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Abstract. We study generalizations of online bipartite matching in which each arriving
vertex (customer) views a ranked list of offline vertices (products) and matches to (pur-
chases) the first one they deem acceptable. The number of products that the customer has
patience to view can be stochastic and dependent on the products seen. We develop a
framework that views the interaction with each customer as an abstract resource consump-
tion process and derive new results for these online matching problems under the adver-
sarial, nonstationary, and independent and identically-distributed arrival models, assuming
we can (approximately) solve the product ranking problem for each single customer. To that
end, we show new results for product ranking under two cascade-click models: an optimal
algorithm when each item has its own hazard rate for making the customer depart and a
1/2-approximate algorithm when the customer has a general item-independent patience dis-
tribution. We also present a constant-factor 0.027-approximate algorithm in a new model
where items are not initially available and arrive over time. We complement these positive
results by presenting three additional negative results relating to these problems.
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1. Introduction
Online matching is a fundamental problem in e-commerce
and online advertising, introduced in the seminal work
of Karp et al. (1990). While offline matching has a long
history in economics and computer science, online
matching has exploded in popularity with the ubiquity
of the internet and the emergence of online market-
places. A common scenario in e-commerce is the online
sale of unique goods because of the ability to reach niche
markets via the internet (e.g., eBay); typical products
include rare books, trading cards, art, crafts, and memo-
rabilia. We will use this as a motivating example to
describe our setting. However, the settings we study can
also model job search/hiring, crowdsourcing, online
advertising, ride-sharing, and other online matching
problems.

In classical online bipartite matching, we start with a
known set of offline vertices that may represent items for
sale or ads to be allocated. Then, an unknown sequence

of online vertices arrives, which may represent customers,
users, or visitors to a web page. These online vertices or
customers arrive one by one, and the decision to match
each customer or not (and if so, to which item) must be
made irrevocably before the next customer is revealed.
In the original formulation, the online vertices are chosen
fully adversarially, although models that assume they
are drawn from probability distributions have since
been studied (Feldman et al. 2009, Alaei et al. 2012).
Many generalizations of online matching have also been
proposed, including stochastic rewards and weighted
graphs. Under stochastic rewards, there can be repeated
interactions with a customer (recommending an item, and
if they do not accept, recommending another item, etc.)
before the next one arrives, as we describe subsequently.
Our paper’s goal is to provide a framework that decouples
the repeated-interaction problem for a single customer
from the overall allocation problem over multiple custo-
mers, leading to new results and unification of old ones.
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Moreover, motivated by product ranking, we derive new
results for the repeated-interaction problem with a single
customer, including the extension in which the horizon for
these interactions is unknown or stochastic.

1.1. Description of Stochastic Rewards Model,
with Patience
In the stochastic rewards model, each edge exists indepen-
dently according to a known probability; this probability
is revealed upon the arrival of its incident online vertex.
This is motivated by online platforms in which only a
probabilistic prediction of whether a customer will buy
an item is known at the time they arrive. The algorithm
can “probe” edges incident to an online vertex, or equiv-
alently recommend the customer an item, after which if
they accept, then the item is sold committedly. If they
otherwise reject, then under the basic stochastic rewards
model (Mehta and Panigrahi 2012) there is no opportu-
nity to offer another item; this is known as the customer
having a patience of 1.

Other papers (Bansal et al. 2010, Adamczyk et al. 2015,
Brubach et al. 2017) have more generally allowed the cus-
tomer to have any deterministic patience 0. This can be
interpreted as a product ranking problem where 0 differ-
ent items are listed on a page, and the customer will view
them in order, stopping once they see an acceptable item
or reaching the end of the page. The product ranking
problem where 0 is deterministic can be efficiently
solved using dynamic programming (Purohit et al.
2019). More generally, if 0 is random but drawn from a
known distribution, then the customer may probabilisti-
cally depart after seeing any undesirable item; this is
called the cascade-click model of product ranking. We will
derive new results for the cascade-click model.

1.2. Description of Edge Weights and Stochastic
Arrival Models

In an orthogonal generalization of online bipartite match-
ing, edges between items and customers may have a
weight, which is the reward collected when that edge is
matched. This can represent, for example, the price at
which that item is sold to the customer. When edges can
take on different possible weights, parametric competitive
ratios are known (Ma and Simchi-Levi 2020), but a com-
petitive ratio that is an absolute constant is impossible in
the original adversarial arrival model (see Mehta 2012).
Therefore, many papers have focused on the relaxed
models of stochastic arrivals or vertex weights instead, each
of which circumvents this impossibility.

In the stochastic arrival models, the total number of
online vertices T is known, and each online vertex t =
1,...,T has a type' drawn independently from a known
distribution. Generally, we allow distributions to be non-
stationary and vary with t, although we also consider the
IID special case where these distributions are identical.
Stochastic arrival models are motivated by settings with

sufficient data to estimate the distribution over types.
Meanwhile, in the model with vertex weights, all edges
incident to any offline vertex u must have the same
weight. This is motivated by each offline item having its
own fixed price that is identical across customers.

1.3. Our Contributions

We develop a decoupling framework, which we describe
in greater detail in Section 1.3.1, wherein we first study a
simpler, single-customer version of various stochastic
matching problems and then use the algorithms for these
problems to inform decisions during online customer
arrivals. This approach allows us to derive new results
for online bipartite matching with stochastic rewards
and, in many cases, stochastic patience as well.

We consider both vertex weights and general edge
weights in combination with the adversarial, nonstation-
ary, and IID arrival models. Since our framework
requires the repeated-interaction problems to be solvable
for a single customer, we also make advancements on
this front (see Section 1.3.2): namely, improving algo-
rithms for the cascade-click model of product ranking,
and deriving new algorithms in a model where items are
arriving over time. Finally, we derive several negative
results of interest (see Section 1.3.3).

1.3.1. Framework That Decouples Online Matching from
Single-Customer Problems. First, we build a framework
that takes as input a subroutine for solving the single-
customer problem, and outputs an algorithm for the
overall multicustomer online matching problem, under
the variants we mentioned. The competitive ratios guar-
anteed by our framework are explained in Table 1, and
we would like to highlight a key distinction in our
approach. Existing analyses of stochastic rewards (Ban-
sal etal. 2010, Mehta and Panigrahi 2012, Adamczyk et al.
2015, Brubach et al. 2017) all use a linear program (LP)
that is specific to the stochastic rewards matching process,
which exhibits a stochasticity gap (see Section 6.1). By
contrast, our framework uses an abstract LP, in which

e There is a variable x,(m) for each of the (exponen-
tially many) policies 7t that could be used for interact-
ing with a single customer of type v;

e Each such policy 7 ends up matching each avail-
able offline vertex 1 with probability p,.(7);

e There is a single set of constraints tying together
the customers over time, which enforce that each off-
line vertex u is matched at most once in expectation.
Our framework abstracts away the details of the stochas-
tic rewards matching process, deterministic versus sto-
chastic patience, etc., and holds as long as the policies
represent different consumption processes” that use up
the offline vertices u independently over time according to
known probabilities.

Our results, however, are predicated on the existence
of a subroutine that can (approximately) solve the
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Table 1. Landscape of Online Matching Results

Unweighted

Vertex weighted Edge weighted

Adversarial
Nonstochastic 0.632 (tight) (Karp et al. 1990)

Stochastic rewards 0.5 (Mehta and Panigrahi 2012)

Deterministic ?—-05

patience/hazard rate model

Stochastic patience ?—0.25
Nonstationary

Nonstochastic 0.632 (Alaei et al. 2012)

Deterministic ? —0.632

patience/hazard rate model

Stochastic patience ?—0.316
Known IID

Nonstochastic 0.729 (Brubach et al. 2020)

Stochastic rewards 0.632 (Brubach et al. 2020)

Deterministic 0.46 — 0.632 (Brubach et al.

patience/hazard rate model 2017)

Stochastic patience ?—0.316

0.632 (tight) (Aggarwal et al. 2011) [must be weight dependent]
(Ma and Simchi-Levi 2020)

?—0.5 [must be weight dependent]
(Ma and Simchi-Levi 2020)

?—05 -

?—025 -

0.632 (Alaei et al. 2012)
? —0.632

0.5 (Alaei et al. 2012)
?—0.5

? —0.316 ?—0.25

0.729 (Brubach et al. 2020) 0.705 (Brubach et al. 2020)

0.632 (Brubach et al. 2020) 0.632 (Brubach et al. 2020)

0.46 — 0.632 (Brubach et al. 2017) 0.46 — 0.632 (Brubach et al.

2017)

? —0.316 ?—0.316

Notes. Landscape of online matching results grouped by arrival model and form of edge weights, and including the unknown patience models
we introduce: the (item-dependent) hazard rate model and the arbitrary (item-independent) stochastic patience model. Bold results with arrows
show the improvements from this paper, with question marks denoting problems where no prior bound was known.

repeated-interaction problems for each customer. We
will call such a subroutine x-approximate if, given any
weights w,,, it finds a policy m whose immediate
expected reward ) ", w,puy(T) is atleast x times the max-
imum possible immediate expected reward over all poli-
cies, for some « € [0, 1]. Equipped with a k-approximate
subroutine, our framework provides

1. A x/2-competitive algorithm for vertex weights
and adversarial arrivals (Section 4.1);

2. A «/2-competitive algorithm for edge weights
and nonstationary arrivals (Section 4.2);

3. A(1 —1/e)x-competitive algorithm for edge weights
and IID arrivals (Section 4.3); and

4. A (1-1/e)x-competitive algorithm for vertex
weights and nonstationary arrivals (Section 4.4).
The value x = 1is possible when 0 is deterministic (Puro-
hit et al. 2019). We derive new results showing that x = 1
is also possible when 0 follows an (item-dependent) haz-
ard rate model, and that x =1/2 is possible when 0
follows any (item-independent) distribution. This, in con-
junction with our framework, justifies all of the results in
Table 1.

1.3.2. New k-Approximate Subroutines for Single-
Customer Problems. As discussed, it is important for
our framework to have x-approximate subroutines
for the repeated-interaction problems with a single
customer. We make the following advancements on
this front:

1. A l-approximate (optimal) subroutine, in the
model where each item i has a known hazard rate r; and,

if seen by the customer and undesired, causes the cus-
tomer to depart with probability (w.p.) #;;

2. A 1/2-approximate subroutine, in the model
where the customer has an arbitrary known patience
distribution (and the probabilities of departing do not
depend on the items seen);

3. A 0.027-approximate subroutine, in a new model
where the customer has a deterministic patience, but
the items are arriving over time according to Bernoulli
processes.

The first two models can be motivated by product
ranking in e-commerce. A special case of the first model
(Section 5.1) is where 7, is equal to some 7 for all 7, which
represents a patience distribution with constant hazard
rate r, that is, a customer who departs w.p. r after each
position regardless of the item seen. Meanwhile, our
1/2-approximation for the second model (Section 5.2)
improves the state-of-the-art 1/e-approximation from
Chen et al. (2021) for this cascade-click model of product
ranking. Their result also only holds in the special case of
increasing hazard rate, while we extend it to general dis-
tributions by formulating and rounding a new LP relaxa-
tion for this single-customer problem. We note that
general patience distributions are well motivated in
applications; see, for example, Aveklouris et al. (2021),
who study a matching model where items are also arriv-
ing over time. On that note, our result for the third model
(Section 5.3), when plugged into our frameworks, pro-
vides constant-factor guarantees in a related model
where items (representing contractors in an online labor
platform) may not be present at the beginning and need
to arrive online after each customer (to acknowledge
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they can perform the customer’s task), and the customer
has to then also accept that contractor. We contrast this
new model with other online platform matching models
in Section 2.

1.3.3. Negative Results. Finally, our work presents three
important negative results:

1. We formalize the notion of a stochasticity gap for
LP-based approaches to these problems and construct
a stochastic bipartite graph in which even the offline
maximum matching has an expected size of at most
0.544 times the value of the LP relaxation (Section 6.1).
This means that the competitive ratio from the existing
LP-based approaches cannot be better than 0.544, while
our framework yields a 1—1/e ~ 0.632-competitive
algorithm.

2. We show that the simple family of greedy algo-
rithms introduced in Mehta and Panigrahi (2012) can-
not be better than 1/2-competitive (Section 6.2).

3. We show that when offering items to a single cus-
tomer with random patience, if one compares to a
benchmark that knows the realization of the patience
in advance, then any constant-factor approximation is
impossible (Section 6.3). Importantly, our counterex-
ample holds even if the customer can be repeatedly
offered the same item, which is identical to having an
unknown number of opportunities to make a single
sale (since the customer will buy at most one item).
This is similar in spirit to the negative result derived in
Aljjani et al. (2020).

2. Further Related Work

2.1. Online Matching with Stochastic Rewards
Online matching represents a large literature, which has
been surveyed in Mehta (2012). We will describe the por-
tion of this literature that focuses on stochastic rewards,
where edges only match probabilistically upon being
probed. This problem has been studied under both
adversarial and stochastic arrival models, as well as dif-
ferent variants depending on the assumptions about
edge weights/patience.

Online matching with stochastic edges was introduced
in Bansal et al. (2010)* as stochastic matching with time-
outs (patience), where the authors showed a ratio of 0.12
for known IID arrivals and arbitrary edge weights. This
was later improved to 0.46 in Brubach et al. (2017)° and to
0.51 in Fata et al. (2019) for some cases. We improve these
results by establishing a competitive ratio of 1/2 for non-
stationary arrivals and 1 — 1/e for IID arrivals. We note
that Borodin et al. (2022) concurrently prove these results,
differing in three ways: (i) They allow for more general
constraints on which edges can be probed, beyond a sim-
ple patience constraint (although they do not consider sto-
chastic patience). (ii) They compare against a more
powerful offline benchmark that can switch back and

forth between probing different online vertices. (iii) They
show that 1 —1/e holds in the more general model of
nonidentical independent draws arriving in a uniformly
random order. The same authors have also studied online
matching with stochastic edges under the “secretary”
model of random-order arrival (see Borodin et al. 2021).

For adversarial arrivals, most work has focused on the
unweighted case, initially studied by Mehta and Pani-
grahi (2012) in the special case where patience 8, equals
one for all v. Under the further restriction of uniform van-
ishing edge probabilities, they showed that a competitive
ratio of 0.53 is possible. This was extended to a ratio of
0.534 for unequal, but still vanishingly small, probabilities
(Mehta et al. 2015). These results were also recently
improved to 0.576 and 0.572, respectively, by Huang and
Zhang (2020) and then to 0.596 for both models by Goyal
and Udwani (2023); however, all these results focus on the
case of vanishingly small probabilities, do not consider
patience values greater than one, and do not consider
vertex weights. For arbitrary edge probabilities, general
deterministic patience values, and vertex weights, our
guarantee of 0.5 is the best known. There is also a hard-
ness result in Mehta and Panigrahi (2012) which shows
that no algorithm for stochastic rewards with adversarial
arrivals can achieve a competitive ratio greater than 0.62.
This quantity is strictly less than 1 —1/e, although we
argue that this difference is artificially caused by the sto-
chasticity gap, as we explain in Section 6.1.

Golrezaei et al. (2014) study another model of stochastic
rewards, in which when a vertex v (viewed as a customer)
arrives online, an online algorithm chooses a set S of
potential matches for v (viewed as an offering of products
to the customer). Each customer (online vertex) has a gen-
eral choice model which specifies the probability of the cus-
tomer purchasing each item when offered each possible
set of product assortments S. We contrast this model in
more detail in Online Appendix B, but note that in this set-
ting, a set of potential matches is chosen all at once rather
than probed sequentially, with the outcome being deter-
mined by full set S (the offered product assortment).

2.2. Large Starting Capacities

We do not study how our guarantees improve if there
are at least k copies of every offline vertex, although we
believe our frameworks could be expanded to do so. The
state of the art for these k-dependent guarantees in online
matching can be found for general adversarial arrivals
(Ma and Simchi-Levi 2020), unweighted adversarial arri-
vals (Kalyanasundaram and Pruhs 2000), general non-
stationary arrivals (Jiang et al. 2022), nonstationary
arrivals with vertex weights (Alaei et al. 2012), and IID
arrivals (Ma et al. 2021).

2.3. Cascade-Click Models in Product Ranking
We turn our literature review to papers that study the
repeated-interaction/product ranking problems for a
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single customer. Our result from Section 5.1 shows how
to optimally solve this problem under constant hazard
rate, a special case of interest in Chen et al. (2021). Our
result in Section 52 improves their guarantee and
holds for general patience distributions. We should note
that our results do not directly apply to more general
cascade-click models (see Kempe and Mahdian 2008)
where the probability of the customer running out of
patience depends on the specific item shown, but we
believe that our simple LP-based technique in Section 5.2
could be useful for these generalized models. Other gen-
eralized ranking problems involving choice models are
studied in Derakhshan et al. (2022).

In the related sequential assortment problem, multiple
products can be shown to the customer at a time. The cus-
tomer chooses between them according to a Multinomial
Logit (MNL) choice model (instead of independent click
probabilities), and alternatively the customer could choose
the option of viewing the next assortment, never to return.
There is a constraint that the same product cannot be
shown in different assortments. This problem is typically
studied when the number of stages is deterministic and
known (see Feldman and Segev 2019 and the references
therein); however, the stage-dependent coefficients in Feld-
man and Segev (2019) can be used to capture our notion of
a stochastic patience. Nonetheless, the polynomial-time
approximation scheme (PTAS) derived in Feldman and
Segev (2019) does not subsume our 1/2-approximation
because in the sequential assortment problem there is no
constraint on the number of products offered at once,
hence it does not capture our problem; also, in a PTAS, to
geta (1 — e)-approximation the runtime needs to be expo-
nential in 1/¢, whereas our LP-based technique has poly-
nomial runtime independent of any error parameter.

2.4. Online Matching Where Items Arrive
over Time

Motivated by online platforms, many models where
items arrive over time have been recently studied, with
constant-factor approximations (Aouad and Saritag 2022,
Kessel et al. 2022) and optimal algorithms (Aveklouris
et al. 2021, Kerimov et al. 2021) known under certain
regimes. These papers focus on steady-state behavior,
which is possible because items are arriving indefinitely.
Our paper contrasts these models because there is still a
finite supply of items; they merely need to “arrive” to
acknowledge each customer, and we provide a constant-
factor approximation for any finite time horizon and mar-
ket size.

3. Problem Definition and Notation

Weuse G = (U, V; E) to denote a bipartite graph with ver-
tex set UUV and edge set ECUX V. Let U= {13,...,
1, } represent offline vertices and V = {vy,...,v,} repre-
sent online vertices. For an edge e = (1, v), we denote the

weight of edge e by w, or w,, ,; for the special case of vertex
weights, each offline vertex u; has a weight denoted by w;,
and w,, , = w; forallv € V. We will generally consider sto-
chastic edges, which means that for each edge (u;,v;)
€ U x V, there is a known probability p; ; with which that
edge will independently exist when probed.

When considering the online matching problem for a
single online vertex (customer) v, we will refer to it as a
star graph. In this case, we simplify notation and write p;
to denote the probability of edge (u;, v). We also use p, ,
for the given probability of edge (1, v) when indices i and
j are not required. Without loss of generality, we may
assume that p,, , is defined even for (u,v) ¢ E, because in
this case we can simply letp,, , = 0.

We are further given a patience value 0, for each online
vertex in V' (we may also write 0, for the patience of ver-
tex v; € V) that signifies the number of times we are
allowed to probe different edges incident on v when it
arrives. Each edge may be probed at most once, and if it
exists, we must match it and stop probing (probe-com-
mit model).

We consider the online vertices arriving at positive inte-
ger times. In the adversarial arrival model, the vertices of
V ={vy,v,,...,0,} are fixed and the order of their arrival
is set by an adversary so as to minimize the expected
matching weight. We assume without loss of generality
that the vertices arrive in the order vy, vy, ..., v,,. When we
consider the stochastic arrival models, V instead specifies
a set of vertex fypes, and at time t, a vertex of an indepen-
dently randomly chosen type from a known distribution
arrives. Generally, these distributions can vary across
time, which we call the prophet arrival® model; we also con-
sider the special case where these distributions are identi-
cal, which we refer to as IID arrivals. In these models, we
will let T denote the length of the time horizon which is
assumed to be known (otherwise the problem is impossi-
ble; see Section 6.3).

When an online vertex v arrives at time ¢, we attempt
to match it to an available offline vertex. We are allowed
to probe edges incident to v; one by one, stopping as
soon as an edge (u;,v;) is found to exist, at which point
the edge is included in the matching and we receive a
reward of w;. We are allowed to probe a maximum of 60;
edges (in the stochastic patience models, 6; is not known
a priori and is discovered only after 0; failed probes); if
0 edges are probed and none of the edges exist, then ver-
tex v; remains unmatched and we receive no reward. If
we successfully match v; to u;, we say that w; is the value
or reward of v/'s match; if v, remains unmatched, we say it
has a value or reward of zero. The next online vertex v;,1
does not arrive until we have finished attempting to
match v; (either by exhausting the patience constraint or
by successfully matching v,). Thus, there is only ever one
online vertex available for matching at any one time.

We use G to denote an instance, which includes
the graph, weights, edge probabilities, and any arrival
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distributions including patience. Given any instance G
one can consider an optimal offline algorithm, which
knows in advance the online vertices that will arrive. For
the adversarial arrival model, this means knowing the
sequence v1,0s, ..., Uy; for the stochastic arrival models,
this means knowing the sequence of T types that will be
realized. We let OPT(G) denote the expected reward col-
lected by the best sequential probing algorithm on G that
has access to this offline information, noting that (i)
OPT(G) does not know the realizations of the stochastic
edges in advance either; (ii) computing OPT(G) is diffi-
cult but unnecessary; (iii) for stochastic arrival models,
this expectation is also over the realizations of the T
types; and (iv) we assume that the offline algorithm must
finish” the interactions with one online vertex before
moving to the next. Meanwhile, we let ALG(G) denote
the expected reward collected by a fixed online algo-
rithm on G, again taking a realization over types in the
stochastic arrival models, and any potential randomness
in the algorithm.

With this understanding, we say that a fixed (poten-
tially randomized) online algorithm is c-competitive if
ALG(G)/OPT(G) > c for all instances G, where cis a con-
stant in [0,1]. We are interested in the maximum value of
¢ for which an algorithm can be c-competitive, which is
referred to as the competitive ratio.

3.1. Outline for the Rest of the Paper

Our main algorithms and results for online matching
with stochastic edges are presented in Section 4. In that
section, we first present an algorithm for the vertex-
weighted case, under adversarial arrivals, and show that
it is 1/2-competitive. To our knowledge, this is the first
result for this setting. In addition, we provide an algo-
rithm for the edge-weighted case, under prophet arrivals.
Here, too, we are able to show the algorithm is 1/2-com-
petitive; we further show that a slight modification can
improve the competitive ratio to 1 — 1/e when either the
edge-weighted assumption is relaxed to vertex weights
or the nonstationary assumption is relaxed to known IID
arrivals.

All of the algorithms of Section 4 rely on utilizing, as a
black box, an algorithm for the simpler problem of a star
graph, which corresponds to a single online customer.
For this problem, when the patience of the customer is
known, there is an optimal algorithm based on dynamic
programming because of Purohit et al. (2019). However,
the results in Section 4 are stated in an abstract general
manner, which allows us to swap out the algorithm of
Purohit et al. (2019) for algorithms solving the star graph
problem under different settings of patience. In Section
5, we introduce new, stochastic models for the patience
of the customer and give algorithms for these new set-
tings. These new star graph algorithms can then be used
as black boxes in the algorithms of Section 4, giving

results for online matching under these new patience
models.

Finally, in Section 6, we present our negative results
following the order described.

4. Algorithms for Online Matching with
Stochastic Edges

In this section, we present our results for online matching
with stochastic edges. Recall that in this problem, the
items U are known in advance while the customers
arrive one by one in an online fashion. When a customer
of type v arrives, we learn the probability p, », for each
u € U, that the customer will purchase item u if offered; if
purchased, we gain some reward specified by w, ., and
if not, we may proceed to offer another item up to a total
of O, offers. In the simplest setting, 0, is known to the
algorithm, although our framework can also handle set-
tings where only a probability distribution over 0, is
known (see Section 5). An online algorithm must offer
items sequentially to the customer and must make all its
offers before the next one arrives. The goal is to maximize
the expected total reward across all customers.

4.1. Vertex-Weighted, Adversarial Arrivals

We present a greedy algorithm, AdvGreedy, which
achieves a 0.5-approximation for online matching with
vertex weights, stochastic rewards, and patience con-
straints in the adversarial arrival model. Recall that in
this setting, each offline item u; € U has a weight w; such
that w,, , = w; for all customers v € V, modeling the situ-
ation where items have a fixed price that is the same for
all customers. If vertex v is the ! vertex to arrive online,
we say v arrives at time t. Recall that the goal of the prob-
lem is to offer items to customer v; one by one, until either
the patience runs out or an item is successfully sold, and
the entirety of this process is carried out before the
(t+1)* arrival, v,41, arrives. The goal is to maximize the
total revenue across all arrivals. Our algorithm makes
use of a black box subroutine, STARBB, which takes as
input a single online vertex, along with the probabilities
and weights of its incident edges; STARBB(v, p, w) simply
probes edges incident to online vertex v in some order,
until either v’s patience is exhausted or a match is suc-
cessful. Our results hold as long as STARBB is optimal, or
within a constant factor x of optimal. When the patience
is deterministic and known to the algorithm, we can use
the dynamic programming-based algorithm of Purohit
et al. (2019) for StarBB; the dynamic program gives a
sequence of 0, vertices in U to probe in this order. This is
optimal for star graphs, so x = 1. In Section 5, we extend
this online stochastic matching result to settings where
the patience is unknown and stochastic, by giving star
graph algorithms for these settings and proving constant-
factor approximations for them.
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Algorithm 1 (Use a Star Graph Black Box to Greedily
Match Arriving Vertices)
Function AdvGreedy(U, V, p, w):
for Arriving vertex v € V do
LSTARBB(U, p.wW)

Let ALG(G) denote the expected size of the matching
produced by this algorithm on the graph G. Let OPT(G)
denote the expected size of the matching produced by an
optimal offline algorithm. Our main result here is

Theorem 1. Given a x-approximate black box for solving
star graphs, Algorithm 1 achieves a competitive ratio of

0.5x; that is, for any bipartite graph G, gtﬁgg) > 0.5x.

To prove this, we first present an LP which provides
an upper bound on the offline optimal.

4.1.1. An LP Upper Bound on OPT(G). We formulate a
new LP for our problem by adding a new constraint, (1d),
to the standard LP relaxation of the problem. This new LP
gives a tighter upper bound on the offline optimal solu-
tion, OPT(G). Note that our algorithm does not need to
solve this new LP, as it is only used in our analysis.

OPTip:=max) > Xuopu oty )
uel veV
subject to Z Xy, oPu,o <1 Yuel (1a)
veV
qu,vpu,v <1 YoeV (1b)
uel
> xu0 <E[6,] YoeV (1o
uel
Z Xu,oPu,0wy < OPT(U’,0)
uel’
vu' cu,veV
(1d)
0<x,,<1 Yuel,veV

In this LP, we slightly abuse notation and write OPT(U’, v)
to denote OPT(G’) for a star graph G’ = (U’,{v}, U’ X
{v}). Recall that OPT(U’,v) can be computed by a black
box.

We first show in Online Appendix A that our strength-
ened LP is a valid upper bound.

Lemma 1. For any bipartite graph G, OPT p(G) = OPT(G).

4.1.2. Proof of 0.5-Competitiveness. We can then bound
the performance of our greedy algorithm relative to the
solution of LP (1).

Lemma 2. If STARBB is a k-approximate algorithm for star
graphs, then for any bipartite graph G, ALG(G) = 0.5«
OPTp(G).

By Lemmas 1 and 2, we have ALG(G) > 0.5kOPTp
(G) 2 0.5xkOPT(G), which implies our main result of a

5-competitive algorithm. As mentioned, using the probing
order given by the dynamic program of Purohit et al.
(2019) as STARBB gives k = 1, 50 we have a 2-approximation.
In Section 5, we present star graphs for stochastic patience
settings, where « is not necessarily one.

4.2. Prophet Arrival Setting

If we wish to allow for arbitrary edge weights, we must
consider a different arrival model. A popular arrival
model in the literature is the known IID setting, as dis-
cussed in Section 2; here, we consider a generalization of
the known IID setting, which we call the prophet arrival
model. In this model, V specifies a set of possible arrival
types; each arrival takes on one of these types randomly,
according to a known distribution. The probabilities at
each arrival are independent of previous arrivals, and
the distribution over possible types can be different at
each arrival.

Fort=1,2,...,Tand v € V, denote by gy, the probabil-
ity that the Vertex arriving at time ¢ will be of type v. For
convenience, we denote by g, = 3./, o the expected
number of arrivals of a vertex of type v.

We employ a new exponential-sized LP relaxation. In
this LP, the variables correspond to policies for probing an
arriving online vertex. A deterministic policy r for match-
ing any online vertex type v is characterized by a permu-
tation of some subset of U. The policy specifies the strategy
of attempting to match v to vertices of U in the order given
by 7, until either a probe is successful, all vertices in 7 are
attempted, or the patience of v is exhausted. Let P denote
the set of all deterministic policies.

We present our LP in (2). We let p,,(71) denote the
probability that an online arrival of type v is matched
to offline vertex u when following policy 7, assuming
that all vertices of 7 are still unmatched. The decision
variables in the LP are given by x,(n), and we let
OPT_pp(G) denote the true optimal objective value of
the exponential-sized LP.

OPTpp = maxz Z xv(T()Z Puv(n)wuv )

veV neP uel

subject to Z va(n)pw(n) <1 Vuel (2a)

veV neP

va(n) =1 YoeV (2b)
nepP

Xp(11) >0 YoeV,meP (20)

We can interpret x,(77) as the expected number of times
policy m will be applied to an online vertex of type v.
Constraint (2a) says that in expectation each offline ver-
tex u can be matched at most once. Constraint (2b) comes
from the fact that exactly one policy (possibly the policy
that makes zero probes) must be applied to each arriving
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vertex of type v. It follows from standard techniques
(see, e.g., Bansal et al. 2010, lemma 9) that even for a clair-
voyant, who knows the realized types of arrivals in
advance, if we let x,(7t) denote the expected number of
times it applies policy m on an online vertex of type v,
then this forms a feasible solution to the LP with objec-
tive value equal to the clairvoyant’s expected weight
matched. Therefore, if we can bound the algorithm’s
expected reward relative to OPT pp(G), then this would
yield a competitive ratio guarantee.

4.2.1. Solving the Exponential-Sized LP. The LP (2)
has a variable x,(m) for every possible online vertex type
v and policy € P. If P has polynomial size, this LP
therefore has polynomial size. This happens, for exam-
ple, when all online vertices have a small constant
patience. For instance, when the patience of all vertices is
one, a policy 7 € P is characterized by a single offline
vertexand so |P| = |U]|.

However, for general patience values the LP has expo-
nentially many variables. Nonetheless, since there are
only a polynomial number of constraints, a sparse solu-
tion which is polynomially sized still exists. To help in
solving the LP, we consider the dual.

minimize Z ay+ Z JoP,, ©)

uel veV

s.t. pr(n)au +ﬁv > Zpuv(n)wuv

uel uell
YoeV,neP (3a)

a, >0 Yuel

) (3b)

Note that the exponential family of constraints (3a) can
be rewritten as

m%g( Zpuv(n)(wuv - au) < ﬁy/ VoeV (4)
ne uell

which is equivalent to, for every online type v € V, solv-
ing the probing problem for a star graph consisting of a
single online vertex of type v and adjusted edge weights
W)y, = Wiy — Ay

Recall that if for every online type v € V, we have a
black box which can solve the maximization problem
in (4) to optimality, then we have a separation oracle
for the dual LP which can either establish dual feasibil-
ity or find a violating constraint given by v and 7. By
the equivalence of separation and optimization, this
allows us to solve both the dual LP (2) and in turn the
primal LP (3) using the ellipsoid method, as formal-
ized in Proposition 1.

Proposition 1. Given black box star graph algorithms for
every online vertex type which can verify (4) in polynomial

time, the exponential-sized LP (2) can be solved in polyno-
mial time.

An explicit statement which directly establishes Prop-
osition 1 can be found in chapter 14 of Schrijver (1998).
We should note that the ellipsoid method is only used to
establish poly-time solvability in theory, and that a col-
umn generation method which adds primal variables
xy(1t) as needed on the fly is usually more efficient in
practice.

In either case, while the dynamic programming
approach of Purohit et al. (2019) gives us an optimal
algorithm for verifying (4) in polynomial time, for the
setting of general stochastic patience described in Section
5.2, the algorithm we present is only a 1/2-approxima-
tion for the star graph problem. Nonetheless, one can still
use the structure of the dual LP, along with this approxi-
mate separation, to compute a (1/2 — €)-approximate
solution to the primal LP. This is formalized in Proposi-
tion 2.

Proposition 2. Suppose for every type v € V, we are given
a black box which is a x-approximation algorithm for the
maximization problem in (4). Then a solution to LP (2)
with objective value at least (x — €)OPTpp(G) can be com-
puted, in time polynomial in the problem parameters and
1/e.

Proposition 2 follows from the potential-based framework
of Cheung and Simchi-Levi (2016), which is elaborated on
in Online Appendix C. Armed with Propositions 1 and 2,
we can use any optimal or approximately optimal algo-
rithm for star graphs to obtain an (approximately) optimal
solution to LP (2), which we can then use to solve the
problem of online matching under prophet arrivals.

4.2.2. Algorithm and Analysis Based on Exponential-
Sized LP. We now show how to use the LP (2) to design
a Kk /2-competitive online algorithm, given a feasible LP
solution x},(71) which is at least x - OPT pp(G), for some
k <1. For each vertex ueU, let w;, =% Wiy cp
Puo(10)x;(11) denote the expected reward of matching u
according to the assignment x*. Notice that the objective
value of the given solution is ., w;, which is at least
x-OPTpp(G). Using this notation, our algorithm is
given in Algorithm 2. By LP constraint (2b), we have
> nepXy (1) /g, =1, so the probability distribution over
policies defined in Algorithm 2 is proper. We also note
that because at most polynomially many variables x},()
will be nonzero, this distribution has polynomial-sized
support and can be sampled from in polynomial time.
The algorithm itself is fairly simple, selecting a policy n
at random with probability proportional to LP solution
x; (1) upon the arrival of a vertex v; of type v. Then, pol-
icy 7t is followed in order to attempt to match the online
vertex, but with two quirks: First, we skip probing any
edge (7;,v;) for which the weight of the edge is too small
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(specifically, if wy, , <wy, /2), and second, if 7t tells us to
probe an edge (m;, v;) for which offline vertex 7; is una-
vailable, we “simulate” the probing instead, terminating
with no reward if the simulated probe is successful. This
simulation technique was used in Brubach et al. (2017)
and is also used by our star graph algorithm in Sec-
tion 5.2.

Algorithm 2 (Random Arrivals from Known Distributions
(Prophet Arrivals))
Function OnlineMatch(U, V, p, w):
fort=1toT do
Online vertex v, of type v € V, arrives
Choose a policy 7t = (111, Ty, . .., Tt¢) with proba-
bility x7 (1) /g0
fori:=1to{do
if wy,, <wj /2 then
LSkip to next i
else if 7; is unmatched then
Probe edge (m;,v;) and match if successful
—for reward wy, »
else
Simulate probing (m;,v;). If successful,
move to next arrival without matching
V4.

Theorem 2. Under general edge weights and known arrival
distributions, Algorithm 2 is 1 /2-competitive for the online
bipartite matching with patience problem, assuming we are
given a solution to LP (2) with objective value at least
K- OPTLPP(G)

The proof of Theorem 2 is deferred to Online Appen-
dix A. In the case of deterministic, known patience, the
algorithm of Purohit et al. (2019) can be used as the black
box star graph algorithms to allow verifying (4), and
thus solving LP (2) exactly. In this case, x = 1 in Theorem
2, and we have a 1/2-competitive algorithm for online
matching with patience, under prophet arrivals and arbi-
trary edge weights. In Section 5, we extend the classical
online stochastic matching problem to consider stochastic
patience and give star graph algorithms with constant-
factor approximation guarantees, allowing us to apply
Theorem 2 to these settings as well.

4.3. Improvement for IID Arrivals

In the case of IID arrivals, that is, where g1, = qop ==
qgro for all vertex types v €V, a slight modification to
Algorithm 2 yields a competitive ratio of (1 —1/e)x
when given a feasible solution to LP (2) that is at least « -
OPT_pp(G) of optimal.

The only change to the algorithm from the previous
non-1ID setting is that for IID arrivals, we do not skip
probing vertices u € U when w,, < w}, /2. The full pseu-
docode is given in Algorithm 3.

Algorithm 3 (Random Arrivals from Known Identical
Distributions (IID Arrivals))

Function OnlineMatch(U, V, p, w):
fort=1to T do
Online vertex v, of type v € V, arrives
Choose a policy 7t = (11,7, ..., m¢) with proba-
bility x;,(7)/q,
fori:=1to{do
if 7t; is unmatched then

Probe edge (7;,v¢) and match if successful
Lfor reward W, o,
else

Simulate probing (7;,v¢). If successful,
\;move to next arrival without matching

Vs

Theorem 3. Under general edge weights and known IID
arrivals, Algorithm 3 is (1 — 1/e)-competitive for the online
bipartite matching with patience problem, assuming we are
given a solution to LP (2) with objective value at least
K- OPTLPP(G).

The proof of Theorem 3 is deferred to Online Appen-
dix A. As with Theorem 2, the dynamic program of Puro-
hit et al. (2019) can be used to get an optimal LP solution,
so that Theorem 3 gives a competitiveness of 1 —1/e for
Algorithm 3 under the classical deterministic patience
setting. Section 5 extends the result to online stochastic
matching with stochastic patience, by providing black
box algorithms for those settings which can then be used
to find approximately optimal solutions to LP (2) as per
Proposition 2.

4.4. Improvement for Vertex Weights

With a new analysis, we can show that Algorithm 3 still
achieves a competitive ratio of 1 —1/e in the prophet
(nonstationary) setting in the case of vertex weights.

Theorem 4. Under vertex weights and known arrival dis-
tributions, Algorithm 3 is 1(1 — 1/e)-competitive for the
online bipartite matching with patience problem, assuming
we are given a solution to LP (2) with objective value at
least x - OPT_pp(G).

The proof of Theorem 4 is deferred to Online Appen-
dix A. It has identical implications as Theorem 3, with
the improvement beyond the 1/2-guarantee of Theorem 2
coming from the vertex-weighted assumption instead of
the IID assumption.

5. Algorithms for Star Graphs

All of the algorithms in Section 4 make use of a black box
algorithm for solving the special case of a single customer
(called the “star graph” problem, since it corresponds to
a star graph with the customer as the center vertex):
Under adversarial arrivals, the black box is used for each
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arriving vertex, while for prophet arrivals it is used as a
separation oracle for the dual LP. For the classic problem
of online matching with stochastic edges and finite
patience, we may use the dynamic program of Purohit
etal. (2019) as this black box. Since this dynamic program
is optimal for star graphs, x = 1 in all of the results of Sec-
tion 4. In this section, we consider the problem where the
patience of the customer is not known but is instead
determined by some stochastic process. These algo-
rithms can be used as black boxes for the algorithms in
Section 4, giving competitive ratios for online matching
with stochastic edges (with multiple customers) under
these new stochastic patience settings. Finally, we also
give an algorithm for an alternate setting where the cus-
tomer has a deterministic patience, but items arrive over
time according to Bernoulli processes. Throughout, we
use m to denote the number of items, as in Section 3.

5.1. Constant Hazard Rate

In this setting, the patience is random and unknown,
with a constant “hazard rate” r; for each i € [m].> When
an attempted match with u; is unsuccessful, the customer
v runs out of patience with probability #; and remains
available for another match attempt with probability
1 — 7;. When the hazard rate r; is the same for all i € [m]
(i.e., r; = r for some r and every i), this is equivalent to the
patience having a constant hazard rate of r.

Theorem 5. For maximizing the expected weight of the
matched item in the (item-dependent) Constant Hazard
Rate patience model, it is optimal to probe items in decreas-
ing order of
wipi
pi+ (1 —pri

Theorem 5 tells us that, in the special case where the
patience distribution can be modeled with individual
per-item hazard rates, we can achieve an optimal star
graph probing strategy. As such, we can apply all of the
algorithms and results from Section 4 with « = 1.

5.2. Arbitrary Patience Distributions

We address the case where the patience is stochastic (and
unknown) and can follow an arbitrary known distribu-
tion. Without loss of generality, we can assume the
patience distribution has finite support (more specifi-
cally, that the patience O € [m]); this is because a patience
greater than m is equivalent to a patience of m (addition-
ally, a patience of zero indicates a vertex which can never
be matched by any algorithm, since no probes can be
made, so we can simply ignore such vertices). We use an
LP-based approach for this problem. We denote by g¢
the probability that the patience of the online vertex v is
at least 0. Notice that 1 =¢; > g, >---> g,,. Our approach
utilizes the LP (5) described in the next paragraph. The
variables are x;o, which correspond to the probability of

attempting to match with j on the 6 attempt. The value sg
represents the probability that the online vertex is avail-
able for a O™ match attempt, meaning its patience is at
least 6 and all previous match attempts were unsuccess-
ful. This can be calculated from the x;q, g9, and p; values.

maxy wjpj; Xjo )

=1

m
subject to Z Xjg' <So,
0'=0

Vie{l,2,...,m},0€{1,2,...,m}

m (5a)
S xo<so,  VOe{1,2,..m}
j=1
(5b)
Xjo >0, vie{1,2,...,m},
0e{1,2,...,m}
s1=1, (50)
_ 4e &
Y0 (Se_l _;pjxj'9_1> (5d)

VOe{2,...,m}

As an example, consider the e-commerce application,
where we wish to offer items to a customer one by one.
The variable xj¢ indicates the probability that the cus-
tomer is offered item j after 6 —1 other items have
already been offered (and rejected). This can only hap-
pen if the customer’s patience is at least 6 and the cus-
tomer has not already purchased an item (prior to the O™
offer), since otherwise no offers can be made at this point.
The value sy denotes precisely this probability, that is,
the probability that the customer’s patience is at least 0
and the customer has rejected all previous offers. This
suggests a simple constraint: xj9 <sg. However, two
stronger conditions can be given: first, no valid strategy
can offer item j at any point on or after the 6 attempt, if
the customer has patience less than 0 or purchases an
item offered before the O™. Summing over all offers after
0 — 1,3 ¢ _g¥je is the probability that item j is offered at
or after the 0™ step, and the reasoning above gives us the
constraints (5a). Further, if the customer is unavailable
(due to having purchased an item or running out of

patience) for the O™ attempt, then no item can be offered

on the O™ attempt; thus, the probability of offering an
item on attempt number 0 cannot exceed the probability

that the customer is available for the O™ attempt. This
gives constraints (5b). We note that the family of con-
straints (5a) differs from similar time-indexed LPs in the
literature (Ma 2018), in that there is a constraint for the
sum starting at every attempt 0 instead of a single con-
straint where 6 = 1.

Constraints (5¢) and (5d) simply give a closed-form

expression for the quantities sg, where qZ—fl is understood
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to be zero if both g¢ and g1 are zero. Finally, since xjo
corresponds to a probability, we require x;o € [0,1] (we
do not explicitly write the constraint xjo <1 in the LP
above, since it is redundant, being implied by (5b) for
0 =1, since s; = 1). We can see that this LP upper bounds
the optimal algorithm, since taking x;g to be the probabil-
ity of the algorithm probing j on attempt 0 for all jand 0,
we get a feasible solution to the LP with objective value
equal to the algorithm’s expected weight matched.

Our algorithm is simple: we solve LP (5) to get an opti-
mal solution x*, along with the values s*. Then, when
making the 0™ probe, choose each offline vertex j=
1,...,n with probability xj,/sj (note that if sj = 0 then
Xjg = 0), which defines a proper probability distribution
by (5b). If a vertex j is chosen to be probed, but has
already been unsuccessfully probed in a previous
attempt, we “simulate” probing j instead, and terminate
with no reward if the simulated probe is successful. This
simulation technique is important in ensuring that the
probability of surviving to the 0™ attempt is consistent
with the LP value sj,.

Example 1. We provide an example to illustrate our
LP and algorithm. Let m = 2, and suppose there are
two items with weights w; =1,w, =2 and probabili-
tiesp1 =3/4,p, =1/4.

First, suppose g1 =g, =1, that is, the patience is
deterministically two. Then the nonzero x-values in
the optimal LP solution are x;1 =1,x1,, =0.75. This
corresponds to probing item 2 (with the higher
reward if it succeeds) first, and if the probe fails
(occurring w.p. 3/4), probing item 1 afterward. The
expected reward is wopp + (1 —pr)unpr =2/4+3/4
3/4=17/16 = 1.0625, which is also the optimal objec-
tive value of the LP.

Now consider a more interesting example where
g1 =1,92 = 1/3. Then the nonzero x-values in the opti-
mal LP solution are x1,1 =0.9,x1, =0.1,x2,1 =0.1. Our
algorithm in this case will probe item 1 first w.p. 0.9,
and otherwise (w.p. 0.1) probe item 2 first. If it sur-
vives to the second probe, which occurs w.p. s, =0.1,
it will always probe item 1. However, note that this
will be a “simulated” probe (which generates no
reward) unless item 2 was probed on the first probe,
making item 1 still available for the second probe. The
probability of this occurring is 0.1-3/4-1/3 =0.025.
Therefore, the expected reward of our algorithm is
(0.9+0.025)-3/4+0.1-2/4 ~ 0.743. Meanwhile, the LP
optimal value is 0.8.

We note that in this case, the best algorithm is to
probe item 1 first (which is the “safe bet,” given that
the customer has a 2/3 chance of departing after the
first probe) followed by item 2, which would have
expected reward 19/24 ~0.791, worse than the LP
value. It would have been better than our algorithm,
though. However, note that the optimal ordering

given many items and an arbitrary patience distribution
is generally nontrivial to solve (even in our examples,
the optimal ordering switched from 2,1 to 1,2 depending
on the patience distribution), and to our knowledge the
best approximation algorithm is the 1/2-approximation
provided by our randomized algorithm.

Theorem 6. The online algorithm based on LP (5) is a
1/2-approximation for the star graph probing problem, for
an arbitrary patience distribution which is given explicitly.

The proof of Theorem 6 is in Online Appendix A; we
note that the analysis in the proof is tight.

We further note that the result of Theorem 6 compares
to a benchmark (LP (5)) that does not know the full reali-
zation of the patience values in advance. This is neces-
sary, since Theorem 10 states that comparing to a
benchmark which knows the patience in advance leads
to arbitrarily bad competitive ratios.

Theorem 6 allows for us to solve online matching pro-
blems when the patience of each customer is stochastic
and follows an arbitrary distribution that is known to the
algorithm. We simply use our star graph algorithm as a
black box for our algorithms in Section 4, with x =1/2.
This gives us j-competitive algorithms for vertex-
weighted adversarial arrivals and edge-weighted prophet
arrivals; as per Theorems 3 and 4, we have improved com-
petitive ratios of 1(1—1/e) under known IID arrivals
(even with arbitrary edge weights) and vertex-weighted
prophet arrivals (even when the distributions are not
identical).

5.3. Item Arrivals

Next, we consider a different setting in which after a cus-
tomer arrives, the “items” (interpreted as contractors in
an online platform) are initially unavailable and only
show up (to acknowledge that they can do the custo-
mer’s job) following Bernoulli processes. More specifi-
cally, each item i€ [m] has two given probabilities:
the matching probability p; and an arrival probability g;.
The customer has a known deterministic patience 0, and
the process unfolds in discrete time steps; at time ¢ € {1,
..., 0}, the algorithm must choose at most one item that
has arrived to offer to the customer. After time t = 0, if
no item has been purchased, the customer runs out of
patience and becomes permanently unavailable for
matches. In contrast to the other patience settings, in this
setting the patience corresponds to the amount of time the
customer is willing to wait, rather than the number of
items they may be offered. Thus, if the algorithm makes
no offer at time t (because it is waiting for items to
become available), we still move one step closer to
exhausting the customer’s patience.

When the customer first arrives (immediately prior to
time t = 1), no items are available to be offered. However,
at each time step, each item i becomes available indepen-
dently with probability g; Once an item i becomes
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available to the customer, say initially at time ¢, then it
can be offered to the customer at most once, at any time
step #' >t. When item i is offered, the customer pur-
chases it with probability p;, in which case a weight of w;
is achieved and the process terminates; with probability
1 — p;, theitem is not purchased and the process immedi-
ately proceeds to the next time step. As with all star
graph problems, our goal is to develop an algorithm
which maximizes the expected weight of the item sold to
the customer (achieving a weight of zero if no item is
sold).

We begin with a linear programming relaxation of the
problem.

LP:= maxi wWix;p; (6)
i=1

subject to zm: xpi <1 (6a)
i=1
zm:xi <6 (6b)
;—ils 1-(1—q)° Vie{1,2,...,m} (60)
x>0 Vie{l,2,...,m} (6d)

We call an item “large” if q; > ¢/6. Otherwise, if g; < ¢/,
we say that item 1, is “small.” Let I arge = {i € [m]|x; >
c/6} denote the set of large items, and Igvarr ={i €
[m]|x; < c/6} denote the set of small items. Our algo-
rithm first solves the LP (6) to obtain an optimal solution
(x1)ierm); then, it makes use of one of two different strate-
gies, choosing between the two depending on relative
contribution of large versus small items to the LP objec-
tive. The motivation here is as follows: Intuitively, we
wish to choose to offer an item i with some probability
proportional to x;. However, if most of the contribution
to the objective value in the LP comes from small items,
there may be a high probability of no items arriving in
any one time step; in this case, we may be better off sim-
ply offering any item that arrives in a time step where we
are lucky enough to have an arrival.

5.3.1. The LARGE Strategy. First, let p € (0, 1) be a fixed
parameter. Our strategy 7ty does the following: at
each time step, we select an item at random. When select-
ing a random item, we choose item i with probability
x;/60. With probability 1 — Y7, x;/6, we select no item. It
follows from constraint (6b) that this forms a valid
distribution.

The algorithm selects this item at random, and if the
item has arrived and has not yet been offered, we offer it
to the buyer with probability p (and with probability 1 — p
we make no offer).

5.3.2. The sMALL Strategy. Our strategy sy, does the
following: At each time step, if at least one small item

arrives in that step, choose one of the small arrivals at
random and offer it to the buyer. We ignore large items.
Any small item which arrives and is not chosen is
permanently discarded (i.e., it will never be offered to
the buyer).

5.3.3. The Full Algorithm. We fix a parameter ¢ € (0,1).
First, if 0 = 1, we simply take the optimal choice, offering
the item with the highest expected reward among items
that arrived. Then, for 0 >2, if ZiEILARc,E wixip; = (1—
@)LP, we use strategy Tty e at every time step. Other-
wise, EieISMALLwixipi > @LP, and we use mgy,.,. at every
time step.

We show that this algorithm is a 0.027-approximation
for the problem. This is done by considering the two
cases (corresponding to using the LARGE and SMALL
strategies) separately.

Lemma 3. If Y".; wixip; > (1 — @)LP, then Ty e achieves
an expected matching weight of (1 — ¢)cp(1 — 2p)LP.

Lemma 4. If .., wixip; < (1 — @)LP, then Ttsy,, achieves
an expected matching weight of at least

75 1—(1—2z‘/2)2 1_ e’
(P(l 2) <c 1—ec L @

Using the bounds for both the LARGE and SMALL strate-
gies, we can now give our final result.

Theorem 7. For an appropriate choice of parameters
@, p,c, our algorithm is a 0.027-approximation.

Lemmas 3 and 4 and Theorem 7 are proved in Online
Appendix A. Our result for this setting can be used as a
black box for a new kind of online stochastic matching
problem with two-sided arrivals, where after the arrival
of each customer, all items (contractors in an online labor
platform) are initially unavailable, and arrive over time
following Bernoulli processes (when they “discover” the
customer’s task). These acknowledgments “reset” after
each customer, who presents a new job, and we note that
that each (contractor, customer)-pair can have a different
rate for its Bernoulli process of the contractor arriving, as
well as a different probability for the customer accepting
that contractor. A contractor, once matched, spends the
time horizon (e.g., one day) doing that task and hence
never returns. For such an online matching problem, we
may use our strategy as a black box for the algorithms of
Section 4, where we have x =0.027, to get a constant-
factor competitive ratio for any finite market size and
time horizon.

6. Negative Results

6.1. Stochasticity Gap

The stochasticity gap is a fundamental gap in linear pro-
gramming relaxations for stochastic problems which
replace probabilities with deterministic fractional weights.
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The notion was first discussed informally in Brubach
et al. (2017) and was later also observed by Purohit et al.
(2019) (where they referred to it as a “probing gap”).
When these LP relaxations are used as upper bounds on
the offline optimal solution, or as a benchmark for the
competitive ratio, the stochasticity gap represents a bar-
rier to the best achievable competitive ratio. One inter-
pretation of such a result is that better competitive ratios
are not possible. However, one may alternatively view it
as a result showing the limitations of using a particular
LP as a benchmark for competitive ratios.

We present a stochasticity gap for a common LP relax-
ation of the online matching problem with stochastic
rewards. Recall from Section 4.1.1 that LP (1) with the
constraints (1a)—(1c) (and excluding our additional fam-
ily of constraints (1d)) is a standard LP relaxation for
bipartite matching with (known) patience constraints
and adversarial arrivals. This is essentially an extension
of the “Budgeted Allocation” LP from Mehta and Pani-
grahi (2012) to include the patience constraints. For con-
venience, we reproduce this standard LP below in the
vertex-weighted setting.

max E E Xu, oPu, Wy

uel veV
subject to qu,z,pu,v <1 Yuel
veV
> Xuopuo S 1 YoeV
uel
> xu,0 <E[6,] YoeV
uel
0<xy,<1 Yuel,veV

Simple LP formulations like this, while useful, can give
too large of an upper bound on the performance of any
offline algorithm and thus make it difficult to get larger
competitive ratios. As such, more complex (and, often,
exponentially sized) LPs have been used in recent work
(see, e.g., Gamlath et al. 2019) to achieve better results.
Our LP-based techniques in Section 4 use different
exponential-sized LPs to overcome the limitations of sto-
chasticity gaps.

We start with a simple example demonstrating the
notion of a stochasticity gap, where the bipartite graph
has a single offline vertex u, and # online vertices arriving
in any order. Suppose p,, = 1/n and w,,,, = 1 for all online
vertices v € V. The LP given by (1a)—(1c) can assign x,,, =
1 for all edges, achieving an objective value of one. How-
ever, the best any online algorithm can do is probe the
single edge (11, v) whenever vertex v arrives online, which
matches the single offline vertex u with probability
1 —1/e. Thus, it is impossible for any online algorithm to
guarantee a matching of expected weight better than
(1 —1/e) times the LP value. This establishes a stochasti-
city gap of 1 — 1/e for this formulation and suggests that
if we wish to beat the 1 —1/e barrier, we must use a

different LP benchmark. However, the stochasticity gap
for the LP of (1a)—(1c) is even worse. To establish this, we
consider a complete bipartite graph with n vertices on
each side, and edge probabilities 1/n; a result on random
graphs then implies Theorem 8, whose proof is in Online
Appendix A.

Theorem 8. The LP given by the objective function (1) and
constraints (la)-(1c) has a stochasticity gap of at most
~ 0.544.

We should note that Fata et al. (2019) establish a smal-
ler upper bound of 1 — In(2 — 1/¢) ~ 0.51 relative to this
LP, but they restrict to online probing algorithms. Our
higher upper bound holds even for the offline optimal
matching, hence reflecting a true “stochasticity gap.”

6.2. The 0.5 Upper Bound for SimpleGreedy

As defined in Mehta and Panigrahi (2012), an opportunis-
tic algorithm for the Stochastic Rewards setting is one
which always attempts to probe an edge incident to an
online arriving vertex v € V if one exists. The work of
Mehta and Panigrahi (2012) showed that in the unweighted
Stochastic Rewards (6, = 1 for all online vertices v € V) prob-
lem, any opportunistic algorithm achieves a competitive
ratio of 1/2. The simplest opportunistic algorithm is the
one which, when v € V arrives online, chooses a neighbor
u € U of v arbitrarily and probes the edge (1, v). We call this
algorithm “SimpleGreedy.” Since SimpleGreedy is oppor-
tunistic, the result of Mehta and Panigrahi (2012) shows
that SimpleGreedy achieves a competitive ratio of at least
1/2; Theorem 9 shows that this is tight even when restricted
to small, uniform p.

Theorem 9. There exists a family of unweighted graphs
under stochastic rewards and adversarial arrivals for which
SimpleGreedy achieves a competitive ratio of at most 1/2 even
when all edges have uniform probability p = O(1/n).

We present our construction here. Let k be a fixed posi-
tive integer constant. Let U = Uy U U,,, where U, and
U, ={u,...,u,} aredisjoint, and |Up| =k.Let V =V, U
V., where Vy and V, ={vy,...,v,} are disjoint, and
[Vo| =kn*. Let E=EgUE, where Ey=UyxV and
E,={(u;,v)li=1,...,n}.Letp =k/n.

For the bipartite graph G(U, V; E), an offline algorithm
can achieve a matching of expected size at least 2k by first
probing edges (u,v) € Uy X Vo until all edges are probed
or the maximum possible successful matches, k, is
achieved. This strategy achieves k successful matches
among these edges in expectation. Then, the offline opti-
mal will probe all edges of E,, in any order, achieving an
expected number of successful matches of k. The total
expected size of the achieved matching is then 2k. We
complete the proof of Theorem 9 by showing that an
online algorithm cannot earn more than k+o(k), in
Online Appendix A.
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6.3. Hardness of Unknown Patience

We now show that when offering items to a single cus-
tomer with random patience, one should not be compar-
ing to a benchmark that knows the realization of the
patience in advance, or else the competitive ratio will be
zero. The same counterexample shows for single-item
IID-valued online accept/reject problems that the com-
petitive ratio will be zero if the number of arrivals is
unknown, recovering the result of Alijani et al. (2020).

Theorem 10. For the star graph probing problem with
patience O drawn from an arbitrary distribution,” the
reward of an online algorithm relative to a clairvoyant who
sees the realization of O in advance must be zero, even if
there are infinite copies of every offline vertex.

Theorem 10 is proved in Online Appendix A, and its
construction is presented below. The significance of
allowing infinite copies of offline vertices is the follow-
ing. Essentially, we are left with a pricing problem where
there are an unknown 6 number of opportunities to
make a single sale to a customer; the different offline ver-
tices” weights correspond to different prices that can be
tried, and after each trial we get an independent realiza-
tion (because of the infinite copies) whose probability
depends on the price. One can further transform such an
instance into an online accept/reject problem facing a
stream of O IID draws, where the pricing decisions corre-
spond to acceptance thresholds. Therefore, our hardness
result implies the following. Although already known to
Alijani et al. (2020, appendix A.1), we rederive it using
our construction to articulate the connection, which we
believe is instructive.

Corollary 1. Consider the simple optimal stopping problem
where an online algorithm can accept at most one of 0
values that are drawn IID from a known distribution and
presented one by one. If 0 is unknown, then the competitive
ratio is zero.

6.3.1. Our Construction. Fix a positive integer k and let
m be another positive integer that we will drive to co.
Consider a star graph, that is, a bipartite graph with
many offline vertices 1 € U and a single online vertex v.
Consider the following distribution over the patience of
v

v = mZk k (8)

5 m* wp.m—m L k=1
w.p. mk

In our construction, there are m? identical offline verti-
ces for each i =0, ..., k, with weight m' and probability
m~2. We note that m* is greater than the largest possible
realization of 6., so the constraints on the availability of
offline vertices are never binding. That is, our construction
applies even in the more restrictive setting where there are
infinite copies of every offline vertex.

6.3.2. Intuition Behind Hardness. In our construction,
there are essentially an unknown number of opportuni-
ties to sell a single item. During each opportunity, one
must choose a consumption option i=0,...,k, which
has an m~2 probability of selling the item at price ". The
immediate reward from consumption option i is
m'-m~2 = m~, which is decreasing in 7, but smaller indi-
ces of i also have a higher chance of closing the sale and
eliminating future opportunities. Therefore, there is a
trade-off between offering “longshot” prices with a high
index of i (desirable if a large number of opportunities
remain) and the “safe” option i = 0 which makes a sale
w.p. m~? =1 (desirable on the final opportunity). Our
proof of Theorem 10 in Online Appendix A shows that
a clairvoyant who tries only option i when they know
the patience will be m%, for all i =0, ...,k, can eamn ~
(1 —1/e)(k + 1). Meanwhile, any online algorithm is best
off using the “safe” option i = 0 on the first try and finish-
ing, since the customer only has a small chance of having
patience greater than one (we prove this through back-
ward induction on the optimal dynamic program). This
establishes an unbounded separation when k is taken to
be large in our construction.

6.3.3. Transformed Hard Instance to Establish Corol-
lary 1. For concreteness, we show how to transform our
construction to the accept/reject problem. The IID draws
from the distribution should take one of k + 1 possible
values, indexed by i =0, ..., k. The decision each period
is to set a threshold on the minimum acceptable value,
where each option i=0,...,k should correspond to a
“consumption option” that has probability m~ of
accepting. Therefore, the probability of the IID draw tak-
ing value index i for alli =0,...,k — 1 should be m~% —
m~2*D and the probability of value index i = k should be
m~2%, so that accepting all levels with index at least i has
probability

(mfzi _ mfz(i+1)) " (mfz(m) _ m72(i+2))+ ek =2

of making an acceptance. Now, the exact values for each
index i must be calibrated so that the immediate reward
from each consumption option i is m~". Using backward
induction overi =k, ..., 1, we can solve that the value for
index i = k should be 7" and that the value for each index
i=0,...,k—1shouldbe

i+1

m—t— m—(i+1) mi+2 _ mi+1

=2 — =2 2 1
This completes the construction of our transformed
instance for the accept/reject problem.

_m
Tm+1

6.3.4. Applying Yao’s Minimax Principle. Finally, we
explain why in Corollary 1, there is no difference between
0 being completely unknown and 0 being drawn from a
known distribution (but competing against a clairvoyant
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who knows its realization in advance). Formally, for any
patience 6 and any (deterministic) nonclairvoyant algo-
rithm 1, let ALG(y), 0) denote the algorithm’s expected
reward when the patience realizes to 6. Meanwhile, let
OPT(0) denote the clairvoyant’s expected reward when
the patience is known to be 0. Let D denote a distribution
over patiences 0, and W denote a distribution over algo-
rithms 1p. Yao’s minimax principle says that

sup o v-v[ALG(Y, 0)]
v

ALG(y, 0)
o OPT(0) ]

=inf sup Eg.p |————+——
b %F GD{OPT(Q)

B supwEg@[ALG(gb,@)]
"D Eo-p|OPT(0)]

(where the second equality holds via rescaling worst-case
distributions D by OPT(6)). The existence of our family of
distributions in (8) shows that the right-hand side expres-
sion, and hence all of these expressions, equals zero. The
left-hand side expression equaling zero implies that for
any fixed (randomized) online algorithm that does not
know the value of 0 in advance, an adversary can always
set a horizon length 0 for which the algorithm performs
unboundedly worse relative to OPT(0).
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Endnotes

! This includes everything that is known about the customer at the
time of their arrival, including purchase probabilities, patience dis-
tribution, edge weights, etc.

2 Similar ideas have appeared in Cheung et al. (2022), who consider
abstract “actions” that have different immediate rewards and differ-
ent consumption distributions over resources. However, their focus
is on learning these distributions.

3 However, we acknowledge that their 1/e-approximation holds
against a stronger benchmark that knows the patience in advance.
This is only possible under some special cases of the patience distri-
bution: as we show in Section 6.3, such a result is impossible for the
general patience distributions we consider, so our LP relaxation
(necessarily) does not know the patience in advance.

* Their paper focuses on the offline matching with stochastic edges
problem, which we do not consider in this literature review.

5 The techniques in Brubach et al. (2017) also involved solving a star
graph problem with a black box. However, that work first solved
an LP for a bipartite graph, and then used a black box probing algo-
rithm to essentially round and probe the LP solution on the induced
star graphs of arriving vertices. This differs from our work, which
uses algorithms for stochastic matching on star graphs as black
boxes to solve a more sophisticated LP and then uses that LP solu-
tion to guide the online algorithm.

8 This is because it was the arrival model of original focus in
prophet inequality papers (Krengel and Sucheston 1977).

7 We note that Borodin et al. (2022) derive results against a stronger
benchmark, which can switch back and forth between online
vertices.

8 Throughout this paper, we use the notation [m] := {1,2,...,m}.

9See Section 5.2 for the exact problem statement. There we com-
pared with an LP that also did not know the realization of the
patience in advance, the importance of which is fully justified by
the present theorem.
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