
Transportation Research Part B 153 (2021) 91–110

A
0

b

p
2

Contents lists available at ScienceDirect

Transportation Research Part B

journal homepage: www.elsevier.com/locate/trb

Itinerary planning for cooperative truck platooning
Mojtaba Abdolmaleki, Mehrdad Shahabi, Yafeng Yin ∗, Neda Masoud
Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI 48109, United States

A R T I C L E I N F O

Keywords:
Truck platooning
Itinerary planning
Concave minimum cost flow
Outer approximation
Approximation algorithm

A B S T R A C T

A cooperative truck platoon is a set of virtually linked trucks driving with a small intra-
vehicle headway enabled by connected and automated vehicle technologies. One of the primary
benefits of truck platooning is energy savings due to the reduction of aerodynamic drag on the
platooned vehicles. The focus of this paper is on scheduling travel itineraries of a given set
of trucks to facilitate the formation of platoons to maximize energy savings. By constructing a
time-expanded network, we formulate the problem as a minimum concave-cost network flow
problem, and devise a few solution methods to find the optimal or high-quality solutions. The
solution methods include an outer approximation algorithm for solving a mixed-integer convex
minimization reformulation of the problem, a dynamic-programming-based heuristic scalable
to large-scale instances, and a fast approximation algorithm with guaranteed performance for a
restrictive version of the problem. All the proposed algorithms are examined and benchmarked
on medium to large networks under various test scenarios. The numerical results demonstrate
the efficiency of the proposed methods and their applicability in real-world settings.

1. Introduction

Cooperative vehicle platooning has been introduced as a promising element of next generation transportation systems. Rendered
y connected and automated vehicle technologies (van Wyk et al., 2019; Duret et al., 2020), a platoon is formed when a convoy of
vehicles are virtually tethered together and travel on a road with small inter-vehicle gaps. Among different forms of platooning, truck
platooning has attracted significant attention recently, as trucks are likely the early adopter of the technology due to their operational
characteristics such as long distance and relatively fixed travel routes (Muratori et al., 2017). Upon successful implementation, truck
latooning can yield a variety of benefits such as improved fuel economy, reduced labor cost and enhanced safety (Bonnet and Fritz,
000; Browand et al., 2004; Davila, 2013; Shida et al., 2010; Duret et al., 2020). Although the technology is still at the stage of
field experiments, decision makers in many countries have created a road map that consists of regulatory and technological steps
needed to launch the technology to the market. For example, the European Union has recently announced a timeline anticipating
multi-class truck platooning to hit European highways before 2025.

Given the limited market penetration of connected and automated trucks, systematic itinerary planning is necessary in order
to place trucks in spatio-temporal proximity of each other to form platoons. The success of truck platooning, particularly at its
early deployment, relies on scheduling trucks’ itineraries so that trucks of different types, speeds, paths, and departure times are
synchronized to form platoons at platoonable locations, e.g., less-congested freeway segments. An optimized itinerary makes certain
that the energy savings from truck platooning are realized while respecting various operational restrictions such as on-time arrival
or detour length. Such a scheduled platoon planning problem can typically be investigated from either an offline (pre-trip) or an
online (real-time) perspective (Bhoopalam et al., 2018). The scheduled platoon planning problem with flexible routing decisions

∗ Corresponding author.
E-mail address: yafeng@umich.edu (Y. Yin).
vailable online 25 September 2021
191-2615/© 2021 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.trb.2021.08.016
Received 22 July 2020; Received in revised form 13 June 2021; Accepted 31 August 2021

http://www.elsevier.com/locate/trb
http://www.elsevier.com/locate/trb
mailto:yafeng@umich.edu
https://doi.org/10.1016/j.trb.2021.08.016
http://crossmark.crossref.org/dialog/?doi=10.1016/j.trb.2021.08.016&domain=pdf
https://doi.org/10.1016/j.trb.2021.08.016

Transportation Research Part B 153 (2021) 91–110M. Abdolmaleki et al.

e
t
d
e

e

a
c

2

e
c
d
d

c
t

n
c
w
a
a
(
f
c
s

w
p
s
𝐺

was initially proposed by Larson et al. (2013), which considered a piecewise concave energy consumption function for platoon
members and proposed a fast heuristic that can handle large fleets. This work was then followed by a few studies that formulated
the problem as an integer linear program and solved it with exact solution algorithms (e.g., Larsson et al., 2015; Larson et al., 2016;
Nourmohammadzadeh and Hartmann, 2016; Sokolov et al., 2017). Recently, Boysen et al. (2018) considered a general concave cost
function to schedule single-class trucks with identical paths to form platoons. They formulated the problem as finding the optimal
clique decomposition of an interval graph, and proved that the general case is NP-hard. They further proposed a cubic algorithm in
the number of trucks.

The existing literature falls short on two major aspects. First, the majority of the proposed models lack well-structured
optimization properties, yielding weak performance when solving large problems (in terms of the number of trucks and the network
size). Second, the non-compact nature of the adopted modeling frameworks in the literature has made it necessary to employ
restrictive assumptions, such as having a single-class fleet, inflexibility of forming platoons at different links, simplified energy
consumption function and network topology, or limited speed choices for trucks. As such, the scheduled platooning planning problem
remains unsolvable for realistic instances that comprise of large fleets traveling in large-scale real-world networks.

In contrast, this paper considers the scheduled platoon planning problem without these restrictions. Specifically, we simultane-
ously optimize the departure time, routing, and speed of trucks to form platoons to minimize their total fuel consumption without
violating the travel window of individual trucks. We cast the platooning problem as a concave-cost minimum cost flow problem,
and show that this problem under certain nonrestrictive conditions can be reformulated as an equivalent mixed integer nonlinear
program. We propose a hybrid outer approximation/local-search solution algorithm to solve the problem. In addition, we prove
several efficiency properties for our local search, and demonstrate the superior performance of our proposed approach as compared
to existing methods in the literature (Larsson et al., 2015; Larson et al., 2016; Nourmohammadzadeh and Hartmann, 2016; Sokolov
t al., 2017). Despite the superior performance of our proposed algorithm, its computational complexity grows exponentially in
he size of the problem, limiting its applicability to small- to medium-sized instances. For large-scale problems, we propose a fast
ynamic-programming-based heuristic, which significantly improves upon the solution quality of a heuristic proposed by Larson
t al. (2013).
We then shift our attention to a special case of the problem considered by several previous studies (Larsson et al., 2015; Larson

t al., 2016; Nourmohammadzadeh and Hartmann, 2016; Sokolov et al., 2017; Larson et al., 2013). In this special case, the energy
consumption for a platoon of trucks follows a piece-wise linear concave function, which represents a higher consumption rate for
the lead vehicle and a lower, uniform consumption rate for all following vehicles.; trucks traverse along paths with minimum energy
consumption (hereinafter referred to as energy shortest paths) with pre-specified link speeds; they can wait at intermediate nodes
as long as doing so does not compromise their travel time windows. We connect this special case with a well-known network
design problem, namely the ‘‘Minimum Weight Pairwise Distance Preservers’’, and propose an efficient algorithm along with its
corresponding approximation bounds.

Although we present our work in an offline, pre-trip setting, the proposed algorithms, particularly the dynamic-programming-
based heuristic and the approximation algorithm, are efficient enough to support online, real-time decision making. The rest of the
paper is organized as follows: Section 2 presents our model formulation, followed by the discussion of the outer approximation
algorithm in Section 3. Section 4 introduces the dynamic-programming-based heuristic while Section 5 discusses the approximation
lgorithm. Section 6 demonstrate the performance of the proposed solution algorithms in different testing scenarios. Lastly, Section 7
oncludes the paper.

. Model

Consider a fleet of trucks comprised of different classes/brands traveling from their origins to destinations. It is assumed that
ach vehicle reports its origin and destination (OD) and travel time window (earliest departure and latest arrival times) to a central
ontroller before its departure. Hence, trucks’ trip schedules are known a priori. The controller, as the operator of the fleet, aims to
etermine the itinerary for each truck to facilitate platooning to minimize the total energy consumption. Each itinerary will specify
eparture time, route and speed choices at links along the route.
Mathematically, we consider there are C classes of trucks and define

{

𝐾𝑐 ⊆ 𝐾 ∶ 𝑐 = 1, 2,… , 𝐶
}

to represent the set of trucks in
lass 𝑐, where 𝐾 is the set of all trucks. For each truck 𝑘 ∈ 𝐾, we use 𝑇𝐸𝐷

𝑘 and 𝑇 𝐿𝐴
𝑘 to denote its earliest departure and latest arrival

imes, respectively.
In order to incorporate the travel time windows into a physical network, we formulate the problem leveraging a time-expanded

etwork. In particular, given a physical network, 𝑆 represents the set of all physical nodes. To construct the time-expanded
ounterpart of the physical network, we discretize the time horizon into time intervals of length 𝛿𝑡 to form a set 𝑇 =

{

𝑡1, 𝑡2,… , 𝑡𝑟
}

,
here 𝑡𝑖 ∈ 𝑇 represents the 𝑖th ordered time interval. In the time-expanded network 𝐺, 𝑁(𝐺) and 𝐸(𝐺) represent the set of all nodes
nd links, respectively. We discretize the speed range into a set of discrete speed values 𝑉 for trucks. A node 𝑛𝑖 ∈ 𝑁(𝐺) is defined
s a tuple (𝑡𝑖, 𝑠𝑖), where 𝑡𝑖 is the time interval a truck may be located at node 𝑠𝑖 ∈ 𝑆. Subsequently, a link 𝑙 ∈ 𝐸(𝐺) is defined as
𝑛𝑖, 𝑛𝑗) = (𝑡𝑖, 𝑠𝑖, 𝑡𝑗 , 𝑠𝑗), where 𝑡𝑖 is the time interval one has to leave node 𝑠𝑖 in order to arrive at node 𝑠𝑗 during time interval 𝑡𝑗 by
ollowing a certain speed from the set 𝑉 on the physical link (𝑠𝑖, 𝑠𝑗). See Fig. 1 for a demonstration of creating the time-expanded
ounterpart for a simple, linear physical network. As this figure demonstrates, a truck traversing the same link starting from the
ame time interval may have multiple links associated with it, depending on its choice of traveling speed.
The above procedure yields a time-expanded network that contains all feasible itineraries for each truck to traverse the network,

here, once again, an itinerary specifies a truck’s departure time, physical route, and speed choice at each physical link. A pre-
rocessing procedure proposed by Masoud and Jayakrishnan (2017) can then be applied to refine the link set by eliminating a
ubset of infeasible links (i.e., links that are impossible for a truck to complete its trip within its travel time window). We denote
as the simplified spatio-temporal sub-network for truck 𝑘. A route in this network corresponds to a feasible itinerary for truck 𝑘.
92

𝑘

Transportation Research Part B 153 (2021) 91–110M. Abdolmaleki et al.

w
(
b
a
i

f
f

Fig. 1. Constructing time-expanded network.

2.1. Concave cost multicommodity flow formulation

Let us define the cost function 𝑓𝑙(𝑌𝑙) to represent the energy consumption of link 𝑙, where 𝑌𝑙 = (𝑦1𝑙 , 𝑦
2
𝑙 ,… , 𝑦𝐶𝑙) and 𝑦𝑐𝑙 is the

number of trucks in class 𝑐 passing through link 𝑙. Function 𝑓𝑙 is an increasing function with the number of trucks 𝑦𝑐𝑙 . Considering
the decreasing trend of marginal energy consumption with an increase in the platoon size, we assume the function 𝑓𝑙 to be a
jointly concave function. This concavity assumption is consistent with the consideration in previous studies or findings from field
experiments (Sun and Yin, 2019; Boysen et al., 2018; Bonnet and Fritz, 2000; Zabat et al., 1995; Larson et al., 2013; Larsson
et al., 2015; Larson et al., 2016; Nourmohammadzadeh and Hartmann, 2016; Sokolov et al., 2017). Finally, we assume that platoon
formation on a network link is only possible for vehicles traversing the same physical link at the same time and with the same
speed.

With the above problem set up, the platoon planning problem becomes equivalent to the problem of finding a route for each
individual truck in its time-expanded network 𝐺𝑘 such that the summation of 𝑓𝑙 over all links 𝑙 ∈ 𝐸(𝐺), i.e., the network energy
consumption, is minimized. This problem is equivalent to a multicommodity flow problem with concave cost function. As such, we
can formulate the following optimization problem (Model P1):

Min 𝑧 =
∑

𝑙∈𝐿
𝑓𝑙(𝑌𝑙) (1a)

s.t.
∑

(𝑡𝑖 ,𝑠𝑖)∶
𝑙=(𝑡𝑖 ,𝑠𝑖 ,𝑡,𝑠)∈𝐸(𝐺𝑘)

𝑥𝑘𝑙 −
∑

(𝑡𝑗 ,𝑠𝑗)∶
𝑙=(𝑡,𝑠,𝑡𝑗 ,𝑠𝑗)∈𝐸(𝐺𝑘)

𝑥𝑘𝑙 = 𝑑𝑘𝑡,𝑠 ∀𝑘 ∈ 𝐾,∀(𝑡, 𝑠) ∈ 𝑁(𝐺𝑘) (1b)

𝑦𝑐𝑙 =
∑

𝑘∈𝐾𝑐

𝑥𝑘𝑙 ∀𝑐 ∈ {1,… , 𝐶},∀𝑙 ∈ 𝐸(𝐺) (1c)

𝑥𝑘𝑙 ∈ {0, 1} ∀𝑘 ∈ 𝐾,∀𝑙 ∈ 𝐸(𝐺𝑘) (1d)
where

𝑑𝑘𝑡,𝑠 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−1 If 𝑠 = 𝑂(𝑘) and 𝑡 = 𝑇𝐸𝐷
𝑘

1 If 𝑠 = 𝐷(𝑘) and 𝑡 = 𝑇 𝐿𝐴
𝑘

0 Otherwise

(1e)

The objective (1a) is to minimize the total energy consumption. Constraint (1b) ensures flow conservation for each truck 𝑘,
here the binary decision variable 𝑥𝑘𝑙 is defined to be 1 if truck 𝑘 traverses the spatio-temporal link 𝑙 and 0 otherwise. Constraint
1c) defines 𝑦𝑐𝑙 as the sum of trucks of class 𝑐 passing through link 𝑙. Finally, constraint (1d) specifies the decision variable 𝑥𝑘𝑙 to
e binary. Note that if a truck departs at any time interval 𝑡1 later than 𝑇𝐸𝐷

𝑘 , the first part of the path can be modeled as staying
t the physical node 𝑂(𝑘) from time interval 𝑇𝐸𝐷

𝑘 to 𝑡1. The same applies to a truck that finishes its itinerary sooner than the time
nterval 𝑇 𝐿𝐴

𝑘 .
As formulated, P1 belongs to the family of multi-commodity network flow problems with concave objective function. The

ormulation enjoys the unimodularity property and can be solved via a nonlinear programming solver. The following lemma
ormalizes this statement.
93

Transportation Research Part B 153 (2021) 91–110M. Abdolmaleki et al.
Lemma 1 (Lozovanu, 1982; Ahuja et al., 1988). A solution to the continuous relaxation of problem P1 solves P1.

Proof. First, note that we can substitute the auxiliary variable 𝑦𝑐𝑙 with
∑

𝑘∈𝑐 𝑥
𝑘
𝑙 , resulting in only decision variables 𝑥

𝑘
𝑙 being subject

to the assignment constraints (1b). Since the objective function is concave, the solution to the relaxed version of P1 is an extreme
point of the feasible region. On the other hand, 𝑑𝑘𝑡,𝑠 is integer and the assignment constraints satisfy unimodularity conditions,
indicating that every extreme point of the feasible region is integer. □

2.2. Convex minimization reformulation

The concave minimization nature of Model P1 prevents a commercial nonlinear solver from solving large-scale instances of the
problem, necessitating specialized algorithms, such as the piece-wise linear approximation by Magnanti and Stratila (2004). In this
section, we reformulate P1 as a convex minimization problem that facilitates the development of an outer approximation algorithm
in Section 3.

Making use of the fact that the decision variable 𝑥𝑘𝑙 is binary (indicating that 𝑥
𝑘
𝑙 =

(

𝑥𝑘𝑙
)𝑛,∀𝑛 ∈ R+), and further assuming that

the function 𝑓𝑙 is twice differentiable and the diagonal elements of its Hessian matrix are finite, we can show that the following
function 𝑔𝑙 is strongly convex (Murray and Ng, 2010):

𝑔𝑙(𝑥1𝑙 , 𝑥
2
𝑙 ,… , 𝑥𝐾𝑙) = 𝑓𝑙(

∑

𝑘∈𝐾1

𝑥𝑘𝑙 ,
∑

𝑘∈𝐾2

𝑥𝑘𝑙 ,… ,
∑

𝑘∈𝐾𝑐

𝑥𝑘𝑙) +𝑀
∑

𝑘∈𝐾
𝛷(𝑥𝑘𝑙) (2)

where 𝛷 ∶ [0, 1] → R is a strictly convex function with 𝛷(0) = 𝛷(1) = 0. In addition, 𝑀 is a sufficiently large positive number. The
basic idea is to augment the original objective with a strictly convex function to ensure convexity while making sure the objective
function value is intact. We refer the readers to Murray and Ng (2010) for more details on finding suitable values for 𝑀 and various
forms of function 𝛷.

By further introducing a continuous variable 𝑄𝑙, we reformulate P1 into the following convex mixed integer nonlinear program
(MINLP) (Model P2):

Min 𝑧 =
∑

𝑙∈𝐿
𝑄𝑙 (3a)

s.t.
∑

(𝑡𝑖 ,𝑠𝑖)∶
𝑙=(𝑡𝑖 ,𝑠𝑖 ,𝑡,𝑠)∈𝐸(𝐺𝑘)

𝑥𝑘𝑙 −
∑

(𝑡𝑗 ,𝑠𝑗)∶
𝑙=(𝑡,𝑠,𝑡𝑗 ,𝑠𝑗)∈𝐸(𝐺𝑘)

𝑥𝑘𝑙 = 𝑑𝑘𝑡,𝑠 ∀𝑘 ∈ 𝐾,∀(𝑡, 𝑠) ∈ 𝑁(𝐺𝑘) (3b)

𝑔𝑙(𝑥1𝑙 , 𝑥
2
𝑙 ,… , 𝑥𝐾𝑙) ≤ 𝑄𝑙 ∀𝑙 ∈ 𝐸(𝐺) (3c)

𝑥𝑘𝑙 ∈ {0, 1} ∀𝑘 ∈ 𝐾,∀𝑙 ∈ 𝐸(𝐺𝑘) (3d)

This reformulation enjoys desirable mathematical properties that make it amenable to decomposition algorithms, such as outer
approximation.

3. Outer approximation

Decomposition techniques such as outer approximation (OA) have been widely employed to solve MINLPs. OA belongs to the
family of decomposition and cutting-plane methods, which separate the original MINLP into a nonlinear program (NLP) subproblem
and a relaxed version of the original problem known as the master problem (MP). In OA algorithm, the nonlinear subproblem is
achieved by fixing the integer variables, and therefore provides an upper bound solution. The master problem on the other hand, is
obtained by sequentially substituting the nonlinear convex function by its first-order linear, or in some cases second-order quadratic,
approximations. MP, which is responsible for a lower bound solution, is therefore tightened sequentially by adding OA cuts for the
convex nonlinearities at every iteration. The algorithm cycles between the subproblem and the master problem until the gap between
the upper and lower bounds meets the convergence criterion, or the maximum number of iterations is reached. Given the convexity
of the formulation, and the fact that the OA cuts are under-estimators of the convex function, OA converges to the global optimal
solution of the original problem in a finite number of iterations. Below we will demonstrate that the application of OA to the MINLP
model P2 is suitable, owing to its closed-form solution for the subproblem.

Proposition 1. In P2, the NLP subproblem for OA has a closed-form solution.

Proof. The NLP subproblem is achieved by fixing the binary integer variables 𝑥̄𝑘𝑙 . Once the integer variables are fixed, the optimal
value of the continuous variable 𝑄𝑙 is obtained via the following equation:

𝑄̄𝑙 = 𝑔𝑙(𝑥̄1𝑙 , 𝑥̄
2
𝑙 ,… , 𝑥̄𝐾𝑙) (4)
94

Transportation Research Part B 153 (2021) 91–110M. Abdolmaleki et al.

c
e
t
u
o

i
t
c
b
i
s
B

r
s
n

t

3.1. Master problem

The master problem in OA (OA-MP) is a mixed integer linear program achieved by sequentially approximating the nonlinear
onstraint (3c) with its sub-gradient inequalities at any given integer point 𝑥̄𝑘ℎ𝑙 . In particular, given a feasible integer solution at
very iteration ℎ, a linear OA cut in the form of Eq. (5c) is generated to augment the sets of previously generated cuts in order
o linearly approximate the convex constraint (3c). We should point out that since sub-gradient-based OA cuts (Eq. (5c)) are the
nder-estimator of the convex functions, they will not cut-off the optimal point(s). These equations are merely responsible for cutting
ff those solutions that do not belong to the linear approximation of the convex feasible region at every iteration.
As mentioned earlier, the lower bound for the OA algorithm is achieved by solving the master problem. In order to further

mprove the overall efficiency of the OA algorithm, Fletcher and Leyffer (1994) showed that the OA-MP does not have to be solved
o optimality, and the algorithm can continue as long as a new integer solution can be found by the MP at every iteration. In this
ase, Fletcher and Leyffer (1994) suggested adding Eq. (5d) to ensure that the MP solution remains at most less than the upper
ound. They also proved that by adding such a constraint, no integer solution is replicated by OA-MP twice. Therefore, if at any
teration no new integer solution is generated by OA-MP, the master problem becomes infeasible, at which point an 𝜖-optimal
olution is reached and the algorithm terminates. We should note that 𝜖 is a desired level of accuracy and is supplied by the user.
elow, the master problem or OA-MP is presented:

Min 𝑧 =
∑

𝑙∈𝐿
𝑄𝑙 (5a)

s.t.
∑

(𝑡𝑖 ,𝑠𝑖)∶
𝑙=(𝑡𝑖 ,𝑠𝑖 ,𝑡,𝑠)∈𝐸(𝐺𝑘)

𝑥𝑘𝑙 −
∑

(𝑡𝑗 ,𝑠𝑗)∶
𝑙=(𝑡,𝑠,𝑡𝑗 ,𝑠𝑗)∈𝐸(𝐺𝑘)

𝑥𝑘𝑙 = 𝑑𝑘𝑡,𝑠
∀𝑘 ∈ 𝐾,

∀(𝑡, 𝑠) ∈ 𝑁(𝐺𝑘)
(5b)

𝑔𝑙(𝑥̄1
ℎ

𝑙 , 𝑥̄2
ℎ

𝑙 ,… , 𝑥̄𝐾
ℎ

𝑙) +
∑

𝑘∈𝐾

𝜕𝑔𝑙(𝑥̄1
ℎ

𝑙 , 𝑥̄2ℎ𝑙 ,… , 𝑥̄𝐾ℎ

𝑙)

𝜕𝑥𝑘𝑙
(𝑥𝑘𝑙 − 𝑥̄𝑘

ℎ

𝑙) ≤ 𝑄𝑙
∀𝑙 ∈ 𝐸(𝐺),

∀ℎ = 1, 2,… ,𝐻
(5c)

∑

𝑙∈𝐿
𝑄𝑙 ≤ 𝑈𝐵 − 𝜖 (5d)

𝑥𝑘𝑙 ∈ {0, 1} ∀𝑘 ∈ 𝐾,
∀𝑙 ∈ 𝐸(𝐺𝑘)

(5e)

3.2. Revising the master problem

The integer points provided by OA-MP are responsible for providing the OA lower bound and generating a new sets of cuts for
the next iteration. Generally, the performance of the algorithm heavily depends on the quality of the integer solution provided by
OA-MP. While the above formulation of OA-MP can be handled by off-the-shelf optimization solvers such as CPLEX, its continuous
relaxation is still weak and can be further improved to enhance the quality of the integer solutions returned by OA-MP. This step
is critical in the overall OA algorithm since achieving better bounds for MP at every step would potentially lead to fewer iterations
for the overall algorithm. To this end, we reformulate constraint (5c) as follows:

𝑔𝑙(𝑥̄1
ℎ

𝑙 , 𝑥̄2
ℎ

𝑙 ,… , 𝑥̄𝐾
ℎ

𝑙) +
𝜕𝑔𝑙(𝑥̄1

ℎ

𝑙 , 𝑥̄2ℎ𝑙 ,… , 𝑥̄𝐾ℎ

𝑙)

𝜕𝑥𝑘𝑙
(𝑥𝑘𝑙 − 𝑥̄𝑘

ℎ

𝑙) ≤ 𝑄𝑙 , ∀𝑙 ∈ 𝐸(𝐺),∀ℎ = 1, 2,… ,𝐻,∀𝑘 ∈ 𝐾 (6)

Eq. (6) is the disaggregated version of constraint (5c), which would provide a tighter continuous relaxation for OA-MP. Note that
eplacing equation (5c) with (6) does not change the feasible integer space of the original OA-MP, but would help find better integer
olutions in a reasonably shorter time. We should point out that the continuous variables generated through two formulations are
ot the same. However, according to Fletcher and Leyffer (1994), OA-MP is responsible for generating a new integer variable at
every iteration and the continuous variables are optimized through the subproblem.

3.3. Local search

Reformulating the problem P(1) as a convex optimization problem P2 comes at a cost of losing some of the structural properties of
he original problem, such as the unimodularity of the constraint set as described in Lemma 1. In this section, we utilize the concavity
of the original problem to further improve the quality of the OA-MP integer solutions by solving a sequence of linear programs that
are computationally inexpensive. We should first point out that both P(1) and P2 have the same objective function values at the
extreme points of the feasible region. Additionally, due to the fact that the original problem P(1) is a concave minimization problem,
the first-order Taylor expansion of the objective function at any point, 𝑥̄, is an over-estimator of the objective function. Therefore,
any solution 𝑥 to the linear program (7) has an objective value 𝑧(𝑥) satisfying 𝑧(𝑥) ≤ 𝑧(𝑥̄), a reduction in the objective function
value.

min 𝑧 =
∑

𝑙∈𝐿
(𝑓𝑙(𝑥̄1

ℎ

𝑙 , 𝑥̄2
ℎ

𝑙 ,… , 𝑥̄𝐾
ℎ

𝑙) +
∑

𝑘∈𝐾

𝜕𝑓𝑙(𝑥̄1
ℎ

𝑙 , 𝑥̄2ℎ𝑙 ,… , 𝑥̄𝐾ℎ

𝑙)

𝜕𝑥𝑘𝑙
(𝑥𝑘𝑙 − 𝑥̄𝑘

ℎ

𝑙)) (7a)

s.t.
∑

𝑡𝑖 ,𝑠𝑖∶
𝑥𝑘𝑙 −

∑

𝑡𝑗 ,𝑠𝑗 ∶
𝑥𝑘𝑙 = 𝑑𝑘𝑡,𝑠 ∀𝑘 ∈ 𝐾,∀(𝑡, 𝑠) ∈ 𝑁(𝐺) (7b)
95

𝑙=(𝑡𝑖 ,𝑠𝑖 ,𝑡,𝑠)∈𝐿 𝑙=(𝑡,𝑠,𝑡𝑗 ,𝑠𝑗)∈𝐿

Transportation Research Part B 153 (2021) 91–110M. Abdolmaleki et al.

t
m
d
u

t

t
n

0 ≤ 𝑥𝑘𝑙 ≤ 1 ∀𝑘 ∈ 𝐾,∀𝑙 ∈ 𝐸(𝐺𝑘) (7c)

In the above formulation, the objective, (7a), is the first-order Taylor approximation of the function at point 𝑥 around the point
𝑥̄. Constraints (7b) reflect the flow balance constraints as in the original problem.

Note that the solution 𝑥∗ of the optimization problem (7) is not necessarily a local optimal of P1. However, after solving a
series of optimization problems (7) where 𝑥∗ is replaced with 𝑥̄, we can guarantee that we are sufficiently close to a local optimal.
Therefore, following this procedure, we can iteratively improve our solution locally until we reach a locally optimal solution. In
practice, we only need a few iterations, even in large-scale networks. Theorem 1 provides a polynomial upper bound on the number
of times we have to solve problem (7) to obtain a locally optimal solution. Denote by |𝑃 | the maximum number of vehicles that can
pass through a link in the time-expanded network without violating their travel time windows constraints. Let |𝐸| be the number
of edges in the time-expanded network.

Theorem 1. For the multi-class platooning problem, if the functions 𝑓𝑙(.) are all strongly concave, we obtain a locally optimal solution after
at most 𝑂(|𝐸 ∥ 𝑃 |) times solving the problem (7). Moreover, for the single-class platooning problem, if the functions 𝑓𝑙(.) are all concave,
we obtain a locally optimal solution after at most 𝑂(|𝑃 |5+𝜖|𝐸|

3) times solving the problem (7), for any 𝜖 > 0.

Proof. See Appendix B. □

Algorithm 1 Outer Approximation

1: Procedure OA(𝜖)
2: Set the maximum number of iterations as H
3: Initialize: Set UB=+∞
4: Find an initial assignment 𝑥̄𝑘1𝑙 by finding a shortest path for every truck 𝑘
5: while h ≤ H and OA-MP is feasible do
6: 1: OA Subproblem ∶
7: 1.1: Calculate the subproblem objective function by Eq. (4)
8: 1.2: Update the OA upper bound if 𝑄̄𝑙 ≤ UB.
9: 2: OA Master Problem:
10: if OA-MP objective (Eq. (5d))≥ UB-𝜖 then
11: OA-MP is infeasible, terminate the OA algorithm;
12: end if
13: 2.1: Add the OA inequalities (Eq. (6));
14: 2.2: Find a feasible solution of OA-MP (Eqs. (5a), (6), (5b), (5e));
15: 2.3: Locally improve the solution of OA-MP by solving linear programs (7);
16: 2.4: Increment ℎ;
17: end while

4. Dynamic-programming-based heuristic

We have proposed the OA algorithm as an exact algorithm for the scheduled platoon planning problem. However, as the size of
he problem (in terms of network and fleet size) grows, the number of variables and constraints in Model P1 increases exponentially,
aking it challenging for the proposed exact algorithm to solve those large-scale instances effectively. In this section, we devise a
ynamic-programming-based heuristic to find high-quality solutions in a considerably lower amount of time, which is particularly
seful for solving realistic problems in real time.
The core idea of our heuristic is to use a dynamic programming (DP) algorithm to iteratively find a hypothetical path in the

ime-expanded network that yields the maximum platoon savings along its links. Specifically, we aim to find a path 𝑝 and force
each truck 𝑘 to pass through the overlap of its restricted subgraph 𝐺𝑘 and path 𝑝. Once truck 𝑘 joins path 𝑝, the platoons on
the overlapping links will be updated, rewarding truck 𝑘 with energy savings from joining a platoon. Note that path 𝑝 does not
necessarily contain the origins and destinations for all trucks, and platoon savings can be still achieved if a vehicle subgraph only
partially overlaps with path 𝑝. In this section, we devise a DP algorithm that approximately finds path 𝑝 that results in maximum
platoon savings. Before introducing the algorithm, we should note that since each truck can have a different set of allowable speed
choices for each link, there is no guarantee that the overlap of path 𝑝 with subgraph 𝐺𝑘 is a connected path. It may be a union of
subpaths of 𝑝, as demonstrated in Fig. 2. In this figure, the red dashed track is the hypothetical path 𝑝 while the green one is the
restricted subgraph of a truck 𝑘 who has to start its trip at time 𝑡 = 1 and finish at time 𝑡 = 7, and its allowable set of speed choices
does not allow it to follow the hypothetical path 𝑝 over its entire path.

Let us define a state in our DP algorithm as a spatio-temporal node (𝑡𝑖, 𝑠𝑖). Furthermore, let 𝑉 (𝑡𝑖, 𝑠𝑖) be the maximum savings for
he system that can be achieved by following a path from an arbitrary node to spatio-temporal node (𝑡𝑖, 𝑠𝑖). The goal is to find the

∗ ∗ ∗ ∗
96

ode (𝑠 , 𝑡) such that (𝑡 , 𝑠) = argmax(𝑡,𝑠)∈𝑁(𝐺)𝑉 (𝑡, 𝑠).

Transportation Research Part B 153 (2021) 91–110M. Abdolmaleki et al.

s
p
s

t
c
𝑙
e
t
e
f

T

Fig. 2. The discontinuity of the overlap of path 𝑝 and the restricted subgraph of a truck 𝐺𝑘.

We define two tensors, 𝑀1 and 𝑀2, to ensure the feasibility of the optimal path and facilitate the retrieval of the maximum-
avings path after its cost is computed. Each element of the tensor 𝑀1(𝑡, 𝑠) is a state (𝑡′, 𝑠′) that precedes state (𝑡, 𝑠) in the optimal
ath leading to the state (𝑡, 𝑠). Also, each element of the tensor𝑀2(𝑡, 𝑠, 𝑖) denotes the vector of trucks that have contributed to energy
avings along the optimal path ending at state (𝑡, 𝑠) at a link that lies 𝑖 steps prior to the link (𝑀1(𝑡, 𝑠), 𝑡, 𝑠) on the optimal path.
Let 𝑤

(

𝑡′, 𝑠′, 𝑡, 𝑠
)

denote the net energy savings for link
(

𝑡′, 𝑠′, 𝑡, 𝑠
)

. We compute 𝑤
(

𝑡′, 𝑠′, 𝑡, 𝑠
)

as follows. The first step is to compute
he platoon energy savings for the set of trucks 𝑈 , passing through link 𝑙 =

(

𝑡′, 𝑠′, 𝑡, 𝑠
)

. This can be achieved by subtracting the energy
onsumption for trucks in 𝑈 passing through link 𝑙, 𝑓𝑙(𝑈), from the total energy consumption for set 𝑈 of trucks passing through
while no platooning is considered. The second step is to compute the excess energy consumption incurred by the detour that
ach truck 𝑘 ∈ 𝑈 has to take to pass through 𝑙, 𝑢𝑙𝑑 (𝑘). We subtract the energy consumption of the energy-minimizing path for
he truck 𝑘 that includes the node (𝑡′, 𝑠′) (in the absence of any platoon savings) from the energy consumption of the alternative
nergy-minimizing path that places 𝑘 on the segment 𝑙 along its destination. The excess energy consumption imposed by detours
or the set 𝑈 can then be obtained by summing up 𝑢𝑙𝑑 (𝑘) over all the vehicles in the set 𝑈 .
Note that 𝑤

(

𝑡′, 𝑠′, 𝑡, 𝑠
)

equals the maximum net energy savings for link 𝑙 =
(

𝑡′, 𝑠′, 𝑡, 𝑠
)

among all possible subsets 𝑈 of the trucks.
o determine if a truck 𝑘 can pass through 𝑙 we check tensors 𝑀1 and 𝑀2 to find the latest state truck 𝑘 appeared on the optimal
path to state (𝑡, 𝑠). Then we check if it is feasible for 𝑘 to pass through 𝑙 on its trip to its destination without violating the time
constraint. Lemma 2 shows how we can efficiently compute the value of 𝑤

(

𝑡′, 𝑠′, 𝑡, 𝑠
)

.

Lemma 2. The maximum net energy savings 𝑤
(

𝑡′, 𝑠′, 𝑡, 𝑠
)

for link
(

𝑡′, 𝑠′, 𝑡, 𝑠
)

is calculated with ∏𝐶
𝑖=1 𝑟𝑖 operations for a concave energy

consumption function, where 𝑟𝑖 is the number of trucks in class 𝑖 that can pass through link
(

𝑡′, 𝑠′, 𝑡, 𝑠
)

.

Proof. For each class 𝑐 ∈ {1, 2,… , 𝐶}, we sort the trucks 𝑘 ∈ 𝐾𝑐 based on their corresponding excess energy consumption imposed
by detours as:

𝐾 𝑙
𝑐 =

{

𝑘1, 𝑘2,… , 𝑘𝑟
}

where 𝑘1 has the minimum excess energy consumption among trucks in 𝐾 𝑙
𝑐 . For any subset of trucks 𝑈1 ⊆ 𝐾 𝑙

𝑐 where we have
𝑘𝑖 ∉ 𝑈1, 𝑘𝑗 ∈ 𝑈1, 𝑢𝑙𝑑 (𝑘𝑖) < 𝑢𝑙𝑑 (𝑘𝑖) we can substitute the trucks 𝑘𝑖 and 𝑘𝑗 to get a new combination with a higher net energy savings,
𝑈2, because the platooning energy savings for the sets 𝑈1 and 𝑈2 are the same while the excess energy consumption imposed by
detour has been decreased by 𝑢𝑙𝑑 (𝑘𝑗) − 𝑢𝑙𝑑 (𝑘𝑗). Keeping this observation in mind, we can conclude that the overlap of the optimal
subset 𝑈∗ with any set 𝐾 𝑙

𝑐 is a set of consecutive trucks 𝑈∗ ⋂𝐾 𝑙
𝑐 =

{

𝑘1, 𝑘2,… , 𝑘𝑟∗
}

, which always have the truck 𝑘1 if it is not the
empty set. That being said, the number of all possible such sets can be computed as the product ∏𝐶

𝑖=1 𝑟𝑖. Computing the net energy
∗

97

savings for all of these special sets results in finding the subset 𝑈 with maximum net energy savings on link 𝑙. □

Transportation Research Part B 153 (2021) 91–110M. Abdolmaleki et al.

t

t
t
c

i
o
w
a
a
a

C
t
p
p

Note that in practice, the number of classes may not exceed three or four types, and for the single-class fleet case we can find
he 𝑤

(

𝑡′, 𝑠′, 𝑡, 𝑠
)

in linear time.
To initialize the DP process, we set the value of 𝑉 (𝑡, 𝑠) with states {(𝑡, 𝑠) ∶ 𝑡 = 0} to be zero. Next, we traverse the states in the

opological order of nodes to find the value function for each state. The Bellman equation displayed in (8) describes how we update
he value function at each step. The set 𝑁𝑑 (𝑡, 𝑠) in this equation contains all nodes in the time-expanded subgraph that directly are
onnected to node (𝑡, 𝑠).

𝑉 (𝑡𝑗 , 𝑠𝑗) = max
(𝑡𝑖 ,𝑠𝑖)∈𝑁𝑑 (𝑡𝑗 ,𝑠𝑗)∶𝑡′≤𝑡

(𝑤(𝑡𝑖, 𝑠𝑖, 𝑡𝑗 , 𝑠𝑗) + 𝑉 (𝑡𝑖, 𝑠𝑖)) (8)

Note that after enforcing a trip to pass through subpaths of 𝑝, we can partially capture the remaining flexibility of the trip by
ntroducing new trips that connect the remaining portions of the original trip. As such, we first introduce the sets 𝐴𝑘 as the union
f the two nodes 𝑠𝑜𝑘 and 𝑠𝑑𝑘 in addition to the end points of subpaths on the optimal path 𝑝, 𝑝𝑖𝑘, that truck 𝑘 passes through. Next,
e sort these fixed nodes that lie on truck 𝑘’s path based on their time component, and for any consecutive pair of these nodes that
re not readily connected through one of the subpaths 𝑝𝑖𝑘, we introduce a new (dummy) truck with those end points as its origin
nd destination. We iteratively run the DP process until the optimal value for the process equals 0, i.e., we cannot achieve any
dditional saving from platooning. Algorithm 2 presents the pseudo code for the DP-based heuristic described above:

Algorithm 2 Heuristic Algorithm

1: 𝑆𝑡𝑜𝑝 = 0;
2: while 𝑆𝑡𝑜𝑝 ≠ 1 do
3: 𝑆𝑡𝑜𝑝 = 1
4: for 𝑘 ∈ the set of all the trips in the system do
5: Generate the restricted subnetwork for trip 𝑘 following the procedure in 2.1;
6: end for
7: Run the DP process introduced above
8: let 𝑓 be the optimal value of the DP process.
9: if 𝑓 > 0 then
10: 𝑆𝑡𝑜𝑝 = 0
11: end if
12: for 𝑘 ∈ set of all the trucks in the system do
13: Identify the set 𝐴𝑘 and the consecutive endpoints of 𝐴𝑘 that are not connected by one of the subpaths 𝑝𝑖𝑘. For each one of

them, define a new truck with those endpoints as its OD pair.
14: Delete 𝑘 from the set of trucks.
15: end for
16: end while

5. Approximation algorithm

In this section, we propose a linear-programming-based algorithm for a special case of the scheduled platoon planning problem.
ompared with the general case discussed above, we herein assume the energy consumption function for a platoon of trucks traveling
hrough a link is a piecewise linear concave function with two pieces on the number of trucks in the platoon. More specifically, it
ostulates that the leading truck in a platoon does not save any energy while the following trucks, irrespective of their position in the
latoon, experience an energy saving factor of 0 ≤ 𝛼 ≤ 1, e.g., 𝛼 = 0.1, compared to their original energy consumption (Larson et al.,
2013). This function can be viewed as an approximation to the general concave function considered above, and is particularly valid
when all trucks are of the same type, forming single-class platoons as known in the literature. We also assume that the objective of
trucks is to travel along energy-minimizing paths, paths that minimize their energy consumption in the absence of any platooning
benefit, given pre-specified link speeds. However, they can wait at intermediate nodes as long as doing so does not compromise
their travel time windows.

This special case, considered by several previous studies (Larson et al., 2013; Larsson et al., 2015; Larson et al., 2016), deserves
special attention. First, it remains a reasonable simplification to the general scheduled platoon planning problem as the assumptions
are not overly restrictive. The simplification makes the model parameters much easier to calibrate or specify, yielding a model
particularly appropriate for a sketch or strategic planning exercise to obtain the ballpark estimate of the benefit of truck platooning.
Second, the problem possesses an interesting structure that allows us to cast it as the problem of Minimum Weight Pairwise Distance
Preservers in the network design literature, enabling the development of an efficient algorithm with approximation bounds.

5.1. Model

To form the restricted sub-network of a truck 𝑘, 𝐺𝑘, we modify the pre-processing procedure proposed in Masoud and
Jayakrishnan (2017) by discarding the links that do not lie on any energy-minimizing path that connects the origin of the truck to
98

its destination and satisfies their travel time window constraints.

Transportation Research Part B 153 (2021) 91–110M. Abdolmaleki et al.

D
𝑃
∑

P
s
(

Following the model presented in Section 2.1, the itinerary for every truck 𝑘 can be demonstrated by a path in the time-expanded
network 𝐺. This path will start at the node 𝑛𝑜𝑘 = (𝑇𝐸𝐷

𝑘 , 𝑂(𝑘)) and ends at the node 𝑛𝑑𝑘 = (𝑇 𝐿𝐴
𝑘 , 𝐷(𝑘)). Finally, the objective is to find

a directed path for each truck in its restricted time-expanded network to minimize the total energy cost.
Note that every directed path from 𝑛𝑜𝑘 to 𝑛𝑑𝑘 in 𝐺𝑘 is an energy shortest path, because 𝐺𝑘 is the restricted network of truck 𝑘,

only containing links that lie on energy-minimizing paths. Because for each link in the time-expanded network we have a unique
pre-specified speed, we can denote by 𝑒(𝑠𝑖, 𝑠𝑗) the unique amount of energy required to pass through the link 𝑙 = (𝑡𝑖, 𝑠𝑖, 𝑡𝑗 , 𝑠𝑗). As
such, the total energy consumption in the absence of any platoon savings is constant, given as follows:

∑

𝑙=(𝑡𝑖 ,𝑠𝑖 ,𝑡𝑗 ,𝑠𝑗)∈𝐸(𝐺)

∑

𝑘∈𝐾
𝑥𝑘𝑙 𝑒(𝑠𝑖, 𝑠𝑗) =

∑

𝑘∈𝐾

∑

𝑙=(𝑡𝑖 ,𝑠𝑖 ,𝑡𝑗 ,𝑠𝑗)∈𝐸(𝐺)
𝑥𝑘𝑙 𝑒(𝑠𝑖, 𝑠𝑗) =

∑

𝑘∈𝐾
𝑒(𝑠𝑜𝑘, 𝑠

𝑑
𝑘) (9)

As assumed previously, platooning yields zero saving for the leading truck and the same percentage of energy savings for the
following trucks regardless of their position in the platoon. The total energy consumption can thus be written as in Eq. (10).

∑

𝑙=(𝑡𝑖 ,𝑠𝑖 ,𝑡𝑗 ,𝑠𝑗)∈𝐸(𝐺)
[
∑

𝑘∈𝐾
(1 − 𝛼) 𝑥𝑘𝑙 𝑒(𝑠𝑖, 𝑠𝑗) +

∑

𝑙=(𝑡𝑖 ,𝑠𝑖 ,𝑡𝑗 ,𝑠𝑗)∈𝐸(𝐺)
𝛼 𝜂𝑙 𝑒(𝑠𝑖, 𝑠𝑗)] (10)

where 𝜂𝑙 is a binary variable indicating whether there exists at least one truck passing through link 𝑙. The first term is a factor (1−𝛼)
of the total energy consumption without platooning. This term essentially captures the total energy consumption of all following
trucks, plus (1 − 𝛼) of the leading trucks’ consumption. The second term captures the remaining 𝛼 factor of the energy consumption
of the leading trucks (note that a single truck is viewed as the leader of a one-member platoon). Given the first term is constant,
Model P1 reduces to the following optimization problem:

min 𝑧 =
∑

𝑙=(𝑡𝑖 ,𝑠𝑖 ,𝑡𝑗 ,𝑠𝑗)∈𝐿
𝜂𝑙 𝑒(𝑠𝑖, 𝑠𝑗) (11a)

s.t.
∑

𝑡𝑖 ,𝑠𝑖∶
𝑙=(𝑡𝑖 ,𝑠𝑖 ,𝑡,𝑠)∈𝐿

𝑥𝑘𝑙 −
∑

𝑡𝑗 ,𝑠𝑗 ∶
𝑙=(𝑡,𝑠,𝑡𝑗 ,𝑠𝑗)∈𝐿

𝑥𝑘𝑙 = 𝑑𝑘𝑡,𝑠
∀𝑘 ∈ 𝐾,

∀(𝑡, 𝑠) ∈ 𝑁(𝐺𝑘)
(11b)

𝑥𝑘𝑙 ≤ 𝜂𝑙 ∀𝑙∈𝐸(𝐺),∀𝑘∶𝐺𝑘
⋂

𝑙≠∅ (11c)

𝑥𝑘𝑙 ∈ {0, 1} ∀𝑘 ∈ 𝐾,
∀𝑙 ∈ 𝐸(𝐺𝑘)

(11d)

𝜂𝑙 ∈ {0, 1} ∀𝑙∈𝐸(𝐺) (11e)
where

𝑥𝑘𝑙 =

{

1 If 𝑘 travels on 𝑙

0 Otherwise
(11f)

𝑑𝑘𝑡,𝑠 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−1 If 𝑠 = 𝑂(𝑘)&𝑡 = 𝑇𝐸𝐷
𝑘

1 If 𝑠 = 𝐷(𝑘)&𝑡 = 𝑇 𝐿𝐴
𝑘

0 Otherwise

(11g)

Viewing the link energy consumption of a truck 𝑒(𝑠𝑖, 𝑠𝑗) as a link cost, the above formulation essentially finds, in the time-
expanded network 𝐺, a sub-network 𝑍 that contains, for each truck 𝑘, a directed path in 𝐺𝑘 from its origin to destination
while minimizing the sum of all link costs in 𝑍. Below we further connect the problem with Minimum Weight Pairwise Distance
Preserver (Coppersmith and Elkin, 2006; Elkin and Peleg, 2007).

efinition 1. Given a directed graph 𝐺 = (𝑉 ,𝐸), with non-negative edge costs 𝑐 ∶ 𝐸 → 𝑅+, and a collection of node pairs
⊆ 𝑉 × 𝑉 , we say a subgraph 𝑍 of 𝐺 is a Minimum Weight Pairwise Distance Preserver of 𝐺 if it minimizes the total link costs,
𝑒∈𝐸(𝑍) 𝑐(𝑒), while the distance from 𝑠 to 𝑡 in 𝑍 is the same as that in 𝐺.

It is trivial to observe that finding the optimal solution to the platooning problem is equivalent to finding the Minimum Weight
airwise Distance Preservers in the undirected counterpart of the time-expanded network, and the set of unions of OD pairs is the
et 𝑃 in Definition 1. Hardness for distance preservers can be established by applying the technique provided in Elkin and Peleg
2000) for proving hardness of the client–server spanner problem.
In addition, the objective function (11a) can be equivalently written as maximizing the total fuel consumption savings, which is 𝛼

times the total energy consumption of all following trucks (without platooning). After dropping the coefficient 𝛼, the new objective
function becomes (12a).

Max 𝑧 =
∑

𝑙=(𝑡𝑖 ,𝑠𝑖 ,𝑡𝑗 ,𝑠𝑗)∈𝐿
(
∑

𝑘∶𝑙∈𝐺𝑘

𝑥𝑘𝑙 − 𝜂𝑙)𝑒(𝑠𝑖, 𝑠𝑗) (12a)

s.t. (11b) − (11e) (12b)

Below we will develop an approximation algorithm to solve the problem, and provide bounds on the quality of the solution.
99

Transportation Research Part B 153 (2021) 91–110M. Abdolmaleki et al.

2
a
w
a

5

w

𝑙
g
w
𝑙
t

t
n
𝑝
t
t
t
𝑘

5.2. LP relaxation

The Pairwise Distance Preserver problem has been shown to have tight integrality gap for their LP relaxations (Chlamtáč et al.,
017). Below we propose an LP-relaxation-based approximation algorithm. In the literature, in addition to such an LP relaxation
pproach, another decomposition approach is often used to solve the Pairwise Distance Preservers problem. However, as we illustrate
ith an example in Appendix C, most of the decomposition structures previously investigated in the literature are not suitable to
pproximate the objective function (12a).
For our LP relaxation, we follow the work of Bodwin and Williams (2016) by relaxing the integrality of the variables 𝜂𝑙 and 𝑥𝑙.

The relaxed variables 𝜂𝑙 can be interpreted as the capacity of the link 𝑙 and the relaxed variables 𝑥𝑙 as the flow associated with
trucks passing through the link.

Max 𝑧 =
∑

𝑙=(𝑡𝑖 ,𝑠𝑖 ,𝑡𝑗 ,𝑠𝑗)∈𝐿
(
∑

𝑘∶𝑙∈𝐺𝑘

𝑥𝑘𝑙 − 𝜂𝑙) 𝑒(𝑠𝑖, 𝑠𝑗) (13a)

s.t.
∑

𝑡𝑖 ,𝑠𝑖∶
𝑙=(𝑡𝑖 ,𝑠𝑖 ,𝑡,𝑠)∈𝐿

𝑥𝑘𝑙 −
∑

𝑡𝑗 ,𝑠𝑗 ∶
𝑙=(𝑡,𝑠,𝑡𝑗 ,𝑠𝑗)∈𝐿

𝑥𝑘𝑙 = 𝑑𝑘𝑡,𝑠
∀𝑘 ∈ 𝐾,

∀(𝑡, 𝑠) ∈ 𝑁(𝐺𝑘)
(13b)

𝑥𝑘𝑙 ≤ 𝜂𝑙
∀𝑘 ∶ 𝐺𝑘

⋂

𝑙 ≠ ∅,
∀𝑙 ∈ 𝐸(𝐺𝑘)

(13c)

.3. Approximation algorithm

The core idea of the approximation algorithm is the same as the one described in Section 4 for our DP algorithm. However, here
e use the LP relaxation (13) to modify the restricted subgraphs of the trucks in the system.
After solving the LP relaxation problem, we first construct a prioritized subgraph 𝐺∗

𝑘 for each truck 𝑘 from the union of links
with 𝑥𝑘𝑙 > 0 in the subgraph 𝐺𝑘. Doing so avoids forming greedy platoons, which may eliminate the possibility of forming a
lobally optimal platooning schedule (See Section 5.4 for an illustration of this phenomenon). After forming the subgraphs 𝐺∗

𝑘,
e assign non-negative weights to the edges of the original graph to establish the new time-expanded network 𝐺∗. If the edge
= (𝑡𝑖, 𝑠𝑖, 𝑡𝑗 , 𝑠𝑗) ∈ 𝐿 is in 𝑟𝑙 number of subgraphs 𝐺∗

𝑘, we assign the weight 𝑝𝑙 = (𝑟𝑙 −1)𝑒(𝑠𝑖, 𝑠𝑗) to the edge 𝑙. The weight 𝑝𝑙 represents
he potential of link 𝑙 for saving energy because 𝑟𝑙 trucks can potentially pass it through and form a platoon.
After creating the weighted graph 𝐺∗ we try to find the longest path in 𝐺∗ and denote it by 𝑝. Note that forcing all trucks to pass

hrough the overlap of their subgraph 𝐺∗
𝑘 and 𝑝 will result in maximum platoon savings on a spatio-temporal path. Furthermore,

ote that the overlap of 𝐺∗
𝑘 and 𝑝 is a subpath of the path 𝑝. Then, for each truck 𝑘 whose subgraph 𝐺∗

𝑘 has a nonempty overlap with
, we delete 𝑘 from the set of trucks and add two other trucks, 𝑘1 and 𝑘2. The origin of the truck 𝑘1 is the same as that of 𝑘, and
he destination of 𝑘1 is the node with the smallest timestamp that lies on the overlap of truck 𝑘’s subnetwork with 𝑝. Analogously,
he origin for truck 𝑘2 is the node with the largest timestamp that lies on the overlap of truck 𝑘’s subnetwork with the path 𝑝, and
he destination of 𝑘2 is the same as that of truck 𝑘. This approach allows us to take advantage of the remaining flexibility of truck
’s trip—the part of the trip that is not intersecting with 𝑝.
Before going any further we provide the pseudo code for our proposed approximation algorithm as follows:

Algorithm 3 Approximation Algorithm

1: 𝑆𝑡𝑜𝑝 = 0;
2: while 𝑆𝑡𝑜𝑝 ≠ 1 do
3: 𝑆𝑡𝑜𝑝 = 1
4: for 𝑘 ∈ 𝐾 do
5: Generate the energy shortest path subnetwork for truck 𝑘 following the procedure described in Section 5.1;
6: end for
7: Solve the LP relaxation proposed in Section 5.2
8: Modify the restricted subgraphs based on the optimal solution to the LP relaxation to obtain the subgraphs 𝐺∗

𝑘.
9: Form the weighted directed graph 𝐺∗ from the subgraphs 𝐺∗

𝑘.
10: Let 𝑝 and 𝑓 be the longest path and its weight in 𝐺∗, respectively.
11: if 𝑓 > 0 then
12: 𝑆𝑡𝑜𝑝 = 0
13: end if
14: for 𝑘 ∈ the set of all trucks in the system do
15: Identify the overlap of the path 𝑝 and 𝐺∗

𝑘. Define two new trucks, 𝑘1 and 𝑘2, as described earlier in Section 5.3.
16: Delete 𝑘 from the set of trucks.
17: end for
18: end while
100

Transportation Research Part B 153 (2021) 91–110M. Abdolmaleki et al.

P

l
o
i
l
a
t

c

A

s

5

W
p

D
e
(

e
a
o
T
a
b
l
u
c
o
t
t
c

Theorem 2. The approximation algorithm has a |𝐾|-approx guarantee, where |𝐾| is the number of trucks in the system.

roof. It is sufficient to prove that there exists a path that obtains at least 1
|𝐾|

of the total savings in the optimal solution. We first
generalize the notion of savings to the continuous relaxation setting. To do so, we follow the definition of the savings in a link 𝑙 in
the binary optimization problem and compute the total savings as

(

∑

𝑘∶𝑙∈𝐺𝑘
𝑥𝑘𝑙 −𝜂𝑙

)

𝛼 𝑒(𝑠𝑖, 𝑠𝑗). For the sake of simplicity and without
oss of generality, we set 𝛼 = 1. We introduce a new variable 𝑠𝑙 to denote the savings on link 𝑙, and let 𝑠∗𝑙 denote the energy cost
f link 𝑙 on the energy-minimizing path in the LP relaxation problem. Now, denote the optimal solution to the LP by (𝑥∗, 𝑦∗). We
ntroduce 𝑟𝑙 as the number of trucks with 𝑥𝑘∗𝑙 > 0 and 𝑟∗𝑙 for the corresponding value at the optimal solution to the LP. For any
ink-based solution, (𝑥∗, 𝑦∗), there exists an equivalent path-based solution 𝑓 ∗ where 𝑓𝑘∗

𝑝 is the flow on path 𝑝 for truck 𝑘. Let us
ssume we choose one of the trucks with equal probability 1

|𝐾|

and a path for truck 𝑘 with 𝑓𝑘∗
𝑝 > 0, and force all other trucks to pass

hrough the overlap of their restricted subgraph and the path 𝑝. Note that this overlap is a subpath of 𝑝. As such, we can compute
the probability that a link 𝑙 is being taken in the resulting randomized path by the summation over all different |𝐾| scenarios of
hoosing any of the |𝐾| trucks. Moreover, the savings we can obtain if we pass through 𝑙 is the unique value (𝑟∗𝑙 − 1) 𝑒(𝑠𝑖, 𝑠𝑗) and
does not depend on which scenario result in picking 𝑙. Putting it together, we can compute the expected savings for a given link 𝑙
as follows:

𝐄[𝑠𝑙] =
1
|𝐾|

|𝐾|

∑

𝑘=1
𝑥𝑙∗𝑘 (𝑟

∗
𝑙 − 1) 𝑒(𝑠𝑖, 𝑠𝑗) =

(𝑟∗𝑙 − 1)𝑒(𝑠𝑖, 𝑠𝑗)
|𝐾|

|𝐾|

∑

𝑘=1
𝑥𝑙∗𝑘

s 𝜂∗𝑙 ≥ 0, we have:

≥
𝑟∗𝑙 − 1
|𝐾|

(
|𝐾|

∑

𝑘=1
𝑥𝑙∗𝑘 − 𝜂∗𝑙) 𝑒(𝑠𝑖, 𝑠𝑗)

≥
𝑟∗𝑙 − 1
|𝐾|

𝑠∗𝑙 ≥ 1
|𝐾|

𝑠∗𝑙

Summing up over all links 𝑙 ∈ 𝐸(𝐺) yields:
∑

𝑙∈𝐸(𝐺)
𝐄[𝑠𝑙] ≥

1
|𝐾|

∑

𝑙∈𝐸(𝐺)
𝑠∗𝑙

Moreover, the savings in the LP relaxation formulation is an upper bound on the savings for the integer programming formulation,
o the proof is complete. □

It is trivial to observe that the approximation algorithm will obtain the optimal solution for the two-truck case.

.4. Role of LP relaxation

This subsection compares the performance of the approximation algorithm without LP relaxation versus that with LP relaxation.
ith an illustrative example, we show that the greedy longest path algorithm provides 1

𝑘 of the optimal savings, while the longest
ath equipped with the LP relaxation provides the optimal solution.

efinition 2. We define a strip quadrilateral 𝑆𝑄𝑛 to be a graph that is obtained by adding two new vertices, say 𝑥𝑖, 𝑦𝑖, for
ach pair of adjacent vertices (𝑢, 𝑣) ∈ 𝑃𝑛+1, the simple path of length 𝑛, and replacing the edge (𝑢, 𝑣) by the union of four edges
𝑢, 𝑥𝑖), (𝑥𝑖, 𝑦𝑖), (𝑣, 𝑦𝑖), (𝑢, 𝑣) on 𝑢, 𝑣.

Introducing 𝑆𝑄∗
𝑛, the weighted directed graph is obtained from 𝑆𝑄𝑛 where in each quadrilateral (𝑢, 𝑥𝑖, 𝑦𝑖, 𝑣) the weight of the

dges (𝑢, 𝑣) and (𝑢, 𝑥𝑖) is 1 and the weight of the two other edges is 𝑘. Moreover, all the edges in the underlying directed path 𝑃𝑛+1
re directed from one of the endpoints of 𝑃𝑛+1 to the other one. The other edges are directed towards their corresponding 𝑦𝑖 vertex
f the quadrilateral they belong. Fig. 3 demonstrates the structure for 𝑆𝑄∗

𝑛. Now, let us consider the case where we have 2𝑛+1 trips.
he first trip is between the two endpoints of the strip quadrilateral. Moreover, for any quadrilateral (𝑢, 𝑥, 𝑦, 𝑣) in 𝑆𝑄∗

𝑛 we have two
ssociated trips, one from 𝑢 to 𝑦 and the other from 𝑥 to 𝑦. We also consider the weight of an edge as the spatial distance represented
y that edge. Also, note that for the trips that have length 𝑘, the choice of a shortest spatial route is unique, while for the trips with
ength 𝑘+1 there are two choices for the spatial shortest route. The origins and destinations have been depicted in Fig. 3. To avoid
nnecessary complexity, we have not depicted the time dimension for these trips. However, we can assume that all these trips are
ompletely flexible, meaning that their corresponding time window does not put any restriction on their route choice. For a value
f 𝑛 satisfying 𝑛 = 𝑘 + 1, applying the greedy algorithm without the LP relaxation to solve (12) yields a solution where the flexible
rips are forced to pass through their overlap with the 𝑃𝑛+1. This results in a total savings of 𝑛. However, if the flexible trips choose
heir other route, the total savings will be 𝑛𝑘. It is not hard to see the solution to the LP relaxation is the optimal solution in this
ase and obtains the optimal 𝑛𝑘 savings using our LP modified greedy algorithm.
101

Transportation Research Part B 153 (2021) 91–110M. Abdolmaleki et al.

a
O
𝑓
g
v
t

n
a

Fig. 3. The spatial graph 𝑆𝑄∗
𝑛 of an illustrative example.

Fig. 4. OA v.s. PC-LA computational time for homogeneous fleet.

6. Numerical experiments

In this section, we present the results of a series of numerical experiments conducted to examine the performance of the proposed
OA algorithm, DP-based heuristic and LP-relaxation approximation algorithm. The OA algorithm is implemented in GAMS/CPLEX
platform. We use MATLAB for implementing the DP-based heuristic and the approximation algorithm. The computational tests are
conducted on a 3.4 GHz Dell Optiplex 990 Pentium i7-2600 computer with 8 GB RAM on the 64-bit version of the Windows 10
operating system. This numerical section is divided into four different sections. In the first two parts, we study the computational
performance of the proposed OA algorithm on a small- to medium-sized network, followed by the third section that compares all
three methods in terms of the achieved energy savings while changing the flexibility of truck travel schedules. Finally the last section
is dedicated to the DP heuristic where we test the algorithm in realistic settings.

6.1. Outer approximation: Homogeneous fleet

In this section we benchmark the OA algorithm against the pieces-wise linear approximation (PC-LA) proposed by Magnanti
nd Stratila (2004) and also highlight the performance improvement as a result of implementing the local search after solving
A-MP. Throughout this subsection, we assume the objective function that reflects the energy consumption is characterized as
𝑙(𝑥1𝑙 , 𝑥

2
𝑙 ,… , 𝑥𝐾𝑙) = (

∑

𝑐∈𝐶
∑

𝑘∈𝐾𝑐
𝛼𝑐𝑥𝑘𝑙)

(1∕𝑛), where 𝛼𝑐 is the fuel consumption coefficient for trucks of class 𝑐 and 𝑛 is a real number
reater than 1. Function 𝑓𝑙 by definition is a concave function. However, since 𝑥𝑘𝑙 = 𝑥𝑘𝑛𝑙 , owing to the fact that 𝑥

𝑘
𝑙 is a binary

ariable, we can rewrite the function as 𝑓𝑙(𝑥1𝑙 , 𝑥
2
𝑙 ,… , 𝑥𝐾𝑙) = (

∑

𝑐∈𝐶
∑

𝑘∈𝐾𝑐
𝛼𝑐𝑥𝑘

𝑛

𝑙)(1∕𝑛). This seemingly minor modification converts
he new function to the family of norm functions, which are convex (proof provided in Lemma 3 in the appendix). We set 𝑛 =
1.06 to replicate the results obtained via an empirical study by Zabat et al. (1995). In this experiment, we assume that the fleet is
homogeneous and we have only one vehicle class with 𝛼𝑐 = 1. Similar to Larsson et al. (2015), we adopt the Hanan grid as the test
etwork in this section (Hanan, 1966). In a Hanan grid, the edge weight is equal to the Euclidean distance between the nodes. We
lso follow the setting in Larson et al. (2016) to consider two cases for the speed of a link in the time-expanded network. The links
in the time-expanded network either indicate the waiting at a physical station or indicate a movement with the uniform speed limit
of the network along one of the physical links for our numerical examples. Furthermore, we consider four fleet sizes, namely 25,
50, 100 and 150.

For every fleet size we generate 20 random networks, and then compare the computational time of OA and PC-LA. Both
102

algorithms are implemented with an optimality gap of 10%. For the former, we set 30 iterations as the maximum number of iterations

Transportation Research Part B 153 (2021) 91–110M. Abdolmaleki et al.

a

Fig. 5. Local Search Improvement.

Fig. 6. OA Upper Bound for 150 trucks w/o Local Search (LS).

nd the maximum CPU time of 1,200 s is set for the latter. Fig. 4 presents the time comparison between these two methods. It shows
that the increase in the number of trucks would result in an increase in computational time for both methods. OA requires less time
on average to achieve the desired optimally gap than PC-LA. We should point out that for the cases of the number of trucks equal
to 150, the maximum CPU time of 1200 s is reached for PC-LA and therefore the solution reported does not reach the desired
optimality gap of 10%.

In order to highlight the importance of implementing the local search within the OA algorithm we design a set of studies
to confirm the improvements in lowering the best upper bound when the local search is applied. In particular, the upper-bound
improvement is calculated according to relative difference between the OA upper bound without and with the local search. Similar
to the previous tests, for every fleet size, 20 networks are randomly generated and the OA algorithm is applied with and without
the local search. The results illustrated in Fig. 5 clearly show the importance of applying the local search within the OA-MP in order
to improve the quality of the integer solutions. We can also conclude that the improvement in the upper-bound solution tends to
increase with the increase in the number of trucks, as expected. Finally, Fig. 6 shows the trajectory of the OA upper bound for 30
iterations, where the upper bounds achieved with the local search are clearly better that the case without the local search.

6.2. Outer approximation: Heterogeneous fleet

The goal of this section of the numerical study is to analyze the performance of the OA algorithm while considering a
heterogeneous fleet. In particular, in this section we assume that there are three classes of trucks with fuel consumption coefficients
of 𝛼1 = 1, 𝛼2 = 0.48 and 𝛼3 = 0.44. The rest of the experiments settings are the same as those in the previous section. As we can see
from the results depicted in Fig. 7 the OA algorithm has clearly outperformed in PC-LA across all of the network instances. Once
again, the maximum CPU time of 1200 is reached in the latter for network size equals to 1500 and thus the desired optimality of
103

10% is not achieved.

Transportation Research Part B 153 (2021) 91–110M. Abdolmaleki et al.

6

s
s
o
f
a
c
o
b

Fig. 7. OA v.s. PC-LA computational time for heterogeneous fleet.

.3. DP-based heuristic for realistic instances

This subsection is concerned with the performance of the proposed DP-based heuristic. Specifically, we first compare the fuel
avings between OA and DP algorithms, and then benchmark the results against the heuristic proposed by Larson et al. (2014) in
olving the problem on the Germany highway network up to 10,000 trucks. The network consists of 647 nodes, 695 edges and 12
rigins/destinations (Fig. 8). The right panel of Fig. 9 compares the percentage of fuel savings achieved by OA and DP. While the
ormer yields more savings, the latter shows a reasonably good performance. The DP-based heuristic is very fast, which makes it
ppealing for application in a real-time setting. Moreover, its solution time is only slightly affected by the increase in fleet size and
an be applied to solve large-scale instances, to which the OA algorithm fail to prescribe a solution. This is shown in the left panel
f Fig. 9, where DP manages to solve the problem with up to 10,000 trucks and outperforms substantially the method proposed
y Larson et al. (2013, 2014).

6.4. Sensitivity analysis of schedule flexibility

In this subsection, we first compare the achieved fuel savings among the DP-based heuristic, OA, and the approximation
algorithm. In order to compare these three algorithms, we implement them on the setting in Section 5. Second, we examine the
impact of time-flexibility of trucks’ schedules on the potential fuel savings. All three algorithms are tested on the Hanan grid against
two scenarios of truck schedule flexibility. In the first scenario, a time-flexible schedule allows trucks to stay at intermediate nodes
while following their energy-minimizing paths between their origins and destinations. In the second scenario, trucks have a tight
schedule, i.e., for each truck 𝑘 the difference between their earliest departure time and latest arrival time, 𝑇 𝐿𝐴

𝑘 − 𝑇𝐸𝐷
𝑘 , equals the

time required to travel along the shortest path from 𝑂(𝑘) to 𝐷(𝑘).
For each scenario we generate 20 sample spatio-temporal networks and report the average performance of these three methods.

It is worth pointing out that both DP and the approximation algorithm significantly outperform the OA algorithm across the tests
conducted in this section in terms of computational performance, as their solution time is a fraction of a second.

From the results illustrated in Figs. 10 and 11, we can observe that in both scenarios, OA achieves the highest margins of savings,
followed by the approximate algorithm and the DP-based heuristic. In the case of inflexible schedules, the difference between the
achieved savings becomes small. This confirms our intuition that flexible schedules would create more platooning opportunities and
thus yield more savings. In addition, in both scenarios, the approximation algorithm seems to achieve higher margins of savings
compared with the DP-based heuristic. In particular, in the case of inflexible schedule, its solution is comparable with that of OA
while this difference becomes larger in the case of flexible schedules.

7. Conclusion

In this paper we have investigated the scheduled platoon planning problem in a general setting. Leveraging a time-expanded
network, we formulated the problem as a minimum concave-cost network flow problem, which enables us to apply outer
approximation cuts, strengthened further with a local search to improve the solution quality. The local search builds on the initial
solution provided by the outer approximation algorithm through introducing a series of linear programs to facilitate the process of
finding a locally optimal solution. Unlike many other local search approaches, we proved that the proposed local search terminates
in a polynomial number of operations in the inputs to the problem.

Although the proposed outer approximation method significantly improves on solution time and quality and enables scheduled
planning for medium networks, it is not suitable for solving large-scale instances or real-time implementation. Therefore, we
104

Transportation Research Part B 153 (2021) 91–110M. Abdolmaleki et al.
Fig. 8. Germany Network.

Fig. 9. DP-based Heuristic Performance.

devise a dynamic-programming-based heuristic that can provide a solution of reasonable quality in a timely fashion. Lastly, we
study a simplified platoon planning problem investigated previously in the literature, which is particularly suitable for providing
ballpark estimates of truck platooning benefits. We connect this problem with the well known ‘‘Minimum Weight Pairwise Distance
Preservers’’ problem, and present an approximation algorithm that is superior to previously proposed methods in the literature.
Finally, we compare the performance of all algorithms against each other as well as the methods proposed in the literature using a
number of synthetic or real instances.

The framework presented in this paper provides a foundation for addressing other planning and operations issues related to truck
platooning such as optimal platoon formation and behavioral platoon stability (Sun and Yin, 2019). Our future work can take into
account the uncertainty arising in travel schedules as well as the transportation network.
105

Transportation Research Part B 153 (2021) 91–110M. Abdolmaleki et al.

C

W
N

A

(
R

A

L

P

w

Fig. 10. Fuel Consumption Savings for Flexible Schedule.

Fig. 11. Fuel Consumption Savings for Inflexible Schedule.

RediT authorship contribution statement

Mojtaba Abdolmaleki: Methodology, Investigation, Writing – original draft. Mehrdad Shahabi: Methodology, Investigation,
riting – original draft. Yafeng Yin: Conceptualization, Methodology, Investigation, Writing – reviewing & editing, Supervision.
eda Masoud: Conceptualization, Writing – reviewing & editing.

cknowledgments

The work described in this paper was partly supported by research grants from the National Science Foundation, United States
CPS-1837245, CMMI-1904575 and CMMI-2046372) and the USDOT Tier-1 University Transportation Center Freight Mobility
esearch Institute (FMRI).

ppendix A

emma 3. Every Norm function, 𝐹 (𝑥) = ‖𝑥‖𝑝, ∀𝑝 ≥ 1 is convex.

roof. Assume 𝑥1 and 𝑥2 are two points that belong to the domain of 𝐹 (𝑥) and 𝜆 as a positive number between zero and one.

𝐹 (𝜆𝑥1 + (1 − 𝜆)𝑥2) = ‖𝜆𝑥1 + (1 − 𝜆)𝑥2‖

≤ ‖𝜆𝑥1‖ + ‖(1 − 𝜆)𝑥2‖ (from triangular inequality)
= 𝜆‖𝑥1‖ + (1 − 𝜆)‖𝑥2‖

hich is the definition of a convex function and the proof is complete. □
106

Transportation Research Part B 153 (2021) 91–110M. Abdolmaleki et al.

t

A

w

T
o

D

f

Appendix B

Proof of Theorem 1. To prove the first part of Theorem 1, we denote by 𝑥⃗ and 𝑦 two consecutive solutions to the optimization
problem described in (7). If the gradient of the objective function 𝑧 at both 𝑥⃗ and 𝑦 are equal. Then, both optimization problems
will result in the same solution 𝑦, and this concludes the proof. As such, we can assume ∇𝑧(𝑥⃗) ≠ ∇𝑧(𝑦). In this case, as the flow in
each link of the graph 𝐺 should be less than |𝑃 |, we conclude:

𝑧(𝑥) =
∑

𝑙∈𝐿
𝑓𝑙(𝑌𝑙) ≤

∑

𝑙∈𝐿
|𝑃 |𝑚𝑎𝑥𝑐 (𝑓𝑙(𝑒𝑐𝑙)) (14)

where 𝑒𝑐𝑙 is the vector with unit vector with number of trucks 𝑦
𝑐
𝑙 equals 1 for class 𝑐 and zero otherwise.

Therefore, it is sufficient to prove that if we can improve the objective function by solving the optimization problem (7), we can
improve it by at least 𝛾 for some constant 𝛾 > 0.

To complete the proof note that the inner product of 𝑦 − 𝑥⃗ and the difference in the gradient of z at 𝑦 and 𝑥⃗ can be written as:

(∇𝑧(𝑦𝑙) − ∇𝑧(𝑥⃗𝑙))(𝑦𝑙 − 𝑥⃗𝑙) =
∑

𝑙
[∇𝑓𝑙(𝑥⃗) − ∇𝑓𝑙(𝑦)].[𝑦𝑙 − 𝑥⃗𝑙]

Here, we use 𝑥⃗𝑙 and 𝑦𝑙 to denote the vector 𝑌𝑙 in optimization problem (1) at solutions 𝑥⃗ and 𝑦, respectively. The concavity of
he functions 𝑓𝑙 yields:

[∇𝑓𝑙(𝑥⃗) − ∇𝑓𝑙(𝑦)].[𝑦𝑙 − 𝑥⃗𝑙] ≤ 0

s we have ∇𝑧(𝑥⃗) ≠ ∇𝑧(𝑦), there should exist a link 𝑙 such that 𝑦𝑙 ≠ 𝑥⃗𝑙. Strong concavity of functions 𝑓𝑙 yields:

𝑓𝑙(𝑦).[𝑦𝑙 − 𝑥⃗𝑙] ≤ −𝛾‖𝑦𝑙 − 𝑥⃗𝑙‖
2 ≤ −𝛾

here the last inequality follows from the fact that both 𝑦𝑙 and 𝑥⃗𝑙 are integral points. As a result, we have:

(∇𝑧(𝑦𝑙) − ∇𝑧(𝑥⃗𝑙))(𝑦𝑙 − 𝑥⃗𝑙) ≤ −𝛾 (15)

On the other hand, the concavity of the objective function in optimization problem (7) yields:

∇𝑧(𝑥⃗)𝑇 .(𝑦 − 𝑥⃗) ≤ 0 (16)

Now we can combine (15) and (16) to obtain:

∇𝑧(𝑦)𝑇 .(𝑦 − 𝑥⃗) < −𝛾

We prove the second part of Theorem 1 in three separate steps. First, we introduce a class of functions as well-bent functions.
hen, we prove the statement of the theorem is true for the class of well-bent objective functions. Finally, we prove every concave
bjective function can be approximated by a function in the class of well-bent functions.

Let us fix an 𝜖 > 0 to take any arbitrary value greater than 0.

efinition 3. We call a function well-bent if there exists a 𝜃 > 0 that satisfies the following condition for any 𝑛 ∈ N:

𝑓 ′(𝑛 + 1) − 𝑓 ′(𝑛) > 𝜃
𝑛1+𝜖

𝑜𝑟 𝑓 ′(𝑛 + 1) − 𝑓 ′(𝑛) = 0 (17)

Lemma 4. Theorem 1 holds if the energy consumption for each link, 𝑓𝑙(.),∀𝑙 ∈ 𝐸(𝐺), is in the class of well-bent functions.

Proof. Let us denote by 𝑥⃗ and 𝑦 two consecutive solutions to the optimization problem described in (7). If the gradient of the
objective function 𝑧 at both 𝑥⃗ and 𝑦 are equal. Then, both optimization problems will result in the same solution 𝑦, and this concludes
the proof. As such, we can assume ∇𝑧(𝑥⃗) ≠ ∇𝑧(𝑦). In this case, we prove that if we can improve the objective function by solving
the optimization problem (7), we can improve it by at least 𝑂(1

𝑃 4+𝜖
|𝐸(𝐺)|2

), i.e., 𝑧(𝑥⃗) − 𝑧(𝑦) > 𝜅
𝑃 4+𝜖

|𝐸(𝐺)|2
, for some constant 𝜅 > 0.

This result together with (14) from the proof for the first part of Theorem 1 will conclude the proof. The concavity of the objective
unction in optimization problem (7) yields:

∇𝑧(𝑥⃗)𝑇 .(𝑦 − 𝑥⃗) < 0 (18)

Moreover, in the single-class case the total energy consumption can be separated over links as follows:

𝑧(𝑥⃗) =
∑

𝑙
𝑓𝑙(

∑

𝑘
𝑥𝑘𝑙)

As such, we can write the difference in the gradient of 𝑧 at 𝑥⃗ and 𝑦 as:

∇𝑧(𝑥⃗) − ∇𝑧(𝑦) = (𝑓 ′
𝑙1
(
∑

𝑥𝑘𝑙1) − 𝑓 ′
𝑙1
(
∑

𝑦𝑘𝑙1),… , 𝑓 ′
𝑙𝑚
(
∑

𝑥𝑘𝑙𝑚) − 𝑓 ′
𝑙𝑚
(
∑

𝑦𝑘𝑙𝑚))
107

𝑘 𝑘 𝑘 𝑘

Transportation Research Part B 153 (2021) 91–110M. Abdolmaleki et al.

S

Taking the inner product with the vector 𝑥⃗ − 𝑦 yields:

(∇𝑧(𝑥⃗) − ∇𝑧(𝑦))𝑇 (𝑥⃗ − 𝑦) =
∑

𝑙
[𝑓 ′

𝑙 (
∑

𝑘
𝑥𝑘𝑙) − 𝑓 ′

𝑙 (
∑

𝑘
𝑦𝑘𝑙)][

∑

𝑘
𝑥𝑘𝑙 −

∑

𝑘
𝑦𝑘𝑙] (19)

As the functions 𝑓𝑙(.) are concave we can conclude:

[𝑓 ′
𝑙 (
∑

𝑘
𝑥𝑘𝑙) − 𝑓 ′

𝑙 (
∑

𝑘
𝑦𝑘𝑙)][

∑

𝑘
𝑥𝑘𝑙 −

∑

𝑘
𝑦𝑘𝑙] ≤ 0 ∀𝑙 ∈ 𝐸(𝐺) (20)

As we have ∇𝑧(𝑥⃗) ≠ ∇𝑧(𝑦), there should be a link 𝑙𝑖 ∈ 𝐸(𝐺) with 𝑓 ′(
∑

𝑘 𝑥
𝑘
𝑙𝑖
) ≠ 𝑓 ′(

∑

𝑘 𝑦
𝑘
𝑙𝑖
). The function 𝑓𝑙𝑖 (.) being concave and

well-bent yields:

[𝑓 ′
𝑙𝑖
(
∑

𝑘
𝑥𝑘𝑙𝑖) − 𝑓 ′

𝑙𝑖
(
∑

𝑘
𝑦𝑘𝑙𝑖)][

∑

𝑘
𝑥𝑘𝑙𝑖 −

∑

𝑘
𝑦𝑘𝑙𝑖] <

−𝜃
𝑃 1+𝜖

(21)

From (19), (20), and (21) we have:

(∇𝑧(𝑦) − ∇𝑧(𝑥⃗))𝑇 (𝑦 − 𝑥⃗) ≤ −𝜃
𝑃 1+𝜖

(22)

umming (18) and (22) yields:

∇𝑧(𝑦)𝑇 (𝑦 − 𝑥⃗) ≤ −𝜃
𝑃 1+𝜖

(23)

Now, let us denote by 𝜂∗ the solution to:

𝑎𝑟𝑔𝑚𝑎𝑥0≤𝜂≤1
{

𝜂|∇𝑧(𝜂𝑥⃗ + (1 − 𝜂)𝑦)(𝑦 − 𝑥⃗) ≤ −𝜃
2𝑃 1+𝜖

}

Note that 𝜂∗ is well defined, since the 𝜂 = 0 would satisfy the condition stated above. Doing so, we can consider two cases:

• 𝜂∗ = 1: As such, ∇𝑧(𝑥⃗)(𝑦 − 𝑥⃗) ≤ −𝜃
2𝑃 1+𝜖 . In this case, we can overestimate the function 𝑓 at point 𝑦 by the first-order Taylor

approximation of 𝑧 at point 𝑥⃗:

𝑧(𝑦) ≤ 𝑧(𝑥⃗) + ∇𝑧(𝑥⃗)(𝑦 − 𝑥⃗) (24)

However, as 𝜂∗ = 1, we have:

𝑧(𝑥⃗) + ∇𝑧(𝑥⃗)(𝑦 − 𝑥⃗) ≤ 𝑧(𝑥⃗) − 𝜃
2𝑃 1+𝜖

(25)

which concludes the proof in this case.
• 𝜂∗ < 1: As the gradient of the function 𝑧 is continuous, using the intermediate value theorem we have:

∇𝑧(𝜂∗𝑥⃗ + (1 − 𝜂∗)𝑦)(𝑦 − 𝑥⃗) = −𝜃
2𝑃 1+𝜖

(26)

Combining (26) with (23) yields:

(∇𝑧(𝑦) − ∇𝑧(𝜂∗𝑥⃗ + (1 − 𝜂∗)𝑦))(𝑦 − 𝑥⃗) ≤ −𝜃
2𝑃 1+𝜖

Using Cauchy–Schwarz inequality we can derive:

‖

‖

∇𝑧(𝑦) − ∇𝑧(𝜂∗𝑥⃗ + (1 − 𝜂∗)𝑦)‖
‖2

‖

‖

𝑦 − 𝑥⃗‖
‖2 ≥

𝜃
2𝑃 1+𝜖

Moreover, the maximum euclidean distance between any two basic feasible solutions in the optimization problem (7) is at
most 𝑃 |𝐸(𝐺)|, i.e., ‖

‖

𝑦 − 𝑥⃗‖
‖2 ≤ 𝑃 |𝐸(𝐺)|. As such, we have:

‖

‖

∇𝑧(𝑦) − ∇𝑧(𝜂∗𝑥⃗ + (1 − 𝜂∗)𝑦)‖
‖2 ≥

𝜃
2𝑃 1+𝜖𝑃 |𝐸(𝐺)|

(27)

That being said, the function 𝑧 has a finite Hessian, so there exists an 𝑀 such that ‖‖
‖

∇2𝑓 (𝑥)‖‖
‖2

≤ 𝑀 . It is well known that for
the concave function 𝑧 we have ‖∇𝑓 (𝑥) − ∇𝑓 (𝑦)‖2 ≤ 𝑀 ‖𝑥 − 𝑦‖2, using this fact together with (27) we can conclude:

‖

‖

𝑦 − (𝜂∗𝑥⃗ + (1 − 𝜂∗)𝑦)‖
‖2 ≥

𝜃
2𝑀𝑃 1+𝜖𝑃 |𝐸(𝐺)|

Using the upper bound on the maximum distance of two basic feasible solutions we get:

|𝜂∗| ≥ 𝜃
2𝑀𝑃 1+𝜖(𝑃 |𝐸(𝐺)|)2

(28)

We can underestimate the function 𝑧 at the point 𝑦 by the first-order Taylor approximation from the value of the function at
point 𝜂∗𝑥⃗ + (1 − 𝜂∗)𝑦:

𝑧(𝑦) ≤ 𝑧(𝜂∗𝑥⃗ + (1 − 𝜂∗)𝑦) + ∇𝑧(𝜂∗𝑥⃗ + (1 − 𝜂∗)𝑦)(𝑦 − (𝜂∗𝑥⃗ + (1 − 𝜂∗)𝑦))

We can rewrite the expression in right-hand side to get:
∗ ∗ ∗ ∗ ∗
108

≤ 𝑧(𝜂 𝑥⃗ + (1 − 𝜂)𝑦) + ∇𝑧(𝜂 𝑥⃗ + (1 − 𝜂)𝑦)(𝑦 − 𝑥⃗)𝜂

Transportation Research Part B 153 (2021) 91–110M. Abdolmaleki et al.
Using (26) and (28) we can simplify further to get:

≤ 𝑧(𝜂∗𝑥⃗ + (1 − 𝜂∗)𝑦) + −𝜃
2𝑃 1+𝜖

𝜃
2𝑀𝑃 1+𝜖(𝑃 |𝐸(𝐺)|)2

(29)

From (18) we have 𝑧(𝑥) > 𝑧(𝜂∗𝑥⃗ + (1 − 𝜂∗)𝑦). Combining this fact with the inequality in (29) concludes the proof. □

Lemma 5. Any concave function 𝑓𝑙 can be approximated by a well-bent function.

Proof. Given function 𝑓𝑙, we fix a 𝜁 > 0 and define function 𝑔𝑙 as a well-bent function that approximates function 𝑓𝑙 based on the
solution to the differential equation below:

{

𝑔𝑙(0) = 𝑓𝑙(0)

𝑔′𝑙 (0) = 𝑓 ′
𝑙 (0)

(30a)

𝑔′𝑙 (𝑥) =

{

𝑓 ′
𝑙 (𝑥) If 𝑓 ′

𝑙 (𝑥) − 𝑔′𝑙 (𝑥 − 1) < 𝜁
𝑥1+𝜖

𝑔′𝑙 (𝑥 − 1) If 𝑓 ′
𝑙 (𝑥) − 𝑔′𝑙 (𝑥 − 1) ≥ 𝜁

𝑥1+𝜖
∀𝑥 ∈ N (30b)

𝑔′𝑙 (𝑥) = (⌈𝑥⌉ − 𝑥)𝑔′𝑙 (⌊𝑥⌋) + (𝑥 − ⌊𝑥⌋)𝑔′𝑙 (⌈𝑥⌉) ∀𝑥 ∉ N (30c)

By Picard’s existence and uniqueness theorem for differential equations for a given 𝑃 there should exist a unique solution to the
system of differential Eq. (30). However, if we define the difference function ℎ(𝑥) = 𝑓𝑙(𝑥) − 𝑔𝑙(𝑥) we have:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ℎ(0) = 0

ℎ′(0) = 0

|ℎ′(𝑥)| < max
{

𝜁
𝑥1+𝜖

, 𝜁
}

(31a)

Using the fundamental theorem of calculus we have:

ℎ(𝑎) = ∫

𝑎

0
ℎ′(𝑥)𝑑𝑥 = ∫

1

0
ℎ′(𝑥)𝑑𝑥 + ∫

𝑎

1
ℎ′(𝑥)𝑑𝑥 < 𝜁 + ∫

𝑎

1

𝜁
𝑥1+𝜖

𝑑𝑥 < 𝜁 (1 + 1
𝜖
) (32)

If we choose 𝜁 = 𝛿
1+ 1

𝜖
𝑓𝑙(1), we can approximate the function 𝑓𝑙 within a factor of 1 − 𝛿 by the function 𝑔𝑙. i.e., for any arbitrary

𝑎 we have |𝑓𝑙(𝑎) − 𝑔𝑙(𝑎)| ≤ (1 − 𝛿)𝑓𝑙(𝑥). Which concludes the proof. □

Using Lemma 5, we can solve the optimization problem (1) substituting the functions 𝑓𝑙 with the functions 𝑔𝑙. Then, we can
claim that the objective value at the solution ⃗𝑥∗∗, when 𝑓𝑙 is replaced with 𝑔𝑙, is within 1 − 𝛿 factor of the objective value for the
solution to the original optimization problem 𝑥⃗.

Appendix C

There are two main approaches to dealing with a Pairwise Distance Preservers problem in the literature. The first is to use the LP
relaxation approach that we used in this paper; the second is to find a good decomposition structure that not only can decompose
the original network of these structures, but more importantly, is able to find decomposition blocks with extreme properties in an
acceptable polynomial time. One of the handy decomposition structures used in many Steiner-type problems, especially a distance
preservers problem, is the family of junction tree algorithms: trees with an in and out branching. This appendix presents an example
to show that there exists a graph that does not contain any junction tree with the savings at least 1

𝑘2
of the total savings as a subgraph.

This suggests why junction trees might not be a good decomposition structure for the savings perspective of the Pairwise Distance
Preservers problem.

Definition 4. A junction tree is defined as a collection of paths, all passing through the same node 𝑣.

Definition 5. We define a twisting path 𝑇𝑃𝑛 inductively to be a union of n simple directed paths. While 𝑇𝑃1 is the simple path of
length 1, we can obtain 𝑇𝑃𝑛 from 𝑇𝑃𝑛−1 by adding a new path whose overlap with all the other paths is exactly 1. Moreover, the
overlap of the new path with any other path is prior to all the other overlaps on those paths if we consider the directed ordering
of edges.

Fig. 12 demonstrates 𝑇𝑃3. If we consider the paths that generate 𝑇𝑃𝑛 as the trips in a network its easy to see that all junction
trees in this network are the union of two paths. As such, the highest weight for junction trees in 𝑇𝑃𝑛 is 1. However, the total number
of overlaps equals

(𝑛
2

)

. While, as described in Bodwin and Williams (2016), the junction tree approach or any other decomposition
approach requires junction trees with higher weight compared to the total savings.
109

Transportation Research Part B 153 (2021) 91–110M. Abdolmaleki et al.
Fig. 12. The spatial graph 𝑇𝑃3.

References

Ahuja, Ravindra K., Magnanti, Thomas L., Orlin, James B., 1988. Network Flows. Cambridge, Mass.: Alfred P. Sloan School of Management, Massachusetts.
Bhoopalam, Anirudh Kishore, Agatz, Niels, Zuidwijk, Rob, 2018. Planning of truck platoons: A literature review and directions for future research. Transp. Res.

B 107, 212–228.
Bodwin, Greg, Williams, Virginia Vassilevska, 2016. Better distance preservers and additive spanners. In: Proceedings of the Twenty-Seventh Annual ACM-SIAM

Symposium on Discrete Algorithms. Society for Industrial and Applied Mathematics, pp. 855–872.
Bonnet, Christophe, Fritz, Hans, 2000. Fuel Consumption Reduction in a Platoon: Experimental Results with Two Electronically Coupled Trucks at Close Spacing.

Technical Report, SAE Technical Paper.
Boysen, Nils, Briskorn, Dirk, Schwerdfeger, Stefan, 2018. The identical-path truck platooning problem. Transp. Res. B 109, 26–39.
Browand, Fred, McArthur, John, Radovich, Charles, 2004. Fuel saving achieved in the field test of two tandem trucks.
Chlamtáč, Eden, Dinitz, Michael, Kortsarz, Guy, Laekhanukit, Bundit, 2017. Approximating spanners and directed steiner forest: Upper and lower bounds. In:

Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM, pp. 534–553.
Coppersmith, Don, Elkin, Michael, 2006. Sparse sourcewise and pairwise distance preservers. SIAM J. Discrete Math. 20 (2), 463–501.
Davila, Arturo, 2013. Report on fuel consumption. SARTRE, Deliv.
Duret, Aurelien, Wang, Meng, Ladino, Andres, 2020. A hierarchical approach for splitting truck platoons near network discontinuities. Transp. Res. B 132,

285–302.
Elkin, Michael, Peleg, David, 2000. The hardness of approximating spanner problems. In: Annual Symposium on Theoretical Aspects of Computer Science.

Springer, pp. 370–381.
Elkin, Michael, Peleg, David, 2007. The hardness of approximating spanner problems. Theory Comput. Syst. 41 (4), 691–729.
Fletcher, Roger, Leyffer, Sven, 1994. Solving mixed integer nonlinear programs by outer approximation. Math. Program. 66 (1–3), 327–349.
Hanan, Maurice, 1966. On steiner’s problem with rectilinear distance. SIAM J. Appl. Math. 14 (2), 255–265.
Larson, Jeffrey, Kammer, Christoph, Liang, Kuo-Yun, Johansson, Karl Henrik, 2013. Coordinated route optimization for heavy-duty vehicle platoons. In: Intelligent

Transportation Systems-(ITSC), 2013 16th International IEEE Conference on. IEEE, pp. 1196–1202.
Larson, Jeffrey, Liang, Kuo-Yun, Johansson, Karl H., 2014. A distributed framework for coordinated heavy-duty vehicle platooning. IEEE Trans. Intell. Transp.

Syst. 16 (1), 419–429.
Larson, Jeffrey, Munson, Todd, Sokolov, Vadim, 2016. Coordinated platoon routing in a metropolitan network. In: 2016 Proceedings of the Seventh SIAM

Workshop on Combinatorial Scientific Computing. SIAM, pp. 73–82.
Larsson, Erik, Sennton, Gustav, Larson, Jeffrey, 2015. The vehicle platooning problem: Computational complexity and heuristics. Transp. Res. C 60, 258–277.
Lozovanu, D.D., 1982. Properties of optimal-solutions of a grid transport problem with concave cost function of the flows on the arcs. Engineering Cybernetics

20 (6), 34–38.
Magnanti, Thomas L., Stratila, Dan, 2004. Separable concave optimization approximately equals piecewise linear optimization. In: International Conference on

Integer Programming and Combinatorial Optimization. Springer, pp. 234–243.
Masoud, Neda, Jayakrishnan, R., 2017. A decomposition algorithm to solve the multi-hop Peer-to-Peer ride-matching problem. Transp. Res. B 99, 1–29.
Muratori, Matteo, Holden, Jacob, Lammert, Michael, Duran, Adam, Young, Stanley, Gonder, Jeffrey, 2017. Potentials for Platooning in US Highway Freight

Transport. Jeffrey Technical Report, National Renewable Energy Lab.(NREL), Golden, CO (United States).
Murray, Walter, Ng, Kien-Ming, 2010. An algorithm for nonlinear optimization problems with binary variables. Comput. Optim. Appl. 47 (2), 257–288.
Nourmohammadzadeh, Abtin, Hartmann, Sven, 2016. The fuel-efficient platooning of heavy duty vehicles by mathematical programming and genetic algorithm.

In: International Conference on Theory and Practice of Natural Computing. Springer, pp. 46–57.
Shida, M., Doi, T., Nemoto, Y., Tadakuma, K., 2010. A short-distance vehicle platooning system: 2nd report, evaluation of fuel savings by the developed

cooperative control. In: Proceedings of the 10th International Symposium on Advanced Vehicle Control. AVEC. pp. 719–723.
Sokolov, Vadim, Larson, Jeffrey, Munson, Todd, Auld, Josh, Karbowski, Dominik, 2017. Maximization of platoon formation through centralized routing and

departure time coordination. Transp. Res. Rec.: J. Transp. Res. Board (2667), 10–16.
Sun, Xiaotong, Yin, Yafeng, 2019. Behaviorally stable vehicle platooning for energy savings. Transp. Res. C 99, 37–52.
van Wyk, Franco, Wang, Yiyang, Khojandi, Anahita, Masoud, Neda, 2019. Real-time sensor anomaly detection and identification in automated vehicles. IEEE

Trans. Intell. Transp. Syst. 21 (3), 1264–1276.
Zabat, Michael, Stabile, Nick, Farascaroli, Stefano, Browand, Frederick, 1995. The aerodynamic performance of platoons: A final report.
110

http://refhub.elsevier.com/S0191-2615(21)00166-1/sb1
http://refhub.elsevier.com/S0191-2615(21)00166-1/sb2
http://refhub.elsevier.com/S0191-2615(21)00166-1/sb2
http://refhub.elsevier.com/S0191-2615(21)00166-1/sb2
http://refhub.elsevier.com/S0191-2615(21)00166-1/sb3
http://refhub.elsevier.com/S0191-2615(21)00166-1/sb3
http://refhub.elsevier.com/S0191-2615(21)00166-1/sb3
http://refhub.elsevier.com/S0191-2615(21)00166-1/sb4
http://refhub.elsevier.com/S0191-2615(21)00166-1/sb4
http://refhub.elsevier.com/S0191-2615(21)00166-1/sb4
http://refhub.elsevier.com/S0191-2615(21)00166-1/sb5
http://refhub.elsevier.com/S0191-2615(21)00166-1/sb6
http://refhub.elsevier.com/S0191-2615(21)00166-1/sb7
http://refhub.elsevier.com/S0191-2615(21)00166-1/sb7
http://refhub.elsevier.com/S0191-2615(21)00166-1/sb7
http://refhub.elsevier.com/S0191-2615(21)00166-1/sb8
http://refhub.elsevier.com/S0191-2615(21)00166-1/sb9
http://refhub.elsevier.com/S0191-2615(21)00166-1/sb10
http://refhub.elsevier.com/S0191-2615(21)00166-1/sb10
http://refhub.elsevier.com/S0191-2615(21)00166-1/sb10
http://refhub.elsevier.com/S0191-2615(21)00166-1/sb11
http://refhub.elsevier.com/S0191-2615(21)00166-1/sb11
http://refhub.elsevier.com/S0191-2615(21)00166-1/sb11
http://refhub.elsevier.com/S0191-2615(21)00166-1/sb12
http://refhub.elsevier.com/S0191-2615(21)00166-1/sb13
http://refhub.elsevier.com/S0191-2615(21)00166-1/sb14
http://refhub.elsevier.com/S0191-2615(21)00166-1/sb15
http://refhub.elsevier.com/S0191-2615(21)00166-1/sb15
http://refhub.elsevier.com/S0191-2615(21)00166-1/sb15
http://refhub.elsevier.com/S0191-2615(21)00166-1/sb16
http://refhub.elsevier.com/S0191-2615(21)00166-1/sb16
http://refhub.elsevier.com/S0191-2615(21)00166-1/sb16
http://refhub.elsevier.com/S0191-2615(21)00166-1/sb17
http://refhub.elsevier.com/S0191-2615(21)00166-1/sb17
http://refhub.elsevier.com/S0191-2615(21)00166-1/sb17
http://refhub.elsevier.com/S0191-2615(21)00166-1/sb18
http://refhub.elsevier.com/S0191-2615(21)00166-1/sb19
http://refhub.elsevier.com/S0191-2615(21)00166-1/sb19
http://refhub.elsevier.com/S0191-2615(21)00166-1/sb19
http://refhub.elsevier.com/S0191-2615(21)00166-1/sb20
http://refhub.elsevier.com/S0191-2615(21)00166-1/sb20
http://refhub.elsevier.com/S0191-2615(21)00166-1/sb20
http://refhub.elsevier.com/S0191-2615(21)00166-1/sb21
http://refhub.elsevier.com/S0191-2615(21)00166-1/sb22
http://refhub.elsevier.com/S0191-2615(21)00166-1/sb22
http://refhub.elsevier.com/S0191-2615(21)00166-1/sb22
http://refhub.elsevier.com/S0191-2615(21)00166-1/sb23
http://refhub.elsevier.com/S0191-2615(21)00166-1/sb24
http://refhub.elsevier.com/S0191-2615(21)00166-1/sb24
http://refhub.elsevier.com/S0191-2615(21)00166-1/sb24
http://refhub.elsevier.com/S0191-2615(21)00166-1/sb26
http://refhub.elsevier.com/S0191-2615(21)00166-1/sb26
http://refhub.elsevier.com/S0191-2615(21)00166-1/sb26
http://refhub.elsevier.com/S0191-2615(21)00166-1/sb27
http://refhub.elsevier.com/S0191-2615(21)00166-1/sb28
http://refhub.elsevier.com/S0191-2615(21)00166-1/sb28
http://refhub.elsevier.com/S0191-2615(21)00166-1/sb28
http://refhub.elsevier.com/S0191-2615(21)00166-1/sb29

	Itinerary planning for cooperative truck platooning
	Introduction
	Model
	Concave cost multicommodity flow formulation
	Convex minimization reformulation

	Outer approximation
	Master problem
	Revising the master problem
	Local search

	Dynamic-programming-based heuristic
	Approximation algorithm
	Model
	LP relaxation
	Approximation algorithm
	Role of LP relaxation

	Numerical experiments
	Outer approximation: Homogeneous fleet
	Outer approximation: Heterogeneous fleet
	DP-based heuristic for realistic instances
	Sensitivity analysis of schedule flexibility

	Conclusion
	CRediT authorship contribution statement
	Acknowledgments
	Appendix A
	Appendix B
	Appendix C
	References

