = 2, but B = 1. This is one of the key differences from the previous studies

with the reliable channel case, e.g., [21, 30-32].

2.2 Sampling Times and Problem Formulation

We will control the sequence of causal sampling times Blz’s to minimize the estimation error. We
will consider two types of sampling time: (i) the sampling time depends on the Wiener process
(signalaware sampling) and (ii) the sampling time is independent of the Wiener process (signal-
agnostic sampling).

2.2.1 Signal-aware Sampling. When the sampling time Blzdepends on the Wiener process, Pzis a

stopping time, i.e., Pl satisfies:

v +{Ba<B}EF (B), F (B) 2neeB(@,B €[0,8]). (2)

( ) - FO)+

Here, B Ay, . . . ,BPlais the B field generated by the random variables B, . . . Bz, and B is a filtration,
i.e., a non-decreasing and right-continuous family of B-field available to the sampler at time &.
Intuitively, the sampling time Bz not only depends on the history information prior to Fle-1, but also
depends on the evolution of the Wiener process starting from Plg-1.

Then, we define the sampling policies. The policy space [Msignal-aware is defined as the collection
of causal policies Bl = Bly,Pl, . . . such that: (i) Bz satisfies the condition (2), and Bz > Ple-1; (ii) For each
B, the waiting time Bz — Flz-1 is bounded by a stopping time that is independent of the history

information before Pz-12. In addition, this bounded stopping time B satisfies E P-4 < 003,

2.2.2Signal-agnostic Sampling. When the sampling time is independent of the Wiener process, we
then define the collection of policies Msignal-agnostic as the collection of policies B = Fly,Bl, . . . such
that: (i) Pz satisfies Bl > Plz-1; (ii) For each B, Bz — Plz-1 is bounded by a finite 2nd moment random

variable that is independent of the history information before Pl-1.
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Note that for any finite 2nd moment random variable &, we have E @4 = 3E B < o,

Therefore .
’ Msignal-agnostic Clsignal-aware

2.2.3 Problem Formulation. Our objective in this paper is to optimize the long-term average mean
square estimation error (MSE) for both signal-aware and signal-agnostic cases:

1 Jo
mseopt = inf lim sup _E (BB 2)%ER@. (3)mena>~B0

We aim to find a sampling policy B from the set N of all causal policies, in order to minimize the
MSE. The value mseopt is also called the optimal objective value. Problem (3) is typically hard to
solve due to the following reasons. (i) Problem (3) is an infinite horizon undiscounted semi-
Markov decision problem with an uncountable state space. (ii) For the case of signal-aware

sampling, each action (sampling time) is a stopping time.

3 MAIN RESULTS

3.1 Optimal Signal-aware Sampling Policy

We first break down the time-horizon problem (3) into a series of optimal sampling subproblems.

Each of these subproblems determines the optimal sampling times between @ and B, whereB_
B+l

represents the time of the Bith successful delivery.
Lemma 1. Solving the problem (3) is the same as solving a series of equivalent optimal sampling

subproblems, where the Bth subproblem is given by
. #

pEee  Ef (- P - (- ) (4)

ginfen P Pes1

2It is the upper bound stopping time that is independent of the history information before Bz-1, not all of the stopping

times. For example, the upper bound stopping time is to stop where the estimation error Bz - Bl 5 exceeds a sufficiently

large value. Setting this stopping time as an upper bound is reasonable, because we want to minimize the estimation error.
Then, this stopping time is independent of the history information before Blz-1.

3If the condition (i) does not hold, then the term limg-- E[B () ]/ may not be 0, where B (& ) is the largest number

such that Bz <@, and - (BB ¢ )2@R. If limg>e E[Ba (@) ]/@ # 0, Bz will diverge to infinity, which is not our

concern.
where ~ = mseopt.
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Lemma 1 is a restatement of Lemma 4 in Section 5. We note that, by choosing @ = mseopt, the
sequence of linearized optimal stopping subproblems (4) have the same solution as the original
problem (3). Note that these subproblems are independent and thus equivalent. In other words,
we only need to solve one subproblem (4) regardless of B, and & (B, &) remains the same for any

given

Bl. This is because each Plzz - enis independent of any history information before Flz. Moreover,

Lemma 1 improves similar results in e.g., [21, 24, 30, 32], by removing the assumption that the Blz’s
is a regenerative process. Overall, to solve (3), we can firstly solve (4) with any given parameter
>0.

However, problem (4) is still hard to solve. Let EBlzbe the total number of transmission attempts

A mm_h

between_ “ _Bl. Then, @+ 1 =B + Bz. Problem (4) needs to determine a sequence of
sampling times @,8, . . . ,B until a successful packet delivery occurs at time B __. Hence, problem

(4)

B+l B+2 B+Ea B+1
is a repeated optimal stopping problem with continuous-time control and a continuous state space.
This
is the key technical challenge of our study. To the extend of our knowledge, this type of problems
has not been addressed before. One limiting case of problem (4) was studied in [30, Eq. 47],

where there exists no transmission errors and hence Bz= 1.

We develop a value iteration algorithm that can find the optimal stopping times for solving
problem (4). To that end, we define a sequence of optimal stopping problems:

=

. E
(@, ) 2infE(Be- o)%FR - Pl(Plz+1 — Pla+1-min(@e,B) )
en —

BH+1-min(BE,B)
N

e __ =p,A=12,.... (5)

BH+1-min(Biz ) B+ 1-min (B, B)

Hence, Bz (B, B) determines the optimal solution for at most the last B transmission attempts in
problem 4. The principle of backward induction implies that satisfies the value iteration
algorithm:

Bo(E, B) £0,

Ble+1(B, B) £inf B(E;E) + BE [Ba (B +Bese, B)], B=0,1,2,. .., (6)
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where Bl +Pz+ais the estimation error after a stopping time 2 and the transmission time Bl. And the
per-stage cost function BI(&;2) is defined as the square estimation error minus & from the last
delivery time to the next delivery time with a stopping time [:

P+a
2

BI(E;) =E(B +B ) B2 - B2 +
B) . (7)

The following theorem provides an exact solution to (6), which is the key contribution in this
paper:

Theorem 1. The sequence of optimal stopping times Bla’s to problem (6) is given as follows:

Po=inf{@20: |B+8s | 2B (B)}, (8)

(B1) is the unique positive root of the free boundary differential equation:

I o () = __[a(E, @) , 9)
BI=Ela (B)+ B=Eln (B)-

(7, @) is updated as:
Blo(B, B) = O,

Bl (B, B) = B(B, Bl (B), B) + PEen [Be-1(max{|B|,Ba (B)} +Bs, B)], B=1, 2, .. ., (10)
30 - - - -

W n
on- -n
/3 - n

Fig. 3. The evolution of the root function: (=, &) + l33 - P over B, with @ = 1, 2, 4. In this example, we set

=11.0,7 = 0.3, and a constant transmission delay & = 6. It is easy to see that Bp(8), which is the positive root

:
of 7

(7 )+ 1,83 B0 G decreasing in ? the function B(B,B, B) is equal to
1 1
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B(EE B)=_Ep2+E[A]B*-E [B] @+ —max(2*-2* 0) - (& - E[A]) max(&*- B 0).
2 6
(11) Moreover, the sequence {Ba (2)}z is decreasing and thus convergent.

The proof of Theorem 1 is provided in Section 5.3. Theorem 1 implies that each optimal stopping
time Bz is a hitting time that will stop when the estimation error exceeds a threshold Bl (2). The
threshold Bz () is chosen by the free boundary method [25], where the optimal value function
(@, @) should be continuously differentiable on Bl €R. Since Bz (@) is decreasing and convergent,
Plais also convergent.

In addition, the optimal threshold Bz (2) can be solved efficiently. In Theorem 5 of Section 5.3,
we showed that the root of the free boundary method in (9) is equivalent to:

3 (12)
Pr(E,B)+ _B -BE=0.

3
1 13 1
Interestingly, B (B, B) ~ 2- —emBa (B, B) |e=ee(m),, and 3B +BB o __eaBa (B, B)|e=ka(e)-.

BBl (B, B) =E [] &

Flo (2, @) = 0, and the function Blz” (7, @) is updated as

+ PEen BleP-1 (B +2lg, )1|+ | 2Fk_1 (B) + B(@ +Pla ) - - )3 1|B+8k | <Ee-1 (B) . (13)

Because (13) contains only an expectation overFlz without derivatives, computing Bz (7, B) is easy.
1 3

We also showed thatPla (B, B)+ 32 -P is strongly convex for?l > 0. Thus, we only need logarithm

time complexity to solve Bz () for each Bl in (12), such as bisection search or Newton’s method.

1 3
Fig. 3 illustrates some intuitive properties of Bz (#1) and its root function, Bz (B, B) + 3_F - BB

Further, Blzconverges linearly to B. To illustrate, we first define a norm. Let us pick any value
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(B) = max(&,@" 2), where BI” can take any positive
with Bl < < 1, and denote a weight function

+ h | | B2 i
value such that E 1 < _.The weight functionB(R) is not related to B. The sup-norm
aN

2 (B)
[l - Il of a function B (@) is defined as ||l = suprerE__ (@) .We have the following result:
Lemma 2. [|Ba (-, B) - & (-, B)Il < BllBe-1(-, @) - & (-, E)II.

Lemma 2 is restated in Lemma 9 at Section 5.4. Since Plais also convergent, each of the optimal

stopping (waiting) times in (4) should also be a hitting time with the threshold B(B) = limg-> Bz (&).

We finally conclude the following result:

Theorem 2. An optimal sampling solution Bliz’s to the series of problem (4) is:

o= infB>0: [B-Bs|>0@ ,B=0,12 ..., (14)

where BI(R) is the limit of the sequence Bz (R)’s, and Bz (21) can be computed by solving (9), or more

efficiently, by solving (12) and (13).

The proof of Theorem 2 is provided in Section 5.4.
Theorem 2 illustrates an important property of an optimal sampling policy for a given parameter

. Note that |Ba— | is the estimation error at the current time B. Theorem 2 implies that the

optimal sampling policy given in (14) has a simple structure. The optimal policy is a threshold

type: the sampler may wait until the instantaneous estimation error |Bz - | exceeds the

threshold BI(@). Specifically, if the estimation error at the initial time Pla exceeds PI(B), then it is
optimal to immediately transmit the sample. The optimal threshold B(2) is independent of the
evolution of the Wiener process.

After solving (4) with a given B, we will finally determine the optimal objective value Bl = mseopt.

— ~

Note that in (4), - has the same distribution as Bz, where B has the same distribution as

the i.i.d. transmission delay Blz’s. Then, we have the following result:
Theorem 3. Bl = mseopt is the root of
E[B (B B)] =0, (15)

where mseopt is the optimal objective value of (3).
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Theorem 3 is shown in Lemma 3 at Section 5. Combining Theorem 2 and Theorem 3, we finally
provide the optimal solution to (3).
Moreover, we showed that we can also use a low complexity algorithm, such as bisection

search, to compute the root of . So in conclusion, we can efficiently solve Bi(mseopt) and mseopt
with low complexity, which is provided in Algorithm 1:
e Line 4—10in Algorithm 1is an inner layer update to efficiently compute the optimal threshold

B(@) and the function & (B, B) for a given B (corresponding to Theorem 1 and Theorem 2). In
Line 5, due to Lemma 2, we only need a logarithm number of iterations. In Line 8, since the
root function in (12) is strongly convex, we only need a simple Newton’s method to obtain

e Line 2,3,11 serves as an outer layer that uses a simple bisection method to determine the root

of B (corresponding to Theorem 3).

In the special case where B = 0, it is easy to observe that Bz () = B1(R), and Bl (B, ) = Bl1(B, B) =
B(@,E,, B) forallB =1, 2,.... As a result, the optimal threshold Bl(2) = Pl1(2), and the optimal value

function & (B, @) = B(E,B, B). By (12), Bi(@) = p3(& - E[R]). Therefore, Theorem 2 and 3 reduces to
the following corollary:

Corollary 1. (3)

Suppose that B = 0, then an optimal solution Pi’s to problem ‘™' satisfies:

Bl n a| 2 p3(B - E[F])o, (16)
B+=inf B20:|0-8

2l

Algorithm 1: Bisection method for solving the optimal threshold Bi{msegpt) and mseqpt

1 Given Bl small, Bl large, B1 < B2, and tolerance By, B> small.
2 repeat
; o
s set 2o, 2) Il 7, 7) = 0
(RIC Y
5 Set iteration numberB=[-loga— u |
1
6 forBl=1:
7 Update B:” (&, B) in (13)
8 Solve P (B) in (12)
9 Update Bz (B, @) in (10)
10 end for
1 if E2[Fa (B, @)] < 0: B =B, else B =
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12 until P2 - Pl1 < B2

13 return a( Y

where B is the root of

Eh p E i
B, 3@- [2]),B)=0. (17)

Moreover, Bl = mseopt is the optimal objective value of (3).

The optimal policy provided in Corollary 1 is the same as that of [30, Theorem 1]. In addition, we
have also improved [30, Theorem 1] by removing the assumption of the regenerative process. The
optimal sampling policy provided in Corollary 1 is a threshold type on the instantaneous estimation
error, and the optimal threshold is given in closed-form.

There are several variations of Corollary 1 with a reliable channel case B = 0. In [21], the paper
changes the source process to be the Ornstein-Uhlenbeck process and shows that the optimal
threshold is a root of the closed-form equation. The model where the source can reset the Wiener
process is described in [32]. Theorem 2 and Theorem 3 are different from these studies by
generalizing to an i.i.d. unreliable channel scenario (B > 0). Note that the last transmission may be
successful or failed for each sample. However, in Theorem 2 and Theorem 3, each sampling time
follows the same threshold type with the same threshold B(®), regardless of whether the last
transmission failed or not.

The expression (14) in Theorem 2 implies that our optimal policy relies on the value of the
Wiener process at the sampling time of the successfully delivered sample, Bz, but may not on B.
This is
also a key difference from the case of a reliable channel (B = 0), e.g., [21, 30, 32] and Corollary 1.
3.2 Optimal Signal-agnostic Sampling Policy with Sampling Rate Constraint

Finally, we turn to the signal-agnostic case and provide the exact solution to Problem (3). Using
[30], for any signal-agnostic policy, we have

£ 2-2 o) N 2., o < (7, 0.1). (18)
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In other words, when the sampling time does not depend on the Wiener process, the expected
square estimation error MMSE is equal to the age of information. So our MSE-optimal sampling

problem (Problem (3)) is equivalent to the age-optimal sampling problem. Problem (3) is equivalent

A

| "HS% %S

*&(+,87

1" HS%

Fig. 4. Evolution of the age A@ over time B.

to

age =inf lim sup — - AePRl . (19) opt

Benm Soo

Age of information As, or simply the age, is a metric for evaluating the data freshness. As is
mentioned in (18), the age Aris defined as the time elapsed since the freshest delivered sample is
generated [29]. If a fresh sample is successfully delivered to the estimator, the age decreases to
the system time of the sample. Otherwise, the age increases linearly in time. A sample path of the
age Amis depicted in Fig 4.

We then have the following result:

Theorem 4. ), optimal solution Bk’s to the problem 195 provided as:
E [2]
Beei=inf B20:AB>F- . (20)
1-
is the root of
E - BE max(@ - B, )=0, (21)
1-

o I E (2]

where e%=1ppe B and Ba1,Ba2, . . . are i.i.d. and have the same distribution as the transmission
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delay Ph’s.

Theorem 4 provides the same sampling policy as that of [24, Theorem 1]. But we slightly improve
[24, Theorem 1] by removing its assumption of the regenerative process. The proof of this
improvement is provided in Appendix H.

Different from Theorem 2, the optimal sampling policy is a threshold policy on the age, or
equivalently, the MMSE, instead of the instantaneous estimation error. Note that the age keeps
increasing over time if there is no successful delivery. As a result, if the previous transmission

E[@]
failed, the age is always larger than the optimal threshold - ___-@. Therefore, Theorem 4 tells

that
1

if the previous transmission is successful, the sampler may wait for some time until the current age
E[@]
exceeds the threshold - ___-@. If the previous transmission failed, the sampler chooses zero-

wait.
1

This is another key difference from the optimal signal-aware sampling policy in Theorem 2. In
Theorem 2, due to the randomness of the Wiener process, each sampler may need to wait,
regardless of the outcome of the previous transmission. In addition, since there is only one waiting
time

20
~— Our Results
157 | Zero-wait
Age-optimal

Average MSH
10

1 1.2 14 o 16 1.8 2

Fig. 5. Average MSE versus B, where the channel delay is lognormal distributed with the parameter B. As
increases, the channel delay distribution is more heavy-tailed. The probability of i.i.d. transmission failure
=0.65.

15

~— Our Results

Zero-wait
101
Average MSH

Age-optimal[ d

0 0.2 0.4 0.6 0.8

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 3, Article 60. Publication date: December 2023.



Sampling for Remote Estimation of the Wiener Process over an Unreliable Channel 60:17

Fig. 6. Average MSE versus the probability of i.i.d. transmission failure B, where the channel delay is lognormal

distributed with the parameter @ =1 5.

between two successful deliveries, the optimal objective value @ is the root of the closed form
expression (21). But the root function of & for the signal-aware case in (15) is not closed-form.

Instead, as is illustrated in Theorem 2 and Algorithm 1, we need to construct a sequence of
functions Pi’s to approach the root function.

4  SIMULATION
In this section, we will compute the long term average MMSE (average MSE) of the following three
sampling policies:

1. Our Results: our optimal sampling policy, which is the solution to problem (3), provided in
Theorem 1—3. The average MSE is then computed in Algorithm 1. It waits until the estimation
error exceeds a threshold.

2. Zero-wait: The source transmits a sample once it receives the feedback, i.e., Plz+1 = Fla. This
simple policy can achieve the maximum throughput and the minimum delay. However, even in the
case of a reliable channel, it may not optimize the age of information [34] or optimize the
estimation error [30]. In our study with an unreliable channel, Theorem 4 implies that the zero-
wait policy does not optimize the age. Moreover, Theorem 1—3 imply that the zero-wait policy

does not optimize the estimation error.
60

50F |7 Our Results

Zero-wait & Age-optimal

40r
Average MSH
301

201

0 0.2 04 0.6 0.8

Fig. 7. Average MSE versus B, where the channel delay is a constant with the delay B = 6.

3. Age-optimal: This policy is provided in Theorem 4, restated in [24, Theorem 1], and the
averageMSE is computed by [24, Algorithm 1]. Age-optimal policy achieves the optimal average

age. It waits until the age (i.e., MMSE E[(Zla-E 5)?]) exceeds a threshold.
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We will follow the same network system as is illustrated in Section 2 and Fig. 1. We consider
two scenarios about the delay distribution of the unreliable channel: heavy-tailed distribution
(e.g., lognormal distribution) and short-tailed distribution (e.g., constant).

In the first scenario, we assume that the channel delay follows a lognormal distribution. The

lognormal random variable with scale parameter Bl is expressed as JE[@ ], where B is the

standard normal random variable. Fig. 5 illustrates the relationship between the average MSE of
the four sampling policies with parameter & of lognormal channel delay, given a discount factor
(probability of failure of the channel). The numerical results validate that our proposed policy
always achieves the lowest average MSE. Note that as @ increases, the lognormal distribution of
the channel becomes more heavy-tailed. We observe that the zero-wait policy is far from
optimality, and the age-optimal policy also grows much quicker than our optimal policy. Therefore,
our optimal policy substantially outperforms the age-optimal and zero-wait policies when the
channel delay becomes heavy-tailed. Fig. 6 plots the evolutions of the average MSE with the change
of Bl given that the parameter Bl = 1.5. From our observation, the zero-wait policy is always far from
our optimal policy.

In the second scenario, we assume that the channel delay is a constant. Fig. 7 depicts the
evolution of the average MSE of different policies with the change of E. Note that the age-optimal
policy is equivalent to the zero-wait policy when the delay is a constant, as is shown in [24, Corollary
3]. We observe that when the channel connectivity is more reliable (& very small), then the zero-
wait policy is only slightly inferior to the optimal policy. However, as B increases, the zero-wait
policy becomes far from optimality. The intuitive reason is as follows: since the Wiener process
oscillates, with a nontrivial probability, our optimal policy waits at each sample, no matter whether
the last transmission failed or not. Compared to the zero-wait policy, such a quite different
sampling strategy leads to much improvement for the average MSE. This is the newly observed
phenomenon that has not been found in the previous studies, e.g., [21, 24, 28, 30].

In summary, our optimal policy can perform much better than the zero-wait and the age-optimal
policy when either (i) the transmission time is heavy-tailed, or (ii) the transmission time is
lighttailed, and the channel is highly unreliable.

5 PROOF OF MAIN RESULTS

In this section, we provide the proof for efficiently solving the optimal signal-aware policy for (3).
In Section 5.1, we first show that there exists an optimal policy such that the inter-sampling time
of the successfully delivered packet is i.i.d. Thus, the long term average MMSE in (3) is equal to the
average MMSE only between the two successful delivery times. In Section 5.2, after linearizing, the
reduced problem is equivalent to optimizing a discrete time discounted problem with multiple
stopping times (27). This new problem a strict generalization to a discrete time discounted MDP,
where each action is extended to be a stopping time. To solve (27), in Section 5.3, we first speculate
that the optimal policy and its optimal value function satisfy the Bellman equation. Then, we use a
value iteration algorithm to approach the optimal value function, where each iteration is an
optimal stopping problem. Interestingly, we analytically solve the optimal stopping time for each
iteration, which is a key technical contribution in this paper. Finally, in Section 5.4, we use the
contraction mapping property to show that the optimal value function of the value iteration
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algorithm convergences linearly to that of the Bellman equation. Thus, we exactly solve (27). This
ends the proof.

5.1 Reducing to a Single-epoch Problem

5.1.1 Replacing the subscript B by (B,2). The proof relies on the number of successfully delivered
samples and the number of samples attempted for a successful delivery. These messages cannot

be easily described in {Pg,Plg, Flz }'s by using only one subscript Bl. Therefore, for notational simplicity,
throughout Section 5, we will replace Blg,Plg, Plz by Pl Plaz, Plaz, respectively. Here, we denote the
Bith epoch to be the time interval between the (2 - 1)th and the Bith successful deliveries. Let

represent the total number of transmissions attempted during the Bth epoch. Then, Bz has a
geometric distribution with parameter 1 — B. Note that if the channel is reliable, then Bz = 1. In
addition, B €{1, 2, ..., Ba} represents the index of transmission for the Eith epoch, where the case
= 1 implies that the last transmission was successful. Note that the mapping from & to (B,2) is
one-to-one. For example, in Fig 2, Bl1 = Bly,1 with Bl1 = 1, Bla = Blp, 1, B3 = Bl 2 with B2 = 2, and Bls = B3,1 with

P=1.

By (1), the MMSE estimator B gis expressed as

By _1,e0-1, 0 € [Plz-1,20-1, (22)
5.1.2 Reducing to a Single-epoch Problem. We aim to show that solving the original problem
(3) can be reduced to solving the optimal sampling times Bls1,Pl2, . . . within an epoch B over a

subset of the policy space Msignal-aware. We denote such the subset Mg as a collection of sampling
times Blg,1,Plz,2, . . . within epoch B such that each inter-sampling time {Baa - Be-1e1,B =1, 2, .. .}is
independent of the history information before @a-1,ze-1. The following result shows that our average
cost problem (3) reduces to a single epoch problem (with arbitrary index &) that contains possibly
multiple samples from one successful delivery time until the next successful delivery time.

Proposition 1. There exists an optimal policy for the problem (3) such that {¥z,e: - Pla-1,2-1 }a are
i.i.d. Moreover, problem (3) is equivalent to

E hI B ( N A1 )2 i
-
[Ple-1,p0-1 p-1
mse°Pt ™ (Bl,1,Binfa2,...) €Ne E pR,B2— pE-1,Be1 . (23)
Proof. See Appendix B. O
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Proposition 1 implies that to solve the long term average MMSE problem (3), we can solve a
problem with only a single epoch. Each sampling decision in this epoch is independent of the
history information prior to the final sampling time of the previous epoch. Proposition 1 is
motivated by
[28, 30] under a reliable channel. In these studies, the original problem is reduced to an average
MMSE problem between two delivery times (a single sample problem). One of the key reasons is
that at each delivery time, the estimation error is updated and is independent of the history
information before the last sampling time. But in our unreliable case, at a failed delivery time, the
estimation error is not updated and is still correlated to that history information. Thus, our single
epoch problem cannot be further reduced to a single sample problem. In addition, we also improve
[28, 30] by removing the assumption of the regenerative process. A similar result to Proposition 1
is presented in [2] with an unreliable channel and signal-agnostic sampling, without the assumption
of the regenerative process. We also generalize [2] since our sampling time depends on the Wiener
process.

Although we have reformulated the long term average MMSE problem (3) into an average
MMSE problem within a single epoch (23), problem (23) is still hard to solve. This is because it

contains a fraction and thus is a repeated semi-MDP.

5.2 Reformulating as a Multiple Stopping Times Problem: an Extension to a Discounted MDP

In this section, we will linearize problem (23) and reformulate it as a discounted cost and repeated
Markov decision process (MDP), where each action is a stopping time.

Let us define a minimization problem with a parameter B €R:

"I #

/@) = ginfen= E (Pl —PlEe-1,2e-1 ) B — B2, — BlE-1,Be-1). (24)

-1,Bp-1
Here, B = (Blg1,B,2, . . .). By Dinkelbach’s method [9], we have

Lemma 3. (i) ZAR) §0 if and only if mseopt §

(ii) When B = mseopt, the solution to (23) and (24) are equivalent.

Therefore, to solve (23), we will solve ZAAmseopt) = 0.

We denote Bz as the waiting time for the Eith sample in epoch B. Then,

[Pl

o]
e, - Be-1,8= +0 . (25)
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B-1 Ba
B=1

Then, combined with (25) and the strong Markov property of the Wiener process, given that
B
.,1,,1— pe-tee1 = [, 2 €R, we have

[ Baem | le-p1 B +Emp

(Pl ~Plze- 1,001 ) PIP] = (Bl + B)) 2. (26)
Pla-1,6m-1 0

As a result, (25) and (26) give:

Lemma 4. An optimal solution to (23) given that Ble-1,ee-1 —PlFe-120-1 = B, Bl € R satisfies
(B) Zinf Bz (@),

(27)
€Ma
2F [ fo=pn Brn+22 (B + B1) 2608 — mseopt(OrnBlam + Paz)EEE .
(@) (28)
0
=1

=

2

=

2
Here, @ (B) is the total cost of the optimal policy, which is also called the optimal value function.
And Bz (B) is the total cost of a policy, which is also called the action value function with a policy Bl.
For any policy B, the action value function Bz (2) in (28) is further written as

Bl &y

(2) =E EROR(E

2) |B°1 = B,

(29)
Plr=1
where the state values =1,2...satisfy

Pl+1 = Pla +2]

+e,Pl=1,2,...,

(30)
BI(2;R), also called a per stage cost function, is the expected integration of square estimation error
4 minus mseopt from the last
delivery time to the next delivery time, where the initial estimation error is B, and the sampler’s
waiting time is Bl B(&;2) is defined as:
[ea
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2
BI(E;E) =E (B +Bz ) BE — mseopt(B + ), (31)
0

where B has the same distribution as the channel delay. The equation (29) holds because of the
strong Markov property of the Wiener process.

Note that Pz (7) represents the expected cost of square estimation error minus a constant mseopt
within an epoch. In an epoch, if the transmission is successful with probability 1 - B, then the
system will stop. Thus, the system state will enter a “stopping” set with 0 cost; If the transmission
fails with probability &, the system state will enter the next transmission with a per-stage cost .

Therefore,

(&) = Ofz-1E B(E"z;Flz,2) |A™1 =1, (32)

=1

which is proven in [24, Appendix F]. The Bth stage state Nimplies that all the previous A1 - 1
B-1 -

transmissions failed, and the coefficient is the probability of 1 consecutive failures.

Equations (27)—(32) imply that problem (27) belongs to a discounted cost problem with
multiple stopping times, or in other words, a repeated MDP, because there are multiple waiting
times
Plz1,P2, . . ., and each waiting time is a stopping time. Suppose that each waiting time is not a
stopping time, i.e., the waiting time policy chooses a real value that is independent of the Wiener

process. Then, problem (27) is reduced to a discrete time discounted cost MDP [3]. This is because:

(i) the state at each stage [ is the estimation error at the @ - 1th delivery time, (whenBl =1,

~=(32)). (ii) The action at each stage [ is the waiting time for the Bith sample, Ple. (iii) The
Py
state transition is provided in (30). (iv) The cost function is defined in (31).

Note that the waiting times Plz,1,Flz2, . . . are correlated. Thus, despite that we have linearized
the problem (23) into a multiple stopping time problem (27), problem (27) still faces the curse of

dimensionality.

5.3 Analytical Solution to the Value Iteration (35) for the Multiple Stopping Times Problem (27)

In the special case where each waiting time Bz 1,P,2, . . . is not a stopping time, the optimal policy
and the optimal value function to the discounted MDP satisfies the Bellman equation [5, Chapter
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9]. The advantage of the Bellman equation is that it turns the MDP with correlated waiting times
into an optimization problem over a single waiting time and thus helps reduce the complexity of

“For comparison, Bla () is the expected integration of square estimation error minus mseop: from the last delivery time to

the next succsssful delivery time.

the MDP. Suppose that we can propose a waiting time decision B)(#),2 €R and the action value
function of the stationary policy BB, . . . that is the unique solution to the Bellman equation.
Then, the policy BB, . . . is an optimal policy.

Similar to the previous MDP case, we believe that the optimal policy and the optimal value
5 function of our repeated
MDP (27) still satisfies the Bellman equation . Because except that each waiting time is extended
to be a stopping time, our repeated MDP (27) has the same components as that of a discounted
MDP. The Bellman equation for our repeated MDP (27) is defined as follows:

(B) = B B (B) £inf B(2;B) + BE [B (B +Ba)], (33)

where B is the set of stopping times on the Wiener process Basuch that

B=0:{A <@} €F (A)+, ER2 < oo , (34)
+

where F (B) = Nes-ell(Flz, & €[0,E]). In (33), B +Bk+mis the next state of estimation error, after a stopping
time B and a channel delay B.

However, problem (33) is not an optimal stopping problem because the function & exists in
both sides. To overcome this issue and exactly solve (33), our method in this paper is to use the
value iteration algorithm [4] to convert (33) into multiple standard optimal stopping problems
that are solvable. Specifically, we will construct a sequence of optimal stopping problems to
approach the problem (33), where in each optimal stopping problem, the action value functions
are well-defined. We define the value iteration algorithm regarding to the problem (33) as
follows:

Blo(B) 20,

P+1(B) 20 B (B) = inf B(2;E) + BE [Be (B +Be+2)], B=0,1, 2, . ..
We also denote BB, . . . as the optimal stopping time of the problem (35) when =1, 2, ...,

(35)

respectively. Then, Bz (#) = B 0(B) is the discounted integrated cost from the first delivery

time (the last transmission was successful) until at most the Bith delivery time, where the BEth
transmission implies that previous B - 1 transmissions have failed. In addition, the waiting times

for the Bl transmissions are By, B, . . . ,Pls, respectively. Note that & (B) is the discounted cost about
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infinite number of transmissions. Thus, our objective is to exactly solve (35) by figuring out B1,FD, .

.. and show that @ 0(@) - @ (7) as B - oo.

5.3.1 Candidate Solutions to (35). We speculate that each optimal stopping time B3,BD, . . . for

(35) is a hitting time, or in other words, threshold type, defined as follows:

Pe=inf{@l: |B+Bp | 2B}, B1=1, 2, ..., (36)
20

where [, called the initial state, is the estimation error at the & - 1th delivery time Bae-1 (B =1
implies that the last transmission was successful, and the delivery time is Blg-1,22.1). Next, we aim
to find out the sequence of the optimal thresholds B3, . . ..

Let us define a function Bz (B) as follows:
Pz (B1) = B(E; 0) + PE [Fe-1(B +212)] . (37)

Intuitively, Blz (B) is the action value function that chooses 0 waiting time at the first stage, incurs

the cost B(3; 0), and chooses the optimal waiting times at the remaining B - 1 stages. Since the

5This statement is technically true if we can show that our action space is a Borel space (We call B as a Borel space if there

exists a complete separable metric space F and a Borel subset® € Basuch that B is homeomorphic to @ ) [5, Chapter 9].

Examples of a Borel space are R and any real-valued intervals. For showing that our action space is a Borel space, we

leave to our future studies.
speculated optimal waiting time (36) is a hitting time, Bz (B) = Bz (B) if [B] > Bl In addition, we

provide an alternative expression of BI(Z;2):

Lemma 5.
h 1
B(Z;E) =E (B +B2)? - mseopd? + E [B] (B +2r)?
+ _E [@]%2 - E [A] mseopt.
(38) 2

Moreover, if B is a hitting time with a threshold B given the initial valueB. i.e.,B = infg>0{2 : | +2g |
> [}, then we have

BI(E;E) = B(B, B, mseop), (39)
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(11)

where BI(B,B, mseop:) is defined in

Proof. See Appendix A O

Then, our problem (35) is augmented as the sequence of standard optimal stopping problem
[25, Chapter 1]:

" " (40)
Bz (2,@) = inf E Bz (B +B), @ + Pla) , for all B, €R,
where
(B +Bg, B + Bla ) 207 (B +B, B + Bz ) + BIE [Fe-1(F +Pla+2a )], (41)

AT [ @
)% = mseoptEl. (43)

By Lemma 5, for any B, we have B(2;2) =E [B" (2 +Bl,Plz )] =E [ (B +215, + Bz )] — Bl.
According to [20, Chapter 10] and [25, Section 8], the free boundary method implies that the

optimal objective function (2,2) should satisfy

162
- 2 (44)
_ Ple (B1,2) + - mseopt = 0,F € (—Flg, Pla),
2 B2
~ (45)
Pz (B,R) = B g (B,B),E € (-0, —Flz] U [Bl, =),
N(,) (,).
(46)
P=2Fm B=+Flp

The first equation (44) tells that in the continuation set (-Bls,Blz), the infinitesimal operator of

Bz (2,2) is zero. In the second equation (45), at the stopping set (oo, -Blz] U[Eg, o), the stopping

time Blzis zero. The third equation (46) implies that B (B, should be continuously differentiable
at the boundary points B = +F. These three equations are then simplified to:

1

_ B (B) + - mseopt = 0,8 € (-, Bla), (47)
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2

(B) = B (2),8 € (-0, ~Be] U[Be, o), (48)

B (@) '@ . (49)
" 2

=Pl =Pl

By (47)—(49), @ is the positive solution to e

following results for deriving the sequence By, B, . . .:

e’ (Fz). Combined with Lemma 5, we provide
Lemma 6. ForallB =1, 2,... we have that:
(a) 1f 11 <%, then
' 2 3
(B) = _B(B, B, mseopt) =—_B  + 2mseopt?. (50)
3
if 12> %, then

, 7 . .
Ber (B) = B (B) = _ B B(E, 0, mseopt) + BE Ba-1(2 +Ek ) = 2E [B] B + BE Bz -1(2 +2a) .

(51)
The optimal threshold Bz is the positive solution to
2 3
@)+ B -2mseopdd =0. (52)
3

Moreover, B4 (Bl) and B (B) are continuous.
(b) B (0) = 0, and Blz" (&) + 2B12 - 2mseopt 2 0 for all B € [E, o°).
(c) Be(R) 2 0, and Pl (B) + 421 > O for all B > 0.

(d) The sequence of thresholds B1,BY, . . . is bounded with Bz < p3mseoptand is decreasing, thus

converges.

Proof. See Appendix D. O
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5.3.2 Optimality of the Candidate Solution to (35). We finally validate that the hitting time (36) is
the optimal solution. Combined with Lemma 6, we have the following result:

Theorem 5. B,

a) An optimal sequence of waiting times ?1 7 fOf( )Satl'Sfl'E‘S
(52) (51)

(36)

, and each

threshold Bais the positive root of \~ ', where Bl () = O, B (B) is updated by ‘™', Bo (B) = 0, and &

(?1) is updated by (50)(51).

(b) The function Ba (B) + %3_23 _steopt in (52) is convex for B 2 0 and strongly convex for B > 0.
Therefore, the positive root of Blis unique. In addition, Pladecreases and thus converges.

Theorem 5 (b) is directly shown by Lemma 6. It remains to show that the exact solution provided
in Theorem 5 (a) is optimal to the value iteration problem (35).

Proof of Theorem 5 (a). we obtain the two following results:
Lemma 7. We have @"r (2,2) < B"a (B,R) for any (B,2) € R2 and the iteration numberB =1, 2, .. ..

Proof. See Appendix E. m)

Definition 1. A function f(w,q) is excessive if E[B" (2 +2,2 + Bz )] < B~ (B,2) for all @ = 0 and (B,B) €
R2.

Lemma 8. The negative value function -2 w(B,2) is excessive for any (B,B) € R? and the iteration

number®=1,2,....

Proof. See Appendix F. m)

By Lemma 7 and Lemma 8, using Corollary to Theorem 1 in [27, Section 3.3.1], we have that
the stopping times Bl3,Bl, . . . in (36) are optimal to (40), thus are optimal to (35). This completes
the proof of Theorem 5 (a). O
5.4 Linear Convergence of Value Iteration to the Repeated MDP (27)

In this section, we will show that the optimal value functions Bz of the value iteration algorithm

(35) converge linearly to the optimal value function & of our problem in (27). We have the following
result:

Lemma 9. (a) Suppose that the continuation set of B is is bounded by B , i.e., if B> & , then Bl = 0.

—Epr a2
Then, (®) <m.
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(b)  The function Ba (B) = BP0(R) satisfies the contraction mapping property, i.e., IEFg|l < oo,

I ||+10 - OII < IIOII. The Bellman operator B is defined in (33).

(c) (B1) = @ =(R) is the unique solution to the Bellman equation Bl = (33) (with IB ]| < ee).
Further, ||E20 - 2 || < @||P=-10 - & ||

Proof. See Appendix G. ]

By Lemma 9(c), @ is the unique solution to the Bellman equation @ = B . Therefore, @ is the
optimal value function for the problem (27). Due to the linear convergence of Fiato B, Lemma 6(d)
implies that the optimal stopping time for (27) is also a hitting time, where the optimal threshold
is B = limg->e< Pla. This completes the proof of Theorem 2. In addition, Lemma 3 implies that mseopt
is the solution to E[lima>=< [ (Flz)] = 0. These statements combined with Theorem 5 completes the

solution to the problem (3).

5.5 Discussion
In this section, we compare our proof and technical contributions with some related works and
discuss some interesting future directions.

5.5.1 Special Case 1: Reliable Channel [30]. In the special case of a reliable channel (2 = 0), Bz = 1.
The problem (27) is then reduced to:

(B) £inf B(E;B). (53)
The problem (27) for general & > 0 is a repeated MDP, because we need to determine multiple
correlated waiting times in an epoch, and each waiting time is a stopping time. However, when
=0, the problem (53) reduces to an MDP, or in other words, an optimal stopping problem with a
single waiting time. Note that solving (53) is still nontrivial. We speculate that the optimal waiting
time B is a hitting time. Using Lemma 6 (a), the optimal threshold @ is the positive root of

2

"2 - 2(mseopt— E[E])E = O, (54)

which is Bl = p3(mseopt — E[R]). By Theorem 5, the speculated waiting time is optimal. This implies
the final result Corollary 1 ([30, Theorem 1]).

Similar studies with a reliable channel are also indicated, e.g., in [21, 28, 32]. The key insight is
to solve an optimal stopping time like (53). Our study with an unreliable channel is different from
these studies, because we need to solve a problem with multiple correlated stopping times (27).
To solve this, we need to analytically solve a value iteration algorithm (35) that includes a

sequence of optimal stopping problems. Compared to (53), for each iteration &, our optimal
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stopping problem is more challenging to solve, because the optimal value function is a more

complicated expression that contains a summation of B correlated samples.

5.5.2  Special Case 2: Signal-agnostic Sampling [24]. When the sampling time is independent of
the Wiener process, each waiting time takes a nonnegative value based on the timing history
information, but not the evolution of the Wiener process. The previous problem (27) is reduced
from a discounted and repeated MDP to a discounted MDP. The study in [24] has shown that the
optimal policy is a threshold policy on the age (i.e., MMSE).

Since the optimal signal-aware sampling policy is different from the optimal signal-aware
sampling policy, the proof of solving our problem (27) is different from that of the discounted MDP
in [24]. The authors in [24] solve their problems as follows: (i) they first propose a threshold based
waiting decision B(E) = max(ageopt — B — E[R]/(1 - &), 0), where Bl is the age state, and age is the
optimal average age; (ii) then they show that @ and its value function are the unique opt

solution to the Bellman equation: Blagnostic(®l) = infa 20 Blagnostic(B,B) + E[Blagnostic(B + B + B)], where
2 sgnostic(B,B) 2E[femaa (B~ ageopt)PE].

However, such the proof ideas cannot be applied to our case, due to the following challenges
that do not appear in [24]: (i) Since each waiting time is a stopping time, solving (27) faces the
curse of dimensionality. For example, when B = 0, (27) reduces to (53), but (53) is still an optimal
stopping problem. In the signal-agnostic case, (53) is reduced to a convex optimization problem
[28, Lemma 7], thus is much easier to solve; (ii) In [24], the Bellman equation is solvable. Since Bl is
threshold type on the age, it is optimal to wait (& > 0) only when the last transmission was
successful. Thus, the optimal value function is a closed-form expression: Blagnostic(2) = Eh [ B+a(@)+&

-

age (B(R) + B )i, where B is given in Theorem 4. Since the Bellman equation is a minimization opt
over nonnegative values, solving the Bellman equation is the same as comparing a few closed-
form expressions. In our case, however, it is hard to compare, because the optimal value
function B (@) is not closed-form. This is due to the randomness of the Wiener process, and we
may wait for each sample.

5.5.3 Future Direction 1: Non i.i.d. Channel Failure. When the channel failure is extended from

i.i.d. to Markovian, we still believe that the statements in Section 5.1 and Section (5.2) are correct.
However, there is a key difference in Section 5.3: the problem (27) (32) is changed to be

oo

(@) = inf B(;E,1) + (1 - B)E B(E"2;Ee,2) |B™1 = B + OFe-1E B(E"z;Ene) |B~1=H,
P=Blz,1,08,2, ...
B=3
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(55)
"where B is the self
transition probability from state to state, and B is the self transition probability from
state to B state. In the non i.i.d. case where 1 — ' # [, Problem (55) has a changing discount
factor. Thus, the Bellman equation and the value iteration algorithm are not well-defined,
making this new problem challenging to solve.

554 Future Direction 2: Non i.i.d. Transmission Delay. Suppose that we consider a Markovian
transmission delay. Then, the waiting time not only should depend on the evolution of the Wiener
process, but also should depend on the last transmission delay. This is because the last
transmission delay effects the next transmission delay. Therefore, the value iteration (35) should
be extended as:

+l,markov(,) =inf (,) + BIE ,markov( ++,) ,0=0,1,2,..., (56)

where Bl is the last transmission delay, and the distribution of Bl is affected by B. Due to the space
limitation, we will consider this extended problem in the future directions.

6 CONCLUSION

In this paper, we provide a sampling policy to minimize the mean square estimation error, where
the sampler generates the sample at the source and transmits it to the remote estimator over a
time-varying channel. We show that the optimal sampling policy is a threshold policy on the
instantaneous estimation error, and the threshold is computed efficiently. The curse of
dimensionality that originates from the randomness of the Wiener process, channel conditions,
and the channel delay is circumvented. We believe that the proof of our main results provides an
insight about how to solve a problem with discounted and multiple stopping times.
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PROOF OF LEMMA 5

denote Fla 2P + Bz as the Wiener process starting from the initial state Fo = B. Using the

definition of B(3;3) in (31), we have
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PIP;E) 2E - mseopt(B + B)
0
Il [ B+m
- 2 2
E + — mseopt(E + B)
0

60:33

(57)

Using the strong Markov property of the wiener process, {Plz+,2 > 0} has the same distribution as

{Blp +Bz, B > 0}. The second term of (57) turns to:

Jo+e E
2
[ B+
=E (B2 +B ) 2EIR
| Il
2 2
=E + 2BREREE +
0 0
J
=E [B] E ge? + 2E [Be] E
0

+E

(58)

the last equality holds because the delay B is independent of . By [18, Theorem 2.5.1], 1/3B3 -

i and 1/6F=4 - for PE2RR are martingales, respectively. So

0
[ B+@ 2 1
E Pl2ER =E [[] E B2z + E [Ple] E E Bz3 |B + _E E pet* |&
3 6
2 1

=E [] E p® + E [B2] E g’ + _E B*

3
1

=E[B] Epe®+E@ 2.
2

6

(59)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 3, Article 60. Publication date: December 2023.



60:34 Jiayu Pan, Yin Sun, and Ness B. Shroff

Combined with (58) and (59), we finally get (38).
Before showing that BI(E;2) = BI(,B, mseopt), we need Lemma 10:

Lemma 10. If a finite stopping time B satisfies that {2, 0 <@ <B}is bounded, then
i 1 (60)
E =_E PR3,
3
0
I
3

Proof. By [18, Theorem 2.5.1] and [10, Theorem 8.5.1], 1/3Bz - 0 is a martingale for any
given positive value Bl. Note that forany B =1, 2, ..., @ AR is obviously bounded. Then, we have

BIAR
[ Bnm 1
E =_E . (61)
0 3

Since B is finite, B AR - B, Plzaz = Plralmost surely. Since {Flz, 0 <PI< B} is bounded, using Dominated
convergence theorem [26, Theorem 5.3.3],

I :
lim E PlaE . (62)
B-yoo

Using Monotone Convergence Theorem [26, Theorem 5.3.1], E [&1 AB] = E [@]. This leads to

Jm Jena

limE - <SlmE[(B-BAR)] xBE=0, (63)
P> Fl>oo

where Blis an upper bound of {£z, 0 < B < &}. So we have

I° Jene 11
E PplIE = lim E PR = _ lim E _E . (64)
0 B> 0 3 @33

o
Now we start to prove B(E;R) = B(E,E, mseopt). If || > B, then B = 0, and E [] BEr? =E [&] B2
Therefore,
1

B(E;2) =E [B] B2+ _E B2 - E [B] mseopt = B(B,B, mseopt). (65)
2
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i 18| <&, then EIN 2. By (10, Theorem 8.5.5], E [7] = B2 - B2. So we have
I 1 (66)

B(E;R) =E? Fz’ER - mseopt(F> - %) + E [A] B2+ _E B 2 - E [A] mseopt.
0 2

Since Plo = B and the Wiener process has strong Markov property, the first term becomes

J' J'
E? Fl’RR =E (2 +Blz ) 2B
0 0
J'
=E B2 + 2By +E%ER

0

.

PIE Bz +Epet, (67)
6

The last equality holds due to Lemma 10 and [30, Lemma 3]. From [18, Theorem 2.49], we have

B-a B+@  with  probability

= FI2E (68)

-0 - with probability
28

Then, we have

+ -
Epe’ =B -08)-(@+8)3= -28 (B2 - B2), (69)
EBm4 =" += (B-R)a+7 == (B +[Bl)a= 2 - P2 (2013 + 6FIF2) = (B2 - B2)(F2 + 3B2). (70)
20 20 20
This gives
I 4 1
Em BBl = B2(B2 - B2) -  _E2(B2-E%)+ _ (Bl2- BP)(B%+ 3@?)
0 3 6
1
= _ (Pla - Bla). (712)
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Therefore, if |B| <,
1 1

BI(E;E) = — (8% - B*) - mseopt(B? - B2) + E [B] B2+ _E B 2 - E [B] mseopt = BI(E,E, mseopt).
6 2
(72)

This ends our proof.

B PROOF OF PROPOSITION 1

The proof is modified from [2], but we strictly extends [2] in two-folds: (i) we consider the square
estimation error (Bz— B )%, which is a more complicated metric than the age Az considered in

[2]. Note that in the special case where the sampling time is independent of the Wiener process,

E[(Bz-B =)%] =Am; (ii) The process (Bz-& #)? of two consecutive epochs are correlated, while in [2],

the process Aw of that are independent.
We denote 2Fgee— Pe-1,6e-1as the inter sampling time of the Bth epoch. We also denote Hg

as the history information of sampling times, transmission times and the Wiener process until Blza

mn

Then, by the definition ofsignat-aware in Section 2.2, is bounded by a stopping time, denoted by

"B Ea o
@, and we have B<.
“m
Pl
( )=TI8( - )2 .WedenoteBr=[g (Be- B »)%ER =
For simplicity, let us denote
0 —1,—1
| B ( - BLe )2 ()
2, and as the largest epoch number B such that B <P, i.e., the
FP-1,78-1 - Bl (Bl

number of successful samples attempted until B. Then, we have
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< <8, if B € [Pz ez, B, (73)-

A<E-1< <

F
O =
[y

~
1
[y

01 €l B1]
Pe+1,E+ . (74)

@]

[ERN

IN

~

<Pl <@+, if e,

This tells that

H ?|
oof=1 ple<d(@)-1 (=) Ioo=1 1< @)+1

< < (75)
Then, we have the following lemma:
Lemma 11.
I
E m( )+ (@)+1
lim 0. (76)
oo
Proof. see Appendix C. m

Lemma 11 tells that the "residual terms" Bl (z) /2 and Bz ()+1/@ vanishes as time B goes to infinity.

Therefore, instead of B (2 ), we can analyze {Fz}a. We have

||°° #
E@@)]101limsup—— =lim sup _E Baasm. (77) B>

Soo Pl B=1

Here we denote Blz= (& ) + 1 for simplicity. We denote B, Bamas the integral of (Bz -2 #)?and

- Blz-1 between BFlz-1 and Bith delivery time of Bth epoch, respectively, given that there are

transmissions at Bith epoch. Then,

E Ppela <Be
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=EHe-1 hE Pla,ale <@z He-1i

(=B)EHe1 hE Blz,eHE-1 1@ <@z He-1i . (78)

Condition (B) is because B < Pz (i.e., Bl - 1 < @ (&)) is fixed given He-1. Similarly,

E Pla,alm <pa

=EHe+ E P8 | He-1 18 <P HE-1 . (79)

We then find out the lower bound of Io<>=1 13, equals toPPmin, in the following equations (80).

Here, condition (i) is due to monotone convergence theorem, and condition (ii) is due to (78). The

*(H ) ffBee=1Plz-1 (1-B) EhBl3,eHz-1i
value B-1 is the minimum of the fraction fwz-2ge_1 (1-m)E"eReHe1i, and is the minimum
«(H ) H *(H ) H
over all . . is not related to
of -1 e-1. Note that any policy that achieves B-1 e-1.

Thus, the inequalities hold if we can find out such a policy that is not related to He-1. In addition,
+(H )=
p-1 Plmin.

n oo #
EQ1
B <P

p=1

"eooo # m 00611
=E B <F
a1}
P=1B=1

6 | ocr1.1 i

<Bl
B
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F=1B=1
00
= Be-1(1 - B)E Be,ale <oe
B=1B=1
@00 B-1 EHe-1 hE Pla,eHe-1 19 <ze He-1i
= (1-B)
B=1B=1
oo " oo #
0 o]
= EHe-1 Fa-1(1 — B)E Bz,aHe-1 18 <Ba He-1
=1 =1
oo " oo fo BEm-1(1-BE)EE H
o] o]
Ee: B-1 - P)E PaHE-1 18 <Bn B=1 B,EE-1 HE-1
= H- (1
B=1 B=f p=A Pl 1(1 - B)E B eHe-1
0o n 0o #
0 0
- @*(Hez-1)
> EHe-1 Pr-1(1 - B)E Pe,aHE-1 16 <Ba
B=1 B=1
oo " oo #
0] 0] .
min
P EHz-1 Pe-1(1 - P)E Pa,eHe-1 16 <@e
=1 =1
n oo #
0
=E
2PRImin.

60:39

(80)

DivideP on both sides and take the limit off, then we can get limag > o tE It>e=1 o <Be = Bmin, i.€.,

all of the inequalities will hold if Blmis independent of Hz-1, and we can find out an optimal

policy that solves (23). This ends our proof of Proposition 1.
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C PROOF OF LEMMA 11

Using [30, Lemma 3], for any finite stopping time B, we have

Je 1

E B 2PR=_E@a4. (81)

Denote @ a= .

0B’RIE, where B #Zis a stopping time upper bound denoted in Appendix B,

independent of Blzez. Then,

B N H#
Ep'm=EE P2l
0
1
4
=E E EEem+@
h 4 i
=E _
"p+Ple,pr
4
_ e Plre+ Ege . (82)
- Plz,pa
3 3
Pla~en +2k,0m —RE" 0 +212 =
h a4i 1 4 h 2i 2
;
=E + 6E m+Erm— @57 +E ®mE Eem+frm— B

- gh3ihi2hi3+EE- EE-
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According to strong Markov property of the Wiener process,

is independent of &

Using [18, Theorem 2.44 and Theorem 2.48], for any finite stopping time B, E @ 2 =E [&] and

E[ 1= "B Ea oo
0. Both Bzand Bsm are finite and Pe<. So
Ee=_E e+ _LE Moot + E B BB oo (83)
6 6

22
= (BBl ) BIE =Bl B <
h "Bl (84)

Using (84), we have that

E (P2 + Pla+1) 1o

h i
<E (B"B+ B"e+1)17e+7m L
- F-1,Fp-1=
1>0
h i B+l Bl
=E@ + )1
28 (B - @). (85)
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The first equality holds because B"g, BI"m+1,P 58,27 z2+1 are independent of Ha-1. By (83), & (0) < oo,
(?) is monotone decreasing, and B (&) - 0 as Bl - oo. We trivially set B-1z1=Floz= 0, so we have

(#) 20 and Bo= 0. We have

+ =0( + )1 =0( + )1 B1em1
@) (@)+1 Pla+1 (@ )=k Pla+1 <B,E + + >0
B=0 B=0
oo < O(
+
)1
Ple+1 Plo-1,62-1 <P, Plow1,6m+1 >B . (86)
B=0
Therefore, FRE (B + B+1) 1Ble-1,62-1 <, Blov 1,241 >B)
=0
EBa@)+
h i
E ( + - +1)1+1,+1 >0 PlA-1,8e-1 = PIRlee-1,-1 ()
0
=0

-

(B - B)ERee-1.e0-1 (B)

p=0 O

=R (B - . 1) PlPlee- 1,001 (1) + 201 (E1), (87)
where & 1e (B - 0
a1 =2

) = B (Ple-1,22-1< P)). Note that Blz-1e1< Bl is equivalent to B (B ) 2@ - 1. So
E[E@(®)+1]

B OO
cowehavep “B@E+12B)=B@@)28-1)+1= B () + 1 (88)
P=1 pPl=2 p=2
I
N ) P s () and
0 ]

E B + 2 I (@ - B)ZE [@ (2)] + 20 (2). (89)

0

Note that B (@) vanishes to 0 as B} - o=. Following the same steps as [33, Appendix C1], we have

[P (B - B)RE [& (&)] /& > 0 as @ - e. This ends our proof.
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0

D PROOF OF LEMMA 6

In this appendix, for simplicity, we will replace the per stage cost B(&,E, mseopt) by BI(E, ).

D.1  Preliminary

Definition 2. Let Py, - - - ,Blzas an i.i.d. sequence with the same distribution as the channel delay
B, and B1 - - - Bras any nonnegative sequence. For any real value B, we denote the event Pi (B) =

{13 +Bly | =B, | +Blay +Bla, | 2 B, « -+, | +Bay + - - - +Beg | = B}, I[f B = O, we denote Bo(B) as simply

the whole set. Denote Blg: B +-++Bane1 () as the conditional probability density function (pdf) of Bl + Bz,

++ + + + Blasa With the condition 1 (®1), multiplied by a probability P(P (B)). In other words,

I

Pla+Be+-+z, (1) - AE— P {& +Za. + - - - +B . (90)
Note that Blz+p (B) is equal to the pdf of Bl +Bz at B, since Bo(E) is the whole set.

Lemma 12. Suppose that E [2] < o=, and there exists B > 0 (which can be arbitrary small), such
that @ 2 Bl. Then, the following conditions hold.

H ?| ?| ' - "
(a) Forany ~ €R, () is continuously differentiable in B. In addition, (), (),

)

are bounded, thus B (3), Bz (B) are both uniformly continuous.

(b) Almost surely, 18 (®),2 (@+a2) - 18:(7) .

(c) Forall B2 >0, we have Ba+ge+-+2az () 2 Blaem++2ee1 (-B) for all@=0, 1, .. .. In addition,

5 . . .
_ B am+-+@( ) is continuous and bounded in .

P1 A+l

Proof. We first show Lemma 12(a). Note that® > B, andBlzis normally distributed with variance

Bl. Thus, Blea (B) = 1/VER->%/2, and B (B) is bounded. Also, Ber (B) = -B/@E-5%/2 & " (7) =
-/ 1.5-0.582/8 + 2/ 2.5-0.522/&
1 are still bounded and continuous. So
e |
B+A
@= —  =lim =lim _— =EnPm(B), (91)
A0 AR A0 AP
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I
E () () =E"(

B e BeeEl, similarly, o BEal . (92)
AF->0AR]

.

Thus, both (?) and Pler (P) are bounded and continuous, and (@) is bounded.

Then we show Lemma 12(b). It suffices to show that B (2) NEa (2 + AR) - B and Bz (& + AB) N

(®) - @ almost surely. Due to symmetry, without loss of generality, we will assume AR > 0

and show that Bz () N B2 (@ + AB) - Bl. Note that B + - - - + Blz> @ and is finite as well, so by

Lemma 12(a), the pdf of Plai++pa (= Blai + - - - +Flzn) is bounded. So we have

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 3, Article 60. Publication date: December 2023.



Sampling for Remote Estimation of the Wiener Process over an Unreliable Channel 60:45

I 5 74505, + - - 4By | 2B |B+ OB 4By + - - - 4B | <
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J f
Bl + - - - +Blea € (B — B — AR, B — ] > B, almost surely. (]55%5
p=1

We finally show Lemma 12(c) by induction. Note that the initial condition holds because Blzz (F -
[l) > Plza (-2 — @). Suppose that the hypothesis holds. Then, by (90), for any B,E > 0,

P+ +- = PR+l +---+2em ([ : 7l — PI)PIE],

|2 2B

Blenei+-+en +2oe+1 () — PE+Bo1+-+Bom +2e (—)

I

= Bl Bpi++8ez (B) X (Bzezit (B - B) = Bz, (-2 - B))EE
|B| 2B

J (94)
(Plo+Bi +--+8s () — Bty +-+8n (7)) X (Plog (@ -m) - (-2 - @))e’R > O,

1 1 B+l B+l

B>Ply

which ends the proof of the first claim. The last equation holds because

I

Blp+Bo1+-+80z (B) X (Beezer (B — B) — Bz (-2 - B))ER
BBl

I

Pla+Be1++8a (—21) X (Pleges1 (B + B) — Plepes1 (-F + B1) )22
P>l

J (95)
-B) x (&

-B-0) -

Pla+Blon+--+2

BI>Pln

To show that

Pla+eme+-gem (B1) is continuous and bounded in B, note that

B1:|B-B1 | 2B Bl2: | B-B1-B2 | 2B2

(B-1)B (B-B-B1-----B-1)E8-1-- -BE:ER:. (96)

Ble-1: | BB~ —Fe-1 | 2Bp-1

In the above expression, only the final term Bz (A = B = Pl1 - - - - = Pla-1) is related to @ and this
1

()
term is continuously differentiable in E. Also, is bounded, and the above expression is
bounded. Therefore,
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(@) =-

Pleg-1 (Bl2)

Bly: | B-Bly | 2B Blo: | B-Bl1—Bl, |Zz_[

Plag2 (Plz-1)Blell — Pl — - - - — Flg-1)PIPle-1 - - -PIRLERL. (97)
Be-1: | B-B1—-~Bla-1 | 2Bp-1

Since @” (B) is bounded, =  PBa+z+-a (&) is bounded and continuous in B. This ends the proof
of Lemma 12. O

'(#1), we need the following lemma:

For the property of I

(a) e () is continuous for all .
Lemma 13.

(b) The functions Bl (&), Bl (&) are upper bounded by some functions, respectively,
such that for any given B, we have EBla)] < o= and E[B w (& +Fa)] < o=.

(c) If |B] <Pe+1BPe+1(R) = BL,B=+1). If |B| > Ple+1, we haves

: EB (B +Ba)
(B1) =PI, Pl1) +
B+l

. 1 .
=FloB)(B, Bla+1) + BIE BB +Fen, Blo) + B2E hE (B +Blar +Be2) ~ |2+8: | 2Bz i

Fla+1) + E PleP)(B +Pp+---+Ea, Plo+1-7) p,e () (98)
F=1

the event Bl,1(B) is the whole set, and the events Bl (B) for @ =2, - - - ,B are defined as
Bl (@) = {|B +Bey | 2By, - - -, |B+Bay+ - -+ +Blop1 | 2 P22}, B=1,2,3,---. (99)

Proof. Note that

(B, Bla+1)

1 2 2
E +E[ 1 -E[ ] ||

v
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o 1
20 mseopt Pla+1,
=@ =% + 1E T 24 E[@] B?- E [@] mseopt — (Mseopt — E [B])(B? - B?) |Bl| < Blg,

HE[E] |B| > Pla+1,

Bl?)(B) Pl 1) = 3 |B] <Ber1.
-2/30 + 2mseopt?

When B = 1, the free boundary method (47)—(49) implies that Bh is the positive root of -2/381  +

2mseopt = 2E [B]] &, which is p3(mSEOpt_ E [@]). Then, Bl1(7) = B(E,1). By (49), B1'(B) is continuous at

= 1, thus continuous at B €R. For any given B, B1(B) is bounded by E [] B2 v'(2) is bounded by
2E [B] | @] plus a constant. By this statement and E[& ?] < plus a constant, and

oo, condition (b) holds. Condition (c) trivially holds because we have already set Flo(&) = 0.
Now we suppose that the hypothesis holds at @. We will show condition (a)—(c) for the case

+ 1. Since function Bis even, and Plzhas a symmetric pdf, we have

BB, Ble+1) + BE [P (B +2n)] |B]| 2 B+,
+l() = || <+1. (101)
(B, Blz+1) + BE [Pl (Flz+1 +Elz )]
that Bg+1(R) is continuous. When |B| < Bl+1, it is easy to find that
' 3 (102)

1(B) = BeRl(B, Bla+1) = —2/3B1+ 2mseopt?. +

®Note that the event |B +@z +. . .Be | =@ has zero probability for all index & and real value 2.
Utilizing the hypothesis that Bz (B1) is continuous, condition (b), BI(?,Pe+1) is continuous, we have
Further, when |B| > Be+1, by the definition in (37), Bz+1(B) = Be+1(2) and
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60:49
A 1(8) = B (B) 2PHE(E, Pev1) + BE o [P (2 +2)]
1
+
= PRR(E, Pl 1) + lim E [Bk (2 +Ea+ AR) - Bla (B +2a)]
AB->0 AP
= PllPI(B), Pl 1) + lim E Bl (B +Ba + B)
AP0
= PeB(F, Bl 1) + PE B (B +2) . (103)

Here,Bl is a number that is between 0 and AR. The third equation holds because B (&) is well-
defined. The last equation holds due to dominated convergence theorem and the hypothesis
conditions (a),(b).

When |B| < Blz+1, we have Bly+1(B) = BeR)(2,Bz+1). Thus, we directly get condition (c). By the free ' (&)

is continuous at |B| = Bz+1, thus condition (a) holds. In addition, boundary method (49),
B+1

note that

(B) < | BB Be) | +

OFRE | ReB(E +Elo+-+0s, Fle+1-a) |
P+l

B=1
E 0 PE2E [@] (B + |Blay | +- -+ + |Blen |) + By,
<2 [EB+
=1
2 On 2
+1()SE[]. + BEE@I B+ [Bay| +-- -+ |Bog| + Zp-10+1-B + [,
B=1

where [B1,B, are bounded values irrelevant to . Thus, combined with E[& ?] < oo, condition (b)

holds. This ends the proof of lemma 13.

Lemma 13 implies that Bz (7), Bz'+1(2) are well-defined. Also, (103) implies that we can inter+1
change the derivative and expectation of Bz (B +2=), i.e.,
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__E [Pe(B +80)] =E B (B +Ba) . (104)

D.2 Proof of Lemma 6(a)

Equations (50) and (51) in Lemma 6(a) are easily shown by (102) and (103) in the proof of Lemma
13. According to (103), to show that Bz (&),Bz"+1(B) are continuous, it is equivalent to show +1

that __,F [Bz (B +2s )] and __;E [Br (B +22 )] are continuous. To show this, we should analyze

the derivative of each term E E:R(E +1+~-~+,+1—)1, () in (98). We look at any odd polynomial

function B (B +Be + - - -Bme ) with B (B) = B(23).

We are interested in analyzing the derivative

1lim _EB (2 + AR +Bz, + - - -)1-1 (B+am) — B (@ +Plzy + - - -)1_1 (@ . (105) a@->0 AP
For simplicity, we utilize the event Blz-1() from Definition 2. We partition the whole set to B sets:

B1(R) £ |@ +B | < B,

() 2|0 4Fem | 20, ..., |B+Pei+. .. +Peoa | 2 Fe-1, |B+Bea+. .. 4P | <BaB=2,3,....
7
First, Lemma 12(b), Lemma 13 and dominated convergence theorem give

1lim E AR (B +B + - - By )1_1 (B),Be-1 (B+AR) =E (B +Bzy + - - -)1_1 ®)

AZ->0 AR
(106)
1 I
lim ___EAD (B 4B + - « -Plog ), PL,E2 €{1, 2, ---,B-1}. (107)
AZ->0 AR

Similarly, forany@ €{1, 2,...,B-1},
1lim A E AR (@ +Bg, + - - -)1_1 (B),B% (B+AB)

AB->0

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 3, Article 60. Publication date: December 2023.



Sampling for Remote Estimation of the Wiener Process over an Unreliable Channel 60:51

=1Eh—(+1+"')111illmA

AR - 0+:

1 h

- (B),8 - (B+AB), | BHARHE 1+--+B & | <pr A0

lim
= >___AAE-" (- g+ Bt )ll—

Plopis1 | 2P, -+, | —Plo +Blems 1+ -Blap-1 | 2Ple-1

@oi

X
185-1 (B), Be-1 (B+AR), Bl ~AB<EH+ By 4+ <~

h i
)
=E - (- B+ merit vt 1|—| B | 2B+, -, | B 1 | 2Blz-1
X 1 E hl A1 ai
lim A B - (), -8 ~AB<B+E 1442 & <~ ; (108)
AP->0p] AR -
0-:
h i 1oy
=E B (. +.+1+ cee )1---, :
(109)
In other case,
“11im AE AR (B +Bpy + - - -
AB->0
1 h i
=limA -1 (B+AR), Be-1 (B), | B+B1+--+Bee | <Be AB->0
AR - 0+ :
h i 1oy
) lim E
=E ( A+ Baert - 1~~~,|++1+~~~_1 [2B-14 B0 AR 1661 (@), Blo —AR<E+Elz1++ - +Blpa <Bla
(110)
AR - 0-:
h i
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)1 | ~Blo +Bems1 | 2B, - , | B

= p-1 | 2Ple-1
1 . 111
h i (111)
lim E
x — 1 1), ~Br <pBat+Ben <-F A
AZ->0 ARl
7 1 1
we use AR (B +Bl1 + - - Bz ) to replace B (B + AR +Blpy + - - Bl ) ep-1(2+a8) — Bl (B +Be1 + - - -Blom ) B-1(2)

E( + 4+ )1

for simplicity. B, . . ., Bz are arbitrary finite numbers.
Therefore,

1

lim A E AR (B +Be + -+ - -Bpa ) 16e-1 (2+48), 082 (B) + 16-1 (B),Ba (B+AR)
AF->0
h i

)
1+"'( )E ( B+ Bt 1 |Be+Brei1 | 2B, -,

ok 1+++-Blep-1 | 21

h i

: )
eBont-Bea (— B)E (= B+ Bt c b 1| B 4B |28, , | B +Boma+Boo-1 | 2Be-1

=(Blp+@z +--bw (B) + Benee +-22 (—22))
1 1

h i

x E B (P +Eema + - - B

Bl | 2Bla+1, - , | B +Blepe 1+ Fon-1 | 2Pe-1 , (112)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 3, Article 60. Publication date: December 2023.



Sampling for Remote Estimation of the Wiener Process over an Unreliable Channel 60:53

which is a constant term multiplied by Bla+ge +---8e (2) +Ele+2a +--8a (—B@), where Bla+ea +---8a (Ela)

1 1

is defined in Definition 2. The last equation in (112) holds because Flzis symmetric and & (-) is odd .

Recall that BzR(E, ) contains two odd polynomial terms 2E [B] Bl and 2mseopt — 2/3E

8 3

related to . Therefore, the derivative of E FF(Z +1+~~~+,+1—)1, (®) that appears in
(98) is expressed as the sum of forms (106), (107), and (112). The value of (107) is 0. According to

Lemma 12(c), the value of (112) is a constant multiplied by Blz+za+--22 (B), a continuously differen-
1

tiable function in B for some parameter B. For (106), note that the term of (106) is continuous in [.
9
We can take the derivative and apply the previous calculations (105)—(112) again . Then, the term

in (106) is still continuously differentiable. This shows that E EP( +1+---+,+1—)1, (@)
B2 JEE]

ZE [ ( + )] 7

is continuously differentiable. Thus, sE [Ba (B +B=)] are both continuous.
This ends the proof of Lemma 6(a).
D.3 Proof of Lemma 6(b),(c)

We then use induction to prove Lemma 6(b),(c). Let us denote Bl = mseqpt — E [B], Note that the free

boundary method implies that Bl 3@, and BE,E1  is continuously differentiable. In addition,

2E [@] > B,
AR ) =
N (113)
—2F12 + 2mseopt 0 <[B<Ph.
0 > [, (114)
Pleee?(B,B1) =
48 0<B<B,
Then, we have (m) = 2E [@] and for all & > &,
1
” (115)

Bly (B]) — (~2B2+ 2mseopt) = —20 + 282 > -2 + 68 > 0.

Forall@ >0,
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m

(116)
Bh (B) - (-4B) = 0 + 48 > 0.

This satisfies the initial condition of Lemma 6(b),(c). By Lemma 13,

?
2Enm

B.@)=2 [E]+

(B (2 +2)]

=__F o (7 +Fa)

1 (117)
= lim —_E Bg (B + AR +Bk) - Bl (B +Blz) . ap->0 AR
8
=p « )
Note that if @ () is even, then the first term of the last equation in (112) becomes P+ +--p (Pln) —Ble+em +--2p (—Bh).

1 1
9Despite that B /(@) becomes an even polynomial function with B (22), except the minor sign change of the last equality of
(112) as described in the previous footnote, the calculations (105)—(112) remain the same.

() < <A A< <

Since is continuous, there exists 0 or

0, such that

i
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_ (B + AR+ ) — Bz (B +208 ) |B+AB+Be | >pp, | BB | >z AP

=Pl (B + B +B1a ) 1 | B+AB+En | >Be, | B+ER | >E,

1
)1
(B + AR +F1) — Bl (B +Bla " ™ |B+AB+E: | <gs, |B+Es | <@
AP

=Pl (B + B +F ) 1 | 2+AB+8e | <B, |B+En | <Ba (118)

-
. . is continuous for
We have shown that ee—2E [z (2 +2z)] is continuous, so |Bl| # Bla+1.

Applying the same analysis for __m, EmPlz (B +2la+2s2) (to replace —_m, E [Bla (B +2z)]) into
2

o+ +A) o+ +A)
the proof of Lemma 6(a) described in Appendix D.2, both and are bounded by a
finite random variable. Therefore, using dominated convergence theorem,

. hi1
lim E B+ AR +BR) - B (B + ) x
AB->0 AP i
1 +1
| BHARHE | >Ble, | B+E | >Bla |E+ARHER | <Bl, | B | <Pl

=E Be"(@ +2m ) x 1|B+aB+20 | >Bs, [>Ba+ 1 |B+AB+ER | <B:

) |<B . (119)

By Lemma 12, the two remaining events vanishes as AB = 0. Thus, for small AP, we have
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ARl

+
1|3+08+8s | 5B, | B+Ea | 1|2+0B+80 | <B, | B+ | B

.
< max |H”(H)| Elip+ap+e  [>@,|B+B  |<@ * lip+oewe  |<@,|B4B  |>@ > 0 (120)
|Be-B |<|AB |,B2BR
By (119),(120), we have an interesting result:
m2
___E (B +7a)] =E B&'(B +Fa) ,
BIp? (121)
" (122)
1(®) = 2E [B] + EBE'(B +&a) . +
Then, we consider the third derivative:
3
" BE] ( + N — E
+ ) ( ) +
=lim . (123)
AB->0 Ap]
For this derivation, there exists 0 <B < ARl or APl < B < 0, such that
1
)1
- (B + AR+ ) — Bl (B +8l2 " ™ |B+AR+ES | >pe, | BB | >E2
AR
=Q (B + B +21@ ) 1 | e+ AR+ | >Be, |B+Ba | >,
)1
_ (2 + AR +B1) — Bl (B +Bla " ™ |B+AB+E | <g, |B+E: | <@
AR
= - 4(B + B +2m ) 1 | e+AR+ER | <B (124)

Recall that (+) is continuous. Applying the same analysis for E B (2 +2+E )

e B B2

(to replace —E [Pz (P +Bz)]) into the proof of Lemma 6(a) described in Appendix D.2, both

B =08 B=
E+1p
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EC +a+ )= (+ )

[GlEE]
“(@ + Bla + ARl) and B(2 + Bz + ARl) are bounded by a finite random variable. Therefore,
using dominated convergence theorem (similar to (119)),

1
E " AR Pl Pl 1
lim (2 + B+ m)-e( + ) |B+AB+E | >p
,|B+8 | >peAE->0 AP @
. " X
=ElimBe (B+E+Fn)  1|2+08+8s | >pm, | B+En | >pn AB-S0
=E Bz (B +22 ) x 1|2+8a |>Bs ,
1
E " A " 1
lim (@ + Bl +Pa ) - Ble (B +E2 ) |B+ARHE  |<B, |BHE  |<Ba
AP0 AR &
1
=E —4(0 +Bn) "~ |B4Bs | <on (125)

We then discuss the two remaining events. If AR >0,

1
J— (B + AR+ ) — Pl (B +Ble ) 1|e+AR+ER | >Ep, |B+Ee | <
AR
= Pl (Blz) + 2Bl? — 2mseopt + BI(AR) —1 1Pe-B-0B<Ee <P, (126) AB
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1
- " A ! 1
(@+ 1Pl ) — Bz (B +21 ) |B+AB+E  |<B, |B+E | 5B
AR
1 opt A
1-Be-B-AR<ER <-Be-B, (127)
=-B"(-B) + 25’ - 2mse +
B
&)
ARl
If AR <O,
1
_ (B + AR +B ) - B’ (B +Fa) 1|5+08+8s |52, |BHE, |<B:
AR
= Bly'(-Bla) + 2B? — 2mseopt + B(AB) — 1 1-pero<me<m-m-am,  (128) AR
1
_ (B + AR +B ) - B (B +Fa) 1|6+08+8s | <@, |BHEs |53
AR
= - B (Bl) + 2B:% - 2mseopt + EI(AR) __ 1 1pe-B<Br<Ez-B-AE. (129) AR
Therefore,
hi1 .
limE — Bl (B + AP +Bln ) - Bl (B +Blz )
AB>0 Ap i

X +
1|2+0248s | >, |B4B0 |<zn 1 |B+AB+ES | <q, |B+E6 | >E0

= - By (@) + 2Ba? — 2mseopt (Bl (~Ba— B) -

Bla - ) 2 0. (130)

The last inequality of (130) holds due to the induction hypothesis offz"(-) and Lemma 12.
Combining

(125) and (130), forall@ >0,
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Bla+1(F) =0 + PE B (B +21a ) 1 |B+oe | 5B+ Pl (B +27 ) 1 | o2 | <6
- Pa(Be) + 2@=2 — 2mseopt (Pl (-Fl - Fl) - Pae (B - F))
>PIE B (B +Be ) 1 |B+0a | >Be + Bl (B +22 ) 1 | 6+8n | <6z
=PIE Bz (B +B0a ) 1 |B+8: | >Ba— 4( +208 )1 |B+0a | <

=0E B (B +Ba) + 4(B +)|+ |50~ 4(B +Ba )1 | BBy | 2B (131)

Note that B /(&) + 4B is an odd function, and by hypothesis, Bz(&) + 48 > O for all & > 0. By

Lemma 12, Bla+ee (B) 2 Blz+zz (-B) for all @ > 0 and @ 2 0. Therefore,

E B2 +Ee) + 4(2 +2= ).|+ | >

J J
=( + )(Br"(B) + 4B)Pla+as (B)ER
B>Elp Bl<-Bl
J J
= (Bl" (B1) + 4B)Blp+2 (B) 2R + (P (-B)) — 4B)Plesz. (-B) P
BE>Ep B>En
J
= (Ba"(B) + 48)(Be+2: (B) — Berzn (-B))EE 2 O. (132)

P>Bn

Finally, (131) and (132) give

Bz (B) 2PE —4(2 +20a )1 |B+8e | 20
=FIE [-4(@ +Ba )]
= - 4P

> - 40 (133)

The last inequality is strict if @ > 0. This ends the proof of Lemma 6(c).
Let us define +1() = '+1()+2/33_m580pt for simplicity. Then, "'+1()+4 >
0 for B €[0, o°). This implies that Blz+1(&) is convex in B € [0, o) and strictly convex in & > 0. By

Lemma 6(a),
m'+1(E) is continuous and odd. Thus, Be+1(0) = 0. By the definition of free boundary
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method (49), _ P+1(Fe+1-) = BE+1(Fe+1+) = Bp+1(Pe+1). Thus, Be+1(Be+1) = O.
Therefore, we have B (Blz+1) = Blz'mseopt 2 0 and Blz'+1(F) > O for all Bl > Plz+1,
and P+1(?) < 0 for

B+l
€ (0,Bz+1). This ends the proof of Lemma 6(b). D.4

Proof of Lemma 6(d)

Now we show Lemma 6(d). We now use induction to show that Bz < p3mseopt forall@=1,2,---

Note that Pl1 = p3@ = p3(mseopt — E [F]) < p3mSEOpt. The second threshold B is the root of
2 (134)

0 =@~ 263 +
3 E E=R(R +2lay, Bl1) .

Note that 2mseopt .3 is positive at 0 <P < p3mseopt. Therefore, if Bl < pSmSEOpt, Ple2(2, 1)

is always positive at PI > 0. Since P1 < p3mseopt, PeE(E,21) = O for all @ > 0. Recall that BFI(E,B) is an

odd function on B for any B > 0. Therefore, utilizing the same analysis as (132), for all 22> 0,

E 2@ +2. . (135)

The first term % - 2B > 0 for all B > p3msecpt. To keep the equation (134) holds, we have B2 <

p3mseopt.

Suppose that B, - - - ,Pp< p3m590pt. Now, we will show that Blz+1 < p3m530pt. Note that Blz+1 is the

root of
2
0 = _[3 - 2P + PE EeR(R +2ey, Pla)
3
o] h 1 [
+ E PRB(E +B2: + - - -Flon, Pz+1-3) {|B+n | 200, -, |B+Bo1+-+Bop-1 | 2Be2-m ) . (136)
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=2

Since the hypothesis tells that pz< p3mseopt, E FE(2 +1,)-. To show that Blz+1 <

p3msecpt, it is sufficient to show that for@=2, - - - &,
h i

1
E BB +Blas + - - -Blon, Po+1-8) ™ { 2481 |28, -, |B+Bpr+-+Boz-1 | 2B2,2.8 } > 0. (137)

Since Ple+1-8< p3mseopt, PP)(?),Plz+1-8) = O for all B > 0. Therefore, the inequality (137) is shown by

Lemma 12(c) and that BRP(F,2) is an odd function for any B> 0.

Now, we will jointly show that B+ (B) > Bler (2), and Blz+1 < Bla. First, Bli = p3B,Ey () =
1 -
2E [B) BB (A) = B1' (@) + BE [FeB(E +2g,F1)]. Since Bl < p3mseopt, E [Faf(E +25,1)] 2 0,

directly have B.. For simplicity, let us define

(?) = Ber -3 + 2mseopt?l). (138)

If B2 > Bl1, then we have Bli(Ph) < Blz(Pl2) = 0, which contradicts to Pi(#) > O for B > Bl1. Therefore, P2 <

2'(2) as and we

Pla.
w (B) >

1 (=) I

for B 2> Bp1(P) - B (B) = BE By (B +F) - Fe-1(F +Ba)

0, and
Bl < =BERe (B +B2)1 |p+@e | 280 — Ber-1(B +28 ) 1 |B+00 | 200-1
Blg-1. + B (B +22)1|2 <2 -Br-1(@+F8)1l|p+m <@t (139)

We have
Then, suppose that

e (B) is odd. If |B +z | 2 Plz-1, utilizing the same analysis as (132), we have
Note that

E (Be (B +B8 ) — Ber-1(R +22)) 1 |6+2e | 2821
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=E (P (B +Bp) - B -1(R +B2 ))1 |8+ | 2861 2 0. (140)

If |B+Bz | < B, we have B (Bl +B ) = 2mseopt(B +Blz ) - 2/3(B +B )3, irrelevant to Bl. Thus

E (Be (B +B2 ) - Ber-1(R +B12 )1 |e+oo | <2n

=E Bz (& +)1|+ | <ez— Bl -1(B +Bz )1|+ |<e = 0. (141)

If Ba< |B+Ba | < Ble-1,
E (Pe (B +B ) — Ple-1(B +E22 )) 16a < | BB | <Be-1

=E (B (B +P) - Ber-1(B +B2 )) 1ow < | p+80 | <Bo-1

=E (B (B +Fa) — 2mseopt(? +Fn ) +27 )3) 10z <|2+ae | <Ble-1 >0. (142)

The last inequality holds because Bz (71) is an odd function and non-negative for B > . Inserting

m'+1(F) > Bl (21) for @ > 0.
(140),(141),(142) into (139), we finally have

) = ) -

Recall that the free boundary method (49) implies
.
that .+1 is the root of .+1 _ _
(=223 + 2mseopt?) = 0. Note that Bz/(E) = Bz mseoptll . N B+l > Bly,
3

@'(Pe+1) < Blr+1(Pe+1) = 0, which contradicts to Pe(@) > O for @ > Flz. Therefore, then
we have
Plz+1 < Plg, and we have that {Fla}zis decreasing.

E PROOF OF LEMMA 7
By (45), N (BLR) = N (BL@) if |@] > Bla. It remains to show that N (B,R) < N (B,@) for |A| < Ba(by
symmetry, we will assume 2> 0).

Define B (7) éN (B,2) - N(,) = [a (A1) - B (B). It is easy to see that B (Flz) = 0, and B (&) is not

a function of .

By Lemma 6, we have shown that Bz (B) = -2/3B3+2mseopt?, Ba"(B) = —2B%+2mseopt, Bz (B) = -4
if |B| <B. Therefore, by Lemma 6(c), B “(&) = 0 for B € [0,B)]. This implies that & (&) is convex in Bl €
[0,E]. Since B (0) = @ '(Bls) = 0, we have B (&) < 0 for @ € [0,#s]. Note that B (Zz) = 0. So & (&) is non-
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increasing in B € [0,Ez], and thus & () = 0 for @ € [0,Ez]. This implies that & (B,2) - & (B,7) > 0, which
completes our proof.
F PROOF OF LEMMA 8

A= (7,2) is continuously differentiable, and twice condinuously differentiable except at (1P, 2).
2

However, since the Lebesgue measure of reaching (+#B) is zero, the values__?.8 (+B,B) can be

chosen
in the sequel arbitrary [25, Section 10].

In Lemma 6, it is easy to see that a(BL2) = B '(#), not a function of B, and (BL,E) = B(@).

Therefore, for any given time [,

Jm 2
E Pl o (@ ++)<°o. (143)
0
Je 2
The integral is increasing in B. Using It6’s formula [18, Theorem 7.14], almost surely,
0

B (B +Bg, @ + B ) — B7a (B,2)

e 1 J®
= +  )-mseopt+ o (B +B, B + Bla )22 + (B +Plg, B + Pl )EIPle . (144)
2
0 0
e ( + + ) is a martingale and thus
By [18, Theorem 7.11], the process g, &
0
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I EPpE"z (B +B, B + B )EFa = O. (145)
Therefore,
I 1
E (B +Blz, 2 + )-(,) =E (B +B= )2 - mseopt + (B +Bz, Bl + Pl )27
0 2
(146)

If |B+Blg | <Bl, according to Lemma 6(a) we have o(B+BaB +Ba) =-2/3(B +Ea)3+

2mseopt(? + Pz ), and e (B + BpB + Br) = -2(B + Bz )2 + 2mseopt (correspond to the first

equation of free boundary method (44)). Therefore,

(B +B2 )2 = mseopt + Bee 7w (2 +22,2 + Bz ) = 0. (147)
If |2 +Pa | > Flg, according to Lemma 6(a),(b), we get

2((B+B2 ) 2 - mseopt) + Bm (B +25,B + Ba )

=2((B +Bl2)? - mseopt) + B (B +Ba) = 0. (148)

ECP) [@ (@ +Blz, BI(B,B). This ends our proof.

Applying to (146), we get
G PROOF OF LEMMA 9

Note that for simplicity, we have set Blz= Pl + Flzas a Wiener process that starts from Blo =P
, -
When B <[,

BE  +2) 1 2[

_ -

"= max{(Fa +2a ) +

7’ 1}
B(E) @ o

- 2

|8 | +—7, 1}
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2
2|0m |

=1+ ¥—+ (149)

2
When B < [, Bz = B, and we have

=1 max{(& +& )2,@"} = max{1 + 20+, &} —

B(2) B B2 B2

- |Ba | +—P, 1}

2
2| B |
=1+ ="+ .

(150)

This ends the proof of Lemma 9(a).

Note that BI(;&) is bounded in B €[-B, & ], and B(E;&) = 2E [@] B? + for |B]2>83 .

Therefore, there exists @ > 0 such that [|[B(Z;2)]| < B. Recall that we denote B g+1 as the state value

at @ + 1th stage with @ 1=F, and @ g+1=F a+Pz +Pafor a stopping time @". Then,

E [B(Boe1;0)] =E B(@ 5 +8 +20 ) IZE B 5+ +2)
2

<F E B(E )._2 EBE p-1) - - -
=

(151)

We have shown that each optimal stopping times for solving & (2°0(&)) are some hitting times
with bounded and convergent thresholds, so each stopping time belongs to the assumption of

Lemma 9(a). We have
0 |
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Pr0(?) = Fe-1E B(2";Em) O BeR(B) < 1B(m),
1-
=1 B=1
0(®) < _
B(a). (152)
B=1

Thus, both [IE0]| andlllM:re finite. For any stopping timel within the assumption of Lemma
9(a),
0(P) - Prklp-10(7) =PIE Pr0(Ee +El ) — Flo-1(Fe +28 )

BeO(Ee +Ez ) — Plo-1(Fe +2 )

-E PI(Bls +B)
B(Ele +Ela )

<BI|EP0 - BP20|| x E [B(Bh+Eh)]

<PR(E) 112" - B oll. (153)
This gives that
0(2) B-1 PeRla-10(R)
<BEIRO-BEOl+__  (154)B(B) B(@)
Take the minimum for left and right side of (154) over all the stopping times B with bounded

threshold @, then

Plz+10(E1) B-1 E=0(E)
<gl@o-@ ol + (155)
(@) a[(a)
By symmetry,
o@ m EP0()
<pIE0-[ o+ — . (156)
B(®) ()

Therefore,
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[IP=+10 - E=0|| < BlP=0 — Pa-10]| - - - < Bz [|EO]]. (157)

This completes the proof of Lemma 9(b). Due to (157), the sequence {#?0(&)} is a Cauchy sequence,

and thus 1 0(B) converges pointwise to Bl «0(E)), which is also measurable, and we have shown

that ||E =0(B)|| < e=. Therefore, using [4, pp. 47], [IE?0-& <0l > 0. We replaceE?0(E) byE ~0(a)
10
in (154) and use symmetry, we then find that

| <0 - B0l < BllE <0 — Ez-10]| -> 0. (158)
Therefore, B » = B =0 is the solution to the Bellman equation « =%, and the B-convergence
rate is immediately given. The solution is unique: If there exists any other measurable function
()
2 (@)l < o), we replace B"0(@) by & «0(&) and replace
that satisfies the Bellman equation (with
EP-'0 by @ (@) in (154), and we have
120 - &l = [|BRE -0 - B &|| < AIE 0 - &~l, (159)

«~ ~. These completes the proof of Lemma 9(c). which
implies that @0 =

H PROOF OF THEOREM 4
We denote M8, signal-agnostic C Msignal-agnostic as a collection of sampling times B, 1,28,2, - - - at Bth epoch
such that the inter-sampling times Blg,1 — Plg-1,20-1,Plz,2 — Plz-1,221, . . . are independent of the history

information before Flz-1,0.1. Note that the subscripts (B, 1), (8, 2), ... areillustrated in Section 5.1.

Similar to Proposition 1, we have the following result:

Proposition 2. . , _—
P There exists an optimal policy in Mg signal-agnostic such that { ees— e-1m-1}aare

i.i.d. Moreover, problem (3) when N=Msignar-agnostic is equivalent to the following problem:

E hf Bees i
ArPIP

B-1,Bp-1

mse®®t 2 eng signaragnosticinf  E pE,Ea— pIE-1,82.1 . (160)

The proof of Proposition 2 is a special case of (thus included in) the proof of Proposision (1)

and is omitted. Problem (160) has a much simpler form to Problem (23) because (i) the sampling
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times are independent of the Wiener process, and (ii) we replace the square estimation error (P

-B 5)?by the linear age Ag, the time period between B and the sampling time Bla-1,z21. By (160)
and [24, Section V.B], we complete the proof of Theorem 4.
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10 ~ () to be measurable.
Here, we do not require 0

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 3, Article 60. Publication date: December 2023.



