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A B S T R A C T

Connected automated vehicles (CAVs) use sensors to scan their surrounding environment in
order to make safe and efficient motion decisions. The richness of a CAV’s vision depends on the
configuration of on-board sensors and the ability of CAVs to share data with nearby vehicles.
High-end sensors provide quality data, allowing CAVs to rely on their own sensors through
individual sensing, and to become independent of other vehicles. In contrast, sensor data sharing
enhances the collective vision of CAVs through cooperative sensing. This study investigates
the trade-offs in the values and costs of individual versus cooperative sensing, and it proposes
optimal investment strategies for short- and long-term planning. Exploiting the setting of a
CAV-exclusive corridor, we propose two nonlinear programs to determine optimal investment
in corridor capacity in the long-term, and to maximize social welfare in the short-term through
road pricing. Capacity analysis shows disjointed investments in individual and cooperative
sensing, first in the former until sensors reach a desired resolution, and then in the latter.
Social welfare analysis shows travelers are granted a reward in certain settings, encouraging
flows that achieve cooperative sensing. Such rewards are not observed in human-driven vehicle
settings that cannot benefit from cooperative sensing.

1. Introduction

Advances in sensing technology and artificial intelligence have expedited the development of connected automated vehicles
CAVs) as an emerging mode of transportation. CAVs use on-board sensors to map a vehicle’s surrounding environment for safe and
fficient motion decisions. The primary CAV sensors include camera, lidar, and radar. Cameras use highly detailed images to detect,
lassify, and position objects. Radars emit radio waves that reflect off objects back into a receiver, thus yielding the distance from
he vehicle to that object. Lidars use the same principle but emit lasers instead of radio waves. Mounted on a spinner, lidars can
enerate three-dimensional maps of a vehicle’s surroundings. Sensors are broadly assessed in terms of their range and resolution,
here range is the threshold distance beyond which a sensor cannot detect objects, and resolution reflects the richness of the sensor
ata measured in point readings per unit distance (e.g., dots per inch). Fig. 1 depicts the three primary CAV sensors with their range
of vision.

The richness of a CAV’s vision depends on the configuration of on-board sensors and the ability of CAVs to share data with
nearby vehicles. On one hand, high resolution sensors can enhance a CAV’s vision, making it autonomous and independent of
communicating with other vehicles. On the other hand, when equipped with communications infrastructure such as 5G technology,
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Fig. 1. CAV sensors and their range.

the surrounding vision can be enhanced by sharing sensor data with nearby vehicles. Sensor data sharing can be competitive,
complementary, or cooperative. Competitive sensing retrieves data on the same object from multiple sensors, allowing redundancy
and higher fault tolerance in detection accuracy (Visser and Groen, 1999). As an example, having more than one radar in front
of a CAV improves detection robustness in case any of the radars malfunction. In complementary fusion, sensors do not directly
depend on each other, yet their data can be combined to provide a more complete map of the environment, e.g., having multiple
cameras pointed at disjunctive areas of a vehicle’s surroundings. Cooperative sensing uses independently collected sensor data to
infer information otherwise unavailable from any incomplete subset of the sensors. Stereoscopic vision is an example of cooperative
sensing that combines two-dimensional images of individual cameras with different viewpoints to generate three-dimensional maps.
In the context of this paper, cooperative sensing allows each CAV to use sensor data from the nearby vehicles to broaden its vision.
We investigate the trade-offs in the values and costs of individual and cooperative sensing, and propose optimal investment strategies
in connectivity and sensor configuration, specifically range and resolution.

Despite growing evidence of the potential benefits of cooperative driving automation (for recent reviews, see Ha et al., 2020
and Labi, 2021), less attention is paid to cooperative sensing, which is related to the role and properties of sensors as the
primary source of data shared amongst CAVs. Kianfar et al. (2012) developed and tested a cooperative adaptive cruise control
model with sensor data fusion, which uses a Kalman filter to estimate the distance, speed, and acceleration of ego and leader
vehicles, considering delays in sensor fusion. Wang et al. (2014a,b) proposed frameworks for adaptive cruise control in platoons
for both individual and cooperative control. In the non-cooperative case, each vehicle maximizes driving comfort, efficiency, or
safety through optimizing acceleration, speed, or the car following gap using only its leader information accessible by its onboard
sensors, while in the cooperative case, all vehicles in the platoon share their state, position, and speed via vehicle-to-vehicle
communication. Their analysis shows that cooperative control can outperform individual control as the front vehicles compromise
their situations to maximize the benefit of following vehicles in the platoon. Wang et al. (2020) proposed a cooperative adaptive
ruise control strategy sensitive to possible communications-related constraints such as interference and information congestion.
heir model dynamically optimizes information flow topologies by requiring vehicles to cooperatively determine in real-time their
nformation sending capability. In contrast to all these previous studies, this paper is concerned about societal investment decision on
nabling cooperative or individual sensing. Of the most relevant, Vignon et al. (2022) investigated the trade-off between digitalizing
infrastructure and equipping vehicles for enabling driving automation. They show that under certain conditions, installing sensors
on both infrastructure and vehicles is socially optimal.

This study contributes to understanding optimal social planning policies of individual versus cooperative sensing in automated
driving. From a societal point of view, we seek to answer the following questions: (1) If a society can freely decide the investment in
enabling cooperative sensing, how it would determine optimal CAV sensor configuration and connectivity level, favoring individual
versus cooperative sensing, respectively; (2) what types of investment policies can be implemented in long- and short-term to increase
the efficiency of CAVs, and (3) which factors influence investment decisions and to what degree. We assess these policies impacts
by developing a stylized model of CAV mobility which is sensitive to the properties of CAV sensors and their ability to share
information through cooperative sensing. The framework is leveraged to express average speed and flow in different CAV densities.
Our analysis shows that there exists some threshold density beyond which the sensor have enough overlap in their range to facilitate
cooperative sensing, thus allowing vehicle to drive at faster speeds due to their longer stretch of vision. Consequently, the travel
time function is first constant then decreases with flow due to cooperative sensing effect. When density is further increased, there
exists another threshold density beyond which congestion occurs and the average speed drops as is common in the conventional
traffic flow of human-driven vehicles. Using the stylized model of CAV mobility, we show that social welfare is maximized when
travelers are granted a reward, encouraging higher demand of CAVs to achieve cooperative sensing. Such rewards are not observed
in human-driven vehicular flow that cannot benefit from cooperative sensing. Analysis of investing a given budget for maximizing
corridor capacity requires disjoint investments in individual and cooperative sensing, first in the former until sensor reach a desire
2
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Fig. 2. Sensor range and resolution. The three cases have the same sensor power, but differ in terms of their range and resolution profile.

The rest of this paper is organized as follows: Section 2 presents a stylized model of CAV traffic with sensor configuration and
connectivity that is used to assess investment strategies. Section 3 presents the optimal sensor configuration and level of connectivity
n long- and short-term investments. Section 4 presents numerical findings on the properties of optimal investment policies. Section 5
resents the conclusions and future research directions.

. Model

.1. Sensor range and resolution

Consider a single-lane corridor exclusive to CAVs equipped with sensors to detect the vehicle’s surrounding environment. We
odel the aggregate features of all motion sensors using a single measure of range (how far sensors see) and resolution (how well
hey see). Sensors only detect objects within a radius 𝑟 known as range, i.e., each sensor sees a distance 𝑟 ahead and behind the
ehicle. Within their range, sensors better detect objects closer to the vehicle.
We denote the resolution of a point located 𝑥 away from a vehicle by 𝑅(𝑥), measured in data points per unit distance (e.g., dpi).

mpirical and theoretical studies show that sensor resolution depends on the environment, type of sensor, and distance from
bjects. Lidar resolution decreases with distance due to the angular deviation of beam channels. Camera resolution is also inversely
roportional to its distance with an object, see Figure 7 of Theia Technologies (2022). Equipped with optimally configured sensors,
AVs can attain maximum allowable speeds while abiding by safety protocols. The sensor-oriented traffic flow framework of this
tudy captures traffic properties w.r.t. sensor features, which has been explored less in the relevant literature. Resolution has the
ollowing two properties. First, it is well established that 𝜕𝑅(𝑥)∕𝜕𝑥 < 0, indicating that resolution drops with distance between an
bject and the sensor. Second, sensors have zero resolution on objects beyond their range, therefore 𝑅(𝑥) = 0 for 𝑥 > 𝑟.
The assumptions related to sensor resolution are the following (Assumption 1): (i) Resolution is symmetric (behind and ahead

f the vehicle) as is the case of rotating Lidars. (ii) 𝑅(𝑥) is linearly decreasing with 𝑥, which satisfies the above resolution properties.
(iii) All CAVs have identical resolution profiles.

We define resolution 𝑅(𝑥) as

𝑅(𝑥) = 𝛼
𝑟
(1 − 𝑥

𝑟
) ∀𝑥 ∈ [0, 𝑟], (1)

where 𝛼 is a parameter known as the sensors’ power, which is the area under 𝑅(𝑥) defined as

2∫

𝑟

0

𝛼
𝑟
(1 − 𝑥

𝑟
)𝑑𝑥 = 𝛼.

Sensor power proportionally increases the resolution at all points within the range as expressed in (1). Lidars and cameras, for
xample, are often characterized in terms of their vertical and horizontal resolution (and sometimes their angular resolution), the
roduct of which is the number of point receptions per round of reading. Fig. 2 shows a schematic of sensor range and resolution
for the same sensor power.

Consider a pair of vehicles on the corridor known as the leader (vehicle moving ahead) and the ego vehicle (vehicle moving
behind). Depending on the spacing between the pair, denoted by 𝑠, the sensors may achieve no-, partial-, or full-overlap in their
range, as shown in Fig. 3. No-overlap occurs when 2𝑟 ≤ 𝑠; partial-overlap occurs when 𝑟 ≤ 𝑠 < 2𝑟 where the range of the two sensors
overlap, but the vehicles themselves are not within each other’s range, and full-overlap occurs when 𝑠 < 𝑟 where the vehicles are
within each other’s range.

The leader can share its sensor data with the ego vehicle, depending on the level of connectivity between the pair. Connectivity
is high where there is a faster rate of data exchange or compatibility in fusing the data received from the leader sensor. For example,
vehicles from the same manufacturer may be more efficient at sharing sensor information. Vehicle connectivity also depends on the
complimentary nature of the data, fusion compatibility (Yeong et al., 2021), and fusion redundancy. Improvements in connectivity
an be achieved by investing in communications infrastructure such as LTE and 5G (Campolo et al., 2017), and by standardization
f CAV sensors (Zeadally et al., 2020) and data fusion procedures (Hall and Llinas, 2001). Let 𝛽 ∈ [0, 1] be the connectivity ratio,
3
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Fig. 3. Sensor range and resolution. The darker color shades indicate a higher resolution.

representing the proportion of data points collected by the leader that is useful and accessible to the ego vehicle. At 𝛽 = 1 the
vehicles are fully connected and have complete access to each other’s sensor data, whereas at 𝛽 = 0 the vehicles are disconnected
and cannot share data.

Cooperative sensing allows each CAV to enhance its perceived resolution by relying on its own sensors and the sensors of the
vehicle ahead. Let 𝐴(𝑥, 𝛽, 𝑠) denote the ego vehicle’s augmented resolution at a point located 𝑥 away from the ego vehicle (in the
direction of the leader) given connectivity level 𝛽 and spacing 𝑠. The augmented resolution has the following logical properties
prevalent in cooperative sensing:

• Non-cooperative sensing : When void of connectivity, i.e., 𝛽 = 0, the ego vehicle only has access to its own sensor data and
𝐴(𝑥, 𝛽, 𝑠) = 𝑅(𝑥), which is independent of the vehicle spacing.

• Augmented resolution bound: The augmented resolution is larger than the individual resolutions of the two sensors within the
overlapping stretch of their ranges, i.e., 𝐴(𝑥, 𝛽, 𝑠) ≥ max{𝑅(𝑥), 𝛽𝑅(𝑠−𝑥)} for 𝑥 ∈ (max{0, 𝑠−𝑟},min{𝑟, 𝑠}) when 𝑠 < 2𝑟. Otherwise,
cooperative sensing effects are not leveraged if the augmented resolution is smaller than the individual resolution of the sensors.

• Connectivity effects: The augmented resolution increases with connectivity within the overlapping stretch of the sensors’ range,
i.e., 𝜕𝐴(𝑥,𝛽,𝑠)

𝜕𝛽 > 0.

The augmented resolution mapping 𝐴(𝑥, 𝛽, 𝑠) has to satisfy the above properties.
The ego vehicle has unrestricted access to its own sensor resolution, 𝑅(𝑥), and restricted access to the leader’s sensor resolution,

𝑅(𝑠 − 𝑥). Our assumption regarding augmented resolution is that for a given connectivity ratio and spacing between the pair, the
ego vehicle receives sensor data from the leader at a resolution of 𝛽𝑅(𝑠−𝑥). The augmented resolution of the ego vehicle for a point
located 𝑥 away towards the leader is

𝐴(𝑥, 𝛽, 𝑠) = 𝑅(𝑥) + 𝛽𝑅(𝑠 − 𝑥), (2)

which represents a weighted augmented resolution function (Rinner and Quaritsch, 2009; Fedorov et al., 2017). Although the
communication range is usually larger than the sensor range, it is important to have a resolution of all the distance between
two vehicles for setting the vehicles’ speeds considering safety concern to ensure that no undetected disturbance exists in traffic.
Therefore, the augmented resolution is considered within the spacing between vehicles, 𝑠.

We separately specify the augmented resolution in (2) for the three cases of Fig. 3. Let 𝐴𝑁 (𝑥), 𝐴𝑃 (𝑥), and 𝐴𝐹 (𝑥) be the augmented
esolutions of the no-, partial-, and full-overlap cases, respectively (we drop 𝛽 and 𝑠 for brevity). According to (2), in the no-overlap
ase

𝐴𝑁 (𝑥) = 𝛼
𝑟
(1 − 𝑥

𝑟
) 𝑥 ≤ 𝑟, (3)

in the partial-overlap case,

𝐴𝑃 (𝑥) =

⎧

⎪

⎨

⎪

⎩

𝛼
𝑟 (1 − 𝑥

𝑟 ) 𝑥 ≤ 𝑠 − 𝑟
𝛼
𝑟 (1 − 𝑥

𝑟 ) +
𝛼𝛽
𝑟 (1 − (𝑠−𝑥)

𝑟 ) 𝑠 − 𝑟 < 𝑥 ≤ 𝑟
𝛼𝛽
𝑟 (1 − (𝑠−𝑥)

𝑟 ) 𝑟 < 𝑥 ≤ 𝑠,

(4)

nd in the full-overlap case,

𝐴𝐹 (𝑥) =
𝛼
𝑟
(1 − 𝑥

𝑟
) +

𝛼𝛽
𝑟
(1 −

(𝑠 − 𝑥)
𝑟

) 𝑥 ≤ 𝑠. (5)

The augmented resolution profiles of the three cases are graphically presented in Fig. 4, which shows that the resolution of the
partial-overlap case is discontinuous and non-monotone. We next discuss these properties and their impacts on traffic flow.

2.2. The sight

The sensors surveil a vehicle’s surroundings, allowing it to come to a full stop if a disturbance (e.g., object on the road, a
jaywalker, or a stopped vehicle) is observed and poses the threat of a crash. We later explain the nature of the disturbances in the
derivation of a car-following model in the next subsection for restricted and access-free corridors.

The sensors require an augmented resolution of at least 𝜃, which is a safety threshold parameter, to accurately identify an object
and its properties including size, distance (from the vehicle), and speed (Assumption 3). Let 𝑇 be the sensor’s sight (also known as
4
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Fig. 4. Augmented resolution of the ego vehicle at a distance of 𝑥 away in the direction of the leader.

‘‘coverage’’ in telecommunications), the distance between the ego vehicle and the farthest point that has an augmented resolution
of at least 𝜃. The sight is formally defined as

𝑇 = max{𝑥|𝐴(𝑥) ≥ 𝜃}. (6)

According to (6), the largest augmented resolution in the no-overlap case that is achieved at 𝑥 = 0 and is expressed as 𝐴(0) = 𝛼∕𝑟
has to be larger than the safety threshold; otherwise the sensors have no sight. The sensors can accurately detect and classify objects
within their sight distance 𝑇 . For 𝑇 < 𝑥 < min(𝑠, 𝑟), the resolution is not sufficient for motion decisions. Note that sight is bounded
from above, i.e., 𝑇 ≤ min(𝑠, 𝑟), implying that it cannot be larger than the spacing or the range.

Let 𝑇𝑁 , 𝑇𝑃 , and 𝑇𝐹 be the sight of no-overlap (2𝑟 ≤ 𝑠), partial-overlap (𝑟 ≤ 𝑠 < 2𝑟), and full-overlap (𝑠 < 𝑟) cases, respectively,
which are each a function of the range, safety threshold, spacing, and sensor power.

In the no-overlap case, the sight is

𝑇𝑁 = 𝑟(1 − 𝑟𝜃
𝛼
), (7)

which increases with the sensor power, 𝛼, but has a concave behavior w.r.t. range, 𝑟. This concave behavior is indicative of the
impacts of the range on the sight of the sensors. Thus, a large range is not necessarily ideal if it decreases resolution for a fixed
sensor power.

In the partial-overlap case, the sight is

𝑇𝑃 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑠 𝑟 ≤ 𝑠 < 2𝑟 − 𝑟2𝜃
𝛼𝛽

(1+𝛽)𝛼𝑟−𝛼𝛽𝑠−𝑟2𝜃
(1−𝛽)𝛼 2𝑟 − 𝑟2𝜃

𝛼𝛽 ≤ 𝑠 < 2𝑟 − 𝑟2𝜃
𝛼

𝑟(1 − 𝑟𝜃
𝛼 ) 2𝑟 − 𝑟2𝜃

𝛼 ≤ 𝑠 < 2𝑟,

(8)

which shows that the sight depends on the range, power, spacing, connectivity, and safety threshold. According to , whenever
spacing is higher than a threshold (i.e., 𝑠 ≥ 2𝑟 − 𝑟2𝜃

𝛼𝛽 ), the sight increases with the sensor power and decreases with the safety

hreshold. In contrast, when the spacing is small (i.e., 𝑠 < 2𝑟 − 𝑟2𝜃
𝛼𝛽 ), the sight is the same as the spacing, implying that the ego

vehicle achieves a resolution larger than 𝜃 between itself and the leader vehicle.
In the full-overlap case, the sight is

𝑇𝐹 =

⎧

⎪

⎨

⎪

⎩

𝑠 0 ≤ 𝑠 < 𝑟(1 + 𝛽) − 𝑟2𝜃
𝛼

(1+𝛽)𝛼𝑟−𝛼𝛽𝑠−𝑟2𝜃
(1−𝛽)𝛼 𝑟(1 + 𝛽) − 𝑟2𝜃

𝛼 ≤ 𝑠 < 𝑟,
(9)

which exhibits the properties described above.
The sight profile is depicted in Fig. 5, which is continuous, and is sensitive to sensor range and power, connectivity, and safety

threshold. The sight initially increases with 𝑠 as the ego vehicle can oversee the entire stretch between itself and the leader. Sight
decreases in medium spacing levels (the thresholds are depicted in the figure) as the pair of vehicles distance themselves from
each other and the ego vehicle’s sight is shortened. Finally, sight plateaus when spacing is large as the vehicles rely completely on
themselves and move in the no-overlap condition.

2.3. Vehicle dynamics

Speed is one of the fundamental variables that capture the state of traffic on the corridor. The allowable traffic speed depends on
5

the sight; vehicles can drive faster if they have a larger sight, making them aware of a larger stretch of the corridor. When notified
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Fig. 5. Sight with respect to vehicle spacing.

of an object (or a disturbance in traffic) at distance 𝑇 away, the ego vehicle must come to a full stop within a distance 𝑇 − 𝑙, where 𝑙
is a safety distance, which can be set as the average length of vehicles plus a safety distance between vehicles. This allows vehicles
to keep a distance of 𝑙 with the disturbance when they come to a full stop.

We first focus on restricted access corridors, meaning that the corridor is exclusively used by CAVs driving at the same speed,
and there are no stationary objects. An expressway is an example of such corridors. We later extend our analysis to unrestricted
access corridors in Appendix A. We denote 𝑣 as the average speed and define it for these corridors. We also assume that 𝜏 is the
rocessing time resembling the time required for the CAVs to observe their environment and make an appropriate motion decision.
he processing time is equivalent to the reaction time of regular vehicles. We assume that the reaction times under both individual
nd cooperative sensing are the same, which is less favorable towards cooperative sensing as this driving strategy can have a lower
eaction time due to connectivity properties amongst the vehicles. Considering the same reaction time for both cooperative and
ndividual sensing is rooted in the assumption that only sensor data is shared amongst the vehicles, and they each make individual
otion decisions according to the augmented resolution achieved from cooperative sensing.
In restricted corridors, no stand-still objects can suddenly appear on the corridor. Using kinematics, and given that the ego vehicle
oves at speed 𝑣 for 𝜏 time units before braking with the same deceleration rate as the leader, we have

𝑣 = 𝑇 − 𝑙
𝜏

. (10)

We express the speed-density relationship as the following. Let 𝑘 = 1∕𝑠 be the average vehicle density, which is the inverse of
the average spacing between the leader and ego vehicle. Speed for a given density 𝑘 using Eq. (10) is

𝑣 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑟
𝜏 − 𝑟2𝜃

𝛼𝜏 − 𝑙
𝜏 𝑘 < 𝛼

2𝛼𝑟−𝑟2𝜃
(1+𝛽)𝑟
(1−𝛽)𝜏 − 𝑟2𝜃

(1−𝛽)𝛼𝜏 − 𝑙
𝜏 − 𝛽

(1−𝛽)𝜏𝑘
𝛼

2𝛼𝑟−𝑟2𝜃 ≤ 𝑘 < 𝛼
𝛼𝑟(1+𝛽)−𝑟2𝜃

1
𝜏𝑘 − 𝑙

𝜏 𝑘 ≥ 𝛼
𝛼𝑟(1+𝛽)−𝑟2𝜃 .

(11)

The speed-density diagram is depicted in Fig. 6, which has distinct differences with its conventional variant for regular vehicles
n which speed is non-increasing w.r.t. density. According to Fig. 6a, speed is constant at small densities (the threshold is presented
in the panel with dashed lines), which is analogous to the free-flow speed of conventional vehicles. However, speed increases in
mid-ranges of density due to cooperative sensing and increased sight. When density is large, speed decreases due to congestion. We
also present a special case of the speed-density diagram in Fig. 6b, where 𝛽 = 0 (non-cooperative sensing), resembling the case of
disconnected CAVs. It is evident that Panel b is analogous to the conventional speed-density diagram with non-increasing speed.

2.4. Fundamental diagram

We now derive the fundamental diagram by defining the flow as a function of density. Let 𝑞 denote vehicular flow on the corridor,
erived from density and speed as 𝑞 = 𝑘𝑣. The fundamental diagram of restricted access corridors is depicted in Fig. 7. The surges
n flow occur for the same reasons discussed in the speed-density relation. We also note that the fundamental diagram of restricted
ccess corridors is a piece-wise linear function. This is consistent with Shi and Li (2021), which used trajectory data of commercial
Vs to express the fundamental diagram.
We define the capacity as the maximum flow achievable denoted by 𝐶(𝛼, 𝛽, 𝜏, 𝜃, 𝑟, 𝑙) (also defined by 𝐶 for brevity) and given as

𝐶 = max
𝑘

𝑞(𝑘), (12)

here 𝑘𝑐𝑟 = argmax𝑘 𝑞(𝑘) is the critical density at which the capacity is achieved, and is equal to

𝑘𝑐𝑟 = 𝛼 . (13)
6

𝛼𝑟(1 + 𝛽) − 𝑟2𝜃
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Fig. 6. (a) Speed-density profile, (b) non-cooperative (𝛽 = 0).

Fig. 7. Fundamental diagram of restricted access corridors.

Eq. (13) indicates that the critical density in restricted corridors always appears in uncongested conditions.
Capacity is the flow achieved at the critical density, which is derived as

𝐶 = 1
𝜏
− 𝛼𝑙

𝛼𝑟𝜏(1 + 𝛽) − 𝑟2𝜃𝜏
. (14)

We further discuss the impacts of sensor configuration and cooperative sensing below.

3. Optimal investment in individual vs. cooperative sensing

3.1. Capacity maximization

We assess the optimal investing of a limited budget in sensor power and/or the connectivity level. Improving sensor power may
increase speed especially in no-overlap conditions, whereas improving connectivity can increase speed in the partial- and full-overlap
conditions. We assume it costs 𝑐𝛼 and 𝑐𝛽 to manage and maintain one unit of sensor power or one unit of connectivity, respectively
(Assumption 4). We define the total cost as 𝑐𝛼𝛼 + 𝑐𝛽𝛽, which has to be lower than a given budget of 𝐵. We maximize capacity via
the following mathematical model, where maximum capacity is obtained from (14).

max
𝛼,𝛽

1
𝜏
− 𝛼𝑙

𝛼𝑟𝜏(1 + 𝛽) − 𝑟2𝜃𝜏
(15)

s.t. 𝑐𝛼𝛼 + 𝑐𝛽𝛽 ≤ 𝐵,
𝛼
𝑟
≥ 𝜃,

𝑟(1 − 𝑟𝜃
𝛼
) ≥ 𝑙,

𝛼 ≥ 0,

0 ≤ 𝛽 ≤ 1.
7
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Fig. 8. (a) Optimal sensor power and connectivity ratio, (b) optimal capacity.

The first constraint is the budget condition; the second constraint ensures that the sensors have enough power to guarantee a
non-negative speed in no-overlap travel conditions (see Fig. 4a); and the third constraint ensures a non-negative speed in no-overlap
conditions which is derived from (10). The last two constraints state the limits of sensor power and connectivity level, respectively.
he mathematical problem (15) is a nonlinear program with linear constraints. The objective function is also concave as shown in
Appendix B.

We express the following insights from (15).

Lemma 1. The minimum required budget is

𝐵min =
𝑟𝜃𝑐𝛼

1 − 𝑙∕𝑟
, (16)

which is dedicated entirely to the sensor power.

According to (16), if 𝐵 < 𝐵min the budget is not large enough to maintain a sensor power for CAVs to adequately detect their
surroundings and achieve a resolution larger than the safety threshold in no-overlap settings. In other words, (15) is infeasible for
𝐵 ≤ 𝐵min. We present the optimal solution of (15) in the following lemma.

Lemma 2. The optimal sensor power and connectivity level are

(𝛼∗, 𝛽∗) =

⎧

⎪

⎨

⎪

⎩

( 𝐵𝑐𝛼
, 0) 𝐵min ≤ 𝐵 <

√

𝑟𝜃𝑐𝛼𝑐𝛽

(
√

𝑟𝜃𝑐𝛽
𝑐𝛼

, 𝐵
𝑐𝛽

−
√

𝑟𝜃𝑐𝛼
𝑐𝛽

)
√

𝑟𝜃𝑐𝛼𝑐𝛽 ≤ 𝐵.
(17)

According to Lemma 2, when the budget is lower than the defined threshold,
√

𝑟𝜃𝑐𝛼𝑐𝛽 , one should only invest in sensor power
ith the optimal value of 𝛼∗ = 𝐵∕𝑐𝛼 . In contrast, when the budget is larger than same threshold, second line of (17), part of the
udget is also invested in connectivity. According to (17) the optimal sensor power and connectivity level, 𝛼∗ and 𝛽∗, increase
nd decrease with range, respectively, because a larger range allows vehicles to become more independent in surveilling their
urroundings, thus reducing the need for cooperative sensing.
We define the maximum budget, denoted by 𝐵max, as the largest budget such that for any 𝐵 > 𝐵max no improvement in capacity

s achieved.

emma 3. The effective maximum budget for capacity maximization is

𝐵max = 𝑐𝛽 +
√

𝑟𝜃𝑐𝛼𝑐𝛽 . (18)

According to Lemma 2 and Eq. (18), we have full connectivity (𝛽 = 1) in restricted access corridors when the budget is 𝐵max.
Given Lemma 1–3 the profile of 𝛼∗ and 𝛽∗ are presented in Fig. 8a and the optimal capacity is depicted in Fig. 8b.

3.2. Social welfare maximization

We express the optimal sensor power and connectivity level chosen by a social planner that wants to maximize social welfare.
Again, we assume travelers pay an amortized cost 𝑐𝛼 and 𝑐𝛽 for a unit of sensor power and connectivity, respectively. Moreover, we
assume that the travelers experience a travel cost of 𝑐𝑡 per unit of travel time 𝑡. Thus, the general cost for a traveler is 𝜇 = 𝑐𝑡𝑡+𝑐𝛼𝛼+𝑐𝛽𝛽.
We focus on restricted access corridors and only consider the uncongested part of the fundamental diagram. Our intention is to
assess pricing policies implemented to avoid undesirable congested traffic conditions that occur when density is larger than its
critical (flow maximizing) threshold. In a similar spirit, the congested part of the fundamental diagram, which is experienced in
8
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Fig. 9. Travel time of restricted access corridors.

cities such as Bangkok, Buenos Aires, and Mexico City (Hau, 2005) during peak hours, is not considered for planning purposes due
to its inefficiency.

The expected travel time for a fixed corridor length, which we normalize to one, is 1
𝑣 . Hence, using speed from (11), we have:

𝑡 =

⎧

⎪

⎨

⎪

⎩

𝛼𝜏
𝛼(𝑟−𝑙)−𝑟2𝜃 𝑞 ≤ 𝛼(𝑟−𝑙)−𝑟2𝜃

𝜏(2𝛼𝑟−𝑟2𝜃)
(1−𝛽)𝛼𝜏

(1+𝛽)𝛼𝑟−𝑟2𝜃−𝛼𝑙(1−𝛽) (1 +
𝛽

(1−𝛽)𝜏𝑞 )
𝛼(𝑟−𝑙)−𝑟2𝜃
𝜏(2𝛼𝑟−𝑟2𝜃) ≤ 𝑞 ≤ 𝛼(𝑟(1+𝛽)−𝑙)−𝑟2𝜃

𝜏(𝛼𝑟(1+𝛽)−𝑟2𝜃) ,
(19)

which shows that travel time is non-increasing w.r.t. traffic flow for a given sensor power and connectivity level. Fig. 9 shows the
travel time with respect to flow, which has a backward-bending part in congested traffic. Hence, for a given 𝛼 and 𝛽, the travel time
function is constant when 𝑞 is below a threshold, and is decreasing with demand when 𝑞 is above that threshold in the uncongested
region. We call these the first and second leg of the travel time function, respectively.

The analysis period is considered to be a stretch of time during which the travel demand is only a function of the general
cost. The demand is in CAVs per hour per lane and is denoted by 𝑞 = 𝐷(𝜇). We consider the corridor’s physical capacity to be
fixed and equivalent to one lane. Therefore, any improvements in CAV throughput is achieved by investing in sensor power and/or
connectivity level.

We present the social welfare maximization problem as

max
𝛼,𝛽,𝑞

𝑊 = ∫

𝑞

0
𝐷−1(𝑢)𝑑𝑢 − 𝑞(𝑐𝑡𝑡 + 𝑐𝛼𝛼 + 𝑐𝛽𝛽) (20)

s.t. 𝛼
𝑟
≥ 𝜃,

𝑟(1 − 𝑟𝜃
𝛼
) ≥ 𝑙,

𝛼 ≥ 0,

0 ≤ 𝛽 ≤ 1,

here the first term of the objective function is the total willingness to pay and the second term is the total cost. The first two
onstraints ensure the sensor power is large enough for the CAVs to be moving for a given range, and the last two constraints
tate the ranges of sensor power and connectivity, respectively. The mathematical problem (20) is a nonlinear program with linear
constraints. Thus, the presence of a unique and global solution relies on the concavity of the objective function that is the social
welfare. We note that for a given 𝛼 and 𝛽, the social welfare function is strictly concave w.r.t. demand 𝑞 as long as the total
willingness-to-pay function is strictly convex (Dixit et al., 1990). Global optimality w.r.t. all three variables, however, is not tractable
due to the complexities of the travel time function. In the following analysis, we express the extreme points of the social welfare
function and check local optimality by deriving the second derivative at that point numerically. We also discuss global optimality
by comparing social welfare value at the obtained extreme points.

We consider the two legs of the travel time function individually. Travel time in the first leg depends neither on connectivity
nor flow as expressed in (19). Therefore, we set connectivity to zero since it appears as a cost in social welfare. From the first-order
condition, when in the first leg of travel time, setting 𝜕𝑊

𝜕𝑞 = 0 gives

𝐷−1(𝑞) = 𝑐𝑡𝑡 + 𝑐𝛼𝛼, (21)

hich shows that social welfare is maximized where the inverse demand and generalized cost functions intercept.
We now discuss the second leg of the travel time function. From the first-order condition, when in the second leg of travel time,

etting 𝜕𝑊
𝜕𝑞 = 0 gives

𝐷−1(𝑞) = (𝑐𝑡𝑡 + 𝑐𝛼𝛼 + 𝑐𝛽𝛽) + 𝑞𝑐𝑡
𝜕𝑡 , (22)
9
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where
𝜕𝑡
𝜕𝑞

=
−𝛼𝛽

𝑞2
(

(1 + 𝛽)𝛼𝑟 − 𝑟2𝜃 − 𝛼𝑙(1 − 𝛽)
) . (23)

Eq. (22) shows that social welfare is maximized where the inverse demand and marginal social cost functions (derivative of the
econd term of 𝑊 w.r.t. 𝑞) intercept. Thus, the following proposition holds.

emma 4. Social welfare in sensor-equipped CAVs is maximized at demand 𝑞∗ that is the intercept of the inverse demand function and
he following step-wise marginal social cost function, denoted by 𝑍, and given as

𝑍 =

⎧

⎪

⎨

⎪

⎩

𝑐𝛼𝛼 + 𝑐𝑡𝛼𝜏
𝛼(𝑟−𝑙)−𝑟2𝜃 𝑞 ≤ 𝛼(𝑟−𝑙)−𝑟2𝜃

𝜏(2𝛼𝑟−𝑟2𝜃)

𝑐𝛽𝛽 + 𝛼
(

𝑐𝛼 +
(1−𝛽)𝑐𝑡𝜏

𝛼
(

𝑟(1+𝛽)−𝑙(1−𝛽)
)

−𝑟2𝜃

)

𝛼(𝑟−𝑙)−𝑟2𝜃
𝜏(2𝛼𝑟−𝑟2𝜃) ≤ 𝑞 ≤ 𝛼𝑟(1+𝛽)−𝑟2𝜃−𝛼𝑙

𝛼𝜏 .
(24)

Given Lemma 4, social welfare maximization is equivalent to social cost minimization in search of the optimal 𝛼∗ and 𝛽∗. From
he first-order condition, when in the first leg of social cost, setting 𝜕𝑍

𝜕𝛼 = 0 and 𝜕𝑍
𝜕𝛽 = 0 give

𝛼∗ = 𝑟2𝜃
𝑟 − 𝑙

+ 𝑟
𝑟 − 𝑙

√

𝜃𝜏𝑐𝑡
𝑐𝛼

, (25)

𝛽∗ = 0. (26)

From Lemma 4, any root finding algorithm can be used to find 𝑞∗ at the intercept of the inverse demand function 𝐷−1(𝑞) and
he marginal social cost function in (24). We note that the intercept of 𝐷−1(𝑞) with the first leg of 𝑍 has a closed-form solution of

𝑞∗ = 𝐷
( (

√

𝜏𝑐𝑡 + 𝑟
√

𝜃𝑐𝛼)2

𝑟 − 𝑙

)

(27)

at the optimal 𝛼∗ from (25).
Similarly, in the second leg of social cost from the first order condition, setting 𝜕𝑍

𝜕𝛼 = 0 and 𝜕𝑍
𝜕𝛽 = 0 give

𝛼∗ = 𝑟
𝑟(1 + 𝛽∗) − 𝑙(1 − 𝛽∗)

(

𝑟𝜃 +

√

(1 − 𝛽∗)𝜃𝜏𝑐𝑡
𝑐𝛼

)

, (28)

𝛽∗ = 1
𝑟 + 𝑙

(

𝑟2𝜃
𝛼∗

− 𝑟 + 𝑙 +

√

(2𝛼∗ − 𝑟𝜃)𝑟𝜏𝑐𝑡
𝛼∗𝑐𝛽

)

, (29)

which is a system of two equations and two unknowns, 𝛼∗ and 𝛽∗. Given the insensitivity of 𝛼∗ and 𝛽∗ w.r.t. 𝑞, the marginal social
cost function, right side of (22), is also insensitive to 𝑞. The term 𝑞𝑐𝑡

𝜕𝑡
𝜕𝑞 is regarded as the road toll paid by drivers as a penalty for

heir contribution to social cost. In our setting, no road pricing is required in the first leg of travel time due to the uncongested
tatus of the corridor. In the second leg, however, given that 𝜕𝑡

𝜕𝑞 < 0 from (23), the toll is actually a reward that is paid to travelers
to encourage enough traffic flow for enhancing cooperative sensing amongst CAVs.

Fig. 10 shows the equilibrium point, denoted by 𝑒, where for a given 𝛼 and 𝛽, the inverse demand function (dashed line) intersects
the generalized cost function (solid line). Fig. 10(c) depicts the case where the two functions intersect both in the first and second
legs of the travel time function. In this case there are two equilibrium points, 𝑒1 and 𝑒2. The social welfare of the 𝑒1 equilibrium
is equal to the upper dashed area denoted by 𝐼 , and the social welfare of the second equilibrium point, 𝑒2 is equal to the area of
both dashed areas (𝐼 and 𝐼𝐼). It is clear that in this case always the second point where the inverse demand and generalized cost
function intersect in the second leg of travel time function provides a higher social welfare. We also note that it is possible that
the inverse demand function intersects with the generalized cost function in the second leg of travel time function in two points. In
such cases, again the point with higher flow provides higher social welfare.

4. Numerical findings

Our objectives from conducting the following numerical experiments are the following. We first present the impacts of the sensor
configuration and connectivity level on traffic flow properties (sight, speed, and flow) at various traffic densities in Section 4.1. We
then assess the properties of optimal social welfare maximizing policies and discuss the financial sustainability of the toll/reward,
i.e., whether the investment in sensors and connectivity is paid off by the reward. Table 1 presents the default parameters of the
numerical examples.

4.1. Connectivity properties

We assess the impacts of sensor configuration and connectivity on sight, speed, and flow at various CAV densities. The sight of
the CAVs is affected by cooperative sensing as shown in Fig. 11. When 𝛽 = 0 and CAVs are disconnected, or they are distant and
10
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Fig. 10. Social welfare (dashed area) for different location where demand function (dashed line) intersects with the generalized cost (solid line).

Fig. 11. Sight for different connectivity levels.

Table 1
Parameters of numerical examples.
Notation Interpretation Default value

𝛼 Sensors’ power 0.25 [data points]
𝑙 Average length of vehicle 5 [m]
𝑟 Sensors’ range 100 [m]
𝜃 Safety threshold 0.002 [ data point

m
]

𝜏 Processing time 1 [s]

cannot share data, the sight is 20 m, which is considerably lower than sensors’ range of 100 m. Nevertheless, the sight increases
with the connectivity level when 𝛽 > 0 in the mid-ranges of spacing (20–120 m), and can even exceed the range when 𝛽 = 0.9.

Fig. 12 shows the speed-density profile for different sensor powers and connectivity levels. In the absence of connectivity, the
free flow speed (at 𝑘 = 0) is 54 km

h and 102 km
h for sensor powers of 𝛼 = 0.25 and 𝛼 = 0.3, respectively. Moreover, the maximum

speed increases with connectivity and can reach up to 200 km
h with 𝛽 = 0.5 in both sensor power levels.

Fig. 13 shows the flow-density relation for different connectivity levels and sensor ranges. In the absence of connectivity, 𝛽 = 0,
the maximum achievable capacity is 3000 veh

h for 50 m range, which decreases to 2700 veh
h for 100 m range. The drop in capacity at

he larger range occurs because of the trade-off in resolution since the sensor power is fixed, see (1). One way of increasing capacity
s to improve connectivity. The capacities increase to 3450 veh

h and 3375 veh
h for 50 m and 100 m sensor ranges, respectively, in full

connectivity (𝛽 = 1).

4.2. Optimal sensor power and connectivity level

We first assess the impacts of investing a limited budget in sensor power and/or connectivity level when maximizing corridor
capacity. We assume that one unit of sensor power and connectivity costs $0.5 and $0.25, respectively, and we show the changes in
optimal sensor power and connectivity in Fig. 14(a) and the capacity in Fig. 14(b) w.r.t. the budget. The minimum required sensor
ower is 0.2, and therefore, if the budget is less than $0.1, the CAVs cannot satisfy the safety condition. Budgets less than $0.16
11



Transportation Research Part B 174 (2023) 102777M. Nourinejad et al.

a
a

Fig. 12. Speed-density profile for different sensor powers and connectivity levels.

Fig. 13. Flow-density diagram for different sensor ranges and connectivity ratios.

re only invested in sensor power until the sensor power reaches 𝛼 = 0.31. Any more investments in sensor power is not optimal,
nd therefore the additional budget is invested in connectivity until 𝛽 = 1, at which the maximum capacity is 3470 veh

h ln .
Moreover, we vary the marginal sensor and connectivity costs 𝑐𝛼 and 𝑐𝛽 , and present the minimum and maximum required

budget changes in Fig. 15. We observe that the required minimum budget is insensitive to the connectivity cost and changes only
with the sensor power cost. This happens as the CAVs need some level of sensor power to be able to drive safely relying solely
on their own sensor data. In contrast, the maximum required budget changes with both marginal sensor and connectivity costs.
The maximum required budget is more sensitive to the connectivity cost, since the CAVs stretch of vision can only be extended by
cooperative sensing through connectivity beyond a threshold in density.

We investigate social welfare maximizing policies when adjusting sensor power and the connectivity level. The processing time
is 𝜏 = 1, travelers experience a marginal travel cost of 𝑐𝑡 = 10 $

h , and demand is 𝑞 = 𝑒𝑥𝑝(−𝜇) where 𝜇 is the generalized cost. We vary
the marginal sensor power and connectivity costs, 𝑐𝛼 and 𝑐𝛽 , and used Newton root finding algorithm to find the optimal sensor
power, connectivity, and social welfare presented in Fig. 16, which has the following patterns.

Complimentary configurations: Fig. 16a–b shows that when the marginal connectivity cost is high, the social planner only invests
in sensor power. In contrast, when the sensor power cost is high, the social planner invests more on connectivity to benefit from
cooperative sensing while ensuring the minimum sensor power is in place.

Ineffective connectivity : The black colored area in Fig. 16b encloses the set of costs where the social planner does not invest
in connectivity due to its higher cost over benefit to congestion alleviation. This area represents cases where the inverse demand
function intercepts the first leg of the social cost function, indicating the demand is not sufficient enough to reach density levels
12

that can leverage the benefits of cooperative sensing.
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Fig. 14. (a) Optimal sensor power and connectivity level; (b) optimal capacity.

Fig. 15. Changes in (a) minimum budget, and (b) maximum budget w.r.t. costs of sensor power and connectivity.

Fig. 16. Changes in (a) optimal sensor power, (b) connectivity level, and (c) social welfare w.r.t. costs of sensor power and connectivity.

Social welfare trends: Fig. 16c presents social welfare, which decreases with the marginal costs of sensor power and connectivity.
We present in Fig. 17: (a) the toll charged by the social planner to each traveler, 𝑞𝑐𝑡

𝜕𝑡
𝜕𝑞 ; (b) the traveler out-of-pocket cost,

𝛼𝛼 + 𝑐𝛽𝛽; and (c) the summation of the first two, which can be positive indicating the surplus is a payment from travelers to
he social planner, or negative indicating that the surplus is a reward from the social planner to travelers. Fig. 17(a) shows that
13

hen the connectivity cost is high, no toll is needed, and no reward is paid. However, when the connectivity cost is low, a toll is
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Fig. 17. Changes in optimal (a) toll (𝑞𝑐𝑡
𝜕𝑡
𝜕𝑞
), (b) travelers out-of-pocket cost (𝑐𝛼𝛼 + 𝑐𝛽𝛽), and (c) their summation w.r.t. costs of sensor power and connectivity.

needed, which is negative and works as a reward to be paid to travelers to encourage the cooperative sensing. Fig. 17(c) shows that
when the costs of sensor power and connectivity are low, the reward is higher than the travelers out-of-pocket cost, but it becomes
economically sustainable with an increase in either sensor power or connectivity cost.

5. Conclusions and future research

CAVs rely on their sensors to detect their surroundings and drive safely. Sharing sensor data with other nearby CAVs is a
cooperative strategy that can improve safety and efficiency, since each CAV retains a richer vision of its surroundings. This
study investigates how individual and cooperative sensing can impact automated driving to facilitate policy discussion on CAVs
sensor configuration and connectivity. We present a stylized model of CAV mobility, showing that there exists a threshold density
beyond which the sensors of two adjacent CAVs have sufficient overlap in their detection range to facilitate cooperative sensing,
thereby allowing vehicles to drive at faster speeds due to their enhanced vision of their surroundings. We then investigate the
short- and long-term impacts of investing in either sensors or connectivity amongst CAVs. According to the analysis, investing in
corridor capacity should be disjoint, first prioritizing sensor power so the CAVs can drive independently in low density traffic,
and then investing in CAV connectivity to enhance vision at medium density traffic. In terms of pricing, social welfare analysis
shows that travelers should be granted a reward, which increases the density of CAVs and enables cooperative sensing amongst
them.

Future research can consider the impacts of highway infrastructure, such as roadside units in modeling cooperative sensing
and extend the connectivity from vehicle-to-vehicle to vehicle-to-infrastructure. This type of analysis would also yield a better
understanding of the trade-offs between stationary (roadside) and moving (on board vehicle) sensors. The former has full temporal
coverage of a limited space within the sensor’s range, whereas the latter has partial temporal coverage of a much larger area since
the CAVs gather information from the entire network. Moreover, while this study focused only on the information sharing between
vehicles following each other in the same lane, the possibility of sharing information with vehicles moving in adjacent lanes or in
the opposite direction is worth investigating. Lastly, we consider the uniform distribution of vehicles along the corridor in deriving
the fundamental diagrams in this study. In future studies, it is worth investigating the randomness of vehicles spacing along the
corridors.
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Appendix A

We consider unrestricted access corridors open to other road users, such as pedestrians, and indicating that the vehicles may
encounter stationary objects on the road. A rural highway or an urban street is an example of such a traffic corridor. Consider an
unrestricted corridor where a stationary object may appear on the road. Using Kinematics, and given that the ego vehicle’s speed
drops from 𝑣 to zero within distance 𝑇 − 𝑙 from the object, the safe speed is set as

√

(𝑎𝜏)2 + 2𝑎(𝑇 − 𝑙) − 𝑎𝜏, (30)
14
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Fig. 18. Fundamental diagram of unrestricted access corridors.

here 𝑎 is the braking deceleration, and 𝜏 is the processing time of CAVs. Similarly, we can discuss the speed-density relationship.
peed for a given density 𝑘 using Eq. (10) is

𝑣 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

√

(𝑎𝜏)2 + 2𝑎(𝑟 − 𝑟2𝜃
𝛼 − 𝑙) − 𝑎𝜏 𝑘 < 𝛼

2𝛼𝑟−𝑟2𝜃
√

(𝑎𝜏)2 + 2𝑎( (1+𝛽)𝑟1−𝛽 − 𝛽
(1−𝛽)𝑘 − 𝑟2𝜃

(1−𝛽)𝛼 − 𝑙) − 𝑎𝜏 𝛼
2𝛼𝑟−𝑟2𝜃 ≤ 𝑘 < 𝛼

𝛼𝑟(1+𝛽)−𝑟2𝜃
√

(𝑎𝜏)2 + 2𝑎( 1𝑘 − 𝑙) − 𝑎𝜏 𝑘 ≥ 𝛼
𝛼𝑟(1+𝛽)−𝑟2𝜃

(31)

The speed-density diagram of unrestricted access corridors has the same general shape as restricted access corridors depicted in
ig. 6, and the only difference is in the maximum achievable speed.
We derive the fundamental diagram from flow 𝑞 = 𝑘𝑣. The fundamental diagram of unrestricted access corridors is depicted in

ig. 18, which is analogous to the conventional fundamental diagram.
We can now derive the critical density for unrestricted access corridors as

𝑘𝑐𝑟 = max{ 𝛼
𝛼𝑟(1 + 𝛽) − 𝑟2𝜃

, 1
2𝑙
}. (32)

Eq. (32) indicates that the critical density in unrestricted access corridors occurs either in congested conditions with a sight of
and critical density 1∕2𝑙, or in uncongested conditions with the sight larger than 𝑠. Thus, capacity, which is the flow achieved at
he critical density, is derived as:

𝐶 =

⎧

⎪

⎨

⎪

⎩

𝛼

𝛼𝑟(1 + 𝛽) − 𝑟2𝜃

(
√

(𝑎𝜏)2 + 2𝑎( 𝛼𝑟(1+𝛽)−𝑟
2𝜃

𝛼 − 𝑙) − 𝑎𝜏
)

𝑙 ≥ 𝛼𝑟(1+𝛽)−𝑟2𝜃
2𝛼

√

(𝑎𝜏)2+2𝑎𝑙−𝑎𝜏
2𝑙 𝑙 < 𝛼𝑟(1+𝛽)−𝑟2𝜃

2𝛼 .
(33)

Using (15) to maximize the capacity of unrestricted access corridors yields the same minimum budget as restricted corridors
resented in Lemma 1, and optimal values of sensor power and connectivity as presented in Lemma 2. However, the maximum
budget for unrestricted corridors is

𝐵max = 2
√

𝑟𝜃𝑐𝛼𝑐𝛽 − 𝑐𝛽 (1 −
2𝑙
𝑟
). (34)

According to Eq. (34), at 𝐵 = 𝐵max the critical density is 𝑘𝑐𝑟 = 1∕2𝑙, which indicates that traffic flow is impeded by the large
number of vehicles on the corridor and not by the sensor power and connectivity. Therefore, any investment above 𝐵max does not
improve capacity in unrestricted corridors.

Appendix B

Proof. The Hessian of the objective function is
⎡

⎢

⎢

⎣

− 2𝑙𝜃(1+𝛽)
𝜏(𝛼(1+𝛽)−𝑟𝜃)3 − 2𝑙𝜃𝛼

𝜏(𝛼(1+𝛽)−𝑟𝜃)3

− 2𝑙𝜃𝛼
𝜏(𝛼(1+𝛽)−𝑟𝜃)3 − 2𝑙𝛼3

𝑟𝜏(𝛼(1+𝛽)−𝑟𝜃)3

⎤

⎥

⎥

⎦

,

nd its eigenvalues are equal to

−
𝑙
(

𝛼3 + 𝑟𝜃(1 + 𝛽) +
√

𝛼3 + 𝑟𝜃(1 + 𝛽) − 4𝛼2𝑟𝜃(𝛼(1 + 𝛽) − 𝑟𝜃)
)

𝑟𝜏
(

𝛼(1 + 𝛽) − 𝑟𝜃
)3

,

15
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W

𝑙
(

𝛼3 + 𝑟𝜃(1 + 𝛽) −
√

𝛼3 + 𝑟𝜃(1 + 𝛽) − 4𝛼2𝑟𝜃(𝛼(1 + 𝛽) − 𝑟𝜃)
)

𝑟𝜏
(

𝛼(1 + 𝛽) − 𝑟𝜃
)3

.

It is obvious that the nominators are positive. Moreover, we have 𝛼 ≥ 𝑟𝜃 from the second constraint, and the denominators
re positive. Thus, the eigenvalues of the Hessian matrix are negative and the Hessian matrix is negative definite. Therefore, the
bjective function is concave, and there exists a global optimum solution. □

ppendix C

omenclature

𝐴 Augmented resolution
𝑎 Acceleration rate
𝐵 Budget
𝐶 Capacity
𝑐𝛼 Cost to manage and maintain one unit of sensor power
𝑐𝛽 Cost to manage and maintain one unit of connectivity
𝑐𝑡 Travel cost per unit of travel time
𝐷 Travel demand function
𝑑 Deceleration rate
𝑘 Density
𝑘𝑐𝑟 Critical density
𝑙 Safety distance
𝑞 Flow
𝑅 Resolution
𝑟 Range
𝑠 Spacing between the leader and ego vehicle
𝑇 Sensor’s sight
𝑡 Travel time
𝑣 Speed
𝑊 Social welfare
𝑥 Distance from ego vehicle
𝑍 Social cost
𝛼 Sensor’s power
𝛽 Connectivity ratio
𝜃 Safety threshold parameter
𝜇 Traveler general cost
𝜏 Processing time
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