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Abstract. We study generalizations of online bipartite matching in which each arriving 
vertex (customer) views a ranked list of offline vertices (products) and matches to (pur
chases) the first one they deem acceptable. The number of products that the customer has 
patience to view can be stochastic and dependent on the products seen. We develop a 
framework that views the interaction with each customer as an abstract resource consump
tion process and derive new results for these online matching problems under the adver
sarial, nonstationary, and independent and identically-distributed arrival models, assuming 
we can (approximately) solve the product ranking problem for each single customer. To that 
end, we show new results for product ranking under two cascade-click models: an optimal 
algorithm when each item has its own hazard rate for making the customer depart and a 
1/2-approximate algorithm when the customer has a general item-independent patience dis
tribution. We also present a constant-factor 0.027-approximate algorithm in a new model 
where items are not initially available and arrive over time. We complement these positive 
results by presenting three additional negative results relating to these problems.
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1. Introduction
Online matching is a fundamental problem in e-commerce 
and online advertising, introduced in the seminal work 
of Karp et al. (1990). While offline matching has a long 
history in economics and computer science, online 
matching has exploded in popularity with the ubiquity 
of the internet and the emergence of online market
places. A common scenario in e-commerce is the online 
sale of unique goods because of the ability to reach niche 
markets via the internet (e.g., eBay); typical products 
include rare books, trading cards, art, crafts, and memo
rabilia. We will use this as a motivating example to 
describe our setting. However, the settings we study can 
also model job search/hiring, crowdsourcing, online 
advertising, ride-sharing, and other online matching 
problems.

In classical online bipartite matching, we start with a 
known set of offline vertices that may represent items for 
sale or ads to be allocated. Then, an unknown sequence 

of online vertices arrives, which may represent customers, 
users, or visitors to a web page. These online vertices or 
customers arrive one by one, and the decision to match 
each customer or not (and if so, to which item) must be 
made irrevocably before the next customer is revealed. 
In the original formulation, the online vertices are chosen 
fully adversarially, although models that assume they 
are drawn from probability distributions have since 
been studied (Feldman et al. 2009, Alaei et al. 2012).

Many generalizations of online matching have also been 
proposed, including stochastic rewards and weighted 
graphs. Under stochastic rewards, there can be repeated 
interactions with a customer (recommending an item, and 
if they do not accept, recommending another item, etc.) 
before the next one arrives, as we describe subsequently. 
Our paper’s goal is to provide a framework that decouples 
the repeated-interaction problem for a single customer 
from the overall allocation problem over multiple custo
mers, leading to new results and unification of old ones. 

1 

OPERATIONS RESEARCH 
Articles in Advance, pp. 1–16 

ISSN 0030-364X (print), ISSN 1526-5463 (online) https://pubsonline.informs.org/journal/opre 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.o

rg
 b

y 
[6

5.
20

2.
21

0.
42

] o
n 

14
 M

ar
ch

 2
02

4,
 a

t 0
9:

07
 . 

Fo
r p

er
so

na
l u

se
 o

nl
y,

 a
ll 

rig
ht

s r
es

er
ve

d.
 

mailto:bb100@wellesley.edu
mailto:ngrammel@umd.edu
mailto:wm2428@gsb.columbia.edu
https://orcid.org/0000-0002-2420-4468
mailto:asriniv1@umd.edu
https://orcid.org/0000-0002-3409-6077
https://doi.org/10.1287/opre.2021.0371


Moreover, motivated by product ranking, we derive new 
results for the repeated-interaction problem with a single 
customer, including the extension in which the horizon for 
these interactions is unknown or stochastic.

1.1. Description of Stochastic Rewards Model, 
with Patience

In the stochastic rewards model, each edge exists indepen
dently according to a known probability; this probability 
is revealed upon the arrival of its incident online vertex. 
This is motivated by online platforms in which only a 
probabilistic prediction of whether a customer will buy 
an item is known at the time they arrive. The algorithm 
can “probe” edges incident to an online vertex, or equiv
alently recommend the customer an item, after which if 
they accept, then the item is sold committedly. If they 
otherwise reject, then under the basic stochastic rewards 
model (Mehta and Panigrahi 2012) there is no opportu
nity to offer another item; this is known as the customer 
having a patience of 1.

Other papers (Bansal et al. 2010, Adamczyk et al. 2015, 
Brubach et al. 2017) have more generally allowed the cus
tomer to have any deterministic patience θ. This can be 
interpreted as a product ranking problem where θ differ
ent items are listed on a page, and the customer will view 
them in order, stopping once they see an acceptable item 
or reaching the end of the page. The product ranking 
problem where θ is deterministic can be efficiently 
solved using dynamic programming (Purohit et al. 
2019). More generally, if θ is random but drawn from a 
known distribution, then the customer may probabilisti
cally depart after seeing any undesirable item; this is 
called the cascade-click model of product ranking. We will 
derive new results for the cascade-click model.

1.2. Description of Edge Weights and Stochastic 
Arrival Models

In an orthogonal generalization of online bipartite match
ing, edges between items and customers may have a 
weight, which is the reward collected when that edge is 
matched. This can represent, for example, the price at 
which that item is sold to the customer. When edges can 
take on different possible weights, parametric competitive 
ratios are known (Ma and Simchi-Levi 2020), but a com
petitive ratio that is an absolute constant is impossible in 
the original adversarial arrival model (see Mehta 2012). 
Therefore, many papers have focused on the relaxed 
models of stochastic arrivals or vertex weights instead, each 
of which circumvents this impossibility.

In the stochastic arrival models, the total number of 
online vertices T is known, and each online vertex t �

1, : : : , T has a type1 drawn independently from a known 
distribution. Generally, we allow distributions to be non
stationary and vary with t, although we also consider the 
IID special case where these distributions are identical. 
Stochastic arrival models are motivated by settings with 

sufficient data to estimate the distribution over types. 
Meanwhile, in the model with vertex weights, all edges 
incident to any offline vertex u must have the same 
weight. This is motivated by each offline item having its 
own fixed price that is identical across customers.

1.3. Our Contributions
We develop a decoupling framework, which we describe 
in greater detail in Section 1.3.1, wherein we first study a 
simpler, single-customer version of various stochastic 
matching problems and then use the algorithms for these 
problems to inform decisions during online customer 
arrivals. This approach allows us to derive new results 
for online bipartite matching with stochastic rewards 
and, in many cases, stochastic patience as well.

We consider both vertex weights and general edge 
weights in combination with the adversarial, nonstation
ary, and IID arrival models. Since our framework 
requires the repeated-interaction problems to be solvable 
for a single customer, we also make advancements on 
this front (see Section 1.3.2): namely, improving algo
rithms for the cascade-click model of product ranking, 
and deriving new algorithms in a model where items are 
arriving over time. Finally, we derive several negative 
results of interest (see Section 1.3.3).

1.3.1. Framework That Decouples Online Matching from 
Single-Customer Problems. First, we build a framework 
that takes as input a subroutine for solving the single- 
customer problem, and outputs an algorithm for the 
overall multicustomer online matching problem, under 
the variants we mentioned. The competitive ratios guar
anteed by our framework are explained in Table 1, and 
we would like to highlight a key distinction in our 
approach. Existing analyses of stochastic rewards (Ban
sal et al. 2010, Mehta and Panigrahi 2012, Adamczyk et al. 
2015, Brubach et al. 2017) all use a linear program (LP) 
that is specific to the stochastic rewards matching process, 
which exhibits a stochasticity gap (see Section 6.1). By 
contrast, our framework uses an abstract LP, in which 

• There is a variable xv(π) for each of the (exponen
tially many) policies π that could be used for interact
ing with a single customer of type v;

• Each such policy π ends up matching each avail
able offline vertex u with probability puv(π);

• There is a single set of constraints tying together 
the customers over time, which enforce that each off
line vertex u is matched at most once in expectation.
Our framework abstracts away the details of the stochas
tic rewards matching process, deterministic versus sto
chastic patience, etc., and holds as long as the policies 
represent different consumption processes2 that use up 
the offline vertices u independently over time according to 
known probabilities.

Our results, however, are predicated on the existence 
of a subroutine that can (approximately) solve the 
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repeated-interaction problems for each customer. We 
will call such a subroutine κ-approximate if, given any 
weights wuv, it finds a policy π whose immediate 
expected reward 

P
uwuvpuv(π) is at least κ times the max

imum possible immediate expected reward over all poli
cies, for some κ ∈ [0, 1]. Equipped with a κ-approximate 
subroutine, our framework provides 

1. A κ=2-competitive algorithm for vertex weights 
and adversarial arrivals (Section 4.1);

2. A κ=2-competitive algorithm for edge weights 
and nonstationary arrivals (Section 4.2);

3. A (1 � 1=e)κ-competitive algorithm for edge weights 
and IID arrivals (Section 4.3); and

4. A (1 � 1=e)κ-competitive algorithm for vertex 
weights and nonstationary arrivals (Section 4.4).
The value κ � 1 is possible when θ is deterministic (Puro
hit et al. 2019). We derive new results showing that κ � 1 
is also possible when θ follows an (item-dependent) haz
ard rate model, and that κ � 1=2 is possible when θ 
follows any (item-independent) distribution. This, in con
junction with our framework, justifies all of the results in 
Table 1.

1.3.2. New k-Approximate Subroutines for Single- 
Customer Problems. As discussed, it is important for 
our framework to have κ-approximate subroutines 
for the repeated-interaction problems with a single 
customer. We make the following advancements on 
this front: 

1. A 1-approximate (optimal) subroutine, in the 
model where each item i has a known hazard rate ri and, 

if seen by the customer and undesired, causes the cus
tomer to depart with probability (w.p.) ri;

2. A 1/2-approximate subroutine, in the model 
where the customer has an arbitrary known patience 
distribution (and the probabilities of departing do not 
depend on the items seen);

3. A 0.027-approximate subroutine, in a new model 
where the customer has a deterministic patience, but 
the items are arriving over time according to Bernoulli 
processes.

The first two models can be motivated by product 
ranking in e-commerce. A special case of the first model 
(Section 5.1) is where ri is equal to some r for all i, which 
represents a patience distribution with constant hazard 
rate r, that is, a customer who departs w.p. r after each 
position regardless of the item seen. Meanwhile, our 
1/2-approximation for the second model (Section 5.2) 
improves the state-of-the-art 1=e-approximation from 
Chen et al. (2021) for this cascade-click model of product 
ranking. Their result also only holds in the special case of 
increasing hazard rate, while we extend it to general dis
tributions by formulating and rounding a new LP relaxa
tion3 for this single-customer problem. We note that 
general patience distributions are well motivated in 
applications; see, for example, Aveklouris et al. (2021), 
who study a matching model where items are also arriv
ing over time. On that note, our result for the third model 
(Section 5.3), when plugged into our frameworks, pro
vides constant-factor guarantees in a related model 
where items (representing contractors in an online labor 
platform) may not be present at the beginning and need 
to arrive online after each customer (to acknowledge 

Table 1. Landscape of Online Matching Results

Unweighted Vertex weighted Edge weighted

Adversarial
Nonstochastic 0.632 (tight) (Karp et al. 1990) 0.632 (tight) (Aggarwal et al. 2011) [must be weight dependent] 

(Ma and Simchi-Levi 2020)
Stochastic rewards 0.5 (Mehta and Panigrahi 2012) ? → 0:5 [must be weight dependent] 

(Ma and Simchi-Levi 2020)
Deterministic 
patience/hazard rate model

? → 0:5 ? → 0:5 –

Stochastic patience ? → 0:25 ? → 0:25 –
Nonstationary

Nonstochastic 0.632 (Alaei et al. 2012) 0.632 (Alaei et al. 2012) 0.5 (Alaei et al. 2012)
Deterministic 
patience/hazard rate model

? → 0:632 ? → 0:632 ? → 0:5

Stochastic patience ? → 0:316 ? → 0:316 ? → 0:25
Known IID

Nonstochastic 0.729 (Brubach et al. 2020) 0.729 (Brubach et al. 2020) 0.705 (Brubach et al. 2020)
Stochastic rewards 0.632 (Brubach et al. 2020) 0.632 (Brubach et al. 2020) 0.632 (Brubach et al. 2020)
Deterministic 
patience/hazard rate model

0.46 → 0:632 (Brubach et al. 
2017)

0.46 → 0:632 (Brubach et al. 2017) 0.46 → 0:632 (Brubach et al. 
2017)

Stochastic patience ? → 0:316 ? → 0:316 ? → 0:316

Notes. Landscape of online matching results grouped by arrival model and form of edge weights, and including the unknown patience models 
we introduce: the (item-dependent) hazard rate model and the arbitrary (item-independent) stochastic patience model. Bold results with arrows 
show the improvements from this paper, with question marks denoting problems where no prior bound was known.
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they can perform the customer’s task), and the customer 
has to then also accept that contractor. We contrast this 
new model with other online platform matching models 
in Section 2.

1.3.3. Negative Results. Finally, our work presents three 
important negative results: 

1. We formalize the notion of a stochasticity gap for 
LP-based approaches to these problems and construct 
a stochastic bipartite graph in which even the offline 
maximum matching has an expected size of at most 
0.544 times the value of the LP relaxation (Section 6.1). 
This means that the competitive ratio from the existing 
LP-based approaches cannot be better than 0.544, while 
our framework yields a 1 � 1=e ≈ 0:632-competitive 
algorithm.

2. We show that the simple family of greedy algo
rithms introduced in Mehta and Panigrahi (2012) can
not be better than 1/2-competitive (Section 6.2).

3. We show that when offering items to a single cus
tomer with random patience, if one compares to a 
benchmark that knows the realization of the patience 
in advance, then any constant-factor approximation is 
impossible (Section 6.3). Importantly, our counterex
ample holds even if the customer can be repeatedly 
offered the same item, which is identical to having an 
unknown number of opportunities to make a single 
sale (since the customer will buy at most one item). 
This is similar in spirit to the negative result derived in 
Alijani et al. (2020).

2. Further Related Work
2.1. Online Matching with Stochastic Rewards
Online matching represents a large literature, which has 
been surveyed in Mehta (2012). We will describe the por
tion of this literature that focuses on stochastic rewards, 
where edges only match probabilistically upon being 
probed. This problem has been studied under both 
adversarial and stochastic arrival models, as well as dif
ferent variants depending on the assumptions about 
edge weights/patience.

Online matching with stochastic edges was introduced 
in Bansal et al. (2010)4 as stochastic matching with time
outs (patience), where the authors showed a ratio of 0.12 
for known IID arrivals and arbitrary edge weights. This 
was later improved to 0.46 in Brubach et al. (2017)5 and to 
0.51 in Fata et al. (2019) for some cases. We improve these 
results by establishing a competitive ratio of 1/2 for non
stationary arrivals and 1 � 1=e for IID arrivals. We note 
that Borodin et al. (2022) concurrently prove these results, 
differing in three ways: (i) They allow for more general 
constraints on which edges can be probed, beyond a sim
ple patience constraint (although they do not consider sto
chastic patience). (ii) They compare against a more 
powerful offline benchmark that can switch back and 

forth between probing different online vertices. (iii) They 
show that 1 � 1=e holds in the more general model of 
nonidentical independent draws arriving in a uniformly 
random order. The same authors have also studied online 
matching with stochastic edges under the “secretary” 
model of random-order arrival (see Borodin et al. 2021).

For adversarial arrivals, most work has focused on the 
unweighted case, initially studied by Mehta and Pani
grahi (2012) in the special case where patience θv equals 
one for all v. Under the further restriction of uniform van
ishing edge probabilities, they showed that a competitive 
ratio of 0.53 is possible. This was extended to a ratio of 
0.534 for unequal, but still vanishingly small, probabilities 
(Mehta et al. 2015). These results were also recently 
improved to 0.576 and 0.572, respectively, by Huang and 
Zhang (2020) and then to 0.596 for both models by Goyal 
and Udwani (2023); however, all these results focus on the 
case of vanishingly small probabilities, do not consider 
patience values greater than one, and do not consider 
vertex weights. For arbitrary edge probabilities, general 
deterministic patience values, and vertex weights, our 
guarantee of 0.5 is the best known. There is also a hard
ness result in Mehta and Panigrahi (2012) which shows 
that no algorithm for stochastic rewards with adversarial 
arrivals can achieve a competitive ratio greater than 0.62. 
This quantity is strictly less than 1 � 1=e, although we 
argue that this difference is artificially caused by the sto
chasticity gap, as we explain in Section 6.1.

Golrezaei et al. (2014) study another model of stochastic 
rewards, in which when a vertex v (viewed as a customer) 
arrives online, an online algorithm chooses a set S of 
potential matches for v (viewed as an offering of products 
to the customer). Each customer (online vertex) has a gen
eral choice model which specifies the probability of the cus
tomer purchasing each item when offered each possible 
set of product assortments S. We contrast this model in 
more detail in Online Appendix B, but note that in this set
ting, a set of potential matches is chosen all at once rather 
than probed sequentially, with the outcome being deter
mined by full set S (the offered product assortment).

2.2. Large Starting Capacities
We do not study how our guarantees improve if there 
are at least k copies of every offline vertex, although we 
believe our frameworks could be expanded to do so. The 
state of the art for these k-dependent guarantees in online 
matching can be found for general adversarial arrivals 
(Ma and Simchi-Levi 2020), unweighted adversarial arri
vals (Kalyanasundaram and Pruhs 2000), general non
stationary arrivals (Jiang et al. 2022), nonstationary 
arrivals with vertex weights (Alaei et al. 2012), and IID 
arrivals (Ma et al. 2021).

2.3. Cascade-Click Models in Product Ranking
We turn our literature review to papers that study the 
repeated-interaction/product ranking problems for a 
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single customer. Our result from Section 5.1 shows how 
to optimally solve this problem under constant hazard 
rate, a special case of interest in Chen et al. (2021). Our 
result in Section 5.2 improves their guarantee and 
holds for general patience distributions. We should note 
that our results do not directly apply to more general 
cascade-click models (see Kempe and Mahdian 2008) 
where the probability of the customer running out of 
patience depends on the specific item shown, but we 
believe that our simple LP-based technique in Section 5.2
could be useful for these generalized models. Other gen
eralized ranking problems involving choice models are 
studied in Derakhshan et al. (2022).

In the related sequential assortment problem, multiple 
products can be shown to the customer at a time. The cus
tomer chooses between them according to a Multinomial 
Logit (MNL) choice model (instead of independent click 
probabilities), and alternatively the customer could choose 
the option of viewing the next assortment, never to return. 
There is a constraint that the same product cannot be 
shown in different assortments. This problem is typically 
studied when the number of stages is deterministic and 
known (see Feldman and Segev 2019 and the references 
therein); however, the stage-dependent coefficients in Feld
man and Segev (2019) can be used to capture our notion of 
a stochastic patience. Nonetheless, the polynomial-time 
approximation scheme (PTAS) derived in Feldman and 
Segev (2019) does not subsume our 1/2-approximation 
because in the sequential assortment problem there is no 
constraint on the number of products offered at once, 
hence it does not capture our problem; also, in a PTAS, to 
get a (1 � ε)-approximation the runtime needs to be expo
nential in 1=ε, whereas our LP-based technique has poly
nomial runtime independent of any error parameter.

2.4. Online Matching Where Items Arrive 
over Time

Motivated by online platforms, many models where 
items arrive over time have been recently studied, with 
constant-factor approximations (Aouad and Saritaç 2022, 
Kessel et al. 2022) and optimal algorithms (Aveklouris 
et al. 2021, Kerimov et al. 2021) known under certain 
regimes. These papers focus on steady-state behavior, 
which is possible because items are arriving indefinitely. 
Our paper contrasts these models because there is still a 
finite supply of items; they merely need to “arrive” to 
acknowledge each customer, and we provide a constant- 
factor approximation for any finite time horizon and mar
ket size.

3. Problem Definition and Notation
We use G � (U, V; E) to denote a bipartite graph with ver
tex set U ∪ V and edge set E ⊆ U × V. Let U � {u1, : : : , 
um} represent offline vertices and V � {v1, : : : , vn} repre
sent online vertices. For an edge e � (u, v), we denote the 

weight of edge e by we or wu, v; for the special case of vertex 
weights, each offline vertex ui has a weight denoted by wi, 
and wui , v � wi for all v ∈ V. We will generally consider sto
chastic edges, which means that for each edge (ui, vj)

∈ U × V, there is a known probability pi, j with which that 
edge will independently exist when probed.

When considering the online matching problem for a 
single online vertex (customer) v, we will refer to it as a 
star graph. In this case, we simplify notation and write pi 
to denote the probability of edge (ui, v). We also use pu, v 
for the given probability of edge (u, v) when indices i and 
j are not required. Without loss of generality, we may 
assume that pu, v is defined even for (u, v) ∉ E, because in 
this case we can simply let pu, v � 0.

We are further given a patience value θv for each online 
vertex in V (we may also write θj for the patience of ver
tex vj ∈ V) that signifies the number of times we are 
allowed to probe different edges incident on v when it 
arrives. Each edge may be probed at most once, and if it 
exists, we must match it and stop probing (probe-com
mit model).

We consider the online vertices arriving at positive inte
ger times. In the adversarial arrival model, the vertices of 
V � {v1, v2, : : : , vn} are fixed and the order of their arrival 
is set by an adversary so as to minimize the expected 
matching weight. We assume without loss of generality 
that the vertices arrive in the order v1, v2, : : : , vn. When we 
consider the stochastic arrival models, V instead specifies 
a set of vertex types, and at time t, a vertex of an indepen
dently randomly chosen type from a known distribution 
arrives. Generally, these distributions can vary across 
time, which we call the prophet arrival6 model; we also con
sider the special case where these distributions are identi
cal, which we refer to as IID arrivals. In these models, we 
will let T denote the length of the time horizon which is 
assumed to be known (otherwise the problem is impossi
ble; see Section 6.3).

When an online vertex v arrives at time t, we attempt 
to match it to an available offline vertex. We are allowed 
to probe edges incident to vt one by one, stopping as 
soon as an edge (ui, vt) is found to exist, at which point 
the edge is included in the matching and we receive a 
reward of wi. We are allowed to probe a maximum of θt 
edges (in the stochastic patience models, θt is not known 
a priori and is discovered only after θt failed probes); if 
θt edges are probed and none of the edges exist, then ver
tex vt remains unmatched and we receive no reward. If 
we successfully match vt to ui, we say that wi is the value 
or reward of vt’s match; if vt remains unmatched, we say it 
has a value or reward of zero. The next online vertex vt+1 
does not arrive until we have finished attempting to 
match vt (either by exhausting the patience constraint or 
by successfully matching vt). Thus, there is only ever one 
online vertex available for matching at any one time.

We use G to denote an instance, which includes 
the graph, weights, edge probabilities, and any arrival 
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distributions including patience. Given any instance G 
one can consider an optimal offline algorithm, which 
knows in advance the online vertices that will arrive. For 
the adversarial arrival model, this means knowing the 
sequence v1, v2, : : : , vn; for the stochastic arrival models, 
this means knowing the sequence of T types that will be 
realized. We let OPT(G) denote the expected reward col
lected by the best sequential probing algorithm on G that 
has access to this offline information, noting that (i) 
OPT(G) does not know the realizations of the stochastic 
edges in advance either; (ii) computing OPT(G) is diffi
cult but unnecessary; (iii) for stochastic arrival models, 
this expectation is also over the realizations of the T 
types; and (iv) we assume that the offline algorithm must 
finish7 the interactions with one online vertex before 
moving to the next. Meanwhile, we let ALG(G) denote 
the expected reward collected by a fixed online algo
rithm on G, again taking a realization over types in the 
stochastic arrival models, and any potential randomness 
in the algorithm.

With this understanding, we say that a fixed (poten
tially randomized) online algorithm is c-competitive if 
ALG(G)=OPT(G) ≥ c for all instances G, where c is a con
stant in [0,1]. We are interested in the maximum value of 
c for which an algorithm can be c-competitive, which is 
referred to as the competitive ratio.

3.1. Outline for the Rest of the Paper
Our main algorithms and results for online matching 
with stochastic edges are presented in Section 4. In that 
section, we first present an algorithm for the vertex- 
weighted case, under adversarial arrivals, and show that 
it is 1/2-competitive. To our knowledge, this is the first 
result for this setting. In addition, we provide an algo
rithm for the edge-weighted case, under prophet arrivals. 
Here, too, we are able to show the algorithm is 1/2-com
petitive; we further show that a slight modification can 
improve the competitive ratio to 1 � 1=e when either the 
edge-weighted assumption is relaxed to vertex weights 
or the nonstationary assumption is relaxed to known IID 
arrivals.

All of the algorithms of Section 4 rely on utilizing, as a 
black box, an algorithm for the simpler problem of a star 
graph, which corresponds to a single online customer. 
For this problem, when the patience of the customer is 
known, there is an optimal algorithm based on dynamic 
programming because of Purohit et al. (2019). However, 
the results in Section 4 are stated in an abstract general 
manner, which allows us to swap out the algorithm of 
Purohit et al. (2019) for algorithms solving the star graph 
problem under different settings of patience. In Section 
5, we introduce new, stochastic models for the patience 
of the customer and give algorithms for these new set
tings. These new star graph algorithms can then be used 
as black boxes in the algorithms of Section 4, giving 

results for online matching under these new patience 
models.

Finally, in Section 6, we present our negative results 
following the order described.

4. Algorithms for Online Matching with 
Stochastic Edges

In this section, we present our results for online matching 
with stochastic edges. Recall that in this problem, the 
items U are known in advance while the customers 
arrive one by one in an online fashion. When a customer 
of type v arrives, we learn the probability pu, v, for each 
u ∈ U, that the customer will purchase item u if offered; if 
purchased, we gain some reward specified by wu, v, and 
if not, we may proceed to offer another item up to a total 
of θv offers. In the simplest setting, θv is known to the 
algorithm, although our framework can also handle set
tings where only a probability distribution over θv is 
known (see Section 5). An online algorithm must offer 
items sequentially to the customer and must make all its 
offers before the next one arrives. The goal is to maximize 
the expected total reward across all customers.

4.1. Vertex-Weighted, Adversarial Arrivals
We present a greedy algorithm, AdvGreedy, which 
achieves a 0.5-approximation for online matching with 
vertex weights, stochastic rewards, and patience con
straints in the adversarial arrival model. Recall that in 
this setting, each offline item ui ∈ U has a weight wi such 
that wui, v � wi for all customers v ∈ V, modeling the situ
ation where items have a fixed price that is the same for 
all customers. If vertex v is the tth vertex to arrive online, 
we say v arrives at time t. Recall that the goal of the prob
lem is to offer items to customer vt one by one, until either 
the patience runs out or an item is successfully sold, and 
the entirety of this process is carried out before the 
(t + 1)

st arrival, vt+1, arrives. The goal is to maximize the 
total revenue across all arrivals. Our algorithm makes 
use of a black box subroutine, STARBB, which takes as 
input a single online vertex, along with the probabilities 
and weights of its incident edges; STARBB(v, p, w) simply 
probes edges incident to online vertex v in some order, 
until either v’s patience is exhausted or a match is suc
cessful. Our results hold as long as STARBB is optimal, or 
within a constant factor κ of optimal. When the patience 
is deterministic and known to the algorithm, we can use 
the dynamic programming-based algorithm of Purohit 
et al. (2019) for STARBB; the dynamic program gives a 
sequence of θv vertices in U to probe in this order. This is 
optimal for star graphs, so κ � 1. In Section 5, we extend 
this online stochastic matching result to settings where 
the patience is unknown and stochastic, by giving star 
graph algorithms for these settings and proving constant- 
factor approximations for them.
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Algorithm 1 (Use a Star Graph Black Box to Greedily 
Match Arriving Vertices)

Function AdvGreedy(U, V, p, w):
for Arriving vertex v ∈ V do

STARBB(v, p, w)

Let ALG(G) denote the expected size of the matching 
produced by this algorithm on the graph G. Let OPT(G)

denote the expected size of the matching produced by an 
optimal offline algorithm. Our main result here is

Theorem 1. Given a κ-approximate black box for solving 
star graphs, Algorithm 1 achieves a competitive ratio of 
0:5κ; that is, for any bipartite graph G, ALG(G)

OPT(G)
≥ 0:5κ.

To prove this, we first present an LP which provides 
an upper bound on the offline optimal.

4.1.1. An LP Upper Bound on OPT(G). We formulate a 
new LP for our problem by adding a new constraint, (1d), 
to the standard LP relaxation of the problem. This new LP 
gives a tighter upper bound on the offline optimal solu
tion, OPT(G). Note that our algorithm does not need to 
solve this new LP, as it is only used in our analysis.

OPTLP :� max
X

u∈U

X

v∈V
xu, vpu, vwu (1) 

subject to
X

v∈V
xu, vpu, v ≤ 1 ∀u ∈ U (1a) 

X

u∈U
xu, vpu, v ≤ 1 ∀v ∈ V (1b) 

X

u∈U
xu, v ≤ E[θv] ∀v ∈ V (1c) 

X

u∈U′

xu,vpu,vwu ≤ OPT(U′,v)

∀U′ ⊆ U,v ∈ V
(1d) 

0 ≤ xu,v ≤ 1 ∀u ∈ U,v ∈ V 

In this LP, we slightly abuse notation and write OPT(U′, v)

to denote OPT(G′) for a star graph G′ � (U′, {v}, U′ ×

{v}). Recall that OPT(U′, v) can be computed by a black 
box.

We first show in Online Appendix A that our strength
ened LP is a valid upper bound.

Lemma 1. For any bipartite graph G, OPTLP(G) ≥ OPT(G).

4.1.2. Proof of 0.5-Competitiveness. We can then bound 
the performance of our greedy algorithm relative to the 
solution of LP (1).

Lemma 2. If STARBB is a κ-approximate algorithm for star 
graphs, then for any bipartite graph G, ALG(G) ≥ 0:5κ 
OPTLP(G).

By Lemmas 1 and 2, we have ALG(G) ≥ 0:5κOPTLP 

(G) ≥ 0:5κOPT(G), which implies our main result of a 

κ
2-competitive algorithm. As mentioned, using the probing 
order given by the dynamic program of Purohit et al. 
(2019) as STARBB gives κ � 1, so we have a 12-approximation. 
In Section 5, we present star graphs for stochastic patience 
settings, where κ is not necessarily one.

4.2. Prophet Arrival Setting
If we wish to allow for arbitrary edge weights, we must 
consider a different arrival model. A popular arrival 
model in the literature is the known IID setting, as dis
cussed in Section 2; here, we consider a generalization of 
the known IID setting, which we call the prophet arrival 
model. In this model, V specifies a set of possible arrival 
types; each arrival takes on one of these types randomly, 
according to a known distribution. The probabilities at 
each arrival are independent of previous arrivals, and 
the distribution over possible types can be different at 
each arrival.

For t � 1, 2, : : : , T and v ∈ V, denote by qtv the probabil
ity that the vertex arriving at time t will be of type v. For 
convenience, we denote by qv �

PT
t�1 qtv the expected 

number of arrivals of a vertex of type v.
We employ a new exponential-sized LP relaxation. In 

this LP, the variables correspond to policies for probing an 
arriving online vertex. A deterministic policy π for match
ing any online vertex type v is characterized by a permu
tation of some subset of U. The policy specifies the strategy 
of attempting to match v to vertices of U in the order given 
by π, until either a probe is successful, all vertices in π are 
attempted, or the patience of v is exhausted. Let P denote 
the set of all deterministic policies.

We present our LP in (2). We let puv(π) denote the 
probability that an online arrival of type v is matched 
to offline vertex u when following policy π, assuming 
that all vertices of π are still unmatched. The decision 
variables in the LP are given by xv(π), and we let 
OPTLPP(G) denote the true optimal objective value of 
the exponential-sized LP.

OPTLPP � max
X

v∈V

X

π∈P

xv(π)
X

u∈U
puv(π)wuv (2) 

subject to
X

v∈V

X

π∈P

xv(π)puv(π) ≤ 1 ∀u ∈ U (2a) 

X

π∈P

xv(π) � qv ∀v ∈ V (2b) 

xv(π)≥0 ∀v∈V,π∈P (2c) 

We can interpret xv(π) as the expected number of times 
policy π will be applied to an online vertex of type v. 
Constraint (2a) says that in expectation each offline ver
tex u can be matched at most once. Constraint (2b) comes 
from the fact that exactly one policy (possibly the policy 
that makes zero probes) must be applied to each arriving 
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vertex of type v. It follows from standard techniques 
(see, e.g., Bansal et al. 2010, lemma 9) that even for a clair
voyant, who knows the realized types of arrivals in 
advance, if we let xv(π) denote the expected number of 
times it applies policy π on an online vertex of type v, 
then this forms a feasible solution to the LP with objec
tive value equal to the clairvoyant’s expected weight 
matched. Therefore, if we can bound the algorithm’s 
expected reward relative to OPTLPP(G), then this would 
yield a competitive ratio guarantee.

4.2.1. Solving the Exponential-Sized LP. The LP (2) 
has a variable xv(π) for every possible online vertex type 
v and policy π ∈ P. If P has polynomial size, this LP 
therefore has polynomial size. This happens, for exam
ple, when all online vertices have a small constant 
patience. For instance, when the patience of all vertices is 
one, a policy π ∈ P is characterized by a single offline 
vertex and so |P | � |U | .

However, for general patience values the LP has expo
nentially many variables. Nonetheless, since there are 
only a polynomial number of constraints, a sparse solu
tion which is polynomially sized still exists. To help in 
solving the LP, we consider the dual.

minimize
X

u∈U
αu +

X

v∈V
qvβv (3) 

s:t:
X

u∈U
puv(π)αu +βv ≥

X

u∈U
puv(π)wuv

∀v ∈ V,π∈P (3a) 

αu ≥ 0 ∀u ∈ U
(3b) 

Note that the exponential family of constraints (3a) can 
be rewritten as

max
π∈P

X

u∈U
puv(π)(wuv � αu) ≤ βv, ∀v ∈ V (4) 

which is equivalent to, for every online type v ∈ V, solv
ing the probing problem for a star graph consisting of a 
single online vertex of type v and adjusted edge weights 
w′

uv � wuv � αu.
Recall that if for every online type v ∈ V, we have a 

black box which can solve the maximization problem 
in (4) to optimality, then we have a separation oracle 
for the dual LP which can either establish dual feasibil
ity or find a violating constraint given by v and π. By 
the equivalence of separation and optimization, this 
allows us to solve both the dual LP (2) and in turn the 
primal LP (3) using the ellipsoid method, as formal
ized in Proposition 1.

Proposition 1. Given black box star graph algorithms for 
every online vertex type which can verify (4) in polynomial 

time, the exponential-sized LP (2) can be solved in polyno
mial time.

An explicit statement which directly establishes Prop
osition 1 can be found in chapter 14 of Schrijver (1998). 
We should note that the ellipsoid method is only used to 
establish poly-time solvability in theory, and that a col
umn generation method which adds primal variables 
xv(π) as needed on the fly is usually more efficient in 
practice.

In either case, while the dynamic programming 
approach of Purohit et al. (2019) gives us an optimal 
algorithm for verifying (4) in polynomial time, for the 
setting of general stochastic patience described in Section 
5.2, the algorithm we present is only a 1/2-approxima
tion for the star graph problem. Nonetheless, one can still 
use the structure of the dual LP, along with this approxi
mate separation, to compute a (1=2 � ɛ)-approximate 
solution to the primal LP. This is formalized in Proposi
tion 2.

Proposition 2. Suppose for every type v ∈ V, we are given 
a black box which is a κ-approximation algorithm for the 
maximization problem in (4). Then a solution to LP (2) 
with objective value at least (κ� ɛ)OPTLPP(G) can be com
puted, in time polynomial in the problem parameters and 
1=ɛ.

Proposition 2 follows from the potential-based framework 
of Cheung and Simchi-Levi (2016), which is elaborated on 
in Online Appendix C. Armed with Propositions 1 and 2, 
we can use any optimal or approximately optimal algo
rithm for star graphs to obtain an (approximately) optimal 
solution to LP (2), which we can then use to solve the 
problem of online matching under prophet arrivals.

4.2.2. Algorithm and Analysis Based on Exponential- 
Sized LP. We now show how to use the LP (2) to design 
a κ=2-competitive online algorithm, given a feasible LP 
solution x∗

v(π) which is at least κ · OPTLPP(G), for some 
κ ≤ 1. For each vertex u ∈ U, let w∗

u �
P

v∈Vwuv
P
π∈P 

puv(π)x∗
v(π) denote the expected reward of matching u 

according to the assignment x∗. Notice that the objective 
value of the given solution is 

P
u∈Uw∗

u, which is at least 
κ · OPTLPP(G). Using this notation, our algorithm is 
given in Algorithm 2. By LP constraint (2b), we have 
P
π∈Px∗

v(π)=qv � 1, so the probability distribution over 
policies defined in Algorithm 2 is proper. We also note 
that because at most polynomially many variables x∗

v(π)

will be nonzero, this distribution has polynomial-sized 
support and can be sampled from in polynomial time. 
The algorithm itself is fairly simple, selecting a policy π 
at random with probability proportional to LP solution 
x∗

v(π) upon the arrival of a vertex vt of type v. Then, pol
icy π is followed in order to attempt to match the online 
vertex, but with two quirks: First, we skip probing any 
edge (πi, vt) for which the weight of the edge is too small 
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(specifically, if wπi, v < w∗
πi

=2), and second, if π tells us to 
probe an edge (πi, vt) for which offline vertex πi is una
vailable, we “simulate” the probing instead, terminating 
with no reward if the simulated probe is successful. This 
simulation technique was used in Brubach et al. (2017) 
and is also used by our star graph algorithm in Sec
tion 5.2.

Algorithm 2 (Random Arrivals from Known Distributions 
(Prophet Arrivals))

Function OnlineMatch(U, V, p, w):
for t � 1 to T do

Online vertex vt, of type v ∈ V, arrives
Choose a policy π � (π1,π2, : : : ,πℓ) with proba
bility x∗

v(π)=qv
for i :� 1 to ℓ do

if wπi, v < w∗
πi

=2 then
Skip to next i

else if πi is unmatched then
Probe edge (πi, vt) and match if successful 
for reward wπi, v

else
Simulate probing (πi, vt). If successful, 
move to next arrival without matching
vt.

Theorem 2. Under general edge weights and known arrival 
distributions, Algorithm 2 is κ=2-competitive for the online 
bipartite matching with patience problem, assuming we are 
given a solution to LP (2) with objective value at least 
κ · OPTLPP(G).

The proof of Theorem 2 is deferred to Online Appen
dix A. In the case of deterministic, known patience, the 
algorithm of Purohit et al. (2019) can be used as the black 
box star graph algorithms to allow verifying (4), and 
thus solving LP (2) exactly. In this case, κ � 1 in Theorem 
2, and we have a 1/2-competitive algorithm for online 
matching with patience, under prophet arrivals and arbi
trary edge weights. In Section 5, we extend the classical 
online stochastic matching problem to consider stochastic 
patience and give star graph algorithms with constant- 
factor approximation guarantees, allowing us to apply 
Theorem 2 to these settings as well.

4.3. Improvement for IID Arrivals
In the case of IID arrivals, that is, where q1v � q2v �⋯�

qTv for all vertex types v ∈ V, a slight modification to 
Algorithm 2 yields a competitive ratio of (1 � 1=e)κ 
when given a feasible solution to LP (2) that is at least κ ·

OPTLPP(G) of optimal.
The only change to the algorithm from the previous 

non-IID setting is that for IID arrivals, we do not skip 
probing vertices u ∈ U when wuv < w∗

u=2. The full pseu
docode is given in Algorithm 3.

Algorithm 3 (Random Arrivals from Known Identical 
Distributions (IID Arrivals))

Function OnlineMatch(U, V, p, w):
for t � 1 to T do

Online vertex vt, of type v ∈ V, arrives
Choose a policy π � (π1,π2, : : : ,πℓ) with proba
bility x∗

v(π)=qv
for i :� 1 to ℓ do

if πi is unmatched then
Probe edge (πi, vt) and match if successful 
for reward wπi, vt

else
Simulate probing (πi, vt). If successful, 
move to next arrival without matching
vt.

Theorem 3. Under general edge weights and known IID 
arrivals, Algorithm 3 is κ(1 � 1=e)-competitive for the online 
bipartite matching with patience problem, assuming we are 
given a solution to LP (2) with objective value at least 
κ · OPTLPP(G).

The proof of Theorem 3 is deferred to Online Appen
dix A. As with Theorem 2, the dynamic program of Puro
hit et al. (2019) can be used to get an optimal LP solution, 
so that Theorem 3 gives a competitiveness of 1 � 1=e for 
Algorithm 3 under the classical deterministic patience 
setting. Section 5 extends the result to online stochastic 
matching with stochastic patience, by providing black 
box algorithms for those settings which can then be used 
to find approximately optimal solutions to LP (2) as per 
Proposition 2.

4.4. Improvement for Vertex Weights
With a new analysis, we can show that Algorithm 3 still 
achieves a competitive ratio of 1 � 1=e in the prophet 
(nonstationary) setting in the case of vertex weights.

Theorem 4. Under vertex weights and known arrival dis
tributions, Algorithm 3 is κ(1 � 1=e)-competitive for the 
online bipartite matching with patience problem, assuming 
we are given a solution to LP (2) with objective value at 
least κ · OPTLPP(G).

The proof of Theorem 4 is deferred to Online Appen
dix A. It has identical implications as Theorem 3, with 
the improvement beyond the 1/2-guarantee of Theorem 2
coming from the vertex-weighted assumption instead of 
the IID assumption.

5. Algorithms for Star Graphs
All of the algorithms in Section 4 make use of a black box 
algorithm for solving the special case of a single customer 
(called the “star graph” problem, since it corresponds to 
a star graph with the customer as the center vertex): 
Under adversarial arrivals, the black box is used for each 
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arriving vertex, while for prophet arrivals it is used as a 
separation oracle for the dual LP. For the classic problem 
of online matching with stochastic edges and finite 
patience, we may use the dynamic program of Purohit 
et al. (2019) as this black box. Since this dynamic program 
is optimal for star graphs, κ � 1 in all of the results of Sec
tion 4. In this section, we consider the problem where the 
patience of the customer is not known but is instead 
determined by some stochastic process. These algo
rithms can be used as black boxes for the algorithms in 
Section 4, giving competitive ratios for online matching 
with stochastic edges (with multiple customers) under 
these new stochastic patience settings. Finally, we also 
give an algorithm for an alternate setting where the cus
tomer has a deterministic patience, but items arrive over 
time according to Bernoulli processes. Throughout, we 
use m to denote the number of items, as in Section 3.

5.1. Constant Hazard Rate
In this setting, the patience is random and unknown, 
with a constant “hazard rate” ri for each i ∈ [m].8 When 
an attempted match with ui is unsuccessful, the customer 
v runs out of patience with probability ri and remains 
available for another match attempt with probability 
1 � ri. When the hazard rate ri is the same for all i ∈ [m]

(i.e., ri � r for some r and every i), this is equivalent to the 
patience having a constant hazard rate of r.

Theorem 5. For maximizing the expected weight of the 
matched item in the (item-dependent) Constant Hazard 
Rate patience model, it is optimal to probe items in decreas
ing order of

wipi

pi + (1 � pi)ri
:

Theorem 5 tells us that, in the special case where the 
patience distribution can be modeled with individual 
per-item hazard rates, we can achieve an optimal star 
graph probing strategy. As such, we can apply all of the 
algorithms and results from Section 4 with κ � 1.

5.2. Arbitrary Patience Distributions
We address the case where the patience is stochastic (and 
unknown) and can follow an arbitrary known distribu
tion. Without loss of generality, we can assume the 
patience distribution has finite support (more specifi
cally, that the patience θ ∈ [m]); this is because a patience 
greater than m is equivalent to a patience of m (addition
ally, a patience of zero indicates a vertex which can never 
be matched by any algorithm, since no probes can be 
made, so we can simply ignore such vertices). We use an 
LP-based approach for this problem. We denote by qθ 
the probability that the patience of the online vertex v is 
at least θ. Notice that 1 � q1 ≥ q2 ≥⋯≥ qn. Our approach 
utilizes the LP (5) described in the next paragraph. The 
variables are xjθ, which correspond to the probability of 

attempting to match with j on the θth attempt. The value sθ 
represents the probability that the online vertex is avail
able for a θth match attempt, meaning its patience is at 
least θ and all previous match attempts were unsuccess
ful. This can be calculated from the xjθ, qθ, and pj values.

max
Xm

j�1
wjpj

Xm

θ�1
xjθ (5) 

subject to
Xm

θ′�θ

xjθ′ ≤sθ, ∀j∈{1,2,:::,m},θ∈{1,2,:::,m}

(5a) 
Xm

j�1
xjθ≤sθ, ∀θ∈{1,2,:::,m}

(5b) 
xjθ≥0, ∀j∈{1,2,:::,m},

θ∈{1,2,:::,m}

s1 �1, (5c) 

sθ�
qθ

qθ�1

 

sθ�1 �
Xm

j�1
pjxj,θ�1

!

∀θ∈{2,:::,m}

(5d) 

As an example, consider the e-commerce application, 
where we wish to offer items to a customer one by one. 
The variable xjθ indicates the probability that the cus
tomer is offered item j after θ� 1 other items have 
already been offered (and rejected). This can only hap
pen if the customer’s patience is at least θ and the cus
tomer has not already purchased an item (prior to the θth 

offer), since otherwise no offers can be made at this point. 
The value sθ denotes precisely this probability, that is, 
the probability that the customer’s patience is at least θ 
and the customer has rejected all previous offers. This 
suggests a simple constraint: xjθ ≤ sθ. However, two 
stronger conditions can be given: first, no valid strategy 
can offer item j at any point on or after the θth attempt, if 
the customer has patience less than θ or purchases an 
item offered before the θth. Summing over all offers after 
θ� 1, 

P
θ′�θxjθ′ is the probability that item j is offered at 

or after the θth step, and the reasoning above gives us the 
constraints (5a). Further, if the customer is unavailable 
(due to having purchased an item or running out of 
patience) for the θth attempt, then no item can be offered 
on the θth attempt; thus, the probability of offering an 
item on attempt number θ cannot exceed the probability 
that the customer is available for the θth attempt. This 
gives constraints (5b). We note that the family of con
straints (5a) differs from similar time-indexed LPs in the 
literature (Ma 2018), in that there is a constraint for the 
sum starting at every attempt θ instead of a single con
straint where θ � 1.

Constraints (5c) and (5d) simply give a closed-form 
expression for the quantities sθ, where qθ

qθ�1 
is understood 
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to be zero if both qθ and qθ�1 are zero. Finally, since xjθ 
corresponds to a probability, we require xjθ ∈ [0, 1] (we 
do not explicitly write the constraint xjθ ≤ 1 in the LP 
above, since it is redundant, being implied by (5b) for 
θ � 1, since s1 � 1). We can see that this LP upper bounds 
the optimal algorithm, since taking xjθ to be the probabil
ity of the algorithm probing j on attempt θ for all j and θ, 
we get a feasible solution to the LP with objective value 
equal to the algorithm’s expected weight matched.

Our algorithm is simple: we solve LP (5) to get an opti
mal solution x∗, along with the values s∗. Then, when 
making the θth probe, choose each offline vertex j �

1, : : : , n with probability x∗
jθ=s∗

θ (note that if s∗
θ � 0 then 

x∗
jθ � 0), which defines a proper probability distribution 

by (5b). If a vertex j is chosen to be probed, but has 
already been unsuccessfully probed in a previous 
attempt, we “simulate” probing j instead, and terminate 
with no reward if the simulated probe is successful. This 
simulation technique is important in ensuring that the 
probability of surviving to the θth attempt is consistent 
with the LP value s∗

θ.

Example 1. We provide an example to illustrate our 
LP and algorithm. Let m � 2, and suppose there are 
two items with weights w1 � 1, w2 � 2 and probabili
ties p1 � 3=4, p2 � 1=4.

First, suppose q1 � q2 � 1, that is, the patience is 
deterministically two. Then the nonzero x-values in 
the optimal LP solution are x2, 1 � 1, x1, 2 � 0:75. This 
corresponds to probing item 2 (with the higher 
reward if it succeeds) first, and if the probe fails 
(occurring w.p. 3/4), probing item 1 afterward. The 
expected reward is w2p2 + (1 � p2)w1p1 � 2=4 + 3=4·

3=4 � 17=16 � 1:0625, which is also the optimal objec
tive value of the LP.

Now consider a more interesting example where 
q1 � 1, q2 � 1=3. Then the nonzero x-values in the opti
mal LP solution are x1, 1 � 0:9, x1, 2 � 0:1, x2, 1 � 0:1. Our 
algorithm in this case will probe item 1 first w.p. 0.9, 
and otherwise (w.p. 0.1) probe item 2 first. If it sur
vives to the second probe, which occurs w.p. s2 � 0:1, 
it will always probe item 1. However, note that this 
will be a “simulated” probe (which generates no 
reward) unless item 2 was probed on the first probe, 
making item 1 still available for the second probe. The 
probability of this occurring is 0:1 · 3=4 · 1=3 � 0:025. 
Therefore, the expected reward of our algorithm is 
(0:9 + 0:025) · 3=4 + 0:1 · 2=4 ≈ 0:743. Meanwhile, the LP 
optimal value is 0.8.

We note that in this case, the best algorithm is to 
probe item 1 first (which is the “safe bet,” given that 
the customer has a 2/3 chance of departing after the 
first probe) followed by item 2, which would have 
expected reward 19=24 ≈ 0:791, worse than the LP 
value. It would have been better than our algorithm, 
though. However, note that the optimal ordering 

given many items and an arbitrary patience distribution 
is generally nontrivial to solve (even in our examples, 
the optimal ordering switched from 2,1 to 1,2 depending 
on the patience distribution), and to our knowledge the 
best approximation algorithm is the 1/2-approximation 
provided by our randomized algorithm.

Theorem 6. The online algorithm based on LP (5) is a 
1/2-approximation for the star graph probing problem, for 
an arbitrary patience distribution which is given explicitly.

The proof of Theorem 6 is in Online Appendix A; we 
note that the analysis in the proof is tight.

We further note that the result of Theorem 6 compares 
to a benchmark (LP (5)) that does not know the full reali
zation of the patience values in advance. This is neces
sary, since Theorem 10 states that comparing to a 
benchmark which knows the patience in advance leads 
to arbitrarily bad competitive ratios.

Theorem 6 allows for us to solve online matching pro
blems when the patience of each customer is stochastic 
and follows an arbitrary distribution that is known to the 
algorithm. We simply use our star graph algorithm as a 
black box for our algorithms in Section 4, with κ � 1=2. 
This gives us 1

4-competitive algorithms for vertex- 
weighted adversarial arrivals and edge-weighted prophet 
arrivals; as per Theorems 3 and 4, we have improved com
petitive ratios of 1

2 (1 � 1=e) under known IID arrivals 
(even with arbitrary edge weights) and vertex-weighted 
prophet arrivals (even when the distributions are not 
identical).

5.3. Item Arrivals
Next, we consider a different setting in which after a cus
tomer arrives, the “items” (interpreted as contractors in 
an online platform) are initially unavailable and only 
show up (to acknowledge that they can do the custo
mer’s job) following Bernoulli processes. More specifi
cally, each item i ∈ [m] has two given probabilities: 
the matching probability pi and an arrival probability qi. 
The customer has a known deterministic patience θ, and 
the process unfolds in discrete time steps; at time t ∈ {1, 
: : : ,θ}, the algorithm must choose at most one item that 
has arrived to offer to the customer. After time t � θ, if 
no item has been purchased, the customer runs out of 
patience and becomes permanently unavailable for 
matches. In contrast to the other patience settings, in this 
setting the patience corresponds to the amount of time the 
customer is willing to wait, rather than the number of 
items they may be offered. Thus, if the algorithm makes 
no offer at time t (because it is waiting for items to 
become available), we still move one step closer to 
exhausting the customer’s patience.

When the customer first arrives (immediately prior to 
time t � 1), no items are available to be offered. However, 
at each time step, each item i becomes available indepen
dently with probability qi. Once an item i becomes 
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available to the customer, say initially at time t, then it 
can be offered to the customer at most once, at any time 
step t′ ≥ t. When item i is offered, the customer pur
chases it with probability pi, in which case a weight of wi 
is achieved and the process terminates; with probability 
1 � pi, the item is not purchased and the process immedi
ately proceeds to the next time step. As with all star 
graph problems, our goal is to develop an algorithm 
which maximizes the expected weight of the item sold to 
the customer (achieving a weight of zero if no item is 
sold).

We begin with a linear programming relaxation of the 
problem.

LP :� max
Xm

i�1
wixipi (6) 

subject to
Xm

i�1
xipi ≤ 1 (6a) 

Xm

i�1
xi ≤ θ (6b) 

xi ≤ 1 � (1 � qi)
θ ∀i ∈ {1, 2, : : : , m} (6c) 

xi ≥ 0 ∀i ∈ {1, 2, : : : , m} (6d) 

We call an item “large” if qi ≥ c=θ. Otherwise, if qi < c=θ, 
we say that item ui is “small.” Let ILARGE � {i ∈ [m] |xi ≥

c=θ} denote the set of large items, and ISMALL � {i ∈

[m] |xi < c=θ} denote the set of small items. Our algo
rithm first solves the LP (6) to obtain an optimal solution 
(xi)i∈[m]; then, it makes use of one of two different strate
gies, choosing between the two depending on relative 
contribution of large versus small items to the LP objec
tive. The motivation here is as follows: Intuitively, we 
wish to choose to offer an item i with some probability 
proportional to xi. However, if most of the contribution 
to the objective value in the LP comes from small items, 
there may be a high probability of no items arriving in 
any one time step; in this case, we may be better off sim
ply offering any item that arrives in a time step where we 
are lucky enough to have an arrival.

5.3.1. The LARGE Strategy. First, let ρ ∈ 0, 1
2

� �
be a fixed 

parameter. Our strategy πLARGE does the following: at 
each time step, we select an item at random. When select
ing a random item, we choose item i with probability 
xi=θ. With probability 1 �

Pm
i�1 xi=θ, we select no item. It 

follows from constraint (6b) that this forms a valid 
distribution.

The algorithm selects this item at random, and if the 
item has arrived and has not yet been offered, we offer it 
to the buyer with probability ρ (and with probability 1 � ρ 
we make no offer).

5.3.2. The SMALL Strategy. Our strategy πSMALL does the 
following: At each time step, if at least one small item 

arrives in that step, choose one of the small arrivals at 
random and offer it to the buyer. We ignore large items. 
Any small item which arrives and is not chosen is 
permanently discarded (i.e., it will never be offered to 
the buyer).

5.3.3. The Full Algorithm. We fix a parameter φ ∈ (0, 1). 
First, if θ � 1, we simply take the optimal choice, offering 
the item with the highest expected reward among items 
that arrived. Then, for θ ≥ 2, if 

P
i∈ILARGE

wixipi ≥ (1�

φ)LP, we use strategy πLARGE at every time step. Other
wise, 

P
i∈ISMALL

wixipi > φLP, and we use πSMALL at every 
time step.

We show that this algorithm is a 0.027-approximation 
for the problem. This is done by considering the two 
cases (corresponding to using the LARGE and SMALL 
strategies) separately.

Lemma 3. If Pi∈ILARGE
wixipi ≥ (1 � φ)LP, then πLARGE achieves 

an expected matching weight of (1 � φ)cρ(1 � 2ρ)LP.

Lemma 4. If Pi∈ILARGE
wixipi < (1 � φ)LP, then πSMALL achieves 

an expected matching weight of at least

φ 1 �
c
2

� � 2
1�(1�c=2)2 1

c
�

e�c

1 � e�c

� �

LP (7) 

Using the bounds for both the LARGE and SMALL strate
gies, we can now give our final result.

Theorem 7. For an appropriate choice of parameters 
φ,ρ, c, our algorithm is a 0.027-approximation.

Lemmas 3 and 4 and Theorem 7 are proved in Online 
Appendix A. Our result for this setting can be used as a 
black box for a new kind of online stochastic matching 
problem with two-sided arrivals, where after the arrival 
of each customer, all items (contractors in an online labor 
platform) are initially unavailable, and arrive over time 
following Bernoulli processes (when they “discover” the 
customer’s task). These acknowledgments “reset” after 
each customer, who presents a new job, and we note that 
that each (contractor, customer)-pair can have a different 
rate for its Bernoulli process of the contractor arriving, as 
well as a different probability for the customer accepting 
that contractor. A contractor, once matched, spends the 
time horizon (e.g., one day) doing that task and hence 
never returns. For such an online matching problem, we 
may use our strategy as a black box for the algorithms of 
Section 4, where we have κ � 0:027, to get a constant- 
factor competitive ratio for any finite market size and 
time horizon.

6. Negative Results
6.1. Stochasticity Gap
The stochasticity gap is a fundamental gap in linear pro
gramming relaxations for stochastic problems which 
replace probabilities with deterministic fractional weights. 
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The notion was first discussed informally in Brubach 
et al. (2017) and was later also observed by Purohit et al. 
(2019) (where they referred to it as a “probing gap”). 
When these LP relaxations are used as upper bounds on 
the offline optimal solution, or as a benchmark for the 
competitive ratio, the stochasticity gap represents a bar
rier to the best achievable competitive ratio. One inter
pretation of such a result is that better competitive ratios 
are not possible. However, one may alternatively view it 
as a result showing the limitations of using a particular 
LP as a benchmark for competitive ratios.

We present a stochasticity gap for a common LP relax
ation of the online matching problem with stochastic 
rewards. Recall from Section 4.1.1 that LP (1) with the 
constraints (1a)–(1c) (and excluding our additional fam
ily of constraints (1d)) is a standard LP relaxation for 
bipartite matching with (known) patience constraints 
and adversarial arrivals. This is essentially an extension 
of the “Budgeted Allocation” LP from Mehta and Pani
grahi (2012) to include the patience constraints. For con
venience, we reproduce this standard LP below in the 
vertex-weighted setting.

max
X

u∈U

X

v∈V
xu, vpu, vwu

subject to
X

v∈V
xu, vpu, v ≤ 1 ∀u ∈ U

X

u∈U
xu, vpu, v ≤ 1 ∀v ∈ V

X

u∈U
xu, v ≤ E[θv] ∀v ∈ V

0 ≤ xu, v ≤ 1 ∀u ∈ U, v ∈ V 

Simple LP formulations like this, while useful, can give 
too large of an upper bound on the performance of any 
offline algorithm and thus make it difficult to get larger 
competitive ratios. As such, more complex (and, often, 
exponentially sized) LPs have been used in recent work 
(see, e.g., Gamlath et al. 2019) to achieve better results. 
Our LP-based techniques in Section 4 use different 
exponential-sized LPs to overcome the limitations of sto
chasticity gaps.

We start with a simple example demonstrating the 
notion of a stochasticity gap, where the bipartite graph 
has a single offline vertex u, and n online vertices arriving 
in any order. Suppose puv � 1=n and wuv � 1 for all online 
vertices v ∈ V. The LP given by (1a)–(1c) can assign xuv �

1 for all edges, achieving an objective value of one. How
ever, the best any online algorithm can do is probe the 
single edge (u, v) whenever vertex v arrives online, which 
matches the single offline vertex u with probability 
1 � 1=e. Thus, it is impossible for any online algorithm to 
guarantee a matching of expected weight better than 
(1 � 1=e) times the LP value. This establishes a stochasti
city gap of 1 � 1=e for this formulation and suggests that 
if we wish to beat the 1 � 1=e barrier, we must use a 

different LP benchmark. However, the stochasticity gap 
for the LP of (1a)–(1c) is even worse. To establish this, we 
consider a complete bipartite graph with n vertices on 
each side, and edge probabilities 1=n; a result on random 
graphs then implies Theorem 8, whose proof is in Online 
Appendix A.

Theorem 8. The LP given by the objective function (1) and 
constraints (1a)–(1c) has a stochasticity gap of at most 
≈ 0:544.

We should note that Fata et al. (2019) establish a smal
ler upper bound of 1 � ln(2 � 1=e) ≈ 0:51 relative to this 
LP, but they restrict to online probing algorithms. Our 
higher upper bound holds even for the offline optimal 
matching, hence reflecting a true “stochasticity gap.”

6.2. The 0.5 Upper Bound for SimpleGreedy
As defined in Mehta and Panigrahi (2012), an opportunis
tic algorithm for the Stochastic Rewards setting is one 
which always attempts to probe an edge incident to an 
online arriving vertex v ∈ V if one exists. The work of 
Mehta and Panigrahi (2012) showed that in the unweighted 
Stochastic Rewards (θv � 1 for all online vertices v ∈ V) prob
lem, any opportunistic algorithm achieves a competitive 
ratio of 1/2. The simplest opportunistic algorithm is the 
one which, when v ∈ V arrives online, chooses a neighbor 
u ∈ U of v arbitrarily and probes the edge (u, v). We call this 
algorithm “SimpleGreedy.” Since SimpleGreedy is oppor
tunistic, the result of Mehta and Panigrahi (2012) shows 
that SimpleGreedy achieves a competitive ratio of at least 
1/2; Theorem 9 shows that this is tight even when restricted 
to small, uniform p.

Theorem 9. There exists a family of unweighted graphs 
under stochastic rewards and adversarial arrivals for which 
SimpleGreedy achieves a competitive ratio of at most 1/2 even 
when all edges have uniform probability p � O(1=n).

We present our construction here. Let k be a fixed posi
tive integer constant. Let U � U0 ∪ Un, where U0 and 
Un � {u1, : : : , un} are disjoint, and |U0 | � k. Let V � V0 ∪

Vn where V0 and Vn � {v1, : : : , vn} are disjoint, and 
|V0 | � kn2. Let E � E0 ∪ En where E0 � U0 × V and 
En � {(ui, vi) | i � 1, : : : , n}. Let p � k=n.

For the bipartite graph G(U, V; E), an offline algorithm 
can achieve a matching of expected size at least 2k by first 
probing edges (u, v) ∈ U0 × V0 until all edges are probed 
or the maximum possible successful matches, k, is 
achieved. This strategy achieves k successful matches 
among these edges in expectation. Then, the offline opti
mal will probe all edges of En in any order, achieving an 
expected number of successful matches of k. The total 
expected size of the achieved matching is then 2k. We 
complete the proof of Theorem 9 by showing that an 
online algorithm cannot earn more than k + o(k), in 
Online Appendix A.
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6.3. Hardness of Unknown Patience
We now show that when offering items to a single cus
tomer with random patience, one should not be compar
ing to a benchmark that knows the realization of the 
patience in advance, or else the competitive ratio will be 
zero. The same counterexample shows for single-item 
IID-valued online accept/reject problems that the com
petitive ratio will be zero if the number of arrivals is 
unknown, recovering the result of Alijani et al. (2020).

Theorem 10. For the star graph probing problem with 
patience θ drawn from an arbitrary distribution,9 the 
reward of an online algorithm relative to a clairvoyant who 
sees the realization of θ in advance must be zero, even if 
there are infinite copies of every offline vertex.

Theorem 10 is proved in Online Appendix A, and its 
construction is presented below. The significance of 
allowing infinite copies of offline vertices is the follow
ing. Essentially, we are left with a pricing problem where 
there are an unknown θ number of opportunities to 
make a single sale to a customer; the different offline ver
tices’ weights correspond to different prices that can be 
tried, and after each trial we get an independent realiza
tion (because of the infinite copies) whose probability 
depends on the price. One can further transform such an 
instance into an online accept/reject problem facing a 
stream of θ IID draws, where the pricing decisions corre
spond to acceptance thresholds. Therefore, our hardness 
result implies the following. Although already known to 
Alijani et al. (2020, appendix A.1), we rederive it using 
our construction to articulate the connection, which we 
believe is instructive.

Corollary 1. Consider the simple optimal stopping problem 
where an online algorithm can accept at most one of θ 
values that are drawn IID from a known distribution and 
presented one by one. If θ is unknown, then the competitive 
ratio is zero.

6.3.1. Our Construction. Fix a positive integer k and let 
m be another positive integer that we will drive to ∞. 
Consider a star graph, that is, a bipartite graph with 
many offline vertices u ∈ U and a single online vertex v. 
Consider the following distribution over the patience of 
v:

θ̃v �
m2i w:p: m�i � m�i�1 ∀i � 0, : : : , k � 1;

m2k w:p: m�k:

(

(8) 

In our construction, there are m2k identical offline verti
ces for each i � 0, : : : , k, with weight mi and probability 
m�2i. We note that m2k is greater than the largest possible 
realization of θ̃v, so the constraints on the availability of 
offline vertices are never binding. That is, our construction 
applies even in the more restrictive setting where there are 
infinite copies of every offline vertex.

6.3.2. Intuition Behind Hardness. In our construction, 
there are essentially an unknown number of opportuni
ties to sell a single item. During each opportunity, one 
must choose a consumption option i � 0, : : : , k, which 
has an m�2i probability of selling the item at price mi. The 
immediate reward from consumption option i is 
mi · m�2i � m�i, which is decreasing in i, but smaller indi
ces of i also have a higher chance of closing the sale and 
eliminating future opportunities. Therefore, there is a 
trade-off between offering “longshot” prices with a high 
index of i (desirable if a large number of opportunities 
remain) and the “safe” option i � 0 which makes a sale 
w.p. m�0 � 1 (desirable on the final opportunity). Our 
proof of Theorem 10 in Online Appendix A shows that 
a clairvoyant who tries only option i when they know 
the patience will be m2i, for all i � 0, : : : , k, can earn ≈

(1 � 1=e)(k + 1). Meanwhile, any online algorithm is best 
off using the “safe” option i � 0 on the first try and finish
ing, since the customer only has a small chance of having 
patience greater than one (we prove this through back
ward induction on the optimal dynamic program). This 
establishes an unbounded separation when k is taken to 
be large in our construction.

6.3.3. Transformed Hard Instance to Establish Corol
lary 1. For concreteness, we show how to transform our 
construction to the accept/reject problem. The IID draws 
from the distribution should take one of k + 1 possible 
values, indexed by i � 0, : : : , k. The decision each period 
is to set a threshold on the minimum acceptable value, 
where each option i � 0, : : : , k should correspond to a 
“consumption option” that has probability m�2i of 
accepting. Therefore, the probability of the IID draw tak
ing value index i for all i � 0, : : : , k � 1 should be m�2i �

m�2(i+1) and the probability of value index i � k should be 
m�2k, so that accepting all levels with index at least i has 
probability

(m�2i �m�2(i+1))+(m�2(i+1) �m�2(i+2))+⋯+m�2k �m�2i 

of making an acceptance. Now, the exact values for each 
index i must be calibrated so that the immediate reward 
from each consumption option i is m�i. Using backward 
induction over i � k, : : : , 1, we can solve that the value for 
index i � k should be mk and that the value for each index 
i � 0, : : : , k � 1 should be

m�i � m�(i+1)

m�2i � m�2(i+1)
�

mi+2 � mi+1

m2 � 1 �
mi+1

m + 1 :

This completes the construction of our transformed 
instance for the accept/reject problem.

6.3.4. Applying Yao’s Minimax Principle. Finally, we 
explain why in Corollary 1, there is no difference between 
θ being completely unknown and θ being drawn from a 
known distribution (but competing against a clairvoyant 
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who knows its realization in advance). Formally, for any 
patience θ and any (deterministic) nonclairvoyant algo
rithm ψ, let ALG(ψ,θ) denote the algorithm’s expected 
reward when the patience realizes to θ. Meanwhile, let 
OPT(θ) denote the clairvoyant’s expected reward when 
the patience is known to be θ. Let D denote a distribution 
over patiences θ, and Ψ denote a distribution over algo
rithms ψ. Yao’s minimax principle says that

sup
Ψ

inf
θ

Eψ~Ψ[ALG(ψ,θ)]

OPT(θ)
� inf

D
sup
ψ

Eθ~D
ALG(ψ,θ)

OPT(θ)

� �

� inf
D

supψEθ~D[ALG(ψ,θ)]

Eθ~D[OPT(θ)]

(where the second equality holds via rescaling worst-case 
distributions D by OPT(θ)). The existence of our family of 
distributions in (8) shows that the right-hand side expres
sion, and hence all of these expressions, equals zero. The 
left-hand side expression equaling zero implies that for 
any fixed (randomized) online algorithm that does not 
know the value of θ in advance, an adversary can always 
set a horizon length θ for which the algorithm performs 
unboundedly worse relative to OPT(θ).
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Endnotes
1 This includes everything that is known about the customer at the 
time of their arrival, including purchase probabilities, patience dis
tribution, edge weights, etc.
2 Similar ideas have appeared in Cheung et al. (2022), who consider 
abstract “actions” that have different immediate rewards and differ
ent consumption distributions over resources. However, their focus 
is on learning these distributions.
3 However, we acknowledge that their 1=e-approximation holds 
against a stronger benchmark that knows the patience in advance. 
This is only possible under some special cases of the patience distri
bution: as we show in Section 6.3, such a result is impossible for the 
general patience distributions we consider, so our LP relaxation 
(necessarily) does not know the patience in advance.
4 Their paper focuses on the offline matching with stochastic edges 
problem, which we do not consider in this literature review.
5 The techniques in Brubach et al. (2017) also involved solving a star 
graph problem with a black box. However, that work first solved 
an LP for a bipartite graph, and then used a black box probing algo
rithm to essentially round and probe the LP solution on the induced 
star graphs of arriving vertices. This differs from our work, which 
uses algorithms for stochastic matching on star graphs as black 
boxes to solve a more sophisticated LP and then uses that LP solu
tion to guide the online algorithm.
6 This is because it was the arrival model of original focus in 
prophet inequality papers (Krengel and Sucheston 1977).

7 We note that Borodin et al. (2022) derive results against a stronger 
benchmark, which can switch back and forth between online 
vertices.
8 Throughout this paper, we use the notation [m] :� {1, 2, : : : , m}.
9 See Section 5.2 for the exact problem statement. There we com
pared with an LP that also did not know the realization of the 
patience in advance, the importance of which is fully justified by 
the present theorem.
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