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1. Introduction

Stochastic optimization deals with problems where
there is uncertainty in the input; it aims to optimize or
well approximate the expected value of an objective
function that involves random input parameters. This
area dates back to the classical works of Beale (1955)
and Dantzig (1955) from the 1950s; we refer readers to
books and surveys, including Ruszczynski and Sha-
piro (2003), Birge and Louveaux (2011), Shapiro et al.
(2014), and the references therein, for more recent
treatments of this topic. In multistage stochastic opti-
mization, we postulate a probability distribution over
the uncertain input parameters and compute a (two-
stage or multistage) solution that optimizes the
expected value of the objective function; the uncertain
data are revealed over the two or more stages, and
later stages may adaptively use the values revealed
in earlier stages. This approach has been very fruitful
for a range of problems and in areas including net-
work design, inventory control, facility location, kidney

exchange, and social-network operations. We highlight
the works of Garg et al. (2008) and Gupta and Kumar
(2009) as relevant representative examples of this para-
digm. More recently, there has been an increasing num-
ber of new applications of online stochastic optimization
in e-commerce: for example, online customer selection
(Elmachtoub and Levi 2016), where customers arrive
sequentially over each phase, and online scheduling
(Wang and Truong 2018), where jobs of different priori-
ties arrive randomly over time.

As a concrete example, consider two-stage uncapa-
citated facility location. Here, we are given a set of
facilities F¢ and a superset Cy of the possible set of cli-
ents. We only have stochastic information about the
actual set C; C Cy of clients that will materialize. In the
face of this, we aim to open a suitable subset 71 C F
of facilities in order to minimize the expected sum of
the facility costs in 7 and the total distance of clients
in C; to their closest facility in F1 (see, e.g., Shmoys
and Swamy 2006, Srinivasan 2007) in the fwo-stage
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recourse model. F1 is chosen here in two stages. In the
first stage, one constructs an initial set of facilities 7,
based on distributional information about Cy; in the sec-
ond stage, C; is sampled from its distribution, and we
can augment 7, (take a “recourse action”) to output a
complete solution 7. The challenge is that such “rapid
response” in the second stage is costly, and the trade-
off is between solution cost (lower in the first stage and
higher in the second stage) and accuracy (precise in the
second stage and probabilistic in the first stage). Chap-
ters 1 and 2 of Birge and Louveaux (2011) present sev-
eral examples and extensions of this framework.

In the facility-location example, suppose in general
that we wish to judiciously build a “small” number of
facilities that minimize some function of the total con-
struction cost and the total connection cost of the
clients—with the precise details varying based on the
context. We could possibly assume in the first stage
that each candidate client j € Cy will be present inde-
pendently of the others in C; with a known probability
p; or perhaps more realistically, that there is a black
box that can sample C; from its distribution and out-
put any number of such samples as we desire in the
first stage. Under distributional assumptions such as
these two, the goal in two-stage stochastic facility
location is to carefully provision F, in the first stage
followed by a near-optimal choice of additional facili-
ties when C; is revealed in the second stage.

1.1. Two-Stage Stochastic Program

We consider the following two-stage stochastic mini-
mization program (Kleywegt et al. 2002, Ruszczynski
and Shapiro 2003, Shapiro 2003, Charikar et al. 2005):

min f(0), f(0) =) +Balgw @)l (1)

By default, we assume that X is finite; this naturally
models discrete-optimization problems where our
solution sets come from a finite family. Extensions to
continuous X are discussed in Section 7. In this model,
a first-stage decision x € X has to be made while hav-
ing only probabilistic information about the future,
represented by the probability distribution 7 of a ran-
dom variable w that is drawn from a set Q. Then, after
a particular future scenario w € Q) is realized probabil-
istically from the distribution 7, a recourse action r € R
may be taken to ensure that the requirements of the
scenario w are satisfied. In the two-stage model, c(x)
denotes the cost of taking the first stage action x.
Given a particular scenario w and a first-stage action
x, the cost of the second stage q(x, w) is represented as

q(x, w) = miRn{costw (x,7)|(x,7) is a feasible solution
re
for scenario w}, (2)

where cost,(x,7) denotes the second-stage cost in the

scenario w with a first-stage action x and a second-
stage action r and where R is the set of all possible
actions in the second stage. The optimization program
(2) can sometimes be solved optimally for each given
pair (x,w); as explained in Charikar et al. (2005), their
approach can be extended to the case where we only
have an approximate—not exact—minimizer, and this
property holds for our results as well.

A natural approach to solve problems modeled by
(1) is to take some number N of independent samples
w1, ...,wy from the distribution 7w and to approximate
f by the sample-average function

N
Fo0 =) 4> ate ). ©)
i=1

Throughout this paper, we view f(x) as a function of x
that is parameterized by the number N of indepen-
dent samples wj,...,wn. One might wish to argue
that for a suitably chosen sample size N, a good solu-
tion £ to (3) would be a good solution to f; more pre-
cisely, we define £ € X to be an a-approximate minimizer
of the function f defined in (1) if

forall x € X, f(%) < af(x).

This is the powerful sample-average approximation (SAA)
method (Kleywegt et al. 2002; Ruszczynski and Shapiro
2003; Shapiro 2003; Shmoys and Swamy 2004, 2006;
Charikar et al. 2005), which we discuss further in Sec-
tion 3.

As we will see, we significantly reduce the sample
size N of Charikar et al. (2005) to get the same approx-
imation precision; see Theorems 1 and 2, with the rele-
vant parameters defined in Section 3.

2. Related Work and an Example of Our

Improvement

Several techniques have been proposed to address emerg-
ing computational challenges in different variants of sto-
chastic optimization; the following are a few examples.
Russo and Roy (2018) propose information-directed sam-
pling, an approach to online optimization problems in
which a decision maker must balance between explora-
tion and exploitation while learning from partial feedback.
Pu and Garcia (2018) present a flocking-based approach
for distributed stochastic optimization, whereas Besbes
et al. (2015) consider a nonstationary variant of sequential
stochastic optimization and establish a strong connection
between adversarial online convex optimization and the
traditional stochastic-approximation paradigm. See, for
example, Immorlica et al. (2004), Ravi and Sinha (2006),
Shmoys and Swamy (2006), Gupta et al. (2007), Levi et al.
(2007), Srinivasan (2007), Dean et al. (2008), Chen et al.
(2009), Bansal et al. (2012), Abolhassani et al. (2015), Dieker
et al. (2016), Goyal et al. (2016), Jaillet et al. (2016), Papier
(2016), and Raginsky and Nedi¢ (2016) for diverse applica-
tions of (multistage) stochastic optimization.
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Our improved sample size N leads to much faster
network-optimization algorithms in terms of worst-
case time, such as in some of the examples listed
(Gupta et al. 2004, Srinivasan 2007, Garg et al. 2008,
Gupta and Kumar 2009, Abolhassani et al. 2015); these
include customer service under fluctuating prices, sto-
chastic online combinatorial optimization (such as sto-
chastic online Steiner tree), stochastic Steiner forest,
stochastic vertex cover, and stochastic facility location.

As an example, the work of Gupta and Kumar
(2009) considers the stochastic Steiner forest problem, a
fundamental network-design problem with two-stage
stochastic uncertainty about the input. We start with
an empty graph over a set of vertices V; the allowed
set of edges is given by the set of edges of a graph
G = (V,E). The stochastic input is some (random, yet
unknown) set D of pairs of vertices that need to be
connected by a path in our network design. The net-
work design proceeds in two stages. In the first stage,
we can install any edge ¢ € E in our to-be-designed
graph; this will cost us a given amount c, > 0. Then, in
the second stage, the set D is drawn from a given dis-
tribution 7@ (which is available as a black box from
which we can sample); we can wait to install edges in
this second stage, but each edge ¢ now costs A - c, for
some given inflation factor A > 1. The goal is thus to
install some edges initially and then others later after
the set of pairs of vertices D is realized, so that the
total expected network-design cost is minimized.

The SAA method is naturally applied for the sto-
chastic Steiner forest problem in Gupta and Kumar
(2009), and the resulting run time depends at least lin-
early on N. Specifically, we mean the following. The
work of Gupta and Kumar (2009) samples sets D1, D5,
...,Dn (each D; being a set of pairs of vertices) inde-
pendently from the distribution . It dispenses with n
from now on by replacing © by the uniform distribu-
tion over the explicitly given sets D1, D, ...,Dy. These
explicit D;’s now become the input to the problem, for
which the run time of Gupta and Kumar (2009) is at
least linear in the input size and specifically at least
linear in N (i.e., at least ¢cN for some constant ¢>0). In
fact, it is (substantially) superlinear in N because this
input is fed into a linear program whose number of
variables is linear in N; solving this linear program
takes the bulk of the running time of the overall algo-
rithm of Gupta and Kumar (2009). Therefore, by sig-
nificantly reducing N, we are able to substantially
speed up this algorithm. More importantly, a similar
comment applies to any other such application, such
as those of Gupta et al. (2004), Srinivasan (2007), Garg
et al. (2008), and Abolhassani et al. (2015). Because sto-
chasticity is ubiquitous in discrete optimization, we
anticipate similar theoretical improvements in net-
work optimization in the future.

3. Main Results

We significantly improve upon the sample complexity
of Charikar et al. (2005) for stochastic optimization in
the black-box model via the SAA method; please
recall the SAA approach of using (3) in the framework
of (1) and (2). A key question regarding the imple-
mentation of this recipe is how many samples N suf-
fice as a function of, for example, the desired accuracy
1 — € and the confidence 1 — 6. That is, given € and 9,
how large an N will suffice for an optimal solution to
f defined in Equation (3) to be an (1 + €)-approximate
minimizer of the function f defined in Equation (1),
with probability at least 1 — 6?

The work of Charikar et al. (2005)—which has fur-
ther useful properties discussed after Theorem 2—
considered this setting with the following additional
natural properties.

Property 1 (Nonnegativity). c(x) > 0 and q(x,w) >0, for
each x € X and w € Q.

Property 2 (Empty First-Stage Action). We assume there
is an empty first-stage action 0€ X, with ¢(0)=0 and
q(x,w) <q(0,w), for each x € X, w € Q. Thus, the empty
action 0 € X is the cheapest first-stage solution whose second-
stage completion (with respect to any realization) is the most
expensive.

Property 3 (Bounded Inflation Factor). There is a given
A =1 such that for all xe X, we€Q, we have g(0,w)
—q(x,w) < Ac(x). In other words, the gap of the second-
stage cost between a specific choice x € X and the empty
choice 0 is upper bounded by Ac(x).

Recall our assumption that the first-stage decision
set X is finite. In this setting, the result of Charikar
et al. (2005) is as follows.

Theorem 1 (Charikar et al. 2005). There is a constant
Ko > 0 such that the following holds. Any exact minimizer
X of the function f defined in Equation (3) constructed with
N =[Ko- (A*/€*)-In|X| - In(1/6)] samples is, with proba-
bility at least 1 — 0, a (1 + €)-approximate minimizer of the
function f defined in Equation (1).

Our result of improved sample complexity over
Theorem 1 is as follows.

Theorem 2. There is a constant Ky > 0 such that the fol-
lowing holds. Any exact minimizer X of the function f
defined in Equation (3) constructed with N = (Kl -In(|X]/
6)-max[(A*/e?),(A/€%)]| samples is, with probability at
least 1 — 6, a (1 + €)-approximate minimizer of the function
f defined in Equation (1).

Observe that our sample complexity has a signifi-
cantly lower dependence over A and € compared with
that in Charikar et al. (2005).
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3.1. Sample Complexity in Related Models

When the three properties (Properties 1-3) are absent,
the sample complexity of Kleywegt et al. (2002)
includes as a parameter the largest variance of (g(x*,
w) —q(x,w)) over all possible x € X, where x* is an
optimal solution in Equation (1). From Property 3,
we see that |g(x*,w) —q(x,w)| < Alc(x) +c(x")). Thus,
maXyex Var[q(x*,w) — q(x, )] < 2A -maxyex c(x). It is not
clear how to remove the dependence of the final com-
plexity on maxyex ¢(x) when applying the approach of
Kleywegt et al. (2002). The results of Theorems 1 and
2 enjoy the advantage that their sample complexities
are independent of this largest-variance parameter; our
sample complexity is bounded as stated in Theorem 2
as long as |X| and A are bounded, regardless of the
largest-variance parameter. A detailed comparison of
our work with Kleywegt et al. (2002) can be seen in
the online appendix.

3.1.1. Further Useful Properties. As mentioned in
Charikar et al. (2005), their work has some useful addi-
tional properties. One is that although the works of
Shmoys and Swamy (2004, 2006) require the underlying
space X to be continuous and amenable to algorithms
such as the ellipsoid method, the approach of Charikar
et al. (2005) works in the more general discrete case.
(Under mild Lipschitz-type assumptions on the func-
tions ¢(:) and 4(-,-), a simple discretizing approach can
reduce the continuous case to the discrete case (Kley-
wegt et al. 2002, Charikar et al. 2005).) Thus, as men-
tioned in Charikar et al. (2005), the approaches of
Kleywegt et al. (2002), Shapiro (2003), and Charikar et al.
(2005) only rely on statistical properties of f and X and
not—as in Shmoys and Swamy (2004, 2006)—on the
computational property of the amenability of optimization
over X. As mentioned before and as explained in Chari-
kar et al. (2005), their approach can be extended to the
case where we only have an approximate—not exact—
minimizer for f. All of these useful properties carry over
directly to our approach as well.

The black-box model considered in Charikar et al.
(2005) is quite general, and an improved sample com-
plexity translates to more efficient implementations of
the several applications of the work of Charikar et al.
(2005); see, for example, Srinivasan (2007), Garg et al.
(2008), Gupta and Kumar (2009), and Abolhassani
et al. (2015). To the best of our knowledge, we are not
aware of any strong lower bounds on the sample com-
plexity in this model other than standard lower
bounds from sampling of the form Q((1/€?)In(1/6))
(Canetti et al. 1995).

4. Preliminaries and Main Techniques
In this paper, we use the following form of the Chern-
off bound.

Theorem 3 (Chernoff Bound (Tarjan 2009)). Let X1, ..., X,
be n independent random variables with 0 < X; <1. Let
X =3, X;and u = E[X]. Then, for any € >0,

2
Pr[X>(1+e€)u] <exp (—% ) ) 4)

We specialize the version to the lemma, which will be
quite useful in our paper. It is a specialization for
independent and identically distributed random vari-
ables; it also parametrizes the deviation above the
mean in an additive fashion.

Lemma 1. Let Xy, ..., X, be n independent identical distrib-
uted random variables with each 0 < X; <1 and E[X;] = py.
Let X = (>_i., Xi)/n. Then, for any value v > 0,

- no?
Pr[X > uy +v] <exp _v+2y . (5)
X

Lemma 1 follows directly from Theorem 3, and its
proof can be seen in the appendix.

We first set a threshold M; and partition the set of
all scenarios w1, wy, ... into two subgroups, one called
high and the other called low. Then, we decompose the
original and empirical second-stage costs each into
two sums based on the two subgroups. The approach
in detail is as follows. The framework of our analysis
is similar to that of Charikar et al. (2005).

Let Z* = f(x"), where x* is a minimizer for the func-
tion f defined in (1). Similar to Charikar et al. (2005),
we introduce a threshold M; = AZ* /e to divide the set
of scenarios into two classes. We call a scenario w high
if 9(0,w) > M; and low otherwise. Suppose we have N
independent samples w1, ., 0N from the distribution
. Let f (x) = c(x) + f,(x) + f,(x), where

1

fo=r Y o) fi=g Y aw)

w;: w; is low w;: w; is high

(6)

Let fi(x) = E[f,(x)] and f,(x) = E[f,l(x)], where the expec-
tation is taken over the N independent samples
w1, ...,wN from 7. Therefore, f(x) = c(x) + fi(x) + fu(x).
Let p = Pr[w is high]. We have

fix) = E[f,(0)] = E[g(x, ) |w is low] - (1 — p),

fulo) = Elf,,(0)] = E[q(x,@) |w is high] -p. @)
Recall that x* and X are exact minimizers for f{x) and
f (x), respectively. Let A= f (X)) = filx") + fi(%) — f ,(X)
and B =fh(x*) —fh(f) +fu(¥) — fu(x*). We prove that
f(x) —f(x") <A+B (with probability 1) and that A+

B = O(ef (x*) + ef (x)) with high probability. Specifically,
we show that the sampling bound N required for A to
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be O(ef (x*) + €f (X)) strictly dominates that for B to be
O(ef (x*) + €f (¥)), and we significantly improve the for-
mer dominant part compared with that in Charikar
etal. (2005) by conducting a tighter analysis.

Let A= A1+ A,, where A; =fl(x*) —fi(x*) and A, =
fi(x) — f,(x). We state the main sampling bounds in the
three claims, the proofs of which can be seen in Sec-
tion 6.

Claim 1. Pr[A; <eZ'] >1—06 when N = Q(In(1/6) - (1/
e%)).

Claim 2. Pr[A; <eZ*] >1— 6 when N = Q(In(|X]/0) -
max [(1%/€?), (1/€))).

Claim 3. Pr[B <2¢f(X) +€Z*] >1 -6 when N = Q((A/e) -
In(1/9)).

Remark 1 (Remark on Claim 1). Note that to get the
same probability result as in Claim 1, Charikar et al.
(2005) require the sampling bound to be Q(In(1/6)-
(A%/e*)). The main difference is that they used a
weaker version of the Chernoff bound, as shown in
lemma 1 of Charikar et al. (2005), than what we use
here as shown in Lemma 1. They considered the case
v=¢€ and gave an upper bound of exp(—ne?), which
nearly matches the result of Lemma 1 if we set u=1.
The point is that in our context, both u and v are very
small, which helps us get a much stronger upper
bound when using Lemma 1.

Remark 2 (Remark on Claim 2). In order to get the
same probability result as does Claim 2, Charikar et al.
(2005) require the sampling bound to be Q(In(1/6)-
In|X| - (A?/e*). To prove Claim 2, we need to upper
bound the lower-tail probability of the sum of N inde-
pendent and identically distributed (i.i.d.) random
variables, where each has a mean at most AZ* and
takes a value between [0,M;] with M; = AZ*/e. Our
improvement is because of a careful examination of
the mass distribution for each random variable: After
introducing a new threshold M, =2Ac(x*), we find
that the total mass distributed over the range [M>, M ]
is at most 2Z*, which is a negligible fraction of the
total mean of AZ* as assumed in the worst case. This
helps us obtain a much-improved worst-case scenario
when upper bounding the lower-tail probability.

5. Proof of Theorem 2
In this section, we show how Claims 1-3 yield Theo-
rem 2.

5.1. A Remark on e and &

As in the proof of theorem 1 in Charikar et al. (2005),
we will prove Theorem 2 by working with constant
multiples Cie and C»6 of € and 6, respectively, for con-
venience rather than € and 6 themselves. That is, for
some absolute positive constants C; and C,, we aim to

show that any exact minimizer ¥ of the function f
defined in (3) constructed with

|X| A% A
Q(lné'max g,g

samples is, with probability at least 1 — C10, a (1 + Cze)-
approximate minimizer of the function f defined in (1).
This would of course imply Theorem 2 by choosing the
constant K; appropriately.

Proof of Theorem 2. Recall that ¥ is an exact mini-
mizer of the function f defined in (3):

f@) = c(x) +£i(%) +£(%)
= (@) +f,@) +£, () +/i(®) +£(®) — %) — f,(%)
f)
=f(®) +fi®) +fu(®) — () — f,(%)
<f () +£i(@) +£®) — &) — %)
(because of the optimality of X for f (%))
=c(x) + () + £, () +i®) + ful®) — f () — f,(%)
= c(¥) +f() +fillx) +f1 () = filx") + (@) — £,(%)
@) A
+ () = fiux) + (@) — ,(2)

=f(x")+A+B.

Recall that A = A1 + Ajy:

Pr[f(x) — f(x") = 3eZ" + 2¢f (x)]

<Pr[A+B>3eZ" +2¢f(x)]

<Pr[A1 > €Z'] + Pr[A; > €Z"] + Pr[B > 2¢f (X) + €Z7]
<30 (because of Claims 1, 2, and 3),

which implies that Pr[f(x¥) < f(x*)-(1+3¢€)/(1 —2¢)] =1
—36. Thus, we get our result. O

6. Proofs of Claims 1, 2, and 3

6.1. Auxiliary Lemmas

Before presenting the proofs of the three claims, we
first show three auxiliary lemmas. Recall that Z* =
f(x*) is the optimal value of f(x), the first threshold
My =AZ"/e, and p=Pr[q(0,w)>M;] denotes the
probability of a sample w being high in the distribu-
tion m. Let My =2Ac(x") and m(w) be the probability
associated with the outcome w € Q in 7. Suppose that
we have N independent samples wj,...,wy from the
distribution 7.

Lemma 2.
1. p<(e/A).
2. f(0)<AZ.
3. Foreach x € X, 3 oyt wp>m (%, @) - (@) < 2(Z° = c(x)).
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Proof of Lemma 2.
1. By Property 3, (0, w) < q(x*,w) + Ac(x*) for every
w. Thus,
p=Pr[q(0,w) = M;] < Pr[q(x", w) + Ac(x") = M ]
=Pr[g(x", w) = M1 — Ac(x")].
Recall that Z* =f(x") = c(x*) + E[q(x", w)], which sug-

gests that E[g(x*, w)] = Z* — ¢(x*). Note that g(x*,w) >0
for all w by Property 1. By Markov’s inequality,

Z* —c(x*) Z'—c(x*) € Z’*—c(x)<
P M — ) AZJe—der) A Z—ecr) A
2. Note that

f(0) = ¢(0) + E[4(0, w)] = E[q(0, w)]
< E[q(x", @)] + Ac(x”) < A(E[g(x", @)] + c(x7))
=A\Z",

where the second equality follows from c(0) =0 by
Property 2, the first inequality is because of Property
3, and the second inequality is valid because A > 1.

3. Recall that M, = 2Ac(x*). For each x € X, let Q, =
{w : q(x,w) > My}. Consider a given w € Q, with g(x, w)
> My. From Property 2, we have that 4(0,w) > q(x, w)
> M, which implies that w € Q). Thus, we have Q, C
Qg for all x. Observe that

Z'—c(x") =E[q(x",w)] (by definition of f(x))
> Z (x", w)m(w)
w€oq
2 Z (9(0,@) = Ac(x"))mt(w) (Property 3)
r)EQO
Z 9(0,w)m(w) (by definition of Q)
wEQO
Z q(x, w)m(w) (Property 2 and Q, CQy).
(JEQ

We thus have that - ., q(x,0)m(w) <2(Z° —c(x")),
which yields our result. O

Lemma 3. Suppose we are given a convex function g(x) over
[a,b] with 0 < a < band avalue u € [a,b]. Consider the max-
imization of E[g(X)] subject to (1) a<X<b and (ii)
E[X] = y; the maximum here can be realized when X follows
a two-pointed distribution, where X takes values a and b with
respective probabilities (b — ) /(b — a) and (u — a)/ (b — a).

The proof of Lemma 3 follows directly from the
convexity property of g(x); see the details in the
appendix. We apply Lemma 3 to prove the lemma,
which is useful in Claim 2.

Lemma 4. Let X be a random variable satisfying the
following three conditions: (1) 0<a <X <b, (2) E[X]=p
and (3) E[X|X € (c,b]] - Pr[X € (c,b]] <y’ for some c € [a, b].
Then, for any convex function g(x) over [a,b], there exists a

random variable Y such that (i) E[g(X)] < E[g(Y)]; (i) Y
also satisfies conditions (1), (2), and (3); and (iii) Y’s sup-
port is a subset of, or is equal to, the set {a, b, c}.

Proof of Lemma 4. Consider a given X satisfying the
three conditions. Let X; =(X|X € [a,c]) and X, =(X|X €
(c,b]), respectively, denote the conditional random
variables of X when restricted to the ranges [a,c] and
(c,b], respectively. Let p; =Pr[X € [a,c]], p»=Pr[X €
(c,b]], u; = E[X1], and p, = E[Xz]. Thus, p1+p2 =1, ;1
fy + P2, = 1, and pou, < p’. By Lemma 3, we see that
E[g(X1)] < E[g(Y1)] for some Y;, where E[Y;] = E[X}]
= 1, and where Y; has nonzero probabilities at 2 and ¢
only, say p, and p,, respectively.

Consider the maximization of E[g(X>)] subject to
c<X;<b and E[X3] = u,. We see that the maximum
value will not decrease if we relax the range of X, to
[c,b]. From Lemma 3, we see that E[g(X2)] < E[g(Y2)]
for some Y,, where E[Y;] =u,, and Y, has nonzero
probabilities at ¢ and b only, say p. and p,, respec-
tively. Construct a random variable Y that is distrib-
uted on {a, b, ¢} as follows:

Pr[Y =a]=pipa, Pr[Y =cl=pipc +p2p., Pr[Y =b] =paps.

Recall that E[Y,] = u, =p.-c+ps-b, which implies that
py-b < u, because ¢ >a > 0. Thus, E[Y|Y € (c,b]] - Pr[Y
€ (c,b]] = (p2pp)b < papi, < 1’ (ie., Y meets condition (3)).
We can verify that Y satisfies conditions (1) and (2) as
well. Also,
E[g(X)] =p1E[g(X1)] + p2E[g(X2)]
<piE[g(YD)] +pE[g(Y2)] =

This completes the proof. O

Elg(V)].

6.2. Proof of Claim 1

Proof of Claim 1. Recall that by definition, A; f (x)

—fi(x"), filx") = E[fl(x )], and My = AZ" /e. By definition
of fl(x) in (6), we can rewrite fl(x) as fl(x )=
(Zf\fl Q) /N, with Q; = q(x*, w;) if (0, w;) < M; (i-e., if
w; is low) and Q;=0 otherwise. Thus, we can view
f (x*)/M; as a sum of N i.i.d. random variables where
(i) each summand takes values in [0,1] because
gx*, w;)/M1 <90, w;)/M; <1 when w; is low and
where (ii) f,(x")/M; has mean E[f,(x")/M;]=fi(x")/
M; <Z*/M; =€/A.By Lemma 1, we have

Pr[A; > 2] = Pr[f ,(x") — fi(x") = €Z7]

[fz(x) i) €&

M; My — /\

o Ne*/A? ox Nél

SOP\ T 2e/avez/n) SOP\ T30 )
By setting the last expression equal to 6, we get our
claim that when N = Q(In}- 4), Pr[A; <eZ*]>1-6. O
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6.3. Proof of Claim 2

Proof of Claim 2. Assume for any given x € X, when
N = Q(In(1/6) - max[(A*/€2),(A/e)]),

Pr{fi(x) — f,(x) > eZ'] < 6. (8)

We first show how Inequality (8) implies Claim 2.
Replacing 6 with 6/|X|, we have that when N = Q(In
1X1/6-max[(A2/e2), (A/ed)]),  Prlfitx) —f(x) > €2"] <
6/1X]| for any x € X. Thus, it follows that

Prlfi(%) — f,(®) > €Z'] < Pr[Fx e X :fi(x) — f,(x) > €Z"]
<Y Prlfi(0) —f,(x)>€Z’]
xeX

<0 (because of the union bound).

Therefore, we have Pr[f;(x) — f [(X) <eZ']| =Pr[A; <eZ7]
>1 -0, and we get Claim 2.
Now, we prove Inequality (8). Consider a fixed

first-stage action x € X. We can view f ,(x) as the arith-
metic mean of N ii.d. random variables Qq,...,Qy,
where

0= g(x,w;) if w; is low,
"o otherwise.

For notational convenience, let E[fl(x)] =filx)=pu, €
=eZ'/u, and Q= Zfil Qi=Nf,/(x). Let t>0 be a
parameter to be specified later:

Prlfi(x) — f,(x) > €2°] = Pr[f (x) — fi(x) < —€Z’]
= Pr[f,(x) < u(1 — €)] = Pr[Q < (1 — €')Ny]

. Ele "]
_ —tQ —(1—€')-N-u-t - -
= Prle >e < e—(1—¢)N-pt

(because of Markov’s inequality)

[1:%, Ele9]

- e—(1—€)N-pt

(because of the independence of the N samples).

We now find a good upper bound for the value
E[e9!]. Consider a given x. Observe that when w is
low, g(x,w) <q(0,w) <Mj. Thus, 0<Q; <M;. Notice
that

E[Qi]=u

>

w:q(x, w)<M>, (0, w)<M;

D

w:Mr<q(x, w), (0, w)<M;

q(x, w)r(w)

q(x, )m(w) = iy + 1y,

where Hy = Zm:q(x,(u)st,q(O,w)SMlq(xl cu)n(a)) and Hy =
2 wiMa<q(x, ), (0,0 <M, (%, @)U (@). According to the third
result of Lemma 2, we have p, <2Z*. From Property
2, q(x,w) < q(0,w). Therefore, u = E[Q;] = fi(x) <£(0) <
AZ* because of the second result of Lemma 2. We
can verify that the function e~*” is convex over h for
any given t>0. By Lemma 4, we see that E[¢e~'%] <
E[e'?], where (1) Q" takes values only on three possi-
ble boundary points {0,M,, M1}, (2) E[Q"] =u <AZ",
and (3) Pr[Q*=M;]-M; <2Z*. Slightly abusing the
notation, let y, = Pr[Q" = My]-M; and u, = Pr[Q* = M>]:
My—with py + i, = u < AZ" and u, < 2Z". Therefore,

—1Qi1 < —tQ <ﬂ —tMy __ ﬁ —tM, )
E[e"~] <E[e ]_Ml(e 1)+M2(e 1)+1

Hence, we arrive at
Pr(f (x) —fi(x) < —eZ"]

N
(;A‘—ll(e*fMl — 1)+ e 1)+ 1)
= 67(176’)1‘1\7;1

<exp (%(E_Wh —1) +%(e‘th —D+(1- e’)tNy) .
1 2

In the following, we apply the second-order approxi-
mation of e =1—h+ (h?/2) +o(h?) that holds for h
close to zero:

Npy oy Nuy o oy o
M, (e 1)+ A (e 1)+ (1 —€)tNu

Ny {_tMl o) o((tMoZ)}

22 [t = LM+ (M) + N - €
2

uy 1 Uy 1
=N [—tyl — ty + t +1\711§(tz\/11)2 + MZE(th)Z
—te'y +0<A‘j111(tM1)2 +]‘tl422(tM2)2)}
N e + B2 L iy — tez
M2 M2

+o <1\H711 (EM,)? +Ay722(tM2)2>} .

©)

The last equality is because of two facts: (1) p; +u, =
pand (2) €'p =€z
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Let t=¢/(4AZ")min(e, (1/)L)) and A= (u,/My)(1/
2)(tMy)? +(y2/Mz)(1/2)(tM2) Notice that
A= EﬁllM1 +—t2y2M2

1 701
SEtZQZ A +2t2 AZ* 207"

(using facts pq 277, 1, Su<AZ', My
=2Ac(x") <2AZ")

>(- 2 *
=teZ*( Az +tAZ>
€2 €

teZ*

(by the definition of ¢).
Substituting this result back to Equation (9), we obtain

Ny i, Ny i, ,
M, (e 1)+ A (e 1)+ (1 —€e)tNu

= N(A —teZ" + 0o(A)) < N(—%teZ* + o(teZ*)).

Thus, we have shown that for any given x € X, when
N =O(In(1/6) - max[(A*/€?), (1/€))), Prf (x) - fi(x) <
—€Z"] < 6. This completes the proof. [

6.4. Proof of Claim 3

Proof of Claim 3. Recall that B = f,(x*) — f,, (%) + f,,(%)
—fu(x*), that a sample w is called high if q(0,w) > M;
=AZ*/e, and that p = Pr[w is high]. Consider a given
(random) set of N independent ii.d. samples, say
S={wi,...,wn}, and let S;, be the set of high scenarios
in 8. By definition, E[|S),|/N] = p, where |S;,| denotes
the cardinality of Sj:

B —fh(x*) —Fu®) + @) — filx)
= Z(q(x ) — (%, ))

weSh

+ E[q(x w) — q(x", w)|w is high] -p (see (6) and (7))
<5 > @0,0) ~g(xw)

a)ES/,
+E[9(0, w) — q(x", w)|w is high] - p (Property 2)
| h |

< W -Ac(X) +€Z" (because of the first result

“Ac(X) + Ac(x*) -p (Property 3)

of Lemma 2).

Notice that |S;,| /N can be viewed as the mean of N'i.i.d.
Bernoulli random variables—each with mean p <e/A
—by the first result of Lemma 2. Applying Lemma 1
with v=pu=¢€/A, we see that when N =Q(In(1/9)-
(A/e)), Pr[|Sy|/N—p<e/A]=1-0. In this case, we
have |Sy|/N <p+e/A <2¢/Aand B <2ef(X)+€eZ*. O

7. Conclusion

We have shown improved sample-complexity bounds
in two-stage stochastic optimization via a careful anal-
ysis of the worst-case scenarios based on “high” and
“low” scenarios. Optimal sample-complexity bounds
would be very useful to know for sample-average
approximation. A bold conjecture in this direction
would be that O((1/€?) log(1/6)) samples would suf-
fice. Is such a conjecture true? It also seems reasonable
to conjecture that Q((A/€?) log(1/6)) would be a lower
bound on the sample complexity.

Furthermore, discretization appears to increase the
sample complexity for continuous domains (Charikar
et al. 2005). Specifically, section 5 of Charikar et al.
(2005) considers the following continuous setting for
X, where X C R” (the nonnegative orthant of n-dimen-
sional Euclidean space) instead of being a discrete
set. Suppose the first-stage costs are linear; for some
given nonnegative vector v = (v1,v2,...,v,), we take
c(x) = vTx. We assume further that the function g(-, ) is
(A, v)-Lipschitz:

|9(x, @) =g, @) <A o | =],

i=1
/xn)/ x/ = (xi,. . '/x;,q)/
This is easily seen to imply Property 3. The work of
Charikar et al. (2005) reduces such a continuous sce-
nario to the discrete setting via a meshing argument.
Can the sample complexity obtained here be improved
upon?

Yo, x=(x1,...
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Appendix. Remaining Proofs
Proof of Lemma 1. Let X =Y"", X;. Notice that
Pr[X > py +0] = Pr{XZ nyx(l +‘ui)}
X

2
<exp <n‘ux éi/ijfﬁx)

(using Theorem 3)

Proof of Lemma 3. Because g(x) is convex, we have that

g(x) —g(a) < (g(b) — g(a))/(b—a)(x —a) for any xe€la,b]
Therefore, we get

g(b) g( a)

E[g(X)] <&——>(u— a)+g(a)=g(a)z:g+g(b)%~ O
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