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Abstract. Real-world network-optimization problems often involve uncertain parameters 
during the optimization phase. Stochastic optimization is a key approach introduced in the 
1950s to address such uncertainty. This paper presents improved upper bounds on the 
number of samples required for the sample-average approximation method in stochastic 
optimization. It enhances the sample complexity of existing approaches in this setting, pro
viding faster approximation algorithms for any method that employs this framework. This 
work is particularly relevant for solving problems like the stochastic Steiner tree problem.
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1. Introduction
Stochastic optimization deals with problems where 
there is uncertainty in the input; it aims to optimize or 
well approximate the expected value of an objective 
function that involves random input parameters. This 
area dates back to the classical works of Beale (1955) 
and Dantzig (1955) from the 1950s; we refer readers to 
books and surveys, including Ruszczynski and Sha
piro (2003), Birge and Louveaux (2011), Shapiro et al. 
(2014), and the references therein, for more recent 
treatments of this topic. In multistage stochastic opti
mization, we postulate a probability distribution over 
the uncertain input parameters and compute a (two- 
stage or multistage) solution that optimizes the 
expected value of the objective function; the uncertain 
data are revealed over the two or more stages, and 
later stages may adaptively use the values revealed 
in earlier stages. This approach has been very fruitful 
for a range of problems and in areas including net
work design, inventory control, facility location, kidney 

exchange, and social-network operations. We highlight 
the works of Garg et al. (2008) and Gupta and Kumar 
(2009) as relevant representative examples of this para
digm. More recently, there has been an increasing num
ber of new applications of online stochastic optimization 
in e-commerce: for example, online customer selection 
(Elmachtoub and Levi 2016), where customers arrive 
sequentially over each phase, and online scheduling 
(Wang and Truong 2018), where jobs of different priori
ties arrive randomly over time.

As a concrete example, consider two-stage uncapa
citated facility location. Here, we are given a set of 
facilities F 0 and a superset C0 of the possible set of cli
ents. We only have stochastic information about the 
actual set C1 ⊆ C0 of clients that will materialize. In the 
face of this, we aim to open a suitable subset F 1 ⊆ F 0 
of facilities in order to minimize the expected sum of 
the facility costs in F 1 and the total distance of clients 
in C1 to their closest facility in F 1 (see, e.g., Shmoys 
and Swamy 2006, Srinivasan 2007) in the two-stage 

1 

OPERATIONS RESEARCH 
Articles in Advance, pp. 1–9 

ISSN 0030-364X (print), ISSN 1526-5463 (online) https://pubsonline.informs.org/journal/opre 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.o

rg
 b

y 
[6

5.
20

2.
21

0.
42

] o
n 

14
 M

ar
ch

 2
02

4,
 a

t 0
9:

05
 . 

Fo
r p

er
so

na
l u

se
 o

nl
y,

 a
ll 

rig
ht

s r
es

er
ve

d.
 

mailto:baveja@rutgers.edu
https://orcid.org/0000-0001-7228-7731
mailto:amitc@terpmail.umd.edu
mailto:andnikif@camden.rutgers.edu
mailto:asriniv1@umd.edu
https://orcid.org/0000-0002-0062-3684
mailto:pxu@njit.edu
https://doi.org/10.1287/opre.2018.0340


recourse model. F 1 is chosen here in two stages. In the 
first stage, one constructs an initial set of facilities F 2 
based on distributional information about C1; in the sec
ond stage, C1 is sampled from its distribution, and we 
can augment F 2 (take a “recourse action”) to output a 
complete solution F 1. The challenge is that such “rapid 
response” in the second stage is costly, and the trade- 
off is between solution cost (lower in the first stage and 
higher in the second stage) and accuracy (precise in the 
second stage and probabilistic in the first stage). Chap
ters 1 and 2 of Birge and Louveaux (2011) present sev
eral examples and extensions of this framework.

In the facility-location example, suppose in general 
that we wish to judiciously build a “small” number of 
facilities that minimize some function of the total con
struction cost and the total connection cost of the 
clients—with the precise details varying based on the 
context. We could possibly assume in the first stage 
that each candidate client j ∈ C0 will be present inde
pendently of the others in C1 with a known probability 
pj or perhaps more realistically, that there is a black 
box that can sample C1 from its distribution and out
put any number of such samples as we desire in the 
first stage. Under distributional assumptions such as 
these two, the goal in two-stage stochastic facility 
location is to carefully provision F 2 in the first stage 
followed by a near-optimal choice of additional facili
ties when C1 is revealed in the second stage.

1.1. Two-Stage Stochastic Program
We consider the following two-stage stochastic mini
mization program (Kleywegt et al. 2002, Ruszczynski 
and Shapiro 2003, Shapiro 2003, Charikar et al. 2005):

min
x∈X

f (x), f (x) �
: c(x) + Eω[q(x,ω)]: (1) 

By default, we assume that X is finite; this naturally 
models discrete-optimization problems where our 
solution sets come from a finite family. Extensions to 
continuous X are discussed in Section 7. In this model, 
a first-stage decision x ∈ X has to be made while hav
ing only probabilistic information about the future, 
represented by the probability distribution π of a ran
dom variable ω that is drawn from a set Ω. Then, after 
a particular future scenario ω ∈ Ω is realized probabil
istically from the distribution π, a recourse action r ∈ R 
may be taken to ensure that the requirements of the 
scenario ω are satisfied. In the two-stage model, c(x) 
denotes the cost of taking the first stage action x. 
Given a particular scenario ω and a first-stage action 
x, the cost of the second stage q(x,ω) is represented as

q(x,ω) � min
r∈R

{costω(x, r) | (x, r) is a feasible solution

for scenario ω}, (2) 

where costω(x, r) denotes the second-stage cost in the 

scenario ω with a first-stage action x and a second- 
stage action r and where R is the set of all possible 
actions in the second stage. The optimization program 
(2) can sometimes be solved optimally for each given 
pair (x,ω); as explained in Charikar et al. (2005), their 
approach can be extended to the case where we only 
have an approximate—not exact—minimizer, and this 
property holds for our results as well.

A natural approach to solve problems modeled by 
(1) is to take some number N of independent samples 
ω1, : : : ,ωN from the distribution π and to approximate 
f by the sample-average function

f̂ (x) � c(x) +
1
N
XN

i�1
q(x,ωi): (3) 

Throughout this paper, we view f̂ (x) as a function of x 
that is parameterized by the number N of indepen
dent samples ω1, : : : ,ωN. One might wish to argue 
that for a suitably chosen sample size N, a good solu
tion x̂ to (3) would be a good solution to f; more pre
cisely, we define x̂ ∈ X to be an α-approximate minimizer 
of the function f defined in (1) if

for all x ∈ X, f (x̂) ≤ αf (x):

This is the powerful sample-average approximation (SAA) 
method (Kleywegt et al. 2002; Ruszczynski and Shapiro 
2003; Shapiro 2003; Shmoys and Swamy 2004, 2006; 
Charikar et al. 2005), which we discuss further in Sec
tion 3.

As we will see, we significantly reduce the sample 
size N of Charikar et al. (2005) to get the same approx
imation precision; see Theorems 1 and 2, with the rele
vant parameters defined in Section 3.

2. Related Work and an Example of Our 
Improvement

Several techniques have been proposed to address emerg
ing computational challenges in different variants of sto
chastic optimization; the following are a few examples. 
Russo and Roy (2018) propose information-directed sam
pling, an approach to online optimization problems in 
which a decision maker must balance between explora
tion and exploitation while learning from partial feedback. 
Pu and Garcia (2018) present a flocking-based approach 
for distributed stochastic optimization, whereas Besbes 
et al. (2015) consider a nonstationary variant of sequential 
stochastic optimization and establish a strong connection 
between adversarial online convex optimization and the 
traditional stochastic-approximation paradigm. See, for 
example, Immorlica et al. (2004), Ravi and Sinha (2006), 
Shmoys and Swamy (2006), Gupta et al. (2007), Levi et al. 
(2007), Srinivasan (2007), Dean et al. (2008), Chen et al. 
(2009), Bansal et al. (2012), Abolhassani et al. (2015), Dieker 
et al. (2016), Goyal et al. (2016), Jaillet et al. (2016), Papier 
(2016), and Raginsky and Nedić (2016) for diverse applica
tions of (multistage) stochastic optimization.
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Our improved sample size N leads to much faster 
network-optimization algorithms in terms of worst- 
case time, such as in some of the examples listed 
(Gupta et al. 2004, Srinivasan 2007, Garg et al. 2008, 
Gupta and Kumar 2009, Abolhassani et al. 2015); these 
include customer service under fluctuating prices, sto
chastic online combinatorial optimization (such as sto
chastic online Steiner tree), stochastic Steiner forest, 
stochastic vertex cover, and stochastic facility location.

As an example, the work of Gupta and Kumar 
(2009) considers the stochastic Steiner forest problem, a 
fundamental network-design problem with two-stage 
stochastic uncertainty about the input. We start with 
an empty graph over a set of vertices V; the allowed 
set of edges is given by the set of edges of a graph 
G � (V, E). The stochastic input is some (random, yet 
unknown) set D of pairs of vertices that need to be 
connected by a path in our network design. The net
work design proceeds in two stages. In the first stage, 
we can install any edge e ∈ E in our to-be-designed 
graph; this will cost us a given amount ce ≥ 0. Then, in 
the second stage, the set D is drawn from a given dis
tribution π (which is available as a black box from 
which we can sample); we can wait to install edges in 
this second stage, but each edge e now costs λ · ce for 
some given inflation factor λ ≥ 1. The goal is thus to 
install some edges initially and then others later after 
the set of pairs of vertices D is realized, so that the 
total expected network-design cost is minimized.

The SAA method is naturally applied for the sto
chastic Steiner forest problem in Gupta and Kumar 
(2009), and the resulting run time depends at least lin
early on N. Specifically, we mean the following. The 
work of Gupta and Kumar (2009) samples sets D1, D2, 
: : : , DN (each Di being a set of pairs of vertices) inde
pendently from the distribution π. It dispenses with π 
from now on by replacing π by the uniform distribu
tion over the explicitly given sets D1, D2, : : : , DN. These 
explicit Di’s now become the input to the problem, for 
which the run time of Gupta and Kumar (2009) is at 
least linear in the input size and specifically at least 
linear in N (i.e., at least cN for some constant c > 0). In 
fact, it is (substantially) superlinear in N because this 
input is fed into a linear program whose number of 
variables is linear in N; solving this linear program 
takes the bulk of the running time of the overall algo
rithm of Gupta and Kumar (2009). Therefore, by sig
nificantly reducing N, we are able to substantially 
speed up this algorithm. More importantly, a similar 
comment applies to any other such application, such 
as those of Gupta et al. (2004), Srinivasan (2007), Garg 
et al. (2008), and Abolhassani et al. (2015). Because sto
chasticity is ubiquitous in discrete optimization, we 
anticipate similar theoretical improvements in net
work optimization in the future.

3. Main Results
We significantly improve upon the sample complexity 
of Charikar et al. (2005) for stochastic optimization in 
the black-box model via the SAA method; please 
recall the SAA approach of using (3) in the framework 
of (1) and (2). A key question regarding the imple
mentation of this recipe is how many samples N suf
fice as a function of, for example, the desired accuracy 
1 � ɛ and the confidence 1 � δ. That is, given ɛ and δ, 
how large an N will suffice for an optimal solution to 
f̂ defined in Equation (3) to be an (1 + ɛ)-approximate 
minimizer of the function f defined in Equation (1), 
with probability at least 1 � δ?

The work of Charikar et al. (2005)—which has fur
ther useful properties discussed after Theorem 2— 
considered this setting with the following additional 
natural properties.

Property 1 (Nonnegativity). c(x) ≥ 0 and q(x,ω) ≥ 0, for 
each x ∈ X and ω ∈ Ω.

Property 2 (Empty First-Stage Action). We assume there 
is an empty first-stage action 0 ∈ X, with c(0) � 0 and 
q(x,ω) ≤ q(0,ω), for each x ∈ X, ω ∈ Ω. Thus, the empty 
action 0 ∈ X is the cheapest first-stage solution whose second- 
stage completion (with respect to any realization) is the most 
expensive.
Property 3 (Bounded Inflation Factor). There is a given 
λ ≥ 1 such that for all x ∈ X,ω ∈ Ω, we have q(0,ω)

�q(x,ω) ≤ λc(x). In other words, the gap of the second- 
stage cost between a specific choice x ∈ X and the empty 
choice 0 is upper bounded by λc(x).

Recall our assumption that the first-stage decision 
set X is finite. In this setting, the result of Charikar 
et al. (2005) is as follows.

Theorem 1 (Charikar et al. 2005). There is a constant 
K0 > 0 such that the following holds. Any exact minimizer 
x of the function f̂ defined in Equation (3) constructed with 
N � ⌈K0 · (λ2=ɛ4) · ln |X | · ln(1=δ)⌉ samples is, with proba
bility at least 1 � δ, a (1 + ɛ)-approximate minimizer of the 
function f defined in Equation (1).

Our result of improved sample complexity over 
Theorem 1 is as follows.

Theorem 2. There is a constant K1 > 0 such that the fol
lowing holds. Any exact minimizer x of the function f̂ 
defined in Equation (3) constructed with N �

�
K1 · ln( |X |=

δ) · max[(λ2=ɛ2), (λ=ɛ3)]
�

samples is, with probability at 
least 1 � δ, a (1 + ɛ)-approximate minimizer of the function 
f defined in Equation (1).

Observe that our sample complexity has a signifi
cantly lower dependence over λ and ɛ compared with 
that in Charikar et al. (2005).
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3.1. Sample Complexity in Related Models
When the three properties (Properties 1–3) are absent, 
the sample complexity of Kleywegt et al. (2002) 
includes as a parameter the largest variance of (q(x∗, 
ω) � q(x,ω)) over all possible x ∈ X, where x∗ is an 
optimal solution in Equation (1). From Property 3, 
we see that |q(x∗,ω) � q(x,ω) | ≤ λ(c(x) + c(x∗)). Thus, 
maxx∈X Var[q(x∗,ω) � q(x,ω)] ≤ 2λ · maxx∈X c(x). It is not 
clear how to remove the dependence of the final com
plexity on maxx∈X c(x) when applying the approach of 
Kleywegt et al. (2002). The results of Theorems 1 and 
2 enjoy the advantage that their sample complexities 
are independent of this largest-variance parameter; our 
sample complexity is bounded as stated in Theorem 2
as long as |X | and λ are bounded, regardless of the 
largest-variance parameter. A detailed comparison of 
our work with Kleywegt et al. (2002) can be seen in 
the online appendix.

3.1.1. Further Useful Properties. As mentioned in 
Charikar et al. (2005), their work has some useful addi
tional properties. One is that although the works of 
Shmoys and Swamy (2004, 2006) require the underlying 
space X to be continuous and amenable to algorithms 
such as the ellipsoid method, the approach of Charikar 
et al. (2005) works in the more general discrete case. 
(Under mild Lipschitz-type assumptions on the func
tions c(·) and q(·, ·), a simple discretizing approach can 
reduce the continuous case to the discrete case (Kley
wegt et al. 2002, Charikar et al. 2005).) Thus, as men
tioned in Charikar et al. (2005), the approaches of 
Kleywegt et al. (2002), Shapiro (2003), and Charikar et al. 
(2005) only rely on statistical properties of f and X and 
not—as in Shmoys and Swamy (2004, 2006)—on the 
computational property of the amenability of optimization 
over X. As mentioned before and as explained in Chari
kar et al. (2005), their approach can be extended to the 
case where we only have an approximate—not exact— 
minimizer for f̂ . All of these useful properties carry over 
directly to our approach as well.

The black-box model considered in Charikar et al. 
(2005) is quite general, and an improved sample com
plexity translates to more efficient implementations of 
the several applications of the work of Charikar et al. 
(2005); see, for example, Srinivasan (2007), Garg et al. 
(2008), Gupta and Kumar (2009), and Abolhassani 
et al. (2015). To the best of our knowledge, we are not 
aware of any strong lower bounds on the sample com
plexity in this model other than standard lower 
bounds from sampling of the form Ω((1=ɛ2)ln(1=δ))
(Canetti et al. 1995).

4. Preliminaries and Main Techniques
In this paper, we use the following form of the Chern
off bound.

Theorem 3 (Chernoff Bound (Tarjan 2009)). Let X1, : : : , Xn 
be n independent random variables with 0 ≤ Xi ≤ 1. Let 
X �

Pn
i�1 Xi and µ � E[X]. Then, for any ɛ > 0,

Pr[X ≥ (1 + ɛ)µ] ≤ exp �
ɛ2

2 + ɛ
µ

� �

: (4) 

We specialize the version to the lemma, which will be 
quite useful in our paper. It is a specialization for 
independent and identically distributed random vari
ables; it also parametrizes the deviation above the 
mean in an additive fashion.

Lemma 1. Let X1, : : : , Xn be n independent identical distrib
uted random variables with each 0 ≤ Xi ≤ 1 and E[Xi] � µX. 
Let X � (

Pn
i�1 Xi)=n. Then, for any value v > 0,

Pr[X ≥ µX + v] ≤ exp �
nv2

v + 2µX

� �

: (5) 

Lemma 1 follows directly from Theorem 3, and its 
proof can be seen in the appendix.

We first set a threshold M1 and partition the set of 
all scenarios ω1,ω2, : : : into two subgroups, one called 
high and the other called low. Then, we decompose the 
original and empirical second-stage costs each into 
two sums based on the two subgroups. The approach 
in detail is as follows. The framework of our analysis 
is similar to that of Charikar et al. (2005).

Let Z∗ � f (x∗), where x∗ is a minimizer for the func
tion f defined in (1). Similar to Charikar et al. (2005), 
we introduce a threshold M1 � λZ∗=ɛ to divide the set 
of scenarios into two classes. We call a scenario ω high 
if q(0,ω) ≥ M1 and low otherwise. Suppose we have N 
independent samples ω1, : : : ,ωN from the distribution 
π. Let f̂ (x) � c(x) + f̂ l(x) + f̂ h(x), where

f̂ l(x) �
1
N

X

ωi: ωi is low
q(x,ωi), f̂ h(x) �

1
N

X

ωi: ωi is high
q(x,ωi):

(6) 

Let fl(x) � E[f̂ l(x)] and fh(x) � E[f̂ h(x)], where the expec
tation is taken over the N independent samples 
ω1, : : : ,ωN from π. Therefore, f (x) � c(x) + fl(x) + fh(x). 
Let p � Pr[ω is high]. We have

fl(x) � E[f̂ l(x)] � E[q(x,ω) |ω is low] · (1 � p),
fh(x) � E[f̂ h(x)] � E[q(x,ω) |ω is high] · p: (7) 

Recall that x∗ and x are exact minimizers for f(x) and 
f̂ (x), respectively. Let A � f̂ l(x∗) � fl(x∗) + fl(x) � f̂ l(x)

and B � f̂ h(x∗) � f̂ h(x) + fh(x) � fh(x∗). We prove that 
f (x) � f (x∗) ≤ A + B (with probability 1) and that A +

B � O(ɛf (x∗) + ɛf (x)) with high probability. Specifically, 
we show that the sampling bound N required for A to 

Baveja et al.: Improved Sample-Complexity Bounds in Stochastic Optimization 
4 Operations Research, Articles in Advance, pp. 1–9, © 2023 INFORMS 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.o

rg
 b

y 
[6

5.
20

2.
21

0.
42

] o
n 

14
 M

ar
ch

 2
02

4,
 a

t 0
9:

05
 . 

Fo
r p

er
so

na
l u

se
 o

nl
y,

 a
ll 

rig
ht

s r
es

er
ve

d.
 



be O(ɛf (x∗) + ɛf (x)) strictly dominates that for B to be 
O(ɛf (x∗) + ɛf (x)), and we significantly improve the for
mer dominant part compared with that in Charikar 
et al. (2005) by conducting a tighter analysis.

Let A � A1 + A2, where A1 � f̂ l(x∗) � fl(x∗) and A2 �

fl(x) � f̂ l(x). We state the main sampling bounds in the 
three claims, the proofs of which can be seen in Sec
tion 6.
Claim 1. Pr[A1 ≤ ɛZ∗] ≥ 1 � δ when N � Ω(ln(1=δ) · (λ=

ɛ3)).
Claim 2. Pr[A2 ≤ ɛZ∗] ≥ 1 � δ when N � Ω(ln( |X |=δ) ·

max [(λ2=ɛ2), (λ=ɛ3)]).
Claim 3. Pr[B ≤ 2ɛf (x) + ɛZ∗] ≥ 1 � δ when N � Ω((λ=ɛ) ·

ln (1=δ)).
Remark 1 (Remark on Claim 1). Note that to get the 
same probability result as in Claim 1, Charikar et al. 
(2005) require the sampling bound to be Ω(ln(1=δ)·

(λ2=ɛ4)). The main difference is that they used a 
weaker version of the Chernoff bound, as shown in 
lemma 1 of Charikar et al. (2005), than what we use 
here as shown in Lemma 1. They considered the case 
v � ɛ and gave an upper bound of exp(�nɛ2), which 
nearly matches the result of Lemma 1 if we set µ � 1. 
The point is that in our context, both µ and v are very 
small, which helps us get a much stronger upper 
bound when using Lemma 1.

Remark 2 (Remark on Claim 2). In order to get the 
same probability result as does Claim 2, Charikar et al. 
(2005) require the sampling bound to be Ω(ln(1=δ)·

ln |X | · (λ2=ɛ4)). To prove Claim 2, we need to upper 
bound the lower-tail probability of the sum of N inde
pendent and identically distributed (i.i.d.) random 
variables, where each has a mean at most λZ∗ and 
takes a value between [0, M1] with M1 � λZ∗=ɛ. Our 
improvement is because of a careful examination of 
the mass distribution for each random variable: After 
introducing a new threshold M2 � 2λc(x∗), we find 
that the total mass distributed over the range [M2, M1]

is at most 2Z∗, which is a negligible fraction of the 
total mean of λZ∗ as assumed in the worst case. This 
helps us obtain a much-improved worst-case scenario 
when upper bounding the lower-tail probability.

5. Proof of Theorem 2
In this section, we show how Claims 1–3 yield Theo
rem 2.

5.1. A Remark on e and d
As in the proof of theorem 1 in Charikar et al. (2005), 
we will prove Theorem 2 by working with constant 
multiples C1ɛ and C2δ of ɛ and δ, respectively, for con
venience rather than ɛ and δ themselves. That is, for 
some absolute positive constants C1 and C2, we aim to 

show that any exact minimizer x of the function f̂ 
defined in (3) constructed with

Ω ln |X |

δ
· max λ

2

ɛ2 , λ
ɛ3

� �� �

samples is, with probability at least 1 � C1δ, a (1 + C2ɛ)- 
approximate minimizer of the function f defined in (1). 
This would of course imply Theorem 2 by choosing the 
constant K1 appropriately.

Proof of Theorem 2. Recall that x is an exact mini
mizer of the function f̂ defined in (3):

f (x) � c(x) + fl(x) + fh(x)

� c(x) + f̂ l(x) + f̂ h(x)
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

f̂ (x)

+ fl(x) + fh(x) � f̂ l(x) � f̂ h(x)

� f̂ (x) + fl(x) + fh(x) � f̂ l(x) � f̂ h(x)

≤ f̂ (x∗) + fl(x) + fh(x) � f̂ l(x) � f̂ h(x)

(because of the optimality of x for f̂ (x))

� c(x∗) + f̂ l(x
∗) + f̂ h(x∗) + fl(x) + fh(x) � f̂ l(x) � f̂ h(x)

� c(x∗) + fl(x∗) + fh(x∗)
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

f (x∗)

+ f̂ l(x
∗) � fl(x∗) + fl(x) � f̂ l(x)

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
A

+ f̂ h(x∗) � fh(x∗) + fh(x) � f̂ h(x)
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

B

� f (x∗) + A + B:

Recall that A � A1 + A2:

Pr[f (x) � f (x∗) ≥ 3ɛZ∗ + 2ɛf (x)]

≤ Pr[A + B ≥ 3ɛZ∗ + 2ɛf (x)]

≤ Pr[A1 ≥ ɛZ∗] + Pr[A2 ≥ ɛZ∗] + Pr[B ≥ 2ɛf (x) + ɛZ∗]

≤ 3δ (because of Claims 1, 2, and 3), 

which implies that Pr[f (x) ≤ f (x∗) · (1 + 3ɛ)=(1 � 2ɛ)] ≥ 1 
� 3δ. Thus, we get our result. w

6. Proofs of Claims 1, 2, and 3
6.1. Auxiliary Lemmas
Before presenting the proofs of the three claims, we 
first show three auxiliary lemmas. Recall that Z∗ �

f (x∗) is the optimal value of f(x), the first threshold 
M1 � λZ∗=ɛ, and p � Pr[q(0,ω) ≥ M1] denotes the 
probability of a sample ω being high in the distribu
tion π. Let M2 � 2λc(x∗) and π(ω) be the probability 
associated with the outcome ω ∈ Ω in π. Suppose that 
we have N independent samples ω1, : : : ,ωN from the 
distribution π.

Lemma 2.
1. p ≤ (ɛ=λ).
2. f (0) ≤ λZ∗.
3. For each x ∈ X, Pω∈Ω:q(x,ω)>M2

q(x,ω) ·π(ω) ≤ 2(Z∗ � c(x∗)).
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Proof of Lemma 2.
1. By Property 3, q(0,ω) ≤ q(x∗,ω) +λc(x∗) for every 

ω. Thus,

p � Pr[q(0,ω) ≥ M1] ≤ Pr[q(x∗,ω) +λc(x∗) ≥ M1]

� Pr[q(x∗,ω) ≥ M1 �λc(x∗)]:

Recall that Z∗ � f (x∗) � c(x∗) + E[q(x∗,ω)], which sug
gests that E[q(x∗,ω)] � Z∗ � c(x∗). Note that q(x∗,ω) ≥ 0 
for all ω by Property 1. By Markov’s inequality,

p ≤
Z∗ � c(x∗)

M1 �λc(x∗)
�

Z∗ � c(x∗)

λZ∗=ɛ �λc(x∗)
�

ɛ

λ
·

Z∗ � c(x∗)

Z∗ � ɛc(x∗)
≤

ɛ

λ
:

2. Note that

f (0) � c(0) + E[q(0,ω)] � E[q(0,ω)]

≤ E[q(x∗,ω)] + λc(x∗) ≤ λ(E[q(x∗,ω)] + c(x∗))

� λZ∗, 

where the second equality follows from c(0) � 0 by 
Property 2, the first inequality is because of Property 
3, and the second inequality is valid because λ ≥ 1.

3. Recall that M2 � 2λc(x∗). For each x ∈ X, let Ωx �

{ω : q(x,ω) > M2}. Consider a given ω ∈ Ωx with q(x,ω)

> M2. From Property 2, we have that q(0,ω) ≥ q(x,ω)

> M2, which implies that ω ∈ Ω0. Thus, we have Ωx ⊆

Ω0 for all x. Observe that

Z∗ �c(x∗) � E[q(x∗,ω)] (by definition of f (x∗))

≥
X

ω∈Ω0 q
(x∗,ω)π(ω)

≥
X

ω∈Ω0

(q(0,ω)�λc(x∗))π(ω) (Property 3)

≥
1
2
X

ω∈Ω0

q(0,ω)π(ω) (by definition of Ω0)

≥
1
2
X

ω∈Ωx

q(x,ω)π(ω) (Property 2 and Ωx ⊆ Ω0):

We thus have that 
P
ω∈Ωx

q(x,ω)π(ω) ≤ 2(Z∗ � c(x∗)), 
which yields our result. w

Lemma 3. Suppose we are given a convex function g(x) over 
[a, b] with 0 ≤ a < b and a value µ ∈ [a, b]. Consider the max
imization of E[g(X)] subject to (i) a ≤ X ≤ b and (ii) 
E[X] � µ; the maximum here can be realized when X follows 
a two-pointed distribution, where X takes values a and b with 
respective probabilities (b � µ)=(b � a) and (µ � a)=(b � a).

The proof of Lemma 3 follows directly from the 
convexity property of g(x); see the details in the 
appendix. We apply Lemma 3 to prove the lemma, 
which is useful in Claim 2.

Lemma 4. Let X be a random variable satisfying the 
following three conditions: (1) 0 ≤ a ≤ X ≤ b, (2) E[X] � µ, 
and (3) E[X |X ∈ (c, b]] · Pr[X ∈ (c, b]] ≤ µ′ for some c ∈ [a, b]. 
Then, for any convex function g(x) over [a, b], there exists a 

random variable Y such that (i) E[g(X)] ≤ E[g(Y)]; (ii) Y 
also satisfies conditions (1), (2), and (3); and (iii) Y’s sup
port is a subset of, or is equal to, the set {a, b, c}.

Proof of Lemma 4. Consider a given X satisfying the 
three conditions. Let X1 �

:
(X |X ∈ [a, c]) and X2 �

:
(X |X ∈

(c, b]), respectively, denote the conditional random 
variables of X when restricted to the ranges [a, c] and 
(c, b], respectively. Let p1 � Pr[X ∈ [a, c]], p2 � Pr[X ∈

(c, b]], µ1 � E[X1], and µ2 � E[X2]. Thus, p1 + p2 � 1, p1 
µ1 + p2µ2 � µ, and p2µ2 ≤ µ′. By Lemma 3, we see that 
E[g(X1)] ≤ E[g(Y1)] for some Y1, where E[Y1] � E[X1]

� µ1 and where Y1 has nonzero probabilities at a and c 
only, say pa and pc, respectively.

Consider the maximization of E[g(X2)] subject to 
c < X2 ≤ b and E[X2] � µ2. We see that the maximum 
value will not decrease if we relax the range of X2 to 
[c, b]. From Lemma 3, we see that E[g(X2)] ≤ E[g(Y2)]

for some Y2, where E[Y2] � µ2, and Y2 has nonzero 
probabilities at c and b only, say p′

c and pb, respec
tively. Construct a random variable Y that is distrib
uted on {a, b, c} as follows:

Pr[Y � a] � p1pa, Pr[Y � c] � p1pc + p2p′
c, Pr[Y � b] � p2pb:

Recall that E[Y2] � µ2 � p′
c · c + pb · b, which implies that 

pb · b ≤ µ2 because c ≥ a ≥ 0. Thus, E[Y |Y ∈ (c, b]] · Pr[Y 
∈ (c, b]] � (p2pb)b ≤ p2µ2 ≤ µ′ (i.e., Y meets condition (3)). 
We can verify that Y satisfies conditions (1) and (2) as 
well. Also,

E[g(X)] � p1E[g(X1)] + p2E[g(X2)]

≤ p1E[g(Y1)] + p2E[g(Y2)] � E[g(Y)]:

This completes the proof. w

6.2. Proof of Claim 1

Proof of Claim 1. Recall that by definition, A1 � f̂ l(x∗)

�fl(x∗), fl(x∗) � E[f̂ l(x∗)], and M1 � λZ∗=ɛ. By definition 
of f̂ l(x) in (6), we can rewrite f̂ l(x∗) as f̂ l(x∗) �
PN

i�1 Qi

� �
=N, with Qi � q(x∗,ωi) if q(0,ωi) < M1 (i.e., if 

ωi is low) and Qi � 0 otherwise. Thus, we can view 
f̂ l(x∗)=M1 as a sum of N i.i.d. random variables where 
(i) each summand takes values in [0, 1] because 
q(x∗,ωi)=M1 ≤ q(0,ωi)=M1 < 1 when ωi is low and 
where (ii) f̂ l(x∗)=M1 has mean E[f̂ l(x∗)=M1] � fl(x∗)=

M1 ≤ Z∗=M1 � ɛ=λ. By Lemma 1, we have
Pr[A1 ≥ ɛZ∗] � Pr[f̂ l(x

∗) � fl(x∗) ≥ ɛZ∗]

� Pr
f̂ l(x∗)

M1
�

fl(x∗)

M1
≥

ɛ2

λ

" #

≤ exp �
Nɛ4=λ2

2ɛ=λ+ ɛ2=λ

� �

≤ exp �
N
3

ɛ3

λ

� �

:

By setting the last expression equal to δ, we get our 
claim that when N � Ω ln 1

δ · λ
ɛ3

� �
, Pr[A1 ≤ ɛZ∗] ≥ 1 � δ. w
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6.3. Proof of Claim 2

Proof of Claim 2. Assume for any given x ∈ X, when 
N � Ω(ln(1=δ) · max[(λ2=ɛ2), (λ=ɛ3)]),

Pr[fl(x) � f̂ l(x) > ɛZ∗] ≤ δ: (8) 

We first show how Inequality (8) implies Claim 2. 
Replacing δ with δ= |X | , we have that when N � Ω

�
ln 

|X |=δ · max[(λ2=ɛ2), (λ=ɛ3)]
�
, Pr[fl(x) � f̂ l(x) > ɛZ∗] ≤

δ= |X | for any x ∈ X. Thus, it follows that

Pr[fl(x) � f̂ l(x) > ɛZ∗] ≤ Pr[∃x ∈ X : fl(x) � f̂ l(x) > ɛZ∗]

≤
X

x∈X
Pr[fl(x) � f̂ l(x) > ɛZ∗]

≤ δ (because of the union bound):

Therefore, we have Pr[fl(x) � f̂ l(x) ≤ ɛZ∗] � Pr[A2 ≤ ɛZ∗]

≥ 1 � δ, and we get Claim 2.
Now, we prove Inequality (8). Consider a fixed 

first-stage action x ∈ X. We can view f̂ l(x) as the arith
metic mean of N i.i.d. random variables Q1, : : : , QN, 
where

Qi �
q(x,ωi) if ωi is low,
0 otherwise:

(

For notational convenience, let E[f̂ l(x)] � fl(x) � µ, ɛ′

� ɛZ∗=µ, and Q �
PN

i�1 Qi � Nf̂ l(x). Let t > 0 be a 
parameter to be specified later:

Pr[fl(x) � f̂ l(x) > ɛZ∗] � Pr[f̂ l(x) � fl(x) < �ɛZ∗]

� Pr[f̂ l(x) < µ(1 � ɛ′)] � Pr[Q < (1 � ɛ′)Nµ]

� Pr[e�tQ > e�(1�ɛ′)·N·µ·t] ≤
E[e�tQ]

e�(1�ɛ′)·N·µ·t

(because of Markov′s inequality)

�

QN
i�1 E[e�Qit]

e�(1�ɛ′)N·µ·t

(because of the independence of the N samples):

We now find a good upper bound for the value 
E[e�Qit]. Consider a given x. Observe that when ω is 
low, q(x,ω) ≤ q(0,ω) ≤ M1. Thus, 0 ≤ Qi ≤ M1. Notice 
that

E[Qi] � µ

�
X

ω:q(x,ω)≤M2,q(0,ω)≤M1

q(x,ω)π(ω)

+
X

ω:M2<q(x,ω),q(0,ω)≤M1

q(x,ω)π(ω) �
:

µ2 + µ1, 

where µ2 �
P
ω:q(x,ω)≤M2, q(0,ω)≤M1

q(x,ω)π(ω) and µ1 �
P
ω:M2<q(x,ω), q(0,ω)≤M1

q(x,ω)π(ω). According to the third 
result of Lemma 2, we have µ1 ≤ 2Z∗. From Property 
2, q(x,ω) ≤ q(0,ω). Therefore, µ � E[Qi] � fl(x) ≤ fl(0) ≤

λZ∗ because of the second result of Lemma 2. We 
can verify that the function e�t·h is convex over h for 
any given t > 0. By Lemma 4, we see that E[e�tQi ] ≤

E[e�tQ∗

], where (1) Q∗ takes values only on three possi
ble boundary points {0, M2, M1}, (2) E[Q∗] � µ ≤ λZ∗, 
and (3) Pr[Q∗ � M1] · M1 ≤ 2Z∗. Slightly abusing the 
notation, let µ1 � Pr[Q∗ � M1] · M1 and µ2 � Pr[Q∗ � M2]·

M2—with µ1 + µ2 � µ ≤ λZ∗ and µ1 ≤ 2Z∗. Therefore,

E[e�tQi ] ≤ E[e�tQ∗

] ≤
µ1
M1

(e�tM1 � 1) +
µ2
M2

(e�tM2 � 1) + 1:

Hence, we arrive at

Pr[f̂ l(x) � fl(x) ≤ �ɛZ∗]

≤

µ1
M1

(e�tM1 � 1) +
µ2
M2

(e�tM2 � 1) + 1
� �N

e�(1�ɛ′)tNµ

≤ exp
Nµ1
M1

(e�tM1 � 1) +
Nµ2
M2

(e�tM2 � 1) + (1 � ɛ′)tNµ

� �

:

In the following, we apply the second-order approxi
mation of e�h � 1 � h + (h2=2) + o(h2) that holds for h 
close to zero:
Nµ1
M1

(e�tM1 � 1) +
Nµ2
M2

(e�tM2 � 1) + (1 � ɛ′)tNµ

�
Nµ1
M1

�tM1 +
1
2 (tM1)

2
+ o((tM1)

2
)

� �

+
Nµ2
M2

�tM2 �
1
2 (tM2)

2
+ o((tM2)

2
)

� �

+ tNµ � ɛ′tNµ

� N �tµ1 � tµ2 + tµ +
µ1
M1

1
2 (tM1)

2
+

µ2
M2

1
2 (tM2)

2
�

�tɛ′µ + o
µ1
M1

(tM1)
2

+
µ2
M2

(tM2)
2

� ��

� N
µ1
M1

1
2 (tM1)

2
+

µ2
M2

1
2 (tM2)

2
� tɛZ∗

�

+o
µ1
M1

(tM1)
2

+
µ2
M2

(tM2)
2

� ��

:

(9) 

The last equality is because of two facts: (1) µ1 + µ2 �

µ and (2) ɛ′µ � ɛZ∗.
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Let t � ɛ=(4λZ∗)min(ɛ, (1=λ)) and Λ � (µ1=M1)(1=

2)(tM1)
2

+ (µ2=M2)(1=2)(tM2)
2. Notice that

Λ �
1
2 t2µ1M1 +

1
2 t2µ2M2

≤
1
2 t2 · 2Z∗ ·

λZ∗

ɛ
+

1
2 t2 ·λZ∗ · 2λZ∗

(using facts µ1 ≤ 2Z∗, µ2 ≤ µ ≤ λZ∗, M2

� 2λc(x∗) ≤ 2λZ∗)

� tɛZ∗ t ·
λZ∗

ɛ2 + t ·
λ2Z∗

ɛ

� �

≤
tɛZ∗

2 (by the definition of t):

Substituting this result back to Equation (9), we obtain
Nµ1
M1

(e�tM1 � 1) +
Nµ2
M2

(e�tM2 � 1) + (1 � ɛ′)tNµ

� N(Λ� tɛZ∗ + o(Λ)) ≤ N �
1
2 tɛZ∗ + o(tɛZ∗)

� �

:

Thus, we have shown that for any given x ∈ X, when 
N � Ω(ln(1=δ) · max[(λ2=ɛ2), (λ=ɛ3)]), Pr[f̂ l(x) � fl(x) <

�ɛZ∗] ≤ δ. This completes the proof. w

6.4. Proof of Claim 3

Proof of Claim 3. Recall that B � f̂ h(x∗) � f̂ h(x) + fh(x)

�fh(x∗), that a sample ω is called high if q(0,ω) ≥ M1 
� λZ∗=ɛ, and that p � Pr[ω is high]. Consider a given 
(random) set of N independent i.i.d. samples, say 
S � {ω1, : : : ,ωN}, and let Sh be the set of high scenarios 
in S. By definition, E[ |Sh |=N] � p, where |Sh | denotes 
the cardinality of Sh:
B � f̂ h(x∗) � f̂ h(x) + fh(x) � fh(x∗)

�
1
N
X

ω∈Sh

(q(x∗,ω) � q(x,ω))

+ E[q(x,ω) � q(x∗,ω) |ω is high] · p (see (6) and (7))

≤
1
N
X

ω∈Sh

(q(0,ω) � q(x,ω))

+ E[q(0,ω) � q(x∗,ω) |ω is high] · p (Property 2)

≤
|Sh |

N ·λc(x) +λc(x∗) · p (Property 3)

≤
|Sh |

N
·λc(x) + ɛZ∗ (because of the first result

of Lemma 2):

Notice that |Sh |=N can be viewed as the mean of N i.i.d. 
Bernoulli random variables—each with mean p ≤ ɛ=λ 
—by the first result of Lemma 2. Applying Lemma 1
with v � µ � ɛ=λ, we see that when N � Ω(ln(1=δ) ·

(λ=ɛ)), Pr[ |Sh |=N � p ≤ ɛ=λ] ≥ 1 � δ. In this case, we 
have |Sh |=N ≤ p + ɛ=λ ≤ 2ɛ=λ and B ≤ 2ɛf (x) + ɛZ∗. w

7. Conclusion
We have shown improved sample-complexity bounds 
in two-stage stochastic optimization via a careful anal
ysis of the worst-case scenarios based on “high” and 
“low” scenarios. Optimal sample-complexity bounds 
would be very useful to know for sample-average 
approximation. A bold conjecture in this direction 
would be that O((λ=ɛ2) log(1=δ)) samples would suf
fice. Is such a conjecture true? It also seems reasonable 
to conjecture that Ω((λ=ɛ2) log(1=δ)) would be a lower 
bound on the sample complexity.

Furthermore, discretization appears to increase the 
sample complexity for continuous domains (Charikar 
et al. 2005). Specifically, section 5 of Charikar et al. 
(2005) considers the following continuous setting for 
X, where X ⊆ Rn

+ (the nonnegative orthant of n-dimen
sional Euclidean space) instead of being a discrete 
set. Suppose the first-stage costs are linear; for some 
given nonnegative vector v � (v1, v2, : : : , vn), we take 
c(x) � vTx. We assume further that the function q(·, ·) is 
(λ, v)-Lipschitz:

|q(x,ω) � q(x′,ω) | ≤ λ ·
Xn

i�1
vi · |xi � x′

i | ,

∀ω, x � (x1, : : : , xn), x′ � (x′
1, : : : , x′

n), 
This is easily seen to imply Property 3. The work of 
Charikar et al. (2005) reduces such a continuous sce
nario to the discrete setting via a meshing argument. 
Can the sample complexity obtained here be improved 
upon?
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Appendix. Remaining Proofs
Proof of Lemma 1. Let X �

Pn
i�1 Xi. Notice that

Pr[X ≥ µX + v] � Pr X ≥ nµX 1 +
v

µX

� �� �

≤ exp �nµX
(v=µX)

2

2 + v=µX

 !

(using Theorem 3)

� exp �nv2

2µX + v

� �

: w 

Proof of Lemma 3. Because g(x) is convex, we have that 
g(x) � g(a) ≤ (g(b) � g(a))=(b � a)(x � a) for any x ∈ [a, b]. 
Therefore, we get

E[g(X)] ≤
g(b) � g(a)

b � a (µ � a) + g(a) � g(a)
b � µ

b � a + g(b)
µ � a
b � a : w 
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