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In this paper, we study a sampling problem where a source takes samples from a Wiener process and 

transmits them through a wireless channel to a remote estimator. Due to channel fading, interference, and 

potential collisions, the packet transmissions are unreliable and could take random time durations. Our 

objective is to devise an optimal causal sampling policy that minimizes the long-term average mean square 

estimation error. This optimal sampling problem is a recursive optimal stopping problem, which is generally 

quite difficult to solve. However, we prove that the optimal sampling strategy is, in fact, a simple threshold 

policy where a new sample is taken whenever the instantaneous estimation error exceeds a threshold. This 

threshold remains a constant value that does not vary over time. By exploring the structure properties of 

the recursive optimal stopping problem, a low-complexity iterative algorithm is developed to compute the 

optimal threshold. This work generalizes previous research by incorporating both transmission errors and 

random transmission times into remote estimation. Numerical simulations are provided to compare our 

optimal policy with the zero-wait and age-optimal policies. 
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1 INTRODUCTION 

Several applications in real-time control of systems involving sensor networks, such as autonomous 

driving, military networks, intelligent manufacturing, etc., involve sampling and remote estimation 

of information. For example, in military systems, status information about the instantaneous speed 

and position of the vehicles, channel conditions, and targets changes over time. In order to ensure 

that the system performs efficiently, reliably, and safely, the controller(s) has to obtain accurate 

estimates of the current status of the system from nearby sensors. This involves judicious sampling 

of the information in order to minimize the estimation error. Designing an optimal sampling 

strategy is a hard problem, because some easy strategies, such as continuous sampling, are 

infeasible due to the limited energy resources and can be far from optimality due to the 

transmission delay, limited channel capacity, etc. 
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Fig. 1. System model. 

To that end, in this paper, we aim to embark on a sampling problem of a wireless network, as is 

illustrated in Fig. 1. The sampler takes the sample of a continuous-time source process and 

transmits the sample to a remote estimator. The continuous-time source process is modeled as 

the Wiener process 𝑊𝑊 , which helps describe the dynamics of sensors measuring quantities like 

movement, providing insights into how these quantities change over time. The Wiener process, 

also commonly referred to as Brownian motion [18], is one of the best known Lévy process, that 

features stationary and independent increments. It finds widespread applications in various fields 

such as pure and applied mathematics, economics, quantitative finance, evolutionary biology, and 

physics. The Wiener process 𝑊𝑊 has the following key properties: (i) 𝑊0 = 0; (ii) 𝑊𝑊 is continuous; (iii) 

𝑊𝑊 has independent increments; (iv) 𝑊𝑊 −𝑊𝑊 ∼ N (0,𝑊 − 𝑊) for 0 ≤ 𝑊 ≤ 𝑊, where N denotes the normal 

distribution. The remote estimator, in turn, provides a minimum mean square estimation error 

(MMSE) estimate 𝑊
ˆ
𝑊 based on the received samples. The core objective is to control the sequence 

of sampling times to minimize the estimation error 𝑊𝑊 −𝑊
ˆ
𝑊 , specifically, aiming at optimizing the 

long term average of MMSE. 

Organized according to the sampling strategies and optimization metrics, our review of related 

works encompasses three distinct perspectives. 

1.1 Related Works 

Signal-aware sampling with reliable transmissions. 
There have been several studies on sam-

 

pling for remote estimation, e.g., in [19, 21, 30–32], where the sampling times depend on the 

source process (signal-aware). A nice survey paper is included in [13]. In [30], the authors consider 

the 

Wiener process as the source process and provide an exact solution to minimize the estimation 

error. According to the optimal solution, the sampler should wait until the instantaneous 

estimation error exceeds a threshold, and the threshold is given explicitly. A similar result was 

developed in [21] by extending [30] from the Wiener process to the Ornstein Uhlenbeck (OU) 

process. The optimal threshold retains its simplicity, remaining a root of a closed-form equation. 
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Further exploration, as in [32], delves into an asymmetric sensor-controller remote system. In 

this scenario, there are random transmission times in both directions. At the sensor, the sampling 

time is a stopping time based on the evolution of the Wiener process, and at the controller, the 

sampling time depends on the information sent from the sensor. The authors yield precise 

optimal solutions, noting the potential existence of multiple thresholds for the sensor’s optimal 

stopping time. Joint optimality designs on the sampling and the estimation, concerning the 

Wiener process or the autoregressive process, is investigated in [6, 11]. 

To summarize, except [6], these previous studies on sampling assume reliable transmissions. 

However, in a variety of wireless systems, channel errors may occur due to fading, and the 

transmission times of a packet could be random. While packet drops are considered in [6], a time-

slotted system is considered, which assumes that the total transmission time is the same as the 

transmission instance (one time slot). In contrast, in this paper, our model allows for both packet 

errors and random transmission times. Moreover, we enable the selection of real-valued 

transmission 

instances. 

Signal-agnostic sampling. When the sampling times are independent of the Wiener process 

(signal-agnostic), the MMSE is equal to the age of information [30]. More generally, the MMSE is 

a function of the age of information under a linear time invariant system [7, 15]. Thus, our study 

is closely related to numerous studies on age-based sampling, e.g., in [1, 2, 12, 17, 22–24, 28]. 

Age of information, or simply age, is a metric to evaluate data freshness. Age at current time 𝑊 is 

defined as Δ(𝑊) = 𝑊 − 𝑊 (𝑊), where 𝑊 (𝑊) is the generation time of the latest delivered sample. Age 

has gained much popularity in the recent decade and has contributed to various remote control 

systems such as sensor networks, UAV navigation, and semantic communication. A recent 

literature review on the age is provided in [35]. 

In [2], the paper studies sampling energy harvesting sources with a unit battery buffer under an 

erasure channel. In the case of a single source, it provides an optimal sampling policy without 

feedback. With perfect feedback, an optimal policy is offered among the policies that may wait 

only when the previous transmission is successful. In [1], the paper solves explicit optimal solutions 

for an energy harvesting source with finite buffer sizes, where the arrived energy can fill up the 

whole buffer or fill up incrementally. In [28], the authors relate autocorrelation, remote estimation, 

and mutual information to the nonlinear age penalty functions, and provide an optimal sampling 

policy under sampling rate constraint. In [24], when the source process is a multidimensional 

Gaussian diffusion process, and the estimator is the Kalman Filter, the expected square estimation 

error is an increasing function of the age. For a general non-decreasing age penalty function, the 

optimal sampling policy has a threshold structure under unreliable channel conditions and random 

transmission delay. An extended sampling scenario where the sampler can transmit the sample 

before receiving the feedback is studied in [17]. 

However, compared to the signal-aware sampling policies, signal-agnostic counterparts exhibit 

suboptimal performance in terms of minimizing the estimation error. Numerical results in [30] 

validate that the optimal signal-aware sampling policy can achieve less than half of the long term 

average MMSE than that of the age-optimal sampling policy. This is intuitive, due to the criticality 
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of the content of information within remote monitoring systems, such as the pedestrian intentions 

in vehicular networks or target locations in UAV navigations. 

AoII-optimal scheduling. Recently, researchers have studied signal-aware policies to optimize 

a new metric: the age of incorrect information (AoII) [8, 14, 16]. AoII incorporates both the content 

of information (estimation error) and the freshness of information (data freshness). AoII was first 

advanced in [16], serving as a cornerstone for subsequent research. In the context of a finite 

symmetric Markov source, [16] provides the transmission strategy with a focus on minimizing the 

AoII, displaying low computational complexity. In [14], the authors employ dynamic programming 

to minimize the AoII under a binary Markovian source and exponential channel delay distribution. 

Meanwhile, the paper in [8] extends [14] to a general transmission time distribution, showing that 

it is optimal to always transmit whenever the channel is idle and the AoII is not zero. 

Although these studies focus on content-aware transmission strategies, they all focus on a 

finite state Markov source under a discrete-time system. These scenarios restrict transmission 

choices between transmit and idle at the beginning of each time slot. Instead, we consider an 

unbounded and continuous-time Markov process, enabling the selection of real-valued 

transmission instances. 

1.2 Our Contributions 

In comparison to these three prevailing perspectives, in this paper, we consider a scenario of 

minimizing the estimation error of the Wiener process. Specifically, we (i) embrace a signal-aware 

sampling policy and (ii) accommodate an unreliable channel with a random transmission time. Our 

contributions expand on [30] by considering an unreliable channel, and [24] by allowing sampling 

time dependence on the content of the Wiener process. Our problem belongs to a semi-Markov 

decision problem and is difficult to solve. There have been solutions for some special cases. In the 

first case where the channel is reliable (e.g., [21, 28, 30, 32]), the original problems are reduced to 

a single sample problem, which can be further solved by convex optimizations or optimal stopping 

rules. However, these methods do not hold in our case because our new problem is decoupled to 

a recursive optimal stopping problems with multiple samples . Similarly, our work is different from 
1 

[24], because this problem is decoupled to a discounted MDP, and each action of the MDP is not 

a stopping time. Nonetheless, we are able to circumvent these challenges and solve the optimal 

sampling problem. The main contributions of this paper are stated as follows: 

• We provide an exact solution to our optimal sampling problem. The optimal sampling 

strategy has a simple structure: each sampling time is a stopping time that takes the sample 

when the instantaneous estimation error exceeds a threshold. The optimal threshold 

remains the same, independent of the Wiener process value and whether the last 

transmission failed or not. Moreover, the optimal threshold can be solved efficiently, e.g., 

by using a two layer bisection search algorithm. Our results hold for general distributions of 

the transmission delay and arbitrary probability of the i.i.d. transmission failure. To solve our 

recursive optimal stopping problems, we developed new approaches. We provide an exact 

value function to the value iteration problem. Specifically, we solve a sequence of optimal 

stopping problems, where the action value function implies taking an action at the first 

sample and taking the optimal stopping times at the remaining samples. The technical tools 
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used to establish the results include (a) the strong Markov property and Martingale 

properties of the Wiener process, (b) Shiryaev’s free boundary method for solving optimal 

stopping problems. 

• When the sampling time does not depend on the Wiener process, the expected square 

estimation error is equal to the age [30], and our original problem is equivalent to an age 

minimization problem. We provide the exact solution as well. The sampler takes the sample 

when the age first exceeds a threshold. This result also improves [24, Theorem 1] by 

removing the assumption of the regenerative process. 

• Numerical simulations are provided to validate our results. An interesting observation is that 

when the channel is highly unreliable, our optimal policy still performs much better than the 

age-optimal and zero-wait policies. 

2 MODEL AND FORMULATION 

2.1 System Model and MMSE Estimator 

We consider a continuous-time status update system as is depicted in Fig. 1, where a sampler takes 

the sample from the Wiener process 𝑊𝑊 and transmits to a destination through an unreliable 

channel. The destination provides an estimate 𝑊
ˆ
𝑊 based on the samples that have been 

successfully delivered. The extended setting from a reliable channel to an unreliable channel is one 

of the key features of our study. 

We use 𝑊 ∈ {1, 2, . . .} to indicate the number of samples generated by the sampler. The 𝑊th 

sample is generated at time 𝑊𝑊 and is transmitted through the unreliable channel. The sample 

contains the sampling time 𝑊𝑊 and the sample value 𝑊𝑊𝑊 . The unreliable channel has an i.i.d. 

transmission failure, and we denote 𝑊 ∈ [0, 1) as the probability of failure (i.e., the channel 

condition is OFF). 

2 

The channel also has an i.i.d. transmission time 𝑊𝑊, and we have E[𝑊𝑊 ] < ∞. The transmission 

time and the channel condition are mutually independent. In this paper, we also assume that the 

                                                                 
1 Also, our problem is significantly different from that with instantaneous transmission time, e.g., [11], because even if 

there is no sampling rate constraint, the zero-wait sampling policy is not optimal. 
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Fig. 2. A sample path of the Wiener process 𝑊𝑊 and the MMSE 𝑊𝑊 over time 𝑊. At 𝑊1, 𝑊3, 𝑊4, the sample is 

successfully delivered, so𝑊𝑊 is updated to be𝑊𝑊1,𝑊𝑊3,𝑊𝑊4, respectively. At 𝑊2, the sample is not successfully ˆ 

ˆ 

delivered, so 𝑊𝑊 remains unchanged. 

transmission time is lower bounded, i.e., there exists 𝑊 > 0 (which can be sufficiently small) such 

that 𝑊𝑊 ≥ 𝑊. The 𝑊th sample is delivered to the destination at time 𝑊𝑊, where 𝑊𝑊 = 𝑊𝑊 + 𝑊𝑊. At the 

delivery time 𝑊𝑊, the destination knows the outcome of the transmission of the 𝑊th sample. Only 

if the transmission was successful, the destination receives the sample message (𝑊𝑊,𝑊𝑊𝑊 ). In 

addition, at 𝑊𝑊, the destination then sends an acknowledgment back to the sampler, informing 

whether the transmission of the 𝑊th sample was successful or not. We assume that the 

transmission process of the acknowledgment is instantaneous and error free. Note that the 

sampler always generates a sample after it receives feedback, i.e., 𝑊𝑊+1 ≥ 𝑊𝑊. Otherwise, the 

generated sample will be queued for waiting to be transmitted, and the queued sample is staled 

compared to the fresh sample. 

The estimator (destination) also provides a minimum mean square error (MMSE) estimator 𝑊
ˆ
𝑊 

based on the successfully received samples until time 𝑊. 

We denote the random variable 𝑊 as the index of the latest sample that is successfully 

delivered to the destination by the time 𝑊𝑊. In the special case of a reliable channel, each sample 

is successfully delivered, so we have 𝑊 = 𝑊; otherwise, 𝑊 ≤ 𝑊. The latest (and thus freshest) sample 

the destination 

 

has received during 𝑊 ∈ [𝑊𝑊, 𝑊𝑊+1) is (𝑊𝑊,𝑊𝑊𝑊 ). Using the strong Markov property of the Wiener 
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process [25, Eq. (4.3.27)], the MMSE estimator 𝑊
ˆ
𝑊 is expressed as 

 𝑊ˆ𝑊 =E[𝑊𝑊 |𝑊𝑊,𝑊𝑊𝑊 ] =E[𝑊𝑊 |𝑊𝑊𝑊 ] = 𝑊𝑊𝑊 ,𝑊 ∈ [𝑊𝑊, 𝑊𝑊+1). (1) 

 

A sample path of 𝑊𝑊 , 𝑊
ˆ
𝑊 , and the estimation error 𝑊𝑊 −𝑊

ˆ
𝑊 are depicted in Fig. 2. In this figure, the 

2nd sample is not successfully delivered. Thus, when 𝑊 ∈ [𝑊2, 𝑊3), the estimator 𝑊
ˆ
𝑊 is still 𝑊𝑊1, not 

𝑊𝑊2. In other words, 𝑊 = 2, but 𝑊 = 1. This is one of the key differences from the previous studies 

 

with the reliable channel case, e.g., [21, 30–32]. 

2.2 Sampling Times and Problem Formulation 

We will control the sequence of causal sampling times 𝑊𝑊’s to minimize the estimation error. We 

will consider two types of sampling time: (i) the sampling time depends on the Wiener process 

(signalaware sampling) and (ii) the sampling time is independent of the Wiener process (signal-

agnostic sampling). 

2.2.1 Signal-aware Sampling. When the sampling time 𝑊𝑊 depends on the Wiener process, 𝑊𝑊 is a 

stopping time, i.e., 𝑊𝑊 satisfies: 

+ + {𝑊𝑊 < 𝑊} ∈ F (𝑊) , F (𝑊) ≜ ∩𝑊>𝑊𝑊(𝑊𝑊,𝑊 ∈ [0,𝑊]). (2) 

 ( ) − F ( )+ 

Here, 𝑊 𝑊1, . . . ,𝑊𝑊 is the 𝑊 field generated by the random variables 𝑊1, . . . ,𝑊𝑊, and 𝑊 is a filtration, 

i.e., a non-decreasing and right-continuous family of 𝑊−field available to the sampler at time 𝑊. 

Intuitively, the sampling time 𝑊𝑊 not only depends on the history information prior to 𝑊𝑊−1, but also 

depends on the evolution of the Wiener process starting from 𝑊𝑊−1. 

Then, we define the sampling policies. The policy space Πsignal-aware is defined as the collection 

of causal policies 𝑊 = 𝑊1,𝑊2, . . . such that: (i) 𝑊𝑊 satisfies the condition (2), and 𝑊𝑊 ≥ 𝑊𝑊−1; (ii) For each 

𝑊, the waiting time 𝑊𝑊 − 𝑊𝑊−1 is bounded by a stopping time that is independent of the history 

information before 𝑊𝑊−12. In addition, this bounded stopping time 𝑊˜ satisfies E 𝑊𝑊˜4 < ∞3. 

2.2.2Signal-agnostic Sampling. When the sampling time is independent of the Wiener process, we 

then define the collection of policies Πsignal-agnostic as the collection of policies 𝑊 = 𝑊1,𝑊2, . . . such 

that: (i) 𝑊𝑊 satisfies 𝑊𝑊 ≥ 𝑊𝑊−1; (ii) For each 𝑊, 𝑊𝑊 − 𝑊𝑊−1 is bounded by a finite 2nd moment random 

variable that is independent of the history information before 𝑊𝑊−1. 
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Note that for any finite 2nd moment random variable 𝑊, we have E 𝑊 4 = 3E 𝑊2 < ∞. 
𝑊 

Therefore, 
Πsignal-agnostic ⊂ Πsignal-aware

.
 

2.2.3 Problem Formulation. Our objective in this paper is to optimize the long-term average mean 

square estimation error (MSE) for both signal-aware and signal-agnostic cases: 

 

 1 ∫ 𝑊  

mseopt = inf lim sup E (𝑊𝑊 −𝑊
ˆ
𝑊 )2𝑊𝑊 . (3) 𝑊 ∈Π 𝑊 →∞ 𝑊 0 

We aim to find a sampling policy 𝑊 from the set Π of all causal policies, in order to minimize the 

MSE. The value mseopt is also called the optimal objective value. Problem (3) is typically hard to 

solve due to the following reasons. (i) Problem (3) is an infinite horizon undiscounted semi-

Markov decision problem with an uncountable state space. (ii) For the case of signal-aware 

sampling, each action (sampling time) is a stopping time. 

3 MAIN RESULTS 

3.1 Optimal Signal-aware Sampling Policy 

We first break down the time-horizon problem (3) into a series of optimal sampling subproblems. 

Each of these subproblems determines the optimal sampling times between 𝑊 and 𝑊 , where𝑊  
 𝑊 𝑊+1 𝑊 

represents the time of the 𝑊th successful delivery. 

Lemma 1. Solving the problem (3) is the same as solving a series of equivalent optimal sampling 

subproblems, where the 𝑊th subproblem is given by 

"# 

 𝑊 (𝑊, 𝑊
) 
≜ E ∫ ( − )2 − (  − ) − 

ˆ 
= (4) 

 𝑊inf∈Π 𝑊𝑊𝑊 𝑊
ˆ
𝑊 𝑊𝑊 𝑊 𝑊𝑊+1 𝑊𝑊 𝑊𝑊𝑊 𝑊𝑊𝑊 𝑊 , 

𝑊 

 
2It is the upper bound stopping time that is independent of the history information before 𝑊𝑊−1, not all of the stopping 

times. For example, the upper bound stopping time is to stop where the estimation error 𝑊𝑊 − 𝑊
ˆ
𝑊 exceeds a sufficiently 

large value. Setting this stopping time as an upper bound is reasonable, because we want to minimize the estimation error. 

Then, this stopping time is independent of the history information before 𝑊𝑊−1. 
3If the condition (ii) does not hold, then the term lim𝑊→∞ E[𝑊𝑊 (𝑊 ) ]/𝑊 may not be 0, where 𝑊 (𝑊 ) is the largest number 𝑊 

such that 𝑊𝑊 < 𝑊, and 𝑊𝑊  (𝑊𝑊 −𝑊
ˆ
𝑊 )2𝑊𝑊. If lim𝑊→∞ E[𝑊𝑊 (𝑊 ) ]/𝑊 ≠ 0, 𝑊𝑊 will diverge to infinity, which is not our 

concern. 

where 
𝑊 

= mseopt. 

𝑊 𝑊 + 1 
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Lemma 1 is a restatement of Lemma 4 in Section 5. We note that, by choosing 𝑊 = mseopt, the 

sequence of linearized optimal stopping subproblems (4) have the same solution as the original 

problem (3). Note that these subproblems are independent and thus equivalent. In other words, 

we only need to solve one subproblem (4) regardless of 𝑊, and 𝑊 (𝑊, 𝑊) remains the same for any 

given 

𝑊. This is because each 𝑊𝑊𝑊 −𝑊
ˆ
𝑊𝑊 is independent of any history information before 𝑊𝑊 . Moreover, 

Lemma 1 improves similar results in e.g., [21, 24, 30, 32], by removing the assumption that the 𝑊𝑊’s 

is a regenerative process. Overall, to solve (3), we can firstly solve (4) with any given parameter 𝑊 

> 0. 

However, problem (4) is still hard to solve. Let 𝑊𝑊 be the total number of transmission attempts 

 

between  𝑊 . Then, 𝑊 + 1 = 𝑊 + 𝑊𝑊 . Problem (4) needs to determine a sequence of 

sampling times 𝑊 ,𝑊 , . . . ,𝑊 until a successful packet delivery occurs at time 𝑊 . Hence, problem 

(4) 
 𝑊+1 𝑊+2 𝑊+𝑊𝑊 𝑊+1 

is a repeated optimal stopping problem with continuous-time control and a continuous state space. 

This 

is the key technical challenge of our study. To the extend of our knowledge, this type of problems 

has not been addressed before. One limiting case of problem (4) was studied in [30, Eq. 47], 

where there exists no transmission errors and hence 𝑊𝑊 = 1. 

We develop a value iteration algorithm that can find the optimal stopping times for solving 

problem (4). To that end, we define a sequence of optimal stopping problems: 

 ∫ 

𝑊𝑊 (𝑊, 𝑊
) 
≜ inf E(𝑊𝑊 −

𝑊ˆ
𝑊 )2𝑊𝑊 − 𝑊(𝑊𝑊+1 − 𝑊𝑊+1−min(𝑊𝑊,𝑊) ) 

𝑊 ∈Π 
𝑊+1−min(𝑊𝑊,𝑊) 

 

 𝑊𝑊 −𝑊
ˆ
𝑊  = 𝑊 ,𝑊 = 1, 2, . . . . (5) 

  𝑊+1−min(𝑊𝑊,𝑊) 𝑊+1−min(𝑊𝑊,𝑊) 

Hence, 𝑊𝑊 (𝑊, 𝑊) determines the optimal solution for at most the last 𝑊 transmission attempts in 

problem 4. The principle of backward induction implies that 𝑊𝑊 satisfies the value iteration 

algorithm: 

𝑊0(𝑊, 𝑊) ≜ 0,  

𝑊𝑊+1(𝑊, 𝑊) ≜ inf 𝑊(𝑊;𝑊) + 𝑊E [𝑊𝑊 (𝑊 +𝑊𝑊+𝑊, 𝑊)] , 𝑊 = 0, 1, 2, . . . , 
𝑊 

(6) 

𝑊 and 𝑊 𝑊 + 1 

𝑊 𝑊 + 1 

𝑊 
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where 𝑊 +𝑊𝑊+𝑊 is the estimation error after a stopping time 𝑊 and the transmission time 𝑊. And the 

per-stage cost function 𝑊(𝑊;𝑊) is defined as the square estimation error minus 𝑊 from the last 

delivery time to the next delivery time with a stopping time 𝑊: 

 𝑊+𝑊  
2 

𝑊(𝑊;𝑊) =E(𝑊 +𝑊𝑊 ) 𝑊𝑊 − 𝑊(𝑊 + 

𝑊) . (7) 

The following theorem provides an exact solution to (6), which is the key contribution in this 

paper: 

Theorem 1. The sequence of optimal stopping times 𝑊𝑊’s to problem (6) is given as follows: 

 𝑊𝑊 = inf {𝑊 ≥ 0 : |𝑊 +𝑊𝑊 | ≥ 𝑊𝑊 (𝑊)} , (8) 
𝑊 

𝑊𝑊 (𝑊) is the unique positive root of the free boundary differential equation: 

 𝑊  𝑊  

  𝑊𝑊 (𝑊, 𝑊) =  𝑊𝑊 (𝑊, 𝑊) , (9) 

 𝑊𝑊 𝑊=𝑊𝑊 (𝑊)+ 𝑊𝑊 𝑊=𝑊𝑊 (𝑊)− 

𝑊𝑊 (𝑊, 𝑊) is updated as: 

𝑊0(𝑊, 𝑊) = 0, 

 𝑊𝑊 (𝑊, 𝑊) = 𝑊(𝑊,𝑊𝑊 (𝑊), 𝑊) + 𝑊E𝑊𝑊 [𝑊𝑊−1(max{|𝑊|,𝑊𝑊 (𝑊)} +𝑊𝑊, 𝑊)] , 𝑊 = 1, 2, . . . , (10) 

 
w 

Fig. 3. The evolution of the root function: 𝑊𝑊
𝑊 (𝑊, 𝑊) + 13𝑊

3 − 𝑊𝑊 over 𝑊, with 𝑊 = 
1

, 
2

, 
4

. In this example, we set 

𝑊 = 11.0,𝑊 = 0.3, and a constant transmission delay 𝑊 = 6. It is easy to see that 𝑊𝑊(𝑊), which is the positive root 

of 
𝑊
𝑊
𝑊 (
𝑊, 𝑊

) + 13
𝑊3 − 

𝑊𝑊
, is decreasing in 

𝑊
. the function 𝑊(𝑊,𝑊, 𝑊) is equal to 

1 1 
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 𝑊(𝑊,𝑊, 𝑊) = E 𝑊 
2 

+ E [𝑊] 𝑊2 − E [𝑊] 𝑊 +  max(𝑊4 − 𝑊4
, 0) − (𝑊 − E[𝑊]) max(𝑊2 − 𝑊2

, 0). 

2 6 

(11) Moreover, the sequence {𝑊𝑊 (𝑊)}𝑊 is decreasing and thus convergent. 

The proof of Theorem 1 is provided in Section 5.3. Theorem 1 implies that each optimal stopping 

time 𝑊𝑊 is a hitting time that will stop when the estimation error exceeds a threshold 𝑊𝑊 (𝑊). The 

threshold 𝑊𝑊 (𝑊) is chosen by the free boundary method [25], where the optimal value function 𝑊𝑊 

(𝑊, 𝑊) should be continuously differentiable on 𝑊 ∈ R. Since 𝑊𝑊 (𝑊) is decreasing and convergent, 

𝑊𝑊 is also convergent. 

In addition, the optimal threshold 𝑊𝑊 (𝑊) can be solved efficiently. In Theorem 5 of Section 5.3, 

we showed that the root of the free boundary method in (9) is equivalent to: 

1 

 + 𝑊E𝑊𝑊 𝑊𝑊𝑊−1(𝑊 +𝑊𝑊, 𝑊)
1

|𝑊+𝑊𝑊 |≥𝑊𝑊−1 (𝑊) + 𝑊(𝑊 +𝑊𝑊 ) − 𝑊𝑊 )3 1|𝑊+𝑊𝑊 |<𝑊𝑊−1 (𝑊) . (13) 

𝑊 
Because (13) contains only an expectation over𝑊𝑊 without derivatives, computing 𝑊𝑊 (𝑊, 𝑊) is easy. 
 𝑊 1 3 

We also showed that𝑊𝑊 (𝑊, 𝑊)+ 3 𝑊 −𝑊𝑊 is strongly convex for𝑊 > 0. Thus, we only need logarithm 

time complexity to solve 𝑊𝑊 (𝑊) for each 𝑊 in (12), such as bisection search or Newton’s method. 

 𝑊 1 3 

Fig. 3 illustrates some intuitive properties of 𝑊𝑊 (𝑊) and its root function, 𝑊𝑊 (𝑊, 𝑊) + 3 𝑊 − 𝑊𝑊. 

Further, 𝑊𝑊 converges linearly to 𝑊. To illustrate, we first define a norm. Let us pick any value 𝑊 

 𝑊 3 

 𝑊𝑊 (𝑊, 𝑊) + 𝑊 − 𝑊𝑊 = 0. 
(12) 

3  

 𝑊 1 𝑊 1 

Interestingly, 𝑊𝑊 (𝑊, 𝑊) 
= 

2  𝑊𝑊 𝑊𝑊 (𝑊, 𝑊)|𝑊=𝑊𝑊 (𝑊)+, and 
−

3 𝑊 

𝑊 𝑊 (𝑊, 𝑊) =E [𝑊] 𝑊 

𝑊0 (𝑊, 𝑊) = 0, and the function 𝑊𝑊
𝑊 (𝑊, 𝑊) is updated as 

𝑊 
𝑊 

3 1 𝑊 

+ 𝑊𝑊 
= 

2  𝑊𝑊 𝑊𝑊 (𝑊, 𝑊)|𝑊=𝑊𝑊 (𝑊)−. 
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(𝑊) = max(𝑊,𝑊¯ 2), where 𝑊¯ can take any positive 

with 𝑊 < 𝑊 < 1, and denote a weight function 𝑊 

 h | | 𝑊𝑊2 i 𝑊 

value such that E 1 ≤ .The weight function𝑊(𝑊) is not related to 𝑊. The sup-norm 
 𝑊¯ 𝑊 𝑊 

 𝑊 (𝑊)  

∥ · ∥ of a function 𝑊 (𝑊) is defined as ∥𝑊∥ = sup𝑊∈R 𝑊  (𝑊)  .We have the following result: 

Lemma 2. ∥𝑊𝑊 (·, 𝑊) − 𝑊 (·, 𝑊)∥ ≤ 𝑊∥𝑊𝑊−1(·, 𝑊) − 𝑊 (·, 𝑊)∥. 

Lemma 2 is restated in Lemma 9 at Section 5.4. Since 𝑊𝑊 is also convergent, each of the optimal 

stopping (waiting) times in (4) should also be a hitting time with the threshold 𝑊(𝑊) = lim𝑊→∞ 𝑊𝑊 (𝑊). 

We finally conclude the following result: 

Theorem 2. An optimal sampling solution 𝑊𝑊’s to the series of problem (4) is: 

 𝑊𝑊+1 = inf 𝑊 ≥ 𝑊𝑊 : |𝑊𝑊 −𝑊
ˆ
𝑊 | ≥ 𝑊(𝑊

) 
, 𝑊 = 0, 1, 2, . . . , (14) 

𝑊 

where 𝑊(𝑊) is the limit of the sequence 𝑊𝑊 (𝑊)’s, and 𝑊𝑊 (𝑊) can be computed by solving (9), or more 

efficiently, by solving (12) and (13). 

The proof of Theorem 2 is provided in Section 5.4. 

Theorem 2 illustrates an important property of an optimal sampling policy for a given parameter 

𝑊. Note that |𝑊𝑊 − 𝑊
ˆ
𝑊 | is the estimation error at the current time 𝑊. Theorem 2 implies that the 

optimal sampling policy given in (14) has a simple structure. The optimal policy is a threshold 

type: the sampler may wait until the instantaneous estimation error |𝑊𝑊 − 𝑊
ˆ
𝑊 | exceeds the 

threshold 𝑊(𝑊). Specifically, if the estimation error at the initial time 𝑊𝑊 exceeds 𝑊(𝑊), then it is 

optimal to immediately transmit the sample. The optimal threshold 𝑊(𝑊) is independent of the 

evolution of the Wiener process. 

After solving (4) with a given 𝑊, we will finally determine the optimal objective value 𝑊 = mseopt. 

Note that in (4), 𝑊𝑊 −𝑊
ˆ
𝑊 has the same distribution as 𝑊𝑊 , where 𝑊 has the same distribution as 

 𝑊 𝑊 

the i.i.d. transmission delay 𝑊𝑊’s. Then, we have the following result: 

Theorem 3. 𝑊 = mseopt is the root of 

 E [𝑊 (𝑊𝑊, 𝑊)] = 0, (15) 

where mseopt is the optimal objective value of (3). 

+ 2 𝑊 𝑊 √ + ¯ 
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Theorem 3 is shown in Lemma 3 at Section 5. Combining Theorem 2 and Theorem 3, we finally 

provide the optimal solution to (3). 

Moreover, we showed that we can also use a low complexity algorithm, such as bisection 

search, to compute the root of 𝑊. So in conclusion, we can efficiently solve 𝑊(mseopt) and mseopt 

with low complexity, which is provided in Algorithm 1: 

• Line 4—10 in Algorithm 1 is an inner layer update to efficiently compute the optimal threshold 

𝑊(𝑊) and the function 𝑊 (𝑊, 𝑊) for a given 𝑊 (corresponding to Theorem 1 and Theorem 2). In 

Line 5, due to Lemma 2, we only need a logarithm number of iterations. In Line 8, since the 

root function in (12) is strongly convex, we only need a simple Newton’s method to obtain 

𝑊𝑊 (𝑊). 

• Line 2,3,11 serves as an outer layer that uses a simple bisection method to determine the root 

of 𝑊 (corresponding to Theorem 3). 

In the special case where 𝑊 = 0, it is easy to observe that 𝑊𝑊 (𝑊) = 𝑊1(𝑊), and 𝑊𝑊 (𝑊, 𝑊) = 𝑊1(𝑊, 𝑊) = 

𝑊(𝑊,𝑊1, 𝑊) for all 𝑊 = 1, 2, . . .. As a result, the optimal threshold 𝑊(𝑊) = 𝑊1(𝑊), and the optimal value 

function 𝑊 (𝑊, 𝑊) = 𝑊(𝑊,𝑊1, 𝑊). By (12), 𝑊1(𝑊) = p3(𝑊 − E[𝑊]). Therefore, Theorem 2 and 3 reduces to 

the following corollary: 

Corollary 1. 
Suppose that 𝑊 = 

0
, then an optimal solution 𝑊𝑊’s to problem 

(3) 
satisfies: 

 

 𝑊 1 n 𝑊 𝑊 
ˆ
𝑊 | ≥ p3(𝑊 − E[𝑊])o , (16) 

 𝑊 + = inf 𝑊 ≥ 𝑊 : |𝑊 −𝑊 
𝑊 

Algorithm 1: Bisection method for solving the optimal threshold 𝑊(mseopt) and mseopt 

1 Given 𝑊1 small, 𝑊2 large, 𝑊1 < 𝑊2, and tolerance 𝑊1,𝑊2 small. 

2 repeat 

3 𝑊 , 

4 Set 𝑊0(𝑊, 𝑊)  (𝑊, 𝑊) = 0 

∥𝑊1 (·,𝑊) ∥ 

5 Set iteration number 𝑊 = ⌈ − log𝑊 𝑊 ⌉  
1 

6 for 𝑊 = 1 : 𝑊 

7 Update 𝑊𝑊
𝑊 (𝑊, 𝑊) in (13) 

8 Solve 𝑊𝑊 (𝑊) in (12) 

9 Update 𝑊𝑊 (𝑊, 𝑊) in (10) 

10 end for 

11 if E𝑊 [𝑊𝑊 (𝑊𝑊, 𝑊)] < 0: 𝑊2 = 𝑊. else 𝑊1 = 𝑊 
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12 until 𝑊2 − 𝑊1 < 𝑊2 

13 return 
𝑊
𝑊 (
𝑊

)
, 𝑊

 

 

where 𝑊 is the root of 

 E h p E i 

 𝑊(𝑊𝑊, 3(𝑊 − [𝑊]), 𝑊) = 0. (17) 

Moreover, 𝑊 = mseopt is the optimal objective value of (3). 

The optimal policy provided in Corollary 1 is the same as that of [30, Theorem 1]. In addition, we 

have also improved [30, Theorem 1] by removing the assumption of the regenerative process. The 

optimal sampling policy provided in Corollary 1 is a threshold type on the instantaneous estimation 

error, and the optimal threshold is given in closed-form. 

There are several variations of Corollary 1 with a reliable channel case 𝑊 = 0. In [21], the paper 

changes the source process to be the Ornstein-Uhlenbeck process and shows that the optimal 

threshold is a root of the closed-form equation. The model where the source can reset the Wiener 

process is described in [32]. Theorem 2 and Theorem 3 are different from these studies by 

generalizing to an i.i.d. unreliable channel scenario (𝑊 ≥ 0). Note that the last transmission may be 

successful or failed for each sample. However, in Theorem 2 and Theorem 3, each sampling time 

follows the same threshold type with the same threshold 𝑊(𝑊), regardless of whether the last 

transmission failed or not. 

The expression (14) in Theorem 2 implies that our optimal policy relies on the value of the 

Wiener process at the sampling time of the successfully delivered sample, 𝑊𝑊, but may not on 𝑊𝑊. 

This is 

 

also a key difference from the case of a reliable channel (𝑊 = 0), e.g., [21, 30, 32] and Corollary 1. 

3.2 Optimal Signal-agnostic Sampling Policy with Sampling Rate Constraint 

Finally, we turn to the signal-agnostic case and provide the exact solution to Problem (3). Using 

[30], for any signal-agnostic policy, we have 

 E (𝑊𝑊 −𝑊
ˆ
𝑊 )  𝑊𝑊, 𝑊 ∈ [𝑊𝑊, 𝑊𝑊+1). (18) 
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In other words, when the sampling time does not depend on the Wiener process, the expected 

square estimation error MMSE is equal to the age of information. So our MSE-optimal sampling 

problem (Problem (3)) is equivalent to the age-optimal sampling problem. Problem (3) is equivalent 

 

Fig. 4. Evolution of the age Δ𝑊 over time 𝑊. 

to 
 𝑊  

age = inf lim sup  Δ𝑊𝑊𝑊 . (19) opt 

→∞ 𝑊  𝑊 ∈Π 𝑊 

Age of information Δ𝑊 , or simply the age, is a metric for evaluating the data freshness. As is 

mentioned in (18), the age Δ𝑊 is defined as the time elapsed since the freshest delivered sample is 

generated [29]. If a fresh sample is successfully delivered to the estimator, the age decreases to 

the system time of the sample. Otherwise, the age increases linearly in time. A sample path of the 

age Δ𝑊 is depicted in Fig 4. 

We then have the following result: 

Theorem 4. 
An optimal solution 𝑊𝑊’s to the problem 

(19) 
is provided as: 

  
E [𝑊]  

 𝑊𝑊+1 = inf 𝑊 ≥ 𝑊𝑊 : Δ𝑊 ≥ 𝑊 −  . (20) 

 𝑊 1 − 𝑊 

𝑊 is the root of 

 "∫ 𝑊′ #  E [𝑊]  

= 

where 𝑊 ′ 
Í
𝑊𝑊=1 𝑊𝑊,𝑊, 𝑊 and 𝑊𝑊,1,𝑊𝑊,2, . . . are i.i.d. and have the same distribution as the transmission 

E 
𝑊 

𝑊𝑊𝑊 − 𝑊E max(𝑊 − 𝑊, ) 

1 − 𝑊 

= 0, (21) 

! ! ! " " " " ! ! # " # " $ 
! "#$% # 

$ " $ ! $ $ $ # 

∆ t 

! $ 

! "#$%%&##’$ () 
*&(+,&-. 
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delay 𝑊𝑊’s. 

Theorem 4 provides the same sampling policy as that of [24, Theorem 1]. But we slightly improve 

[24, Theorem 1] by removing its assumption of the regenerative process. The proof of this 

improvement is provided in Appendix H. 

Different from Theorem 2, the optimal sampling policy is a threshold policy on the age, or 

equivalently, the MMSE, instead of the instantaneous estimation error. Note that the age keeps 

increasing over time if there is no successful delivery. As a result, if the previous transmission 
E[𝑊 ] 

failed, the age is always larger than the optimal threshold 𝑊 − −𝑊 . Therefore, Theorem 4 tells 

that 
1 

if the previous transmission is successful, the sampler may wait for some time until the current age 
E[𝑊 ] 

exceeds the threshold 𝑊 − −𝑊 . If the previous transmission failed, the sampler chooses zero-

wait. 
1 

This is another key difference from the optimal signal-aware sampling policy in Theorem 2. In 

Theorem 2, due to the randomness of the Wiener process, each sampler may need to wait, 

regardless of the outcome of the previous transmission. In addition, since there is only one waiting 

time 

 

Fig. 5. Average MSE versus 𝑊, where the channel delay is lognormal distributed with the parameter 𝑊. As 𝑊 

increases, the channel delay distribution is more heavy-tailed. The probability of i.i.d. transmission failure 𝑊 

= 0.65. 
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Fig. 6. Average MSE versus the probability of i.i.d. transmission failure 𝑊, where the channel delay is lognormal 

distributed with the parameter 𝑊 = 1.5. 

between two successful deliveries, the optimal objective value 𝑊 is the root of the closed form 

expression (21). But the root function of 𝑊 for the signal-aware case in (15) is not closed-form. 

Instead, as is illustrated in Theorem 2 and Algorithm 1, we need to construct a sequence of 

functions 𝑊𝑊’s to approach the root function. 

4 SIMULATION 

In this section, we will compute the long term average MMSE (average MSE) of the following three 

sampling policies: 

1. Our Results: our optimal sampling policy, which is the solution to problem (3), provided in 

Theorem 1—3. The average MSE is then computed in Algorithm 1. It waits until the estimation 

error exceeds a threshold. 

2. Zero-wait: The source transmits a sample once it receives the feedback, i.e., 𝑊𝑊+1 = 𝑊𝑊. This 

simple policy can achieve the maximum throughput and the minimum delay. However, even in the 

case of a reliable channel, it may not optimize the age of information [34] or optimize the 

estimation error [30]. In our study with an unreliable channel, Theorem 4 implies that the zero-

wait policy does not optimize the age. Moreover, Theorem 1—3 imply that the zero-wait policy 

does not optimize the estimation error. 

 

Fig. 7. Average MSE versus 𝑊, where the channel delay is a constant with the delay 𝑊 = 6. 

3. Age-optimal: This policy is provided in Theorem 4, restated in [24, Theorem 1], and the 

averageMSE is computed by [24, Algorithm 1]. Age-optimal policy achieves the optimal average 

age. It waits until the age (i.e., MMSE E[(𝑊𝑊 −𝑊
ˆ
𝑊 )2]) exceeds a threshold. 

0.4 0.6 0.8 0 0.2 
0 

10 

20 

30 

40 

50 

60 

Average MSE 

Our Results 
Zero-wait & Age-optimal 



60:18 Jiayu Pan, Yin Sun, and Ness B. Shroff 

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 3, Article 60. Publication date: December 2023. 

We will follow the same network system as is illustrated in Section 2 and Fig. 1. We consider 

two scenarios about the delay distribution of the unreliable channel: heavy-tailed distribution 

(e.g., lognormal distribution) and short-tailed distribution (e.g., constant). 

In the first scenario, we assume that the channel delay follows a lognormal distribution. The 

lognormal random variable with scale parameter 𝑊 is expressed as 𝑊 /E[𝑊 ], where 𝑊 is the 
𝑊𝑊 𝑊𝑊 
standard normal random variable. Fig. 5 illustrates the relationship between the average MSE of 

the four sampling policies with parameter 𝑊 of lognormal channel delay, given a discount factor 𝑊 

(probability of failure of the channel). The numerical results validate that our proposed policy 

always achieves the lowest average MSE. Note that as 𝑊 increases, the lognormal distribution of 

the channel becomes more heavy-tailed. We observe that the zero-wait policy is far from 

optimality, and the age-optimal policy also grows much quicker than our optimal policy. Therefore, 

our optimal policy substantially outperforms the age-optimal and zero-wait policies when the 

channel delay becomes heavy-tailed. Fig. 6 plots the evolutions of the average MSE with the change 

of 𝑊 given that the parameter 𝑊 = 1.5. From our observation, the zero-wait policy is always far from 

our optimal policy. 

In the second scenario, we assume that the channel delay is a constant. Fig. 7 depicts the 

evolution of the average MSE of different policies with the change of 𝑊. Note that the age-optimal 

policy is equivalent to the zero-wait policy when the delay is a constant, as is shown in [24, Corollary 

3]. We observe that when the channel connectivity is more reliable (𝑊 very small), then the zero-

wait policy is only slightly inferior to the optimal policy. However, as 𝑊 increases, the zero-wait 

policy becomes far from optimality. The intuitive reason is as follows: since the Wiener process 

oscillates, with a nontrivial probability, our optimal policy waits at each sample, no matter whether 

the last transmission failed or not. Compared to the zero-wait policy, such a quite different 

sampling strategy leads to much improvement for the average MSE. This is the newly observed 

phenomenon that has not been found in the previous studies, e.g., [21, 24, 28, 30]. 

In summary, our optimal policy can perform much better than the zero-wait and the age-optimal 

policy when either (i) the transmission time is heavy-tailed, or (ii) the transmission time is 

lighttailed, and the channel is highly unreliable. 

5 PROOF OF MAIN RESULTS 

In this section, we provide the proof for efficiently solving the optimal signal-aware policy for (3). 

In Section 5.1, we first show that there exists an optimal policy such that the inter-sampling time 

of the successfully delivered packet is i.i.d. Thus, the long term average MMSE in (3) is equal to the 

average MMSE only between the two successful delivery times. In Section 5.2, after linearizing, the 

reduced problem is equivalent to optimizing a discrete time discounted problem with multiple 

stopping times (27). This new problem a strict generalization to a discrete time discounted MDP, 

where each action is extended to be a stopping time. To solve (27), in Section 5.3, we first speculate 

that the optimal policy and its optimal value function satisfy the Bellman equation. Then, we use a 

value iteration algorithm to approach the optimal value function, where each iteration is an 

optimal stopping problem. Interestingly, we analytically solve the optimal stopping time for each 

iteration, which is a key technical contribution in this paper. Finally, in Section 5.4, we use the 

contraction mapping property to show that the optimal value function of the value iteration 
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algorithm convergences linearly to that of the Bellman equation. Thus, we exactly solve (27). This 

ends the proof. 

5.1 Reducing to a Single-epoch Problem 

5.1.1 Replacing the subscript 𝑊 by (𝑊,𝑊). The proof relies on the number of successfully delivered 

samples and the number of samples attempted for a successful delivery. These messages cannot 

be easily described in {𝑊𝑊,𝑊𝑊, 𝑊𝑊 }’s by using only one subscript 𝑊. Therefore, for notational simplicity, 

throughout Section 5, we will replace 𝑊𝑊,𝑊𝑊, 𝑊𝑊 by 𝑊𝑊,𝑊,𝑊𝑊,𝑊, 𝑊𝑊,𝑊, respectively. Here, we denote the 

𝑊th epoch to be the time interval between the (𝑊 − 1)th and the 𝑊th successful deliveries. Let 

𝑊𝑊 represent the total number of transmissions attempted during the 𝑊th epoch. Then, 𝑊𝑊 has a 

geometric distribution with parameter 1 − 𝑊. Note that if the channel is reliable, then 𝑊𝑊 = 1. In 

addition, 𝑊 ∈ {1, 2, . . . , 𝑊𝑊 } represents the index of transmission for the 𝑊th epoch, where the case 

𝑊 = 1 implies that the last transmission was successful. Note that the mapping from 𝑊 to (𝑊,𝑊) is 

one-to-one. For example, in Fig 2, 𝑊1 = 𝑊1,1 with 𝑊1 = 1, 𝑊2 = 𝑊2,1,𝑊3 = 𝑊2,2 with 𝑊2 = 2, and 𝑊4 = 𝑊3,1 with 

𝑊3 = 1. 

By (1), the MMSE estimator 𝑊
ˆ
𝑊 is expressed as 

 𝑊ˆ𝑊 = 𝑊𝑊𝑊−1,𝑊𝑊−1 ,𝑊 ∈ [𝑊𝑊−1,𝑊𝑊−1, 𝑊𝑊,𝑊𝑊 ). (22) 

5.1.2 Reducing to a Single-epoch Problem. We aim to show that solving the original problem 

(3) can be reduced to solving the optimal sampling times 𝑊𝑊,1,𝑊𝑊,2, . . . within an epoch 𝑊 over a 

subset of the policy space Πsignal-aware. We denote such the subset Π𝑊 as a collection of sampling 

times 𝑊𝑊,1,𝑊𝑊,2, . . . within epoch 𝑊 such that each inter-sampling time {𝑊𝑊,𝑊 − 𝑊𝑊−1,𝑊𝑊−1,𝑊 = 1, 2, . . .} is 

independent of the history information before 𝑊𝑊−1,𝑊𝑊−1. The following result shows that our average 

cost problem (3) reduces to a single epoch problem (with arbitrary index 𝑊) that contains possibly 

multiple samples from one successful delivery time until the next successful delivery time. 

Proposition 1. There exists an optimal policy for the problem (3) such that {𝑊𝑊,𝑊𝑊 − 𝑊𝑊−1,𝑊𝑊−1 }𝑊 are 

i.i.d. Moreover, problem (3) is equivalent to 

 E 
h

∫ 𝑊𝑊,𝑊𝑊 ( 
− 

𝑊 1,𝑊 )2 i 

 𝑊𝑊 𝑊𝑊 − 𝑊𝑊 
 𝑊𝑊−1,𝑊𝑊−1 𝑊−1 

 

 mseopt = 
(𝑊𝑊,1,𝑊inf𝑊,2,...) ∈Π𝑊 E 𝑊𝑊,𝑊𝑊 − 𝑊𝑊−1,𝑊𝑊−1  . (23) 

 Proof. See Appendix B. □ 
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Proposition 1 implies that to solve the long term average MMSE problem (3), we can solve a 

problem with only a single epoch. Each sampling decision in this epoch is independent of the 

history information prior to the final sampling time of the previous epoch. Proposition 1 is 

motivated by 

[28, 30] under a reliable channel. In these studies, the original problem is reduced to an average 

MMSE problem between two delivery times (a single sample problem). One of the key reasons is 

that at each delivery time, the estimation error is updated and is independent of the history 

information before the last sampling time. But in our unreliable case, at a failed delivery time, the 

estimation error is not updated and is still correlated to that history information. Thus, our single 

epoch problem cannot be further reduced to a single sample problem. In addition, we also improve 

[28, 30] by removing the assumption of the regenerative process. A similar result to Proposition 1 

is presented in [2] with an unreliable channel and signal-agnostic sampling, without the assumption 

of the regenerative process. We also generalize [2] since our sampling time depends on the Wiener 

process. 

Although we have reformulated the long term average MMSE problem (3) into an average 

MMSE problem within a single epoch (23), problem (23) is still hard to solve. This is because it 

contains a fraction and thus is a repeated semi-MDP. 

5.2 Reformulating as a Multiple Stopping Times Problem: an Extension to a Discounted MDP 

In this section, we will linearize problem (23) and reformulate it as a discounted cost and repeated 

Markov decision process (MDP), where each action is a stopping time. 

Let us define a minimization problem with a parameter 𝑊 ∈ R: 

 "∫ 𝑊𝑊,𝑊𝑊 # 

2 

 ℎ(𝑊) = 𝑊inf∈Π𝑊 E 𝑊𝑊 (𝑊𝑊 −𝑊𝑊𝑊−1,𝑊𝑊−1 ) 𝑊𝑊 − 𝑊(𝑊𝑊,𝑊𝑊 − 𝑊𝑊−1,𝑊𝑊−1) 

−1,𝑊𝑊−1 

Here, 𝑊 = (𝑊𝑊,1,𝑊𝑊,2, . . .). By Dinkelbach’s method [9], we have 

Lemma 3. (i) ℎ(𝑊) ⪋ 0 if and only if mseopt ⪋ 𝑊. 

(ii) When 𝑊 = mseopt, the solution to (23) and (24) are equivalent. 

Therefore, to solve (23), we will solve ℎ(mseopt) = 0. 

We denote 𝑊𝑊,𝑊 as the waiting time for the 𝑊th sample in epoch 𝑊. Then, 

. (24) 

𝑊𝑊 
Õ 

 𝑊𝑊,𝑊 − 𝑊𝑊−1,𝑊 = 𝑊 + 𝑊 . 

 

(25) 
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 𝑊 𝑊−1 𝑊,𝑊 𝑊,𝑊 

𝑊=1 

Then, combined with (25) and the strong Markov property of the Wiener process, given that 

𝑊
𝑊𝑊−1,𝑊𝑊−1 −

𝑊
𝑊𝑊−1,𝑊𝑊−1 = 𝑊, 

𝑊 
∈ R, we have 

𝑊 

 ∫ 𝑊𝑊,𝑊𝑊 ∫ Í𝑊=𝑊1 𝑊𝑊,𝑊 +𝑊𝑊,𝑊 

 2 2 

Here, 𝑊 (𝑊) is the total cost of the optimal policy, which is also called the optimal value function. 

And 𝑊𝑊 (𝑊) is the total cost of a policy, which is also called the action value function with a policy 𝑊. 

For any policy 𝑊, the action value function 𝑊𝑊 (𝑊) in (28) is further written as 

  𝑊𝑊  

 𝑊𝑊 (𝑊) =E Õ𝑊(𝑊˜𝑊;𝑊𝑊,𝑊)|𝑊˜1 = 𝑊  , (29) 

   

 𝑊=1  

   

where the state values 𝑊
˜
𝑊, 𝑊 = 1, 2 . . . satisfy 

 ˜ ˜ 

 𝑊𝑊+1 = 𝑊𝑊 +𝑊𝑊𝑊,𝑊 +𝑊𝑊,𝑊 ,𝑊 = 1, 2, . . . , (30) 

𝑊(𝑊;𝑊), also called a per stage cost function, is the expected integration of square estimation error 

4 minus mseopt from the last 

delivery time to the next delivery time, where the initial estimation error is 𝑊, and the sampler’s 

waiting time is 𝑊. 𝑊(𝑊;𝑊) is defined as: 

 ∫ 𝑊+𝑊  

 (𝑊𝑊 −𝑊𝑊𝑊−1,𝑊𝑊−1 ) 𝑊𝑊 = (𝑊𝑊 + 𝑊) 𝑊𝑊. 
 𝑊𝑊−1,𝑊𝑊−1 0 

As a result, (25) and (26) give: 

Lemma 4. An optimal solution to (23) given that 𝑊𝑊𝑊−1,𝑊𝑊−1 −𝑊𝑊𝑊−1,𝑊𝑊−1 = 𝑊, 𝑊 ∈ R satisfies 

(26) 

𝑊 (𝑊) ≜ inf 𝑊𝑊 (𝑊), 
𝑊 ∈Π𝑊 

(27) 

𝑊 

 𝑊 ≜E ∫ Í𝑊=𝑊1 𝑊𝑊,𝑊 +𝑊𝑊,𝑊 (𝑊𝑊 + 𝑊)2𝑊𝑊 − mseopt(Õ𝑊𝑊 𝑊𝑊,𝑊 + 𝑊𝑊,𝑊)  . 

 𝑊 (𝑊)  

  0  

  𝑊=1  

   

(28) 



60:22 Jiayu Pan, Yin Sun, and Ness B. Shroff 

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 3, Article 60. Publication date: December 2023. 

2 

 𝑊(𝑊;𝑊) =E (𝑊 +𝑊𝑊 ) 𝑊𝑊 − mseopt(𝑊 + 𝑊) , (31) 
0 

where 𝑊 has the same distribution as the channel delay. The equation (29) holds because of the 

strong Markov property of the Wiener process. 

Note that 𝑊𝑊 (𝑊) represents the expected cost of square estimation error minus a constant mseopt 

within an epoch. In an epoch, if the transmission is successful with probability 1 − 𝑊, then the 

system will stop. Thus, the system state will enter a “stopping” set with 0 cost; If the transmission 

fails with probability 𝑊, the system state will enter the next transmission with a per-stage cost 𝑊. 

Therefore, 
∞ 

 𝑊𝑊 (𝑊) = Õ𝑊𝑊−1E 𝑊(𝑊˜𝑊;𝑊𝑊,𝑊)|𝑊˜1 = 𝑊 , (32) 

𝑊=1 

which is proven in [24, Appendix F]. The 𝑊th stage state 𝑊
˜
𝑊 implies that all the previous 𝑊 − 1 

 𝑊−1 − 

transmissions failed, and the coefficient 𝑊 is the probability of 𝑊 1 consecutive failures. 

Equations (27)—(32) imply that problem (27) belongs to a discounted cost problem with 

multiple stopping times, or in other words, a repeated MDP, because there are multiple waiting 

times 

𝑊𝑊,1,𝑊𝑊,2, . . ., and each waiting time is a stopping time. Suppose that each waiting time is not a 

stopping time, i.e., the waiting time policy chooses a real value that is independent of the Wiener 

process. Then, problem (27) is reduced to a discrete time discounted cost MDP [3]. This is because: 

(i) the state at each stage 𝑊 is the estimation error at the 𝑊 − 1th delivery time, 𝑊
˜
𝑊 (when 𝑊 = 1, 

˜ = (32)). (ii) The action at each stage 𝑊 is the waiting time for the 𝑊th sample, 𝑊𝑊,𝑊. (iii) The 

𝑊1 𝑊 

state transition is provided in (30). (iv) The cost function is defined in (31). 

Note that the waiting times 𝑊𝑊,1,𝑊𝑊,2, . . . are correlated. Thus, despite that we have linearized 

the problem (23) into a multiple stopping time problem (27), problem (27) still faces the curse of 

dimensionality. 

5.3 Analytical Solution to the Value Iteration (35) for the Multiple Stopping Times Problem 
(27)

 

In the special case where each waiting time 𝑊𝑊,1,𝑊𝑊,2, . . . is not a stopping time, the optimal policy 

and the optimal value function to the discounted MDP satisfies the Bellman equation [5, Chapter 
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9]. The advantage of the Bellman equation is that it turns the MDP with correlated waiting times 

into an optimization problem over a single waiting time and thus helps reduce the complexity of 

4For comparison, 𝑊𝑊 (𝑊) is the expected integration of square estimation error minus mseopt from the last delivery time to 

the next succsssful delivery time. 

the MDP. Suppose that we can propose a waiting time decision 𝑊(𝑊),𝑊 ∈ R and the action value 

function of the stationary policy 𝑊,𝑊, . . . that is the unique solution to the Bellman equation. 

Then, the policy 𝑊,𝑊, . . . is an optimal policy. 

Similar to the previous MDP case, we believe that the optimal policy and the optimal value 

5 function of our repeated 

MDP (27) still satisfies the Bellman equation . Because except that each waiting time is extended 

to be a stopping time, our repeated MDP (27) has the same components as that of a discounted 

MDP. The Bellman equation for our repeated MDP (27) is defined as follows: 

𝑊 (𝑊) = 𝑊 𝑊 (𝑊) ≜ inf 𝑊(𝑊;𝑊) + 𝑊E [𝑊 (𝑊 +𝑊𝑊+𝑊 )] , 
𝑊 ∈𝔐 

where 𝔐 is the set of stopping times on the Wiener process 𝑊𝑊 such that 

(33) 

 𝔐= 𝑊 : {𝑊 < 𝑊} ∈ F (𝑊)+, E 𝑊2 < ∞ , (34) 
+ 

where F (𝑊) = ∩𝑊>𝑊𝑊(𝑊𝑊,𝑊 ∈ [0,𝑊]). In (33), 𝑊 +𝑊𝑊+𝑊 is the next state of estimation error, after a stopping 

time 𝑊 and a channel delay 𝑊. 

However, problem (33) is not an optimal stopping problem because the function 𝑊 exists in 

both sides. To overcome this issue and exactly solve (33), our method in this paper is to use the 

value iteration algorithm [4] to convert (33) into multiple standard optimal stopping problems 

that are solvable. Specifically, we will construct a sequence of optimal stopping problems to 

approach the problem (33), where in each optimal stopping problem, the action value functions 

are well-defined. We define the value iteration algorithm regarding to the problem (33) as 

follows: 

𝑊0(𝑊) ≜ 0,  

𝑊𝑊+1(𝑊) ≜ 𝑊 𝑊𝑊 (𝑊) = inf 𝑊(𝑊;𝑊) + 𝑊E [𝑊𝑊 (𝑊 +𝑊𝑊+𝑊 )] , 𝑊 = 0, 1, 2, . . . 
𝑊 ∈𝔐 

(35) 

We also denote 𝑊1,𝑊2, . . . as the optimal stopping time of the problem (35) when 𝑊 = 1, 2, . . . , 

respectively. Then, 𝑊𝑊 (𝑊) = 𝑊 0(𝑊) is the discounted integrated cost from the first delivery 

𝑊 

time (the last transmission was successful) until at most the 𝑊th delivery time, where the 𝑊th 

transmission implies that previous 𝑊 − 1 transmissions have failed. In addition, the waiting times 

for the 𝑊 transmissions are 𝑊1,𝑊2, . . . ,𝑊𝑊, respectively. Note that 𝑊 (𝑊) is the discounted cost about 
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infinite number of transmissions. Thus, our objective is to exactly solve (35) by figuring out 𝑊1,𝑊2, . 

. . and show that 𝑊 0(𝑊) → 𝑊 (𝑊) as 𝑊 → ∞. 

𝑊 

5.3.1 Candidate Solutions to (35). We speculate that each optimal stopping time 𝑊1,𝑊2, . . . for 

(35) is a hitting time, or in other words, threshold type, defined as follows: 

 𝑊𝑊 = inf{𝑊 : |𝑊 +𝑊𝑊 | ≥ 𝑊𝑊}, 𝑊 = 1, 2, . . . , (36) 
𝑊 ≥0 

where 𝑊, called the initial state, is the estimation error at the 𝑊 − 1th delivery time 𝑊𝑊,𝑊−1 (𝑊 = 1 

implies that the last transmission was successful, and the delivery time is 𝑊𝑊−1,𝑊𝑊−1). Next, we aim 

to find out the sequence of the optimal thresholds 𝑊1,𝑊2, . . .. 

Let us define a function 𝑊𝑊 (𝑊) as follows: 

 𝑊𝑊 (𝑊) = 𝑊(𝑊; 0) + 𝑊E [𝑊𝑊−1(𝑊 +𝑊𝑊 )] . (37) 

Intuitively, 𝑊𝑊 (𝑊) is the action value function that chooses 0 waiting time at the first stage, incurs 

the cost 𝑊(𝑊; 0), and chooses the optimal waiting times at the remaining 𝑊 − 1 stages. Since the 

 
5This statement is technically true if we can show that our action space is a Borel space (We call 𝑊 as a Borel space if there 

exists a complete separable metric space 𝑊 and a Borel subset 𝑊
˜ 
∈ B𝑊 such that 𝑊 is homeomorphic to 𝑊

˜
) [5, Chapter 9]. 

Examples of a Borel space are R and any real-valued intervals. For showing that our action space is a Borel space, we 

leave to our future studies. 

speculated optimal waiting time (36) is a hitting time, 𝑊𝑊 (𝑊) = 𝑊𝑊 (𝑊) if |𝑊| ≥ 𝑊𝑊. In addition, we 

provide an alternative expression of 𝑊(𝑊;𝑊): 

Lemma 5. 

 𝑊  1 

𝑊(𝑊;𝑊) =E (𝑊 +𝑊𝑊 )2 − mseopt𝑊𝑊 + E [𝑊] (𝑊 +𝑊𝑊)2

 + E [𝑊]2 − E [𝑊] mseopt.

 (38) 2 

Moreover, if 𝑊 is a hitting time with a threshold 𝑊 given the initial value𝑊. i.e.,𝑊 = inf𝑊 ≥0{𝑊 : |𝑊 +𝑊𝑊 | 

≥ 𝑊}, then we have 

 𝑊(𝑊;𝑊) = 𝑊(𝑊,𝑊, mseopt), (39) 
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where 𝑊(𝑊,𝑊, mseopt) is defined in 
(11)

. 

 Proof. See Appendix A □ 

Then, our problem (35) is augmented as the sequence of standard optimal stopping problem 

[25, Chapter 1]: 

 ˜ 
 
˜ 

𝑊𝑊 (𝑊,𝑊) = inf E 𝑊𝑊 (𝑊 +𝑊𝑊,𝑊 + 𝑊𝑊)
 
, for all 𝑊,𝑊 ∈ R, 

𝑊 ∈𝔐 

where 

(40) 

˜ 

𝑊𝑊 (𝑊 +𝑊𝑊,𝑊 + 𝑊𝑊 ) ≜ 𝑊˜(𝑊 +𝑊𝑊,𝑊 + 𝑊𝑊 ) + 𝑊E [𝑊𝑊−1(𝑊 +𝑊𝑊 +𝑊𝑊 )] , (41) 

 𝑊˜(𝑊 +𝑊𝑊,𝑊 + 𝑊𝑊 ) ≜ 𝑊 + 𝑊𝑊 + E [𝑊] (𝑊 +𝑊𝑊 )  mseopt, (42) 

 𝑊𝑊 𝑊𝑊 )2 − mseopt𝑊𝑊. (43) 

By Lemma 5, for any 𝑊, we have 𝑊(𝑊;𝑊) =E [𝑊˜(𝑊 +𝑊𝑊,𝑊𝑊 )] =E [𝑊˜(𝑊 +𝑊𝑊,𝑊 + 𝑊𝑊 )] − 𝑊. 

According to [20, Chapter 10] and [25, Section 8], the free boundary method implies that the 

optimal objective function 𝑊
˜
𝑊 (𝑊,𝑊) should satisfy 

1 𝑊2 

 ˜ 2 

 𝑊𝑊 (𝑊,𝑊) + 𝑊 − mseopt = 0,𝑊 ∈ (−𝑊𝑊,𝑊𝑊), 

2 𝑊𝑊2 

(44) 

˜ 

𝑊𝑊 (𝑊,𝑊) = 𝑊
˜
𝑊 (𝑊,𝑊),𝑊 ∈ (−∞, −𝑊𝑊] ∪ [𝑊𝑊, ∞), 

(45) 

𝑊  𝑊  

˜
𝑊 (𝑊,𝑊) = 𝑊

˜
𝑊 (𝑊,𝑊). 

𝑊 (46) 

 𝑊𝑊 𝑊=±𝑊𝑊 𝑊𝑊 𝑊=±𝑊𝑊 

The first equation (44) tells that in the continuation set (−𝑊𝑊,𝑊𝑊), the infinitesimal operator of 

𝑊˜𝑊 (𝑊,𝑊) is zero. In the second equation (45), at the stopping set (−∞, −𝑊𝑊] ∪ [𝑊𝑊, ∞), the stopping 

time 𝑊𝑊 is zero. The third equation (46) implies that 𝑊
˜
𝑊 (𝑊,𝑊) should be continuously differentiable 

at the boundary points 𝑊 = ±𝑊𝑊. These three equations are then simplified to: 

1 

 𝑊𝑊 (𝑊) + 𝑊 − mseopt = 0,𝑊 ∈ (−𝑊𝑊,𝑊𝑊), (47) 
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 ′′ 2 

 𝑊 𝑊=±𝑊𝑊 𝑊 𝑊=±𝑊𝑊 

By (47)—(49), 𝑊 is the positive solution to 𝑊  𝑊 the 

following results for deriving the sequence 𝑊1,𝑊2, . . .: 

 𝑊 𝑊′𝑊′ (𝑊𝑊). Combined with Lemma 5, we provide 

Lemma 6. For all 𝑊 = 1, 2, . . . we have that: 

(a) If |
𝑊

| 
< 𝑊

𝑊, then 

 ′ 𝑊 2 3 

 𝑊𝑊 (𝑊) = 𝑊(𝑊,𝑊𝑊, mseopt) = − 𝑊 + 2mseopt𝑊. (50) 

 𝑊𝑊 3 

If |
𝑊

| 
> 𝑊

𝑊, then 

𝑊𝑊′ (𝑊) = 𝑊𝑊′ (𝑊) = 
𝑊 
𝑊(𝑊, 0, mseopt) + 𝑊E 𝑊𝑊′

−1(𝑊 +𝑊𝑊 )
 
= 2E [𝑊] 𝑊 + 𝑊E 𝑊𝑊′

−1(𝑊 +𝑊𝑊 )
 
. 

𝑊𝑊 

(51) 

The optimal threshold 𝑊𝑊 is the positive solution to 

 ′ 2 3 

 𝑊𝑊 (𝑊) + 𝑊 − 2mseopt𝑊 = 0. (52) 

3 

Moreover, 𝑊𝑊
′′(𝑊) and 𝑊𝑊

′′′(𝑊) are continuous. 

(b) 𝑊𝑊′ (0) = 0, and 𝑊𝑊′′(𝑊) + 2𝑊2 − 2mseopt ≥ 0 for all 𝑊 ∈ [𝑊𝑊, ∞). 

(c) 𝑊𝑊′′′(𝑊) ≥ 0, and 𝑊𝑊′′′(𝑊) + 4𝑊 ≥ 0 for all 𝑊 ≥ 0. 

 

(d) The sequence of thresholds 𝑊1,𝑊2, . . . is bounded with 𝑊𝑊 ≤ 
p

3mseopt and is decreasing, thus 

converges. 

 Proof. See Appendix D. □ 

2 

𝑊𝑊 (𝑊) = 𝑊𝑊 (𝑊),𝑊 ∈ (−∞, −𝑊𝑊] ∪ [𝑊𝑊, ∞), (48) 

′   

𝑊 (𝑊) = 𝑊 ′ (𝑊) . (49) 
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5.3.2 Optimality of the Candidate Solution to (35). We finally validate that the hitting time (36) is 

the optimal solution. Combined with Lemma 6, we have the following result: 

Theorem 5. 
(a) An optimal sequence of waiting times 

𝑊
1
,𝑊

2
, . . . 

for 
(35) 

satisfies 
(36)

, and each 

threshold 𝑊𝑊 is the positive root of 
(52)

, where 𝑊0
′ (𝑊) = 

0
, 𝑊𝑊

′ (𝑊) is updated by 
(51)

, 𝑊0
′(𝑊) = 

0
, and 𝑊′ 

(𝑊) is updated by (50)(51). 

𝑊 

(b) The function 𝑊𝑊
′ (𝑊) + 2

3 𝑊3 −
2

mseopt𝑊 in 
(52) 

is convex for 𝑊 ≥ 
0 

and strongly convex for 𝑊 > 
0

. 

Therefore, the positive root of 𝑊𝑊 is unique. In addition, 𝑊𝑊 decreases and thus converges. 

Theorem 5 (b) is directly shown by Lemma 6. It remains to show that the exact solution provided 

in Theorem 5 (a) is optimal to the value iteration problem (35). 

Proof of Theorem 5 (a). we obtain the two following results: 

Lemma 7. We have 𝑊˜𝑊 (𝑊,𝑊) ≤ 𝑊˜𝑊 (𝑊,𝑊) for any (𝑊,𝑊) ∈ R2 and the iteration number 𝑊 = 1, 2, . . .. 

 Proof. See Appendix E. □ 

Definition 1. A function f(w,q) is excessive if E[𝑊˜(𝑊 +𝑊𝑊,𝑊 + 𝑊𝑊 )] ≤ 𝑊˜(𝑊,𝑊) for all 𝑊 ≥ 0 and (𝑊,𝑊) ∈ 

R2. 

Lemma 8. The negative value function −𝑊
˜
𝑊 (𝑊,𝑊) is excessive for any (𝑊,𝑊) ∈ R2 and the iteration 

number 𝑊 = 1, 2, . . .. 

 Proof. See Appendix F. □ 

By Lemma 7 and Lemma 8, using Corollary to Theorem 1 in [27, Section 3.3.1], we have that 

the stopping times 𝑊1,𝑊2, . . . in (36) are optimal to (40), thus are optimal to (35). This completes 

the proof of Theorem 5 (a). □ 

5.4 Linear Convergence of Value Iteration to the Repeated MDP (27) 

In this section, we will show that the optimal value functions 𝑊𝑊 of the value iteration algorithm 

(35) converge linearly to the optimal value function 𝑊 of our problem in (27). We have the following 

result: 

Lemma 9. (a) Suppose that the continuation set of 𝑊 is is bounded by 𝑊
¯
, i.e., if 𝑊2 ≥ 𝑊

¯
, then 𝑊 = 0. 

 E[𝑊 (𝑊+𝑊𝑊+𝑊 ) ] 𝑊 

Then, 𝑊 (𝑊) ≤ 𝑊 . 
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(b) The function 𝑊𝑊 (𝑊) = 𝑊𝑊
0(𝑊) satisfies the contraction mapping property, i.e., ∥𝑊𝑊

0∥ < ∞, 

, and ∥𝑊𝑊+10 
− 𝑊𝑊0∥ ≤ 𝑊𝑊 ∥𝑊

0
∥. The Bellman operator 𝑊 is defined in 

(33)
. 

(c) 𝑊 (𝑊) = 𝑊 ∞0(𝑊) is the unique solution to the Bellman equation 𝑊 = 𝑊 𝑊 (33) (with ∥𝑊 ∥ < ∞). 

Further, ∥𝑊𝑊0 − 𝑊 ∥ ≤ 𝑊∥𝑊𝑊−10 − 𝑊 ∥. 

 Proof. See Appendix G. □ 

By Lemma 9(c), 𝑊 is the unique solution to the Bellman equation 𝑊 = 𝑊 𝑊. Therefore, 𝑊 is the 

optimal value function for the problem (27). Due to the linear convergence of 𝑊𝑊 to 𝑊, Lemma 6(d) 

implies that the optimal stopping time for (27) is also a hitting time, where the optimal threshold 

is 𝑊 = lim𝑊→∞ 𝑊𝑊. This completes the proof of Theorem 2. In addition, Lemma 3 implies that mseopt 

is the solution to E[lim𝑊→∞ 𝑊 (𝑊𝑊 )] = 0. These statements combined with Theorem 5 completes the 

solution to the problem (3). 

5.5 Discussion 

In this section, we compare our proof and technical contributions with some related works and 

discuss some interesting future directions. 

5.5.1 Special Case 1: Reliable Channel [30]. In the special case of a reliable channel (𝑊 = 0), 𝑊𝑊 = 1. 

The problem (27) is then reduced to: 

 𝑊 (𝑊) ≜ inf 𝑊(𝑊;𝑊). (53) 
𝑊 ∈𝔐 

The problem (27) for general 𝑊 ≥ 0 is a repeated MDP, because we need to determine multiple 

correlated waiting times in an epoch, and each waiting time is a stopping time. However, when 𝑊 

= 0, the problem (53) reduces to an MDP, or in other words, an optimal stopping problem with a 

single waiting time. Note that solving (53) is still nontrivial. We speculate that the optimal waiting 

time 𝑊 is a hitting time. Using Lemma 6 (a), the optimal threshold 𝑊 is the positive root of 

2 

 𝑊3 − 2(mseopt − E[𝑊])𝑊 = 0, (54) 

which is 𝑊 = p3(mseopt − E[𝑊]). By Theorem 5, the speculated waiting time is optimal. This implies 

the final result Corollary 1 ([30, Theorem 1]). 

Similar studies with a reliable channel are also indicated, e.g., in [21, 28, 32]. The key insight is 

to solve an optimal stopping time like (53). Our study with an unreliable channel is different from 

these studies, because we need to solve a problem with multiple correlated stopping times (27). 

To solve this, we need to analytically solve a value iteration algorithm (35) that includes a 

sequence of optimal stopping problems. Compared to (53), for each iteration 𝑊, our optimal 

3 
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stopping problem is more challenging to solve, because the optimal value function is a more 

complicated expression that contains a summation of 𝑊 correlated samples. 

5.5.2 Special Case 2: Signal-agnostic Sampling [24]. When the sampling time is independent of 

the Wiener process, each waiting time takes a nonnegative value based on the timing history 

information, but not the evolution of the Wiener process. The previous problem (27) is reduced 

from a discounted and repeated MDP to a discounted MDP. The study in [24] has shown that the 

optimal policy is a threshold policy on the age (i.e., MMSE). 

Since the optimal signal-aware sampling policy is different from the optimal signal-aware 

sampling policy, the proof of solving our problem (27) is different from that of the discounted MDP 

in [24]. The authors in [24] solve their problems as follows: (i) they first propose a threshold based 

waiting decision 𝑊(𝑊) = max(ageopt − 𝑊 − E[𝑊]/(1 − 𝑊), 0), where 𝑊 is the age state, and age is the 

optimal average age; (ii) then they show that 𝑊 and its value function are the unique opt 

solution to the Bellman equation: 𝑊agnostic(𝑊) = inf𝑊 ≥0 𝑊agnostic(𝑊,𝑊) + E[𝑊agnostic(𝑊 + 𝑊 + 𝑊)], where 

𝑊
agnostic(𝑊,𝑊) ≜E[∫𝑊𝑊+𝑊+𝑊 (𝑊 − ageopt)𝑊𝑊]. 

However, such the proof ideas cannot be applied to our case, due to the following challenges 

that do not appear in [24]: (i) Since each waiting time is a stopping time, solving (27) faces the 

curse of dimensionality. For example, when 𝑊 = 0, (27) reduces to (53), but (53) is still an optimal 

stopping problem. In the signal-agnostic case, (53) is reduced to a convex optimization problem 

[28, Lemma 7], thus is much easier to solve; (ii) In [24], the Bellman equation is solvable. Since 𝑊 is 

threshold type on the age, it is optimal to wait (𝑊 > 0) only when the last transmission was 

successful. Thus, the optimal value function is a closed-form expression: 𝑊agnostic(𝑊) = Eh ∫ 𝑊+𝑊(𝑊)+𝑊′ 

𝑊𝑊𝑊 − 

𝑊 

age (𝑊(𝑊) + 𝑊 ′)i, where 𝑊 ′ is given in Theorem 4. Since the Bellman equation is a minimization opt 

over nonnegative values, solving the Bellman equation is the same as comparing a few closed-

form expressions. In our case, however, it is hard to compare, because the optimal value 

function 𝑊 (𝑊) is not closed-form. This is due to the randomness of the Wiener process, and we 

may wait for each sample. 

5.5.3 Future Direction 1: Non i.i.d. Channel Failure. When the channel failure is extended from 

i.i.d. to Markovian, we still believe that the statements in Section 5.1 and Section (5.2) are correct. 

However, there is a key difference in Section 5.3: the problem (27) (32) is changed to be 

∞ 

𝑊 (𝑊) = inf 𝑊(𝑊;𝑊𝑊,1) + (1 − 𝑊 ′)E 𝑊(𝑊˜2;𝑊𝑊,2)|𝑊˜1 = 𝑊 + Õ𝑊𝑊−1E 𝑊(𝑊˜𝑊;𝑊𝑊,𝑊)|𝑊˜1 = 𝑊 , 
𝑊=𝑊𝑊,1,𝑊𝑊,2,... 

𝑊=3 



60:30 Jiayu Pan, Yin Sun, and Ness B. Shroff 

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 3, Article 60. Publication date: December 2023. 

(55) 

′ where 𝑊 is the self 

transition probability from 𝑊𝑊𝑊 state to 𝑊𝑊𝑊 state, and 𝑊 is the self transition probability from 𝑊𝑊 

state to 𝑊𝑊 state. In the non i.i.d. case where 1 − 𝑊 ′ ≠ 𝑊, Problem (55) has a changing discount 

factor. Thus, the Bellman equation and the value iteration algorithm are not well-defined, 

making this new problem challenging to solve. 

5.5.4 Future Direction 2: Non i.i.d. Transmission Delay. Suppose that we consider a Markovian 

transmission delay. Then, the waiting time not only should depend on the evolution of the Wiener 

process, but also should depend on the last transmission delay. This is because the last 

transmission delay effects the next transmission delay. Therefore, the value iteration (35) should 

be extended as: 

 𝑊𝑊+1,markov(𝑊,𝑊) = inf 𝑊(𝑊;𝑊) + 𝑊E 𝑊𝑊,markov(𝑊 +𝑊𝑊+𝑊,𝑊) , 𝑊 = 0, 1, 2, . . . , (56) 
𝑊 ∈𝔐 

where 𝑊 is the last transmission delay, and the distribution of 𝑊 is affected by 𝑊. Due to the space 

limitation, we will consider this extended problem in the future directions. 

6 CONCLUSION 

In this paper, we provide a sampling policy to minimize the mean square estimation error, where 

the sampler generates the sample at the source and transmits it to the remote estimator over a 

time-varying channel. We show that the optimal sampling policy is a threshold policy on the 

instantaneous estimation error, and the threshold is computed efficiently. The curse of 

dimensionality that originates from the randomness of the Wiener process, channel conditions, 

and the channel delay is circumvented. We believe that the proof of our main results provides an 

insight about how to solve a problem with discounted and multiple stopping times. 
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A PROOF OF LEMMA 5 

We denote 𝑊𝑊 ≜ 𝑊 + 𝑊𝑊 as the Wiener process starting from the initial state 𝑊0 = 𝑊. Using the 

definition of 𝑊(𝑊;𝑊) in (31), we have 

 ∫ 𝑊+𝑊  
2 ( 
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 𝑊𝑊;𝑊) ≜E 𝑊𝑊 𝑊𝑊 − mseopt(𝑊 + 𝑊) 
0 

 ∫ 𝑊 ∫ 𝑊+𝑊  
 2 2 

 E 𝑊𝑊 𝑊𝑊 + 𝑊𝑊 𝑊𝑊 − mseopt(𝑊 + 𝑊) . (57) 
 0 𝑊 

Using the strong Markov property of the wiener process, {𝑊𝑊+𝑊,𝑊 ≥ 0} has the same distribution as 

{𝑊𝑊 +𝑊𝑊,𝑊 ≥ 0}. The second term of (57) turns to: 

∫ 𝑊+𝑊  E 𝑊𝑊 

𝑊𝑊 

2 

𝑊 

 ∫ 𝑊+𝑊  

 =E (𝑊𝑊 +𝑊𝑊 )2𝑊𝑊 
𝑊 

     

  ∫ 𝑊 ∫ 𝑊 
2 

 E 𝑊𝑊 + 2𝑊𝑊𝑊𝑊𝑊𝑊 + 
𝑊 

 0 0 

 
2 𝑊 

𝑊𝑊 
𝑊 

    

 ∫ 𝑊  ∫ 𝑊 2 𝑊 
𝑊𝑊 

𝑊 

 

, 
(58)  =E [𝑊] E 𝑊𝑊

2 
+ 2E [𝑊𝑊] E 𝑊𝑊𝑊𝑊 + E 

 0 0 

the last equality holds because the delay 𝑊 is independent of 𝑊𝑊. By [18, Theorem 2.5.1], 1/3𝑊𝑊3 − 

∫ 𝑊 𝑊𝑊𝑊𝑊 and 1/6𝑊𝑊4 − ∫0𝑊 𝑊𝑊2𝑊𝑊 are martingales, respectively. So 
0 

 ∫ 𝑊+𝑊  2 1 

 E 𝑊𝑊2𝑊𝑊 =E [𝑊] E 𝑊𝑊2 + E [𝑊𝑊] E E 𝑊𝑊3 |𝑊 + E E 𝑊𝑊
4 |𝑊 

 𝑊 3 6 

 2 1 

=E [𝑊] E 𝑊𝑊
2 + E [𝑊𝑊] E 𝑊𝑊

3 + E 𝑊𝑊4 

 3 6 

1 

 =E [𝑊] E 𝑊𝑊
2 +E 𝑊 2 . (59) 

2 

= 

= 
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Combined with (58) and (59), we finally get (38). 

Before showing that 𝑊(𝑊;𝑊) = 𝑊(𝑊,𝑊, mseopt), we need Lemma 10: 

Proof. By [18, Theorem 2.5.1] and [10, Theorem 8.5.1], 1/3𝑊𝑊 − 0 𝑊𝑊𝑊𝑊 is a martingale for any 

given positive value 𝑊. Note that for any 𝑊 = 1, 2, . . ., 𝑊 ∧ 𝑊 is obviously bounded. Then, we have 

∫ 𝑊∧𝑊 
 1 

 E 𝑊𝑊𝑊𝑊 = E 𝑊𝑊 ∧𝑊 . (61) 

 0 3 

Since 𝑊 is finite, 𝑊 ∧ 𝑊 → 𝑊,𝑊𝑊∧𝑊 → 𝑊𝑊 almost surely. Since {𝑊𝑊, 0 ≤ 𝑊 ≤ 𝑊} is bounded, using Dominated 

convergence theorem [26, Theorem 5.3.3], 

  3 

 lim E 𝑊𝑊E 𝑊𝑊 . (62) 
𝑊→∞ 

Using Monotone Convergence Theorem [26, Theorem 5.3.1], E [𝑊 ∧ 𝑊] → E [𝑊]. This leads to 

 ∫ 𝑊 ∫ 𝑊∧𝑊  

 lim E 𝑊𝑊𝑊𝑊 − 𝑊𝑊𝑊𝑊 ≤ lim E [(𝑊 − 𝑊 ∧ 𝑊)] × 𝑊 = 0, (63) 
 𝑊→∞ 𝑊→∞ 
 0 0 

where 𝑊 is an upper bound of {𝑊𝑊, 0 ≤ 𝑊 ≤ 𝑊}. So we have 

 ∫ 𝑊  ∫ 𝑊∧𝑊 
 

11 

 E 𝑊𝑊𝑊𝑊 = lim E 𝑊𝑊𝑊𝑊 =  lim E 𝑊𝑊  E 𝑊𝑊3 
. (64) 

 0 𝑊→∞ 0 3 𝑊→∞3 

□ 

Now we start to prove 𝑊(𝑊;𝑊) = 𝑊(𝑊,𝑊, mseopt). If |𝑊| > 𝑊, then 𝑊 = 0, and E [𝑊] 𝑊𝑊2 =E [𝑊] 𝑊2. 

Therefore, 

1 

 𝑊(𝑊;𝑊) =E [𝑊] 𝑊2 + E 𝑊 2
 
− E [𝑊] mseopt = 𝑊(𝑊,𝑊, mseopt). (65) 

2 

Lemma 10. 
If a finite stopping time 𝑊 satisfies that {𝑊𝑊, 

0 
≤ 𝑊 ≤ 𝑊} is bounded, then 

 

 ∫ 𝑊  1 

 E 𝑊𝑊𝑊𝑊 = E 𝑊𝑊3 
. 

3 
0 

∫ 𝑊 

(60) 

3 
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If |𝑊| ≤ 𝑊, then E  𝑊2. By [10, Theorem 8.5.5], E [𝑊] = 𝑊2 − 𝑊2. So we have 

 ∫ 𝑊  1 

 𝑊(𝑊;𝑊) =E𝑊 𝑊𝑊2𝑊𝑊 − mseopt(𝑊2 − 𝑊2) + E [𝑊] 𝑊2 + E 𝑊 2
 
− E [𝑊] mseopt. 

 0 2 

Since 𝑊0 = 𝑊 and the Wiener process has strong Markov property, the first term becomes 

 ∫ 𝑊  ∫ 𝑊  

 E𝑊 𝑊𝑊2𝑊𝑊 =E (𝑊 +𝑊𝑊 )2𝑊𝑊 

 0 0 

 ∫ 𝑊  

 =E 𝑊2 + 2𝑊𝑊𝑊 +𝑊𝑊2𝑊𝑊 
0 

(66) 

1 

   

 𝑊E 𝑊𝑊3 + E 𝑊𝑊
4 . (67) 

6 

The last equality holds due to Lemma 10 and [30, Lemma 3]. From [18, Theorem 2.49], we have 

 𝑊 − 𝑊 𝑊+𝑊 with probability

 , 

 𝑊𝑊 = 𝑊2𝑊𝑊 (68) 
− 

 −𝑊 − 𝑊 with probability . 
2𝑊 

Then, we have 

 𝑊 + 𝑊 𝑊 − 𝑊 

 E 𝑊𝑊
3 =(𝑊 − 𝑊)3 −(𝑊 + 𝑊)3  −2𝑊 (𝑊2 − 𝑊2), (69) 

 E 𝑊𝑊4 =  (𝑊 − 𝑊)4 + (𝑊 + 𝑊)4 = 𝑊 2 − 𝑊2 (2𝑊3 + 6𝑊𝑊2) = (𝑊2 − 𝑊2)(𝑊2 + 3𝑊2). (70) 

 2𝑊 2𝑊 2𝑊 

This gives 

 ∫ 𝑊  4 1 

 E𝑊 𝑊𝑊2𝑊𝑊 = 𝑊2(𝑊2 − 𝑊2) − 𝑊2(𝑊2 − 𝑊2) +  (𝑊2 − 𝑊2)(𝑊2 + 3𝑊
2) 

0 3 6 

1 

   (𝑊4 − 𝑊4). (71) 

= 

2 𝑊 
𝑊 + 𝑊 

2 𝑊 
𝑊 − 𝑊 

= 
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6 

Therefore, if |𝑊| < 𝑊, 

1 1 

𝑊(𝑊;𝑊) =  (𝑊4 − 𝑊4) − mseopt(𝑊2 − 𝑊2) + E [𝑊] 𝑊2 + E 𝑊 2 − E [𝑊] mseopt = 𝑊(𝑊,𝑊, mseopt). 

 6 2 

(72) 

This ends our proof. 

B PROOF OF PROPOSITION 1 

The proof is modified from [2], but we strictly extends [2] in two-folds: (i) we consider the square 

estimation error (𝑊𝑊 − 𝑊
ˆ
𝑊 )2, which is a more complicated metric than the age Δ𝑊 considered in 

[2]. Note that in the special case where the sampling time is independent of the Wiener process, 

E[(𝑊𝑊 −𝑊
ˆ
𝑊 )2] =Δ𝑊 ; (ii) The process (𝑊𝑊 −𝑊

ˆ
𝑊 )2 of two consecutive epochs are correlated, while in [2], 

the process Δ𝑊 of that are independent. 

We denote 𝑊𝑊𝑊 ≜ 𝑊𝑊,𝑊𝑊 − 𝑊𝑊−1,𝑊𝑊−1 as the inter sampling time of the 𝑊th epoch. We also denote H𝑊 

as the history information of sampling times, transmission times and the Wiener process until 𝑊𝑊,𝑊 

. 

𝑊 
𝑊 

Then, by the definition ofsignal-aware in Section 2.2, 𝑊 is bounded by a stopping time, denoted by 
𝑊 

   

˜𝑊 E 4 ∞ 

𝑊 , and we have 𝑊 < . 
𝑊 ˜𝑊 

𝑊𝑊 

 ( ) = ∫ 𝑊 ( − 
ˆ 

)2 . We denote 𝑊𝑊 = ∫ 𝑊𝑊,𝑊𝑊 (𝑊𝑊 − 𝑊
ˆ
𝑊 )2𝑊𝑊 = 

 For simplicity, let us denote 𝑊 𝑊 𝑊𝑊 𝑊𝑊 𝑊𝑊 

 0 
𝑊
𝑊−1,𝑊𝑊−1 

∫ 𝑊𝑊,𝑊𝑊 ( − 𝑊 1,𝑊 )2 ( ) 𝑊 

 𝑊𝑊 𝑊𝑊 𝑊𝑊, and 𝑊 𝑊 as the largest epoch number 𝑊 such that 𝑊 < 𝑊, i.e., the 

𝑊𝑊−1,𝑊𝑊−1 − 𝑊−1 𝑊,𝑊 

number of successful samples attempted until 𝑊. Then, we have 

Π 
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∞ 

 Õ 1 𝑊1 

∞ 

≤ (
𝑊

) Õ 1 ∈ [ 𝑊 𝑊 1]  Õ 1 

 𝑊𝑊 𝑊 ≤𝑊𝑊𝑊 𝑊 ≤𝑊+1, if 𝑊 𝑊𝑊,𝑊 ,𝑊𝑊+1,𝑊 + . (74) 

𝑊 
 𝑊=1 𝑊=1 

This tells that 

 
Í
∞𝑊=1 

𝑊
𝑊 1𝑊 ≤𝑊 (𝑊 )−1 𝑊 (𝑊) 

Í
∞𝑊=1 

𝑊
𝑊 1𝑊 ≤𝑊 (𝑊 )+1 

 ≤ ≤ . (75) 

 𝑊 𝑊 𝑊 

Then, we have the following lemma: 

Lemma 11. 

   

 E 
𝑊
𝑊 (  ) + 

𝑊 
(𝑊 )+1 

 lim  0. (76) 

 𝑊 →∞ 𝑊 

 Proof. See Appendix C. □ 

Lemma 11 tells that the "residual terms" 𝑊𝑊 (𝑊 ) /𝑊 and 𝑊𝑊 (𝑊 )+1/𝑊 vanishes as time 𝑊 goes to infinity. 

Therefore, instead of 𝑊 (𝑊 ), we can analyze {𝑊𝑊 }𝑊 . We have 

 " ∞ # 

E [𝑊 (𝑊 )] 1 Õ 1 lim sup = lim sup E 𝑊𝑊 𝑊 ≤𝑊𝑊 . (77) 𝑊 →∞ 𝑊 𝑊 

→∞ 𝑊 𝑊=1 

Here we denote 𝑊𝑊 = 𝑊 (𝑊 ) + 1 for simplicity. We denote 𝑊𝑊,𝑊, 𝑊𝑊,𝑊 as the integral of (𝑊𝑊 −𝑊
ˆ
𝑊 )2 and 𝑊 

− 𝑊𝑊−1 between 𝑊𝑊−1 and 𝑊th delivery time of 𝑊th epoch, respectively, given that there are 𝑊 

transmissions at 𝑊th epoch. Then, 

E 𝑊𝑊,𝑊1𝑊 ≤𝑊𝑊  

 𝑊𝑊 𝑊 ≤𝑊−1 ≤  ≤ 𝑊𝑊 𝑊 ≤𝑊, if 𝑊 ∈ [𝑊𝑊,𝑊𝑊, 𝑊𝑊,𝑊𝑊 ], 

𝑊 
𝑊=1 𝑊=1 

(73) 
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=EH𝑊−1 hE 𝑊𝑊,𝑊1𝑊 ≤𝑊𝑊  H𝑊−1i 

 (=𝑊)EH𝑊−1 hE 𝑊𝑊,𝑊H𝑊−1 1𝑊 ≤𝑊𝑊 H𝑊−1i . (78) 

Condition (𝑊) is because 𝑊 ≤ 𝑊𝑊 (i.e., 𝑊 − 1 ≤ 𝑊 (𝑊)) is fixed given H𝑊−1. Similarly, 

E 𝑊𝑊,𝑊1𝑊 ≤𝑊𝑊  

 =EH𝑊−1 E 𝑊𝑊,𝑊|H𝑊−1 1𝑊 ≤𝑊𝑊 H𝑊−1 . (79) 

We then find out the lower bound of 
Í
∞𝑊=1 𝑊𝑊 

1
𝑊 ≤𝑊𝑊 , equals to𝑊𝑊min, in the following equations (80). 

Here, condition (i) is due to monotone convergence theorem, and condition (ii) is due to (78). The 

 ∗(H ) Í𝑊∞=1 𝑊𝑊−1 (1−𝑊)Eh𝑊𝑊,𝑊H𝑊−1i 

 
value 𝑊 𝑊−1 is the minimum of the fraction Í∞𝑊=𝑊 𝑊𝑊−1 (1−𝑊)Eh

𝑊𝑊,𝑊H𝑊−1i , and 𝑊𝑊𝑊𝑊 is the minimum 

 ∗(H ) H ∗(H ) H 

of 𝑊 𝑊−1 
over all 

𝑊−1. Note that any policy that achieves 𝑊 𝑊−1 
is not related to 

𝑊−1. 

Thus, the inequalities hold if we can find out such a policy that is not related to H𝑊−1. In addition, 

∗(H ) = 

𝑊 𝑊−1 𝑊min. 

 " ∞ # 

E Õ 1 

 𝑊𝑊 𝑊 ≤𝑊𝑊 
𝑊=1 

" ∞ ∞ # Õ Õ1 1 

 =E 𝑊𝑊,𝑊𝑊𝑊,𝑊 𝑊𝑊 𝑊 ≤𝑊𝑊 
𝑊,𝑊 

 𝑊=1 𝑊=1 

∞ ∞ 

 (=𝑊
) Õ Õ E h1 𝑊 1 i 

 𝑊𝑊,𝑊𝑊𝑊,𝑊 𝑊 𝑊 ≤𝑊𝑊 
𝑊,𝑊 
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𝑊=1 𝑊=1 

 ∞ ∞ 

Õ Õ 

= 𝑊𝑊−1(1 − 𝑊)E 𝑊𝑊,𝑊1𝑊 ≤𝑊𝑊  

𝑊=1 𝑊=1 

 ∞ ∞ 

(𝑊𝑊) Õ Õ 𝑊−1 EH𝑊−1 hE 𝑊𝑊,𝑊H𝑊−1 1𝑊 ≤𝑊𝑊 H𝑊−1i 

= 𝑊 (1 − 𝑊) 
𝑊=1 𝑊=1 

 ∞ " ∞ # 

 Õ Õ 

= EH𝑊−1 𝑊𝑊−1(1 − 𝑊)E 𝑊𝑊,𝑊H𝑊−1 1𝑊 ≤𝑊𝑊 H𝑊−1 

 𝑊=1 𝑊=1 

 

 ∞ " ∞ Í∞ 𝑊𝑊−1(1 − 𝑊)E 𝑊 H  # 

 Õ Õ  

 E 𝑊 1 𝑊−1 − 𝑊)E 𝑊𝑊,𝑊H𝑊−1 1𝑊 ≤𝑊𝑊 𝑊=1 𝑊,𝑊𝑊−1 H𝑊−1 

= H − 𝑊 (1 
 ∞ −      
 𝑊=1 𝑊=𝑊 Í𝑊=𝑊 𝑊𝑊 1(1 − 𝑊)E 𝑊𝑊,𝑊H𝑊−1 

 ∞ " ∞ 

 Õ Õ 

≥ EH𝑊−1 𝑊𝑊−1(1 − 𝑊)E 𝑊𝑊,𝑊H𝑊−1 1𝑊 ≤𝑊𝑊 

 𝑊=1 𝑊=1 

# 

· 𝑊∗(H𝑊−1) 

 

 ∞ " ∞ 

 Õ Õ 

≥ EH𝑊−1 𝑊𝑊−1(1 − 𝑊)E 𝑊𝑊,𝑊H𝑊−1 1𝑊 ≤𝑊𝑊 

 𝑊=1 𝑊=1 

 " ∞ # 

Õ 

=E 𝑊𝑊𝑊 1𝑊 ≤𝑊𝑊 𝑊min 
𝑊=1 

# 

𝑊
min 

 

≥𝑊𝑊min. 
 (80) 

Divide𝑊 on both sides and take the limit of𝑊, then we can get lim𝑊 →∞ 𝑊
1 E 

Í
∞𝑊=1 𝑊𝑊 

1
𝑊 ≤𝑊𝑊  = 𝑊min, i.e., 

all of the inequalities will hold if 𝑊𝑊 is independent of H𝑊−1, and we can find out an optimal 

𝑊 

policy that solves (23). This ends our proof of Proposition 1. 
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C PROOF OF LEMMA 11 

Using [30, Lemma 3], for any finite stopping time 𝑊, we have 

 ∫ 𝑊  1 

 E 𝑊 2𝑊𝑊 = E 𝑊 4 . (81) 
 𝑊 𝑊 

6 
0 

𝑊𝑊,𝑊𝑊 

 Denote 𝑊
˜
𝑊 

 0𝑊𝑊
2𝑊𝑊, where 𝑊

˜
𝑊
𝑊 is a stopping time upper bound denoted in Appendix B, 

independent of 𝑊𝑊,𝑊𝑊 . Then, 

 " "∫ 𝑊˜
𝑊𝑊 +𝑊𝑊,𝑊𝑊  ## 

 E 𝑊˜𝑊 =E E 𝑊𝑊2𝑊𝑊 𝑊𝑊 

 0  

 1     
 4  

= E E 𝑊𝑊˜𝑊𝑊 +𝑊𝑊,𝑊𝑊 𝑊𝑊 

 h 4 i 

= E 𝑊 𝑊 
𝑊 
˜𝑊+𝑊𝑊,𝑊𝑊 

  4 

𝑊𝑊˜𝑊𝑊 +𝑊𝑊,𝑊𝑊 −𝑊𝑊˜𝑊 +𝑊𝑊˜𝑊𝑊 

 h 4 i 1  4 h 2 i  2 

 = E 
𝑊
𝑊𝑊𝑊 + 6E 

𝑊
˜𝑊𝑊 +𝑊𝑊,𝑊𝑊 −

𝑊
𝑊˜𝑊𝑊 + E 

𝑊
𝑊˜𝑊𝑊 E 

𝑊
𝑊˜𝑊𝑊 +𝑊𝑊,𝑊𝑊 −

𝑊
𝑊˜𝑊𝑊 

˜ 𝑊 h 3 i h i 2 h i  3 + E E − 
+ 

E E − 

 𝑊 𝑊 𝑊𝑊˜𝑊 +𝑊𝑊,𝑊𝑊 𝑊𝑊˜𝑊𝑊 
˜ 

3 𝑊𝑊 𝑊 

  𝑊˜𝑊 
𝑊 

 3 𝑊 

𝑊˜𝑊 + 𝑊˜𝑊 
 𝑊 𝑊𝑊,𝑊𝑊 𝑊𝑊 

𝑊 

. (82) 

= 

6 

1 

6 

= 1 

6 
E 

1 

6 

2 
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According to strong Markov property of the Wiener process, 𝑊𝑊˜𝑊𝑊 +𝑊𝑊,𝑊𝑊 −𝑊𝑊˜𝑊𝑊 is independent of 𝑊𝑊˜𝑊𝑊 

. 

Using [18, Theorem 2.44 and Theorem 2.48], for any finite stopping time 𝑊, E 𝑊 2 =E [𝑊] and 
𝑊 

 h i 

E [ ] = ˜𝑊 𝑊 E 4 ∞ 

 𝑊𝑊 0. Both 𝑊𝑊 and 𝑊𝑊,𝑊 are finite and 𝑊˜𝑊 < . So 
𝑊𝑊 

  

E 𝑊˜𝑊
 
= E 

h
𝑊˜4

𝑊 
i 

+ 
1

E 
h
𝑊𝑊4

𝑊,𝑊𝑊 
i 

+ E 
h
𝑊˜𝑊𝑊 i E 𝑊𝑊,𝑊𝑊 1 

 6 𝑊𝑊 6 

Also, since mse (𝑊𝑊 −𝑊
ˆ
𝑊 )2 is nonnegative and 𝑊𝑊

𝑊 ≤ 𝑊
˜
𝑊
𝑊, 

 < ∞. 
(83) 

∫ 𝑊𝑊,𝑊𝑊
𝑊
𝑊,𝑊𝑊 

 22 ˜ 

 𝑊𝑊 

= (𝑊𝑊 −𝑊𝑊𝑊−1,𝑊𝑊−1 ) 𝑊𝑊 =𝑊𝑊 𝑊𝑊 ≤ 

𝑊𝑊. (84) 

 𝑊
𝑊−1,𝑊 

𝑊
𝑊−1,𝑊 

 𝑊 𝑊+1 𝑊˜𝑊𝑊 

𝑊 

 ≜𝑊 (𝑊 − 𝑊). (85) 

𝑊−1 

Using (84), we have that 

𝑊−1 

h 

E (𝑊𝑊 + 𝑊𝑊+1)1𝑊𝑊𝑊 +𝑊𝑊𝑊+1 

  i 

>𝑊 −𝑊 𝑊𝑊−1,𝑊𝑊−1 = 𝑊 

 

h 

≤E (𝑊˜𝑊 + 𝑊˜𝑊+1)1˜𝑊 +˜𝑊 

  i 

𝑊 

 − 𝑊−1,𝑊𝑊−1 = 
𝑊

 

 𝑊𝑊 𝑊𝑊 1>𝑊 𝑊  
+ 

 h i 

 =E (𝑊
˜ 

+ 𝑊
˜ 

)1 
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The first equality holds because 𝑊˜𝑊, 𝑊˜𝑊+1,𝑊˜𝑊𝑊,𝑊˜𝑊𝑊+1 are independent of H𝑊−1. By (83), 𝑊 (0) < ∞, 

𝑊 (𝑊) is monotone decreasing, and 𝑊 (𝑊) → 0 as 𝑊 → ∞. We trivially set 𝑊−1,𝑊−1 = 𝑊0,𝑊0 = 0, so we have 

𝑊 (𝑊) ≥ 0 and 𝑊0 = 0. We have 

 ∞ ∞ 

 + = Õ( + )1 = Õ( + )1 𝑊,𝑊𝑊 𝑊 1,𝑊𝑊 1 

 𝑊𝑊 (𝑊 ) 𝑊𝑊 (𝑊 )+1 𝑊𝑊 𝑊𝑊+1 𝑊 (𝑊 )=𝑊 𝑊𝑊 𝑊𝑊+1 𝑊 ≤𝑊,𝑊 + + >𝑊 

 𝑊=0 𝑊=0 

∞ ≤ Õ(

 +

 )1 

 𝑊𝑊 𝑊𝑊+1 𝑊𝑊−1,𝑊𝑊−1 ≤𝑊,𝑊𝑊+1,𝑊𝑊+1 >𝑊 . (86) 
𝑊=0 

Therefore, 

E 𝑊𝑊 (𝑊 ) + 

where 
𝑊
𝑊𝑊 1,𝑊 (𝑊 − 

𝑊−1 

E [𝑊 (𝑊) + 1] 

So we have E 

∞ 

 Õ

  

𝑊 𝑊  

𝑊𝑊E ( 𝑊 + 𝑊+1)1𝑊𝑊−1,𝑊𝑊−1 ≤𝑊,𝑊𝑊+1,𝑊𝑊+1 >𝑊 
𝑊=0 
𝑊 

 h  i 

 E (𝑊𝑊 + 𝑊𝑊+1)1𝑊𝑊+1,𝑊𝑊+1 >𝑊 𝑊𝑊−1,𝑊𝑊−1 = 𝑊 𝑊𝑊𝑊𝑊−1,𝑊𝑊−1 (𝑊) 
0 

𝑊=0 
𝑊 

𝑊 (𝑊 − 𝑊)𝑊𝑊𝑊𝑊−1,𝑊𝑊−1 (𝑊) 

 𝑊=0 0 
𝑊 

 =𝑊 (𝑊 − 𝑊)𝑊𝑊𝑊𝑊−1,𝑊𝑊−1 (𝑊) + 2𝑊 (𝑊), (87) 
0 

𝑊=2 

) = 𝑊 (𝑊𝑊−1,𝑊𝑊−1 ≤ 𝑊). Note that 𝑊𝑊−1,𝑊𝑊−1 ≤ 𝑊 is equivalent to 𝑊 (𝑊 ) ≥ 𝑊 − 1. So 

∞ ∞ ∞ Õ Õ Õ 

= 𝑊 (𝑊 (𝑊) + 1 ≥ 𝑊) = 𝑊 (𝑊 (𝑊) ≥ 𝑊 − 1) + 1 = 𝑊𝑊𝑊−1,𝑊𝑊−1 (𝑊) + 1. (88) 

 𝑊=1 𝑊=2 𝑊=2 

𝑊
𝑊𝑊−1,𝑊𝑊−1 (

𝑊
) and 

∫ 𝑊 

 E 𝑊𝑊 (𝑊 ) + 𝑊𝑊  𝑊 (𝑊 − 𝑊)𝑊E [𝑊 (𝑊)] + 2𝑊 (𝑊). (89) 
0 

Note that 𝑊 (𝑊 ) vanishes to 0 as 𝑊 → ∞. Following the same steps as [33, Appendix C1], we have 

∫ 𝑊 𝑊 (𝑊 − 𝑊)𝑊E [𝑊 (𝑊)] /𝑊 → 0 as 𝑊 → ∞. This ends our proof. 
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0 

D PROOF OF LEMMA 6 

In this appendix, for simplicity, we will replace the per stage cost 𝑊(𝑊,𝑊, mseopt) by 𝑊(𝑊,𝑊). 

D.1 Preliminary 

Definition 2. Let 𝑊1, · · · ,𝑊𝑊 as an i.i.d. sequence with the same distribution as the channel delay 

𝑊, and 𝑊1 · · · 𝑊𝑊 as any nonnegative sequence. For any real value 𝑊, we denote the event 𝑊𝑊 (𝑊) = 

{|𝑊 +𝑊𝑊1 | ≥ 𝑊1, |𝑊 +𝑊𝑊1 +𝑊𝑊2 | ≥ 𝑊2, · · · , |𝑊 +𝑊𝑊1 + · · · +𝑊𝑊𝑊 | ≥ 𝑊𝑊}. If 𝑊 = 0, we denote 𝑊0(𝑊) as simply 

the whole set. Denote 𝑊𝑊+𝑊𝑊1+···+𝑊𝑊𝑊+1 (
𝑊

) as the conditional probability density function (pdf) of 𝑊 + 𝑊𝑊1 

+ · · · + 𝑊𝑊𝑊+1 with the condition 𝑊
1
𝑊 (𝑊), multiplied by a probability P(𝑊𝑊 (𝑊)). In other words, 

𝑊 

 𝑊𝑊+𝑊𝑊1+···+𝑊𝑊𝑊+1 (𝑊) 
= 
𝑊𝑊  P {𝑊 +𝑊𝑊1 + · · · +𝑊𝑊𝑊 . (90) 

Note that 𝑊𝑊+𝑊𝑊 (𝑊) is equal to the pdf of 𝑊 +𝑊𝑊 at 𝑊, since 𝑊0(𝑊) is the whole set. 

Lemma 12. Suppose that E [𝑊] < ∞, and there exists 𝑊 > 0 (which can be arbitrary small), such 

that 𝑊 ≥ 𝑊. Then, the following conditions hold. 

(a) For any 
𝑊 
∈ R, 𝑊𝑊𝑊 (

𝑊
) is continuously differentiable in 𝑊. In addition, 𝑊𝑊𝑊 (

𝑊
), 𝑊𝑊

′ (
𝑊

), 𝑊𝑊
′′ 

(
𝑊

) 

are bounded, thus 𝑊𝑊𝑊 (𝑊), 𝑊𝑊
′ (𝑊) are both uniformly continuous. 𝑊 𝑊 
𝑊 

(b) Almost surely, 1𝑊𝑊 (𝑊),𝑊𝑊 (𝑊+Δ𝑊) → 1𝑊𝑊 (𝑊) . 

(c) For all 𝑊,𝑊 ≥ 0, we have 𝑊𝑊+𝑊𝑊1+···+𝑊𝑊𝑊+1 (𝑊) ≥ 𝑊𝑊+𝑊𝑊1+···+𝑊𝑊𝑊+1 (−𝑊) for all 𝑊 = 0, 1, . . .. In addition, 

𝑊 𝑊
𝑊+𝑊 +···+𝑊 (

𝑊
) is continuous and bounded in 

𝑊
. 

 𝑊𝑊 𝑊1 𝑊𝑊+1 

Proof. We first show Lemma 12(a). Note that𝑊 ≥ 𝑊, and𝑊𝑊 is normally distributed with variance 

𝑊. Thus, 𝑊𝑊𝑊 (𝑊) = 1/√𝑊𝑊−
0.5𝑊2/𝑊, and 𝑊𝑊𝑊 (𝑊) is bounded. Also, 𝑊𝑊′ (𝑊) = −𝑊/𝑊1.5𝑊−0.5𝑊2/𝑊, 𝑊 ′′ (𝑊) = 

𝑊 
 𝑊 𝑊 
− / 1.5 −0.5𝑊2/𝑊 + 2/ 2.5 −0.5𝑊2/𝑊 

1 𝑊 𝑊 𝑊 𝑊 𝑊 are still bounded and continuous. So 

 𝑊𝑊 (𝑊𝑊

𝑊<𝑊𝑊 𝑊+Δ 𝑊 

 𝑊𝑊𝑊 (𝑊) = = lim = lim =E𝑊 𝑊𝑊𝑊 (𝑊), (91) 

 𝑊𝑊 Δ𝑊→0 Δ𝑊 Δ𝑊→0 Δ𝑊 
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 [ Δ ) − 

 ′E ′ ( ) ′′ ( ) =E ′′ ( 

) 

 𝑊 𝑊𝑊 𝑊𝑊𝑊 𝑊 , similarly, 𝑊𝑊𝑊 𝑊 𝑊 𝑊𝑊𝑊 𝑊 . (92) 

Δ𝑊→0 Δ𝑊 𝑊 
 ′ ′′ 

Thus, both 𝑊 (𝑊) and 𝑊𝑊𝑊 (𝑊) are bounded and continuous, and 𝑊 (𝑊) is bounded. 

 𝑊𝑊 𝑊𝑊 
𝑊 

Then we show Lemma 12(b). It suffices to show that 𝑊𝑊 (𝑊) ∩𝑊𝑊 (𝑊 + Δ𝑊) → 𝑊 and 𝑊𝑊 (𝑊 + Δ𝑊) ∩ 
𝑊 

𝑊 (𝑊) → 𝑊 almost surely. Due to symmetry, without loss of generality, we will assume Δ𝑊 ≥ 0 

𝑊 
𝑊 

and show that 𝑊𝑊 (𝑊) ∩ 𝑊𝑊 (𝑊 + Δ𝑊) → 𝑊. Note that 𝑊1 + · · · + 𝑊𝑊 ≥ 𝑊 and is finite as well, so by 

Lemma 12(a), the pdf of 𝑊𝑊1+···+𝑊𝑊 (= 𝑊𝑊1 + · · · +𝑊𝑊𝑊 ) is bounded. So we have 

𝑊 
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Ø |𝑊 +𝑊𝑊1 + · · · +𝑊𝑊𝑊 | ≥ 𝑊 ∩ |𝑊 + Δ𝑊 +𝑊𝑊1 + · · · +𝑊𝑊𝑊 | < 𝑊
 

 



60:46 Jiayu Pan, Yin Sun, and Ness B. Shroff 

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 3, Article 60. Publication date: December 2023. 

 𝑊 𝑊 𝑊 𝑊 𝑊 
 2 1 

𝑊𝑊−1:|𝑊−𝑊1−···−𝑊𝑊−1 |≥𝑊𝑊−1 

In the above expression, only the final term 𝑊𝑊𝑊 (𝑊 − 𝑊 − 𝑊1 − · · · − 𝑊𝑊−1) is related to 𝑊 and this 
1 

 ′ ( ) 

term is continuously differentiable in 𝑊. Also, 𝑊 𝑊 is bounded, and the above expression is 
𝑊𝑊 

bounded. Therefore, 

𝑊=1 
𝑊 

Ø 

 = 𝑊𝑊1 + · · · +𝑊𝑊𝑊 ∈ (−𝑊 − 𝑊 − Δ𝑊, −𝑊 − 𝑊] → 𝑊, almost surely. (93) 

𝑊=1 

We finally show Lemma 12(c) by induction. Note that the initial condition holds because 𝑊𝑊𝑊 (𝑊 − 

𝑊) ≥ 𝑊𝑊𝑊 (−𝑊 − 𝑊). Suppose that the hypothesis holds. Then, by (90), for any 𝑊,𝑊 ≥ 0, 

∫ 

 𝑊𝑊+𝑊𝑊1+···+𝑊𝑊𝑊 +𝑊𝑊𝑊+1 (𝑊) = 𝑊𝑊+𝑊𝑊1+···+𝑊𝑊𝑊 (𝑊) × 𝑊𝑊𝑊𝑊+1 (𝑊 − 𝑊)𝑊𝑊, 
|𝑊|≥𝑊𝑊 

𝑊𝑊+𝑊𝑊1+···+𝑊𝑊𝑊 +𝑊𝑊𝑊+1 (𝑊) − 𝑊𝑊+𝑊𝑊1+···+𝑊𝑊𝑊 +𝑊𝑊𝑊+1 (−𝑊) 

∫ 

= 𝑊𝑊+𝑊𝑊1+···+𝑊𝑊𝑊 (𝑊) × (𝑊𝑊𝑊𝑊+1 (𝑊 − 𝑊) − 𝑊𝑊𝑊𝑊+1 (−𝑊 − 𝑊))𝑊𝑊 
|𝑊|≥𝑊𝑊 

 

∫ 

= (𝑊𝑊+𝑊𝑊 +···+𝑊𝑊 (𝑊) − 𝑊𝑊+𝑊𝑊 +···+𝑊𝑊 (−𝑊)) × (𝑊𝑊𝑊 (𝑊 − 𝑊) − 𝑊𝑊𝑊 (−𝑊 − 𝑊))𝑊𝑊 ≥ 0, 

(94) 

 1 𝑊 1 𝑊 𝑊+1 𝑊+1 
𝑊≥𝑊𝑊 

which ends the proof of the first claim. The last equation holds because 

∫ 

𝑊𝑊+𝑊𝑊1+···+𝑊𝑊𝑊 (𝑊) × (𝑊𝑊𝑊𝑊+1 (𝑊 − 𝑊) − 𝑊𝑊𝑊𝑊+1 (−𝑊 − 𝑊))𝑊𝑊 
𝑊≤−𝑊𝑊 

∫ 

 = 𝑊𝑊+𝑊𝑊1+···+𝑊𝑊𝑊 (−𝑊) × (𝑊𝑊𝑊𝑊+1 (𝑊 + 𝑊) − 𝑊𝑊𝑊𝑊+1 (−𝑊 + 𝑊))𝑊𝑊 
𝑊≥𝑊𝑊 

∫ 

 = 𝑊𝑊+𝑊𝑊1+···+𝑊𝑊𝑊 (−𝑊) × (𝑊𝑊𝑊𝑊+1 (−𝑊 − 𝑊) − 𝑊𝑊𝑊𝑊+1 (𝑊 − 𝑊))𝑊𝑊. 
𝑊≥𝑊𝑊 

𝑊 

To show that 𝑊𝑊  𝑊𝑊+𝑊𝑊1+···𝑊𝑊𝑊 (𝑊) is continuous and bounded in 𝑊, note that 

 ∫ ∫ 

 𝑊𝑊+𝑊𝑊 +···𝑊𝑊 (𝑊) = 𝑊𝑊𝑊 (𝑊1) 𝑊𝑊𝑊 (𝑊2) 
 1 𝑊 𝑊 𝑊−1 
 𝑊1:|𝑊−𝑊1 |≥𝑊1 𝑊2:|𝑊−𝑊1−𝑊2 |≥𝑊2 

(95) 

∫ 

(96)  · · · 𝑊𝑊 (𝑊 −1)𝑊𝑊 (𝑊 − 𝑊 − 𝑊1 − · · · − 𝑊 −1)𝑊𝑊 −1 · · ·𝑊𝑊2𝑊𝑊1. 
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 𝑊 ∫ ∫ 

 𝑊𝑊+𝑊𝑊1+···𝑊𝑊𝑊 (𝑊) = − 𝑊𝑊𝑊𝑊 (𝑊1) 𝑊𝑊𝑊−1 (𝑊2) 

𝑊𝑊 
𝑊1:|𝑊−𝑊1 |≥𝑊1 𝑊2:|𝑊−𝑊1−𝑊2 |≥𝑊2 ∫ 

 · · · 𝑊𝑊𝑊2 (𝑊𝑊−1)𝑊𝑊
′
𝑊𝑊 − 𝑊1 − · · · − 𝑊𝑊−1)𝑊𝑊𝑊−1 · · ·𝑊𝑊2𝑊𝑊1. (97) 

𝑊𝑊−1:|𝑊−𝑊1−···−𝑊𝑊−1 |≥𝑊𝑊−1 

Since 𝑊 ′′ (𝑊) is bounded, 𝑊 𝑊𝑊+𝑊 +···𝑊 (𝑊) is bounded and continuous in 𝑊. This ends the proof 

 𝑊𝑊 𝑊𝑊 𝑊1 𝑊𝑊 

of Lemma 12. □ 

′ (𝑊), we need the following lemma: 

For the property of 𝑊 

𝑊 

(a) 𝑊′ (
𝑊

) is continuous for all 
𝑊

. 

 
Lemma 13. 𝑊

 

(b) The functions 𝑊𝑊 (𝑊), 𝑊𝑊
′ (𝑊) are upper bounded by some functions, respectively, 

have E𝑊𝑊 )] < ∞ and E[𝑊
¯′
𝑊 (𝑊 +𝑊𝑊 )] < ∞. such that for any given 𝑊, we 

(c) If |𝑊| < 𝑊𝑊+1 𝑊𝑊′+1(𝑊) = 𝑊𝑊𝑊(𝑊,𝑊𝑊+1). If |𝑊| > 𝑊𝑊+1, we have6 

 ′ E 𝑊 ′ (𝑊 +𝑊𝑊1) 

 𝑊 (𝑊) =𝑊𝑊𝑊(𝑊,𝑊𝑊+1) + 𝑊 𝑊 

𝑊+1 

=𝑊𝑊𝑊(𝑊,𝑊𝑊+1) + 𝑊E 𝑊𝑊𝑊(𝑊 +𝑊𝑊1,𝑊𝑊)
 
+ 𝑊2E h𝑊 ′(𝑊 +𝑊𝑊1 +𝑊𝑊2)

1
|𝑊+𝑊𝑊 |≥𝑊𝑊 i 

1 

· · · 
𝑊 

 =𝑊𝑊𝑊(𝑊,𝑊𝑊+1) + 𝑊 E 𝑊𝑊𝑊(𝑊 +𝑊𝑊1+···+𝑊𝑊 ,𝑊𝑊+1−𝑊) 𝑊𝑊,𝑊 (𝑊) 
𝑊=1 

the event 𝑊𝑊,1(𝑊) is the whole set, and the events 𝑊𝑊,𝑊 (𝑊) for 𝑊 = 2, · · · ,𝑊 are defined as 

(98) 

𝑊𝑊,𝑊 (𝑊) = {|𝑊 +𝑊𝑊1 | ≥ 𝑊𝑊, · · · , |𝑊 +𝑊𝑊1 + · · · +𝑊𝑊𝑊−1 | ≥ 𝑊𝑊+2−𝑊 }, 𝑊 = 1, 2, 3, · · · . 

Proof. Note that 

𝑊(𝑊,𝑊𝑊+1) 

  1  2 2 

(99) 

 E + E [ ] − E [ ] | | ≥ 
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 Õ 𝑊  
1 

 

 2𝑊 𝑊 𝑊 𝑊 mseopt 𝑊 𝑊𝑊+1, 

=1(𝑊4 − 𝑊4) + 1E 𝑊 2 
+ E [𝑊] 𝑊2 − E [𝑊] mseopt − (mseopt − E [𝑊])(𝑊2 − 𝑊2) |𝑊| < 𝑊𝑊+1, 

6 2 

3 

When 𝑊 = 1, the free boundary method (47)—(49) implies that 𝑊1 is the positive root of −2/3𝑊 + 

2mseopt𝑊 = 2E [𝑊] 𝑊, which is 
p

3(mseopt − E [𝑊]). Then, 𝑊1(𝑊) = 𝑊(𝑊,𝑊1). By (49), 𝑊1′(𝑊) is continuous at 

𝑊 = ±𝑊1, thus continuous at 𝑊 ∈ R. For any given 𝑊, 𝑊1(𝑊) is bounded by E [𝑊] 𝑊2 
1′(𝑊) is bounded by 

2E [𝑊] |𝑊| plus a constant. By this statement and E[𝑊 2] < plus a constant, and 𝑊 

𝑊 

∞, condition (b) holds. Condition (c) trivially holds because we have already set 𝑊0(𝑊) = 0. 

Now we suppose that the hypothesis holds at 𝑊. We will show condition (a)—(c) for the case 

𝑊 + 1. Since function 𝑊𝑊 is even, and 𝑊𝑊 has a symmetric pdf, we have 

 

Utilizing the hypothesis that 𝑊𝑊 (𝑊) is continuous, condition (b), 𝑊(𝑊,𝑊𝑊+1) is continuous, we have 

Further, when |𝑊| > 𝑊𝑊+1, by the definition in (37), 𝑊𝑊+1(𝑊) = 𝑊𝑊+1(𝑊) and 

 
2E [𝑊] 𝑊 

𝑊𝑊𝑊(𝑊,𝑊𝑊+1) = 3 

 −2/3𝑊 + 2mseopt𝑊 

|𝑊| > 𝑊𝑊+1, 

|𝑊| < 𝑊𝑊+1. (100) 

𝑊(𝑊,𝑊𝑊+1) + 𝑊E [𝑊𝑊 (𝑊 +𝑊𝑊 )] 

𝑊𝑊+1(𝑊) = 

𝑊(𝑊,𝑊𝑊+1) + 𝑊E [𝑊𝑊 (𝑊𝑊+1 +𝑊𝑊 )] 

|𝑊| ≥ 𝑊𝑊+1, 

|𝑊| < 𝑊𝑊+1. (101) 

that 𝑊𝑊+1(𝑊) is continuous. When |𝑊| < 𝑊𝑊+1, it is easy to find that  

 ′ 3 
𝑊𝑊 1(𝑊) = 𝑊𝑊𝑊(𝑊,𝑊𝑊+1) = −2/3𝑊 + 2mseopt𝑊. + 

 
6Note that the event |𝑊 +𝑊𝑊1 + . . .𝑊𝑊𝑊 | = 𝑊 has zero probability for all index 𝑊 and real value 𝑊. 

(102) 
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𝑊 

𝑊𝑊′ 1(𝑊) = 𝑊𝑊′
+1(𝑊

) 
≜ 𝑊𝑊𝑊(𝑊,𝑊𝑊+1) + 𝑊 E [𝑊𝑊 (𝑊 +𝑊𝑊 )] 

+ 

 = 𝑊𝑊𝑊(𝑊,𝑊𝑊+1) + 𝑊 lim E [𝑊𝑊 (𝑊 +𝑊𝑊 + Δ𝑊) − 𝑊𝑊 (𝑊 +𝑊𝑊 )] 

Δ𝑊→0 Δ𝑊 

 = 𝑊𝑊𝑊(𝑊,𝑊𝑊+1) + 𝑊 lim E 𝑊𝑊′ (𝑊 +𝑊𝑊 + 𝑊) 
Δ𝑊→0 

 = 𝑊𝑊𝑊(𝑊,𝑊𝑊+1) + 𝑊E 𝑊𝑊′ (𝑊 +𝑊𝑊 )
 
. (103) 

Here,𝑊 is a number that is between 0 and Δ𝑊. The third equation holds because 𝑊𝑊′ (𝑊) is well-

defined. The last equation holds due to dominated convergence theorem and the hypothesis 

conditions (a),(b). 

When |𝑊| < 𝑊𝑊+1, we have 𝑊𝑊′+1(𝑊) = 𝑊𝑊𝑊(𝑊,𝑊𝑊+1). Thus, we directly get condition (c). By the free ′ (𝑊) 

is continuous at |𝑊| = 𝑊𝑊+1, thus condition (a) holds. In addition, boundary method (49), 𝑊 
𝑊+1 

note that 

𝑊 

 𝑊 (𝑊) ≤ |𝑊𝑊𝑊(𝑊,𝑊𝑊+1)| + 

 ′ Õ𝑊𝑊E |𝑊𝑊𝑊(𝑊 +𝑊𝑊1+···+𝑊𝑊 ,𝑊𝑊+1−𝑊)| 

𝑊+1 
𝑊=1 

𝑊 

 E Õ 𝑊E 2E [𝑊] (𝑊 + |𝑊𝑊1 | + · · · + |𝑊𝑊𝑊 |)
 
+ 𝑊1, 

 ≤ 2 [𝑊] 𝑊 + 𝑊 
𝑊=1 

 2 Õ𝑊 𝑊   𝑊 2 

 𝑊𝑊+1(𝑊) ≤ E [𝑊] 
𝑊 

+ 𝑊 E E [𝑊] 𝑊 + |𝑊𝑊1 | + · · · + |𝑊𝑊𝑊 | + Σ𝑊=1𝑊𝑊+1−𝑊 + 𝑊2, 

𝑊=1 

where 𝑊1,𝑊2 are bounded values irrelevant to 𝑊. Thus, combined with E[𝑊 2] < ∞, condition (b) 
𝑊 

holds. This ends the proof of lemma 13. □ 

Lemma 13 implies that 𝑊𝑊′ (𝑊), 𝑊𝑊′+1(𝑊) are well-defined. Also, (103) implies that we can inter+1 

change the derivative and expectation of 𝑊𝑊 (𝑊 +𝑊𝑊 ), i.e., 

𝑊 

𝑊𝑊 
1 
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 E [𝑊𝑊 (𝑊 +𝑊𝑊 )] =E 𝑊𝑊′ (𝑊 +𝑊𝑊 )
 
. (104) 

𝑊𝑊 

D.2 Proof of Lemma 6(a) 

Equations (50) and (51) in Lemma 6(a) are easily shown by (102) and (103) in the proof of Lemma 

13. According to (103), to show that 𝑊𝑊′′ (𝑊),𝑊𝑊′′′+1(𝑊) are continuous, it is equivalent to show +1 

that 𝑊
22 E [𝑊𝑊 (𝑊 +𝑊𝑊 )] and 𝑊3

3 E [𝑊𝑊 (𝑊 +𝑊𝑊 )] are continuous. To show this, we should analyze 
 𝑊𝑊 𝑊𝑊 

the derivative of each term E 𝑊𝑊𝑊(𝑊 +𝑊𝑊1+···+𝑊𝑊 ,𝑊𝑊+1−𝑊)
1
𝑊𝑊,𝑊 (𝑊)  in (98). We look at any odd polynomial 

function 𝑊 (𝑊 +𝑊𝑊1 + · · ·𝑊𝑊𝑊 ) with 𝑊 (𝑊) = 𝑊(𝑊3). 

We are interested in analyzing the derivative 

1 lim E 𝑊 (𝑊 + Δ𝑊 +𝑊𝑊1 + · · ·𝑊𝑊𝑊 )
1
𝑊𝑊−1 (𝑊+Δ𝑊) − 𝑊 (𝑊 +𝑊𝑊1 + · · ·𝑊𝑊𝑊 )

1
𝑊𝑊−1 (𝑊) 

 
. (105) Δ𝑊→0 Δ𝑊 

For simplicity, we utilize the event 𝑊𝑊−1(𝑊) from Definition 2. We partition the whole set to 𝑊 sets: 

𝑊1(𝑊) ≜ |𝑊 +𝑊𝑊1 | < 𝑊1, 

𝑊𝑊 (𝑊
) 
≜ |𝑊 +𝑊𝑊1 | ≥ 𝑊1, . . . , |𝑊 +𝑊𝑊1 + . . . +𝑊𝑊𝑊−1 | ≥ 𝑊𝑊−1, |𝑊 +𝑊𝑊1 + . . . +𝑊𝑊𝑊 | < 𝑊𝑊,𝑊 = 2, 3, . . . . 

7 

First, Lemma 12(b), Lemma 13 and dominated convergence theorem give 

1 lim E Δ𝑊 (𝑊 +𝑊𝑊1 + · · ·𝑊𝑊𝑊 )
1
𝑊𝑊−1 (𝑊),𝑊𝑊−1 (𝑊+Δ𝑊) =E 

𝑊 
(𝑊 +𝑊𝑊1 + · · ·𝑊𝑊𝑊 )

1
𝑊𝑊−1 (𝑊)

 , 

  
  ′  

Δ𝑊→0 Δ𝑊 

(106) 

1 

 lim E Δ𝑊 (𝑊 +𝑊𝑊1 + · · ·𝑊𝑊𝑊 ), 𝑊1,𝑊2 ∈ {1, 2, · · · ,𝑊 − 1}. (107) 

Δ𝑊→0 Δ𝑊 

Similarly, for any 𝑊 ∈ {1, 2, . . . ,𝑊 − 1}, 

1 lim Δ E Δ𝑊 (𝑊 +𝑊𝑊1 + · · ·𝑊𝑊𝑊 
)1

𝑊𝑊−1 (𝑊),𝑊𝑊 (𝑊+Δ𝑊) 

   

 Δ𝑊→0 𝑊 
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= 1 E h− ( + 1 + · · · 𝑊 )1 𝑊 1 𝑊 1 𝑊 𝑊 i 
lim 

Δ 
𝑊 𝑊 𝑊

𝑊 
𝑊
𝑊 𝑊 − (𝑊),𝑊 − (𝑊+Δ𝑊),|𝑊+Δ𝑊+𝑊 1+···+𝑊 𝑊 |<𝑊𝑊 Δ𝑊→0 

𝑊 

Δ𝑊 → 0+ : 

 1 h 

=Δ
lim

→ Δ𝑊 E − 
𝑊 

(−
𝑊
𝑊 +

𝑊
𝑊𝑊+1 + · · ·

𝑊
𝑊𝑊 

)
1|−𝑊𝑊 +𝑊𝑊𝑊+1 |≥𝑊𝑊+1,··· ,|−𝑊𝑊 +𝑊𝑊𝑊+1+···𝑊𝑊𝑊−1 |≥𝑊𝑊−1 

𝑊 0 i 

× 1𝑊𝑊−1 (𝑊),𝑊𝑊−1 (𝑊+Δ𝑊),−𝑊𝑊 −Δ𝑊<𝑊+𝑊𝑊1+···+𝑊𝑊𝑊 <−𝑊𝑊 

 h i 

=E −
𝑊 

(−
𝑊
𝑊 +

𝑊
𝑊𝑊+1 + · · ·

𝑊
𝑊𝑊 

)
1|−𝑊𝑊 +𝑊𝑊𝑊+1 |≥𝑊𝑊+1,··· ,|−𝑊𝑊 +𝑊𝑊𝑊+1+···𝑊𝑊𝑊−1 |≥𝑊𝑊−1 

 × 
1 

E h1 𝑊 1 𝑊 𝑊 𝑊 𝑊 i 

 lim Δ 𝑊 − (𝑊),−𝑊 −Δ𝑊<𝑊+𝑊 1+···+𝑊 𝑊 <−𝑊 ; (108) 

Δ𝑊→0𝑊 Δ𝑊 → 

0− : 

 h i 
1 

h i 

=E −
𝑊 

(
𝑊
𝑊 +

𝑊
𝑊𝑊+1 + · · ·

𝑊
𝑊𝑊 

)1··· ,|𝑊𝑊 +𝑊𝑊𝑊+1+···𝑊𝑊𝑊−1 |≥𝑊𝑊−1 Δ
lim

𝑊→0 Δ𝑊 
E 1𝑊𝑊−1 (𝑊),𝑊𝑊 <𝑊+𝑊𝑊1+···+𝑊𝑊𝑊 <𝑊𝑊 −Δ𝑊 

.
 

(109) 

In other case, 

1 lim Δ E Δ𝑊 (𝑊 +𝑊𝑊1 + · · ·𝑊𝑊𝑊 
)1

𝑊𝑊−1 (𝑊+Δ𝑊),𝑊𝑊 (𝑊) 

   

 Δ𝑊→0 𝑊 

 1 h i 

= lim Δ 𝑊 𝑊 𝑊𝑊1 𝑊𝑊𝑊 𝑊𝑊−1 (𝑊+Δ𝑊),𝑊𝑊−1 (𝑊),|𝑊+𝑊𝑊1+···+𝑊𝑊𝑊 |<𝑊𝑊 Δ𝑊→0 𝑊 

Δ𝑊 → 0+ : 

 h i 
1 

h i 

 

=E 
𝑊 

(
𝑊
𝑊 +

𝑊
𝑊𝑊+1 + · · ·

𝑊
𝑊𝑊 

)1··· ,|𝑊𝑊 +𝑊𝑊𝑊+1+···𝑊𝑊𝑊−1 |≥𝑊𝑊−1 Δ
lim

𝑊→0 Δ𝑊 
E 1𝑊𝑊−1 (𝑊),𝑊𝑊 −Δ𝑊<𝑊+𝑊𝑊1+···+𝑊𝑊𝑊 <𝑊𝑊 

;
 

Δ𝑊 → 0− : 

 h i 

(110) 



60:52 Jiayu Pan, Yin Sun, and Ness B. Shroff 

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 3, Article 60. Publication date: December 2023. 

 E ( + + · · · )1 

for simplicity. 𝑊1, . . .,𝑊𝑊 are arbitrary finite numbers. 

Therefore, 

1 

   

lim Δ E Δ𝑊 (𝑊 +𝑊𝑊1 + · · ·𝑊𝑊𝑊 )1𝑊𝑊−1 (𝑊+Δ𝑊),𝑊𝑊 (𝑊) + 1𝑊𝑊−1 (𝑊),𝑊𝑊 (𝑊+Δ𝑊) 

 Δ𝑊→0 𝑊 

 h i 

=
𝑊
𝑊+𝑊𝑊1+···𝑊𝑊𝑊 (

𝑊
𝑊)E 

𝑊 
(
𝑊
𝑊 +

𝑊
𝑊𝑊+1 + · · ·

𝑊
𝑊𝑊 

)1|𝑊𝑊 +𝑊𝑊𝑊+1 |≥𝑊𝑊+1,··· ,|𝑊𝑊 +𝑊𝑊𝑊+1+···𝑊𝑊𝑊−1 |≥𝑊𝑊−1 

 h i 

− 
𝑊
𝑊+𝑊𝑊1+···𝑊𝑊𝑊 (−

𝑊
𝑊)E 

𝑊 
(−
𝑊
𝑊 +

𝑊
𝑊𝑊+1 + · · ·

𝑊
𝑊𝑊 

)1|−𝑊𝑊 +𝑊𝑊𝑊+1 |≥𝑊𝑊+1,··· ,|−𝑊𝑊 +𝑊𝑊𝑊+1+···𝑊𝑊𝑊−1 |≥𝑊𝑊−1 

=(𝑊𝑊+𝑊𝑊 +···𝑊𝑊 (𝑊𝑊) + 𝑊𝑊+𝑊𝑊 +···𝑊𝑊 (−𝑊𝑊)) 
 1 𝑊 1 𝑊 

 h i 

 × E 𝑊 (𝑊𝑊 +𝑊𝑊𝑊+1 + · · ·𝑊𝑊𝑊 )1|𝑊𝑊 +𝑊𝑊𝑊+1 |≥𝑊𝑊+1,··· ,|𝑊𝑊 +𝑊𝑊𝑊+1+···𝑊𝑊𝑊−1 |≥𝑊𝑊−1 , (112) 

=E 
𝑊 

(−
𝑊
𝑊 +

𝑊
𝑊𝑊+1 + · · ·

𝑊
𝑊𝑊 

)
1|−𝑊𝑊 +𝑊𝑊𝑊+1 |≥𝑊𝑊+1,··· ,|−𝑊𝑊 +𝑊𝑊𝑊+1+···𝑊𝑊𝑊−1 |≥𝑊𝑊−1 

 1 
h i 

 × 
lim E 

1 𝑊−1 (𝑊),−𝑊𝑊 <𝑊+𝑊𝑊1+···+𝑊𝑊𝑊 <−𝑊𝑊 −Δ𝑊 
.
 

𝑊 
Δ𝑊→0 Δ𝑊 

(111) 

 

7 1 1 
we use Δ𝑊 (𝑊 +𝑊𝑊1 + · · ·𝑊𝑊𝑊 ) to replace 𝑊 (𝑊 + Δ𝑊 +𝑊𝑊1 + · · ·𝑊𝑊𝑊 ) 𝑊𝑊−1(𝑊+Δ𝑊) − 𝑊 (𝑊 +𝑊𝑊1 + · · ·𝑊𝑊𝑊 ) 𝑊𝑊−1(𝑊) 
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which is a constant term multiplied by 𝑊𝑊+𝑊𝑊 +···𝑊𝑊 (𝑊𝑊)+𝑊𝑊+𝑊𝑊 +···𝑊𝑊 (−𝑊𝑊), where 𝑊𝑊+𝑊𝑊 +···𝑊𝑊 (𝑊𝑊) 
 1 𝑊 1 𝑊 1 𝑊 

is defined in Definition 2. The last equation in (112) holds because 𝑊𝑊 is symmetric and 𝑊 (·) is odd . 

Recall that 𝑊𝑊𝑊(𝑊,𝑊) contains two odd polynomial terms 2E [𝑊] 𝑊 and 2mseopt𝑊 − 2/3𝑊 

 8 3 

   

related to 𝑊. Therefore, the derivative of E 𝑊𝑊𝑊(𝑊 +𝑊𝑊1+···+𝑊𝑊 ,𝑊𝑊+1−𝑊)
1
𝑊𝑊,𝑊 (𝑊) that appears in 

(98) is expressed as the sum of forms (106), (107), and (112). The value of (107) is 0. According to 

Lemma 12(c), the value of (112) is a constant multiplied by 𝑊𝑊+𝑊𝑊 +···𝑊𝑊 (𝑊), a continuously differen- 
 1 𝑊 

tiable function in 𝑊 for some parameter 𝑊. For (106), note that the term of (106) is continuous in 𝑊. 
9 

We can take the derivative and apply the previous calculations (105)—(112) again . Then, the term 

   

in (106) is still continuously differentiable. This shows that E 𝑊𝑊𝑊(𝑊 +𝑊𝑊1+···+𝑊𝑊 ,𝑊𝑊+1−𝑊)
1
𝑊𝑊,𝑊 (𝑊) 

 𝑊2 𝑊3 

is continuously differentiable. Thus, 2 E [𝑊𝑊 (𝑊 +𝑊𝑊 )] , 3 E [𝑊𝑊 (𝑊 +𝑊𝑊 )] are both continuous. 
 𝑊𝑊 𝑊𝑊 

This ends the proof of Lemma 6(a). 

D.3 Proof of Lemma 6(b),(c) 

We then use induction to prove Lemma 6(b),(c). Let us denote 𝑊 = mseopt − E [𝑊], Note that the free 

boundary method implies that 𝑊1 3𝑊, and 𝑊 𝑊,𝑊1 is continuously differentiable. In addition, 

  2E [𝑊] 𝑊 > 𝑊1, 

 𝑊 𝑊(𝑊,𝑊 ) = 
 𝑊𝑊 1 

 −2𝑊2 + 2mseopt 0 ≤ 𝑊 < 𝑊1. 

(113) 

  0 𝑊 > 𝑊1, 

𝑊𝑊𝑊𝑊𝑊(𝑊,𝑊1) = 

 −4𝑊 0 ≤ 𝑊 < 𝑊1, 

′′ 
Then, we have 𝑊 (𝑊) = 2E [𝑊] and for all 𝑊 ≥ 𝑊1, 

1 

(114) 

′′ 
𝑊1 (𝑊) − (−2𝑊2 + 2mseopt) = −2𝑊 + 2𝑊2 ≥ −2𝑊 + 6𝑊 ≥ 0. 

For all 𝑊 ≥ 0, 

(115) 
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 = p ( ) 

Note that if 𝑊 (·) is even, then the first term of the last equation in (112) becomes 𝑊𝑊+𝑊𝑊 +···𝑊𝑊 (𝑊𝑊)−𝑊𝑊+𝑊𝑊 +···𝑊𝑊 (−𝑊𝑊). 
 1 𝑊 1 𝑊 

9Despite that 𝑊 ′(𝑊) becomes an even polynomial function with 𝑊 (𝑊2), except the minor sign change of the last equality of 

(112) as described in the previous footnote, the calculations (105)—(112) remain the same. 

 ′ (·) ≤ ≤ Δ Δ ≤ ≤ 

Since 𝑊 is continuous, there exists 0 𝑊 𝑊 or 𝑊 𝑊 0, such that 
𝑊 

1 
 ′ ′ 

′′′ 
𝑊1 (𝑊) − (−4𝑊) = 0 + 4𝑊 ≥ 0. 

This satisfies the initial condition of Lemma 6(b),(c). By Lemma 13, 

 
𝑊

22 E 𝑊 𝑊 𝑊
′′ 

1 E

 𝑊 + (𝑊) = 2 [𝑊] + [𝑊 (𝑊 +𝑊 )] 

𝑊𝑊 
𝑊 

= E 𝑊𝑊′ (𝑊 +𝑊𝑊 ) 

𝑊𝑊 

(116) 

1 

= lim E 𝑊𝑊′ (𝑊 + Δ𝑊 +𝑊𝑊 ) − 𝑊𝑊′ (𝑊 +𝑊𝑊 )
 
. Δ𝑊→0 Δ𝑊 

 
8 

(117) 
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 𝑊𝑊 (𝑊 + Δ𝑊 +𝑊𝑊 ) − 𝑊𝑊 (𝑊 +𝑊𝑊 ) |𝑊+Δ𝑊+𝑊𝑊 |>𝑊𝑊,|𝑊+𝑊𝑊 |>𝑊𝑊 Δ𝑊 

=𝑊𝑊′′(𝑊 + 𝑊 +𝑊𝑊 )1|𝑊+Δ𝑊+𝑊𝑊 |>𝑊𝑊,|𝑊+𝑊𝑊 |>𝑊𝑊, 

1 
 ′ ′  

𝑊𝑊 (𝑊 + Δ𝑊 +𝑊𝑊 ) − 𝑊𝑊 (𝑊 +𝑊𝑊 
) 1

|𝑊+Δ𝑊+𝑊𝑊 |<𝑊𝑊,|𝑊+𝑊𝑊 |<𝑊𝑊 

Δ𝑊 

 =𝑊𝑊′′(𝑊 + 𝑊 +𝑊𝑊 )1|𝑊+Δ𝑊+𝑊𝑊 |<𝑊𝑊,|𝑊+𝑊𝑊 |<𝑊𝑊 (118) 

𝑊 

𝑊𝑊
is continuous for 

|𝑊| ≠ 𝑊𝑊+1. We have shown that 𝑊𝑊 22 E [𝑊𝑊 (𝑊 +𝑊𝑊 )] is continuous, so 

Applying the same analysis for 𝑊22 E𝑊𝑊 𝑊𝑊 (𝑊 +𝑊𝑊 +𝑊𝑊2) (to replace 𝑊22 E [𝑊𝑊 (𝑊 +𝑊𝑊 )]) into 
 𝑊𝑊 2 𝑊𝑊 

 ′′( + + Δ ) ′′( + + Δ ) 

the proof of Lemma 6(a) described in Appendix D.2, both 𝑊𝑊 𝑊 𝑊𝑊 𝑊 and 𝑊𝑊 𝑊 𝑊𝑊 𝑊 are bounded by a 

finite random variable. Therefore, using dominated convergence theorem, 

 lim E
h 1  

𝑊𝑊′ (𝑊 + Δ𝑊 +𝑊𝑊 ) − 𝑊𝑊
′ (𝑊 + )

 
× 

𝑊𝑊 

Δ𝑊→0 Δ𝑊 i 

 1 + 1  
 |𝑊+Δ𝑊+𝑊𝑊 |>𝑊𝑊,|𝑊+𝑊𝑊 |>𝑊𝑊 |𝑊+Δ𝑊+𝑊𝑊 |<𝑊𝑊,|𝑊+𝑊𝑊 |<𝑊𝑊 

 =E 𝑊𝑊′′(𝑊 +𝑊𝑊 ) × 1|𝑊+Δ𝑊+𝑊𝑊 |>𝑊𝑊,|𝑊+𝑊𝑊 |>𝑊𝑊 + 1|𝑊+Δ𝑊+𝑊𝑊 |<𝑊𝑊,|𝑊+𝑊𝑊 |<𝑊𝑊  . (119) 

By Lemma 12, the two remaining events vanishes as Δ𝑊 → 0. Thus, for small Δ𝑊, we have 
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 𝑊 𝑊 = 0𝑊 𝑊 𝑊 = 𝑊 𝑊 𝑊 

𝑊+1𝑊 𝑊 𝑊 𝑊 𝑊𝑊 

 
 
Eh 

1 
′ Δ ′ 

  𝑊 (𝑊 + 𝑊 +𝑊𝑊 ) − 𝑊𝑊 (𝑊 +𝑊𝑊 ) 
𝑊 

 Δ𝑊 

i  

 1|𝑊+Δ𝑊+𝑊𝑊 |>𝑊𝑊,|𝑊+𝑊𝑊 |<𝑊𝑊 
+ 

1|𝑊+Δ𝑊+𝑊𝑊 |<𝑊𝑊,|𝑊+𝑊𝑊 |>𝑊𝑊   

 ≤ 
max 

|
𝑊 

′′(
𝑊

)| E 1|𝑊+Δ𝑊+𝑊 |>𝑊 ,|𝑊+𝑊 |<𝑊 
+ 

1|𝑊+Δ𝑊+𝑊 |<𝑊 ,|𝑊+𝑊 |>𝑊  → 
0. (120)

 
 𝑊 𝑊 𝑊 𝑊 𝑊 𝑊 𝑊 𝑊 

|𝑊𝑊−𝑊 |≤|Δ𝑊 |,𝑊≠𝑊𝑊 

By (119),(120), we have an interesting result: 

 

𝑊2 

E [𝑊𝑊 (𝑊 +𝑊𝑊 )] =E 𝑊𝑊′′(𝑊 +𝑊𝑊 )
 
, 

𝑊𝑊2 (121) 
′′ 

𝑊𝑊 1(𝑊) = 2E [𝑊] + E 𝑊𝑊′′(𝑊 +𝑊𝑊 )
 
. + 

Then, we consider the third derivative: 
3 

′′′ 𝑊 E [ ( + )]  𝑊 E  ′′(

 + ) ( ) + 

(122) 

 = lim 𝑊 𝑊 𝑊 𝑊𝑊 𝑊𝑊 𝑊 𝑊𝑊 . 

 Δ𝑊→0 Δ𝑊 𝑊 

For this derivation, there exists 0 ≤ 𝑊 ≤ Δ𝑊 or Δ𝑊 ≤ 𝑊 ≤ 0, such that 

1 
 ′′ ′′  

  𝑊 (𝑊 + Δ𝑊 +𝑊𝑊 ) − 𝑊𝑊 (𝑊 +𝑊𝑊 
) 1

|𝑊+Δ𝑊+𝑊𝑊 |>𝑊𝑊,|𝑊+𝑊𝑊 |>𝑊𝑊 

𝑊 
Δ𝑊 

′′′ 

 =𝑊 (𝑊 + 𝑊 +𝑊𝑊 )1|𝑊+Δ𝑊+𝑊𝑊 |>𝑊𝑊,|𝑊+𝑊𝑊 |>𝑊𝑊, 
𝑊 

1 
 ′′ ′′  

  𝑊 (𝑊 + Δ𝑊 +𝑊𝑊 ) − 𝑊𝑊 (𝑊 +𝑊𝑊 
) 1

|𝑊+Δ𝑊+𝑊𝑊 |<𝑊𝑊,|𝑊+𝑊𝑊 |<𝑊𝑊 

𝑊 
Δ𝑊 

(123) 

= − 4(𝑊 + 𝑊 +𝑊𝑊 )1|𝑊+Δ𝑊+𝑊𝑊 |<𝑊𝑊,|𝑊+𝑊𝑊 |<𝑊𝑊 . (124) 
3 

+𝑊 ) 
′′′ 

Recall that 𝑊 (·) is continuous. Applying the same analysis for 𝑊 E 𝑊 (𝑊 +𝑊 

 𝑊 𝑊𝑊3 𝑊𝑊2 𝑊 𝑊 𝑊2 

𝑊3 

(to replace E [𝑊𝑊 (𝑊 +𝑊𝑊 )]) into the proof of Lemma 6(a) described in Appendix D.2, both 

𝑊𝑊 3 

1 
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 E 
 ′′( + Δ + ) − ′′( + ) 

𝑊𝑊3 

′′′(𝑊 + 𝑊𝑊 + Δ𝑊) and 𝑊𝑊′′′(𝑊 + 𝑊𝑊 + Δ𝑊) are bounded by a finite random variable. Therefore, 

𝑊 
𝑊 

using dominated convergence theorem (similar to (119)), 

  1  

 ′′ Δ 𝑊 𝑊 ′′ 𝑊 𝑊  1 𝑊 𝑊 𝑊  E

lim 𝑊 (𝑊 + 𝑊 + 𝑊 ) − 𝑊 ( + 𝑊 
) 

|𝑊+Δ𝑊+𝑊 |>𝑊 

,|𝑊+𝑊 |>𝑊𝑊 Δ𝑊→0 Δ𝑊 𝑊 

   

=E lim 𝑊𝑊′′′(𝑊 + 𝑊 +𝑊𝑊 ) 
× 

1|𝑊+Δ𝑊+𝑊𝑊 |>𝑊𝑊,|𝑊+𝑊𝑊 |>𝑊𝑊 Δ𝑊→0 

=E 𝑊𝑊′′′(𝑊 +𝑊𝑊 ) × 1|𝑊+𝑊𝑊 |>𝑊𝑊  , 

  1  

 ′′ Δ ′′  1 𝑊 𝑊 𝑊  E

lim 𝑊 (𝑊 + 𝑊 +𝑊𝑊 ) − 𝑊𝑊 (𝑊 +𝑊𝑊 ) |𝑊+Δ𝑊+𝑊 |<𝑊 ,|𝑊+𝑊 |<𝑊𝑊 

Δ𝑊→0 Δ𝑊 𝑊 

 =E −4(𝑊 +𝑊𝑊 )
1

|𝑊+𝑊𝑊 |<𝑊𝑊  . (125) 

We then discuss the two remaining events. If Δ𝑊 > 0, 

1 

  𝑊 ′′(𝑊 + Δ𝑊 +𝑊𝑊 ) − 𝑊𝑊′′(𝑊 +𝑊𝑊 ) 1|𝑊+Δ𝑊+𝑊𝑊 |>𝑊𝑊,|𝑊+𝑊𝑊 |<𝑊𝑊 

𝑊 

Δ𝑊 

= 𝑊𝑊′′(𝑊𝑊) + 2𝑊𝑊
2 − 2mseopt + 𝑊(Δ𝑊)

 
1 1𝑊𝑊−𝑊−Δ𝑊<𝑊𝑊 <𝑊𝑊−𝑊, (126) Δ𝑊 
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1 

 ′′ Δ ′′  
1 𝑊 𝑊 𝑊 

 𝑊 (𝑊 + 𝑊 +𝑊𝑊 ) − 𝑊𝑊 (𝑊 +𝑊𝑊 ) |𝑊+Δ𝑊+𝑊 |<𝑊 ,|𝑊+𝑊 |>𝑊𝑊 

𝑊 

Δ𝑊 

1 𝑊 𝑊 𝑊 opt Δ

 1−𝑊𝑊−𝑊−Δ𝑊<𝑊𝑊 <−𝑊𝑊−𝑊, (127) 

= − 𝑊 ′′(−𝑊 ) + 2𝑊
2 − 2mse + 

𝑊( 

𝑊) 

Δ𝑊 

If Δ𝑊 < 0, 

1 

  𝑊 ′′(𝑊 + Δ𝑊 +𝑊𝑊 ) − 𝑊𝑊′′(𝑊 +𝑊𝑊 ) 1|𝑊+Δ𝑊+𝑊𝑊 |>𝑊𝑊,|𝑊+𝑊𝑊 |<𝑊𝑊 
𝑊 

Δ𝑊 

= 𝑊𝑊
′′(−𝑊𝑊) + 2𝑊𝑊

2 − 2mseopt + 𝑊(Δ𝑊)
 

1 1−𝑊𝑊−𝑊<𝑊𝑊 <𝑊𝑊−𝑊−Δ𝑊, (128) Δ𝑊 

1 

  𝑊 ′′(𝑊 + Δ𝑊 +𝑊𝑊 ) − 𝑊𝑊′′(𝑊 +𝑊𝑊 ) 1|𝑊+Δ𝑊+𝑊𝑊 |<𝑊𝑊,|𝑊+𝑊𝑊 |>𝑊𝑊 
𝑊 

Δ𝑊 

= − 𝑊𝑊
′′(𝑊𝑊) + 2𝑊𝑊

2 − 2mseopt + 𝑊(Δ𝑊)
 

1 1𝑊𝑊−𝑊<𝑊𝑊 <𝑊𝑊−𝑊−Δ𝑊. (129) Δ𝑊 

Therefore, 

 h 1 
′′ ′′  

 lim E  𝑊𝑊 (𝑊 + Δ𝑊 +𝑊𝑊 ) − 𝑊𝑊 (𝑊 +𝑊𝑊 ) 

Δ𝑊→0 Δ𝑊 i 

× 1|𝑊+Δ𝑊+𝑊𝑊 |>𝑊𝑊,|𝑊+𝑊𝑊 |<𝑊𝑊 
+ 1|𝑊+Δ𝑊+𝑊𝑊 |<𝑊𝑊,|𝑊+𝑊𝑊 |>𝑊𝑊  

 = − 𝑊𝑊
′′(𝑊𝑊) + 2𝑊𝑊

2 − 2mseopt
 
(𝑊𝑊𝑊 (−𝑊𝑊 − 𝑊) − 𝑊𝑊𝑊 (𝑊𝑊 − 𝑊)) ≥ 0. (130) 

The last inequality of (130) holds due to the induction hypothesis of𝑊𝑊′′(·) and Lemma 12. 

Combining 

(125) and (130), for all 𝑊 ≥ 0, 
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𝑊𝑊′′′+1(𝑊) =0 + 𝑊E 𝑊𝑊′′′(𝑊 +𝑊𝑊 )1|𝑊+𝑊𝑊 |>𝑊𝑊 + 𝑊𝑊′′′(𝑊 +𝑊𝑊 )1|𝑊+𝑊𝑊 |<𝑊𝑊  

− 𝑊𝑊′′(𝑊𝑊) + 2𝑊𝑊2 − 2mseopt (𝑊𝑊𝑊 (−𝑊𝑊 − 𝑊) − 𝑊𝑊𝑊 (𝑊𝑊 − 𝑊)) 

≥𝑊E 𝑊𝑊′′′(𝑊 +𝑊𝑊 )1|𝑊+𝑊𝑊 |>𝑊𝑊 + 𝑊𝑊′′′(𝑊 +𝑊𝑊 )1|𝑊+𝑊𝑊 |<𝑊𝑊  

=𝑊E 𝑊𝑊′′′(𝑊 +𝑊𝑊 )1|𝑊+𝑊𝑊 |>𝑊𝑊 − 4(𝑊 +𝑊𝑊 )1|𝑊+𝑊𝑊 |<𝑊𝑊  

 =𝑊E 
 
𝑊𝑊

′′′(𝑊 +𝑊𝑊 ) + 4(𝑊 +𝑊𝑊 
)
|𝑊+𝑊𝑊 |>𝑊𝑊 − 4(𝑊 +𝑊𝑊 )

1
|𝑊+𝑊𝑊 |≠𝑊𝑊 

 
. (131) 

Note that 𝑊 ′′′(𝑊) + 4𝑊 is an odd function, and by hypothesis, 𝑊𝑊′′′(𝑊) + 4𝑊 ≥ 0 for all 𝑊 ≥ 0. By 
𝑊 

Lemma 12, 𝑊𝑊+𝑊𝑊 (𝑊) ≥ 𝑊𝑊+𝑊𝑊 (−𝑊) for all 𝑊 ≥ 0 and 𝑊 ≥ 0. Therefore, 

E  𝑊 ′′′(𝑊 +𝑊𝑊 ) + 4(𝑊 +𝑊𝑊 ) |𝑊+𝑊𝑊 |>𝑊𝑊  
𝑊 

 ∫ ∫ 

 =( + )(𝑊𝑊
′′′(𝑊) + 4𝑊)𝑊𝑊+𝑊𝑊 (𝑊)𝑊𝑊 

 𝑊>𝑊𝑊 𝑊<−𝑊𝑊 

 ∫ ∫ 

 = (𝑊𝑊
′′′(𝑊) + 4𝑊)𝑊𝑊+𝑊𝑊 (𝑊)𝑊𝑊 + (𝑊𝑊

′′′(−𝑊) − 4𝑊)𝑊𝑊+𝑊𝑊 (−𝑊)𝑊𝑊 
 𝑊>𝑊𝑊 𝑊>𝑊𝑊 

∫ 

 = (𝑊𝑊
′′′(𝑊) + 4𝑊)(𝑊𝑊+𝑊𝑊 (𝑊) − 𝑊𝑊+𝑊𝑊 (−𝑊))𝑊𝑊 ≥ 0. (132) 

𝑊>𝑊𝑊 

Finally, (131) and (132) give 

𝑊𝑊′′′(𝑊) ≥𝑊E −4(𝑊 +𝑊𝑊 )1|𝑊+𝑊𝑊 |≠𝑊𝑊  

=𝑊E [−4(𝑊 +𝑊𝑊 )] 

= − 4𝑊𝑊 

 ≥ − 4𝑊. (133) 

The last inequality is strict if 𝑊 > 0. This ends the proof of Lemma 6(c). 

Let us define 
𝑊
𝑊+1(

𝑊
) = 

𝑊
𝑊′+1(

𝑊
)+2/3

𝑊
3−mseopt𝑊 for simplicity. Then, 

𝑊
𝑊

 𝑊
𝑊′′′+1(

𝑊
)+4

𝑊 
≥ 

0 for 𝑊 ∈ [0, ∞). This implies that 𝑊𝑊+1(𝑊) is convex in 𝑊 ∈ [0, ∞) and strictly convex in 𝑊 > 0. By 

Lemma 6(a), 𝑊 

𝑊′+1(𝑊) is continuous and odd. Thus, 𝑊𝑊+1(0) = 0. By the definition of free boundary 
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3 

method (49), 𝑊𝑊′+1(𝑊𝑊+1−) = 𝑊𝑊′+1(𝑊𝑊+1+) = 𝑊𝑊′+1(𝑊𝑊+1). Thus, 𝑊𝑊+1(𝑊𝑊+1) = 0. 

Therefore, we have 𝑊 ′ (𝑊𝑊+1) = 𝑊𝑊′′mseopt ≥ 0 and 𝑊𝑊′+1(𝑊) > 0 for all 𝑊 > 𝑊𝑊+1, 

and 𝑊𝑊′+1(𝑊) < 0 for 

𝑊+1 

𝑊 ∈ (0,𝑊𝑊+1). This ends the proof of Lemma 6(b). D.4

 Proof of Lemma 6(d) 

 

Now we show Lemma 6(d). We now use induction to show that 𝑊𝑊 ≤ 
p

3mseopt for all 𝑊 = 1, 2, · · · . 

 

Note that 𝑊1 = p3𝑊 = p3(mseopt − E [𝑊]) ≤ 
p

3mseopt. The second threshold 𝑊2 is the root of 

2 

0 = 𝑊− 2𝑊𝑊 + 𝑊 

 3 E 𝑊𝑊𝑊(𝑊 +𝑊𝑊1,𝑊1) . 

3 

 

(134) 

Note that 2mseopt𝑊 𝑊3 is positive at 0 ≤ 𝑊 ≤ p3mseopt. Therefore, if 𝑊 ≤ 
p

3mseopt, 𝑊𝑊𝑊(𝑊,𝑊) 

 

is always positive at 𝑊 ≥ 0. Since 𝑊1 ≤ 
p

3mseopt, 𝑊𝑊𝑊(𝑊,𝑊1) ≥ 0 for all 𝑊 ≥ 0. Recall that 𝑊𝑊𝑊(𝑊,𝑊) is an 

odd function on 𝑊 for any 𝑊 ≥ 0. Therefore, utilizing the same analysis as (132), for all 𝑊 ≥ 0, 

 E 𝑊𝑊𝑊(𝑊 +𝑊𝑊 . (135) 

 

The first term 2𝑊3 − 2𝑊𝑊 > 0 for all 𝑊 ≥ p3mseopt. To keep the equation (134) holds, we have 𝑊2 ≤ 

p3mseopt. 

Suppose that 𝑊2, · · · ,𝑊𝑊 ≤ 
p

3mseopt. Now, we will show that 𝑊𝑊+1 ≤ 
p

3mseopt. Note that 𝑊𝑊+1 is the 

root of 

2 

0 = 𝑊3 − 2𝑊𝑊 + 𝑊E 𝑊𝑊𝑊(𝑊 +𝑊𝑊1,𝑊𝑊) 

3 
𝑊 

 Õ 𝑊 h 1 i 

 + 𝑊 E 𝑊𝑊𝑊(𝑊 +𝑊𝑊1 + · · ·𝑊𝑊𝑊 ,𝑊𝑊+1−𝑊) {|𝑊+𝑊1 |≥𝑊𝑊,··· ,|𝑊+𝑊𝑊1+···+𝑊𝑊𝑊−1 |≥𝑊𝑊+2−𝑊 } . (136) 
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𝑊=2 

Since the hypothesis tells that 𝑊𝑊 ≤ p3mseopt, E 𝑊𝑊𝑊(𝑊 +𝑊𝑊1,𝑊𝑊) . To show that 𝑊𝑊+1 ≤ 

 

p
3mseopt, it is sufficient to show that for 𝑊 = 2, · · · ,𝑊, 

 h i 

 E 𝑊𝑊𝑊(𝑊 +𝑊𝑊1 + · · ·𝑊𝑊𝑊 ,𝑊𝑊+1−𝑊)
1

{|𝑊+𝑊1 |≥𝑊𝑊,··· ,|𝑊+𝑊𝑊1+···+𝑊𝑊𝑊−1 |≥𝑊𝑊+2−𝑊 } ≥ 0. (137) 

Since 𝑊𝑊+1−𝑊 ≤ p3mseopt, 𝑊𝑊𝑊(𝑊,𝑊𝑊+1−𝑊) ≥ 0 for all 𝑊 ≥ 0. Therefore, the inequality (137) is shown by 

Lemma 12(c) and that 𝑊𝑊𝑊(𝑊,𝑊) is an odd function for any 𝑊 ≥ 0. 

 

Now, we will jointly show that 𝑊𝑊′+ (𝑊) ≥ 𝑊𝑊′ (𝑊), and 𝑊𝑊+1 ≤ 𝑊𝑊. First, 𝑊1 = p3𝑊,𝑊1′ (𝑊) = 

1 

2E [𝑊] 𝑊,𝑊2′ (𝑊) = 𝑊1′ (𝑊) + 𝑊E [𝑊𝑊𝑊(𝑊 +𝑊𝑊,𝑊1)]. Since 𝑊1 ≤ p3mseopt, E [𝑊𝑊𝑊(𝑊 +𝑊𝑊,𝑊1)] ≥ 0, 

2′(𝑊) as and we 

directly have 𝑊. For simplicity, let us define 𝑊𝑊 

 𝑊𝑊 (𝑊) = 𝑊𝑊′ 𝑊3 + 2mseopt𝑊). (138) 

If 𝑊2 > 𝑊1, then we have 𝑊1(𝑊2) ≤ 𝑊2(𝑊2) = 0, which contradicts to 𝑊1(𝑊) > 0 for 𝑊 > 𝑊1. Therefore, 𝑊2 ≤ 

𝑊1. 

𝑊′ (𝑊) ≥ 𝑊 

′−1(𝑊) 

for 𝑊 ≥ 

0, and 

𝑊𝑊 ≤ 

𝑊𝑊−1. 

We have 

Then, suppose that 𝑊 

 𝑊 𝑊 𝑊 𝑊 

𝑊′ (𝑊) is odd. If |𝑊 +𝑊𝑊 | ≥ 𝑊𝑊−1, utilizing the same analysis as (132), we have 

Note that 𝑊 

E (𝑊𝑊′ (𝑊 +𝑊𝑊 ) − 𝑊𝑊′−1(𝑊 +𝑊𝑊 ))1|𝑊+𝑊𝑊 |≥𝑊𝑊−1  

𝑊 
′ 

𝑊𝑊+1(𝑊) − 𝑊𝑊
′ (𝑊) = 𝑊E 𝑊𝑊

′ (𝑊 +𝑊𝑊 ) − 𝑊𝑊
′
−1(𝑊 +𝑊𝑊 ) 

= 𝑊E𝑊𝑊′ (𝑊 +𝑊𝑊 )1|𝑊+𝑊𝑊 |≥𝑊𝑊 − 𝑊𝑊′−1(𝑊 +𝑊𝑊 )1|𝑊+𝑊𝑊 |≥𝑊𝑊−1 

 

 + 𝑊𝑊′ (𝑊 +𝑊𝑊 )1|𝑊+𝑊 |<𝑊 − 𝑊𝑊′−1(𝑊 +𝑊𝑊 )1|𝑊+𝑊 |<𝑊 −1 . (139) 
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 =E (𝑊𝑊
′ (𝑊 +𝑊𝑊 ) − 𝑊𝑊

′
−1(𝑊 +𝑊𝑊 ))

1
|𝑊+𝑊𝑊 |≥𝑊𝑊−1 

 
≥ 0. (140) 

If |𝑊 +𝑊𝑊 | < 𝑊𝑊, we have 𝑊𝑊′ (𝑊 +𝑊𝑊 ) = 2mseopt(𝑊 +𝑊𝑊 ) − 2/3(𝑊 +𝑊𝑊 )3, irrelevant to 𝑊. Thus 

E (𝑊𝑊′ (𝑊 +𝑊𝑊 ) − 𝑊𝑊′−1(𝑊 +𝑊𝑊 ))1|𝑊+𝑊𝑊 |<𝑊𝑊  

 =E 𝑊𝑊′ (𝑊 +𝑊𝑊 )
1

|𝑊+𝑊𝑊 |<𝑊𝑊 − 𝑊𝑊′
−1(𝑊 +𝑊𝑊 )

1
|𝑊+𝑊𝑊 |<𝑊𝑊 

 
= 0. (141) 

If 𝑊𝑊 ≤ |𝑊 +𝑊𝑊 | < 𝑊𝑊−1, 

E (𝑊𝑊′ (𝑊 +𝑊𝑊 ) − 𝑊𝑊′−1(𝑊 +𝑊𝑊 ))1𝑊𝑊 ≤|𝑊+𝑊𝑊 |<𝑊𝑊−1  

=E (𝑊𝑊′ (𝑊 +𝑊𝑊 ) − 𝑊𝑊′−1(𝑊 +𝑊𝑊 ))1𝑊𝑊 ≤|𝑊+𝑊𝑊 |<𝑊𝑊−1  

 

 =E (𝑊𝑊
′ (𝑊 +𝑊𝑊 ) − 2mseopt(𝑊 +𝑊𝑊 ) +𝑊𝑊 )3)1𝑊𝑊 ≤|𝑊+𝑊𝑊 |<𝑊𝑊−1 ≥ 0. (142) 

The last inequality holds because 𝑊𝑊 (𝑊) is an odd function and non-negative for 𝑊 ≥ 𝑊𝑊. Inserting 

𝑊′+1(𝑊) ≥ 𝑊𝑊′ (𝑊) for 𝑊 ≥ 0. 

(140),(141),(142) into (139), we finally have 𝑊 

′ (
𝑊

) = 
𝑊
𝑊′+1(

𝑊
) − 

Recall that the free boundary method (49) implies 

that 
𝑊
𝑊+1 is the root of 

𝑊
𝑊+1 

(−2 𝑊3 + 2mseopt𝑊) = 0. Note that 𝑊𝑊′(𝑊) = 𝑊𝑊′ mseopt𝑊 . If 𝑊𝑊+1 > 𝑊𝑊, 

3 

𝑊′(𝑊𝑊+1) ≤ 𝑊𝑊′+1(𝑊𝑊+1) = 0, which contradicts to 𝑊𝑊′(𝑊) > 0 for 𝑊 > 𝑊𝑊. Therefore, then 

we have 𝑊 

𝑊𝑊+1 ≤ 𝑊𝑊, and we have that {𝑊𝑊}𝑊 is decreasing. 

E PROOF OF LEMMA 7 

By (45), 𝑊
˜
𝑊 (𝑊,𝑊) = 𝑊

˜
𝑊 (𝑊,𝑊) if |𝑊| > 𝑊𝑊. It remains to show that 𝑊

˜
𝑊 (𝑊,𝑊) ≤ 𝑊

˜
𝑊 (𝑊,𝑊) for |𝑊| ≤ 𝑊𝑊 (by 

symmetry, we will assume 𝑊 ≥ 0). 

Define 𝑊 (𝑊) ≜ 𝑊
˜
𝑊 (𝑊,𝑊) − 𝑊

˜
𝑊 (𝑊,𝑊) = 𝑊𝑊 (𝑊) − 𝑊𝑊 (𝑊). It is easy to see that 𝑊 (𝑊𝑊) = 0, and 𝑊 (𝑊) is not 

a function of 𝑊. 

By Lemma 6, we have shown that 𝑊𝑊′ (𝑊) = −2/3𝑊3+2mseopt𝑊, 𝑊𝑊′′(𝑊) = −2𝑊2+2mseopt, 𝑊𝑊′′′(𝑊) = −4𝑊 

if |𝑊| ≤ 𝑊. Therefore, by Lemma 6(c), 𝑊 ′′′(𝑊) ≥ 0 for 𝑊 ∈ [0,𝑊]. This implies that 𝑊 ′(𝑊) is convex in 𝑊 ∈ 

[0,𝑊𝑊]. Since 𝑊 ′(0) = 𝑊 ′(𝑊𝑊) = 0, we have 𝑊 ′(𝑊) ≤ 0 for 𝑊 ∈ [0,𝑊𝑊]. Note that 𝑊 (𝑊𝑊) = 0. So 𝑊 (𝑊) is non-
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increasing in 𝑊 ∈ [0,𝑊𝑊], and thus 𝑊 (𝑊) ≥ 0 for 𝑊 ∈ [0,𝑊𝑊]. This implies that 𝑊
˜ 

(𝑊,𝑊) − 𝑊
˜

(𝑊,𝑊) ≥ 0, which 

completes our proof. 

F PROOF OF LEMMA 8 

𝑊˜𝑊 (𝑊,𝑊) is continuously differentiable, and twice condinuously differentiable except at (±𝑊𝑊,𝑊). 
2 

However, since the Lebesgue measure of reaching (±𝑊𝑊,𝑊) is zero, the values 𝑊 
2 𝑊

˜
𝑊 (±𝑊,𝑊) can be 

𝑊𝑊 chosen 

in the sequel arbitrary [25, Section 10]. 

In Lemma 6, it is easy to see that 𝑊𝑊 𝑊
˜
𝑊 (𝑊,𝑊) = 𝑊 ′(𝑊), not a function of 𝑊, and 𝑊𝑊 𝑊

˜
𝑊 (𝑊,𝑊) = 𝑊(𝑊). 

Therefore, for any given time 𝑊, 

 ∫ 𝑊 2  

 E 𝑊𝑊 𝑊
˜
𝑊 (𝑊 +𝑊𝑊,𝑊 + 𝑊𝑊 

) 
𝑊𝑊 < ∞. (143) 

0 

 ∫ 𝑊 2 

The integral 𝑊 𝑊𝑊 is increasing in 𝑊. Using Itô’s formula [18, Theorem 7.14], almost surely, 
 0 𝑊 

𝑊˜𝑊 (𝑊 +𝑊𝑊,𝑊 + 𝑊𝑊 ) − 𝑊˜𝑊 (𝑊,𝑊) 

 ∫ 𝑊 1 ∫ 𝑊 

𝑊𝑊𝑊 𝑊
˜
𝑊 (𝑊 +𝑊𝑊,𝑊 + 𝑊𝑊 )𝑊𝑊 + 𝑊𝑊 𝑊

˜
𝑊 (𝑊 +𝑊𝑊,𝑊 + 𝑊𝑊 )𝑊𝑊𝑊 .  = ( + )2 − mseopt +

 𝑊 𝑊𝑊 

2 
 0 0 

 ∫ 𝑊 ˜ 
( + + ) is a martingale and thus 

By [18, Theorem 7.11], the process 𝑊𝑊 𝑊𝑊 𝑊 𝑊𝑊,𝑊 𝑊𝑊 𝑊𝑊𝑊 
0 

(144) 
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 𝑊  

E𝑊𝑊 𝑊˜𝑊 (𝑊 +𝑊𝑊,𝑊 + 𝑊𝑊 )𝑊𝑊𝑊 = 0. (145) 

Therefore, 

 ∫ 𝑊 1  

 E 𝑊
˜
𝑊 (𝑊 +𝑊𝑊,𝑊 + 𝑊𝑊 ) (𝑊,𝑊) =E (𝑊 +𝑊𝑊 )2 − mseopt + 𝑊𝑊𝑊 𝑊

˜
𝑊 (𝑊 +𝑊𝑊,𝑊 + 𝑊𝑊 )𝑊𝑊 . 

 0 2 

(146) 

If |𝑊 + 𝑊𝑊 | < 𝑊𝑊, according to Lemma 6(a) we have 𝑊𝑊 𝑊
˜
𝑊 (𝑊 + 𝑊𝑊,𝑊 + 𝑊𝑊 ) = −2/3(𝑊 + 𝑊𝑊 )3 + 

2mseopt(𝑊 + 𝑊𝑊 ), and 𝑊𝑊𝑊 𝑊
˜
𝑊 (𝑊 + 𝑊𝑊,𝑊 + 𝑊𝑊 ) = −2(𝑊 + 𝑊𝑊 )2 + 2mseopt (correspond to the first 

equation of free boundary method (44)). Therefore, 

 (𝑊 +𝑊𝑊 )2 − mseopt + 𝑊𝑊𝑊 𝑊˜𝑊 (𝑊 +𝑊𝑊,𝑊 + 𝑊𝑊 ) = 0. (147) 

If |𝑊 +𝑊𝑊 | ≥ 𝑊𝑊, according to Lemma 6(a),(b), we get 

 2((𝑊 +𝑊𝑊  ) 2 − mseopt) + 𝑊𝑊𝑊  𝑊˜𝑊 (𝑊 +𝑊𝑊,𝑊 + 𝑊𝑊 ) 

 =2((𝑊 +𝑊𝑊 )2 − mseopt) + 𝑊𝑊
′′(𝑊 +𝑊𝑊 ) ≥ 0. (148) 

E(𝑊,𝑊) [𝑊
˜
𝑊 (𝑊 +𝑊𝑊,𝑊(𝑊,𝑊). This ends our proof. 

Applying to (146), we get 

G PROOF OF LEMMA 9 

Note that for simplicity, we have set 𝑊𝑊 = 𝑊 + 𝑊𝑊 as a Wiener process that starts from 𝑊0 = 𝑊. 

 2 ¯ 

When 𝑊 < 𝑊, 

 2 2 

 𝑊(𝑊 +𝑊 ) 1 𝑊 2𝑊 𝑊 𝑊 

 𝑊

 𝑊𝑊 𝑊 

 , 1}  = max{(𝑊𝑊 +𝑊𝑊 ) + 

 𝑊(𝑊) 𝑊
¯
𝑊¯ 

2 

𝑊 

 |𝑊𝑊 | + 𝑊 , 1} 

¯ 

𝑊 
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2 

 2|𝑊𝑊 | 𝑊𝑊 

 =1 + √ + . (149) 

 ¯ ¯ 

 𝑊 𝑊 

 2 ¯ 

When 𝑊 < 𝑊, 𝑊𝑊 = 𝑊, and we have 

𝑊(𝑊𝑊 +𝑊𝑊 ) = 1 max{(𝑊 +𝑊 )2,𝑊¯} = max{1 + 2𝑊𝑊 + 𝑊𝑊2 , 𝑊¯ } 
𝑊 

 𝑊(𝑊) 𝑊2 𝑊 𝑊2 𝑊2 
2 

𝑊 

|𝑊𝑊 | + 𝑊 , 1} 

¯ 

𝑊 
2 

 2|𝑊𝑊 | 𝑊𝑊 

 =1 + √ + . (150) 

 ¯ ¯ 

 𝑊 𝑊 

This ends the proof of Lemma 9(a). 

Note that 𝑊(𝑊;𝑊) is bounded in 𝑊 ∈ [−𝑊,
¯ 
𝑊

¯
], and 𝑊(𝑊;𝑊) = 2E [𝑊] 𝑊2 + 𝑊𝑊𝑊𝑊𝑊 for |𝑊|2 ≥ 𝑊

¯
. 

Therefore, there exists 𝑊 > 0 such that ∥𝑊(𝑊;𝑊)∥ ≤ 𝑊. Recall that we denote 𝑊
˜
𝑊+1 as the state value 

at 𝑊 + 1th stage with 𝑊
˜

1 = 𝑊, and 𝑊
˜
𝑊+1 = 𝑊

˜
𝑊 +𝑊𝑊′ +𝑊𝑊 for a stopping time 𝑊 ′. Then, 

E [𝑊(𝑊𝑊+1;𝑊)] =E 𝑊(𝑊
˜
𝑊 +𝑊𝑊′ +𝑊𝑊 ;𝑊) 𝑊E 𝑊(𝑊

˜
𝑊 +𝑊𝑊′ +𝑊𝑊 ) 

2 

𝑊𝑊 

≤𝑊 E 𝑊(𝑊
˜
𝑊) 𝑊 2 E 𝑊(𝑊

˜
𝑊−1)

 
· · · 

𝑊 

 ≤𝑊𝑊(𝑊). (151) 
𝑊 

𝑊 

We have shown that each optimal stopping times for solving 𝑊 (𝑊𝑊0(𝑊)) are some hitting times 

with bounded and convergent thresholds, so each stopping time belongs to the assumption of 

Lemma 9(a). We have 

 𝑊 𝑊 

Õ 

𝑊 
𝑊 𝑊 
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 𝑊𝑊0(𝑊) = 𝑊𝑊−1E 𝑊(𝑊˜𝑊;𝑊𝑊) Õ 𝑊𝑊𝑊(𝑊) ≤ 1𝑊(𝑊), 

1 − 𝑊 
 𝑊=1 𝑊=1 

∞ 

 ∞ Õ 𝑊 

𝑊  𝑊 0(𝑊) ≤ 𝑊 

𝑊(𝑊). (152) 

𝑊 
𝑊=1 

Thus, both ∥𝑊𝑊0∥ and are finite. For any stopping time𝑊 within the assumption of Lemma 

9(a), 

𝑊 

𝑊𝑊𝑊 0(𝑊) − 𝑊𝑊𝑊𝑊−10(𝑊) =𝑊E 𝑊𝑊0(𝑊𝑊 +𝑊𝑊 ) − 𝑊𝑊−1(𝑊𝑊 +𝑊𝑊 ) 

 𝑊𝑊0(𝑊𝑊 +𝑊𝑊 ) − 𝑊𝑊−1(𝑊𝑊 +𝑊𝑊 )  

=E 𝑊(𝑊𝑊 +𝑊𝑊 ) 

𝑊(𝑊𝑊 +𝑊𝑊 ) 

≤𝑊∥𝑊𝑊0 − 𝑊𝑊−10∥ × E [𝑊(𝑊𝑊 +𝑊𝑊 )] 

 

≤𝑊𝑊(𝑊)∥𝑊𝑊
0 − 𝑊𝑊−1

0∥. (153) 

This gives that 
𝑊 

 𝑊𝑊𝑊 0(𝑊) 𝑊 𝑊−1 𝑊𝑊𝑊𝑊−10(𝑊) 

 ≤ 𝑊∥𝑊 0 − 𝑊 0∥ + . (154) 𝑊(𝑊) 𝑊(𝑊) 

Take the minimum for left and right side of (154) over all the stopping times 𝑊 with bounded 

¯ 

threshold 𝑊, then 

 𝑊𝑊+10(𝑊) 𝑊 𝑊−1 𝑊𝑊0(𝑊) 

  ≤ 𝑊∥𝑊 0 − 𝑊 0∥ + . (155) 

 𝑊(𝑊) 𝑊(𝑊) 

By symmetry, 
𝑊 

 𝑊 0(𝑊
) 

𝑊 𝑊−1 𝑊𝑊+10(𝑊) 

  ≤ 𝑊∥𝑊 0 − 𝑊 0∥ + . (156) 

 𝑊(𝑊) 𝑊(𝑊) 

Therefore, 
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 ∥𝑊𝑊+10 − 𝑊𝑊0∥ ≤ 𝑊∥𝑊𝑊0 − 𝑊𝑊−10∥ · · · ≤ 𝑊𝑊 ∥𝑊0∥. (157) 

This completes the proof of Lemma 9(b). Due to (157), the sequence {𝑊𝑊0(𝑊)} is a Cauchy sequence, 

and thus 𝑊 0(𝑊) converges pointwise to 𝑊 ∞0(𝑊), which is also measurable, and we have shown 

𝑊 

that ∥𝑊 ∞0(𝑊)∥ < ∞. Therefore, using [4, pp. 47], ∥𝑊𝑊0−𝑊 ∞0∥ → 0. We replace𝑊𝑊0(𝑊) by𝑊 ∞0(𝑊) 
10 

in (154) and use symmetry, we then find that 

 ∥𝑊𝑊 ∞0 − 𝑊𝑊0∥ ≤ 𝑊∥𝑊 ∞0 − 𝑊𝑊−10∥ → 0. (158) 

Therefore, 𝑊 ∗ = 𝑊 ∞0 is the solution to the Bellman equation 𝑊 𝑊 ∗ = 𝑊 ∗, and the 𝑊−convergence 

rate is immediately given. The solution is unique: If there exists any other measurable function 

𝑊
˜
(𝑊) 

∥𝑊
˜
(𝑊)∥ < ∞), we replace 𝑊𝑊0(𝑊) by 𝑊 ∞0(𝑊) and replace 

that satisfies the Bellman equation (with 

𝑊𝑊−10 by 𝑊
˜
(𝑊) in (154), and we have 

 ∥𝑊 ∞0 − 𝑊˜∥ = ∥𝑊𝑊 ∞0 − 𝑊 𝑊˜∥ ≤ 𝑊∥𝑊 ∞0 − 𝑊˜∥, (159) 

∞ ˜. These completes the proof of Lemma 9(c). which 

implies that 𝑊 0 = 𝑊 

H PROOF OF THEOREM 4 

We denote Π𝑊,signal-agnostic ⊂ Πsignal-agnostic as a collection of sampling times 𝑊𝑊,1,𝑊𝑊,2, · · · at 𝑊th epoch 

such that the inter-sampling times 𝑊𝑊,1 − 𝑊𝑊−1,𝑊𝑊−1,𝑊𝑊,2 − 𝑊𝑊−1,𝑊𝑊−1, . . . are independent of the history 

information before 𝑊𝑊−1,𝑊𝑊−1. Note that the subscripts (𝑊, 1), (𝑊, 2), . . . are illustrated in Section 5.1. 

Similar to Proposition 1, we have the following result: 

Proposition 2. 
There exists an optimal policy in Π𝑊,signal-agnostic such that {

𝑊
𝑊,𝑊𝑊 − 

𝑊
𝑊−1,𝑊𝑊−1 }𝑊 are 

i.i.d. Moreover, problem (3) when Π=Πsignal-agnostic is equivalent to the following problem: 

 E h∫ 𝑊𝑊,𝑊𝑊 i 

Δ𝑊𝑊𝑊 
𝑊
𝑊−1,𝑊𝑊−1 

 

 mseopt = 𝑊 
∈Π𝑊,signal-agnosticinf E 𝑊𝑊,𝑊𝑊 − 𝑊𝑊−1,𝑊𝑊−1  . (160) 

The proof of Proposition 2 is a special case of (thus included in) the proof of Proposision (1) 

and is omitted. Problem (160) has a much simpler form to Problem (23) because (i) the sampling 
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times are independent of the Wiener process, and (ii) we replace the square estimation error (𝑊𝑊 

−𝑊
ˆ
𝑊 )2 by the linear age Δ𝑊 , the time period between 𝑊 and the sampling time 𝑊𝑊−1,𝑊𝑊−1. By (160) 

and [24, Section V.B], we complete the proof of Theorem 4. 
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10 ∞ (𝑊) to be measurable. 
Here, we do not require 𝑊𝑊 0 


